TWI836313B - 3d flash memory module chip and method of fabricating the same - Google Patents

3d flash memory module chip and method of fabricating the same Download PDF

Info

Publication number
TWI836313B
TWI836313B TW111100344A TW111100344A TWI836313B TW I836313 B TWI836313 B TW I836313B TW 111100344 A TW111100344 A TW 111100344A TW 111100344 A TW111100344 A TW 111100344A TW I836313 B TWI836313 B TW I836313B
Authority
TW
Taiwan
Prior art keywords
flash memory
chip
dimensional
dimensional flash
layer
Prior art date
Application number
TW111100344A
Other languages
Chinese (zh)
Other versions
TW202318645A (en
Inventor
葉騰豪
呂函庭
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Publication of TW202318645A publication Critical patent/TW202318645A/en
Application granted granted Critical
Publication of TWI836313B publication Critical patent/TWI836313B/en

Links

Images

Abstract

A 3D flash memory module chip includes a memory chip and a control chip. The memory chip includes a plurality of tiles and a plurality of heaters. The tiles each include a plurality of 3D flash memory structures. The heaters are disposed around the 3D flash memory structures of each of the tiles. The control chip is bonded with the memory chip to drive at least one of the heaters.

Description

三維快閃記憶體模組晶片及其製造方法Three-dimensional flash memory module chip and manufacturing method thereof

本發明是有關於一種記憶體模組及其製造方法,且特別是有關於一種三維快閃記憶體模組及其製造方法。The present invention relates to a memory module and a manufacturing method thereof, and in particular, to a three-dimensional flash memory module and a manufacturing method thereof.

非揮發性記憶體具有可使得存入的資料在斷電後也不會消失的優點,因此廣泛採用於個人電腦和其他電子設備中。目前業界較常使用的三維記憶體包括反或式(NOR)記憶體以及反及式(NAND)記憶體。此外,另一種三維記憶體為及式(AND)記憶體,其可應用在多維度的記憶體陣列中而具有高積集度與高面積利用率,且具有操作速度快的優點。因此,三維記憶體元件的發展已逐漸成為目前的趨勢。Non-volatile memory has the advantage that stored data will not disappear even after a power outage, so it is widely used in personal computers and other electronic devices. Currently, three-dimensional memories commonly used in the industry include NOR (NOR) memory and NAND (NAND) memory. In addition, another type of three-dimensional memory is the AND memory, which can be applied in multi-dimensional memory arrays and has high integration and high area utilization, and has the advantage of fast operation speed. Therefore, the development of three-dimensional memory components has gradually become a current trend.

本發明提供一種三維快閃記憶體模組晶片及其製造方法,可以針對快閃記憶體的局部進行修復(healing)處理。The present invention provides a three-dimensional flash memory module chip and a manufacturing method thereof, which can perform a healing process on a part of the flash memory.

在本發明的一實施例中,一種三維快閃記憶體模組晶片,包括:記憶晶片與控制晶片。所述記憶晶片包括:多個塊元,每一塊元包括多個多個三維快閃記憶體結構;以及多個加熱器,設置在所述每一塊元的所述多個三維快閃記憶體結構周圍。控制晶片與所述記憶晶片接合,用以驅動所述多個加熱器的至少一個。In one embodiment of the present invention, a three-dimensional flash memory module chip includes: a memory chip and a control chip. The memory chip includes: a plurality of blocks, each block including a plurality of three-dimensional flash memory structures; and a plurality of heaters, which are arranged around the plurality of three-dimensional flash memory structures of each block. The control chip is coupled to the memory chip to drive at least one of the plurality of heaters.

在本發明的一實施例中,一種三維快閃記憶體模組晶片的製造方法,包括:形成記憶晶片,包括:形成多個塊元於第一基底上,每一塊元包括多個多個三維快閃記憶體結構;以及形成多個加熱器,於所述每一塊元的所述多個三維快閃記憶體結構周圍;形成控制晶片;以及接合所述控制晶片與所述記憶晶片,其中所述控制晶片用以驅動所述多個加熱器。In one embodiment of the present invention, a method for manufacturing a three-dimensional flash memory module chip includes: forming a memory chip, including: forming a plurality of blocks on a first substrate, each block including a plurality of three-dimensional flash memory structures; and forming a plurality of heaters around the plurality of three-dimensional flash memory structures of each block; forming a control chip; and bonding the control chip to the memory chip, wherein the control chip is used to drive the plurality of heaters.

基於上述,本發明之三維快閃記憶體模組晶片及其製造方法,以額外的控制晶片驅動加熱器,對快閃記憶體的各個區塊進行局部修復處理。控制晶片可以另外製作,以避免加熱器控制器佔用記憶晶片的面積,並且可以以較低階的製程來製造控制晶片,以降低製程的費用。Based on the above, the three-dimensional flash memory module chip and its manufacturing method of the present invention use an additional control chip to drive the heater to perform partial repair processing on each block of the flash memory. The control chip can be fabricated separately to avoid the heater controller occupying the area of the memory chip, and the control chip can be fabricated with a lower-level process to reduce the cost of the process.

快閃記憶體在經過多次操作之後效能會明顯降低,因此需要對快閃記憶體進行修復(healing)處理。修復處理可以使用加熱器(heater)來對快閃記憶體進行加熱,以修復快閃記憶體的電荷儲存結構(例如氮化物層)。在目前的技術中,大多是以字元線來做為加熱器。然而,由於字元線的數目較多且與其他元件(例如字元線解碼器(decoder))之間的配置關係較為複雜,因此造成快閃記憶體結構在佈局設計上較為困難。After multiple operations, the performance of flash memory will be significantly reduced, so the flash memory needs to be repaired (healing). The repair process can use a heater to heat the flash memory to repair the charge storage structure (such as the nitride layer) of the flash memory. In current technology, word lines are mostly used as heaters. However, due to the large number of word lines and the complex configuration relationship with other components (such as word line decoders), the layout design of the flash memory structure is more difficult.

本發明實施例提供數種三維快閃記憶體模組晶片,將加熱器設置在記憶晶片的三維快閃記憶體結構的上方或是側壁周圍,並將記憶晶片與控制晶片接合,以藉由控制晶片驅動加熱器來進行記憶晶片的局部區塊的修復處理。Embodiments of the present invention provide several types of three-dimensional flash memory module chips. The heater is arranged above the three-dimensional flash memory structure of the memory chip or around the side wall, and the memory chip is bonded to the control chip to control the The chip drives the heater to repair local areas of the memory chip.

圖1A與圖1B分別是依據本發明實施例之一種三維快閃記憶體模組晶片的立體示意圖。圖2A是依據本發明實施例之一種記憶晶片的三維快閃記憶體結構的部分上視圖。圖2B是圖2A的線I-I’的剖面圖。圖3A是依據本發明另一實施例之一種具有加熱器之記憶晶片的部分上視圖。圖3B是圖3A的線I-I’的剖面圖。1A and 1B are respectively a three-dimensional schematic diagram of a three-dimensional flash memory module chip according to an embodiment of the present invention. 2A is a partial top view of a three-dimensional flash memory structure of a memory chip according to an embodiment of the present invention. Fig. 2B is a cross-sectional view along line I-I' of Fig. 2A. 3A is a partial top view of a memory chip with a heater according to another embodiment of the present invention. Fig. 3B is a cross-sectional view along line I-I' of Fig. 3A.

請參照圖1A與圖1B,本發明實施例之一種三維快閃記憶體模組晶片(又可稱為三維積體電路,3DIC)5000包括:記憶晶片1000與控制晶片2000。記憶晶片1000包括多個三維快閃記憶體結構1100與多個加熱器1200。多個加熱器1200設置在多個三維快閃記憶體結構1100周圍。在一些實施例中,多個加熱器1200設置在多個三維快閃記憶體結構1100上方,如圖1A所示。在另一些實施例中,多個加熱器1200設置在多個三維快閃記憶體結構1100之間的分隔溝槽1110中,如圖1B所示。控制晶片2000設置在記憶晶片1000上方,用以驅動記憶晶片1000中的加熱器1200。控制晶片2000與記憶晶片1000可以藉由接合結構3000彼此接合。1A and 1B , a three-dimensional flash memory module chip (also referred to as a three-dimensional integrated circuit, 3DIC) 5000 according to an embodiment of the present invention includes: a memory chip 1000 and a control chip 2000. The memory chip 1000 includes a plurality of three-dimensional flash memory structures 1100 and a plurality of heaters 1200. The plurality of heaters 1200 are disposed around the plurality of three-dimensional flash memory structures 1100. In some embodiments, the plurality of heaters 1200 are disposed above the plurality of three-dimensional flash memory structures 1100, as shown in FIG. 1A . In other embodiments, the plurality of heaters 1200 are disposed in a separation trench 1110 between the plurality of three-dimensional flash memory structures 1100, as shown in FIG. 1B . The control chip 2000 is disposed above the memory chip 1000 to drive the heater 1200 in the memory chip 1000. The control chip 2000 and the memory chip 1000 may be bonded to each other via a bonding structure 3000.

請參照圖1A與圖1B,記憶晶片1000的三維快閃記憶體結構1100可以是三維AND快閃記憶體結構(如圖2A與圖2B所示)、三維NAND快閃記憶體結構(未示出)或三維NOR快閃記憶體結構(未示出)。以下以三維AND快閃記憶體結構來舉例說明本發明的三維快閃記憶體結構1100,然而,本發明實施例不限於此。1A and 1B , the three-dimensional flash memory structure 1100 of the memory chip 1000 may be a three-dimensional AND flash memory structure (as shown in FIGS. 2A and 2B ), a three-dimensional NAND flash memory structure (not shown), or a three-dimensional NOR flash memory structure (not shown). The three-dimensional AND flash memory structure is used as an example to illustrate the three-dimensional flash memory structure 1100 of the present invention, however, the embodiments of the present invention are not limited thereto.

請參照圖2A與圖2B,記憶晶片1000可以包括多個塊元T。這些塊元T可以排列成包括多個行與多個列的陣列。在本實施例中,以四個塊元T(例如是T1~T4)來說明。四個塊元T中,塊元T1與塊元T2排列成一列;塊元T3與塊元T4排列成另一列。塊元T1與塊元T3排列成一行;塊元T2與塊元T4排列成另一行。每個塊元T可以包括多個區塊B(例如是B1~B4)。每一個區塊B包括一個三維快閃記憶體結構1100。多個三維快閃記憶體結構1100在X方向上延伸,在Y方向上排列。相鄰兩個三維快閃記憶體結構1100以分隔溝槽1110彼此分隔。Referring to FIGS. 2A and 2B , the memory chip 1000 may include a plurality of blocks T. The blocks T may be arranged into an array including multiple rows and multiple columns. In this embodiment, four block elements T (for example, T1 to T4) are used for illustration. Among the four block elements T, the block elements T1 and T2 are arranged in one row; the block elements T3 and T4 are arranged in another row. The block elements T1 and T3 are arranged in one row; the block elements T2 and T4 are arranged in another row. Each block T may include multiple blocks B (for example, B1~B4). Each block B includes a three-dimensional flash memory structure 1100. Multiple three-dimensional flash memory structures 1100 extend in the X direction and are arranged in the Y direction. Two adjacent three-dimensional flash memory structures 1100 are separated from each other by separation trenches 1110 .

請參照圖2B,每一個三維快閃記憶體結構1100可包括多個記憶單元所形成的至少一個記憶陣列。更詳細來說,三維快閃記憶體結構1100可安置於在第一基底(例如半導體基底)1010上的一或多個主動元件(例如第一電晶體1020)上方。第一電晶體1020例如是互補式金氧半場效電晶體(CMOS)。因此,此種架構又可稱為互補式金氧半場效電晶體在陣列之下(CMOS under Array,CUA)架構。Referring to FIG. 2B , each three-dimensional flash memory structure 1100 may include at least one memory array formed by a plurality of memory cells. In more detail, the three-dimensional flash memory structure 1100 may be disposed over one or more active devices (eg, the first transistor 1020 ) on the first substrate (eg, the semiconductor substrate) 1010 . The first transistor 1020 is, for example, a complementary metal oxide semiconductor field effect transistor (CMOS). Therefore, this architecture can also be called a complementary metal oxide semiconductor field effect transistor under the array (CMOS under Array, CUA) architecture.

請參照圖2B,三維快閃記憶體結構1100可設置在半導體晶粒的後段製程(back end of line;BEOL)中。舉例而言,三維快閃記憶體結構1100可埋置於第一內連線結構1030中。第一內連線結構1030例如是包括下部內連線結構1032以及上部內連線結構1034。下部內連線結構1032安置於在第一基底(例如半導體基底)1010上的一或多個主動元件(例如第一電晶體1020)上方且在三維快閃記憶體結構1100的記憶陣列下方。上部內連線結構1034安置於三維快閃記憶體結構1100的記憶陣列的上方。下部內連線結構1032例如是包括下部第一金屬層BM1、下部第二金屬層BM2以及下部第三金屬層BM3,以及在其彼此之間的介層窗BV1與BV2。上部內連線結構1034例如是包括上部第一金屬層TM1與上部第二金屬層TM2,以及在其彼此之間的介層窗TV1。下部內連線結構1032以及上部內連線結構1034的金屬層數以及介層窗不以上述為限。2B , the three-dimensional flash memory structure 1100 may be disposed in the back end of line (BEOL) of a semiconductor die. For example, the three-dimensional flash memory structure 1100 may be buried in a first internal connection structure 1030. The first internal connection structure 1030, for example, includes a lower internal connection structure 1032 and an upper internal connection structure 1034. The lower internal connection structure 1032 is disposed above one or more active elements (e.g., the first transistor 1020) on a first substrate (e.g., a semiconductor substrate) 1010 and below the memory array of the three-dimensional flash memory structure 1100. The upper internal connection structure 1034 is disposed above the memory array of the three-dimensional flash memory structure 1100. The lower interconnect structure 1032 includes, for example, a lower first metal layer BM1, a lower second metal layer BM2, and a lower third metal layer BM3, and vias BV1 and BV2 therebetween. The upper interconnect structure 1034 includes, for example, an upper first metal layer TM1 and an upper second metal layer TM2, and a via TV1 therebetween. The number of metal layers and vias of the lower interconnect structure 1032 and the upper interconnect structure 1034 are not limited to the above.

請參照圖2B,三維快閃記憶體結構1100包括多個閘極堆疊結構52。每一個閘極堆疊結構52形成在下部內連線結構1032上。每一個閘極堆疊結構52在X方向上延伸,從第一基底1010的陣列區AR延伸至階梯區SR。閘極堆疊結構52包括在第一基底1010的表面上垂直堆疊的多個閘極層(又稱為字元線)38與多層的絕緣層54。在Z方向上,這些閘極層38藉由設置在其彼此之間的絕緣層54電性隔離。閘極層38包括金屬層例如是鎢。在一些實施例中,閘極層38還包括阻障層37,例如為鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)或其組合。絕緣層54例如是氧化矽。Referring to FIG. 2B , the three-dimensional flash memory structure 1100 includes a plurality of gate stack structures 52 . Each gate stack structure 52 is formed on the lower interconnect structure 1032 . Each gate stack structure 52 extends in the X direction from the array area AR of the first substrate 1010 to the step area SR. The gate stack structure 52 includes a plurality of gate layers (also called word lines) 38 and a multi-layer insulating layer 54 vertically stacked on the surface of the first substrate 1010 . In the Z direction, the gate layers 38 are electrically isolated by the insulating layer 54 disposed between them. Gate layer 38 includes a metal layer such as tungsten. In some embodiments, the gate layer 38 further includes a barrier layer 37, such as titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN), or combinations thereof. The insulating layer 54 is, for example, silicon oxide.

閘極層38在與第一基底1010(示於圖2D)的表面平行的方向上延伸。在階梯區SR的閘極層38可具有階梯結構SC(示於圖2B),以使得下部的閘極層38比上部閘極層38長,且下部的閘極層38的末端橫向延伸出上部閘極層38的末端。用於連接閘極層38的接觸窗C1可著陸於位於階梯區SR的閘極層38的末端,藉以將各層閘極層38經由接觸窗C1與上部內連線結構1034連接至下部內連線結構1032的各個導線,例如是下部第三金屬層BM3的導線。Gate layer 38 extends in a direction parallel to the surface of first substrate 1010 (shown in Figure 2D). The gate layer 38 in the stepped region SR may have a stepped structure SC (shown in FIG. 2B ), so that the lower gate layer 38 is longer than the upper gate layer 38 , and the end of the lower gate layer 38 laterally extends out of the upper part. end of gate layer 38 . The contact window C1 used to connect the gate layer 38 can land on the end of the gate layer 38 located in the step region SR, thereby connecting each gate layer 38 to the lower interconnect structure 1034 through the contact window C1 Each conductor of the structure 1032 is, for example, the conductor of the lower third metal layer BM3.

請參照圖2B,三維快閃記憶體結構1100還包括多個通道柱16。通道柱16連續延伸穿過陣列區AR的閘極堆疊結構52。在一些實施例中,通道柱16於上視角度來看可具有環形的輪廓。通道柱16的材料可以是半導體,例如是未摻雜的多晶矽。Referring to FIG. 2B , the three-dimensional flash memory structure 1100 also includes a plurality of channel pillars 16 . The channel pillar 16 extends continuously through the gate stack structure 52 of the array area AR. In some embodiments, channel post 16 may have an annular profile when viewed from above. The material of the channel pillar 16 may be a semiconductor, such as undoped polycrystalline silicon.

請參照圖2B,三維快閃記憶體結構1100還包括絕緣填充層24、絕緣柱28、多個導體柱(例如是做為源極柱)32a與多個導體柱(例如是做為汲極柱)32b。導體柱32a與32b以及絕緣柱28設置在通道柱16內各自在垂直於閘極層38的方向(即Z方向)上延伸。導體柱32a與32b藉由絕緣填充層24與絕緣柱28分隔,且與通道柱16電性耦接。導體柱32a與32b例如是摻雜的多晶矽。絕緣填充層24例如是氧化矽;絕緣柱28例如是氮化矽。Referring to FIG. 2B, the three-dimensional flash memory structure 1100 also includes an insulating filling layer 24, an insulating pillar 28, a plurality of conductive pillars (for example, as source pillars) 32a and a plurality of conductor pillars (for example, as drain pillars). )32b. The conductive pillars 32 a and 32 b and the insulating pillar 28 are disposed in the channel pillar 16 and each extend in a direction perpendicular to the gate layer 38 (ie, the Z direction). The conductive pillars 32 a and 32 b are separated from the insulating pillar 28 by the insulating filling layer 24 and are electrically coupled to the channel pillar 16 . Conductor pillars 32a and 32b are, for example, doped polycrystalline silicon. The insulating filling layer 24 is, for example, silicon oxide; the insulating pillar 28 is, for example, silicon nitride.

請參照圖2B,電荷儲存結構40設置於通道柱16與多層閘極層38之間。電荷儲存結構40可以包括穿隧層(或稱為能隙工程穿隧氧化層)14、電荷儲存層12以及阻擋層36。電荷儲存層12位於穿隧層14與阻擋層36之間。在一些實施例中,穿隧層14、電荷儲存層12以及阻擋層36例如是氧化矽、氮化矽與氧化矽。在一些實施例中,電荷儲存結構40的一部分(例如是穿隧層14)在垂直於閘極層38的方向(即Z方向)上連續延伸,而電荷儲存結構40的另一部分(例如是電荷儲存層12與阻擋層36)環繞於閘極層38的周圍,如圖2B所示。在另一些實施例中,電荷儲存結構40(例如是穿隧層14、電荷儲存層12與阻擋層36)環繞於閘極層38的周圍(未示出)。每一閘極層38與其所環繞的電荷儲存結構40、通道柱16以及源極柱32a與汲極柱32b界定出記憶單元20。因此,每一個三維快閃記憶體結構1100包括多個記憶單元20所組成的至少一個記憶陣列。2B , the charge storage structure 40 is disposed between the channel pillar 16 and the multi-layer gate layer 38. The charge storage structure 40 may include a tunneling layer (or a gap-engineered tunneling oxide layer) 14, a charge storage layer 12, and a blocking layer 36. The charge storage layer 12 is located between the tunneling layer 14 and the blocking layer 36. In some embodiments, the tunneling layer 14, the charge storage layer 12, and the blocking layer 36 are, for example, silicon oxide, silicon nitride, and silicon oxide. In some embodiments, a portion of the charge storage structure 40 (e.g., the tunneling layer 14) extends continuously in a direction perpendicular to the gate layer 38 (i.e., the Z direction), and another portion of the charge storage structure 40 (e.g., the charge storage layer 12 and the blocking layer 36) surrounds the gate layer 38, as shown in FIG2B. In other embodiments, the charge storage structure 40 (e.g., the tunneling layer 14, the charge storage layer 12, and the blocking layer 36) surrounds the gate layer 38 (not shown). Each gate layer 38 and the surrounding charge storage structure 40, the channel pillar 16, the source pillar 32a and the drain pillar 32b define a memory cell 20. Therefore, each three-dimensional flash memory structure 1100 includes at least one memory array composed of a plurality of memory cells 20.

三維快閃記憶體結構1100還包括局部位元線LBL n與局部源極線LSL n以及全域位元線GBL n與全域源極線GSL n。局部位元線LBL n與局部源極線LSL n位於上部內連線結構1034的上部第一金屬層TM1,且分別經由接觸窗C2電性連接源極柱32a與汲極柱32b。全域位元線GBL n與全域源極線GSL n分別經由上部內連線結構1034中的上部介層窗(未示出)電性連接局部位元線LBL n與局部源極線LSL nThe three-dimensional flash memory structure 1100 further includes a local bit line LBL n and a local source line LSL n and a global bit line GBL n and a global source line GSL n . The local bit line LBL n and the local source line LSL n are located in the upper first metal layer TM1 of the upper interconnect structure 1034, and are electrically connected to the source pillar 32 a and the drain pillar 32 b through the contact window C2, respectively. The global bit line GBL n and the global source line GSL n are electrically connected to the local bit line LBL n and the local source line LSL n through the upper via (not shown) in the upper interconnect structure 1034, respectively.

記憶單元20可藉由不同的操作方法進行1位元操作或2位元操作。舉例來說,在對源極柱32a與汲極柱32b施加電壓時,由於源極柱32a與汲極柱32b與通道柱16連接,因此電子可沿著通道柱16傳送並儲存在整個電荷儲存結構40中,如此可對記憶單元20進行1位元的操作。此外,對於利用福勒-諾德漢穿隧(Fowler-Nordheim tunneling)的操作來說,可使電子或是電洞被捕捉在源極柱32a與汲極柱32b之間的電荷儲存結構40中。對於源極側注入(source side injection)、通道熱電子(channel-hot-electron)注入或帶對帶穿隧熱載子(band-to-band tunneling hot carrier)注入的操作來說,可使電子或電洞被局部地捕捉在鄰近兩個源極柱32a與汲極柱32b中的一者的電荷儲存結構40中,如此可對記憶單元20進行單位晶胞(SLC,1位元)或多位晶胞(MLC,大於或等於2位元)的操作。The memory unit 20 can perform 1-bit operation or 2-bit operation through different operation methods. For example, when a voltage is applied to the source column 32a and the drain column 32b, since the source column 32a and the drain column 32b are connected to the channel column 16, electrons can be transported along the channel column 16 and stored in the entire charge storage. In the structure 40, in this way, a 1-bit operation can be performed on the memory unit 20. In addition, for operations utilizing Fowler-Nordheim tunneling, electrons or holes can be trapped in the charge storage structure 40 between the source post 32a and the drain post 32b . For source side injection, channel-hot-electron injection or band-to-band tunneling hot carrier injection operations, the electrons can be Or the holes are locally trapped in the charge storage structure 40 adjacent to one of the two source pillars 32a and drain pillars 32b, so that the memory cell 20 can be processed into unit cell (SLC, 1 bit) or multiple Bit cell (MLC, greater than or equal to 2 bits) operations.

在進行操作時,將電壓施加至所選擇的字元線(閘極層)38,例如施加高於對應記憶單元20的相應起始電壓(V th)時,與所選擇的字元線38相交的通道柱16的通道區被導通,而允許電流從位元線BL n進入汲極柱32b,並經由導通的通道區流至源極柱32a,最後流到源極線SL nDuring operation, a voltage is applied to the selected word line (gate layer) 38 , for example, when a voltage higher than the corresponding starting voltage (V th ) of the corresponding memory cell 20 is applied, intersecting the selected word line 38 The channel region of the channel column 16 is turned on, allowing current to enter the drain column 32b from the bit line BL n , and flow to the source column 32a through the conductive channel region, and finally flow to the source line SL n .

請參照圖3A與圖3B,記憶晶片1000還包括多個加熱器1200。加熱器1200可以設置在三維快閃記憶體結構1100上方的介電層1040之中。介電層1040的材料例如是氧化矽。加熱器1200包括金屬層1202,例如是銅或鎢。在一些實施例中,加熱器1200還包括阻障層1204,例如是鈦、鉭、氮化鈦、氮化鉭或其組合。3A and 3B , the memory chip 1000 further includes a plurality of heaters 1200. The heaters 1200 may be disposed in a dielectric layer 1040 above the three-dimensional flash memory structure 1100. The material of the dielectric layer 1040 is, for example, silicon oxide. The heater 1200 includes a metal layer 1202, such as copper or tungsten. In some embodiments, the heater 1200 further includes a barrier layer 1204, such as titanium, tantalum, titanium nitride, tantalum nitride, or a combination thereof.

請參照圖3A,在一些實施例中,每一區塊B上設置單一個加熱器1200,且任意相鄰兩個區塊B的兩個加熱器1200彼此分離。加熱器1200可以在X方向上延伸。在一實施例中,加熱器1200設置在陣列區AR且延伸至階梯區SR(如圖3A與3B所示)。在一實施例中,加熱器1200可以在陣列區AR,而不設置在階梯區SR(未示出)。亦即,加熱器1200的長度可以大於、等於或小於三維快閃記憶體結構1100在X方向上的長度。Referring to FIG. 3A , in some embodiments, a single heater 1200 is disposed on each block B, and the two heaters 1200 of any two adjacent blocks B are separated from each other. The heater 1200 may extend in the X direction. In one embodiment, the heater 1200 is disposed in the array region AR and extends to the step region SR (as shown in FIGS. 3A and 3B ). In one embodiment, the heater 1200 may be disposed in the array region AR, but not in the step region SR (not shown). That is, the length of the heater 1200 may be greater than, equal to, or less than the length of the three-dimensional flash memory structure 1100 in the X direction.

此外,每一區塊B上可以設置多個加熱器1200,例如是在陣列區AR與階梯區SR分別具有一個加熱器1200,且可以分別加熱(未示出)。然而,本發明實施例並不以此為限。在另一實施例中,也可以將相鄰兩個、三個或更多個區塊B的多個加熱器1200合併成單一個加熱器(未示出),以同時加熱多個區塊B的三維快閃記憶體結構1100。In addition, multiple heaters 1200 may be provided on each block B, for example, each of the array region AR and the step region SR has a heater 1200, and each of the heaters 1200 may be heated (not shown). However, the present invention is not limited thereto. In another embodiment, multiple heaters 1200 of two, three or more adjacent blocks B may be combined into a single heater (not shown) to heat the three-dimensional flash memory structure 1100 of multiple blocks B at the same time.

請參照圖3A,加熱器1200的俯視形狀例如是矩形或是其他的形狀。多個區塊B上的多個加熱器1200可以具有相同的寬度或是不同的寬度。在陣列區AR的加熱器1200的寬度W1與階梯區SR的加熱器1200的寬度W2相同。然而,本發明並不以此為限。加熱器1200的形狀可以依據實際的需要或是設計而改變。在陣列區AR的加熱器1200的寬度W1可以大於、等於或小於階梯區SR的加熱器1200的寬度W2。Referring to FIG. 3A , the top view shape of the heater 1200 is, for example, a rectangle or other shapes. The multiple heaters 1200 on multiple blocks B may have the same width or different widths. The width W1 of the heater 1200 in the array area AR is the same as the width W2 of the heater 1200 in the step area SR. However, the present invention is not limited thereto. The shape of the heater 1200 can be changed according to actual needs or designs. The width W1 of the heater 1200 in the array area AR may be greater than, equal to, or smaller than the width W2 of the heater 1200 in the step area SR.

請參照圖1A、圖1B與圖3B,記憶晶片1000還包括接合層1300。接合層1300包括接墊1302與絕緣層1304。絕緣層1304設置在加熱器1200上。絕緣層1304的材料例如是氧化矽。接墊1302設置在每一個加熱器1200的表面上的絕緣層1304之中。接墊1302的材料例如是銅。接墊1302包括接墊1302a與1302b。接墊1302a與1302b分別連接加熱器1200的第一端E1與第二端E2。1A, 1B and 3B, the memory chip 1000 further includes a bonding layer 1300. The bonding layer 1300 includes a pad 1302 and an insulating layer 1304. The insulating layer 1304 is disposed on the heater 1200. The material of the insulating layer 1304 is, for example, silicon oxide. The pad 1302 is disposed in the insulating layer 1304 on the surface of each heater 1200. The material of the pad 1302 is, for example, copper. The pad 1302 includes pads 1302a and 1302b. The pads 1302a and 1302b are respectively connected to the first end E1 and the second end E2 of the heater 1200.

在以上的實施例中,多個三維快閃記憶體結構1100為三維AND快閃記憶體結構,且多個加熱器1200設置在三維AND快閃記憶體結構的上方(如圖3A、圖3B以及圖6A所示)。在另一些實施例中,多個三維快閃記憶體結構1100為三維AND快閃記憶體結構,且多個加熱器1200設置在三維AND快閃記憶體結構之間的分隔溝槽1110中(如圖4A至圖4C所示)。In the above embodiments, the plurality of three-dimensional flash memory structures 1100 are three-dimensional AND flash memory structures, and the plurality of heaters 1200 are disposed above the three-dimensional AND flash memory structures (as shown in Figures 3A, 3B and shown in Figure 6A). In other embodiments, the plurality of three-dimensional flash memory structures 1100 are three-dimensional AND flash memory structures, and the plurality of heaters 1200 are disposed in the separation trenches 1110 between the three-dimensional AND flash memory structures (such as As shown in Figure 4A to Figure 4C).

圖4A是依據本發明另一實施例之一種具有加熱器之記憶晶片的部分上視圖。圖4B是依據本發明另一實施例之一種記憶晶片的加熱器與接墊的部分上視圖。圖4C是圖4B的線II-II’的剖面圖。Fig. 4A is a partial top view of a memory chip with a heater according to another embodiment of the present invention. Fig. 4B is a partial top view of a heater and a pad of a memory chip according to another embodiment of the present invention. Fig. 4C is a cross-sectional view taken along line II-II' of Fig. 4B.

請參照圖4A與圖4C,多個加熱器1200設置在三維快閃記憶體結構1100之間的分隔溝槽1110中。加熱器1200設置在閘極堆疊結構52的多個閘極層38與多層的絕緣層54周圍。加熱器1200與多個閘極層38以及與多層的絕緣層54之間,以絕緣襯層1112分隔(如圖4C所示)。絕緣襯層1112包括絕緣材料例如是氧化矽或是氮化矽。加熱器1200包括金屬層1202(如圖4C所示),例如是銅或鎢。在一些實施例中,加熱器1200還包括阻障層1204(如圖4C所示)。阻障層1204位於絕緣襯層1112與金屬層1202之間。阻障層1204例如是鈦、鉭、氮化鈦、氮化鉭或其組合。Referring to FIGS. 4A and 4C , a plurality of heaters 1200 are disposed in the separation trenches 1110 between the three-dimensional flash memory structures 1100 . The heater 1200 is disposed around the multiple gate layers 38 and the multiple insulation layers 54 of the gate stack structure 52 . The heater 1200 is separated from the plurality of gate layers 38 and the multi-layer insulating layers 54 by an insulating liner 1112 (as shown in FIG. 4C ). The insulating liner 1112 includes an insulating material such as silicon oxide or silicon nitride. Heater 1200 includes a metal layer 1202 (shown in Figure 4C), such as copper or tungsten. In some embodiments, heater 1200 also includes barrier layer 1204 (shown in Figure 4C). Barrier layer 1204 is located between insulating liner 1112 and metal layer 1202 . The barrier layer 1204 is, for example, titanium, tantalum, titanium nitride, tantalum nitride, or combinations thereof.

在一些實施例中,每一分隔溝槽1110中設置單一個加熱器1200。舉例來說,加熱器1200可以在X方向上延伸。在一實施例中,加熱器1200設置在陣列區AR且延伸至階梯區SR(如圖4A與4B所示)。在一實施例中,加熱器1200可以在陣列區AR,而不設置在階梯區SR(未示出)。亦即,加熱器1200的長度可以大於、等於或小於三維快閃記憶體結構1100在X方向上的長度。In some embodiments, a single heater 1200 is disposed in each separation trench 1110. For example, the heater 1200 may extend in the X direction. In one embodiment, the heater 1200 is disposed in the array region AR and extends to the step region SR (as shown in FIGS. 4A and 4B ). In one embodiment, the heater 1200 may be disposed in the array region AR but not in the step region SR (not shown). That is, the length of the heater 1200 may be greater than, equal to, or less than the length of the three-dimensional flash memory structure 1100 in the X direction.

抑或是,每一分隔溝槽1110中可以設置多個加熱器1200,例如是在陣列區AR與階梯區SR分別具有一個加熱器1200,且可以分別加熱(未示出)。然而,本發明實施例並不以此為限。Alternatively, a plurality of heaters 1200 may be disposed in each separation trench 1110, for example, each of the array region AR and the step region SR has a heater 1200, and heating can be performed separately (not shown). However, the present invention is not limited thereto.

請參照圖4A,此外,加熱器1200的俯視形狀例如是矩形或是其他的形狀。多個分隔溝槽1110中的多個加熱器1200可以具有相同的寬度或是不同的寬度。然而,本發明並不以此為限。加熱器1200的形狀可以依據實際的需要或是設計而改變。Please refer to FIG. 4A. In addition, the top view shape of the heater 1200 is, for example, a rectangle or other shapes. The plurality of heaters 1200 in the plurality of separation trenches 1110 may have the same width or different widths. However, the present invention is not limited thereto. The shape of the heater 1200 can be changed according to actual needs or designs.

請參照圖4B與圖4C,每一個加熱器1200的兩端(即E1與E2)的表面上分別設有接觸窗C3。接觸窗C3可以經由上部內連線結構1034連接至上方的接墊1302a與1302b,使得記憶晶片1000的加熱器1200可以藉由上部內連線結構1034以及接墊1302a、1302b與控制晶片2000電性連接。接墊1302a與1302b的材料例如是銅。4B and 4C , contact windows C3 are provided on the surfaces of the two ends (i.e., E1 and E2) of each heater 1200. The contact windows C3 can be connected to the upper pads 1302a and 1302b via the upper internal connection structure 1034, so that the heater 1200 of the memory chip 1000 can be electrically connected to the control chip 2000 via the upper internal connection structure 1034 and the pads 1302a and 1302b. The material of the pads 1302a and 1302b is, for example, copper.

圖5A至圖5E是依照本發明實施例之一種控制晶片的各種立體示意圖。圖6A是依照本發明實施例之一種記憶晶片與控制晶片的立體示意圖。圖6B是圖6A之電路示意圖。Figures 5A to 5E are various three-dimensional schematic diagrams of a control chip according to an embodiment of the present invention. Figure 6A is a three-dimensional schematic diagram of a memory chip and a control chip according to an embodiment of the present invention. Figure 6B is a circuit schematic diagram of Figure 6A.

請參照圖5A,控制晶片2000可包括多個塊元T’。這些塊元T’可以排列成陣列。在本實施例中,以四個塊元T’(例如是T1’~T4’)為例來說明。四個塊元T’中,塊元T1’與塊元T2’排列成一列;塊元T3’與塊元T4’排列成另一列。塊元T1’與塊元T3’排列成一行;塊元T2’與塊元T4’排列成另一行。Referring to FIG. 5A , the control chip 2000 may include a plurality of cells T’. These cells T’ may be arranged in an array. In this embodiment, four cells T’ (e.g., T1’ to T4’) are used as an example for explanation. Among the four cells T’, cell T1’ and cell T2’ are arranged in one row; cell T3’ and cell T4’ are arranged in another row. Cell T1’ and cell T3’ are arranged in one row; cell T2’ and cell T4’ are arranged in another row.

請參照圖5A與圖5E,每一塊元T’包括多條驅動列2000R與行2000C。每一驅動列2000R包括第二電晶體2020、第二內連線結構2030以及接墊2052,如圖5E所示。第二電晶體2020設置在第二基底2010的主動區2012上。第二基底2010可以是半導體基底,例如是矽基底。第二電晶體2020可以是互補式金氧半(CMOS)電晶體。第二電晶體2020可以是平面式電晶體(如圖5A至圖5E所示)或是鰭狀電晶體(如圖8所示)。Please refer to FIG. 5A and FIG. 5E. Each block T' includes a plurality of driving columns 2000R and rows 2000C. Each driving column 2000R includes a second transistor 2020, a second interconnect structure 2030 and a pad 2052, as shown in FIG. 5E. The second transistor 2020 is disposed on the active region 2012 of the second substrate 2010. The second substrate 2010 may be a semiconductor substrate, such as a silicon substrate. The second transistor 2020 may be a complementary metal-oxide-semiconductor (CMOS) transistor. The second transistor 2020 may be a planar transistor (as shown in FIGS. 5A to 5E ) or a fin-shaped transistor (as shown in FIG. 8 ).

請參照圖5B與圖5E以及圖8,第二電晶體2020包括閘介電層2024、閘極層2028、源極區2022a與汲極區2022b。閘介電層2024例如是氧化矽或是高介電常數材料。閘極層2028例如是摻雜多晶矽或是鎢。閘極層2028位於閘介電層2024上。閘極層2028為長條狀,其延伸的方向例如是與加熱器1200延伸的方向相同,例如是在X方向上延伸,如圖6A。在一些實例中,相鄰兩列(例如塊元T1’與T2’,或塊元T3’與T4’)的第二電晶體2020的閘極層2028可以電性連接,如圖5A所示。5B, 5E and 8, the second transistor 2020 includes a gate dielectric layer 2024, a gate layer 2028, a source region 2022a and a drain region 2022b. The gate dielectric layer 2024 is, for example, silicon oxide or a high dielectric constant material. The gate layer 2028 is, for example, doped polysilicon or tungsten. The gate layer 2028 is located on the gate dielectric layer 2024. The gate layer 2028 is in the shape of a long strip, and its extension direction is, for example, the same as the extension direction of the heater 1200, for example, extending in the X direction, as shown in FIG6A. In some examples, the gate layers 2028 of the second transistors 2020 in two adjacent columns (e.g., cells T1′ and T2′, or cells T3′ and T4′) may be electrically connected, as shown in FIG. 5A .

請參照圖5E,第二電晶體2020的源極區2022a與汲極區2022b設置在閘極層2028兩側的主動區2012中。源極區2022a與汲極區2022b中具有摻質,例如是N型或P型摻質。在一些實施例中,相鄰的兩個第二電晶體2020共用源極區2022a。Referring to FIG. 5E , the source region 2022a and the drain region 2022b of the second transistor 2020 are disposed in the active region 2012 on both sides of the gate layer 2028. The source region 2022a and the drain region 2022b have dopants, such as N-type or P-type dopants. In some embodiments, two adjacent second transistors 2020 share the source region 2022a.

請參照圖5B與圖5C,第二內連線結構2030位於多個第二電晶體2020上。第二內連線結構2030包括介電層2031(如圖5C所示)以及位於介電層2031之中的多個接觸窗2032、2034、多個導線2036、2040與多個介層窗2038、2042。多個接觸窗2032分別著陸在源極區2022a與汲極區2022b上,且與源極區2022a與汲極區2022b電性連接。接觸窗2034著陸在閘極層2028上且與閘極層2028電性連接。接觸窗2032為長條狀,其沿著X方向延伸,與閘極層2028大致平行,如圖5B與圖5D所示。接觸窗2034的形狀與接觸窗2032的形狀不同,其形狀例如為柱狀,如圖5B所示。導線2036與2040(如圖5C所示)分別設置在多個接觸窗2032、2034上。導線2036與導線2040之間以介層窗2038電性絕緣。介層窗2042設置在導線2040上,並將導線2040與上方的接合層2050電性連接。介電層2031例如是氧化矽。多個接觸窗2032、2034、多個導線2036、2040與多個介層窗2038、2042包括金屬層例如是鎢或銅。多個接觸窗2032、2034、多個導線2036、2040與多個介層窗2038、2042可以更包括阻障層(未示出)例如是鈦、鉭、氮化鈦、氮化鉭或其組合。Please refer to FIG. 5B and FIG. 5C. The second interconnect structure 2030 is located on the plurality of second transistors 2020. The second interconnect structure 2030 includes a dielectric layer 2031 (as shown in FIG. 5C ) and a plurality of contact windows 2032 and 2034 located in the dielectric layer 2031 , a plurality of wires 2036 and 2040 and a plurality of via windows 2038 . 2042. A plurality of contact windows 2032 respectively land on the source region 2022a and the drain region 2022b, and are electrically connected to the source region 2022a and the drain region 2022b. The contact window 2034 lands on the gate layer 2028 and is electrically connected to the gate layer 2028 . The contact window 2032 is in the shape of a long strip, which extends along the X direction and is substantially parallel to the gate layer 2028, as shown in FIG. 5B and FIG. 5D. The shape of the contact window 2034 is different from the shape of the contact window 2032, and its shape is, for example, columnar, as shown in FIG. 5B. Wires 2036 and 2040 (as shown in Figure 5C) are respectively provided on a plurality of contact windows 2032 and 2034. The wires 2036 and 2040 are electrically insulated by vias 2038 . The via window 2042 is disposed on the wire 2040 and electrically connects the wire 2040 to the bonding layer 2050 above. The dielectric layer 2031 is, for example, silicon oxide. The plurality of contacts 2032 and 2034, the plurality of wires 2036 and 2040 and the plurality of vias 2038 and 2042 include metal layers such as tungsten or copper. The plurality of contacts 2032, 2034, the plurality of wires 2036, 2040, and the plurality of vias 2038, 2042 may further include a barrier layer (not shown) such as titanium, tantalum, titanium nitride, tantalum nitride, or a combination thereof. .

請參照圖5C,每一驅動列2000R的接墊2052為控制晶片2000的接合層2050的一部分。接合層2050包括接墊2052與絕緣層2054。絕緣層2054位於第二內連線結構2030上。接墊2052位於絕緣層2054中,且與第二內連線結構2030的介層窗2042電性連接。接墊2052的材料例如是銅。絕緣層2054的材料例如是氧化矽。5C , the pad 2052 of each driver row 2000R is a part of the bonding layer 2050 of the control chip 2000. The bonding layer 2050 includes the pad 2052 and the insulating layer 2054. The insulating layer 2054 is located on the second inner connection structure 2030. The pad 2052 is located in the insulating layer 2054 and is electrically connected to the via 2042 of the second inner connection structure 2030. The material of the pad 2052 is, for example, copper. The material of the insulating layer 2054 is, for example, silicon oxide.

請參照圖5A與圖5E,接墊2052包括接墊2052a與接墊2052b。更具體地說,每一驅動列2000R包括沿著X方向設置的一對接墊2052a與2052b。接墊2052a將與加熱器1200的第一端E1電性連接;接墊2052b將與加熱器1200的第二端E2電性連接至接地,如圖1A、1B以及圖6A所示。請參照圖5C與圖5D,各個接墊2052a經由介層窗2042a與其下方的導線2040a電性連接。同一塊元T’中的導線2040a彼此分離且電性隔離,以各自與第二電晶體2020的汲極區2022b電性連接,如圖5A與圖5C所示。各個接墊2052b經由介層窗2042b,與其下方的導線2040b電性連接,如圖5D所示。同一行的塊元T’(例如塊元T1’與T3’,或塊元T2’與T4’)的多個接墊2052b彼此經由同一導線2040b電性連接至接地,如圖5A與圖5D所示。5A and 5E , the pad 2052 includes a pad 2052a and a pad 2052b. More specifically, each driver row 2000R includes a pair of pads 2052a and 2052b arranged along the X direction. The pad 2052a will be electrically connected to the first end E1 of the heater 1200; the pad 2052b will be electrically connected to the second end E2 of the heater 1200 to the ground, as shown in FIGS. 1A , 1B and 6A . Referring to FIGS. 5C and 5D , each pad 2052a is electrically connected to the wire 2040a thereunder via the via 2042a. The wires 2040a in the same cell T' are separated and electrically isolated from each other, so as to be electrically connected to the drain region 2022b of the second transistor 2020, as shown in FIG5A and FIG5C. Each pad 2052b is electrically connected to the wire 2040b below it through the via 2042b, as shown in FIG5D. Multiple pads 2052b in the same row of cells T' (e.g., cells T1' and T3', or cells T2' and T4') are electrically connected to the ground through the same wire 2040b, as shown in FIG5A and FIG5D.

請參照圖5C、圖1A與圖1B,控制晶片2000的接合層2050與記憶晶片1000的接合層1300彼此接合而形成接合結構3000。更具體地說,控制晶片2000的絕緣層2054的位置與記憶晶片1000的絕緣層1304的位置相對應,且彼此接合。控制晶片2000的接墊2052a與2052b的位置與記憶晶片1000的接墊1302a與1302b的位置相對應,且彼此接合。Referring to FIG. 5C , FIG. 1A and FIG. 1B , the bonding layer 2050 of the control chip 2000 and the bonding layer 1300 of the memory chip 1000 are bonded to each other to form a bonding structure 3000 . More specifically, the position of the insulating layer 2054 of the control chip 2000 corresponds to the position of the insulating layer 1304 of the memory chip 1000, and are bonded to each other. The positions of the pads 2052a and 2052b of the control chip 2000 correspond to the positions of the pads 1302a and 1302b of the memory chip 1000, and are bonded to each other.

請參照圖5A、圖5C與圖5D,控制晶片2000的行2000C經由導線2040c將同一行的塊元T’(例如塊元T1’與T3’,或塊元T2’與T4’)的多個第二電晶體2020的多個共用源極區2022a電性耦接至全域電源2100。5A, 5C and 5D, the row 2000C of the control chip 2000 connects multiple block elements T' (for example, block elements T1' and T3', or block elements T2' and T4') of the same row via wires 2040c. The plurality of common source regions 2022a of the second transistor 2020 are electrically coupled to the global power supply 2100.

請參照圖5E,控制晶片2000的第二電晶體2020的汲極區2022b連接第二內連線結構2030以及接合層2050的接墊2052a,如圖5C所示。而此接墊2052a與連接記憶晶片1000的加熱器1200的第一端E1的接墊1302a電性連接,如圖6A所示。在一實施例中,控制晶片2000的每個驅動列2000R可以控制記憶晶片1000的對應的一個區塊B的一個加熱器1200,如圖6A與圖6B所示。Referring to FIG. 5E , the drain region 2022b of the second transistor 2020 of the control chip 2000 is connected to the second inner connection structure 2030 and the pad 2052a of the bonding layer 2050, as shown in FIG. 5C . The pad 2052a is electrically connected to the pad 1302a of the first end E1 of the heater 1200 connected to the memory chip 1000, as shown in FIG. 6A . In one embodiment, each driver row 2000R of the control chip 2000 can control a heater 1200 of a corresponding block B of the memory chip 1000, as shown in FIG. 6A and FIG. 6B .

請參照圖5E,在一些實施例中,控制晶片2000還包括行解碼器2300與列解碼器2200。行解碼器2300與全域電源2100電性連接。行解碼器2300接收行位址訊號A3、A4後,選擇其中一行(例如圖5A的行2000C 1)的多個塊元(此例中為兩個,如圖5A的塊元T1’與T3’)。藉此將全域電源2100經由第二內連線結構2030的導線2040c(示於圖5A)提供至所該選擇行(例如圖5A的行2000C 1)之各塊元(例如圖5A的塊元T1’與T3’)的多個第二電晶體2020的多個共用源極區2022a。列解碼器2200與多個驅動列2000R的多個第二電晶體2020的多個閘極層2028電性連接。列解碼器2200接收列位址訊號A0~A2(或稱控制訊號)後,並對輸入的列位址訊號進行解碼,以選擇多個第二電晶體2020的其中一個(例如圖5A的第二電晶體2020 1)或多個並使其導通。 Please refer to FIG. 5E . In some embodiments, the control chip 2000 further includes a row decoder 2300 and a column decoder 2200. The row decoder 2300 is electrically connected to the global power supply 2100. After receiving the row address signals A3 and A4, the row decoder 2300 selects a plurality of blocks (two in this example, such as blocks T1' and T3' in FIG. 5A ) in one row (e.g., row 2000C 1 in FIG. 5A ). The global power supply 2100 is thereby provided to a plurality of common source regions 2022a of a plurality of second transistors 2020 of each block (e.g., blocks T1' and T3' in FIG. 5A ) in the selected row (e.g., row 2000C 1 in FIG. 5A ) via the wire 2040c (shown in FIG. 5A ) of the second internal connection structure 2030 . The row decoder 2200 is electrically connected to the gate layers 2028 of the second transistors 2020 of the driving rows 2000R. After receiving the row address signals A0-A2 (or control signals), the row decoder 2200 decodes the input row address signals to select one (e.g., the second transistor 2020 1 in FIG. 5A ) or more of the second transistors 2020 and turn them on.

一般而言,記憶晶片1000會包括用來控制記憶體陣列的控制邏輯單元,而控制邏輯單元中的暫存器會儲存各區塊B的記憶體陣列的抹除次數的狀態訊號。當抹除次數到達預定次數時,便會將此狀態訊號送出至控制晶片2000。Generally speaking, the memory chip 1000 includes a control logic unit for controlling the memory array, and the register in the control logic unit stores the state signal of the erase times of the memory array of each block B. When the erase times reaches a predetermined number, the state signal is sent to the control chip 2000.

請參照圖6A與圖6B,在進行修復處理時,控制晶片2000可基於接收到的狀態訊號,產生與需要修復的塊元T與區塊B(例如圖6A的塊元T1的區塊B1)的相對應的列位址訊號和行位址訊號,並且將列位址訊號和行位址訊號分別傳送到列解碼器2200與行解碼器2300。行解碼器2300依據所接收的行位址訊號選擇其中一行(例如圖6A的行2000C 1),藉此將全域電源2100提供至位於該行(例如圖6A的行2000C 1)的塊元(例如圖5A的塊元T1’與T3’)的導線2040c。列解碼器2200依據所接收的列位址訊號,選擇一驅動列2000R 1的第二電晶體2020 1,並且使其導通。因此,電流可以從全域電源2100經由導線2040c流入第二電晶體2020 1的源極區2022a,並通過第二電晶體2020 1的通道與汲極區2022b,經由第二內連線結構2030與接墊2052a流入記憶晶片1000的接墊1302a,而進入加熱器1200(例如是1200 1)的第一端E1。之後,電流通過加熱器1200 1,從加熱器1200 1的第二端E2流出,並經由記憶晶片1000的接墊1302b,再進入控制晶片2000的接墊2052b,之後,通過導線2040b而電性連接至接地。本發明實施例藉由控制晶片2000的第二電晶體(驅動器)2020(例如是2020 1)可以提供高驅動電流至特定的加熱器1200(例如是1200 1),以使做為加熱器1200(例如是1200 1)的導體被加熱,藉以修復特定塊元T(例如是T1)中特定區塊B(例如是B1)的三維快閃記憶體結構1100中的電荷儲存層。 6A and 6B , when performing the repair process, the control chip 2000 can generate a row address signal and a column address signal corresponding to the block T and block B (e.g., block B1 of block T1 in FIG. 6A ) that need to be repaired based on the received status signal, and transmit the row address signal and the column address signal to the row decoder 2200 and the row decoder 2300 respectively. The row decoder 2300 selects one of the rows (e.g., row 2000C 1 in FIG. 6A ) according to the received row address signal, thereby providing the global power 2100 to the wire 2040c of the blocks (e.g., blocks T1′ and T3′ in FIG. 5A ) located in the row (e.g., row 2000C 1 in FIG. 6A ). The row decoder 2200 selects a second transistor 2020 1 of a driving row 2000R 1 according to the received row address signal and turns it on. Therefore, the current can flow from the global power supply 2100 into the source region 2022a of the second transistor 2020 1 through the wire 2040c, and through the channel and drain region 2022b of the second transistor 2020 1 , through the second internal connection structure 2030 and the pad 2052a, into the pad 1302a of the memory chip 1000, and enter the first end E1 of the heater 1200 (for example, 1200 1 ). Afterwards, the current flows through the heater 1200 1 , flows out from the second end E2 of the heater 1200 1 , and enters the pad 2052b of the control chip 2000 through the pad 1302b of the memory chip 1000 , and then is electrically connected to the ground through the wire 2040b. The embodiment of the present invention can provide a high drive current to a specific heater 1200 (e.g., 1200 1 ) by the second transistor (driver) 2020 (e.g., 2020 1 ) of the control chip 2000 , so that the conductor of the heater 1200 (e.g., 1200 1 ) is heated, thereby repairing the charge storage layer in the three-dimensional flash memory structure 1100 of a specific block B (e.g., B1) in a specific block T ( e.g., T1).

請參照圖1A與圖1B,在一些實施例中,在進行修復處理時,可以藉由控制晶片2000驅動單一加熱器1200(例如是1200 1),以修復單一區塊B(例如是B1)的三維快閃記憶體結構1100(例如是1100 1)中的電荷儲存層。請參照圖1B,在另一些實施例中,在進行修復時,也可以藉由控制晶片2000同時驅動兩個加熱器1200(例如是1200 2與1200 3),以修復單一區塊B(例如是B2)的三維快閃記憶體結構1100(例如是1100 2)中的電荷儲存層。 1A and 1B , in some embodiments, during the repair process, a single heater 1200 (e.g., 1200 1 ) can be driven by the control chip 2000 to repair the charge storage layer in the three-dimensional flash memory structure 1100 (e.g., 1100 1 ) of a single block B (e.g., B1 ). Referring to FIG. 1B , in other embodiments, during the repair process, two heaters 1200 (e.g., 1200 2 and 1200 3 ) can also be driven by the control chip 2000 at the same time to repair the charge storage layer in the three-dimensional flash memory structure 1100 (e.g., 1100 2 ) of a single block B (e.g., B2 ).

圖7A至圖7C示出本發明之三維快閃記憶體模組晶片的製造流程的剖面示意圖。7A to 7C are schematic cross-sectional views of the manufacturing process of the three-dimensional flash memory module chip of the present invention.

請參照圖7A,提供晶圓1010W,並在晶圓1010W上形成多個記憶晶片1000。多個記憶晶片1000彼此之間具有切割道SL。記憶晶片1000的形成方法如下所述。請參照圖3B,在晶圓1010W上先形成一或多個主動元件(例如第一電晶體)1020。接著,在主動元件1020上形成下部內連線結構1032。下部內連線結構1032可以用任何已知的方法,例如鑲嵌、雙鑲嵌等方法形成。之後,在下部內連線結構1032上形成由絕緣層(例如是氧化矽)54與另一絕緣層(未示出,例如是氮化矽)交替堆疊而形成的絕緣堆疊結構(未示出)。其後,可以用任何已知的方法在絕緣堆疊結構中形成電荷儲存結構40的穿隧層14、通道柱16以及導體柱32a與32b。穿隧層14的材料可以是介電材料,例如是氧化矽。通道柱16的材料可以是半導體,例如是未摻雜的多晶矽。導體柱32a與32b例如是摻雜的多晶矽。Referring to FIG. 7A , a wafer 1010W is provided, and a plurality of memory chips 1000 are formed on the wafer 1010W. The plurality of memory chips 1000 have scribe lines SL between each other. The method for forming the memory chips 1000 is described as follows. Referring to FIG. 3B , one or more active components (e.g., a first transistor) 1020 are first formed on the wafer 1010W. Next, a lower internal connection structure 1032 is formed on the active component 1020. The lower internal connection structure 1032 can be formed by any known method, such as inlay, dual inlay, etc. Afterwards, an insulating stack structure (not shown) formed by alternately stacking an insulating layer (e.g., silicon oxide) 54 and another insulating layer (not shown, e.g., silicon nitride) is formed on the lower interconnect structure 1032. Afterwards, the tunneling layer 14, channel pillar 16, and conductive pillars 32a and 32b of the charge storage structure 40 can be formed in the insulating stack structure by any known method. The material of the tunneling layer 14 can be a dielectric material, such as silicon oxide. The material of the channel pillar 16 can be a semiconductor, such as undoped polysilicon. The conductive pillars 32a and 32b are, for example, doped polysilicon.

接著,進行微影與蝕刻製程,以在絕緣堆疊結構中形成分隔溝槽1110,並將絕緣堆疊結構分隔為多個區塊B。Then, lithography and etching processes are performed to form separation trenches 1110 in the insulating stack structure and to separate the insulating stack structure into a plurality of blocks B.

之後,進行閘極取代製程,以形成閘極堆疊結構52。首先,進行蝕刻製程,使蝕刻液注入分隔溝槽1110之中,以移除絕緣堆疊結構中的另一絕緣層,以形成多個水平開口34,然後在水平開口34中形成閘極層38。在一些實施例中,在形成閘極層38之前,還在水平開口34中形成電荷儲存層12與阻擋層36。電荷儲存層12例如是氮化矽。阻擋層36例如為介電常數大於或等於7的高介電常數的材料,例如氧化鋁(Al 1O 3)、氧化鉿(HfO 2)、氧化鑭(La 2O 5)、過渡金屬氧化物、鑭系元素氧化物或其組合。閘極層38例如是鎢。在一些實施例中,在形成多層閘極層38之前,還形成阻障層37。阻障層37的材料例如為鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)或其組合。 Afterwards, a gate replacement process is performed to form the gate stack structure 52. First, an etching process is performed to inject an etching solution into the separation trench 1110 to remove another insulating layer in the insulating stack structure to form a plurality of horizontal openings 34, and then a gate layer 38 is formed in the horizontal openings 34. In some embodiments, before forming the gate layer 38, a charge storage layer 12 and a blocking layer 36 are also formed in the horizontal openings 34. The charge storage layer 12 is, for example, silicon nitride. The barrier layer 36 is, for example, a material with a high dielectric constant greater than or equal to 7, such as aluminum oxide (Al 1 O 3 ), ferrous oxide (HfO 2 ), tantalum oxide (La 2 O 5 ), transition metal oxide, tungsten oxide, or a combination thereof. The gate layer 38 is, for example, tungsten. In some embodiments, before forming the multi-layer gate layer 38, a barrier layer 37 is further formed. The material of the barrier layer 37 is, for example, titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN), or a combination thereof.

接著,在分隔溝槽1110中形成分隔狹縫SLT。分隔狹縫SLT的形成方法包括在閘極堆疊結構52上以及分隔溝槽1110中填入絕緣填充材料,然後經由回蝕刻製程或是平坦化製程移除閘極堆疊結構52上多餘的絕緣填充材料。絕緣填充材料例如是氧化矽。Next, a separation slit SLT is formed in the separation trench 1110. The method for forming the separation slit SLT includes filling an insulating filling material on the gate stack structure 52 and in the separation trench 1110, and then removing excess insulating filling material on the gate stack structure 52 by an etching back process or a planarization process. The insulating filling material is, for example, silicon oxide.

之後,在閘極堆疊結構52上形成上部內連線結構1034(包括局部位元線LBL n、局部源極線LSL n以及全域位元線GBL n與全域源極線GSL n)。上部內連線結構1034可以用任何已知的方法,例如鑲嵌、雙鑲嵌等方法形成,於此不再詳述。 Afterwards, an upper interconnection structure 1034 (including local bit lines LBL n , local source lines LSL n , and global bit lines GBL n and global source lines GSL n ) is formed on the gate stack structure 52 . The upper interconnect structure 1034 can be formed by any known method, such as damascene, dual damascene, etc., which will not be described in detail here.

請參照圖3A與圖3B,在本實施例中,在上部內連線結構1034(包括局部位元線LBL n、局部源極線LSL n以及全域位元線GBL n與全域源極線GSL n)形成之後,還在上部內連線結構1034上方形成加熱器1200。加熱器1200的形成方法例如是在上部內連線結構1034上方先形成介電層1040。介電層1040的材料例如是氧化矽。在一些實施例中,還進行平坦化製程,例如是化學機械平坦化製程,以使介電層1040具有平坦的表面。之後,進行微影與蝕刻製程,以在介電層1040中形成多個溝渠OP1。接著在介電層1040上以及溝渠中依序形成阻障材料層與金屬材料層。然後進行平坦化製程,例如是化學機械平坦化製程,以移除介電層1040表面上的阻障材料層與金屬材料層,而在溝渠之中形成阻障層1204以及金屬層1202。金屬材料層例如是銅或鎢。阻障材料層例如是鈦、鉭、氮化鈦、氮化鉭或其組合。 3A and 3B , in the present embodiment, after the upper interconnect structure 1034 (including the local bit line LBL n , the local source line LSL n , and the global bit line GBL n and the global source line GSL n ) is formed, a heater 1200 is further formed above the upper interconnect structure 1034. The heater 1200 is formed by, for example, first forming a dielectric layer 1040 above the upper interconnect structure 1034. The material of the dielectric layer 1040 is, for example, silicon oxide. In some embodiments, a planarization process, such as a chemical mechanical planarization process, is further performed to make the dielectric layer 1040 have a flat surface. Thereafter, a lithography and etching process is performed to form a plurality of trenches OP1 in the dielectric layer 1040. Then, a barrier material layer and a metal material layer are sequentially formed on the dielectric layer 1040 and in the trench. Then, a planarization process, such as a chemical mechanical planarization process, is performed to remove the barrier material layer and the metal material layer on the surface of the dielectric layer 1040, and form a barrier layer 1204 and a metal layer 1202 in the trench. The metal material layer is, for example, copper or tungsten. The barrier material layer is, for example, titanium, tantalum, titanium nitride, tantalum nitride, or a combination thereof.

請參照圖3B,在加熱器1200形成之後,形成接合層1300。接合層1300的形成方法如下所述。先在加熱器1200以及介電層1040上先形成絕緣層1304,然後,進行微影與蝕刻製程,以在絕緣層1304中形成多個接墊開口OP2。接墊開口OP2的底部裸露出加熱器1200。之後,在絕緣層1304上以及接墊開口OP2之中形成導體層。然後,進行平坦化製程,例如是化學機械平坦化製程,以移除絕緣層1304上的導體層,而在接墊開口OP2中形成接墊1302。Please refer to FIG. 3B , after the heater 1200 is formed, the bonding layer 1300 is formed. The method for forming the bonding layer 1300 is described as follows. An insulating layer 1304 is first formed on the heater 1200 and the dielectric layer 1040, and then a lithography and etching process is performed to form a plurality of pad openings OP2 in the insulating layer 1304. The bottom of the pad opening OP2 exposes the heater 1200. Thereafter, a conductive layer is formed on the insulating layer 1304 and in the pad opening OP2. Then, a planarization process, such as a chemical mechanical planarization process, is performed to remove the conductive layer on the insulating layer 1304 and form a pad 1302 in the pad opening OP2.

在以上的實施例中,記憶晶片1000的加熱器1200在上部內連線結構1034形成之後才形成。在另一些實施例中,記憶晶片1000的加熱器1200可以在上部內連線結構1034形成之前形成。In the above embodiments, the heater 1200 of the memory chip 1000 is formed after the upper interconnect structure 1034 is formed. In other embodiments, the heater 1200 of the memory chip 1000 may be formed before the upper interconnect structure 1034 is formed.

請參照圖4C,記憶晶片1000的加熱器1200是在三維快閃記憶體1100的閘極堆疊結構52形成之後,上部內連線結構1034(包括局部位元線LBL n、局部源極線LSL n以及全域位元線GBL n與全域源極線GSL n)形成之前,形成在閘極堆疊結構52之間的分隔溝槽1110之中。 Please refer to FIG. 4C. The heater 1200 of the memory chip 1000 is formed after the gate stack structure 52 of the three-dimensional flash memory 1100 is formed. The upper interconnection structure 1034 (including the local bit line LBL n and the local source line LSL n and the separation trench 1110 formed between the gate stack structure 52 before the formation of the global bit line GBL n and the global source line GSL n ).

請參照圖4A與圖4C,加熱器1200的形成方法例如是在分隔溝槽1110之中先形成襯材料層。襯材料層例如是氧化矽或是氮化矽。接著在閘極堆疊結構52上以及分隔溝槽1110中依序形成阻障材料層與金屬材料層。然後進行平坦化製程,例如是化學機械平坦化製程,以移除閘極堆疊結構52表面上的阻障材料層與金屬材料層,而在分隔溝槽1110之中形成絕緣襯層1112、阻障層1204以及金屬層1202。金屬材料層例如是銅或鎢。阻障材料層例如是鈦、鉭、氮化鈦、氮化鉭或其組合。Referring to FIGS. 4A and 4C , the heater 1200 is formed by, for example, first forming a lining material layer in the separation trench 1110 . The lining material layer is, for example, silicon oxide or silicon nitride. Then, a barrier material layer and a metal material layer are sequentially formed on the gate stack structure 52 and in the separation trench 1110 . Then a planarization process, such as a chemical mechanical planarization process, is performed to remove the barrier material layer and the metal material layer on the surface of the gate stack structure 52, and form an insulating liner 1112 and a barrier in the separation trench 1110. layer 1204 and metal layer 1202. The metal material layer is, for example, copper or tungsten. The barrier material layer is, for example, titanium, tantalum, titanium nitride, tantalum nitride or combinations thereof.

請參照圖4B與圖4C,在加熱器1200形成之後,形成上部內連線結構1034(包括局部位元線LBL n、局部源極線LSL n以及全域位元線GBL n與全域源極線GSL n)。其後,依據上述方法在上部內連線結構1034上形成接合層1300。 4B and 4C , after the heater 1200 is formed, the upper interconnect structure 1034 (including local bit lines LBL n , local source lines LSL n , and global bit lines GBL n and global source lines GSL n ) is formed. Then, a bonding layer 1300 is formed on the upper interconnect structure 1034 according to the above method.

請參照圖7A,提供多個控制晶片2000。控制晶片2000的形成方法如下。請參照圖5C,在第二基底(晶圓)2010上形成第二電晶體2020。接著,在第二電晶體2020上形成第二內連線結構2030。第二內連線結構2030可以用任何已知的方法,例如鑲嵌、雙鑲嵌等方法形成。其後,依據上述方法在第二內連線結構2030上形成接合層2050。之後,進行切割,以形成多個控制晶片2000。Referring to FIG. 7A, multiple control chips 2000 are provided. The control wafer 2000 is formed as follows. Referring to FIG. 5C , a second transistor 2020 is formed on the second substrate (wafer) 2010 . Next, a second interconnect structure 2030 is formed on the second transistor 2020. The second interconnect structure 2030 can be formed by any known method, such as damascene, dual damascene, etc. Thereafter, the bonding layer 2050 is formed on the second interconnect structure 2030 according to the above method. After that, cutting is performed to form a plurality of control wafers 2000.

請參照圖7B,將多個控制晶片2000的接合層2050與記憶晶片1000的接合層1300接合,以形成接合結構3000。接合的方式例如是混合接合(hybrid bonding)製程。在一些實施例中,在將多個控制晶片2000與晶圓1010W上的記憶晶片1000接合之後,還在多個控制晶片2000的側壁周圍形成包封層(未示出)。7B , the bonding layer 2050 of the plurality of control chips 2000 is bonded to the bonding layer 1300 of the memory chip 1000 to form a bonding structure 3000. The bonding method is, for example, a hybrid bonding process. In some embodiments, after the plurality of control chips 2000 are bonded to the memory chip 1000 on the wafer 1010W, an encapsulation layer (not shown) is formed around the sidewalls of the plurality of control chips 2000.

請參照圖7C,進行切割製程,以形成各自獨立的多個三維快閃記憶體模組晶片5000。Please refer to FIG. 7C , a cutting process is performed to form a plurality of independent three-dimensional flash memory module chips 5000 .

綜上所述,本發明將記憶晶片與控制晶片接合以形成三維快閃記憶體模組晶片。透過控制晶片的驅動器提供高驅動電流來加熱記憶晶片中的加熱器,可以修復快閃記憶體的電荷儲存結構,以實現更快的抹除速度,並且可提升快閃記憶體的耐用性。再者,控制晶片可以依據記憶晶片的控制邏輯單元的狀態訊號對相應的區塊局部加熱。此外,此種經由接合形成的三維快閃記憶體模組晶片,控制晶片可以另外製作,而無須在記憶晶片中形成大面積的加熱器控制器,因此可以避免加熱器控制器佔用記憶晶片的面積,並且可以以較低階的製程來製造控制晶片,以降低製程的費用。In summary, the present invention combines a memory chip with a control chip to form a three-dimensional flash memory module chip. By providing a high drive current through the driver of the control chip to heat the heater in the memory chip, the charge storage structure of the flash memory can be repaired to achieve a faster erase speed and improve the durability of the flash memory. Furthermore, the control chip can locally heat the corresponding block according to the state signal of the control logic unit of the memory chip. In addition, for this three-dimensional flash memory module chip formed by bonding, the control chip can be manufactured separately without forming a large-area heater controller in the memory chip. Therefore, the heater controller can be prevented from occupying the area of the memory chip, and the control chip can be manufactured with a lower-level process to reduce the cost of the process.

14:穿隧層 16:通道柱 20:記憶單元 24:絕緣填充層 28:絕緣柱 32a:導體柱/源極柱 32b:導體柱/汲極柱 34:水平開口 36:阻擋層 37、1204:阻障層 38、2028:閘極層 40:電荷儲存結構 52:閘極堆疊結構 54、1304、2054:絕緣層 1000:記憶晶片 1010:第一基底 1010W:晶圓 1020:第一電晶體 1020:主動元件 1030:第一內連線結構 1032:下部內連線結構 1034:上部內連線結構 1040、2031:介電層 1100、1100 1、1100 2:三維快閃記憶體結構 1110:分隔溝槽 1112:絕緣襯層 1200、1200 1、1200 2、1200 3:加熱器 1202:金屬層 1300、2050:接合層 3000:接合結構 1302、1302a、1302b、2052、2052a、2052b:接墊 2000:控制晶片 2000C、2000C 1、2000C 2:行 2000R:驅動列 2010:第二基底 2012:主動區 2020、20201:第二電晶體 2022a:源極區 2022b:汲極區 2024:閘介電層 2030:第二內連線結構 2032、2034、C1、C2、C3:接觸窗 2036、2040、2040a、2040b、2040c:導線 2038、2042、2042a、2042b:介層窗 2100:全域電源 2200:列解碼器 2300:行解碼器 5000:三維快閃記憶體模組晶片 A0、A1、A2:列位址訊號 A3、A4:行位址訊號 AR:陣列區 B、B1、B2、B3、B4:區塊 BM1:下部第一金屬層 BM2:下部第二金屬層 BM3:下部第三金屬層 BV1、BV2、TV1:介層窗 TM1:上部第一金屬層 TM2:上部第二金屬層 E1:第一端 E2:第二端 OP1:溝渠 OP2:接墊開口 SC:階梯結構 SL:切割道 SLT:分隔狹縫 SR:階梯區 T、T’、T1、T1’、T2、T2’、T3、T3’、T4、T4’:塊元 W1、W2:寬度 I-I’、II-II’:線 X、Y、Z:方向 14: tunneling layer 16: channel column 20: memory cell 24: insulating filling layer 28: insulating column 32a: conductor column/source column 32b: conductor column/drain column 34: horizontal opening 36: blocking layer 37, 1204: barrier layer 38, 2028: gate layer 40: charge storage structure 52: gate stack structure 54, 13 04, 2054: insulating layer 1000: memory chip 1010: first substrate 1010W: wafer 1020: first transistor 1020: active element 1030: first internal connection structure 1032: lower internal connection structure 1034: upper internal connection structure 1040, 2031: dielectric layer 1100, 1100 1 , 1100 2 : 3D flash memory structure 1110 : separation trench 1112 : insulation liner 1200 , 1200 1 , 1200 2 , 1200 3 : heater 1202 : metal layer 1300 , 2050 : bonding layer 3000 : bonding structure 1302 , 1302 a , 1302 b , 2052 , 2052 a , 2052 b : pad 2000 : control chip 2000C , 2000C 1 , 2000C 2 : Row 2000R: Driving row 2010: Second substrate 2012: Active region 2020, 20201: Second transistor 2022a: Source region 2022b: Drain region 2024: Gate dielectric layer 2030: Second internal connection structure 2032, 2034, C1, C2, C3: Contact window 2036, 2040, 2040a, 2040b, 2040c: Conductor 2038, 2042, 2042a, 2042b: Interlayer window 2100: Global power supply 2200: Row decoder 2300: Row decoder 5000: Three-dimensional flash memory module chip A0, A1, A2: Row address signal A 3. A4: row address signal AR: array area B, B1, B2, B3, B4: block BM1: lower first metal layer BM2: lower second metal layer BM3: lower third metal layer BV1, BV2, TV1: via TM1: upper first metal layer TM2: upper second metal layer E1: first end E2: second end OP1: trench OP2: pad opening SC: step structure SL: cutting line SLT: separation slit SR: step area T, T', T1, T1', T2, T2', T3, T3', T4, T4': block W1, W2: width I-I', II-II': line X, Y, Z: direction

圖1A與圖1B分別是依據本發明實施例之一種三維快閃記憶體模組晶片的立體示意圖。 圖2A是依據本發明實施例之一種記憶晶片的三維快閃記憶體結構的部分上視圖。 圖2B是圖2A的線I-I’的剖面圖。 圖3A是依據本發明另一實施例之一種具有加熱器之記憶晶片的部分上視圖。 圖3B是圖3A的線I-I’的剖面圖。 圖4A是依據本發明另一實施例之一種具有加熱器之記憶晶片的部分上視圖。 圖4B是依據本發明另一實施例之一種記憶晶片的加熱器與接墊的部分上視圖。 圖4C是圖4B的線II-II’的剖面圖。 圖5A至圖5E是依照本發明實施例之一種控制晶片的各種立體示意圖。 圖6A是依照本發明實施例之一種記憶晶片與控制晶片的立體示意圖。 圖6B是圖6A之局部電路示意圖。 圖7A至圖7C示出本發明之三維快閃記憶體模組晶片的製造流程的剖面示意圖。 圖8是依照本發明實施例之另一種控制晶片的立體示意圖。 FIG. 1A and FIG. 1B are three-dimensional schematic diagrams of a three-dimensional flash memory module chip according to an embodiment of the present invention. FIG. 2A is a partial top view of a three-dimensional flash memory structure of a memory chip according to an embodiment of the present invention. FIG. 2B is a cross-sectional view of line I-I’ of FIG. 2A. FIG. 3A is a partial top view of a memory chip with a heater according to another embodiment of the present invention. FIG. 3B is a cross-sectional view of line I-I’ of FIG. 3A. FIG. 4A is a partial top view of a memory chip with a heater according to another embodiment of the present invention. FIG. 4B is a partial top view of a heater and a pad of a memory chip according to another embodiment of the present invention. FIG. 4C is a cross-sectional view of line II-II’ of FIG. 4B. Figures 5A to 5E are various three-dimensional schematic diagrams of a control chip according to an embodiment of the present invention. Figure 6A is a three-dimensional schematic diagram of a memory chip and a control chip according to an embodiment of the present invention. Figure 6B is a partial circuit schematic diagram of Figure 6A. Figures 7A to 7C show cross-sectional schematic diagrams of the manufacturing process of the three-dimensional flash memory module chip of the present invention. Figure 8 is a three-dimensional schematic diagram of another control chip according to an embodiment of the present invention.

1000:記憶晶片 1000:Memory chip

1100、11001:三維快閃記憶體結構 1100, 1100 1 : Three-dimensional flash memory structure

1200、12001:加熱器 1200, 1200 1 : heater

1300、2050:接合層 1300, 2050: Joint layer

1302、1302a、1302b、2052、2052a、2052b:接墊 1302, 1302a, 1302b, 2052, 2052a, 2052b: pads

1304、2054:絕緣層 1304, 2054: Insulation layer

2000:控制晶片 2000:Control chip

3000:接合結構 3000:Joint structure

5000:三維快閃記憶體模組晶片 5000: 3D flash memory module chip

B1、B2、B3、B4:區塊 B1, B2, B3, B4: Blocks

E1:第一端 E1: first end

E2:第二端 E2: Second end

X、Y、Z:方向 X, Y, Z: direction

Claims (14)

一種三維快閃記憶體模組晶片,包括:記憶晶片,包括:多個塊元,每一塊元包括多個三維快閃記憶體結構;以及多個加熱器;控制晶片,與所述記憶晶片接合,用以驅動所述多個加熱器的至少一個,其中所述多個加熱器設置在所述多個三維快閃記憶體結構上方,且與所述控制晶片相鄰。 A three-dimensional flash memory module chip comprises: a memory chip, comprising: a plurality of blocks, each block comprising a plurality of three-dimensional flash memory structures; and a plurality of heaters; a control chip, coupled to the memory chip, for driving at least one of the plurality of heaters, wherein the plurality of heaters are arranged above the plurality of three-dimensional flash memory structures and adjacent to the control chip. 如請求項1所述的三維快閃記憶體模組晶片,其中所述記憶晶片還包括:多個第一電晶體,位於第一基底上;所述多個三維快閃記憶體結構,位於多個第一電晶體上方;以及第一內連線結構,其中所述多個三維快閃記憶體結構埋置於第一內連線結構之中。 A three-dimensional flash memory module chip as described in claim 1, wherein the memory chip further comprises: a plurality of first transistors located on a first substrate; a plurality of three-dimensional flash memory structures located above the plurality of first transistors; and a first internal connection structure, wherein the plurality of three-dimensional flash memory structures are buried in the first internal connection structure. 如請求項2所述的三維快閃記憶體模組晶片,其中第一內連線結構包括:下部內連線結構,位於所述多個三維快閃記憶體結構與所述多個第一電晶體之間,並電性連接所述多個三維快閃記憶體結構與所述多個第一電晶體;以及 上部內連線結構,位於所述多個三維快閃記憶體結構上,並電性連接所述多個三維快閃記憶體結構。 The three-dimensional flash memory module chip as described in claim 2, wherein the first internal connection structure includes: a lower internal connection structure, located between the multiple three-dimensional flash memory structures and the multiple first transistors, and electrically connecting the multiple three-dimensional flash memory structures and the multiple first transistors; and an upper internal connection structure, located on the multiple three-dimensional flash memory structures, and electrically connecting the multiple three-dimensional flash memory structures. 如請求項2所述的三維快閃記憶體模組晶片,其中所述控制晶片包括:多個驅動列,其中每一驅動列包括:第二電晶體,位於第二基底上,所述第二電晶體的源極區電性連接全域電源;第一接墊,與所述第二電晶體的汲極區電性連接,且與所述多個加熱器的其中之一的第一端電性連接;以及第二接墊,所述第二接墊接地,且與所述多個加熱器的該其中之一的第二端電性連接。 A three-dimensional flash memory module chip as described in claim 2, wherein the control chip comprises: a plurality of drive columns, wherein each drive column comprises: a second transistor, located on a second substrate, wherein the source region of the second transistor is electrically connected to a global power source; a first pad, electrically connected to the drain region of the second transistor, and electrically connected to a first end of one of the plurality of heaters; and a second pad, wherein the second pad is grounded and electrically connected to a second end of the one of the plurality of heaters. 如請求項4所述的三維快閃記憶體模組晶片,其中所述控制晶片更包括:列解碼器,與所述多個驅動列的多個第二電晶體的多個閘極層電性耦接;以及行解碼器,與所述多個第二電晶體的多個源極區以及所述全域電源電性耦接。 The three-dimensional flash memory module chip as described in claim 4, wherein the control chip further includes: a column decoder electrically coupled to the multiple gate layers of the multiple second transistors of the multiple drive columns; and a row decoder electrically coupled to the multiple source regions of the multiple second transistors and the global power supply. 如請求項4所述的三維快閃記憶體模組晶片,其中所述控制晶片包括排列成陣列的多個塊元,其中同一行的多個塊元的多個第二電晶體的多個源極區彼此電性連接。 The three-dimensional flash memory module chip according to claim 4, wherein the control chip includes a plurality of block cells arranged in an array, wherein the plurality of sources of the plurality of second transistors of the plurality of block cells in the same row The polar regions are electrically connected to each other. 如請求項4所述的三維快閃記憶體模組晶片,其中所述控制晶片與所述記憶晶片經由接合結構接合。 A three-dimensional flash memory module chip as described in claim 4, wherein the control chip and the memory chip are bonded via a bonding structure. 如請求項1所述的三維快閃記憶體模組晶片,其中所述多個三維快閃記憶體結構包括多個三維AND快閃記憶體結構、三維NAND快閃記憶體結構或多個三維NOR快閃記憶體結構。 The three-dimensional flash memory module chip of claim 1, wherein the plurality of three-dimensional flash memory structures include a plurality of three-dimensional AND flash memory structures, a three-dimensional NAND flash memory structure or a plurality of three-dimensional NOR Flash memory structure. 一種三維快閃記憶體模組晶片的製造方法,包括:形成記憶晶片,包括:形成多個塊元於第一基底上,每一塊元包括多個三維快閃記憶體結構;以及形成多個加熱器;形成控制晶片;以及接合所述控制晶片與所述記憶晶片,其中所述控制晶片用以驅動所述多個加熱器,其中所述多個加熱器形成在所述多個三維快閃記憶體結構上方。 A method of manufacturing a three-dimensional flash memory module chip, including: forming a memory chip, including: forming a plurality of blocks on a first substrate, each block including a plurality of three-dimensional flash memory structures; and forming a plurality of heating forming a control chip; and bonding the control chip and the memory chip, wherein the control chip is used to drive the plurality of heaters, wherein the plurality of heaters are formed in the plurality of three-dimensional flash memories above the body structure. 如請求項9所述的三維快閃記憶體模組晶片的製造方法,其中形成所述記憶晶片還包括:形成多個第一電晶體,於所述第一基底上;以及形成所述多個三維快閃記憶體結構,於多個第一電晶體上方。 The manufacturing method of the three-dimensional flash memory module chip as described in claim 9, wherein forming the memory chip further includes: forming a plurality of first transistors on the first substrate; and forming the plurality of three-dimensional flash memory structures on the plurality of first transistors. 如請求項10所述的三維快閃記憶體模組晶片的製造方法,其中形成所述控制晶片包括:形成多個驅動列,其中形成每一驅動列包括:形成第二電晶體,於第二基底上; 形成第二內連線結構,於所述第二電晶體上,其中所述第二電晶體的源極區經由所述第二內連線結構電性耦接全域電源;形成第一接墊,於所述第二內連線結構上,所述第一接墊經由所述第二內連線結構電性連接所述第二電晶體的汲極區;以及形成第二接墊,於所述第二內連線結構上,所述第二接墊經由所述第二內連線結構電性連接至接地。 The manufacturing method of a three-dimensional flash memory module chip according to claim 10, wherein forming the control chip includes: forming a plurality of driving columns, wherein forming each driving column includes: forming a second transistor, and forming a second transistor on the second transistor. on the substrate; Forming a second interconnect structure on the second transistor, wherein the source region of the second transistor is electrically coupled to the global power supply through the second interconnect structure; forming a first pad, On the second interconnect structure, the first pad is electrically connected to the drain region of the second transistor through the second interconnect structure; and a second pad is formed on the second interconnect structure. On the second interconnect structure, the second pad is electrically connected to ground via the second interconnect structure. 如請求項11所述的三維快閃記憶體模組晶片的製造方法,更包括:將所述第一接墊與所述多個加熱器的其中之一的第一端電性連接;以及將所述第二接墊與所述多個加熱器的該其中之一的第二端電性連接。 The manufacturing method of the three-dimensional flash memory module chip as described in claim 11 further includes: electrically connecting the first pad to the first end of one of the multiple heaters; and electrically connecting the second pad to the second end of the one of the multiple heaters. 如請求項9所述的三維快閃記憶體模組晶片的製造方法,其中所述控制晶片與所述記憶晶片經由接合結構混合接合。 The manufacturing method of the three-dimensional flash memory module chip as described in claim 9, wherein the control chip and the memory chip are hybrid-bonded via a bonding structure. 如請求項9所述的三維快閃記憶體模組晶片的製造方法,其中所述多個三維快閃記憶體結構包括多個三維AND快閃記憶體結構、三維NAND快閃記憶體結構或多個三維NOR快閃記憶體結構。 The manufacturing method of a three-dimensional flash memory module chip as claimed in claim 9, wherein the plurality of three-dimensional flash memory structures include a plurality of three-dimensional AND flash memory structures, three-dimensional NAND flash memory structures or multiple A three-dimensional NOR flash memory structure.
TW111100344A 2021-10-29 2022-01-05 3d flash memory module chip and method of fabricating the same TWI836313B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163273876P 2021-10-29 2021-10-29
US63/273,876 2021-10-29

Publications (2)

Publication Number Publication Date
TW202318645A TW202318645A (en) 2023-05-01
TWI836313B true TWI836313B (en) 2024-03-21

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109075167A (en) 2018-05-24 2018-12-21 长江存储科技有限责任公司 Method for repairing substrate lattice and selective epitaxial processing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109075167A (en) 2018-05-24 2018-12-21 长江存储科技有限责任公司 Method for repairing substrate lattice and selective epitaxial processing

Similar Documents

Publication Publication Date Title
US11758732B2 (en) Hybrid bonding contact structure of three-dimensional memory device
US11056454B2 (en) Stacked three-dimensional heterogeneous memory devices and methods for forming the same
US20220384341A1 (en) Devices including stair step structures, and related memory devices and electronic systems
WO2020211332A1 (en) Stacked three-dimensional heterogeneous memory devices and methods for forming same
US11296107B2 (en) Channel hole and bitline architecture and method to improve page or block size and performance of 3D NAND
US20120184097A1 (en) Reduced Number of Masks for IC Device with Stacked Contact Levels
TWI712051B (en) Semiconductor device and manufacturing method thereof
JP2004111478A (en) Nonvolatile semiconductor storage device and its manufacturing method
JP7451567B2 (en) Three-dimensional memory device and method for forming a three-dimensional memory device
CN111279480B (en) Three-dimensional memory device and method for forming the same
US11456317B2 (en) Memory device
TWI836313B (en) 3d flash memory module chip and method of fabricating the same
JP7362802B2 (en) 3D flash memory module chip and its manufacturing method
TWI437686B (en) Memory with off-chip controller
TW202318645A (en) 3d flash memory module chip and method of fabricating the same
US11935597B2 (en) Semiconductor device and data storage system including the same
US20230275054A1 (en) Semiconductor devices and data storage systems including the same
US20230402097A1 (en) Semiconductor devices and electronic systems including the same
US20230169999A1 (en) Nonvolatile memory device and storage device
KR20220154057A (en) Three-dimensional semiconductor memory device and electronic system including the same
CN115696916A (en) Three-dimensional semiconductor memory device and electronic system including the same
CN117316893A (en) Three-dimensional flash memory element