TWI817567B - 具有有效互連結構的低電容雙通道和多通道的瞬態電壓抑制器件 - Google Patents

具有有效互連結構的低電容雙通道和多通道的瞬態電壓抑制器件 Download PDF

Info

Publication number
TWI817567B
TWI817567B TW111122831A TW111122831A TWI817567B TW I817567 B TWI817567 B TW I817567B TW 111122831 A TW111122831 A TW 111122831A TW 111122831 A TW111122831 A TW 111122831A TW I817567 B TWI817567 B TW I817567B
Authority
TW
Taiwan
Prior art keywords
type
controlled rectifier
metal layer
silicon controlled
region
Prior art date
Application number
TW111122831A
Other languages
English (en)
Other versions
TW202303966A (zh
Inventor
雪克 瑪力卡勒強斯瓦密
羅娟
Original Assignee
加拿大商萬國半導體國際有限合夥公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 加拿大商萬國半導體國際有限合夥公司 filed Critical 加拿大商萬國半導體國際有限合夥公司
Publication of TW202303966A publication Critical patent/TW202303966A/zh
Application granted granted Critical
Publication of TWI817567B publication Critical patent/TWI817567B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0259Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using bipolar transistors as protective elements
    • H01L27/0262Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using bipolar transistors as protective elements including a PNP transistor and a NPN transistor, wherein each of said transistors has its base coupled to the collector of the other transistor, e.g. silicon controlled rectifier [SCR] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0292Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using a specific configuration of the conducting means connecting the protective devices, e.g. ESD buses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0296Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices involving a specific disposition of the protective devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Amplifiers (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Rectifiers (AREA)

Abstract

一種瞬態電壓抑制器件(Transient Voltage Suppressor,TVS),包含沿外延層的主表面橫向佈置的複數個叉指。複數個叉指包含第一類型叉指和第二類型叉指。第一類型叉指和第二類型叉指分別包含矽控整流器(Silicon Controlled Rectifier,SCR)區和結型二極體區。複數個第二類型叉指透過設置在第一金屬層上方的第二金屬層導電地耦合在一起,並與第一金屬層電絕緣。第一金屬層導電地耦合第一類型叉指的矽控整流器區和結型二極體區。

Description

具有有效互連結構的低電容雙通道和多通道的瞬態電壓抑制器件
本發明的實施例涉及半導體器件,更具體地說,本發明的各個態樣涉及一種具有有效互連結構的低電容雙通道和多通道的瞬態電壓抑制器件。
電子設備組件非常容易受到瞬態電壓峰值(瞬態)的影響。瞬態電壓尖峰是指透過設備的電壓短暫的增加。電壓峰值的範圍從數毫伏特到數千伏特。這些事件可能是由電源中的雜訊引起的,例如馬達或設計不良的電源轉換器所發出的感應響聲、導致電弧的不良連接或接線、或由靜電放電等自然電事件引起的。這些瞬態事件可能會損壞敏感的設備組件,例如電容器和電阻器,從而導致故障或設備功能不良。
為了防止瞬態電壓的變化,各種組件被用來將電壓尖峰從設備的敏感部分分流出去。用於防止瞬態電壓的變化的組件包含去耦電容器、齊納二極體(Zener diode)、雪崩二極體(avalanche diode)、金屬氧化物壓敏電阻器、多晶開關和瞬變電壓抑制二極體。
瞬態電壓抑制器(Transient Voltage Suppressor,TVS)二極體,其與用於防止瞬態電壓變化的其他元件相比具有許多優點。特別是,瞬態電壓抑制器二極體的動作迅速,且適用於中頻應用,可以是單向和雙向的,且具有低箝位電壓,並安全地進入閉合電路。
在習知的瞬態電壓抑制器二極體設計中,由於瞬態電壓抑制器二極體的各部分之間的非最佳互連結構,使其通常具有高電容和大器件封裝。因此,本發明的各個派樣都是為了滿足這些需求而開發的。
為了解決瞬態電壓抑制器(Transient Voltage Suppressor,TVS)二極體的各部分之間的非最佳互連結構,而使得其通常具有高電容和大器件封裝等問題,本發明提供了一種改良的瞬態電壓抑制器件設備。
本發明提供的一種瞬態電壓抑制器件,包含:外延層,其在襯底表面上,且具有輕濃度的第一導電類型的離子,其中第一導電類型與第二導電類型相反;複數個叉指,其沿著外延層的主表面橫向排列,複數個叉指包含第一類型叉指和第二類型叉指,其中第一類型叉指和第二類型叉指皆包含一個矽控整流器(Silicon Controlled Rectifier,SCR)部分和一個結型二極體部分,其中,第一類型叉指包含第一金屬層的一部分,第一金屬層的一部分將矽控整流器部分導電地耦合到結型二極體部分,其中複數個第二類型叉指透過與第一金屬層電絕緣的第二金屬層耦合在一起,第二金屬層設置在第一金屬層的頂部,其中,第一類型叉指的結型二極體部分和第二類型叉指的結型二極體部分之間形成結 型二極體;其中,第一類型叉指的矽控整流器部分和第二類型叉指的矽控整流器部分之間形成矽控整流器。
較佳地,瞬態電壓抑制器件進一步包含一個輸入/輸出(I/O)接觸墊,其耦合到第二金屬層的頂邊,其中一個絕緣層在第一金屬層上方延伸,第一金屬層在第二金屬層下方。
較佳地,瞬態電壓抑制器件,其中輸入/輸出接觸墊是連接到第二金屬層上部的導線。
較佳地,瞬態電壓抑制器件,其中第一類型叉指的矽控整流器部分和第二類型叉指的矽控整流器部分位於外延層中彼此接近的位置,並且其中外延層的一部分將第一類型叉指的矽控整流器部分與第二類型叉指的矽控整流器部分分開。
較佳地,瞬態電壓抑制器件,其中第一類型叉指的結型二極體部分和第二類型叉指的結型二極體部分位於外延層中彼此接近的位置,並且其中外延層的一部分將第一類型叉指的結型二極體部分與第二類型叉指的結型二極體部分分開。
較佳地,瞬態電壓抑制器件,其中第一類型叉指包含矽控整流器陰極區,矽控整流器陰極區作為形成在第一類型叉指的矽控整流器部分和第二類型叉指的矽控整流器部分之間的矽控整流器的陰極,並且其中第二類型叉指包含作為矽控整流器陽極的矽控整流器陽極區。
較佳地,瞬態電壓抑制器件,其中第一類型叉指包含一個結型二極體陽極區,結型二極體陽極區用作在第一類型叉指的結型二極體部分和第二 類型叉指的結型二極體部分之間形成的結型二極體的陽極,其中第二類型叉指包含一個結型二極體陰極區,陰極區用作結型二極體的陰極。
較佳地,瞬態電壓抑制器件,其中第一類型叉指導電耦合到一個參考節點,第二類型叉指導電耦合的一個受保護的節點。
較佳地,瞬態電壓抑制器件,其中第一類型叉指包含輕摻雜在外延層中形成的第一導電類型的離子的第一井區,以及重摻雜在第一井區中形成的第二導電類型的離子的集電極區,其中第一金屬層導電耦合到第一井區和集電極區。
較佳地,瞬態電壓抑制器件,其中第二類型叉指包含輕摻雜在外延層中形成的第二導電類型的離子的第二井區,以及重摻雜在第二井區中形成的第一導電類型的離子的發射極區,其中第二金屬層導電地耦合到第一井區和發射極區。
較佳地,瞬態電壓抑制器件,其中第一類型叉指的結型二極體部分包含在外延層中形成的重摻雜有第一導電類型離子的結型二極體陽極區。
較佳地,瞬態電壓抑制器件,其中第二類型叉指的結型二極體部分包含在外延層中形成的重摻雜有第二導電類型離子的結型二極體陰極區。
較佳地,瞬態電壓抑制器件,其中第二金屬層比第一金屬層更厚。
較佳地,瞬態電壓抑制器件進一步包含一個第三金屬層,其導電地耦合第二類型叉指的矽控整流器部分和結型二極體部分,並且其中第三金屬層導電地耦合到第二金屬層。
較佳地,瞬態電壓抑制器件,其中第三金屬層與第一金屬層位於距離外延層相同的高度,並且與第一金屬層絕緣。
較佳地,瞬態電壓抑制器件,其中穿過絕緣層的第一組通孔將第三金屬層導電地耦合到矽控整流器部分和結型二極體部分,並且穿過絕緣層的第二組通孔將第三金屬層耦合到第二金屬層。
較佳地,瞬態電壓抑制器件,其中第一金屬層導電耦合到一個接地平面。
較佳地,瞬態電壓抑制器件,其中第一類型叉指的矽控整流器部分包含在摻雜有第一導電類型離子的外延層的第一井區中形成的重摻雜有第二導電類型離子的矽控整流器集電極區和第一矽控整流器井接觸區,第二類型叉指的矽控整流器部分包含在外延層摻雜有第二導電類型離子的第二井區中形成的重摻雜有第一導電類型離子的矽控整流器發射極區和第二矽控整流器井接觸區。
較佳地,瞬態電壓抑制器件,其中矽控整流器發射極區位於矽控整流器集電極區附近。
較佳地,瞬態電壓抑制器件進一步包含一個絕緣層,絕緣層將第一金屬層與外延層和第二金屬層絕緣,其中穿過絕緣層的通孔將第一金屬層電耦合到相應的矽控整流器部分和結型二極體部分,且將第二金屬層電耦合到相應的矽控整流器部分和結型二極體部分。
與現有技術相比,本發明的各個態樣提供了一種改良的瞬態電壓抑制器件設備,其各個部分之間的互連結構具有最佳化的配置。由於改良的互連結構配置,與傳統的瞬態電壓抑制器件相比,本發明之改良的瞬態電壓抑制器件可以具有更低的電容和更緊湊的器件封裝。
101,202,702,731:外延層
102,203,703,704:第一井區
103,204,205,705,708:矽控整流器集電極區
104,706:第一矽控整流器井接觸區
105,207,707,710:結型二極體陽極區
106,211,711,712:第二井區
107,713:第二矽控整流器井接觸區
108,213,714,716:矽控整流器發射極區
109,215,715,718:結型二極體陰極區
110:第一類型叉指
111:第二類型叉指
121:第一類型叉指的矽控整流器部分
122:第一類型叉指的結型二極體部分
123:第二類型叉指的矽控整流器部分
124:第二類型叉指的結型二極體部分
201,701:襯底
206,709:第一井接觸區
212:第三金屬層
214,717:第二井接觸區
221,421,721:第一金屬層
222,252,422,502,601,722:第二金屬層
223,723:絕緣層
231:輸入/輸出接觸墊
241,242,243,501:通孔
251,303,401:互連結構
253:接觸墊
301:導線鍵合
302:多通道設備
402,503:橫向條紋
732,733,734,DL1:結型二極體
RNW,RPW:基極電阻
參照以下附圖並閱讀以下詳細說明之後,本發明的其他特徵和優點將顯而易見,其中:圖1A表示依據本發明的各個態樣的一種瞬態電壓抑制器件的等效電路圖。
圖1B表示依據本發明的各個態樣的改良的瞬態電壓抑制器件的單個通道中的一對叉指的俯視圖,改良的瞬態電壓抑制包含沿外延層的主表面橫向佈置的兩種類型的重疊叉指。
圖2A表示依據本發明的各個態樣的瞬態電壓抑制器件的改良的單個通道的三維透視圖。
圖2B表示依據本發明的各個態樣的不具有絕緣層的改良的多通道雙向或單向的瞬態電壓抑制器件的俯視圖。
圖3表示依據本發明的各個態樣的不具有絕緣層的改良的多通道雙向或單向的瞬態電壓抑制器件的另一個實施例。
圖4表示依據本發明的各個態樣的不具有絕緣層的改良的多通道雙向或單向的瞬態電壓抑制器件的另一個實施例的俯視圖。
圖5表示依據本發明的各個態樣的不具有絕緣層的改良的多通道雙向或單向的瞬態電壓抑制器件的俯視圖,並且具有第二金屬層的一部分。
圖6表示依據本發明的各個態樣的不具有絕緣層的改良的多通道雙向或單向的瞬態電壓抑制器件的另一實施例的俯視圖,並且具有第二金屬層的一部分。
圖7表示依據本發明的各個態樣的瞬態電壓抑制器件的改良的單個通道的一個較佳實施例的剖面側視圖。
儘管為了說明的目的,以下詳細說明包含許多特定細節,但本領域具有通常知識者將理解的是,對以下細節的許多變更和修改都在本發明的範圍內。因此,下文說明的本發明的例示性實施例對所要求保護的發明沒有任何一般性損失,也沒有施加限制。
在下文的詳細說明中,參考附圖以進行說明,附圖構成了本發明的一部分,附圖中透過圖示的方式表示出了本發明可在其中實施的具體實施例。在這方面,參考所繪示的圖形的方向而使用的方向術語,例如「頂部」、「底部」、「前部」、「後部」、「前導」、「尾部」等。由於本發明的實施例的組件可以定位在複數個不同的方向上,因此方向術語僅用於說明,並且不以任何方式對本發明進行限制。應當理解的是,在不脫離本發明的範圍的情況下,可以利用其他實施例,並且可以進行結構或邏輯的改變。因此,下文的詳細說明不應被視為限制意義上的說明,並且本發明的範圍由所附申請專利範圍來限定。
為了清楚起見,並不是本文書名的實施方式的所有常規特徵都被表示出和說明。本領域具有通常知識者將理解的是,在任何此類實施方式的實施例中,必須做出許多特定於實施例的決策,以實現研發人員的特定目標,例如遵守與應用和業務相關的約束,並且這些特定目標將因實施例的不同而不同,也因研發人員的不同而不同。此外,應當理解的是,這樣的研發工作可能是複雜且耗時的,但是對於受益於本發明的本領域具有通常知識者來說,其為工程的常規任務。
本發明涉及摻雜有第一導電類型或第二導電類型的離子的矽。第一導電類型的離子可以是與第二導電類型相反的離子。例如,第一導電類型的離子可以是n型,其在摻雜到矽中時產生電荷載流子。第一導電類型的離子包含磷、銻、鉍、鋰和砷。第二導電類型的離子可以是p型,當其摻雜到矽中時,其為電荷載流子創建電洞,並且以這種方式而被稱為與n型相反。p型離子包含硼、鋁、鎵和銦。儘管上述說明將n型稱為第一導電類型,將p型稱為第二導電類型,但本發明並不限定於此,p型可以是第一導電類型,而n型可以是第二導電類型。
在下紋的詳細說明中,參考附圖以進行說明,附圖構成了本發明的一部分,並且在附圖中透過圖示的方式表示出了可以實現本發明的特定實施例。為了方便起見,在指定導電性或淨雜質載流子類型(p或n)之後使用+或-通常指半導體材料內指定類型的淨雜質載流子的相對濃度。一般而言,n+材料具有比n材料更高的N型淨摻雜物(例如,電子)濃度,並且n材料具有比n-材料更高的載流子濃度。類似地,p+材料具有比p材料更高的p型淨摻雜物(例如,電洞)濃度,並且p材料具有比p-材料更高的濃度。應注意的是,相關的是載流子的淨濃度,而不一定是摻雜物。例如,材料可以重摻雜n型摻雜物,但是如果材料也充分反摻雜p型摻雜物,則材料仍然具有相對低的淨載流子濃度。如本文所使用的,小於約1016atom/cm3的摻雜物濃度可被視為「輕摻雜」,而大於約1017atom/cm3的摻雜物濃度可被視為「重摻雜」。
可以透過參考圖1A中所繪示的等效電路圖來理解所繪示的瞬態電壓抑制器件的操作。瞬態電壓抑制器件包含在受保護節點(I/O端子)和接地電位之間正向連接的P-N結型二極體DL1。也就是說,結型二極體DL1的陽極連接到接地節點,結型二極體DL1的陰極連接到受保護節點。結型二極體DL1用作瞬 態電壓抑制器件的低壓側轉向二極體。瞬態電壓抑制器件包含與P-N結型二極體DL1並聯的矽控整流器裝置。具體而言,矽控整流器器件可以表示為兩個背對背連接的PNP和NPN雙極電晶體。矽控整流器器件的陽極是PNP雙極電晶體的P型發射極,發射極也透過基極電阻RNW連接到N型基極。矽控整流器器件的陰極是NPN雙極電晶體的N型發射極,透過基極電阻RPW連接到接地電位和NPN雙極電晶體的N型基極。藉由此配置,對受保護節點(I/O端子)處的瞬態電壓抑制器件的寄生電容的貢獻主要來自P-N結型二極體DL1的N型區和矽控整流器裝置的陽極。
根據本發明的各個態樣,瞬態電壓抑制器件可以包含半導體襯底表面上的半導體外延層,半導體襯底具有與第二導電類型相反的第一導電類型的離子的輕濃度。複數個半導體指可以沿外延層的主表面橫向佈置。半導體叉指可以包含第一類型叉指和第二類型叉指。第一類型叉指和第二類型叉指可以包含矽控整流器(Silicon Controlled Rectifier,SCR)部分和結型二極體部分。
第一類型叉指包含第一金屬層,第一金屬層導電地將矽控整流器部分耦合到結型二極體部分,其中第一金屬將第一類型的複數個叉指耦合在一起。複數個第二類型叉指透過第二金屬層連接在一起,第二金屬層與第一金屬層電絕緣並位於第一金屬層的頂部。在第一類型叉指的結型二極體部分和第二類型叉指的結型二極體部部分之間形成結型二極體。矽控整流器形成在第一類型叉指的矽控整流器部分和第二類型叉指的矽控整流器部分之間。第一類型叉指的矽控整流器部分和第二類型叉指的矽控整流器部分可位於外延層中彼此接近的位置。此外,第一類型叉指的結型二極體部分和第二類型叉指的結型二極體部分可以位於外延層中彼此接近的位置。
第一類型叉指可以包含一個矽控整流器陰極區,矽控整流器陰極區作為在第一類型叉指的矽控整流器部分和第二類型叉指的矽控整流器部分之間形成的矽控整流器的陰極,其中第二類型叉指可以包含一個矽控整流器陽極區,矽控整流器陽極區作為矽控整流器的陽極。在雙向設備中,第一類型叉指可以電耦合到參考節點,第二類型叉指可以電耦合到受保護節點。在單向器件中,第一金屬層可以導電地耦合到地平面。第一類型叉指可以包含在外延層中形成的第一導電類型的輕摻雜的第一井區,其中第一類型叉指的矽控整流器部分可以進一步包含在第一井區和第一矽控整流器井接觸區中重摻雜第二導電類型的離子的矽控整流器集電極區。第二類型叉指可以包含在外延層中形成的第二導電類型的輕摻雜的第二井區,其中第二類型叉指的矽控整流器部分可以進一步包含在第二井區和第二矽控整流器井接觸區中重摻雜第一導電類型的離子的矽控整流器發射區。第一類型叉指的結型二極體部分可包含重摻雜有第一導電類型離子的結型二極體陽極區。第二類型叉指的結型二極體區可包含重摻雜有第二導電類型離子的結型二極體陰極區。瞬態電壓抑制器件可以進一步包含絕緣層,絕緣層將第一金屬層與外延層和第二金屬層絕緣,其中透過絕緣層的通孔將第一金屬層電耦合到相應的矽控整流器區和結型二極體區,將第二金屬層電耦合到相應的矽控整流器區和結型二極體區。
第一類型叉指的矽控整流器部分可包含重摻雜第二導電類型離子的矽控整流器集電極區和在摻雜有第一導電類型離子的外延層的第一井區中形成的第一矽控整流器井接觸區。第二類型叉指的矽控整流器部分可包含在摻雜有第二導電類型離子的外延層的第二井區中形成的重摻雜有第一導電類型離 子的矽控整流器發射極區。第一類型叉指的矽控整流器部分和第二類型叉指的矽控整流器部分位於外延層中彼此接近的位置。
輸入/輸出(I/O)接觸墊可以耦合到第二金屬層的頂側,其中第一金屬層在第二金屬層的下面。輸入/輸出接觸墊可以是連接到第二金屬層上部的導線。第二金屬層可以比第一金屬層厚。
各第二類型叉指的第二金屬層可以在第一金屬層上中斷。各第二類型叉指的第二金屬層可以包含接觸墊。各第二類型叉指的接觸墊可以導電耦合以形成單個通道。這種所謂的「頂部焊墊」配置允許自由設計叉指的幾何結構,並允許第一金屬層延伸到整個鏡片。這將使得叉指更長,且可以承載更高的電流並降低電壓。相比之下,傳統配置使用頂部總線連接接地。在這種配置中,叉指變小,且叉指長度有限。因此,寄生電容因總線而增加。
圖1B表示出改良的瞬態電壓抑制器件的單個通道中的一對叉指的俯視圖,改良的瞬態電壓抑制器件包含兩種類型的重疊叉指,重疊叉指沿第一方向橫向佈置在根據本發明的態樣的外延層101的主表面上。例如,外延層101可以輕摻雜第一導電類型的離子,並且在不受限制的情況下,外延層101可以摻雜p型離子。第一類型叉指110可包含第一類型叉指的矽控整流器部分121和第一類型叉指的結型二極體部分122。第一類型叉指的矽控整流器部分121可以包含集電極,並且形成在第一類型叉指的矽控整流器部分121和第二類型叉指的矽控整流器部分123之間的外延層101中的矽控整流器的良好接觸。第一類型叉指的矽控整流器部分121可包含摻雜有第一導電類型離子的第一井區102。在井區中可以形成重摻雜有第二導電類型離子的矽控整流器集電極區103,矽控整流器集電極區103和第一井區102的一部分可以用作第一矽控整流器井接觸區104。矽控 整流器集電極區103和第一矽控整流器井接觸區104可以用作矽控整流器陰極區。例如,矽控整流器集電極區103可以在第一矽控整流器井接觸區104旁邊重摻雜N型離子,第一矽控整流器井接觸區104在第一井區102中重摻雜P型離子,第一井區102比外延層101重摻雜P型離子。第一矽控整流器井接觸區104的摻雜濃度可以與井區相同。第一類型叉指的結型二極體部分122可包含形成在外延層101中且重摻雜有第一導電類型離子的結型二極體陽極區105。矽控整流器集電極區103、第一矽控整流器井接觸區104和結型二極體陽極區105可以透過第一類型叉指110進行導電耦合,第一類型叉指110可以包含例如導電過孔和第一金屬層,但本發明但不限定於此。如圖所繪示,對於單向設備,另一個第一類型叉指110可以進一步將第一類型叉指110導電地耦合到接地。在一些實施例中,複數個通道可以與浮動導體連接在一起,從而形成雙向設備。
第二類型叉指111可以包含第二類型叉指的矽控整流器部分123和第二類型叉指的結型二極體部分124。第二類型叉指的矽控整流器部分123可包含摻雜有第二導電型離子的外延層101中的第二井區106。第二類型叉指的矽控整流器部分123可以進一步包含在作為矽控整流器發射極區108的井區中形成的第一導電類型的重摻雜區。用作在外延層101中形成的矽控整流器的陽極的矽控整流器發射極區和第二矽控整流器井接觸區107。例如,在不受限制的情況下,矽控整流器發射極區108可以在第二矽控整流器井接觸區107旁邊重摻雜P型離子,第二矽控整流器井接觸區107在N型第二井區106中重摻雜N型離子。第二矽控整流器井接觸區107的摻雜濃度可以與第二井區106相同,並且第二矽控整流器井接觸區可以只是井區的一部分。第二類型叉指的矽控整流器部分123可形成在第一類型叉指的矽控整流器部分121和第二類型叉指的矽控整流器部分123 之間的外延中產生的矽控整流器的陽極。如圖所繪示,第二類型叉指的矽控整流器部分123位於第一類型叉指的矽控整流器部分121的矽控整流器區附近,這允許減小電容和更容易調諧。應注意的是,在所示的實施例中,第二井區106包含兩個矽控整流器發射極區108,第一井區102包含兩個矽控整流器集電極區103,以允許沿外延層101的主要通道橫向條帶化,並減少空間的浪費。用於第二類型叉指的結型二極體部分124位於第二類型叉指的矽控整流器部分123的側面上,側面垂直於靠近第一類型叉指的矽控整流器部分121、第一類型叉指的結型二極體部分122的第二類型叉指的矽控整流器部分123的側面,並且靠近用於第一類型叉指的結型二極體部分122。用於第二類型叉指的結型二極體部分124可以包含形成在外延層101中的結型二極體陰極區109,其重摻雜有第二導電類型的離子。各第二類型叉指的結型二極體部分124和各第二類型叉指的矽控整流器部分123可以在第一類型叉指110的導電耦合上導電耦合第二類型叉指111,並且第二類型叉指111的導電耦合可以與第一類型叉指110的導電耦合電隔離。如圖所繪示,第二類型叉指111進一步可以導電地耦合到待保護的設備的輸入/輸出或有源部分。在正常運行期間,瞬態電壓抑制裝置以閉鎖模式運行,防止電流流向接地連接,但當輸入/輸出處出現瞬態電壓尖峰時,裝置可能會進行調節,以允許電流透過地面分流,使瞬態電壓遠離待保護裝置。
圖2A表示根據本發明的各個態樣,瞬態電壓抑制設備的改良的單個通道的三維透視圖。外延層202佈置在輕摻雜有第一導電類型的離子的襯底的主表面上。外延層以相對大於襯底201的濃度輕摻雜第一導電類型的離子。如圖所繪示,第一類型叉指包含在外延層202的主表面中形成橫向條紋的矽控整流器部分(第一井區203、矽控整流器集電極區205、第一井接觸區206)和結型二極體 陽極區(結型二極體陽極區207)。第一金屬層221的部分平行於側帶運行,並將矽控整流器集電極區204和矽控整流器集電極區205耦合到結型二極體陽極區207。絕緣層223將第一金屬層221與外延層202和第二金屬層222絕緣。襯有導電材料的通孔241將第一類型叉指的矽控整流器部分和結型二極體部分連接到第一金屬層221。通孔可以透過絕緣層223形成,並使用金屬(例如,鎢、鈦、鋁或其任何組合)作為襯底。第一金屬層221可以在與橫向條紋正交的方向上連接各第一類型叉指。第一金屬層221進一步可以在設備的不同通道之間耦合第一類型叉指。在一些實施例中,為了製造單向設備,第一金屬層221將第一類型叉指耦合到接地。在製造雙向設備的其他實施例中,第一金屬層221可以耦合到浮動節點,浮動節點可以進一步耦合到另一反向設備。
第二類型叉指包含沿外延層202的主表面形成橫向條紋的矽控整流器部分和結型二極體部分。第二類型叉指的矽控整流器部分包含形成在第二井區211中的矽控整流器發射極區213和第二井接觸區214。第二類型叉指的矽控整流器部分(第二井區211、矽控整流器發射極區213、第二井接觸區214)形成在靠近第一類型叉指的矽控整流器部分(第一井區203、矽控整流器集電極區205、第一井接觸區206及第二井接觸區214)的外延層202中。類似地,結型二極體陰極區215形成在靠近結型二極體陽極區207的外延層202中。各結型二極體陽極區207靠近第一類型叉指的矽控整流器部分(第一井區203、矽控整流器集電極區205、第一井接觸區206)的相應側,此側垂直於第二類型叉指的矽控整流器部分(第二井區211、矽控整流器發射極區213、第二井接觸區214)的近側。類似地,各結型二極體陰極區215靠近第二類型叉指的矽控整流器部分(第二井區211、矽控整流器發射極區213、第二井接觸區214)的相應側,此側垂直於第一類型叉指 的矽控整流器部分(第一井區203、矽控整流器集電極區205、第一井接觸區206)的近側。外延層202的一部分可將第一井區203與第二井區211分開。在相應的第二井區211和第一井區203中,將矽控整流器發射區213和矽控整流器集電極區205摻雜到從外延層202的表面到約0.2到0.5微米的深度。將第一井區203和第二井區211摻雜到從外延層202的表面到約1至1.5微米的深度。
第二金屬層222導電地耦合通道中的第二類型叉指,並平行於外延層202中摻雜條紋的橫向並與之正交。第三金屬層212可將第二類型叉指的矽控整流器部分(第二井區211、矽控整流器發射極區213、第二井接觸區214)耦合到結型二極體陰極區215。第三金屬層212可以與第一金屬層221位於與襯底相同的高度,並且第三金屬層212可以與第一金屬層221同時形成。第三金屬層212的厚度可以與第一金屬層221相同,並透過絕緣層223與第一金屬層221絕緣。第二金屬層222透過絕緣層223中的通孔242電耦合到第二類型叉指的結型二極體陰極區215和矽控整流器部分。在一些實施例中,通孔242將第二類型叉指的矽控整流器部分和結型二極體部分耦合到第三金屬層212,並且第三金屬層212透過第三通孔243耦合到第二金屬層222,使得在第一類型叉指的第一金屬層221上產生第二類型叉指之間的連接。第二金屬層222可以與矽控整流器部分和結型二極體部分的平行條紋正交地運行,以耦合複數個第二類型叉指,並在多通道設備中建立通道。可在外延層202中中斷第二類型叉指,以允許第一金屬層221在第一類型叉指之間連接。第一金屬層221和第二金屬層222可由任何合適的導電金屬製成,例如金、銀、銅、鎢、鈦、鋁或其任何合適的合金,但不限定於此。輸入/輸出接觸墊231可耦合至第二金屬層222的頂面。輸入/輸出接觸墊231可以是用於溝道的重分佈層(Redistribution Layer,RDL)或導線鍵合。輸入/輸出接觸 墊可以由任何合適的金屬製成,例如銅、鋁、銀或金,但不限定於此。輸入/輸出接觸墊231的焊墊可以形成在靠近第一類型叉指和第二類型叉指的矽控整流器部分和結型二極體部分之間的交叉點的外延層202上。
絕緣層223可以耦合至第二金屬層222的底部,且第一金屬層221可以在第二金屬層222的至少一部分下方延伸。輸入/輸出接觸墊231可將第二類型叉指耦合到需要保護其免受瞬變影響的裝置。應當注意的是,第一金屬層221可以比第二金屬層222薄。第一金屬層221平行於形成的外延層202中的橫向條紋,並正交於矽控整流器部分和結型二極體陽極區207可以連接的程度。
圖2表示根據本發明的各個態樣,改良的不具有絕緣層的多通道雙向或單向瞬態電壓抑制器件的俯視圖。所繪示的瞬態電壓抑制器件包含五個通道。各通道包含耦合到第二金屬層222的輸入/輸出接觸墊231。第二金屬層222耦合第二類型叉指並形成用於瞬態電壓抑制器件的通道。在多通道瞬態電壓抑制器件中,各通道都與其他通道隔離。第一金屬層221在第二金屬層222下方延伸,當第二類型叉指的一部分位於第一類型叉指的任意一側並且第二金屬層222在第一金屬層221的頂部延伸時,形成重疊的叉指。如圖所繪示,第一金屬層221橫向橫穿外延層202,平行於第一金屬層221下方的矽控整流器部分和結型二極體部分的條紋。第二金屬層222垂直於第一金屬層221運行,並耦合第二類型叉指。第一金屬層221可橫向延伸至互連結構(inter-connection)251,互連結構251可將第一金屬層221耦合至浮動節點或接地。中央接觸墊253可耦合到接地,在這種情況下,互連結構251、第二金屬層252和接觸墊253將導電耦合。如圖所繪示,各通道中的每一個的第一金屬層221透過互連結構251耦合到用於單向設備的中心接地(互連結構251)。在雙向設備中,接觸墊253可以耦合到要保護的設備 的另一輸入/輸出通道。此外,第二金屬層252可以耦合到接觸墊253和複數個第二叉指(圖中未繪示出)。在雙向瞬態電壓抑制器件中,互連結構251可以用作第一金屬層221,並且可以耦合複數個第一類型叉指,各第一類型叉指由對應的第二類型叉指重疊,從而在外延層202中製造矽控整流器和結型二極體,如圖2A所繪示。圖在單向器件的情況下,第二金屬層252可覆蓋互連結構251以改善傳導並降低電阻。
圖3表示根據本發明的各個態樣,改良的不帶絕緣層的多通道雙向或單向瞬態電壓抑制器件的另一個實施例。在所繪示的實施例中,用於各通道的輸入/輸出接觸墊已被導線鍵合301替換,並且用於多通道設備302的單向設備或中央通道中的接地接觸墊也已被導線鍵合301替換。金屬絲的結合使製造成本降低。此外,此裝置包含互連結構303,其沿著裝置的外邊緣與第一類型叉指和第二類型叉指的橫向方向正交地運行。互連結構303透過也可以是接地層的中心的互連結構251將第一金屬層221的邊緣連接到其他第一金屬層221。在單向器件的情況下,第二金屬層252可覆蓋互連結構251以改良傳導並降低電阻。
圖4表示根據本發明的各個態樣,改良的不具有絕緣層的多通道雙向或單向瞬態電壓抑制器件的另一實施例的俯視圖。在本實施例中,改良的瞬態電壓抑制器件的通道排列成一行。各通道的第一金屬層421可經由互連結構401連接。互連結構401可以進一步將各第一類型叉指的第一金屬層421耦合到接地。本實施例中的第二金屬層422既平行於矽控整流器部分和結型二極體區的橫向條紋,又正交於橫向條紋402,且橫向條紋402導電地耦合通道中的各第二類型叉指。互連結構401允許電流在器件之間流動,從而降低電阻和箝位電壓。此外,互連結構401可被第二金屬層422覆蓋以降低電阻。
圖5表示改良的多通道雙向或單向瞬態電壓抑制器件的俯視圖,此裝置沒有絕緣層,並且具有第二金屬層的一部分。如圖所繪示,透過絕緣層的通孔501將第二類型叉指連接到第二金屬層502,第二金屬層502進一步與外延層中的矽控整流器部分和結型二極體部分的橫向條紋503正交,以耦合各叉指的第二金屬層502。第一金屬層421延伸穿過器件並透過互連結構401耦合在一起,互連結構401可由與第一金屬層421相同的金屬形成,並與外延層中的矽控整流器部分和結型二極體部分的橫向條紋503正交,以連接第一類型叉指的各第一金屬層421。在此,第二金屬層502形成了一個接觸線陣列,此接觸線陣列透過通孔501垂直於叉指。
圖6表示改良的多通道雙向或單向瞬態電壓抑制器件的另一實施例的俯視圖,此裝置不具有絕緣層,並且具有第二金屬層601的一部分。在本實施例中,第二金屬層601在第一金屬層421上中斷。各第二金屬層601包含接觸區,其中第二金屬層601在第一金屬層421上中斷。複數個接觸區導電耦合以形成單個通道。本實施例透過消除第一金屬層421上的第二金屬層601的一部分來減小第一金屬層421中的電容。
圖7A表示根據本發明的各個態樣,瞬態電壓抑制設備的單個通道的較佳實施例的剖面圖。改良的多通道瞬態電壓抑制器件可包含輕摻雜第一導電類型離子的襯底701。外延層702可以形成在襯底701的主表面上,並且外延層702可以摻雜比襯底701更多的第一導電類型的離子。如圖所繪示的通道包含三對重疊的叉指,其中各第二類型叉指與第二金屬層722導電地耦合在一起,第二金屬層722在其頂部上延伸;並且與第一金屬層721電隔離。輸入/輸出接觸墊(圖2A中未繪示出)可以耦合到第二金屬層722,並將一個通道中的第二類型叉指導 電地耦合到要保護的設備。各通道可包含橫向佈置在外延層702的主表面上的第一通道和第二通道的複數個重疊叉指。第一類型叉指包含矽控整流器部分和結型二極體部分。矽控整流器部分包含形成在外延層702中並摻雜有第一導電類型離子的第一井區703。第一類型叉指的矽控整流器部分包含在外延層731中產生的矽控整流器的陰極。第一井區703在約1至1.5微米的深度處進行摻雜。矽控整流器部分進一步包含重摻雜有第二導電類型的離子的矽控整流器集電極區705和第一矽控整流器井接觸區706。矽控整流器集電極區705和第一矽控整流器井接觸區706為在外延層731中形成的矽控整流器的矽控整流器陰極。矽控整流器集電極區705可在約0.2至05微米的深度處進行摻雜。第一類型叉指進一步包含結型二極體部分,其可以是在重疊的第一類型叉指和第二類型叉指之間的外延層731中形成的結型二極體732的陽極。如圖所繪示,第一類型叉指的結型二極體部分可以包含在外延層731中形成的結型二極體陽極區707,並且重摻雜有第一導電類型的離子。第一類型叉指的矽控整流器部分和結型二極體部分都與第一金屬層721導電耦合。絕緣層723將第一金屬層與外延層702和第二金屬層722電絕緣。穿過絕緣層723的通孔中的導電材料與結型二極體陽極區707和導電類型相反的重摻雜的矽控整流器集電極區705、第一矽控整流器井接觸區706接觸。第一金屬層721可將各第一類型叉指導電地耦合到用於單向裝置的接地或兩個用於雙向裝置的第二通道。
第二類型叉指包含矽控整流器部分和接合部分,並且包含第一金屬層上的第二金屬層,第一金屬層與第一金屬層電隔離。第二類型叉指的矽控整流器部分包含摻雜有第二導電類型離子的第二井區711。第二類型叉指的井區形成在1至1.5微米的深度處。在第二井區711中形成矽控整流器發射極區714,並 且井區的一部分可以形成第二矽控整流器井接觸區713。這些區域用作在第一類型叉指和第二類型叉指的矽控整流器部分之間的外延層731中形成的矽控整流器的陽極。在深度約為0.2至05微米的井區中形成重摻雜有第一導電類型的離子的矽控整流器發射極區714。矽控整流器發射極區714可以包含例如在第二矽控整流器井接觸區713旁邊的重摻雜P型離子的區域,但不限定於此。重摻雜N型離子的矽控整流器發射極區714形成在相對較輕摻雜的N型外延層的第二井區711中。第二矽控整流器井接觸區713的摻雜濃度可以與井區相同。第二類型叉指包含用作在外延層731中形成的結型二極體732的陰極的結型二極體部分。結型二極體陰極區715是外延層731中重摻雜第二導電類型離子的區域。結型二極體陰極區715透過絕緣層723中的通孔導電地耦合到第二金屬層722。第二金屬層722將矽控整流器部分的矽控整流器發射極區714和第二矽控整流器井接觸區713與結型二極體陰極區715導電耦合。第二金屬層722可以進一步包含耦合到金屬層頂部與金屬層底部相對的連接,其可與絕緣層723接觸。接觸墊(如圖2所繪示)和第二金屬層722可將用於矽控整流器的陽極和用於在外延層中形成的結型二極體的陰極耦合到將受保護而免受瞬變的器件的輸入/輸出。第一金屬層721和第二金屬層722可由任何合適的導電金屬製成,例如金、銀、銅、鎢、鈦、鋁或其任何合適的合金,但不限定於此。
此外,圖7繪示了叉指的不同方向。如圖所繪示,叉指可以是左方向或右方向。左側取向具有第一矽控整流器部分,第一矽控整流器部分具有矽控整流器第一井區703和矽控整流器集電極區705,以及位於基板左側附近的第一矽控整流器井接觸區706。類似地,具有矽控整流器第二井區711和第二矽控整流器井接觸區713的第二矽控整流器部分以及矽控整流器發射極區714位於 靠近第一矽控整流器部分和裝置左側的位置。如圖所繪示,第一類型叉指的結型二極體陽極區707位於靠近裝置右側的位置,並且位於矽控整流器第一井區703的一側,且與第二類型叉指的矽控整流器部分(第二井區711、第二矽控整流器井接觸區713、矽控整流器發射極區714)相對。用於第二類型叉指的結型二極體陰極區715位於靠近結型二極體陽極區707的側邊的外延層中,並且位於與第一類型叉指的矽控整流器部分(第一井區703、矽控整流器集電極區705、第一矽控整流器井接觸區706)相對的結型二極體陽極區707的側邊上。如右方向所繪示,第一類型叉指矽控整流器部分(第一井區704、矽控整流器集電極區708、第一井接觸區709)位於裝置右側附近。第二類型叉指的矽控整流器部分(第二井區712、矽控整流器發射極區716、第二井接觸區717)也位於裝置右側附近,並且位於第一類型叉指的矽控整流器部分的側面,且與第一類型叉指的結型二極體陽極區710相對。類似地,用於第二類型叉指的結型二極體陰極區718位於靠近用於第一類型叉指的結型二極體陽極區710的位置,並且靠近與第一類型叉指的矽控整流器部分(第一井區704、矽控整流器集電極區708、第一井接觸區709)相對的結型二極體陽極區710的側面。雖然這些區域的方向是鏡像的,但左右方向叉指之間的操作保持不變。
本發明的各個態樣提供了一種改良的瞬態電壓抑制器件,其各個部分之間的互連結構具有最佳化的配置。由於改良的互連結構配置,與傳統的瞬態電壓抑制器件相比,改良的瞬態電壓抑制器件可以具有更低的電容和更緊湊的器件封裝。雖然以上是對本發明較佳實施例的完整說明,但是可以使用各種替代方案、修改和等效方案。因此,本發明的範圍不應參考上述說明來確定,而應參考所附申請專利範圍及其全部等效範圍來確定。任何特徵,無論較佳與 否,都可以與任何其他特徵相結合。在所附申請專利範圍中,不定冠詞「一(A)」或「一(An)」並非指定此冠詞後面項目的數量,其可以為一個或多個,除非另有明確說明。所附申請專利範圍不應被解釋為包含手段加功能限制,除非在使用用語「手段」的給定申請專利範圍中明確說明了這種限制。
儘管本發明的內容已經透過上述較佳實施例進行了詳細介紹,但應當認識到上述的說明不應被認為是對本發明的限制。在本領域具有通常知識者閱讀了上述內容後,對於本發明的多種修改和替代都將是顯而易見的。因此,本發明的保護範圍應由所附的申請專利範圍來限定。
102:第一井區
103:矽控整流器集電極區
104:第一矽控整流器井接觸區
105:結型二極體陽極區
106:第二井區
107:第二矽控整流器井接觸區
108:矽控整流器發射極區
109:結型二極體陰極區
110:第一類型叉指
111:第二類型叉指
121:第一類型叉指的矽控整流器部分
122:第一類型叉指的結型二極體部分
123:第二類型叉指的矽控整流器部分
124:第二類型叉指的結型二極體部分

Claims (20)

  1. 一種瞬態電壓抑制器件,包含: 一外延層,係在一襯底的表面上,且具有輕濃度的一第一導電類型的離子,其中該第一導電類型與一第二導電類型相反; 複數個叉指,係沿著該外延層的主表面橫向排列,該複數個叉指包含一第一類型叉指和一第二類型叉指,其中該第一類型叉指和該第二類型叉指皆包含一矽控整流器部分和一結型二極體部分,其中,該第一類型叉指包含一第一金屬層的一部分,該第一金屬層的一部分將該矽控整流器部分導電地耦合到該結型二極體部分,其中該複數個第二類型叉指透過與該第一金屬層電絕緣的一第二金屬層耦合在一起,該第二金屬層設置在該第一金屬層的頂部,其中,該第一類型叉指的該結型二極體部分和該第二類型叉指的該結型二極體部分之間形成一結型二極體;其中,該第一類型叉指的該矽控整流器部分和該第二類型叉指的該矽控整流器部分之間形成一矽控整流器。
  2. 如請求項1所述之瞬態電壓抑制器件,其進一步包含一輸入/輸出(I/O)接觸墊,係耦合到該第二金屬層的頂邊,其中一絕緣層在該第一金屬層上方延伸,該第一金屬層在該第二金屬層下方。
  3. 如請求項2所述之瞬態電壓抑制器件,其中該輸入/輸出接觸墊是連接到該第二金屬層上部的導線。
  4. 如請求項1所述之瞬態電壓抑制器件,其中該第一類型叉指的該矽控整流器部分和該第二類型叉指的該矽控整流器部分位於該外延層中彼此接近的位置,並且其中該外延層的一部分將該第一類型叉指的該矽控整流器部分與該第二類型叉指的該矽控整流器部分分開。
  5. 如請求項1所述之瞬態電壓抑制器件,其中該第一類型叉指的該結型二極體部分和該第二類型叉指的該結型二極體部分位於該外延層中彼此接近的位置,並且其中該外延層的一部分將該第一類型叉指的該結型二極體部分與該第二類型叉指的該結型二極體部分分開。
  6. 如請求項1所述之瞬態電壓抑制器件,其中該第一類型叉指包含一矽控整流器陰極區,該矽控整流器陰極區作為形成在該第一類型叉指的該矽控整流器部分和該第二類型叉指的該矽控整流器部分之間的該矽控整流器的陰極,並且其中該第二類型叉指包含作為該矽控整流器的陽極的一矽控整流器陽極區。
  7. 如請求項1所述之瞬態電壓抑制器件,其中該第一類型叉指包含一結型二極體陽極區,該結型二極體陽極區用作在該第一類型叉指的該結型二極體部分和該第二類型叉指的該結型二極體部分之間形成的該結型二極體的陽極,其中該第二類型叉指包含一結型二極體陰極區,該結型二極體陰極區用作該結型二極體的陰極。
  8. 如請求項1所述之瞬態電壓抑制器件,其中該第一類型叉指導電耦合到一參考節點,第二類型叉指導電耦合至受保護的節點。
  9. 如請求項1所述之瞬態電壓抑制器件,其中該第一類型叉指包含輕摻雜在該外延層中形成的該第一導電類型的離子的一第一井區,以及重摻雜在該第一井區中形成的該第二導電類型的離子的一集電極區,其中該第一金屬層導電耦合到該第一井區和該集電極區。
  10. 如請求項1所述之瞬態電壓抑制器件,其中該第二類型叉指包含輕摻雜在該外延層中形成的該第二導電類型的離子的一第二井區,以及重摻雜在該第二井區中形成的該第一導電類型的離子的一發射極區,其中該第二金屬層導電地耦合到一第一井區和該發射極區。
  11. 如請求項1所述之瞬態電壓抑制器件,其中該第一類型叉指的該結型二極體部分包含在該外延層中形成的重摻雜有該第一導電類型離子的一結型二極體陽極區。
  12. 如請求項1所述之瞬態電壓抑制器件,其中該第二類型叉指的該結型二極體部分包含在該外延層中形成的重摻雜有該第二導電類型離子的一結型二極體陰極區。
  13. 如請求項1所述之瞬態電壓抑制器件,其中該第二金屬層比該第一金屬層更厚。
  14. 如請求項1所述之瞬態電壓抑制器件,其進一步包含一第三金屬層,係導電地耦合該第二類型叉指的該矽控整流器部分和該結型二極體部分,並且其中該第三金屬層導電地耦合到該第二金屬層。
  15. 如請求項14所述之瞬態電壓抑制器件,其中該第三金屬層與該第一金屬層位於距離該外延層相同的高度,並且與該第一金屬層絕緣。
  16. 如請求項15所述之瞬態電壓抑制器件,其中穿過一絕緣層的一第一組通孔將該第三金屬層導電地耦合到該矽控整流器部分和該結型二極體部分,並且穿過該絕緣層的一第二組通孔將該第三金屬層耦合到該第二金屬層。
  17. 如請求項1所述之瞬態電壓抑制器件,其中該第一金屬層導電耦合到一接地平面。
  18. 如請求項1所述之瞬態電壓抑制器件,其中該第一類型叉指的該矽控整流器部分包含在摻雜有該第一導電類型離子的該外延層的一第一井區中形成的重摻雜有該第二導電類型離子的一矽控整流器集電極區和一第一矽控整流器井接觸區,該第二類型叉指的該矽控整流器部分包含在摻雜有該第二導電類型離子的該外延層的一第二井區中形成的重摻雜有該第一導電類型離子的一矽控整流器發射極區和一第二矽控整流器井接觸區。
  19. 如請求項18所述之瞬態電壓抑制器件,其中該矽控整流器發射極區位於該矽控整流器集電極區附近。
  20. 如請求項1所述之瞬態電壓抑制器件,進一步包含一絕緣層,該絕緣層將該第一金屬層與該外延層和該第二金屬層絕緣,其中穿過該絕緣層的一通孔將該第一金屬層電耦合到相應的該矽控整流器部分和該結型二極體部分,且將該第二金屬層電耦合到相應的該矽控整流器部分和該結型二極體部分。
TW111122831A 2021-06-30 2022-06-20 具有有效互連結構的低電容雙通道和多通道的瞬態電壓抑制器件 TWI817567B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/364,022 US20230005906A1 (en) 2021-06-30 2021-06-30 Low capacitance two channel and multi-channel tvs with effective inter-connection
US17/364,022 2021-06-30

Publications (2)

Publication Number Publication Date
TW202303966A TW202303966A (zh) 2023-01-16
TWI817567B true TWI817567B (zh) 2023-10-01

Family

ID=84724634

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111122831A TWI817567B (zh) 2021-06-30 2022-06-20 具有有效互連結構的低電容雙通道和多通道的瞬態電壓抑制器件

Country Status (3)

Country Link
US (1) US20230005906A1 (zh)
CN (1) CN115548011A (zh)
TW (1) TWI817567B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107919355A (zh) * 2017-08-14 2018-04-17 上海领矽半导体有限公司 超低残压低容瞬态电压抑制器及其制造方法
CN108565260A (zh) * 2018-04-08 2018-09-21 矽力杰半导体技术(杭州)有限公司 一种半导体器件
TW201902066A (zh) * 2017-05-25 2019-01-01 大陸商萬民半導體 (澳門) 有限公司 高電容雙向瞬態電壓抑制器
TW201924174A (zh) * 2017-10-19 2019-06-16 大陸商萬民半導體(澳門)有限公司 低電容瞬變電壓抑制器
TW202017143A (zh) * 2018-10-26 2020-05-01 大陸商萬民半導體(澳門)有限公司 低電容瞬態電壓抑制器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8630071B2 (en) * 2009-03-24 2014-01-14 Broadcom Corporation ESD protection scheme for designs with positive, negative, and ground rails
JP6546995B2 (ja) * 2015-08-21 2019-07-17 日立オートモティブシステムズ株式会社 半導体装置、半導体集積回路、及び負荷駆動装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201902066A (zh) * 2017-05-25 2019-01-01 大陸商萬民半導體 (澳門) 有限公司 高電容雙向瞬態電壓抑制器
CN107919355A (zh) * 2017-08-14 2018-04-17 上海领矽半导体有限公司 超低残压低容瞬态电压抑制器及其制造方法
TW201924174A (zh) * 2017-10-19 2019-06-16 大陸商萬民半導體(澳門)有限公司 低電容瞬變電壓抑制器
CN108565260A (zh) * 2018-04-08 2018-09-21 矽力杰半导体技术(杭州)有限公司 一种半导体器件
TW202017143A (zh) * 2018-10-26 2020-05-01 大陸商萬民半導體(澳門)有限公司 低電容瞬態電壓抑制器

Also Published As

Publication number Publication date
TW202303966A (zh) 2023-01-16
CN115548011A (zh) 2022-12-30
US20230005906A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
US20240153955A1 (en) Semiconductor device
US10818516B2 (en) Semiconductor device having biasing structure for self-isolating buried layer and method therefor
US11664368B2 (en) Low capacitance transient voltage suppressor including a punch-through silicon controlled rectifier as low-side steering diode
EP3324443B1 (en) Semiconductor device
TWI692164B (zh) 低電容瞬變電壓抑制器
JPH0758784B2 (ja) ラッチ・アップ防止性能を改良したラテラル形絶縁ゲート・バイポーラ・トランジスタ
US9455253B2 (en) Bidirectional switch
CN105932023A (zh) 瞬态电压抑制器
EP3916806A1 (en) Semiconductor device
CN109119479A (zh) 一种功率器件及其制作方法
CN109273521A (zh) 一种功率器件保护芯片及其制作方法
TWI817567B (zh) 具有有效互連結構的低電容雙通道和多通道的瞬態電壓抑制器件
US11810912B2 (en) Semiconductor devices having asymmetric integrated gate resistors for balanced turn-on/turn-off behavior
CN105932010B (zh) 瞬态电压抑制器
CN109346508B (zh) 具有电流路径方向控制功能的半导体结构
JPH0563202A (ja) 半導体装置
US20220375923A1 (en) Conductivity reducing features in an integrated circuit
US10833068B2 (en) Semiconductor device
US20220045200A1 (en) Semiconductor Device Including a Plurality of Trenches
US20210343847A1 (en) Diffusion and/or enhancement layers for electrical contact regions
US11043557B2 (en) Semiconductor device
US20240055507A1 (en) Electrostatic discharge protection circuit
CN116805625A (zh) 具有沟槽接触部的过电压保护器件
JP2022161286A (ja) 半導体装置
CN112054023A (zh) 半导体器件