TWI813348B - 3d flash memory device - Google Patents

3d flash memory device Download PDF

Info

Publication number
TWI813348B
TWI813348B TW111122947A TW111122947A TWI813348B TW I813348 B TWI813348 B TW I813348B TW 111122947 A TW111122947 A TW 111122947A TW 111122947 A TW111122947 A TW 111122947A TW I813348 B TWI813348 B TW I813348B
Authority
TW
Taiwan
Prior art keywords
blocks
conductor
block
gate stack
stack structure
Prior art date
Application number
TW111122947A
Other languages
Chinese (zh)
Other versions
TW202401788A (en
Inventor
呂函庭
葉騰豪
李承宥
陳威臣
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW111122947A priority Critical patent/TWI813348B/en
Application granted granted Critical
Publication of TWI813348B publication Critical patent/TWI813348B/en
Publication of TW202401788A publication Critical patent/TW202401788A/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Surgical Instruments (AREA)
  • Non-Volatile Memory (AREA)

Abstract

A three-dimensional flash memory device includes: a substrate, a gate stack structure, a plurality of slit structures, a plurality of memory arrays, and a plurality of heating pillars. The gate stack structure is located above the substrate. The plurality of slit structures extend through the gate stack structure and divide the gate stack structure into a plurality of blocks. The plurality of memory arrays are disposed in the gate stack structure of the plurality of blocks. The plurality of heating pillars extends through the gate stack structure in the plurality of blocks, and disposed between the plurality of memory arrays and between the plurality of slit structures.

Description

三維快閃記憶體元件3D flash memory device

本發明是有關於一種半導體元件及其製造方法,且特別是有關於一種快閃記憶體元件及其製造方法。 The present invention relates to a semiconductor element and a manufacturing method thereof, and in particular, to a flash memory element and a manufacturing method thereof.

非揮發性記憶體具有可使得存入的資料在斷電後也不會消失的優點,因此廣泛採用於個人電腦和其他電子設備中。目前業界較常使用的三維記憶體包括反或式(NOR)記憶體以及反及式(NAND)記憶體。此外,另一種三維記憶體為及式(AND)記憶體,其可應用在多維度的記憶體陣列中而具有高積集度與高面積利用率,且具有操作速度快的優點。因此,三維記憶體元件的發展已逐漸成為目前的趨勢。然而,仍存在許多與三維記憶體元件相關的挑戰。 Non-volatile memory has the advantage that stored data will not disappear even after a power outage, so it is widely used in personal computers and other electronic devices. Currently, three-dimensional memories commonly used in the industry include NOR (NOR) memory and NAND (NAND) memory. In addition, another type of three-dimensional memory is AND memory, which can be used in multi-dimensional memory arrays to have high integration and high area utilization, and has the advantage of fast operation speed. Therefore, the development of three-dimensional memory components has gradually become a current trend. However, there are still many challenges associated with 3D memory devices.

本發明實施例提出一種三維快閃記憶體元件可以在多個記憶體陣列之間形成加熱器。 Embodiments of the present invention propose a three-dimensional flash memory element that can form a heater between multiple memory arrays.

本發明實施例提出一種三維快閃記憶體元件的製造方法可以與現有製程整合而在多個記憶體陣列之間形成加熱器。 Embodiments of the present invention propose a manufacturing method for three-dimensional flash memory devices that can be integrated with existing processes to form heaters between multiple memory arrays.

依據本發明實施例的一種三維快閃記憶體元件,包括:基底、閘極堆疊結構、多個分隔結構、多個記憶體陣列以及多個導電柱。所述閘極堆疊結構位於所述基底上方。所述多個分隔結構延伸穿過所述閘極堆疊結構,且將所述閘極堆疊結構分割為多個區塊。所述多個記憶體陣列設置於所述多個區塊的所述閘極堆疊結構中。所述多個導電柱多個導電柱延伸穿過位於所述多個區塊中的所述閘極堆疊結構,且位於多個記憶體陣列之間以及所述多個分隔結構之間。 A three-dimensional flash memory device according to an embodiment of the present invention includes: a substrate, a gate stack structure, a plurality of separation structures, a plurality of memory arrays and a plurality of conductive pillars. The gate stack structure is located above the substrate. The plurality of separation structures extend through the gate stack structure and divide the gate stack structure into a plurality of blocks. The plurality of memory arrays are disposed in the gate stack structures of the plurality of blocks. The plurality of conductive pillars extend through the gate stack structure in the plurality of blocks and between the plurality of memory arrays and the plurality of separation structures.

本發明實施例之一種三維快閃記憶體元件具有加熱器可以將多個記憶體陣列夾置在其彼此之間。 One embodiment of the present invention is a three-dimensional flash memory device with a heater that can sandwich multiple memory arrays between them.

上述三維快閃記憶體元件可以是三維AND快閃記憶體元件、三維NAND快閃記憶體元件或三維NOR快閃記憶體元件。 The above-mentioned three-dimensional flash memory device may be a three-dimensional AND flash memory device, a three-dimensional NAND flash memory device or a three-dimensional NOR flash memory device.

10:記憶體陣列 10:Memory array

10U、10U1、10U2、10U3、10U4:模組單元 10U, 10U1, 10U2, 10U3, 10U4: Module unit

12:電荷儲存層 12: Charge storage layer

14:穿隧層 14: Tunnel layer

16:通道柱 16:Channel column

20:記憶單元 20:Memory unit

28:絕緣柱 28:Insulation column

32a、32a:第一導電柱/源極柱 32a, 32a: first conductive pillar/source pillar

32b、32b:第二導電柱/汲極柱 32b, 32b: Second conductive pillar/drain pillar

36:阻擋層 36: Barrier layer

38:閘極層 38: Gate layer

38:字元線 38: character line

40:電荷儲存結構 40:Charge storage structure

48:基底 48: Base

50:介電基底 50:Dielectric substrate

50s:表面 50s: surface

54:絕緣層 54:Insulation layer

56:中間層 56:Middle layer

60:箭頭 60:arrow

62:襯層 62: Lining

64:阻障層 64:Barrier layer

66:導體層 66: Conductor layer

99:快閃記憶體晶片 99:Flash memory chip

100:加熱器 100:Heater

AR:記憶體陣列區 AR: memory array area

B、BLOCK:區塊 B. BLOCK: block

BD0、BD1、BD2、BD3、BD4:下介電層 BD0, BD1, BD2, BD3, BD4: lower dielectric layer

BD2’、MD:介電層 BD2’, MD: dielectric layer

D1、D2、D3:方向 D1, D2, D3: direction

E1:第一端 E1: first end

E2:第二端 E2: Second end

GBL:全域位元線 GBL: global bit line

GSK:閘極堆疊結構 GSK: gate stack structure

GSL:全域源極線 GSL: global source line

HP:導電柱 HP: conductive pillar

LBL:局部位元線 LBL: local bit line

LIT:下內連線結構 LIT: lower interconnect structure

LM1:第一下導體層 LM1: first lower conductor layer

LM2:第二下導體層 LM2: Second lower conductor layer

LP:下加熱板 LP: lower heating plate

LP1:第一下導體塊 LP1: first lower conductor block

LP2:第二下導體塊 LP2: Second lower conductor block

LSL:局部源極線 LSL: local source line

LW1、LW2、UW1、UW2:導線 LW1, LW2, UW1, UW2: Wires

P1:第一部分 P1:Part One

P2:第二部分 P2:Part Two

P3:第三部分 P3:Part Three

PR:周邊區 PR:surrounding area

SC:階梯結構 SC: ladder structure

SK1:中間堆疊結構 SK1: Middle stack structure

SLT:分隔結構 SLT: separated structure

SR:階梯區 SR: Staircase area

T:塊元 T: block element

T1:第一塊元 T1: The first dollar

T2:第二塊元 T2: The second dollar

TAV1、TAV2:陣列穿孔 TAV1, TAV2: array perforation

TD0、TD1、TD2、TD3:上介電層 TD0, TD1, TD2, TD3: upper dielectric layer

UIT:上內連線結構 UIT: upper inner wiring structure

UM1:第一上導體層 UM1: first upper conductor layer

UM2:第二上導體層 UM2: Second upper conductor layer

UP:上加熱板 UP: upper heating plate

UP1:第一上導體塊 UP1: The first upper conductor block

UP2:第二上導體塊 UP2: Second upper conductor block

V1:第一介層窗 V1: first via window

V2:第二介層窗 V2: Second via window

VAA:介層窗 VAA: via window

I-I’、II-II’:切線 I-I’, II-II’: Tangent line

BLOCK、BLOCK(i)、BLOCK(i+1):區塊 BLOCK, BLOCK (i) , BLOCK (i+1) : block

BLn、BLn+1:位元線 BL n , BL n+1 : bit lines

SP(i) n、SP(i) n+1、SP(i+1) n、SP(i+1) n+1:源極柱 SP (i) n , SP (i) n+1 , SP (i+1) n , SP (i+1) n+1 : source pillar

DP(i) n、DPi) n+1、DPi+1) n、DP(i+1) n+1:源極柱 DP (i) n , DP i) n+1 , DP i+1) n , DP (i+1) n+1 : source column

WL(i) m、WL(i) m+1、WL(i+1) m、WL(i+1) m+1:字元線 WL (i) m , WL (i) m+1 , WL (i+1) m , WL (i+1) m+1 : character line

圖1A示出根據本發明一些實施例的3D AND快閃記憶體陣列的電路圖。 Figure 1A shows a circuit diagram of a 3D AND flash memory array according to some embodiments of the invention.

圖1B示出圖1A中部分的記憶體陣列的局部三維視圖。 FIG. 1B shows a partial three-dimensional view of part of the memory array of FIG. 1A.

圖1C與圖1D示出圖1B的切線I-I’的剖面圖。 1C and 1D show cross-sectional views along the tangent line I-I' in FIG. 1B.

圖1E示出圖1B、圖1C、圖1D的切線II-II’的上視圖。 Figure 1E shows a top view along the tangent line II-II' of Figures 1B, 1C and 1D.

圖1F至圖1K示出根據本發明一些實施例的具有加熱器之3D AND快閃記憶體的各種示意圖。 1F-1K show various schematic diagrams of a 3D AND flash memory with a heater according to some embodiments of the present invention.

圖2A至圖2G是依照本發明的實施例的一種三維AND快閃 記憶體元件的製造流程的剖面示意圖。 2A to 2G are a three-dimensional AND flash according to an embodiment of the present invention. Schematic cross-section of the memory device manufacturing process.

圖3示出根據本發明一些實施例的具有加熱器之3D AND快閃記憶體的多個部分的示意圖。 Figure 3 shows a schematic diagram of portions of a 3D AND flash memory with a heater according to some embodiments of the invention.

圖4示出根據本發明一些實施例的一種三維AND快閃記憶體晶片的上視圖。 Figure 4 shows a top view of a three-dimensional AND flash memory wafer according to some embodiments of the present invention.

圖1A示出根據一些實施例的3D AND快閃記憶體陣列的電路圖。圖1B示出圖1A中部分的記憶體陣列的局部三維視圖。圖1C與圖1D示出圖1B的切線I-I’的剖面圖。圖1E示出圖1B、圖1C與圖1D的切線II-II’的上視圖。 Figure 1A shows a circuit diagram of a 3D AND flash memory array in accordance with some embodiments. FIG. 1B shows a partial three-dimensional view of part of the memory array of FIG. 1A. 1C and 1D show cross-sectional views along the tangent line I-I' in FIG. 1B. Figure 1E shows a top view along the tangent line II-II' of Figures 1B, 1C and 1D.

圖1A為包括配置成列及行的垂直AND記憶體陣列10的2個區塊BLOCK(i)與BLOCK(i+1)的示意圖。區塊BLOCK(i)中包括記憶體陣列A(i)。記憶體陣列A(i)的一列(例如是第m+1列)是具有共同字元線(例如WL(i) m+1)的AND記憶單元20集合。記憶體陣列A(i)的每一列(例如是第m+1列)的AND記憶單元20對應於共同字元線(例如WL(i) m+1),且耦接至不同的源極柱(例如SP(i) n與SP(i) n+1)與汲極柱(例如DP(i) n與DP(i) n+1),從而使得AND記憶單元20沿共同字元線(例如WL(i) m+1)邏輯地配置成一列。 FIG. 1A is a schematic diagram of two blocks BLOCK (i) and BLOCK (i+1) including a vertical AND memory array 10 configured in columns and rows. Block BLOCK (i) includes memory array A (i) . One column (for example, the m+1-th column) of the memory array A (i) is a set of AND memory cells 20 having a common word line (for example, WL (i) m+1 ). The AND memory cells 20 in each column (for example, the m+1th column) of the memory array A (i ) correspond to a common word line (for example, WL (i) m+1 ) and are coupled to different source columns. (for example, SP (i) n and SP (i) n+1 ) and drain posts (for example, DP (i) n and DP (i) n+1 ), so that the AND memory cells 20 are along a common word line (for example, DP (i) n and DP (i) n+1 ). WL (i) m+1 ) are logically arranged in one column.

記憶體陣列A(i)的一行(例如是第n行)是具有共同源極柱(例如SP(i) n)與共同汲極柱(例如DP(i) n)的AND記憶單元20集合。記憶體陣列A(i)的每一行(例如是第n行)的AND記憶單 元20對應於不同字元線(例如WL(i) m+1與WL(i) m),且耦接至共同的源極柱(例如SP(i) n)與共同的汲極柱(例如DP(i) n)。因此,記憶體陣列A(i)的AND記憶單元20沿共同源極柱(例如SP(i) n)與共同汲極柱(例如DP(i) n)邏輯地配置成一行。在實體佈局中,根據所應用的製造方法,行或列可經扭曲,以蜂巢式模式或其他方式配置,以用於高密度或其他原因。 One row (for example, the nth row) of the memory array A (i) is a set of AND memory cells 20 having a common source column (for example, SP (i) n ) and a common drain column (for example, DP (i) n ). The AND memory cells 20 of each row (for example, the nth row) of the memory array A (i) correspond to different word lines (for example, WL (i) m+1 and WL (i) m ), and are coupled to a common The source column (such as SP (i) n ) and the common drain column (such as DP (i) n ). Therefore, the AND memory cells 20 of memory array A (i) are logically arranged in a row along a common source column (eg, SP (i) n ) and a common drain column (eg, DP (i) n ). In a physical layout, depending on the manufacturing method applied, rows or columns may be twisted, configured in a honeycomb pattern or otherwise for high density or other reasons.

在圖1A中,在區塊BLOCK(i)中,記憶體陣列A(i)的第n行的AND記憶單元20共用共同的源極柱(例如SP(i) n)與共同的汲極柱(例如DP(i) n)。第n+1行的AND記憶單元20共用共同的源極柱(例如SP(i) n+1)與共同的汲極柱(例如DP(i) n+1)。 In FIG. 1A , in block BLOCK (i) , the AND memory cells 20 in the nth row of memory array A (i) share a common source column (for example, SP (i) n ) and a common drain column. (e.g. DP (i) n ). The AND memory cells 20 in the n+1th row share a common source column (for example, SP (i) n+1 ) and a common drain column (for example, DP (i) n+1 ).

共同的源極柱(例如SP(i) n)耦接至共同的源極線(例如SLn);共同的汲極柱(例如DP(i) n)耦接至共同的位元線(例如BLn)。共同的源極柱(例如SP(i) n+1)耦接至共同的源極線(例如SLn+1);共同的汲極柱(例如DP(i) n+1)耦接至共同的位元線(例如BLn+1)。 A common source pillar (eg SP (i) n ) is coupled to a common source line (eg SL n ); a common drain pillar (eg DP (i) n ) is coupled to a common bit line (eg BL n ). A common source column (such as SP (i) n+1 ) is coupled to a common source line (such as SL n+1 ); a common drain column (such as DP (i) n+1 ) is coupled to a common bit line (for example, BL n+1 ).

相似地,區塊BLOCK(i+1)包括記憶體陣列A(i+1),其與在區塊BLOCK(i)中的記憶體陣列A(i)相似。記憶體陣列A(i+1)的一列(例如是第m+1列)是具有共同字元線(例如WL(i+1) m+1)的AND記憶單元20集合。記憶體陣列A(i+1)的每一列(例如是第m+1列)的AND記憶單元20對應於共同字元線(例如WL(i+1) m+1),且耦接至不同的源極柱(例如SP(i+1) n與SP(i+1) n+1)與汲極柱(例如DP(i+1) n與DP(i+1) n+1)。記憶體陣列A(i+1)的一行(例如是第n行)是具有共同源極柱(例如SP(i+1) n)與共同汲極柱(例如DP(i+1) n) 的AND記憶單元20集合,這些AND記憶單元20集合彼此並聯,又稱為記憶體串。記憶體陣列A(i+1)的每一行(例如是第n行)的AND記憶單元20對應於不同字元線(例如WL(i+1) m+1與WL(i+1) m),且耦接至共同的源極柱(例如SP(i+1) n)與共同的汲極柱(例如DP(i+1) n)。因此,記憶體陣列A(i+1)的AND記憶單元20沿共同源極柱(例如SP(i+1) n)與共同汲極柱(例如DP(i+1) n)邏輯地配置成一行。 Similarly, block BLOCK (i+1) includes memory array A (i+1) , which is similar to memory array A (i) in block BLOCK(i) . One column (for example, the m+1th column ) of the memory array A (i+1 ) is a set of AND memory cells 20 having a common word line (for example, WL (i+1) m+1 ). The AND memory cells 20 of each column (for example, the m+1th column) of the memory array A (i+1 ) correspond to a common word line (for example, WL (i+1) m+1 ) and are coupled to different The source pillars (such as SP (i+1) n and SP (i+1) n+1 ) and the drain pillars (such as DP (i+1) n and DP (i+1) n+1 ). A row (for example, the nth row) of the memory array A (i+1) has a common source column (for example, SP (i+1) n ) and a common drain column (for example, DP (i+1) n ). A set of AND memory units 20, which are connected in parallel with each other, are also called memory strings. The AND memory cells 20 of each row (for example, the nth row) of the memory array A (i+1) correspond to different word lines (for example, WL (i+1) m+1 and WL (i+1) m ). , and coupled to a common source post (eg SP (i+1) n ) and a common drain post (eg DP (i+1) n ). Therefore, the AND memory cells 20 of the memory array A (i+1) are logically configured along the common source column (for example, SP (i+1) n ) and the common drain column (for example, DP (i+1) n ). One line.

區塊BLOCK(i+1)與區塊BLOCK(i)共用源極線(例如是SLn與SLn+1)與位元線(例如BLn與BLn+1)。因此,源極線SLn與位元線BLn耦接至區塊BLOCK(i)的AND記憶體陣列A(i)中的第n行AND記憶單元20,且耦接至區塊BLOCK(i+1)中的AND記憶體陣列A(i+1)中的第n行AND記憶單元20。同樣,源極線SLn+1與位元線BLn+1耦接至區塊BLOCK(i)的AND記憶體陣列A(i)中的第n+1行AND記憶單元20,且耦接至區塊BLOCK(i+1)中的AND記憶體陣列A(i+1)中的第n+1行AND記憶單元20。 Block BLOCK (i+1) and block BLOCK (i) share source lines (eg, SL n and SL n+1 ) and bit lines (eg, BL n and BL n+1 ). Therefore, the source line SL n and the bit line BL n are coupled to the nth row of AND memory cells 20 in the AND memory array A (i) of the block BLOCK ( i) , and are coupled to the block BLOCK (i +1) and the nth row AND memory cell 20 in the AND memory array A (i+1) . Similarly, the source line SL n+1 and the bit line BL n+1 are coupled to the n+1th row AND memory cell 20 in the AND memory array A (i) of the block BLOCK (i ), and are coupled to To the n+1th row AND memory unit 20 in the AND memory array A ( i+1) in the block BLOCK ( i+1 ).

請參照圖1B至圖1D,記憶體陣列10可安置於半導體晶粒的內連線結構上,諸如,安置於在半導體基底上形成的一或多個主動元件(例如電晶體)上方。因此,介電基底50例如是形成於矽基板上的金屬內連線結構上方的介電層,例如氧化矽層。記憶體陣列10可包括閘極堆疊結構GSK、多個通道柱16、多個第一導電柱(又可稱為源極柱)32a與多個第二導電柱(又可稱為汲極柱)32b和多個電荷儲存結構40。 Referring to FIGS. 1B-1D , the memory array 10 may be disposed on an interconnect structure of a semiconductor die, such as one or more active devices (eg, transistors) formed on a semiconductor substrate. Therefore, the dielectric substrate 50 is, for example, a dielectric layer, such as a silicon oxide layer, formed over a metal interconnect structure on a silicon substrate. The memory array 10 may include a gate stack structure GSK, a plurality of channel pillars 16, a plurality of first conductive pillars (also called source pillars) 32a, and a plurality of second conductive pillars (also called drain pillars) 32b and a plurality of charge storage structures 40.

請參照圖1B,閘極堆疊結構GSK形成在記憶體陣列區的介電基底50上。閘極堆疊結構GSK包括在介電基底50的表面50s 上垂直堆疊的多個閘極層(又稱為字元線)38與多層的絕緣層54。在Z方向上,這些閘極層38藉由設置在其彼此之間的絕緣層54電性隔離。閘極層38在與介電基底50的表面平行的方向上延伸。閘極層38可具有階梯結構(未示出)。因此,下部的閘極層38比上部閘極層38長,且下部的閘極層38的末端橫向延伸出上部閘極層38的末端。用於連接閘極層38的接觸窗(未示出)可著陸於閘極層38的末端,藉以將各層閘極層38連接至各個導線。 Referring to FIG. 1B , the gate stack structure GSK is formed on the dielectric substrate 50 in the memory array area. The gate stack structure GSK is included on the surface 50s of the dielectric substrate 50 A plurality of vertically stacked gate layers (also called word lines) 38 and a multi-layer insulating layer 54 are formed on the substrate. In the Z direction, the gate layers 38 are electrically isolated by the insulating layer 54 disposed between them. Gate layer 38 extends in a direction parallel to the surface of dielectric substrate 50 . Gate layer 38 may have a stepped structure (not shown). Therefore, the lower gate layer 38 is longer than the upper gate layer 38 , and the end of the lower gate layer 38 laterally extends beyond the end of the upper gate layer 38 . Contacts (not shown) for connecting the gate layers 38 may land on the ends of the gate layers 38 to connect each gate layer 38 to the respective conductors.

請參照圖1B至圖1D,記憶體陣列10還包括在Z方向上堆疊的多個通道柱16。在一些實施例中,通道柱16於上視角度來看可具有環形的輪廓。通道柱16的材料可以是半導體材料,例如是未摻雜的多晶矽。 Referring to FIGS. 1B to 1D , the memory array 10 further includes a plurality of channel columns 16 stacked in the Z direction. In some embodiments, channel post 16 may have an annular profile when viewed from above. The material of the channel pillar 16 may be a semiconductor material, such as undoped polycrystalline silicon.

請參照圖1B至圖1D,記憶體陣列10還包括絕緣柱28、多個第一導電柱32a與多個第二導電柱32b。在此例中,第一導電柱32a做為源極柱;第二導電柱32b做為汲極柱。第一導電柱32a與第二導電柱32b以及絕緣柱28各自在垂直於閘極層38的表面的方向(即Z方向)上延伸。第一導電柱32a與第二導電柱32b藉由絕緣柱28分隔。第一導電柱32a與第二導電柱32b電性連接該通道柱16。第一導電柱32a與第二導電柱32b包括摻雜的多晶矽或金屬材料。絕緣柱28例如是氮化矽。 Referring to FIGS. 1B to 1D , the memory array 10 further includes an insulating pillar 28 , a plurality of first conductive pillars 32 a and a plurality of second conductive pillars 32 b. In this example, the first conductive pillar 32a serves as the source pillar; the second conductive pillar 32b serves as the drain pillar. The first conductive pillar 32a, the second conductive pillar 32b and the insulating pillar 28 each extend in a direction perpendicular to the surface of the gate layer 38 (ie, the Z direction). The first conductive pillar 32a and the second conductive pillar 32b are separated by the insulating pillar 28. The first conductive pillar 32a and the second conductive pillar 32b are electrically connected to the channel pillar 16. The first conductive pillar 32a and the second conductive pillar 32b include doped polycrystalline silicon or metal material. The insulating pillar 28 is made of silicon nitride, for example.

請參照圖1C與圖1D,電荷儲存結構40設置於通道柱16與多層閘極層38之間。電荷儲存結構40可以包括穿隧層(或稱為能隙工程穿隧氧化層)14、電荷儲存層12以及阻擋層36。電荷儲存層12位於穿隧層14與阻擋層36之間。在一些實施例中,穿隧層14以及阻擋層36包括氧化矽。電荷儲存層12包括氮化矽, 或其他包括可以捕捉以電荷的材料。在一些實施例中,如圖1C所示,電荷儲存結構40的一部分(穿隧層14與電荷儲存層12)在垂直於閘極層38的方向(即Z方向)上連續延伸,而電荷儲存結構40的另一部分(阻擋層36)環繞於閘極層38的周圍。在另一些實施例中,如圖1D所示,電荷儲存結構40的電荷儲存層12與阻擋層36環繞於閘極層38的周圍。 Referring to FIG. 1C and FIG. 1D , the charge storage structure 40 is disposed between the channel pillar 16 and the multi-layer gate layer 38 . The charge storage structure 40 may include a tunnel layer (also known as a bandgap engineered tunnel oxide layer) 14 , a charge storage layer 12 and a barrier layer 36 . The charge storage layer 12 is located between the tunneling layer 14 and the barrier layer 36 . In some embodiments, tunneling layer 14 and barrier layer 36 include silicon oxide. Charge storage layer 12 includes silicon nitride, or other materials that can capture electrical charges. In some embodiments, as shown in FIG. 1C , a portion of the charge storage structure 40 (the tunneling layer 14 and the charge storage layer 12 ) continuously extends in a direction perpendicular to the gate layer 38 (ie, the Z direction), and the charge storage Another portion of structure 40 (barrier layer 36 ) surrounds gate layer 38 . In other embodiments, as shown in FIG. 1D , the charge storage layer 12 and barrier layer 36 of the charge storage structure 40 surround the gate layer 38 .

請參照圖1E,電荷儲存結構40、通道柱16以及源極柱32a與汲極柱32b被閘極層38環繞,並且界定出記憶單元20。記憶單元20可藉由不同的操作方法進行1位元操作或2位元操作。舉例來說,在對源極柱32a與汲極柱32b施加電壓時,由於源極柱32a與汲極柱32b與通道柱16連接,因此電子可沿著通道柱16傳送並儲存在整個電荷儲存結構40中,如此可對記憶單元20進行1位元的操作。此外,對於利用福勒-諾德漢穿隧(Fowler-Nordheim tunneling)的操作來說,可使電子或是電洞被捕捉在源極柱32a與汲極柱32b之間的電荷儲存結構40中。對於源極側注入(source side injection)、通道熱電子(channel-hot-electron)注入或帶對帶穿隧熱載子(band-to-band tunneling hot carrier)注入的操作來說,可使電子或電洞被局部地捕捉在鄰近兩個源極柱32a與汲極柱32b中的一者的電荷儲存結構40中,如此可對記憶單元20進行單位晶胞(SLC,1位元)或多位晶胞(MLC,大於或等於2位元)的操作。 Referring to FIG. 1E , the charge storage structure 40 , the channel pillar 16 , the source pillar 32 a and the drain pillar 32 b are surrounded by the gate layer 38 and define the memory cell 20 . The memory unit 20 can perform 1-bit operation or 2-bit operation through different operation methods. For example, when a voltage is applied to the source column 32a and the drain column 32b, since the source column 32a and the drain column 32b are connected to the channel column 16, electrons can be transported along the channel column 16 and stored in the entire charge storage. In the structure 40, in this way, a 1-bit operation can be performed on the memory unit 20. In addition, for operations utilizing Fowler-Nordheim tunneling, electrons or holes can be trapped in the charge storage structure 40 between the source post 32a and the drain post 32b. . For source side injection, channel-hot-electron injection or band-to-band tunneling hot carrier injection operations, the electrons can be Or the holes are locally trapped in the charge storage structure 40 adjacent to one of the two source pillars 32a and drain pillars 32b, so that the memory cell 20 can be processed into unit cell (SLC, 1 bit) or multiple Bit unit cell (MLC, greater than or equal to 2 bits) operations.

請參照圖1A與圖1B,在進行操作時,將電壓施加至所選擇的字元線(閘極層)38,例如施加高於對應記憶單元20的相應起始電壓(Vth)時,與所選擇的字元線38相交的通道柱16被 導通,而允許電流從位元線BLn或BLn+1(示於圖1B)進入汲極柱32b,並經由導通的通道區流至源極柱32a(例如,在由箭頭60所指示的方向上),最後流到源極線SLn或SLn+1(示於圖1B)。 Referring to FIGS. 1A and 1B , during operation, a voltage is applied to the selected word line (gate layer) 38 , for example, when a voltage higher than the corresponding starting voltage (V th ) of the corresponding memory cell 20 is applied, and The channel pillar 16 intersecting the selected word line 38 is turned on, allowing current from the bit line BL n or BL n+1 (shown in FIG. 1B ) to enter the drain pillar 32 b and flow to the source through the turned on channel region. Post 32a (eg, in the direction indicated by arrow 60), ultimately flows to source line SLn or SLn +1 (shown in Figure 1B).

圖1F至圖1K示出根據本發明一些實施例的具有加熱器100之3D AND快閃記憶體的各種示意圖。為清楚起見,圖1F至圖1K中有部分的構件並未示出。 1F to 1K show various schematic diagrams of a 3D AND flash memory with a heater 100 according to some embodiments of the present invention. For the sake of clarity, some components are not shown in Figures 1F to 1K.

參照圖1F,本發明實施例之3D AND快閃記憶體還包括加熱器100。加熱器100為一微型加熱器,其設置在記憶體陣列區AR中。加熱器100環繞在記憶體陣列區AR之中的多個記憶體陣列10的周圍,以就近加熱所述多個記憶體陣列10的多個記憶單元。經由加熱器100的加熱回火可以修復損壞的記憶單元。 Referring to FIG. 1F , the 3D AND flash memory according to the embodiment of the present invention further includes a heater 100 . The heater 100 is a micro heater, which is disposed in the memory array area AR. The heater 100 surrounds the plurality of memory arrays 10 in the memory array area AR to heat the plurality of memory cells of the plurality of memory arrays 10 nearby. Damaged memory cells can be repaired through heating and tempering by the heater 100 .

參照圖1I,加熱器100穿過具有多個記憶體陣列10的所述閘極堆疊結構GSK,且再延伸至所述閘極堆疊結構GSK的上方與下方。加熱器100可以同時加熱單一個區塊B或是多個區塊B,例如是4個區塊、8個區塊(如圖1K所示)、16個區塊或32個區塊,但不限於此。 Referring to FIG. 1I , the heater 100 passes through the gate stack structure GSK having a plurality of memory arrays 10 and then extends above and below the gate stack structure GSK. The heater 100 can heat a single block B or multiple blocks B at the same time, such as 4 blocks, 8 blocks (as shown in Figure 1K), 16 blocks or 32 blocks, but not Limited to this.

參照圖1F與圖1G,加熱器100例如是呈貪吃蛇形。更具體地說,加熱器100包括彼此連接的多個第一部分P1、多個第二部分P2與多個第三部分P3。第二部分P2位於第一部分P1與第三部分P3之間。第一部分P1與第三部分P3部分重疊,且重疊的部分以多個第二部分P2連接。第一部分P1包括下加熱板LP。第二部分P2包括導電柱(又可稱為加熱柱)HP。第三部分P3包括上加熱板UP。 Referring to FIG. 1F and FIG. 1G , the heater 100 is, for example, in the shape of a snake. More specifically, the heater 100 includes a plurality of first parts P1, a plurality of second parts P2, and a plurality of third parts P3 connected to each other. The second part P2 is located between the first part P1 and the third part P3. The first part P1 and the third part P3 partially overlap, and the overlapping parts are connected by a plurality of second parts P2. The first part P1 includes the lower heating plate LP. The second part P2 includes conductive pillars (also called heating pillars) HP. The third part P3 includes the upper heating plate UP.

參照圖1F與圖1G,所述多個導電柱HP設置在記憶體陣 列10周圍。所述多個導電柱HP將多個記憶體陣列10夾置在其之間。在一些實施例中,在第一方向D1上,所述多個導電柱HP與所述多個記憶體陣列10交替設置。 Referring to Figure 1F and Figure 1G, the plurality of conductive pillars HP are arranged in the memory array Column 10 around. The plurality of conductive pillars HP sandwich the plurality of memory arrays 10 therebetween. In some embodiments, in the first direction D1, the plurality of conductive pillars HP and the plurality of memory arrays 10 are alternately arranged.

參照圖1H與圖1K,所述多個導電柱HP被多個分隔結構SLT分隔,且與所述多個分隔結構SLT側向相鄰。所述多個分隔結構SLT在所述第一方向D1延伸,將閘極堆疊結構GSK分割成多個區塊B(例如是B1、B2、B3、B4)。加熱器100的多個導電柱HP位於所述多個區塊B(例如是B1、B2、B3、B4)中,且延伸穿過所述閘極堆疊結構GSK。在一些實施例中,在第二方向D2上,所述多個導電柱HP與所述多個分隔結構SLT交替設置。所述第二方向D2與所述第一方向D1不同。所述第二方向D2與所述第一方向D1例如是互相垂直。第一方向D1例如是在X方向,第二方向D2例如是Y方向。 Referring to FIGS. 1H and 1K , the plurality of conductive pillars HP are separated by a plurality of separation structures SLT and are laterally adjacent to the plurality of separation structures SLT. The plurality of separation structures SLT extend in the first direction D1 and divide the gate stack structure GSK into a plurality of blocks B (for example, B1, B2, B3, and B4). A plurality of conductive pillars HP of the heater 100 are located in the plurality of blocks B (for example, B1, B2, B3, B4) and extend through the gate stack structure GSK. In some embodiments, in the second direction D2, the plurality of conductive pillars HP and the plurality of separation structures SLT are alternately arranged. The second direction D2 is different from the first direction D1. The second direction D2 and the first direction D1 are, for example, perpendicular to each other. The first direction D1 is, for example, the X direction, and the second direction D2 is, for example, the Y direction.

參照圖1F與圖1H,在一些實施例中,每一個記憶體陣列10與兩側的兩行導電柱HP及其上下的下內連線結構LIT以及上內連線結構UIT可以稱為一個模組單元10U。因此,在圖1H中,在階梯結構SC之間具有四個模組單元10U1、10U2、10U3與10U4。然而,本發明並不以此為限,在每一個模組單元10U中,在每一個記憶體陣列10兩側可以包含更多或更少行的導電柱HP。此外,每一個模組單元10U的兩側的多個導電柱HP的數量可以相同或是相異。每一個模組單元10U的兩側的多個導電柱HP可以排列成陣列或排列成非陣列。 1F and 1H, in some embodiments, each memory array 10 and the two rows of conductive pillars HP on both sides and the lower interconnection structure LIT and the upper interconnection structure UIT above and below can be called a module. Group unit 10U. Therefore, in Figure 1H, there are four module units 10U1, 10U2, 10U3 and 10U4 between the ladder structures SC. However, the present invention is not limited thereto. In each module unit 10U, more or fewer rows of conductive pillars HP may be included on both sides of each memory array 10 . In addition, the number of conductive pillars HP on both sides of each module unit 10U may be the same or different. The plurality of conductive pillars HP on both sides of each module unit 10U can be arranged in an array or in a non-array.

參照圖1I與圖1J,所述多個導電柱HP設置在階梯結構SC之間的記憶體陣列區AR中。所述導電柱HP與所述多個源極 柱32a與所述多個汲極柱32b側向相鄰。所述多個導電柱HP將多個源極柱32a與所述多個汲極柱32b夾置在其之間。 Referring to FIGS. 1I and 1J , the plurality of conductive pillars HP are disposed in the memory array area AR between the ladder structures SC. The conductive pillar HP and the plurality of source electrodes Post 32a is laterally adjacent the plurality of drain posts 32b. The plurality of conductive pillars HP sandwich the plurality of source pillars 32a and the plurality of drain pillars 32b therebetween.

參照圖1H、圖1J。所述多個導電柱HP的形成步驟可以與其他製程同時進行。舉例來說,在一些實施例中,3D AND快閃記憶體還包括多個陣列穿孔TAV1與TAV2。所述多個陣列穿孔TAV1設置在階梯區SR且穿過閘極堆疊結構GSK的階梯結構SC。所述多個陣列穿孔TAV2設置在周邊區PR,且穿過在周邊區PR之中的絕緣材料或介電材料。所述多個導電柱HP可以與多個陣列穿孔TAV1與TAV2同時形成或不同時形成。 Refer to Figure 1H and Figure 1J. The step of forming the plurality of conductive pillars HP can be performed simultaneously with other processes. For example, in some embodiments, the 3D AND flash memory further includes a plurality of array through holes TAV1 and TAV2. The plurality of array through holes TAV1 are disposed in the step region SR and pass through the step structure SC of the gate stack structure GSK. The plurality of array through holes TAV2 are disposed in the peripheral region PR and pass through the insulating material or dielectric material in the peripheral region PR. The plurality of conductive pillars HP may be formed at the same time or not at the same time as the plurality of array through holes TAV1 and TAV2.

參照圖1G,加熱器100的下加熱板LP設置於導電柱HP以及閘極堆疊結構GSK下方。下加熱板LP可以是設置於閘極堆疊結構GSK下方的下內連線結構LIT的一部分。加熱器100的上加熱板UP設置於導電柱HP以及閘極堆疊結構GSK上方。上加熱板UP可以是設置於閘極堆疊結構GSK上方的上內連線結構UIT的一部分。 Referring to FIG. 1G , the lower heating plate LP of the heater 100 is disposed below the conductive pillar HP and the gate stack structure GSK. The lower heating plate LP may be part of the lower interconnect structure LIT disposed below the gate stack structure GSK. The upper heating plate UP of the heater 100 is disposed above the conductive pillar HP and the gate stack structure GSK. The upper heating plate UP may be part of the upper interconnect structure UIT disposed above the gate stack structure GSK.

參照圖1F與圖1G,在一些實施例中,下加熱板LP可以是下內連線結構LIT的單層導體層的一部分。上加熱板UP可以是上內連線結構UIT的單層導體層的一部分。在另一些實施例中,下加熱板LP包括下內連線結構LIT的兩層或更多層導體層的一部分以及位於這些導體層彼此之間的多個介層窗(未示出)。上加熱板UP包括上內連線結構UIT的兩層或更多層導體層的一部分以及位於這些導體層彼此之間的多個介層窗(未示出)。 Referring to FIGS. 1F and 1G , in some embodiments, the lower heating plate LP may be part of a single conductor layer of the lower interconnect structure LIT. The upper heating plate UP may be part of a single conductor layer of the upper interconnect structure UIT. In other embodiments, the lower heating plate LP includes a portion of two or more conductor layers of the lower interconnect structure LIT and a plurality of via windows (not shown) located between the conductor layers. The upper heating plate UP includes a portion of two or more conductor layers of the upper interconnect structure UIT and a plurality of via windows (not shown) located between the conductor layers.

參照圖1I與圖1J,具體地說,下加熱板LP包括下內連線結構LIT的第一下導體層LM1的一部分與第二下導體層LM2 的一部分以及多個第一介層窗V1。上加熱板UP包括下內連線結構LIT的第一上導體層UM1的一部分與第二上導體層UM2的一部分以及多個第二介層窗V2。 1I and 1J, specifically, the lower heating plate LP includes a portion of the first lower conductor layer LM1 and the second lower conductor layer LM2 of the lower interconnect structure LIT. and a plurality of first vias V1. The upper heating plate UP includes a part of the first upper conductor layer UM1 and a part of the second upper conductor layer UM2 of the lower interconnect structure LIT and a plurality of second via windows V2.

參照圖1J,第一下導體層LM1位於所述基底48與所述閘極堆疊結構GSK之間。第二下導體層LM2位於所述第一下導體層LM1與所述閘極堆疊結構GSK之間。所述第一下導體層LM1與所述基底48之間可以不包括其他的導體層。然而,本發明並不限於此。所述第一下導體層LM1與所述基底48之間還可以包括其他的導體層(未示出)。 Referring to FIG. 1J , the first lower conductor layer LM1 is located between the substrate 48 and the gate stack structure GSK. The second lower conductor layer LM2 is located between the first lower conductor layer LM1 and the gate stack structure GSK. No other conductor layer may be included between the first lower conductor layer LM1 and the base 48 . However, the present invention is not limited to this. Other conductor layers (not shown) may also be included between the first lower conductor layer LM1 and the substrate 48 .

參照圖1K與圖2A,所述第一下導體層LM1包括彼此分離的多個第一下導體塊LP1。每一第一下導體塊LP1在第一方向D1與第二方向D2延伸。在一些實施例中,每一第一下導體塊LP1跨過所述多個區塊B(例如是B1~B8),以使得所述多個區塊B中的部分所述多個記憶體陣列10、部分所述多個導電柱HP以及部分所述多個分隔結構SLT可以設置在其正上方,如圖2D所示。在另一些實施例中,每一第一下導體塊LP1跨過單一個區塊B。在又一些實施例中,每一第一下導體塊LP1跨過其他數量的區塊B,例如是16個區塊。 Referring to FIG. 1K and FIG. 2A , the first lower conductor layer LM1 includes a plurality of first lower conductor blocks LP1 separated from each other. Each first lower conductor block LP1 extends in the first direction D1 and the second direction D2. In some embodiments, each first lower conductor block LP1 spans the plurality of blocks B (for example, B1 to B8), so that part of the plurality of memory arrays in the plurality of blocks B 10. Part of the plurality of conductive pillars HP and part of the plurality of separation structures SLT may be disposed directly above it, as shown in Figure 2D. In other embodiments, each first lower conductor block LP1 spans a single block B. In some embodiments, each first lower conductor block LP1 spans other numbers of blocks B, such as 16 blocks.

參照圖1K與圖2C,所述第二下導體層LM2包括彼此分離的多個第二下導體塊LP2。每一第二下導體塊LP2在第一方向D1與第二方向D2延伸。在一些實施例中,每一第二下導體塊LP2跨過所述多個區塊B(例如是B1~B8),使得所述多個區塊B中的部分所述多個記憶體陣列10、部分所述多個導電柱HP以及部分所述多個分隔結構SLT可以設置在其正上方且使得所述多個導電 柱HP著陸在每個第二下導體塊LP2上,如圖2D所示。在另一些實施例中,每一第二下導體塊LP2跨過單一個區塊B。在又一些實施例中,每一第二下導體塊LP2跨過其他數量的區塊B,例如是16個區塊。 Referring to FIGS. 1K and 2C , the second lower conductor layer LM2 includes a plurality of second lower conductor blocks LP2 separated from each other. Each second lower conductor block LP2 extends in the first direction D1 and the second direction D2. In some embodiments, each second lower conductor block LP2 spans the plurality of blocks B (for example, B1 to B8), so that part of the plurality of memory arrays 10 in the plurality of blocks B , part of the plurality of conductive pillars HP and part of the plurality of separation structures SLT may be disposed directly above them and make the plurality of conductive Pillars HP land on each second lower conductor block LP2 as shown in Figure 2D. In other embodiments, each second lower conductor block LP2 spans a single block B. In some embodiments, each second lower conductor block LP2 spans other numbers of blocks B, such as 16 blocks.

參照圖1I與圖1J,所述多個第一介層窗V1位於所述多個第一下導體塊LP1與所述多個第二下導體塊LP2之間且與其彼此連接。換言之,所述多個第一下導體塊LP1與所述多個第二下導體塊LP2藉由所述多個第一介層窗V1並聯。所述多個第一下導體塊LP1、所述多個第二下導體塊LP2以及所述多個第一介層窗V1形成所述加熱器100的下加熱板LP。 Referring to FIGS. 1I and 1J , the plurality of first vias V1 are located between the plurality of first lower conductor blocks LP1 and the plurality of second lower conductor blocks LP2 and are connected to each other. In other words, the plurality of first lower conductor blocks LP1 and the plurality of second lower conductor blocks LP2 are connected in parallel through the plurality of first via windows V1. The plurality of first lower conductive blocks LP1 , the plurality of second lower conductive blocks LP2 and the plurality of first vias V1 form the lower heating plate LP of the heater 100 .

參照圖1J,下介電層BD4位於所述閘極堆疊結構GSK與所述第二下導體層LM2之間。上介電層TD0位於所述閘極堆疊結構GSK與所述第一上導體層UM1之間。所述多個源極柱32a與所述多個汲極柱32b位於所述下介電層BD4與所述上介電層TD0之間。所述多個導電柱HP還延伸穿過所述下介電層BD4與所述上介電層TD0。導電柱HP的長度大於源極柱32a與汲極柱32b的長度。因此,與所述多個源極柱32a與所述多個汲極柱32b側向相鄰的導電柱HP可以將所述多個源極柱32a、所述多個汲極柱32b與多個閘極層38交叉處所形成的記憶單元20完全加熱。 Referring to FIG. 1J , the lower dielectric layer BD4 is located between the gate stack structure GSK and the second lower conductor layer LM2. The upper dielectric layer TDO is located between the gate stack structure GSK and the first upper conductor layer UM1. The plurality of source pillars 32a and the plurality of drain pillars 32b are located between the lower dielectric layer BD4 and the upper dielectric layer TDO. The plurality of conductive pillars HP also extend through the lower dielectric layer BD4 and the upper dielectric layer TDO. The length of the conductive pillar HP is greater than the length of the source pillar 32a and the drain pillar 32b. Therefore, the conductive pillars HP laterally adjacent to the plurality of source pillars 32a and the plurality of drain pillars 32b may connect the plurality of source pillars 32a, the plurality of drain pillars 32b to a plurality of The memory cell 20 formed by the intersection of the gate layers 38 is completely heated.

參照圖1I至圖1K,所述上內連線結構UIT包括上介電層TD1、TD2、TD3以及位於其中的第一上導體層UM1、第二上導體層UM2以及多個第二介層窗V2。所述第一上導體層UM1位於所述閘極堆疊結構GSK上方。所述第二上導體層UM2位於所述第一上導體層UM1上方。所述多個第二介層窗V2位於所述第 一上導體層UM1與第二上導體層UM2之間且與其彼此電性連接。 Referring to FIGS. 1I to 1K , the upper interconnect structure UIT includes upper dielectric layers TD1, TD2, TD3 and a first upper conductor layer UM1, a second upper conductor layer UM2 and a plurality of second via windows located therein. V2. The first upper conductor layer UM1 is located above the gate stack structure GSK. The second upper conductor layer UM2 is located above the first upper conductor layer UM1. The plurality of second vias V2 are located in the The first upper conductor layer UM1 and the second upper conductor layer UM2 are electrically connected to each other.

參照圖1J、圖1K,所述第一上導體層UM1包括彼此分離的多個第一上導體塊UP1,且所述多個第一上導體塊UP1與下方的所述多個導電柱HP電性連接。參照圖1K、圖2E,每一第一上導體塊UP1在第一方向D1與第二方向D2延伸。在一些實施例中,每一第一上導體塊UP1跨過所述多個區塊B(例如是B1~B8),以覆蓋示於圖1K、圖2D的所述多個區塊B中的部分所述多個記憶體陣列10、部分所述多個導電柱HP以及部分所述多個分隔結構SLT。在另一些實施例中,每一第一上導體塊UP1跨過單一個區塊B。在又一些實施例中,每一第一上導體塊UP1跨過其他數量的區塊B,例如是16個區塊。 Referring to FIGS. 1J and 1K , the first upper conductor layer UM1 includes a plurality of first upper conductor blocks UP1 separated from each other, and the plurality of first upper conductor blocks UP1 are electrically connected to the plurality of conductive pillars HP below. sexual connection. Referring to FIGS. 1K and 2E , each first upper conductor block UP1 extends in the first direction D1 and the second direction D2. In some embodiments, each first upper conductor block UP1 spans the plurality of blocks B (for example, B1 ~ B8) to cover the plurality of blocks B shown in FIG. 1K and FIG. 2D . Part of the plurality of memory arrays 10 , part of the plurality of conductive pillars HP and part of the plurality of separation structures SLT. In other embodiments, each first upper conductor block UP1 spans a single block B. In some embodiments, each first upper conductor block UP1 spans other numbers of blocks B, such as 16 blocks.

參照圖1I,在一些實施例中,每一第二下導體塊LP2被兩個彼此分離的第一上導體塊UP1覆蓋。所述第一上導體塊UP1的面積小於所對應的第二下導體塊LP2的面積。 Referring to FIG. 1I , in some embodiments, each second lower conductor block LP2 is covered by two first upper conductor blocks UP1 that are separated from each other. The area of the first upper conductive block UP1 is smaller than the area of the corresponding second lower conductive block LP2.

參照圖1I與圖2E,所述第一上導體層UM1還包括在所述第二方向D2延伸的多個局部源極線LSL與多個局部位元線LBL。多個局部源極線LSL連接示於圖1I或圖2D的所述多個源極柱32a。多個局部位元線LBL連接示於圖1I或圖2D的所述多個汲極柱32b。多個局部源極線LSL與多個局部位元線LBL位於所述多個第一上導體塊UP1之間。在圖1J與2E中,在一些實施例中,每一個記憶體陣列10與兩側的兩行導電柱HP及其上下的下內連線結構LIT以及上內連線結構UIT可以稱為一個模組單元10U。本發明並不以此為限,在每一個模組單元10U中,在每一個記憶體陣列10兩側可以包含更多或更少行的導電柱HP。每一 模組單元10U兩側的兩行導電柱HP與兩個第一上導體塊UP1連接。每一模組單元10U兩側的兩行導電柱HP與一個第二下導體塊LP2連接。 Referring to FIGS. 1I and 2E , the first upper conductor layer UM1 further includes a plurality of local source lines LSL and a plurality of local bit lines LBL extending in the second direction D2. A plurality of local source lines LSL connects the plurality of source pillars 32a shown in FIG. 1I or 2D. A plurality of local bit lines LBL are connected to the plurality of drain posts 32b shown in FIG. 1I or 2D. A plurality of local source lines LSL and a plurality of local bit lines LBL are located between the plurality of first upper conductor blocks UP1. In Figures 1J and 2E, in some embodiments, each memory array 10 and the two rows of conductive pillars HP on both sides and the lower interconnection structure LIT and the upper interconnection structure UIT above and below can be called a module. Group unit 10U. The present invention is not limited thereto. In each module unit 10U, more or fewer rows of conductive pillars HP may be included on both sides of each memory array 10 . every The two rows of conductive pillars HP on both sides of the module unit 10U are connected to the two first upper conductor blocks UP1. Two rows of conductive pillars HP on both sides of each module unit 10U are connected to a second lower conductor block LP2.

在圖1H中,在一些實施例中,在兩個階梯結構SC之間包括四個模組單元10U1、10U2、10U3以及10U4。然而,本發明實施例不以此為限。在另一些實施例中,在兩個階梯結構SC之間可以包括更少個(例如2個)模組單元10U。在另一些實施例中,在兩個階梯結構SC之間可以包括更多個(例如4個、8個、16個或32個)模組單元10U。 In Figure 1H, in some embodiments, four module units 10U1, 10U2, 10U3 and 10U4 are included between two ladder structures SC. However, the embodiments of the present invention are not limited thereto. In other embodiments, fewer (eg, 2) module units 10U may be included between the two ladder structures SC. In other embodiments, more (for example, 4, 8, 16 or 32) module units 10U may be included between the two ladder structures SC.

參照圖1K與圖2G,第二上導體層UM2位於所述第一上導體層UM1上方。所述第二上導體層UM2包括彼此分離的多個第二上導體塊UP2。每一第二上導體塊UP2在第一方向D1與第二方向D2延伸。在一些實施例中,在第二方向D2上每一第二上導體塊UP2跨過所述多個區塊B(例如是B1~B8),如此一來,所述多個第二上導體塊UP2覆蓋所述多個第一上導體塊UP1。在一些實施例中,每一第二上導體塊UP2跨過單一個區塊B(例如是B1~B8),如此一來,所述多個第二上導體塊UP2覆蓋所述多個第一上導體塊UP1。在又一些實施例中,每一第二上導體塊UP2跨過其他數量的區塊B,例如是16個區塊,如此一來,所述多個第二上導體塊UP2覆蓋所述多個第一上導體塊UP1。此外,在一些實施例中,在中心區的每一個第二上導體塊UP2覆蓋相鄰兩個模組單元10U的兩個彼此相鄰的第一上導體塊UP1;在邊緣區的每一個第二上導體塊UP2覆蓋單一個第一上導體塊UP1。 Referring to FIG. 1K and FIG. 2G, the second upper conductor layer UM2 is located above the first upper conductor layer UM1. The second upper conductor layer UM2 includes a plurality of second upper conductor blocks UP2 separated from each other. Each second upper conductive block UP2 extends in the first direction D1 and the second direction D2. In some embodiments, each second upper conductor block UP2 spans the plurality of blocks B (for example, B1 to B8) in the second direction D2. In this way, the plurality of second upper conductor blocks UP2 covers the plurality of first upper conductor blocks UP1. In some embodiments, each second upper conductor block UP2 spans a single block B (for example, B1~B8). In this way, the plurality of second upper conductor blocks UP2 cover the plurality of first blocks B. Upper conductor block UP1. In some embodiments, each second upper conductor block UP2 spans other numbers of blocks B, such as 16 blocks. In this way, the plurality of second upper conductor blocks UP2 cover the plurality of blocks B. The first upper conductor block UP1. Furthermore, in some embodiments, each second upper conductor block UP2 in the central area covers two adjacent first upper conductor blocks UP1 of two adjacent module units 10U; each second upper conductor block UP1 in the edge area covers Two upper conductor blocks UP2 cover a single first upper conductor block UP1.

參照圖1I、圖1J、圖1K與圖2F,多個第二介層窗V2 位於所述多個第一上導體塊UP1與所述多個第二上導體塊UP2之間且與其連接。換言之,所述多個第一上導體塊UP1與所述多個第二上導體塊UP2藉由所述多個第二介層窗V2彼此並聯。所述多個第一上導體塊UP1、所述多個第二上導體塊UP2以及所述多個第二介層窗V2形成所述加熱器100的上加熱板UP。換言之,每一個上加熱板UP被兩個相鄰模組單元10U共用。 Referring to Figure 1I, Figure 1J, Figure 1K and Figure 2F, a plurality of second via windows V2 It is located between and connected to the plurality of first upper conductor blocks UP1 and the plurality of second upper conductor blocks UP2. In other words, the plurality of first upper conductive blocks UP1 and the plurality of second upper conductive blocks UP2 are connected in parallel with each other through the plurality of second vias V2. The plurality of first upper conductor blocks UP1 , the plurality of second upper conductor blocks UP2 and the plurality of second vias V2 form an upper heating plate UP of the heater 100 . In other words, each upper heating plate UP is shared by two adjacent module units 10U.

參照圖1J與圖2G,所述第二上導體層UM2還包括在所述第二方向D2延伸的多個全域源極線GSL與多個全域位元線GBL。多個全域源極線GSL經由第二介層窗V2連接所述局部源極線LSL。多個全域位元線GBL經由第二介層窗V2連接所述局部位元線LBL。所述多個全域源極線GSL與所述多個全域位元線GBL位於所述多個第二上導體塊UP2之間。 Referring to FIGS. 1J and 2G , the second upper conductor layer UM2 further includes a plurality of global source lines GSL and a plurality of global bit lines GBL extending in the second direction D2. A plurality of global source lines GSL are connected to the local source lines LSL through the second via window V2. A plurality of global bit lines GBL are connected to the local bit lines LBL through the second via window V2. The plurality of global source lines GSL and the plurality of global bit lines GBL are located between the plurality of second upper conductor blocks UP2.

參照圖1K、圖2C與圖2F,所述第一上導體塊UP1的面積小於所對應的第二下導體塊LP2的面積。 Referring to FIG. 1K , FIG. 2C and FIG. 2F , the area of the first upper conductor block UP1 is smaller than the area of the corresponding second lower conductor block LP2 .

參照圖2B,連接每一第一下導體塊LP1的所述多個第一介層窗V1可以排列成第一陣列。參照圖2F,連接每一第一上導體塊UP1的所述多個第二介層窗V2可以排列成第二陣列。第一陣列的多個第一介層窗V1的數量大於第二陣列的多個第二介層窗V2的數量。然而,本發明不限於此。所述多個第一介層窗V1可以排列成非陣列,所述多個第二介層窗V2也可以排列成非陣列。 Referring to FIG. 2B , the plurality of first vias V1 connected to each first lower conductor block LP1 may be arranged in a first array. Referring to FIG. 2F , the plurality of second vias V2 connected to each first upper conductor block UP1 may be arranged into a second array. The number of the plurality of first vias V1 in the first array is greater than the number of the plurality of second vias V2 in the second array. However, the present invention is not limited to this. The plurality of first vias V1 may be arranged in a non-array, and the plurality of second vias V2 may also be arranged in a non-array.

每一個下加熱板LP經由多個導電柱HP與上加熱板UP串連。上加熱板UP連接相鄰的兩個模組單元10U1的多個導電柱HP。藉此,多個下加熱板LP、多個導電柱HP以及多個上加熱板 UP可以形成加熱器100。 Each lower heating plate LP is connected in series with the upper heating plate UP via a plurality of conductive pillars HP. The upper heating plate UP connects the plurality of conductive pillars HP of the two adjacent module units 10U1. Thereby, the plurality of lower heating plates LP, the plurality of conductive pillars HP and the plurality of upper heating plates UP may form the heater 100.

參照圖1J,加熱器100類似貪吃蛇形,可以環繞在多個模組單元10U中的多個記憶體陣列10周圍,以就近加熱這些記憶體陣列10。在進行修復處理時,電流可以從加熱器100的第一端E1進入,通過加熱器100,再從加熱器100的第二端E2流出。 Referring to FIG. 1J , the heater 100 is shaped like a greedy snake and can surround multiple memory arrays 10 in multiple module units 10U to heat these memory arrays 10 nearby. During the repair process, the current may enter from the first end E1 of the heater 100, pass through the heater 100, and then flow out from the second end E2 of the heater 100.

圖2A至圖2G是依照本發明的實施例的一種三維AND快閃記憶體元件的製造流程的剖面示意圖。 2A to 2G are schematic cross-sectional views of a manufacturing process of a three-dimensional AND flash memory device according to an embodiment of the present invention.

參照圖1J與圖2A,提供基底48。所述基底48還可以包括在半導體基底上的元件層(未示出)。元件層可以包括主動元件或是被動元件。主動元件例如是電晶體、二極體等。被動元件例如是電容器、電感等。電晶體可以是N型金氧半(NMOS)電晶體、P型金氧半(PMOS)電晶體或是互補式金氧半元件(CMOS)。舉例來說,元件層可以包括頁緩衝器。 Referring to Figures 1J and 2A, a substrate 48 is provided. The substrate 48 may also include a component layer (not shown) on the semiconductor substrate. The component layer may include active components or passive components. Active components are, for example, transistors, diodes, etc. Passive components are, for example, capacitors, inductors, etc. The transistor may be an N-type metal oxide half (NMOS) transistor, a P-type metal oxide half (PMOS) transistor, or a complementary metal oxide half element (CMOS). For example, the component layer may include a page buffer.

參照圖1J,在所述基底48的元件層上形成下內連線結構LIT。首先,在所述元件層上形成下介電層BD0,並在所述下介電層BD0中形成多個導體插塞(未示出)。所述下介電層BD0例如是氧化矽。所述多個導體插塞可以延伸穿過下介電層BD0,連接所述元件層。所述導體插塞包括導體層以及包圍在導體層周圍的阻障層。所述導體層例如是鎢。所述阻障層例如鈦、氮化鈦、鉭、氮化鉭或其組合。 Referring to FIG. 1J , a lower interconnect structure LIT is formed on the element layer of the substrate 48 . First, a lower dielectric layer BD0 is formed on the element layer, and a plurality of conductor plugs (not shown) are formed in the lower dielectric layer BD0. The lower dielectric layer BDO is, for example, silicon oxide. The plurality of conductor plugs may extend through the lower dielectric layer BDO to connect the component layer. The conductor plug includes a conductor layer and a barrier layer surrounding the conductor layer. The conductor layer is, for example, tungsten. The barrier layer may be titanium, titanium nitride, tantalum, tantalum nitride or combinations thereof.

參照圖1J與圖2A,接著,在所述下介電層BD0上形成導體層,並經由微影與蝕刻製程圖案化,以形成第一下導體層 LM1。所述第一下導體層LM1包括彼此分離的多個第一下導體塊LP1以及多個導線LW1。所述導體層的材料包括金屬,例如是銅。 Referring to FIGS. 1J and 2A , a conductor layer is then formed on the lower dielectric layer BD0 and patterned through photolithography and etching processes to form a first lower conductor layer. LM1. The first lower conductor layer LM1 includes a plurality of first lower conductor blocks LP1 and a plurality of conductive lines LW1 that are separated from each other. The material of the conductor layer includes metal, such as copper.

參照圖1J,在所述第一下導體層LM1上形成下介電層BD1。所述下介電層BD1例如是氧化矽。之後,可以進行化學機械研磨製程,以使所述下介電層BD1平坦化。 Referring to FIG. 1J , a lower dielectric layer BD1 is formed on the first lower conductor layer LM1. The lower dielectric layer BD1 is, for example, silicon oxide. Afterwards, a chemical mechanical polishing process may be performed to planarize the lower dielectric layer BD1.

參照圖1J,接著,在所述下介電層BD1與所述第一下導體層LM1上形成下介電層BD2。接著,參照圖1J與圖2B,在所述下介電層BD2中形成與所述多個第一下導體塊LP1連接的多個第一介層窗V1。所述多個第一介層窗V1包括導體材料,例如是鎢。所述多個第一介層窗V1的形成方法例如是在所述下介電層BD2中形成多個介層窗孔,再於所述下介電層BD2上形成導體材料並填入所述多個介層窗孔中。之後,進行化學機械研磨製程或回蝕刻製程,以移除所述下介電層BD2上多餘的導體材料。 Referring to FIG. 1J , next, a lower dielectric layer BD2 is formed on the lower dielectric layer BD1 and the first lower conductor layer LM1 . Next, referring to FIGS. 1J and 2B , a plurality of first via windows V1 connected to the plurality of first lower conductive blocks LP1 are formed in the lower dielectric layer BD2 . The plurality of first vias V1 include conductor material, such as tungsten. The formation method of the plurality of first via windows V1 is, for example, forming a plurality of via holes in the lower dielectric layer BD2, and then forming a conductor material on the lower dielectric layer BD2 and filling the in multiple via holes. Afterwards, a chemical mechanical polishing process or an etch-back process is performed to remove excess conductive material on the lower dielectric layer BD2.

參照圖1J與圖2C,在所述下介電層BD2以及所述多個第一介層窗V1上形成導體層,並經由微影與蝕刻製程圖案化,以形成第二下導體層LM2。所述第二下導體層LM2包括彼此分離的多個第二下導體塊LP2以及多個導線LW2。導體層的材料包括金屬,例如是銅。 Referring to FIGS. 1J and 2C , a conductor layer is formed on the lower dielectric layer BD2 and the plurality of first via windows V1 , and is patterned through a photolithography and etching process to form a second lower conductor layer LM2 . The second lower conductor layer LM2 includes a plurality of second lower conductor blocks LP2 and a plurality of conductive wires LW2 that are separated from each other. The material of the conductor layer includes metal, such as copper.

參照圖1J,之後,在第二下導體層LM2上形成下介電層BD3。所述下介電層BD3可以經由化學機械研磨製程而平坦化。所述下介電層BD3例如是氧化矽。之後,再於所述下介電層BD3以及所述第二下導體層LM2上形成下介電層BD4。所述下介電層 BD4可以經由化學機械研磨製程而平坦化。所述下介電層BD4例如是氧化矽。至此,完成了所述下內連線結構LIT的製造。然而,本發明實施例不以此為限。下內連線結構LIT的形成方法也不以上述為限。在其他的實施例中,所述第二下導體層LM2與所述多個第一介層窗V1可以採用雙重金屬鑲嵌的方式形成。亦即,可以先形成介電層BD2’。之後,在介電層BD2’中形成具有溝渠與介層窗孔的開口。之後,在開口中回填阻障材料與導體材料,以同時形成所述第二下導體層LM2與所述多個第一介層窗V1。所述導體材料例如是鎢。所述阻障材料例如鈦、氮化鈦、鉭、氮化鉭或其組合。此外,所述下內連線結構LIT可以包括更多個下導體層與下介電層。 Referring to FIG. 1J, after that, a lower dielectric layer BD3 is formed on the second lower conductor layer LM2. The lower dielectric layer BD3 can be planarized through a chemical mechanical polishing process. The lower dielectric layer BD3 is, for example, silicon oxide. After that, a lower dielectric layer BD4 is formed on the lower dielectric layer BD3 and the second lower conductor layer LM2. The lower dielectric layer BD4 can be planarized through a chemical mechanical polishing process. The lower dielectric layer BD4 is, for example, silicon oxide. At this point, the manufacturing of the lower interconnect structure LIT is completed. However, the embodiments of the present invention are not limited thereto. The formation method of the lower interconnect structure LIT is not limited to the above. In other embodiments, the second lower conductor layer LM2 and the plurality of first vias V1 may be formed using a dual damascene method. That is, the dielectric layer BD2' may be formed first. Afterwards, an opening with a trench and a via hole is formed in the dielectric layer BD2'. After that, barrier material and conductor material are backfilled in the opening to simultaneously form the second lower conductor layer LM2 and the plurality of first via windows V1. The conductor material is, for example, tungsten. The barrier material is, for example, titanium, titanium nitride, tantalum, tantalum nitride or combinations thereof. In addition, the lower interconnect structure LIT may include more lower conductor layers and lower dielectric layers.

參照圖1J、圖2D,接著,於下介電層BD4上形成多個記憶體陣列10以及多個分隔結構SLT。記憶體陣列10包括閘極堆疊結構GSK。在階梯區SR的閘極堆疊結構GSK具有多個階梯結構SC,且所述階梯結構SC被介電層MD覆蓋(如圖1J所示)。記憶體陣列10還包括多個電荷儲存結構40、多個通道柱16、多個源極柱32a與多個汲極柱32b。所述多個通道柱16、所述多個源極柱32a與所述多個汲極柱32b延伸穿過所述多個階梯結構SC之間的記憶體陣列區AR的閘極堆疊結構GSK。所述多個電荷儲存結構40位於所述多個閘極層38與所述多個通道柱16之間。所述多個分隔結構SLT在第一方向D1延伸,且將閘極堆疊結構GSK分割成多個區塊B。記憶體陣列10以及所述多個分隔結構SLT可 以用任何已知的方法來形成,於此不再詳述。 1J and 2D, then, a plurality of memory arrays 10 and a plurality of separation structures SLT are formed on the lower dielectric layer BD4. The memory array 10 includes a gate stack structure GSK. The gate stack structure GSK in the step region SR has a plurality of step structures SC, and the step structures SC are covered by the dielectric layer MD (as shown in FIG. 1J ). The memory array 10 also includes a plurality of charge storage structures 40, a plurality of channel pillars 16, a plurality of source pillars 32a and a plurality of drain pillars 32b. The plurality of channel pillars 16 , the plurality of source pillars 32 a and the plurality of drain pillars 32 b extend through the gate stack structure GSK of the memory array area AR between the plurality of ladder structures SC. The charge storage structures 40 are located between the gate layers 38 and the channel pillars 16 . The plurality of separation structures SLT extend in the first direction D1 and divide the gate stack structure GSK into a plurality of blocks B. The memory array 10 and the plurality of partition structures SLT may It can be formed by any known method and will not be described in detail here.

參照圖1J與圖2E,在基底48上方形成上內連線結構UIT的上介電層TD0。所述上介電層TD0覆蓋所述記憶體陣列區AR中的所述記憶體陣列10以及在階梯區SR中的所述介電層MD。 Referring to FIGS. 1J and 2E , an upper dielectric layer TD0 of the upper interconnect structure UIT is formed above the substrate 48 . The upper dielectric layer TDO covers the memory array 10 in the memory array area AR and the dielectric layer MD in the step area SR.

參照圖3,所述上介電層TD0還覆蓋在周邊區PR中的中間堆疊結構SK1上。中間堆疊結構SK1包括交替堆疊的多個中間層56與所述多個絕緣層54。在記憶體陣列區AR的多個中間層56經取代製程而形成所述多個閘極層38。周邊區PR中的所述多個中間層56在所述取代製程中並未被取代而保留下來。所述上介電層TD0例如是氧化矽。 Referring to FIG. 3 , the upper dielectric layer TDO also covers the middle stack structure SK1 in the peripheral region PR. The intermediate stack structure SK1 includes a plurality of intermediate layers 56 and the plurality of insulating layers 54 that are alternately stacked. The plurality of intermediate layers 56 in the memory array area AR undergoes a replacement process to form the plurality of gate layers 38 . The plurality of intermediate layers 56 in the peripheral region PR are not replaced during the replacement process but remain. The upper dielectric layer TDO is, for example, silicon oxide.

參照圖1J、圖2D與圖3,接著,形成多個介層窗VAA(示於圖1J)、多個接觸窗(未示出)、多個導電柱HP以及多個陣列穿孔TAV1(示於圖1J與圖2)、TAV2(示於圖3,類似圖1H的TAV2)。 1J, 2D and 3, then, a plurality of via windows VAA (shown in FIG. 1J), a plurality of contact windows (not shown), a plurality of conductive pillars HP and a plurality of array through holes TAV1 (shown in Figure 1J and Figure 2), TAV2 (shown in Figure 3, similar to TAV2 in Figure 1H).

參照圖1J、所述多個介層窗VAA延伸穿過在記憶體陣列區AR中的上介電層TD0,且著陸在所述多個源極柱32a以及所述多個汲極柱32b上並與其電性連接。 Referring to FIG. 1J, the plurality of via windows VAA extend through the upper dielectric layer TDO in the memory array area AR, and land on the plurality of source pillars 32a and the plurality of drain pillars 32b. and electrically connected to it.

所述多個接觸窗(未示出)延伸穿過在階梯區SR中的上介電層TD0以及介電層MD,且著陸在階梯結構SC的所述多個閘極層38的末端並與其電性連接。 The plurality of contact windows (not shown) extend through the upper dielectric layer TDO and the dielectric layer MD in the stepped region SR, and land on the ends of the plurality of gate layers 38 of the stepped structure SC and with them. Electrical connection.

參照圖1J、圖2D與圖3,所述多個陣列穿孔TAV1延伸穿過在階梯區SR中的上介電層TD0、介電層MD、階梯結構SC 的所述多個閘極層38與所述多個絕緣層54以及下介電層BD4。每個陣列穿孔TAV1可以著陸在第二下導體層LM2的多個導線LW2的其中之一上並與其電性連接。 Referring to FIGS. 1J , 2D and 3 , the plurality of array through holes TAV1 extend through the upper dielectric layer TD0, the dielectric layer MD, and the ladder structure SC in the step region SR. The plurality of gate layers 38, the plurality of insulating layers 54 and the lower dielectric layer BD4. Each array through hole TAV1 can land on one of the plurality of conductive lines LW2 of the second lower conductor layer LM2 and be electrically connected thereto.

參照圖3,多個陣列穿孔TAV2延伸穿過周邊區PR上的上介電層TD0、中間堆疊結構SK1的多個中間層56與所述多個絕緣層54以及下介電層BD4。每個陣列穿孔TAV2可以著陸在第二下導體層LM2的導線LW2的其中的另一個的上方並與其電性連接。 Referring to FIG. 3 , a plurality of array through holes TAV2 extends through the upper dielectric layer TD0 on the peripheral region PR, the plurality of intermediate layers 56 of the middle stack structure SK1 and the plurality of insulating layers 54 and the lower dielectric layer BD4. Each array through hole TAV2 may land on and be electrically connected to another one of the conductive lines LW2 of the second lower conductor layer LM2.

參照圖1J、圖2D與圖3,所述多個導電柱HP延伸穿過在記憶體陣列區AR中的上介電層TD0、閘極堆疊結構GSK的所述多個閘極層38與所述多個絕緣層54以及所述下介電層BD4,且著陸在所述第二下導體層LM2的所述多個第二下導體塊LP2上並與其電性連接。 1J, 2D and 3, the plurality of conductive pillars HP extend through the upper dielectric layer TDO in the memory array area AR, the plurality of gate layers 38 and the gate stack structure GSK. The plurality of insulating layers 54 and the lower dielectric layer BD4 land on the plurality of second lower conductor blocks LP2 of the second lower conductor layer LM2 and are electrically connected thereto.

在一些實施例中,所述多個介層窗VAA、所述多個接觸窗(未示出)、所述多個陣列穿孔TAV2可以包括導體層。在另一些實施例中,所述多個介層窗VAA、所述多個接觸窗(未示出)、所述多個陣列穿孔TAV2可以包括導體層66以及包圍在導體層66周圍的阻障層64。導體層66例如是鎢。阻障層64例如鈦、氮化鈦、鉭、氮化鉭或其組合。由於所述多個介層窗VAA、所述多個接觸窗(未示出)、所述多個陣列穿孔TAV2的周圍為絕緣材料(即:所述上介電層TD0、所述中間堆疊結構SK1的所述多個中間層56與所述多個絕緣層54及所述下介電層BD4),因此,在導 體層66(或進一步包括阻障層64)的外圍無須再形成襯層。所述多個介層窗VAA、所述多個接觸窗(未示出)、所述多個陣列穿孔TAV2可以同時形成或個別形成,且其形成的方法可以與所述多個第一介層窗V1的形成方法相似或相異。 In some embodiments, the plurality of vias VAA, the plurality of contact windows (not shown), and the plurality of array through holes TAV2 may include conductor layers. In other embodiments, the plurality of vias VAA, the plurality of contact windows (not shown), and the plurality of array through holes TAV2 may include a conductor layer 66 and a barrier surrounding the conductor layer 66 Layer 64. Conductor layer 66 is, for example, tungsten. Barrier layer 64 is, for example, titanium, titanium nitride, tantalum, tantalum nitride, or combinations thereof. Since the plurality of via windows VAA, the plurality of contact windows (not shown), and the plurality of array through holes TAV2 are surrounded by insulating materials (ie: the upper dielectric layer TDO, the middle stack structure The plurality of intermediate layers 56 of SK1, the plurality of insulating layers 54 and the lower dielectric layer BD4), therefore, in the conductive There is no need to form a liner around the body layer 66 (or further including the barrier layer 64). The plurality of vias VAA, the plurality of contact windows (not shown), and the plurality of array through holes TAV2 can be formed simultaneously or individually, and the method of forming them can be the same as that of the plurality of first vias. The formation methods of window V1 are similar or different.

參照圖3,由於所述多個導電柱HP以及所述多個陣列穿孔TAV1延伸穿過所述多個閘極層38,因此,除了導體層66(或進一步包含阻障層64)之外,還包含襯層62以與所述多個閘極層38電性絕緣。襯層62例如是氧化矽、氮化矽或其組合。 Referring to FIG. 3 , since the plurality of conductive pillars HP and the plurality of array through holes TAV1 extend through the plurality of gate layers 38 , in addition to the conductor layer 66 (or further including the barrier layer 64 ), A liner layer 62 is also included to electrically insulate the plurality of gate layers 38 . The lining layer 62 is, for example, silicon oxide, silicon nitride or a combination thereof.

所述多個導電柱HP以及所述多個陣列穿孔TAV1的形成方法例如是在記憶體陣列區AR以及階梯區SR中形成延伸穿過所述上介電層TD0、所述多個閘極層38、所述多個絕緣層54以及所述下介電層BD4的多個開口。接著,在所述上介電層TD0以及所述多個開口之中先形成襯材料、阻障材料以及導體材料。之後,進行回蝕刻或是化學機械研磨製程,以移除多餘的襯材料、阻障材料以及導體材料。 The formation method of the plurality of conductive pillars HP and the plurality of array through holes TAV1 is, for example, forming extending through the upper dielectric layer TDO and the plurality of gate electrode layers in the memory array area AR and the step area SR. 38. The plurality of insulating layers 54 and the plurality of openings in the lower dielectric layer BD4. Next, a lining material, a barrier material and a conductor material are first formed in the upper dielectric layer TDO and the plurality of openings. Afterwards, an etch back or chemical mechanical polishing process is performed to remove excess lining material, barrier material and conductor material.

參照圖1J與圖2E,接著,在所述基底48上方形成上內連線結構UIT的其他部分。在上介電層TD0上形成導體層,並經由微影與蝕刻製程圖案化,以形成第一上導體層UM1。第一上導體層UM1包括彼此分離的多個第一上導體塊UP1、多個局部源極線LSL與多個局部位元線LBL以及多個導線UW1。導體層的材料包括金屬,例如是銅。 Referring to FIGS. 1J and 2E , other parts of the upper interconnect structure UIT are then formed above the substrate 48 . A conductor layer is formed on the upper dielectric layer TD0 and patterned through photolithography and etching processes to form a first upper conductor layer UM1. The first upper conductive layer UM1 includes a plurality of first upper conductive blocks UP1 separated from each other, a plurality of local source lines LSL, a plurality of local bit lines LBL, and a plurality of conductive lines UW1. The material of the conductor layer includes metal, such as copper.

多個第一上導體塊UP1位於所述記憶體陣列區AR中, 且與所述多個導電柱HP連接。多個局部源極線LSL與多個局部位元線LBL分別經由介層窗VAA連接所述多個源極柱32a與所述多個汲極柱32b。所述多個導線UW1分別與階梯區SR中的所述多個陣列穿孔TAV1以及周邊區PR中的所述多個陣列穿孔TAV2連接(如圖3所示)。 A plurality of first upper conductor blocks UP1 are located in the memory array area AR, And connected to the plurality of conductive pillars HP. A plurality of local source lines LSL and a plurality of local bit lines LBL are respectively connected to the plurality of source pillars 32a and the plurality of drain pillars 32b through vias VAA. The plurality of wires UW1 are respectively connected to the plurality of array through holes TAV1 in the step region SR and the plurality of array through holes TAV2 in the peripheral region PR (as shown in FIG. 3 ).

參照圖1J,在第一上導體層UM1周圍以及上方形成上介電層TD1與TD2。上介電層TD1與TD2例如是氧化矽。之後,可以分別進行化學機械研磨製程,以使上介電層TD1與TD2平坦化。 Referring to FIG. 1J, upper dielectric layers TD1 and TD2 are formed around and over the first upper conductor layer UM1. The upper dielectric layers TD1 and TD2 are made of silicon oxide, for example. After that, a chemical mechanical polishing process can be performed respectively to planarize the upper dielectric layers TD1 and TD2.

參照圖1J與圖2F,接著,在所述上介電層TD2中形成多個第二介層窗V2。部分的所述多個第二介層窗V2與所述多個第一上導體塊UP1連接,如圖1J所示。另一部分的所述多個第二介層窗V2與所述多個局部源極線LSL以及所述多個局部位元線LBL連接,如圖2F所示。又一部分的所述多個第二介層窗V2與所述多個導線UW1連接,如圖2F所示。所述多個第二介層窗V2包括導體材料,例如是鎢。所述多個第二介層窗V2的形成方法例如是在所述上介電層TD2中形成介層窗孔,再於所述上介電層TD2上形成導體材料並填入介層窗孔中。之後,進行化學機械研磨製程或回蝕刻製程,以移除在上介電層TD2上多餘的導體材料。 1J and 2F, then, a plurality of second via windows V2 are formed in the upper dielectric layer TD2. Part of the plurality of second vias V2 is connected to the plurality of first upper conductive blocks UP1, as shown in FIG. 1J. Another part of the second vias V2 is connected to the local source lines LSL and the local bit lines LBL, as shown in FIG. 2F . Another part of the plurality of second vias V2 is connected to the plurality of wires UW1, as shown in FIG. 2F. The plurality of second vias V2 include conductor material, such as tungsten. The plurality of second via windows V2 are formed by, for example, forming via holes in the upper dielectric layer TD2, and then forming conductor materials on the upper dielectric layer TD2 and filling the via holes. middle. Afterwards, a chemical mechanical polishing process or an etch-back process is performed to remove excess conductor material on the upper dielectric layer TD2.

參照圖1J與圖2C,在所述上介電層TD2以及所述多個第二介層窗V2上形成導體層,並經由微影與蝕刻製程圖案化,以形成第二上導體層UM2。第二上導體層UM2包括彼此分離的多個 第二上導體塊UP2、多個全域源極線GSL以及多個全域位元線GBL以及多個導線UW2。導體層的材料包括金屬,例如是銅。所述多個第二上導體塊UP2經由所述多個第二介層窗V2與所述多個第一上導體塊UP1連接。所述多個全域源極線GSL以及所述多個全域位元線GBL經由所述多個第二介層窗V2分別與所述多個局部源極線LSL以及所述多個局部位元線LBL連接。所述多個導線UW2經由所述多個第二介層窗V2以及所述多個導線UW1分別所述多個陣列穿孔TAV1以及TAV2連接。 Referring to FIGS. 1J and 2C , a conductor layer is formed on the upper dielectric layer TD2 and the plurality of second via windows V2, and is patterned through a photolithography and etching process to form a second upper conductor layer UM2. The second upper conductor layer UM2 includes a plurality of The second upper conductive block UP2, a plurality of global source lines GSL, a plurality of global bit lines GBL, and a plurality of wires UW2. The material of the conductor layer includes metal, such as copper. The plurality of second upper conductive blocks UP2 are connected to the plurality of first upper conductive blocks UP1 via the plurality of second vias V2. The plurality of global source lines GSL and the plurality of global bit lines GBL are respectively connected to the plurality of local source lines LSL and the plurality of local bit lines via the plurality of second vias V2 LBL connection. The plurality of conductive lines UW2 are respectively connected to the plurality of array through holes TAV1 and TAV2 via the plurality of second vias V2 and the plurality of conductive lines UW1.

之後,在所述第二上導體層UM2以及所述上介電層TD2上形成上介電層TD3,如圖1J所示。上介電層TD3可以經由化學機械研磨製程而平坦化。上介電層TD3例如是氧化矽。至此,完成了所述上內連線結構UIT的製造。然而,本發明實施例不以此為限。所述上內連線結構UIT可以包括更多個上導體層與上介電層。在其他的實施例中,所述第二上導體層UM2與所述多個第二介層窗V2可以採用雙重金屬鑲嵌的方式形成。此外,所述上內連線結構UIT的形成方法也不以上述為限。 Afterwards, an upper dielectric layer TD3 is formed on the second upper conductor layer UM2 and the upper dielectric layer TD2, as shown in FIG. 1J. The upper dielectric layer TD3 can be planarized through a chemical mechanical polishing process. The upper dielectric layer TD3 is, for example, silicon oxide. At this point, the manufacturing of the upper interconnection structure UIT is completed. However, the embodiments of the present invention are not limited thereto. The upper interconnect structure UIT may include more upper conductor layers and upper dielectric layers. In other embodiments, the second upper conductor layer UM2 and the plurality of second vias V2 may be formed using a dual damascene method. In addition, the method of forming the upper interconnect structure UIT is not limited to the above.

圖4示出快閃記憶體晶片的上視圖。 Figure 4 shows a top view of a flash memory die.

參照圖4,快閃記憶體晶片99包括多個塊元(tile)T。這一些塊元T可以包括第一塊元T1與第二塊元T2。 Referring to FIG. 4, the flash memory chip 99 includes a plurality of tiles T. As shown in FIG. These blocks T may include first blocks T1 and second blocks T2.

每一第一塊元T1具有多個第一記憶單元,位於第一閘極堆疊結構之中。第二塊元T2具有多個第一記憶單元與加熱器,位於第二閘極堆疊結構之中。第二塊元T2的加熱器設置在第二閘極 堆疊結構之中,以就近加熱多個記憶單元所組成的多個記憶體陣列。第二塊元T2可以依照設計而包括單一個加熱器或是多個加熱器。單一個加熱器可以加熱全部的記憶體陣列。多個加熱器可以依據需要局部加熱特定區域的記憶體陣列。 Each first block T1 has a plurality of first memory cells located in the first gate stack structure. The second block T2 has a plurality of first memory cells and heaters and is located in the second gate stack structure. The heater of the second block element T2 is set at the second gate In the stacked structure, multiple memory arrays composed of multiple memory cells are heated nearby. The second block T2 may include a single heater or multiple heaters according to the design. A single heater can heat the entire memory array. Multiple heaters can locally heat specific areas of the memory array as needed.

在一些實施例中,第二塊元T2的第二閘極堆疊結構之中設置加熱器,第一塊元T1的第一閘極堆疊結構之中則未設置加熱器。在另一些實施例中,第二塊元T2的第二閘極堆疊結構與第一塊元T1的第一閘極堆疊結構之中均設置加熱器,但第二塊元T2的第二閘極堆疊結構之中所設置的加熱器的導電柱的密度高於第一塊元T1的第一閘極堆疊結構之中所設置的加熱器的導電柱的密度。 In some embodiments, a heater is disposed in the second gate stack structure of the second block T2, but no heater is disposed in the first gate stack structure of the first block T1. In other embodiments, heaters are provided in both the second gate stack structure of the second block T2 and the first gate stack structure of the first block T1, but the second gate stack structure of the second block T2 The density of the conductive pillars of the heater provided in the stacked structure is higher than the density of the conductive pillars of the heater provided in the first gate stack structure of the first block T1.

因為第二塊元T2設置加熱器,或因為第二塊元T2所設置的加熱器的導電柱的密度高於第一塊元T1所設置的加熱器的導電柱的密度,因此第一塊元T1與第二塊元T2具有不同的記憶單元密度,且第二塊元T2的記憶單元的密度低於第一塊元T1的記憶單元的密度。舉例來說,第一塊元T1的記憶單元的密度是第二塊元T2的記憶單元的密度的10倍至20倍。 Because the second block element T2 is provided with a heater, or because the density of the conductive pillars of the heater set by the second block element T2 is higher than the density of the conductive pillars of the heater set by the first block element T1, the first block element T1 T1 and the second block T2 have different memory cell densities, and the density of the memory cells of the second block T2 is lower than the density of the memory cells of the first block T1. For example, the density of memory cells in the first block T1 is 10 to 20 times that of the memory cells in the second block T2.

每一晶片的第一塊元T1的數量與第二塊元T2的數量不同。第一塊元T1的數量大於第二塊元T2的數量。在圖4中,每一個晶片可以包括多個第一塊元T1與單一個第二塊元T2。然而,本發明並不以此為限。在其他實施例中,每一個晶片可以包括多個第一塊元T1與兩個第二塊元T2或更多個第二塊元T2。 The number of first tiles T1 and the number of second tiles T2 are different for each wafer. The number of elements in the first block T1 is greater than the number of elements in the second block T2. In FIG. 4 , each wafer may include a plurality of first blocks T1 and a single second block T2 . However, the present invention is not limited thereto. In other embodiments, each wafer may include a plurality of first tiles T1 and two second tiles T2 or more second tiles T2 .

第一塊元T1的位置與第二塊元T2的位置不同。第二塊元T2設置的位置接近開關接墊,以提供更好的加熱效率。第二塊元T2設置在晶片的邊緣之處,但不以此為限。 The position of the first block element T1 is different from the position of the second block element T2. The second element T2 is set close to the switch pad to provide better heating efficiency. The second block T2 is disposed at the edge of the wafer, but is not limited to this.

第二塊元T2可以藉由加熱器的設置而提升記憶單元的耐受性與保持力,因此可以適用於用戶的特殊關鍵的狀態寄存器(status register),且狀態寄存器不需要採用耗損平均(wear-leveling)技術來平均使用快閃記憶體中的每個儲存塊元或區塊,以避免某些「特定」儲存塊元或區塊因過度使用而形成壞塊元或區塊。因此,藉由具有加熱器的快閃記憶體,可以使得產品壽命延長到最佳化的地步,以符合系統需求。 The second block T2 can improve the endurance and retention of the memory unit through the setting of the heater, so it can be applied to the user's special key status register (status register), and the status register does not need to use wear averaging (wear leveling). -leveling) technology to evenly use each storage block or block in the flash memory to avoid the formation of bad blocks or blocks due to overuse of certain "specific" storage blocks or blocks. Therefore, by using a flash memory with a heater, the product life can be extended to an optimal level to meet system requirements.

綜合以上所述,本發明實施例將記憶單元周圍的陣列穿孔做為導電柱。導電柱可以就近對快閃記憶單元提供局部微加熱。閘極堆疊結構上、下方的多層導體層可以分別並聯而成多個上加熱板與多個下加熱板。這些上加熱板與下加熱板藉由導電柱串聯來增加電阻值。在一些實施例中,加熱器的電阻值約為50毆姆至1000歐姆。在另一些實施例中,加熱器的電阻值約為100毆姆至200歐姆。 Based on the above, in embodiments of the present invention, the array perforations around the memory cells are used as conductive pillars. The conductive pillars can provide local micro-heating of the flash memory cells nearby. The multiple conductor layers above and below the gate stack structure can be connected in parallel to form multiple upper heating plates and multiple lower heating plates. These upper heating plates and lower heating plates are connected in series through conductive pillars to increase the resistance value. In some embodiments, the heater has a resistance value of approximately 50 ohms to 1000 ohms. In other embodiments, the resistance of the heater is about 100 ohms to 200 ohms.

當在加熱器上施加Vdd(~3V)時,可以提供焦耳加熱,以在小區域(約7um * 100um區域)內為三維快閃記憶體的局部提供高溫(>400C),以同時加熱數千個記憶單元。實驗結果證明了自加熱快閃記憶體的簡單穩健物理特性,可實現超高耐久性(~1G P/E循環)和良好的保持力。 When Vdd (~3V) is applied to the heater, Joule heating can be provided to provide high temperature (>400C) to the local part of the 3D flash memory in a small area (about 7um * 100um area) to heat thousands of cells simultaneously memory unit. Experimental results demonstrate the simple and robust physics of self-heating flash memory, enabling ultra-high endurance (~1G P/E cycle) and good retention.

本發明實施例可以為3D AND晶片中的狀態寄存器設計一個特殊陣列,並提供一個“完美”的NVM來記錄用戶最關鍵的信息,例如是幾乎無限的耐用性和保持力。而且這個關鍵陣列可以不需要採用耗損均衡技術。相較於MRAM,這種具有TAV加熱器的快閃記憶體可形成更高密度(>Mb)的陣列且具有超高耐受性與保持力,因此其可以與MRAM競爭。 Embodiments of the present invention can design a special array for the status register in the 3D AND chip, and provide a "perfect" NVM to record the user's most critical information, such as almost unlimited durability and retention. And this critical array does not need to use wear leveling technology. Compared with MRAM, this flash memory with TAV heater can form higher density (>Mb) arrays and has ultra-high tolerance and retention, so it can compete with MRAM.

本發明實施例之三為快閃記憶元件不僅限於三維AND快閃記憶體元件,亦可以應用於三維NAND或是NOR快閃記憶體元件。 The third embodiment of the present invention is that the flash memory device is not limited to three-dimensional AND flash memory devices, but can also be applied to three-dimensional NAND or NOR flash memory devices.

P1:第一部分 P1:Part One

LP:下加熱板 LP: lower heating plate

LIT:下內連線結構 LIT: lower interconnect structure

P2:第二部分 P2:Part Two

HP:導電柱 HP: conductive pillar

P3:第三部分 P3:Part Three

UP:上加熱板 UP: upper heating plate

UIT:上內連線結構 UIT: upper inner wiring structure

10:記憶體陣列 10:Memory array

10U、10U1、10U2、10U3、10U4:模組單元 10U, 10U1, 10U2, 10U3, 10U4: Module unit

D1、D2、D3:方向 D1, D2, D3: direction

Claims (10)

一種三維快閃記憶體元件,包括:基底;閘極堆疊結構,位於所述基底上方;多個分隔結構,延伸穿過所述閘極堆疊結構,且將所述閘極堆疊結構分割為多個區塊;多個記憶體陣列,設置於所述多個區塊的所述閘極堆疊結構中;多個導電柱,延伸穿過位於所述多個區塊中的所述閘極堆疊結構,其中所述多個導電柱設置於多個記憶體陣列之間以及所述多個分隔結構之間;下內連線結構,位於所述閘極堆疊結構下方;以及上內連線結構,位於所述閘極堆疊結構上方,其中所述多個導電柱與部分所述下內連線結構以及部分所述上內連線結構連接,其中設置於同一區塊中的所述多個導電柱透過所述下內連線結構以及所述上內連線結構電性連接。 A three-dimensional flash memory element, including: a substrate; a gate stack structure located above the substrate; a plurality of separation structures extending through the gate stack structure and dividing the gate stack structure into multiple block; a plurality of memory arrays disposed in the gate stack structure of the plurality of blocks; a plurality of conductive pillars extending through the gate stack structure located in the plurality of blocks, The plurality of conductive pillars are disposed between the plurality of memory arrays and the plurality of separation structures; the lower interconnection structure is located below the gate stack structure; and the upper interconnection structure is located at the Above the gate stack structure, the plurality of conductive pillars are connected to part of the lower interconnect structure and part of the upper interconnect structure, and the plurality of conductive pillars arranged in the same block pass through the The lower interconnection structure and the upper interconnection structure are electrically connected. 如請求項1所述的三維快閃記憶體元件,其中所述多個記憶體陣列包括多個源極柱與多個汲極柱,所述多個源極柱與多個汲極柱延伸穿過所述閘極堆疊結構,與所述多個導電柱側向相鄰。 The three-dimensional flash memory device of claim 1, wherein the plurality of memory arrays include a plurality of source posts and a plurality of drain posts, and the plurality of source posts and a plurality of drain posts extend through through the gate stack structure and laterally adjacent to the plurality of conductive pillars. 如請求項1所述的三維快閃記憶體元件,其中設置於同一區塊中的多個所述導電柱透過所述下內連線結構以及所述上內連線結構電性連接形成貪吃蛇形的結構。 The three-dimensional flash memory device according to claim 1, wherein a plurality of the conductive pillars disposed in the same block are electrically connected through the lower interconnect structure and the upper interconnect structure to form a greedy Serpentine structure. 如請求項1所述的三維快閃記憶體元件,其中所述下內連線結構包括:第一下導體層,位於所述基底與所述閘極堆疊結構之間,其中所述第一下導體層包括彼此分離的多個第一下導體塊;第二下導體層,位於所述第一下導體層與所述閘極堆疊結構之間,其中所述第二下導體層包括彼此分離的多個第二下導體塊,所述多個第二下導體塊位於所述多個第一下導體塊上,且所述多個導電柱著陸在所述多個第二下導體塊上;以及多個第一介層窗,位於所述多個第一下導體塊與所述多個第二下導體塊之間且與其二者連接。 The three-dimensional flash memory device of claim 1, wherein the lower interconnect structure includes: a first lower conductor layer located between the substrate and the gate stack structure, wherein the first lower conductor layer The conductor layer includes a plurality of first lower conductor blocks separated from each other; a second lower conductor layer is located between the first lower conductor layer and the gate stack structure, wherein the second lower conductor layer includes a plurality of first lower conductor blocks separated from each other. a plurality of second lower conductor blocks located on the plurality of first lower conductor blocks, and the plurality of conductive posts landing on the plurality of second lower conductor blocks; and A plurality of first vias are located between and connected to the plurality of first lower conductor blocks and the plurality of second lower conductor blocks. 如請求項4所述的三維快閃記憶體元件,其中所述多個分隔結構在第一方向延伸,與所述多個導電柱側向相鄰。 The three-dimensional flash memory device of claim 4, wherein the plurality of separation structures extend in the first direction and are laterally adjacent to the plurality of conductive pillars. 如請求項5所述的三維快閃記憶體元件,其中每一第一下導體塊在第二方向延伸,跨過所述多個區塊,以使得所述多個區塊中的部分所述多個記憶體陣列、部分所述多個導電柱以及部分所述多個分隔結構設置在其上方,所述第二方向與所述第一方向不同。 The three-dimensional flash memory device of claim 5, wherein each first lower conductor block extends in the second direction across the plurality of blocks, such that some of the plurality of blocks A plurality of memory arrays, a portion of the plurality of conductive pillars and a portion of the plurality of separation structures are disposed above it, and the second direction is different from the first direction. 如請求項6所述的三維快閃記憶體元件,其中所述上內連線結構包括: 第一上導體層,位於所述閘極堆疊結構上方,其中所述第一上導體層包括彼此分離的多個第一上導體塊,且所述多個第一上導體塊與所述多個導電柱電性連接;第二上導體層,位於所述第一上導體層上方,其中所述第二上導體層包括彼此分離的多個第二上導體塊,位於所述多個第一上導體塊上方;以及多個第二介層窗,位於所述多個第一上導體塊與所述多個第二上導體塊之間且與其連接,其中所述多個導電柱、所述多個第一下導體塊、所述多個第二下導體塊、所述多個第一介層窗、所述多個第一上導體塊、所述多個第二上導體塊以及所述多個第二介層窗彼此電性耦接。 The three-dimensional flash memory device according to claim 6, wherein the upper interconnection structure includes: A first upper conductor layer is located above the gate stack structure, wherein the first upper conductor layer includes a plurality of first upper conductor blocks separated from each other, and the plurality of first upper conductor blocks are connected to the plurality of first upper conductor blocks. The conductive pillars are electrically connected; a second upper conductor layer is located above the first upper conductor layer, wherein the second upper conductor layer includes a plurality of second upper conductor blocks separated from each other and is located on the plurality of first upper conductor blocks. above the conductor block; and a plurality of second via windows located between and connected to the plurality of first upper conductor blocks and the plurality of second upper conductor blocks, wherein the plurality of conductive pillars, the plurality of second upper conductor blocks a first lower conductor block, a plurality of second lower conductor blocks, a plurality of first via windows, a plurality of first upper conductor blocks, a plurality of second upper conductor blocks, and a plurality of second upper conductor blocks. The second vias are electrically coupled to each other. 如請求項7所述的三維快閃記憶體元件,其中每一第一上導體塊在所述第二方向延伸,跨過所述多個區塊,以覆蓋所述多個區塊中的所述部分所述多個導電柱以及部分所述多個分隔結構。 The three-dimensional flash memory device of claim 7, wherein each first upper conductor block extends in the second direction across the plurality of blocks to cover all of the plurality of blocks. part of the plurality of conductive pillars and part of the plurality of separation structures. 如請求項8所述的三維快閃記憶體元件,其中所述第一上導體層還包括:多個局部位元線與多個局部源極線,在所述第二方向延伸,連接所述多個記憶體陣列,且位於所述多個第一上導體塊之間。 The three-dimensional flash memory device according to claim 8, wherein the first upper conductor layer further includes: a plurality of local bit lines and a plurality of local source lines extending in the second direction and connecting the A plurality of memory arrays are located between the plurality of first upper conductor blocks. 如請求項8所述的三維快閃記憶體元件,其中所述第一上導體塊的面積小於所對應的第二下導體塊的面積。The three-dimensional flash memory device according to claim 8, wherein the area of the first upper conductor block is smaller than the area of the corresponding second lower conductor block.
TW111122947A 2022-06-21 2022-06-21 3d flash memory device TWI813348B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111122947A TWI813348B (en) 2022-06-21 2022-06-21 3d flash memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111122947A TWI813348B (en) 2022-06-21 2022-06-21 3d flash memory device

Publications (2)

Publication Number Publication Date
TWI813348B true TWI813348B (en) 2023-08-21
TW202401788A TW202401788A (en) 2024-01-01

Family

ID=88585835

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111122947A TWI813348B (en) 2022-06-21 2022-06-21 3d flash memory device

Country Status (1)

Country Link
TW (1) TWI813348B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150340371A1 (en) * 2014-05-21 2015-11-26 Macronix International Co., Ltd. 3d independent double gate flash memory on bounded conductor layer
US20160233224A1 (en) * 2015-02-05 2016-08-11 Conversant Intellectual Property Management Inc. Access Transistor of a Nonvolatile Memory Device and Method for Fabricating Same
US20160260490A1 (en) * 2015-03-07 2016-09-08 SK Hynix Inc. Data storage device and method of driving the same
US20210074711A1 (en) * 2019-09-11 2021-03-11 Kioxia Corporation Semiconductor memory device
TW202137505A (en) * 2020-03-16 2021-10-01 日商鎧俠股份有限公司 Semiconductor memory device
US20210399003A1 (en) * 2020-06-17 2021-12-23 Samsung Electronics Co., Ltd. Three-dimensional semiconductor memory device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150340371A1 (en) * 2014-05-21 2015-11-26 Macronix International Co., Ltd. 3d independent double gate flash memory on bounded conductor layer
US20160233224A1 (en) * 2015-02-05 2016-08-11 Conversant Intellectual Property Management Inc. Access Transistor of a Nonvolatile Memory Device and Method for Fabricating Same
US20160260490A1 (en) * 2015-03-07 2016-09-08 SK Hynix Inc. Data storage device and method of driving the same
US20210074711A1 (en) * 2019-09-11 2021-03-11 Kioxia Corporation Semiconductor memory device
TW202137505A (en) * 2020-03-16 2021-10-01 日商鎧俠股份有限公司 Semiconductor memory device
US20210399003A1 (en) * 2020-06-17 2021-12-23 Samsung Electronics Co., Ltd. Three-dimensional semiconductor memory device

Also Published As

Publication number Publication date
TW202401788A (en) 2024-01-01

Similar Documents

Publication Publication Date Title
US9269660B2 (en) Multilayer connection structure
KR100598760B1 (en) Nonvolatile semiconductor memory
US20230209833A1 (en) Semiconductor storage device
CN110970439A (en) Semiconductor device and method for manufacturing the same
JP2004111478A (en) Nonvolatile semiconductor storage device and its manufacturing method
JP2012069695A (en) Semiconductor storage device
US10211152B2 (en) Semiconductor device and method of manufacturing the same
US11744071B2 (en) Semiconductor memory device having a passivation film and a plurality of insulating patterns on a memory cell array
US20040076072A1 (en) Nonvolatile semiconductor memory device
JP2000022011A (en) Layout and formation of flash memory
US9343467B2 (en) Semiconductor device
JP5581014B2 (en) Semiconductor device including drive transistor
KR100928021B1 (en) Semiconductor device with three-dimensional array structure
US6894361B2 (en) Semiconductor device
KR100687154B1 (en) A nonvolatile semiconductor memory
TWI813348B (en) 3d flash memory device
CN117316893A (en) Three-dimensional flash memory element
TWI532148B (en) Semiconductor device and method for manufacturing the same
JP2009164349A (en) Nonvolatile semiconductor storage device and method of manufacturing the same
TWI830112B (en) 3d and flash memory device
TWI809855B (en) Memory device, semiconductor device, and method of fabricating the same
TWI836313B (en) 3d flash memory module chip and method of fabricating the same
TWI840172B (en) Memory device and method of fabricating the same
US20230217655A1 (en) 3d and flash memory device
CN116093041A (en) Three-dimensional flash memory module chip and manufacturing method thereof