TWI809775B - Method for manufacturing and measuring semiconductor structures - Google Patents

Method for manufacturing and measuring semiconductor structures Download PDF

Info

Publication number
TWI809775B
TWI809775B TW111110901A TW111110901A TWI809775B TW I809775 B TWI809775 B TW I809775B TW 111110901 A TW111110901 A TW 111110901A TW 111110901 A TW111110901 A TW 111110901A TW I809775 B TWI809775 B TW I809775B
Authority
TW
Taiwan
Prior art keywords
fin
fin array
wafer
displacement
fins
Prior art date
Application number
TW111110901A
Other languages
Chinese (zh)
Other versions
TW202318016A (en
Inventor
鄭正達
黃祖文
Original Assignee
南亞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/508,961 external-priority patent/US20230128335A1/en
Priority claimed from US17/510,786 external-priority patent/US20230125695A1/en
Application filed by 南亞科技股份有限公司 filed Critical 南亞科技股份有限公司
Publication of TW202318016A publication Critical patent/TW202318016A/en
Application granted granted Critical
Publication of TWI809775B publication Critical patent/TWI809775B/en

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Bipolar Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A method for manufacturing semiconductor device structure includes providing a substrate having a surface; forming a first gate structure on the surface; forming a second gate structure on the surface; forming a first well region in the substrate and between the first gate structure and the second gate structure; forming a conductive contact within a trench between the first gate structure and the second gate structure; forming a first structure in the first well region, wherein the first structure tapers away from a bottom portion of the conductive contact.

Description

半導體結構的製造與測量方法Fabrication and measurement methods of semiconductor structures

本申請案主張美國第17/508,961號及第17/510,786號專利申請案之優先權(即優先權日為「2021年10月22日」及「2021年10月26日」),其內容以全文引用之方式併入本文中。This application claims priority to U.S. Patent Application Nos. 17/508,961 and 17/510,786 (i.e., priority dates are "October 22, 2021" and "October 26, 2021"), the content of which is It is incorporated herein by reference in its entirety.

本揭露關於一種多個半導體結構的製造及測量方法。特別是有關於一種在一晶圓上之製造與測量多個半導體結構的方法。The present disclosure relates to a method of manufacturing and measuring a plurality of semiconductor structures. More particularly, it relates to a method of fabricating and measuring multiple semiconductor structures on a wafer.

根據摩爾定律(Moore's law),在半導體結構中之多個元素的密度急劇增加,且該等元素的尺寸迅速縮小。因此,由該等縮小之元素所引起的對準問題變得越來越重要。在一些傳統方法中,對準是離線進行檢查的。再者,傳統測量的精確度不能適應該等縮小元件的尺寸。因此,當該等元件在預定位置處的位置進行製造時,該晶圓可能無法正常工作,而上述情況可能在製造完成之後才知道。因此,當該晶圓具有造成該晶圓不能作為產品製造之未對準的多個元件時,浪費所述晶圓的製造資源以及時間成本。再者,降低該等晶圓的生產量。According to Moore's law, the density of elements in a semiconductor structure increases sharply, and the size of these elements shrinks rapidly. Therefore, alignment issues caused by such reduced elements become more and more important. In some conventional methods, alignment is checked offline. Furthermore, the accuracy of conventional measurements cannot accommodate the size of these shrinking components. As a result, the wafer may not function properly when the components are fabricated at the intended locations, which may not be known until after fabrication is complete. Thus, manufacturing resources and time costs of the wafer are wasted when the wafer has misaligned components that prevent the wafer from being manufactured as a product. Furthermore, the throughput of these wafers is reduced.

上文之「先前技術」說明僅提供背景技術,並未承認上文之「先前技術」說明揭示本揭露之標的,不構成本揭露之先前技術,且上文之「先前技術」之任何說明均不應作為本案之任一部分。The above "prior art" description only provides background technology, and does not acknowledge that the above "prior art" description discloses the subject of this disclosure, and does not constitute the prior art of this disclosure, and any description of the above "prior art" is It should not be part of this case.

本揭露之一實施例提供一種複數個半導體結構的製造及測量方法。該方法包括下列步驟:接收一晶圓,該晶圓具有複數個晶粒;分別形成該複數個半導體結構在每一個晶粒的複數個區塊中,其中每一個半導體結構具有一第一鰭片陣列以及一第二鰭片陣列,該第二鰭片陣列位在該第一鰭片陣列上方;在該晶圓上執行一圖案晶圓幾何測量,以獲得在該第一鰭片陣列的一第一鰭片與該第二鰭片陣列的一第一鰭片之間的一位移;以及依據該位移而確定該晶圓的一狀態。An embodiment of the disclosure provides a method for manufacturing and measuring a plurality of semiconductor structures. The method includes the steps of: receiving a wafer having a plurality of dies; respectively forming the plurality of semiconductor structures in a plurality of blocks of each die, wherein each semiconductor structure has a first fin array and a second array of fins, the second array of fins located above the first array of fins; performing a patterned wafer geometry measurement on the wafer to obtain a first array of fins on the first fin array a displacement between a fin and a first fin of the second fin array; and determining a state of the wafer according to the displacement.

在一些實施例中,分別形成該複數個半導體結構在每一個晶粒的複數個區塊中的步驟包括:形成該第一鰭片陣列在每一個區塊中;以及形成該第二鰭片陣列在該第一鰭片陣列上。In some embodiments, the step of forming the plurality of semiconductor structures in the plurality of blocks of each die includes: forming the first fin array in each block; and forming the second fin array on the first fin array.

在一些實施例中,該第一鰭片陣列與該第二鰭片陣列兩者均具有N個鰭片,其中N為一正整數。該第一鰭片陣列的該第一鰭片對應該第二鰭片陣列的該第一鰭片。在該第一鰭片陣列的該第一鰭片與該第二鰭片陣列的該第一鰭片之間的該位移從該半導體結構的一頂視圖所界定。In some embodiments, both the first fin array and the second fin array have N fins, where N is a positive integer. The first fins of the first fin array correspond to the first fins of the second fin array. The displacement between the first fin of the first fin array and the first fin of the second fin array is defined from a top view of the semiconductor structure.

在一些實施例中,形成該第一鰭片陣列在每一個區塊中的步驟包括:形成一第一層;蝕刻該第一層以形成該第一鰭片陣列;以及平坦化該第一層以暴露該第一鰭片陣列的一上表面。In some embodiments, the step of forming the first fin array in each block includes: forming a first layer; etching the first layer to form the first fin array; and planarizing the first layer to expose an upper surface of the first fin array.

在一些實施例中,形成該第二鰭片陣列在該第一鰭片陣列上的步驟包括:形成一第二層在該第一鰭片陣列上;蝕刻該第二層以形成該第二鰭片陣列;以及平坦化該第二層以暴露該第二鰭片陣列的一上表面。In some embodiments, the step of forming the second fin array on the first fin array includes: forming a second layer on the first fin array; etching the second layer to form the second fin array fin array; and planarizing the second layer to expose an upper surface of the second fin array.

在一些實施例中,在該晶圓上執行一圖案晶圓幾何測量,以獲得在該第一鰭片陣列的一第一鰭片與該第二鰭片陣列的一第一鰭片之間的該位移的步驟包括:獲得該第一鰭片陣列的該第一鰭片與該第二鰭片陣列的該第一鰭片的一第一重疊比率;獲得該第一鰭片陣列的一第N個鰭片與該第二鰭片陣列的一第N個鰭片的一第二重疊比率;獲得該第一鰭片陣列的一第A個鰭片與該第二鰭片陣列的一第A個鰭片的一中心重疊比率;以及依據該第一重疊比率、該第二重疊比率以及該中心重疊比率而獲得該位移。當N為一奇數時,則A等於(N+1)2,且當N為一偶數時,則A等於N/2。In some embodiments, a patterned wafer geometry measurement is performed on the wafer to obtain a distance between a first fin of the first fin array and a first fin of the second fin array. The step of displacing includes: obtaining a first overlapping ratio of the first fin of the first fin array and the first fin of the second fin array; obtaining an Nth fin array of the first fin array A second overlapping ratio of fins and an Nth fin of the second fin array; obtaining an Ath fin of the first fin array and an Ath fin of the second fin array a center overlap ratio of the fin; and obtaining the displacement according to the first overlap ratio, the second overlap ratio and the center overlap ratio. When N is an odd number, then A is equal to (N+1)2, and when N is an even number, then A is equal to N/2.

在一些實施例中,依據該第一重疊比率、該第二重疊比率以及該中心重疊比率而獲得該位移的步驟包括:該中心重疊比率減去該第一重疊比率以獲得一第一放大率;該中心重疊比率減去該第二重疊比率以獲得一第二放大率;以及依據該第一放大率以及該第二放大率而獲得該位移。In some embodiments, the step of obtaining the displacement according to the first overlap ratio, the second overlap ratio and the center overlap ratio includes: subtracting the first overlap ratio from the center overlap ratio to obtain a first magnification; The center overlap ratio subtracts the second overlap ratio to obtain a second magnification; and the displacement is obtained according to the first magnification and the second magnification.

在一些實施例中,該第一放大率大致等於該第二放大率。In some embodiments, the first magnification is substantially equal to the second magnification.

在一些實施例中,依據該第一放大率以及該第二放大率而獲得該位移的步驟包括:藉由平均該第一放大率與該第二放大率而獲得一平均放大率;以及在一查找表中獲得該位移,其中該查找表經配置以儲存該位移與該平均放大率的一對應關係。In some embodiments, the step of obtaining the displacement according to the first magnification and the second magnification includes: obtaining an average magnification by averaging the first magnification and the second magnification; The displacement is obtained in a lookup table, wherein the lookup table is configured to store a correspondence between the displacement and the average magnification.

在一些實施例中,當該位移大於一臨界值時,則確定該晶圓的該狀態為一未通過狀態,而當該位移並未大於該臨界值時,則確定該晶圓的該狀態為一通過狀態。在一些實施例中,該臨界值大約為1.5nm。In some embodiments, when the displacement is greater than a threshold, the state of the wafer is determined to be a fail state, and when the displacement is not greater than the threshold, the state of the wafer is determined to be A pass state. In some embodiments, the threshold is approximately 1.5 nm.

在一些實施例中,該方法還包括:當該晶圓的該狀態為該未通過狀態時,則從一批晶圓中移除該晶圓;以及當該晶圓的該狀態為該通過狀態時,則該晶圓保留在該批晶圓中。In some embodiments, the method further includes: when the state of the wafer is the fail state, removing the wafer from a batch of wafers; and when the state of the wafer is the pass state , the wafer remains in the batch of wafers.

在一些實施例中,該臨界值大約為1.5nm。In some embodiments, the threshold is approximately 1.5 nm.

本揭露之另一實施例提供一種製造及測量系統。該系統包括一處理腔室;以及一測量元件。該處理腔室經配置以執行多個操作,包括:形成一第一鰭片陣列在一晶圓之一晶粒的一區塊中;以及形成一第二鰭片陣列在該第一鰭片陣列上。該測量元件經配置以在該晶圓上執行一圖案晶圓幾何測量,以獲得在該第一鰭片陣列的一第一鰭片與該第二鰭片陣列的一第一鰭片之間的一位移,且還經配置以依據該位移而確定該晶圓的一狀態。Another embodiment of the present disclosure provides a manufacturing and measurement system. The system includes a processing chamber; and a measurement element. The processing chamber is configured to perform operations including: forming a first array of fins in a block of a die of a wafer; and forming a second array of fins in the first array of fins superior. The measurement element is configured to perform a patterned wafer geometry measurement on the wafer to obtain a distance between a first fin of the first fin array and a first fin of the second fin array A displacement, and also configured to determine a state of the wafer based on the displacement.

在一些實施例中,該位移是從該晶圓的頂視圖所界定。In some embodiments, the displacement is defined from a top view of the wafer.

在一些實施例中,該第一鰭片陣列與該第二鰭片陣列具有N個鰭片,其中N為一正整數。該測量元件還經配置以:測量該第一鰭片陣列之該第一鰭片與該第二鰭片陣列之該第一鰭片的一第一重疊比率;測量該第一鰭片陣列之一第N個鰭片與該第二鰭片陣列之一第N個鰭片的一第二重疊比率;以及測量該第一鰭片陣列之一第A個鰭片與該第二鰭片陣列之一第A個鰭片的一中心重疊比率。當N為一奇數時,則A等於(N+1)/2,而當N為一偶數時,則A等於N/2。In some embodiments, the first fin array and the second fin array have N fins, wherein N is a positive integer. The measurement element is also configured to: measure a first overlap ratio of the first fin of the first fin array and the first fin of the second fin array; measure one of the first fin array A second overlap ratio of the Nth fin and the Nth fin of the second fin array; and measuring the Ath fin of the first fin array and one of the second fin array A center overlap ratio of the Ath fin. When N is an odd number, A is equal to (N+1)/2, and when N is an even number, A is equal to N/2.

在一些實施例中,該測量元件還經配置以:藉由該中心重疊比率減去該第一重疊比率以獲得一第一放大率;藉由該中心重疊比率減去該第二重疊比率以獲得一第二放大率;以及依據該第一放大率以及該第二放大率而獲得該位移。In some embodiments, the measurement element is further configured to: subtract the first overlap ratio from the center overlap ratio to obtain a first magnification; subtract the second overlap ratio from the center overlap ratio to obtain a second magnification; and obtaining the displacement according to the first magnification and the second magnification.

在一些實施例中,該測量元件還經配置以:藉由平均該第一放大率與該第二放大率以獲得一平均放大率。該測量元件包括一查找表,其經配置以儲存該位移與該平均放大率的一對應關係,該測量元件還經配置以依據該查找表而獲得該位移。In some embodiments, the measuring element is further configured to obtain an average magnification by averaging the first magnification and the second magnification. The measuring element includes a lookup table configured to store a corresponding relationship between the displacement and the average magnification, and the measuring element is also configured to obtain the displacement according to the lookup table.

在一些實施例中,當該位移大於一臨界值時,則確定該晶粒的該狀態為一未通過(fail)狀態。當該位移並未大於該臨界值時,則確定該晶粒的該狀態為一通過(pass)狀態。In some embodiments, when the displacement is greater than a threshold, the state of the die is determined to be a fail state. When the displacement is not greater than the critical value, the state of the grain is determined to be a pass state.

在一些實施例中,當該晶圓的該狀態為未通過狀態時,該處理腔室經配置以從一批晶圓而移除該晶圓。In some embodiments, the processing chamber is configured to remove the wafer from a batch of wafers when the state of the wafer is a fail state.

在一些實施例中,當該晶圓的該狀態為通過狀態時,該處理腔室經配置以將該晶圓保留在一批晶圓中。In some embodiments, the processing chamber is configured to retain the wafer in a wafer batch when the state of the wafer is a pass-through state.

上文已相當廣泛地概述本揭露之技術特徵及優點,俾使下文之本揭露詳細描述得以獲得較佳瞭解。構成本揭露之申請專利範圍標的之其它技術特徵及優點將描述於下文。本揭露所屬技術領域中具有通常知識者應瞭解,可相當容易地利用下文揭示之概念與特定實施例可作為修改或設計其它結構或製程而實現與本揭露相同之目的。本揭露所屬技術領域中具有通常知識者亦應瞭解,這類等效建構無法脫離後附之申請專利範圍所界定之本揭露的精神和範圍。The technical features and advantages of the present disclosure have been broadly summarized above, so that the following detailed description of the present disclosure can be better understood. Other technical features and advantages constituting the subject matter of the claims of the present disclosure will be described below. Those skilled in the art of the present disclosure should understand that the concepts and specific embodiments disclosed below can be easily used to modify or design other structures or processes to achieve the same purpose as the present disclosure. Those with ordinary knowledge in the technical field to which the disclosure belongs should also understand that such equivalent constructions cannot depart from the spirit and scope of the disclosure defined by the appended claims.

現在使用特定語言描述圖式中所描述之本揭露的多個實施例(或例子)。應當理解,在此並未意味限制本揭露的範圍。所描述之該等實施例的任何改變或修改,以及本文件中所描述之原理的任何進一步應用,都被認為是本揭露內容所屬技術領域中具有通常知識者通常會發生的。元件編號可以在整個實施例中重複,但這並不一定意味著一個實施例的特徵適用於另一實施例,即使它們共用相同的元件編號。The various embodiments (or examples) of the disclosure depicted in the drawings are now described using specific language. It should be understood that no limitation of the scope of the present disclosure is meant here. Any changes or modifications of the described embodiments, and any further application of the principles described in this document, are considered to be within the ordinary skill of the art to which this disclosure pertains. Element numbers may be repeated throughout the embodiments, but this does not necessarily mean that features of one embodiment apply to another, even if they share the same element number.

應當理解,儘管這裡可以使用術語第一,第二,第三等來描述各種元件、部件、區域、層或區段(sections),但是這些元件、部件、區域、層或區段不受這些術語的限制。相反,這些術語僅用於將一個元件、組件、區域、層或區段與另一個區域、層或區段所區分開。因此,在不脫離本發明進步性構思的教導的情況下,下列所討論的第一元件、組件、區域、層或區段可以被稱為第二元件、組件、區域、層或區段。It will be understood that although the terms first, second, third etc. may be used herein to describe various elements, components, regions, layers or sections, these elements, components, regions, layers or sections are not constrained by these terms. limits. Rather, these terms are only used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the presently advanced concepts.

本文中使用之術語僅是為了實現描述特定實施例之目的,而非意欲限制本發明。如本文中所使用,單數形式「一(a)」、「一(an)」,及「該(the)」意欲亦包括複數形式,除非上下文中另作明確指示。將進一步理解,當術語「包括(comprises)」及/或「包括(comprising)」用於本說明書中時,該等術語規定所陳述之特徵、整數、步驟、操作、元件,及/或組件之存在,但不排除存在或增添一或更多個其他特徵、整數、步驟、操作、元件、組件,及/或上述各者之群組。The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a", "an", and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. It will be further understood that when the terms "comprises" and/or "comprising" are used in this specification, these terms specify the stated features, integers, steps, operations, elements, and/or components. Presence, but not excluding the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups of the above.

圖1是結構示意圖,例示本揭露一些實施例的製造系統10。製造系統10經配置以處理一批晶圓B,且還檢驗在該批晶圓B中的每一個晶圓W以確定每一個晶圓W的一狀態。舉例來說,製造系統10在該批晶圓B上執行多個半導體製程,並測量在每一個晶圓W上的一物理特徵(例如一特定結構的一尺寸)以依據該測量結果而確定晶圓W的狀態。FIG. 1 is a structural schematic diagram illustrating a manufacturing system 10 according to some embodiments of the present disclosure. Manufacturing system 10 is configured to process a batch of wafers B and also inspect each wafer W in the batch B to determine a status of each wafer W. For example, the manufacturing system 10 performs multiple semiconductor processes on the batch of wafers B, and measures a physical characteristic (such as a dimension of a specific structure) on each wafer W to determine the wafer W based on the measurement result. The state of circle W.

製造系統10包括一處理腔室100以及一測量元件200,而測量元件200耦接到處理腔室100。處理腔室100經配置以在晶圓W上執行多個半導體製程,以形成一半導體結構SS在每一個晶圓W上。測量元件200經配置以在每一個晶圓W上執行一測量,以確定晶圓W的狀態。The manufacturing system 10 includes a processing chamber 100 and a measuring element 200 , and the measuring element 200 is coupled to the processing chamber 100 . The processing chamber 100 is configured to perform a plurality of semiconductor processes on the wafers W to form a semiconductor structure SS on each wafer W. The measurement unit 200 is configured to perform a measurement on each wafer W to determine the state of the wafer W.

在一些實施例中,處理腔室100製造多個鰭片陣列在晶圓W上的兩層中。測量元件200測量晶圓W之頂視圖的兩層中的該等鰭片陣列之間的一重疊比率,進而產生代表在兩層中的該等鰭片陣列之間的位移的一放大率。In some embodiments, the processing chamber 100 fabricates a plurality of fin arrays on the wafer W in two layers. The measuring element 200 measures an overlap ratio between the fin arrays in two layers of the top view of the wafer W, thereby generating a magnification representing the displacement between the fin arrays in the two layers.

在一些實施例中,由測量元件200所執行的測量為一圖案晶圓幾何(PWG)測量。在一些實施例中,測量元件200包括一記憶體,其儲存一查找表210。查找表210儲存放大率與位移的一對應關係。在一些實施例中,儲存在查找表210中的每一個對應關係記錄一位移以及一放大率。舉例來說,測量元件200尋找包括所產生之放大率的對應關係,然後測量元件200能夠依據在查找表210中的對應關係而知道與放大率相關聯的位移。因此,當測量元件200依據重疊比率而獲得放大率時,則可依據查找表210而獲得位移。In some embodiments, the measurement performed by the measurement element 200 is a patterned wafer geometry (PWG) measurement. In some embodiments, the measurement device 200 includes a memory storing a look-up table 210 . The lookup table 210 stores a correspondence between the magnification and the displacement. In some embodiments, each correspondence stored in the lookup table 210 records a displacement and a magnification. For example, the measuring element 200 finds a corresponding relationship including the generated magnification, and then the measuring element 200 can know the displacement associated with the magnification according to the corresponding relationship in the look-up table 210 . Therefore, when the measuring element 200 obtains the magnification according to the overlapping ratio, the displacement can be obtained according to the look-up table 210 .

在一些實施例中,製造系統10依據晶圓W的狀態以確定晶圓W接下來的製程。舉例來說,晶圓W可確定為從該批晶圓B而移除,或是可確定藉由下一個製程而進行處理。In some embodiments, the manufacturing system 10 determines the next manufacturing process of the wafer W according to the state of the wafer W. For example, the wafer W may be determined to be removed from the batch of wafers B, or may be determined to be processed by the next process.

請參考圖2。圖2是結構示意圖,例示本揭露一些實施例的晶圓W。在一些實施例中,該批晶圓B包括多於一個的晶圓W,且每一個晶圓W經歷相同的半導體製程以及相同的測量。Please refer to Figure 2. FIG. 2 is a schematic structural diagram illustrating a wafer W according to some embodiments of the present disclosure. In some embodiments, the wafer batch B includes more than one wafer W, and each wafer W undergoes the same semiconductor process and the same measurements.

在圖2中,晶圓W為繪製晶圓W的一頂視圖。繪示一X軸以及一Y軸以代表晶圓W的定向(orientation)。在一些實施例中,晶圓W為一半導體晶圓,舉例來說,為一矽晶圓。晶圓W包括複數個晶粒D。在一些實施例中,那些晶粒D是相同的。提供如圖2所示之晶圓W中的該等晶粒D的數量與位置為用於描述目的。在晶圓W中之該等晶粒D的各種不同數量及位置均在本發明所考慮的範圍內。舉例來說,晶圓W可具有圍繞晶圓W邊緣設置的其他晶粒D。In FIG. 2 , wafer W is a top view of wafer W drawn. An X-axis and a Y-axis are shown to represent the orientation of the wafer W. Referring to FIG. In some embodiments, the wafer W is a semiconductor wafer, for example, a silicon wafer. Wafer W includes a plurality of die D. In some embodiments, those grains D are the same. The number and location of the dies D in the wafer W shown in FIG. 2 are provided for descriptive purposes. Various numbers and positions of the dies D in the wafer W are within the scope of the present invention. Wafer W may have other dies D disposed around the edge of wafer W, for example.

請參考圖3。圖3是結構方塊示意圖,例示本揭露一些實施例的晶粒D。晶粒D分割成複數個區塊(banks)BA。在一些實施例中,在處理腔室100執行該等半導體製程之後,那些區塊BA具有相同半導體結構SS。在圖3中,有9個區塊顯示在晶粒D中,然而,本揭露並不以此為限。Please refer to Figure 3. FIG. 3 is a structural block diagram illustrating a die D of some embodiments of the present disclosure. Die D is divided into a plurality of blocks (banks) BA. In some embodiments, those blocks BA have the same semiconductor structure SS after the processing chamber 100 performs the semiconductor processes. In FIG. 3 , there are 9 blocks shown in die D, however, the present disclosure is not limited thereto.

在一些實施例中,在晶粒D上的半導體結構SS包括複數個鰭片,其配置成多個鰭片陣列。在一些實施例中,該等區塊BA的各邊緣由在半導體結構SS中的鰭片陣列所界定。換言之,在晶粒D上的該等鰭片分組成許多陣列,且每一個陣列表示在晶體D中的一區塊BA。換句話說,每一個區塊BA具有一鰭片陣列,其與在其他區塊BA中的一鰭片陣列分隔開。In some embodiments, the semiconductor structure SS on the die D includes a plurality of fins configured as a plurality of fin arrays. In some embodiments, the edges of the blocks BA are bounded by fin arrays in the semiconductor structure SS. In other words, the fins on die D are grouped into many arrays, and each array represents a block BA in crystal D. In other words, each block BA has a fin array that is separated from a fin array in other blocks BA.

請參考圖4及圖5。圖4是結構示意圖,例示本揭露一些實施例從該晶圓W之頂視所視的區塊BA。圖5是結構示意圖,例示本揭露一些實施例從該晶圓W之剖視所視的區塊BA。在圖4中,區塊BA繪示在X-Y平面上。在圖5中,區塊BA繪示在X-Z平面上。Please refer to Figure 4 and Figure 5. FIG. 4 is a structural diagram illustrating a block BA viewed from the top view of the wafer W according to some embodiments of the present disclosure. FIG. 5 is a structural diagram illustrating a block BA viewed from a cross-section of the wafer W according to some embodiments of the present disclosure. In FIG. 4, the block BA is shown on the X-Y plane. In FIG. 5, the block BA is shown on the X-Z plane.

如圖5所示,晶圓W的剖視圖顯示半導體結構SS具有一第一層L1以及一第二層L2,第一層L1設置在晶圓W上,第二層L2設置在第一層L1上。半導體結構SS還包括第一層L1中的一第一鰭片陣列A1以及在第二層L2中的一第二鰭片陣列A2。第一鰭片陣列A1包括複數個鰭片,其標示成F11、F12~F1N,且第二鰭片陣列A2包括複數個鰭片,其標示成F21、F22~F2N。在一些實施例中,在第一鰭片陣列A1中之該等鰭片的數量為N,且在第二鰭片陣列A2中之該等鰭片的數量為N。N為一整數。換句話說,第一鰭片陣列A1與第二鰭片陣列A2包括相同數量的鰭片。As shown in FIG. 5 , the cross-sectional view of the wafer W shows that the semiconductor structure SS has a first layer L1 and a second layer L2, the first layer L1 is disposed on the wafer W, and the second layer L2 is disposed on the first layer L1 . The semiconductor structure SS further includes a first fin array A1 in the first layer L1 and a second fin array A2 in the second layer L2. The first fin array A1 includes a plurality of fins, which are marked as F11, F12˜F1N, and the second fin array A2 includes a plurality of fins, which are marked as F21, F22˜F2N. In some embodiments, the number of the fins in the first fin array A1 is N, and the number of the fins in the second fin array A2 is N. N is an integer. In other words, the first fin array A1 and the second fin array A2 include the same number of fins.

在一些實施例中,第一鰭片陣列A1的一第一鰭片F11對應第二鰭片陣列A2的一第一鰭片F21。類似地,第一鰭片陣列A1的一第二鰭片F12到一第N個鰭片F1N分別對應第二鰭片陣列A2的一第二鰭片F12到一第N個鰭片F2N。在圖5中,第二鰭片陣列A2的第一鰭片F21設置在第一鰭片陣列A1的第一鰭片F11上並接觸第一鰭片陣列A1的第一鰭片F11。類似地,第二鰭片陣列A2的第二鰭片F22到一第N個鰭片F2N分別設置在第一鰭片陣列A1的第二鰭片F12到第N個鰭片上並分別接觸第一鰭片陣列A1的第二鰭片F12到第N個鰭片。In some embodiments, a first fin F11 of the first fin array A1 corresponds to a first fin F21 of the second fin array A2 . Similarly, a second fin F12 to an Nth fin F1N of the first fin array A1 correspond to a second fin F12 to an Nth fin F2N of the second fin array A2 respectively. In FIG. 5 , the first fins F21 of the second fin array A2 are disposed on the first fins F11 of the first fin array A1 and contact the first fins F11 of the first fin array A1 . Similarly, the second fins F22 to Nth fins F2N of the second fin array A2 are respectively disposed on the second fins F12 to the Nth fins of the first fin array A1 and contact the first fins respectively. The second fin F12 to the Nth fin of the fin array A1.

在一些實施例中,第一鰭片陣列A1的第一鰭片F11到第N個鰭片F1N分別相同於第二鰭片陣列A2的第一鰭片F11到第N個鰭片F2N。第一鰭片陣列A1的第一鰭片F11到第N個鰭片F1N分別與第二鰭片陣列A2的第一鰭片F11到第N個鰭片F2N重疊。因此,如圖4所示,從晶圓W的頂視圖中僅能看到第二鰭片陣列A2。In some embodiments, the first to Nth fins F11 to F1N of the first fin array A1 are respectively the same as the first to Nth fins F11 to F2N of the second fin array A2 . The first to Nth fins F11 to F1N of the first fin array A1 overlap with the first to Nth fins F11 to F2N of the second fin array A2 respectively. Therefore, only the second fin array A2 can be seen from the top view of the wafer W as shown in FIG. 4 .

第一層L1與第二層L2依序形成在晶圓W上。在一些實施例中,形成第一層L1以具有一平坦上表面,且第二層L2形成在第一層L1的平坦上表面上。然而,在其他實施例中,當第一鰭片陣列A1形成時,第一層L1與晶圓W經歷該等製程所造成的應力。舉例來說,一熱處理可造成在第一層L1與第一鰭片陣列A1的應力,且應力可使第一鰭片陣列A1與第一層L1變形。因為第一層L1與第一鰭片陣列A1的材料不同於晶圓W,所以一異質接面(heterojunction)形成在第一層L1與晶圓W之間。應力造成在不同材料中的不同應變(strains)。因此,由於異質接面,所以使在第一層L1中的第一鰭片陣列A1變形,且如圖6及圖7所示,第一層L1不能具有一平坦上表面。因此,第二層L2不能形成在第一層L1的平坦上表面。The first layer L1 and the second layer L2 are sequentially formed on the wafer W. In some embodiments, the first layer L1 is formed to have a flat upper surface, and the second layer L2 is formed on the flat upper surface of the first layer L1. However, in other embodiments, when the first fin array A1 is formed, the first layer L1 and the wafer W experience the stress caused by these processes. For example, a heat treatment may cause stress in the first layer L1 and the first fin array A1, and the stress may deform the first fin array A1 and the first layer L1. Since the materials of the first layer L1 and the first fin array A1 are different from the wafer W, a heterojunction is formed between the first layer L1 and the wafer W. Stress causes different strains in different materials. Therefore, due to the heterojunction, the first fin array A1 in the first layer L1 is deformed, and as shown in FIGS. 6 and 7 , the first layer L1 cannot have a flat upper surface. Therefore, the second layer L2 cannot be formed on the flat upper surface of the first layer L1.

請參考圖6。圖6是結構示意圖,例示本揭露另外一些實施例從該晶圓W之剖視所視的區塊BA。如圖6所示,在第一層L1中的第一鰭片陣列A1變形。在一些實施例中,相較於如圖5所示的第一鰭片陣列A1,第一鰭片陣列A1的第一鰭片F11、第二鰭片F12、第(N-1)個鰭片F1(N-1)以及第N個鰭片F1N變形。Please refer to Figure 6. FIG. 6 is a structural schematic diagram illustrating a block BA viewed from the cross-section of the wafer W according to some other embodiments of the present disclosure. As shown in FIG. 6, the first fin array A1 in the first layer L1 is deformed. In some embodiments, compared with the first fin array A1 shown in FIG. 5 , the first fin F11 , the second fin F12 , the (N-1)th fin F1(N−1) and the Nth fin F1N are deformed.

在一些實施例中,第一鰭片陣列A1是對稱的。第一鰭片F11對稱於第N個鰭片F1N,第二鰭片F12對稱於第(N-1)個鰭片F1(N-1)。因此,接下來的描述將以第一鰭片F11與第二鰭片F12為例,且將不會重複第(N-1)個鰭片與第N個鰭片的描述。In some embodiments, the first fin array A1 is symmetrical. The first fin F11 is symmetrical to the Nth fin F1N, and the second fin F12 is symmetrical to the (N−1)th fin F1 (N−1). Therefore, the following description will take the first fin F11 and the second fin F12 as an example, and the description of the (N−1)th fin and the Nth fin will not be repeated.

第一鰭片陣列A1的該等鰭片大致沿著Z軸方向而從晶圓W延伸。由於變形,所以應力使第一鰭片陣列A1的邊緣變形。第一鰭片F11與第二鰭片F12的各部分遠離第一鰭片陣列A1(例如朝向負Z軸方向)而傾斜,且第一鰭片F11比第二鰭片F12更加變形。如圖6所示,僅繪示第一鰭片F11與第二鰭片F12變形,但本揭露並不以此為限。在其他實施例中,應力使在第一鰭片陣列A1之便元上的多於兩個鰭片變形。The fins of the first fin array A1 extend from the wafer W substantially along the Z-axis direction. Due to the deformation, the stress deforms the edge of the first fin array A1. Parts of the first fins F11 and the second fins F12 are inclined away from the first fin array A1 (for example, toward the negative Z-axis direction), and the first fins F11 are more deformed than the second fins F12 . As shown in FIG. 6 , only the deformation of the first fin F11 and the second fin F12 is shown, but the present disclosure is not limited thereto. In other embodiments, the stress deforms more than two fins on one element of the first fin array A1.

第一鰭片F21與第二鰭片F22對應第一鰭片F11與第二鰭片F12。在圖6中,應力使第一鰭片F11與第二鰭片F12變形,以使第一鰭片F11與第二鰭片F12的各上表面低於第一鰭片陣列A1在Z軸的其他鰭片。因此,當第二層L2與第二鰭片陣列A2形成在變形的第一鰭片陣列A1時,第一鰭片F21與第二鰭片F22延伸得比第二鰭片陣列的其他鰭片更深(朝向負X軸方向)。再者,因為變形,所以第一鰭片F11與第一鰭片F21的位置並未對準。類似地,因為變形,所以第二鰭片F12與第二鰭片F22的位置並未對準。因此,代表變形的一位移d1、一位移d2、一位移s(N-1)以及一位移dN表示在圖6中。The first fin F21 and the second fin F22 correspond to the first fin F11 and the second fin F12 . In FIG. 6, the stress deforms the first fins F11 and the second fins F12, so that the upper surfaces of the first fins F11 and the second fins F12 are lower than the rest of the first fin array A1 on the Z axis. fins. Therefore, when the second layer L2 and the second fin array A2 are formed on the deformed first fin array A1, the first fins F21 and the second fins F22 extend deeper than other fins of the second fin array. (towards the negative X-axis direction). Furthermore, due to the deformation, the positions of the first fins F11 and the first fins F21 are not aligned. Similarly, the positions of the second fins F12 and F22 are not aligned due to deformation. Therefore, a displacement d1, a displacement d2, a displacement s(N-1), and a displacement dN representing the deformation are shown in FIG. 6 .

請參考圖7。圖7是結構示意圖,例示本揭露可替代的一些實施例從該晶圓W之剖視所視的區塊BA。如圖7所示,在一第層L1中的第一鰭片陣列A1變形。在一些實施例中,相較於如圖5所示的第一鰭片F11與第二鰭片F12,第一鰭片陣列A1的第一鰭片F11與第二鰭片F12變形。Please refer to Figure 7. FIG. 7 is a structural diagram illustrating a block BA viewed from a cross-section of the wafer W according to some alternative embodiments of the present disclosure. As shown in FIG. 7, the first fin array A1 in a first layer L1 is deformed. In some embodiments, compared with the first fins F11 and the second fins F12 shown in FIG. 5 , the first fins F11 and the second fins F12 of the first fin array A1 are deformed.

第一鰭片陣列A1的該等鰭片大致沿著Z軸而從晶圓W延伸。由於變形,所以應力使第一鰭片陣列A1的邊緣變形。第一鰭片F11與第二鰭片F12的各上部朝向第一鰭片陣列A1(例如朝向X軸方向)傾斜,且第一鰭片F11比第二鰭片F12更加變形。如圖7所示,僅繪示變形的第一鰭片F11與第二鰭片F12,但本揭露並不以此為限。在另一實施例中,應力使在第一鰭片陣列A1之邊緣上的多於兩個的鰭片變形。The fins of the first fin array A1 extend from the wafer W substantially along the Z-axis. Due to the deformation, the stress deforms the edge of the first fin array A1. The upper portions of the first fins F11 and the second fins F12 are inclined toward the first fin array A1 (for example, toward the X-axis direction), and the first fins F11 are more deformed than the second fins F12 . As shown in FIG. 7 , only the deformed first fins F11 and second fins F12 are shown, but the present disclosure is not limited thereto. In another embodiment, the stress deforms more than two fins on the edge of the first fin array A1.

類似於圖6中的該等實施例,在圖7中,第一鰭片F11與第二鰭片F12的各上表面低於第一鰭片陣列A1在Z軸的其他鰭片。當第二層L2與第二鰭片陣列A2形成在變形的第一鰭片陣列A1上時,第一鰭片F21與第二鰭片F22延伸得比第二鰭片陣列A2的其他鰭片更深(朝向負Z軸的方向)。再者,因為變形,所以第一鰭片F11與第一鰭片F21的位置並未對準。類似地,因為變形,所以第二鰭片F12與第二鰭片F22的位置並未對準。因此,代表變形的位移d1、位移d2、位移d(N-1)以及位移dN表示在圖7中。Similar to the embodiments in FIG. 6 , in FIG. 7 , the upper surfaces of the first fins F11 and the second fins F12 are lower than other fins of the first fin array A1 on the Z axis. When the second layer L2 and the second fin array A2 are formed on the deformed first fin array A1, the first fins F21 and the second fins F22 extend deeper than other fins of the second fin array A2 (direction toward the negative Z axis). Furthermore, due to the deformation, the positions of the first fins F11 and the first fins F21 are not aligned. Similarly, the positions of the second fins F12 and F22 are not aligned due to deformation. Therefore, displacement d1, displacement d2, displacement d(N-1), and displacement dN representing deformation are shown in FIG. 7 .

請參考圖8。圖8是結構示意圖,例示本揭露一些實施例從該晶圓W之剖視所視之如圖6所示的區塊BA。如圖6所述,第一鰭片F11與第一鰭片F21的位置並未對準,且第二鰭片F21與第二鰭片F22的位置並未對準。相較於如圖4所示的區塊BA,第一鰭片F11的一側部以及第二鰭片F12的一側部並未分別與第一鰭片F21與第二鰭片F22所重疊。因此,第一鰭片F11與第二鰭片F12之所述的各側部可以從如圖8所示之晶圓W的俯視圖中看到。Please refer to Figure 8. FIG. 8 is a structural diagram illustrating the block BA shown in FIG. 6 viewed from the cross-section of the wafer W according to some embodiments of the present disclosure. As shown in FIG. 6 , the positions of the first fins F11 and the first fins F21 are not aligned, and the positions of the second fins F21 and the second fins F22 are not aligned. Compared with the block BA shown in FIG. 4 , one side of the first fin F11 and one side of the second fin F12 do not overlap with the first fin F21 and the second fin F22 respectively. Therefore, the sides of the first fins F11 and the second fins F12 can be seen from the top view of the wafer W as shown in FIG. 8 .

位移d1表示第一鰭片F11未與沿著X軸之第一鰭片F21重疊的側部的一長度,而位移d2表示第二鰭片F12未與沿著X軸之第二鰭片F22重疊的側部的一長度。類似地,位移dN表示第N個鰭片F1N未與沿著X軸之第一鰭片F2N重疊的側部的一長度,且位移d(N-1)表示第(N-1)個鰭片F2(N-1)未與沿著X軸之第(N-1)個鰭片F2(N-1)重疊的側部的一長度。此外,一寬度d表示在第一鰭片陣列A1與第二鰭片陣列A2中之該等鰭片的寬度。在一些實施例中,位移d1大於位移d2,且位移dN大於位移D(N-1)。The displacement d1 represents a length of the side of the first fin F11 that does not overlap the first fin F21 along the X-axis, and the displacement d2 represents that the second fin F12 does not overlap the second fin F22 along the X-axis A length of the side of . Similarly, displacement dN represents a length of the side of the Nth fin F1N that does not overlap the first fin F2N along the X-axis, and displacement d(N-1) represents the (N-1)th fin F2(N-1) A length of the side that does not overlap with the (N-1)th fin F2(N-1) along the X-axis. In addition, a width d represents the width of the fins in the first fin array A1 and the second fin array A2 . In some embodiments, the displacement d1 is greater than the displacement d2, and the displacement dN is greater than the displacement D(N−1).

在一些實施例中,位移d1、位移d2、位移d(N-1)以及位移dN大約為數奈米。然而,在習知的方法中,測量設備不能具有降到奈米程度的測量解析度。因此,位移d1-dN並不能直接由測量元件200所測量。相較於習知方法,本申請案使用測量元件200以執行PWG測量,位移d1-dN可藉由轉換PWG測量之測量結果而獲得。獲得位移d1-dN之各步驟的細節於下列描述。In some embodiments, the displacement d1, the displacement d2, the displacement d(N−1), and the displacement dN are approximately several nanometers. However, in conventional methods, the measurement equipment cannot have a measurement resolution down to the nanometer level. Therefore, the displacements d1 -dN cannot be directly measured by the measuring element 200 . Compared with the conventional method, the present application uses the measurement element 200 to perform the PWG measurement, and the displacements d1-dN can be obtained by converting the measurement results of the PWG measurement. The details of the steps for obtaining the displacements d1-dN are described below.

測量元件200經配置以測量藉由執行PWG測量之第一鰭片陣列A1與第二鰭片陣列A2的重疊比率。在一些實施例中,測量元件200測量第一鰭片F11與第一鰭片F21的重疊比率R1、第N個鰭片F1N與第N個鰭片F2N的重疊比率RN,以及第A個鰭片F1A與第A個鰭片F2A的中心重疊比率RA。當N為一奇數時,A等於(N+1)/2。當N為一偶數時,A等於N/2。重疊比率R1可表示成(d-d1)/d。類似地,重疊比率RN可表示成(d-dN)d。在一些實施例中,第A個鰭片F1A完全與第A個鰭片F2A重疊。因此,中心重疊比率RA大致等於0。在一些實施例中,重疊比率R1等於重疊比率RN。The measuring element 200 is configured to measure the overlapping ratio of the first fin array A1 and the second fin array A2 by performing PWG measurement. In some embodiments, the measuring element 200 measures the overlapping ratio R1 of the first fin F11 and the first fin F21, the overlapping ratio RN of the Nth fin F1N and the Nth fin F2N, and the Ath fin Center overlap ratio RA of F1A and A-th fin F2A. When N is an odd number, A is equal to (N+1)/2. When N is an even number, A is equal to N/2. The overlap ratio R1 can be expressed as (d-d1)/d. Similarly, the overlap ratio RN can be expressed as (d-dN)d. In some embodiments, the Ath fin F1A completely overlaps the Ath fin F2A. Therefore, the center overlap ratio RA is approximately equal to zero. In some embodiments, the overlap ratio R1 is equal to the overlap ratio RN.

在獲得重疊比率R1、RN與RA之後,測量元件200獲得與位移d1相關聯的一放大率M1以及與dN相關聯的一放大率MN。放大率M1可藉由中心重疊比率RA減去重疊比率R1所獲得,而放大率MN藉由中心重疊比率RA減去重疊比率RN所獲得。在一些實施例中,放大率M1大致等於放大率MN。After obtaining the overlapping ratios R1, RN and RA, the measuring element 200 obtains a magnification M1 associated with the displacement d1 and a magnification MN associated with dN. The magnification M1 can be obtained by subtracting the overlap ratio R1 from the center overlap ratio RA, and the magnification MN can be obtained by subtracting the overlap ratio RN from the center overlap ratio RA. In some embodiments, the magnification M1 is approximately equal to the magnification MN.

在獲得放大率M1與放大率MN之後,測量元件200能夠藉由尋找在查找表210中與放大率M1及放大率MN相關聯之對應關係而獲得位移d1與位移dN。在一些實施例中,測量元件200還經配置以平均放大率M1與放大率MN而獲得一平均放大率Mavg。測量元件200尋找在查找表210中與平均放大率Mavg相關聯的一對應關係,且還依據該對應關係而獲得一平均位移davg。After obtaining the magnification M1 and the magnification MN, the measurement device 200 can obtain the displacement d1 and the displacement dN by finding the corresponding relationship associated with the magnification M1 and the magnification MN in the look-up table 210 . In some embodiments, the measuring element 200 is also configured to obtain an average magnification Mavg by averaging the magnification M1 and the magnification MN. The measuring element 200 finds a corresponding relationship associated with the average magnification Mavg in the look-up table 210, and also obtains an average displacement davg according to the corresponding relationship.

測量元件200依據位移d1、位移dN及/或平均位移davg而確定晶圓W的狀態。當位移d1、位移dN及/或平均位移davg大於一臨界值時,則測量元件200確定晶圓W的狀態是一未通過狀態FAIL。在此情況下,未通過狀態FAIL表示在晶圓W之第一層L1中的第一鰭片陣列A1的變形超出製造公差(manufacturing tolerance),以使位移d1、位移dN及/或平均位移davg大於臨界值。因此,晶圓W將從該批晶圓B移除,且晶圓W將不在接下來的製程中進行處理。The measuring unit 200 determines the state of the wafer W according to the displacement d1, the displacement dN and/or the average displacement davg. When the displacement d1, the displacement dN and/or the average displacement davg is greater than a threshold value, the measurement unit 200 determines that the state of the wafer W is a fail state FAIL. In this case, the fail status FAIL indicates that the deformation of the first fin array A1 in the first layer L1 of the wafer W exceeds manufacturing tolerances such that the displacement d1, the displacement dN and/or the average displacement davg greater than the critical value. Therefore, the wafer W will be removed from the batch of wafers B, and the wafer W will not be processed in the subsequent process.

反之,當位移d1、位移dN及平均位移davg並未大於臨界值時,則測量元件200確定晶圓W的狀態是一通過狀態PASS。在此情況下,通過狀態PASS表示在晶圓W的第一層L1中之第一鰭片陣列A1的變形成在製造公差內,以使位移d1、位移dN及平均位移davg並未大於臨界值。因此,晶圓W將保留在該批晶圓B中,且晶圓W經在接下來的製程中進行處理。On the contrary, when the displacement d1, the displacement dN and the average displacement davg are not greater than the critical value, then the measurement unit 200 determines that the state of the wafer W is a passing state PASS. In this case, the deformation of the first fin array A1 in the first layer L1 of the wafer W is within manufacturing tolerances, indicated by the state PASS, so that the displacement d1, the displacement dN and the average displacement davg are not greater than a critical value . Therefore, the wafer W will remain in the batch of wafers B, and the wafer W will be processed in the next process.

相較於如圖4所示的該等實施例,在圖6與圖8中,在第一層L1中之第一鰭片F11的位置朝向負X軸方向偏離原始位置,且在第一層L1中之第N個鰭片F1N的位置朝向X軸方向偏離原始位置。在此實施例中,在第一層L1中的第一鰭片陣列A1可經歷一拉伸應力,而第一鰭片陣列A1的邊緣(例如第一鰭片F11與第N個鰭片F1N)從第一鰭片陣列A1而朝外延伸。Compared with the embodiments shown in FIG. 4, in FIG. 6 and FIG. 8, the position of the first fin F11 in the first layer L1 deviates from the original position toward the negative X-axis direction, and The position of the Nth fin F1N in L1 deviates from the original position toward the X-axis direction. In this embodiment, the first fin array A1 in the first layer L1 may experience a tensile stress, and the edges of the first fin array A1 (for example, the first fin F11 and the N-th fin F1N) extending outward from the first fin array A1.

請參考圖9。圖9是結構示意圖,例示本揭露一些實施例從該晶圓W之剖視所視之如圖7所示的區塊BA。如圖7所述,第一鰭片F11與第一鰭片F21的位置並未對準,且第二鰭片F12與第二鰭片F22的位置並未對準。相較於如圖4所示的區塊BA,第一鰭片F11的一側部以及第二鰭片F12的一側部並未分別與第一鰭片F21及第二鰭片F22重疊。因此,第一鰭片F11與第二鰭片F12之所述的該等側部可從如圖9所示之晶圓W的頂是圖看出來。Please refer to Figure 9. FIG. 9 is a structural diagram illustrating the block BA shown in FIG. 7 viewed from the cross-section of the wafer W according to some embodiments of the present disclosure. As shown in FIG. 7 , the positions of the first fins F11 and the first fins F21 are not aligned, and the positions of the second fins F12 and the second fins F22 are not aligned. Compared with the block BA shown in FIG. 4 , one side of the first fin F11 and one side of the second fin F12 do not overlap with the first fin F21 and the second fin F22 respectively. Therefore, the side portions of the first fin F11 and the second fin F12 can be seen from the top view of the wafer W as shown in FIG. 9 .

類似於如圖8所示的該等實施例,位移d1表示第一鰭片F11之側部並未與沿X軸的第一鰭片F21重疊之長度,而位移d2表示第二鰭片F12之側部並未與沿X軸的第二鰭片F22重疊之長度。類似地,位移dN表示第N個鰭片F1N之側部並未與沿X軸的第二鰭片F2N重疊之長度,而位移d(N-1)表示第(N-1)個鰭片F1(N-1)之側部並未與沿X軸的第二鰭片F2(N-1)重疊之長度。此外,一寬度d表示在第一鰭片陣列A1與第二鰭片陣列A2中的該等鰭片之寬度。在一些實施例中,位移d1大於位移d2,且位移dN大於位移d(N-1)。Similar to those embodiments shown in FIG. 8, the displacement d1 represents the length by which the sides of the first fin F11 do not overlap with the first fin F21 along the X-axis, and the displacement d2 represents the length of the second fin F12. The length by which the sides do not overlap the second fin F22 along the X-axis. Similarly, the displacement dN represents the length of the side of the Nth fin F1N that does not overlap the second fin F2N along the X axis, and the displacement d(N-1) represents the length of the (N-1)th fin F1 The side portion of (N-1) does not overlap the length of the second fin F2(N-1) along the X-axis. In addition, a width d represents the width of the fins in the first fin array A1 and the second fin array A2. In some embodiments, the displacement d1 is greater than the displacement d2, and the displacement dN is greater than the displacement d(N−1).

在一些實施例中,位移d1、位移d2、位移d(N-1)以及位移dN大約為數奈米。In some embodiments, the displacement d1, the displacement d2, the displacement d(N−1), and the displacement dN are approximately several nanometers.

相較於如圖4所示的該等實施例,在圖7及圖9中,在第一層L1中之第一鰭片F11的位置朝向X軸方向偏離原始位置,且在第一層L1中之第N個鰭片F1N的位置朝向負X軸方向偏離原始位置。在此時實施例中,在第一層L1中的第一鰭片陣列A1可經歷一壓縮應力,而第一鰭片陣列A1的邊緣(例如第一鰭片F11與第N個鰭片F1N)朝內壓縮到第一鰭片陣列A1的中心。Compared with the embodiments shown in FIG. 4, in FIG. 7 and FIG. 9, the position of the first fin F11 in the first layer L1 deviates from the original position toward the X-axis direction, and in the first layer L1 The position of the Nth fin F1N deviates from the original position toward the negative X-axis direction. In this embodiment, the first fin array A1 in the first layer L1 may experience a compressive stress, and the edges of the first fin array A1 (for example, the first fin F11 and the N-th fin F1N) Compress inwards to the center of the first fin array A1.

測量元件200經配置以藉由執行PWG測量所測量之第一鰭片陣列A1與第二鰭片陣列A2的重疊比率R1、RN以及RA。測量元件200還經配置以依據該等重疊比率R1、RN以及RA而獲得放大率M1、MN及/或平均放大率Mavg,以便依據查找表210獲得與放大率M1、MN以及Mavg相關聯的位移d1、位移dN及/或平均位移davg。上述的該等步驟類似於如圖6及圖8所述的步驟。因此,在文中將不再重複位移d1、位移dN以及平均位移davg之該等步驟的細節。The measuring element 200 is configured to measure the overlapping ratios R1, RN and RA of the first fin array A1 and the second fin array A2 by performing PWG measurement. The measuring element 200 is also configured to obtain the magnifications M1, MN and/or the average magnification Mavg according to the overlapping ratios R1, RN and RA in order to obtain the displacements associated with the magnifications M1, MN and Mavg according to the look-up table 210 d1, displacement dN and/or average displacement davg. The above-mentioned steps are similar to the steps described in FIG. 6 and FIG. 8 . Therefore, the details of the steps of displacement d1, displacement dN and average displacement davg will not be repeated herein.

請參考圖10。圖10是流程示意圖,例示本揭露一些實施例製造在晶圓W上之半導體結構SS並執行圖案晶圓幾何(PWG)測量的方法M10。方法M10包括步驟S101、S102、S103、S104、S105、S106、S107。Please refer to Figure 10. 10 is a flow diagram illustrating a method M10 of fabricating a semiconductor structure SS on a wafer W and performing patterned wafer geometry (PWG) measurements according to some embodiments of the present disclosure. The method M10 includes steps S101, S102, S103, S104, S105, S106, S107.

在步驟S101中,接收晶圓W,而晶圓W具有複數個晶粒D。在步驟S102中,複數個半導體結構SS形成在每一個晶粒D中。每一個半導體結構SS包括一第一鰭片陣列A1以及一第二鰭片陣列A2,而第二鰭片陣列A2設置在第一鰭片陣列A1上方。在步驟S103中,在晶圓W上執行PWG測量,以獲得第一鰭片陣列A1的第一鰭片F11與第二鰭片陣列A2的第一鰭片F21之間的位移d1。在步驟S104中,依據位移d1而確定晶圓W的狀態。在步驟S105中,當晶圓W的狀態是未通過狀態FAIL時,從該批晶圓B移除晶圓W。在步驟S106中,當晶圓W狀態是通過狀態PASS時,晶圓W保留在該批晶圓B中。在步驟S107中,在晶圓W上執行接下來的製程,該晶圓W具有在該批晶圓B中之通過狀態PASS。在一些實施例中,該接下來的製程是一微影製程。在其他實施例中,該接下來的製程是一蝕刻製程。In step S101 , a wafer W is received, and the wafer W has a plurality of dies D . In step S102 , a plurality of semiconductor structures SS are formed in each die D. As shown in FIG. Each semiconductor structure SS includes a first fin array A1 and a second fin array A2, and the second fin array A2 is disposed above the first fin array A1. In step S103 , PWG measurement is performed on the wafer W to obtain the displacement d1 between the first fins F11 of the first fin array A1 and the first fins F21 of the second fin array A2 . In step S104, the state of the wafer W is determined according to the displacement d1. In step S105, when the status of the wafer W is FAIL, the wafer W is removed from the batch of wafers B. In step S106, when the status of the wafer W is PASS, the wafer W remains in the batch of wafers B. In step S107 , the next process is performed on the wafer W having the passing status of the batch of wafers B as PASS. In some embodiments, the subsequent process is a lithography process. In other embodiments, the subsequent process is an etch process.

請參考圖11。圖11是流程示意圖,例示本揭露一些實施例如圖10所示的步驟S102。步驟S102包括步驟S111以及S112。Please refer to Figure 11. FIG. 11 is a schematic flowchart illustrating some embodiments of the present disclosure such as step S102 shown in FIG. 10 . Step S102 includes steps S111 and S112.

在步驟S111中,第一鰭片陣列A1形成在每一個區塊BA中。在步驟S112中,第二鰭片陣列A2形成在第一鰭片陣列A1上。In step S111 , a first fin array A1 is formed in each block BA. In step S112 , the second fin array A2 is formed on the first fin array A1 .

請參考圖12。圖12是流程示意圖,例示本揭露一些實施例如圖11所示的步驟S111。步驟S111包括步驟S121、S122以及S123。請參考圖17、圖18及圖19。圖17到圖19是結構示意圖,例示本揭露一些實施例在不同製造步驟中的半導體結構SS。Please refer to Figure 12. FIG. 12 is a schematic flowchart illustrating some embodiments of the present disclosure such as step S111 shown in FIG. 11 . Step S111 includes steps S121, S122 and S123. Please refer to Figure 17, Figure 18 and Figure 19. FIG. 17 to FIG. 19 are structural diagrams illustrating the semiconductor structure SS in different manufacturing steps according to some embodiments of the present disclosure.

在步驟S121中,如圖17所示,第一層L1形成在晶圓W上。第一層L1可藉由執行化學氣相沉積(CVD)、原子層沉積(ALD)或其他適合的沉積而沉積在晶圓W上。在步驟S122中,如圖18所示,蝕刻第一層L1以形成第一鰭片陣列A1。在一些實施例中,第一鰭片陣列A1的製作技術可包含沉積第一鰭片陣列A1的材料到在第一層L1中的多個蝕刻空缺(etched vacancies)中。在步驟S123中,如圖19所示,平坦化第一層L1以暴露第一鰭片陣列A1的上表面。In step S121 , a first layer L1 is formed on the wafer W as shown in FIG. 17 . The first layer L1 may be deposited on the wafer W by performing chemical vapor deposition (CVD), atomic layer deposition (ALD) or other suitable deposition. In step S122 , as shown in FIG. 18 , the first layer L1 is etched to form a first fin array A1 . In some embodiments, the fabrication technique of the first fin array A1 may include depositing the material of the first fin array A1 into etched vacancies in the first layer L1. In step S123 , as shown in FIG. 19 , the first layer L1 is planarized to expose the upper surface of the first fin array A1 .

請參考圖13。圖13是流程示意圖,例示本揭露一些實施例如圖11所示的步驟S112。步驟S112包括步驟S131、S132以及S133。亦請參考圖20、圖21及圖5。圖20及圖21是結構示意圖,例示本揭露一些實施例在不同製造步驟中的半導體結構SS。Please refer to Figure 13. FIG. 13 is a schematic flowchart illustrating some embodiments of the present disclosure such as step S112 shown in FIG. 11 . Step S112 includes steps S131, S132 and S133. Please also refer to FIG. 20 , FIG. 21 and FIG. 5 . 20 and 21 are structural schematic diagrams illustrating the semiconductor structure SS in different manufacturing steps according to some embodiments of the present disclosure.

在步驟S131中,如圖20所示,第二層L2形成在第一鰭片陣列A1上。第二層L2可藉由執行化學氣相沉積(CVD)、原子層沉積(ALD)或其他適合的沉積而沉積在晶圓W上。在步驟S132中,如圖21所示,蝕刻第二層L2以形成第二鰭片陣列A2。在一些實施例中,第二鰭片陣列A2的製作技術可包含沉積第二鰭片陣列A2的材料進入在第二層L2中的多個蝕刻空缺中。在步驟S133中,如圖5所示,平坦化第二層L2以暴露第二鰭片陣列A2的上表面。In step S131 , as shown in FIG. 20 , a second layer L2 is formed on the first fin array A1 . The second layer L2 may be deposited on the wafer W by performing chemical vapor deposition (CVD), atomic layer deposition (ALD) or other suitable deposition. In step S132 , as shown in FIG. 21 , the second layer L2 is etched to form a second fin array A2 . In some embodiments, the fabrication technique of the second fin array A2 may include depositing the material of the second fin array A2 into a plurality of etch openings in the second layer L2. In step S133 , as shown in FIG. 5 , the second layer L2 is planarized to expose the upper surface of the second fin array A2 .

請參考圖14。圖14是流程示意圖,例示本揭露一些實施例如圖11所示的步驟S103。步驟S103包括步驟S141、S142、143以及S144。Please refer to Figure 14. FIG. 14 is a schematic flowchart illustrating some embodiments of the present disclosure such as step S103 shown in FIG. 11 . Step S103 includes steps S141, S142, S143 and S144.

在步驟S141中,獲得第一鰭片陣列A1之第一鰭片F11與第二鰭片陣列A2之第N個鰭片F21的重疊比率R1。在步驟S142中,獲得第一鰭片陣列A1之第N個鰭片F1N與第二鰭片陣列A2之第N個鰭片F2N的重疊比率RN。在步驟S143中,獲得第一鰭片陣列A1之鰭片F1A與第二鰭片陣列A2之鰭片F2A的中心重疊比率RA。在步驟S144中,依據重疊比率R1、RN以及RA而獲得位移d1。In step S141 , the overlapping ratio R1 of the first fin F11 of the first fin array A1 and the Nth fin F21 of the second fin array A2 is obtained. In step S142 , the overlapping ratio RN of the Nth fin F1N of the first fin array A1 and the Nth fin F2N of the second fin array A2 is obtained. In step S143 , the center overlap ratio RA of the fins F1A of the first fin array A1 and the fins F2A of the second fin array A2 is obtained. In step S144, the displacement d1 is obtained according to the overlapping ratios R1, RN and RA.

請參考圖15。圖15是流程示意圖,例示本揭露一些實施例如圖14所示的步驟S144。步驟S144包括步驟S151、S152以及S153。Please refer to Figure 15. FIG. 15 is a schematic flowchart illustrating some embodiments of the present disclosure such as step S144 shown in FIG. 14 . Step S144 includes steps S151, S152 and S153.

在步驟S151中,藉由中心重疊比率RA減去重疊比率R1而獲得放大率M1。在步驟S152中,藉由中心重疊比率RA減去重疊比率RN而獲得放大率MN。在一些實施例中,依據放大率M1與MN而獲得位移d1。In step S151 , the magnification M1 is obtained by subtracting the overlap ratio R1 from the center overlap ratio RA. In step S152, the magnification MN is obtained by subtracting the overlap ratio RN from the center overlap ratio RA. In some embodiments, the displacement d1 is obtained according to the magnifications M1 and MN.

請參考圖16。圖16是流程示意圖,例示本揭露一些實施例如圖15所示的步驟S153。步驟S153包括步驟S161以及S162。Please refer to Figure 16. FIG. 16 is a schematic flowchart illustrating some embodiments of the present disclosure such as step S153 shown in FIG. 15 . Step S153 includes steps S161 and S162.

在步驟S161中,藉由平均放大率M1與放大率MN而獲得平均放大率Mavg。在步驟S162中,從查找表210中獲得位移d1及/或位移davg。In step S161 , the average magnification Mavg is obtained by the average magnification M1 and the magnification MN. In step S162 , the displacement d1 and/or the displacement davg are obtained from the lookup table 210 .

在一些實施例中,從方法M10省略步驟S161。藉由使用放大率M1以尋找在查找表210中的對應關係而獲得位移davg。在一些實施例中,放大率M1大致等於平均放大率Mavg,且位移d1大致等於平均位移davg。In some embodiments, step S161 is omitted from method M10. The displacement davg is obtained by finding the correspondence in the look-up table 210 using the magnification M1. In some embodiments, the magnification M1 is approximately equal to the average magnification Mavg, and the displacement d1 is approximately equal to the average displacement davg.

本揭露之一實施例提供一種複數個半導體結構的製造及測量方法。該方法包括下列步驟:接收一晶圓,該晶圓具有複數個晶粒;分別形成該複數個半導體結構在每一個晶粒的複數個區塊中,其中每一個半導體結構具有一第一鰭片陣列以及一第二鰭片陣列,該第二鰭片陣列位在該第一鰭片陣列上方;在該晶圓上執行一圖案晶圓幾何測量,以獲得在該第一鰭片陣列的一第一鰭片與該第二鰭片陣列的一第一鰭片之間的一位移;以及依據該位移而確定該晶圓的一狀態。An embodiment of the disclosure provides a method for manufacturing and measuring a plurality of semiconductor structures. The method includes the steps of: receiving a wafer having a plurality of dies; respectively forming the plurality of semiconductor structures in a plurality of blocks of each die, wherein each semiconductor structure has a first fin array and a second array of fins, the second array of fins located above the first array of fins; performing a patterned wafer geometry measurement on the wafer to obtain a first array of fins on the first fin array a displacement between a fin and a first fin of the second fin array; and determining a state of the wafer according to the displacement.

本揭露之另一實施例提供一種製造及測量系統。該系統包括一處理腔室;以及一測量元件。該處理腔室經配置以執行多個操作,包括:形成一第一鰭片陣列在一晶圓之一晶粒的一區塊中;以及形成一第二鰭片陣列在該第一鰭片陣列上。該測量元件經配置以在該晶圓上執行一圖案晶圓幾何測量,以獲得在該第一鰭片陣列的一第一鰭片與該第二鰭片陣列的一第一鰭片之間的一位移,且還經配置以依據該位移而確定該晶圓的一狀態。Another embodiment of the present disclosure provides a manufacturing and measurement system. The system includes a processing chamber; and a measurement element. The processing chamber is configured to perform operations including: forming a first array of fins in a block of a die of a wafer; and forming a second array of fins in the first array of fins superior. The measurement element is configured to perform a patterned wafer geometry measurement on the wafer to obtain a distance between a first fin of the first fin array and a first fin of the second fin array A displacement, and also configured to determine a state of the wafer based on the displacement.

雖然已詳述本揭露及其優點,然而應理解可進行各種變化、取代與替代而不脫離申請專利範圍所定義之本揭露的精神與範圍。例如,可用不同的方法實施上述的許多製程,並且以其他製程或其組合替代上述的許多製程。Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and substitutions can be made without departing from the spirit and scope of the present disclosure as defined by the claims. For example, many of the processes described above can be performed in different ways and replaced by other processes or combinations thereof.

再者,本申請案的範圍並不受限於說明書中所述之製程、機械、製造、物質組成物、手段、方法與步驟之特定實施例。該技藝之技術人士可自本揭露的揭示內容理解可根據本揭露而使用與本文所述之對應實施例具有相同功能或是達到實質上相同結果之現存或是未來發展之製程、機械、製造、物質組成物、手段、方法、或步驟。據此,此等製程、機械、製造、物質組成物、手段、方法、或步驟包含於本申請案之申請專利範圍內。Furthermore, the scope of the present application is not limited to the specific embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. Those skilled in the art can understand from the disclosure content of this disclosure that existing or future developed processes, machinery, manufacturing, A composition of matter, means, method, or step. Accordingly, such process, machinery, manufacture, material composition, means, method, or steps are included in the patent scope of this application.

10:製造系統 100:處理腔室 200:測量元件 210:查找表 A1:第一鰭片陣列 A2:第二鰭片陣列 B:一批晶圓 BA:區塊 d(N-1):位移 D:晶粒 d:寬度 d1:位移 d2:位移 dN:位移 F11, F12~F1N:鰭片 F21, F22~F2N:鰭片 FAIL:未通過狀態 L1:第一層 L2:第二層 M10:方法 PASS:通過狀態 S101:步驟 S102:步驟 S103:步驟 S104:步驟 S105:步驟 S106:步驟 S107:步驟 S111:步驟 S112:步驟 S121:步驟 S122:步驟 S123:步驟 S131:步驟 S132:步驟 S133:步驟 S141:步驟 S142:步驟 S143:步驟 S144:步驟 S151:步驟 S152:步驟 S153:步驟 S161:步驟 S162:步驟 SS:半導體結構 W:晶圓 X:方向軸 Y:方向軸 Z:方向軸 10: Manufacturing system 100: processing chamber 200: Measuring element 210: lookup table A1: The first fin array A2: Second fin array B: A batch of wafers BA: block d(N-1): displacement D: grain d: width d1: displacement d2: displacement dN: displacement F11, F12~F1N: fins F21, F22~F2N: fins FAIL: failed status L1: first floor L2: second floor M10: Method PASS: pass status S101: step S102: step S103: step S104: step S105: step S106: step S107: step S111: step S112: step S121: step S122: step S123: step S131: step S132: step S133: step S141: step S142: step S143: step S144: step S151: step S152: step S153: step S161: step S162: step SS: Semiconductor Structure W: Wafer X: direction axis Y: direction axis Z: direction axis

參閱實施方式與申請專利範圍合併考量圖式時,可得以更全面了解本申請案之揭示內容,圖式中相同的元件符號指相同的元件。 圖1是結構示意圖,例示本揭露一些實施例的製造系統。 圖2是結構示意圖,例示本揭露一些實施例的晶圓。 圖3是結構方塊示意圖,例示本揭露一些實施例的晶粒。 圖4是結構示意圖,例示本揭露一些實施例從該晶圓之頂視所視的區塊。 圖5是結構示意圖,例示本揭露一些實施例從該晶圓之剖視所視的區塊。 圖6是結構示意圖,例示本揭露另外一些實施例從該晶圓之剖視所視的區塊。 圖7是結構示意圖,例示本揭露可替代的一些實施例從該晶圓之剖視所視的區塊。 圖8是結構示意圖,例示本揭露一些實施例從該晶圓之剖視所視之如圖6所示的區塊。 圖9是結構示意圖,例示本揭露一些實施例從該晶圓之剖視所視之如圖7所示的區塊。 圖10是流程示意圖,例示本揭露一些實施例製造在晶圓上之半導體結構並執行圖案晶圓幾何(PWG)測量的方法。 圖11、圖12、圖13、圖14、圖15、圖16是詳細的流程示意圖,例示本揭露一些實施例之如圖10所示的方法。 圖17、圖18、圖19是結構示意圖,例示本揭露一些實施例在圖12中所述的半導體結構。 圖20及圖21是結構示意圖,例示本揭露一些實施例在圖13中所述的半導體結構。 The disclosure content of the present application can be understood more fully when the drawings are considered together with the embodiments and the patent scope of the application. The same reference numerals in the drawings refer to the same components. FIG. 1 is a structural schematic diagram illustrating a manufacturing system of some embodiments of the present disclosure. FIG. 2 is a schematic structural diagram illustrating a wafer according to some embodiments of the present disclosure. FIG. 3 is a structural block diagram illustrating a die of some embodiments of the present disclosure. FIG. 4 is a structural schematic diagram illustrating blocks of some embodiments of the present disclosure viewed from the top view of the wafer. FIG. 5 is a structural diagram illustrating blocks of some embodiments of the present disclosure viewed from a cross-sectional view of the wafer. FIG. 6 is a structural diagram illustrating blocks viewed from a cross-section of the wafer according to other embodiments of the present disclosure. FIG. 7 is a schematic structural diagram illustrating blocks viewed from a cross-section of the wafer of some alternative embodiments of the present disclosure. FIG. 8 is a schematic structural diagram illustrating the blocks shown in FIG. 6 viewed from the cross-section of the wafer according to some embodiments of the present disclosure. FIG. 9 is a structural schematic diagram illustrating the blocks shown in FIG. 7 viewed from the cross-section of the wafer according to some embodiments of the present disclosure. 10 is a flow diagram illustrating a method of fabricating semiconductor structures on a wafer and performing patterned wafer geometry (PWG) measurements according to some embodiments of the present disclosure. FIG. 11 , FIG. 12 , FIG. 13 , FIG. 14 , FIG. 15 , and FIG. 16 are detailed flowcharts illustrating the method shown in FIG. 10 in some embodiments of the present disclosure. FIG. 17 , FIG. 18 , and FIG. 19 are structural schematic diagrams illustrating the semiconductor structure described in FIG. 12 according to some embodiments of the present disclosure. 20 and 21 are structural schematic diagrams illustrating the semiconductor structure described in FIG. 13 according to some embodiments of the present disclosure.

10:製造系統 100:處理腔室 200:測量元件 210:查找表 B:一批晶圓 FAIL:未通過狀態 PASS:通過狀態 W:晶圓 10: Manufacturing system 100: processing chamber 200: Measuring element 210: lookup table B: A batch of wafers FAIL: failed status PASS: pass status W: Wafer

Claims (11)

一種製造及測量複數個半導體結構的方法,包括:接收一晶圓,該晶圓具有複數個晶粒;分別形成該複數個半導體結構在每一個晶粒的複數個區塊中,其中每一個半導體結構具有一第一鰭片陣列以及一第二鰭片陣列,該第二鰭片陣列位在該第一鰭片陣列上方,包括形成該第一鰭片陣列在每一個區塊中,包括:形成一第一層;蝕刻該第一層以形成該第一鰭片陣列;以及平坦化該第一層以暴露該第一鰭片陣列的一上表面;在該晶圓上執行一圖案晶圓幾何測量,以獲得在該第一鰭片陣列的一第一鰭片與該第二鰭片陣列的一第一鰭片之間的一位移;以及依據該位移而確定該晶圓的一狀態。 A method of manufacturing and measuring a plurality of semiconductor structures, comprising: receiving a wafer having a plurality of dies; forming the plurality of semiconductor structures respectively in a plurality of blocks of each die, wherein each semiconductor The structure has a first fin array and a second fin array, the second fin array is located above the first fin array, including forming the first fin array in each block, including: forming a first layer; etching the first layer to form the first fin array; and planarizing the first layer to expose an upper surface of the first fin array; performing a patterned wafer geometry on the wafer measuring to obtain a displacement between a first fin of the first fin array and a first fin of the second fin array; and determining a state of the wafer based on the displacement. 如請求項1所述的方法,其中分別形成該複數個半導體結構在每一個晶粒的複數個區塊中包括:形成該第二鰭片陣列在該第一鰭片陣列上。 The method as claimed in claim 1, wherein respectively forming the plurality of semiconductor structures in the plurality of blocks of each die comprises: forming the second fin array on the first fin array. 如請求項2所述的方法,其中該第一鰭片陣列與該第二鰭片陣列兩者均具有N個鰭片,其中N為一正整數,其中該第一鰭片陣列的該第一鰭片對應該第二鰭片陣列的該第一鰭片,其中在該第一鰭片陣列的該第一鰭片與該第二鰭片陣列的該第一鰭片之間的該位移從該半導體結構的一頂視圖 所界定。 The method of claim 2, wherein both the first fin array and the second fin array have N fins, where N is a positive integer, wherein the first fin array of the first fin array fins corresponding to the first fins of the second fin array, wherein the displacement between the first fins of the first fin array and the first fins of the second fin array is from the A top view of a semiconductor structure defined. 如請求項3所述的方法,其中形成該第二鰭片陣列在該第一鰭片陣列上包括:形成一第二層在該第一鰭片陣列上;蝕刻該第二層以形成該第二鰭片陣列;以及平坦化該第二層以暴露該第二鰭片陣列的一上表面。 The method according to claim 3, wherein forming the second fin array on the first fin array comprises: forming a second layer on the first fin array; etching the second layer to form the first fin array two fin arrays; and planarizing the second layer to expose an upper surface of the second fin array. 如請求項4所述的方法,其中在該晶圓上執行一圖案晶圓幾何測量,以獲得在該第一鰭片陣列的一第一鰭片與該第二鰭片陣列的一第一鰭片之間的該位移包括:獲得該第一鰭片陣列的該第一鰭片與該第二鰭片陣列的該第一鰭片的一第一重疊比率;獲得該第一鰭片陣列的一第N個鰭片與該第二鰭片陣列的一第N個鰭片的一第二重疊比率;獲得該第一鰭片陣列的一第A個鰭片與該第二鰭片陣列的一第A個鰭片的一中心重疊比率;以及依據該第一重疊比率、該第二重疊比率以及該中心重疊比率而獲得該位移;其中當N為一奇數時,則A等於(N+1)2,且當N為一偶數時,則A等於N/2。 The method of claim 4, wherein a patterned wafer geometry measurement is performed on the wafer to obtain a first fin between a first fin array and a first fin of the second fin array The displacement between fins includes: obtaining a first overlap ratio of the first fins of the first fin array and the first fins of the second fin array; obtaining a first overlap ratio of the first fin array A second overlap ratio of the Nth fin and an Nth fin of the second fin array; obtaining an Ath fin of the first fin array and a first overlap ratio of the second fin array A center overlap ratio of A fins; and obtaining the displacement according to the first overlap ratio, the second overlap ratio and the center overlap ratio; wherein when N is an odd number, A is equal to (N+1)2 , and when N is an even number, then A is equal to N/2. 如請求項5所述的方法,其中依據該第一重疊比率、該第二重疊比率 以及該中心重疊比率而獲得該位移包括:該中心重疊比率減去該第一重疊比率以獲得一第一放大率;該中心重疊比率減去該第二重疊比率以獲得一第二放大率;以及依據該第一放大率以及該第二放大率而獲得該位移。 The method according to claim 5, wherein according to the first overlap ratio, the second overlap ratio And the center overlap ratio to obtain the displacement includes: subtracting the first overlap ratio from the center overlap ratio to obtain a first magnification; subtracting the second overlap ratio from the center overlap ratio to obtain a second magnification; and The displacement is obtained according to the first magnification and the second magnification. 如請求項6所述的方法,其中該第一放大率大致等於該第二放大率。 The method of claim 6, wherein the first magnification is substantially equal to the second magnification. 如請求項6所述的方法,其中依據該第一放大率以及該第二放大率而獲得該位移包括:藉由平均該第一放大率與該第二放大率而獲得一平均放大率;以及在一查找表中獲得該位移,其中該查找表經配置以儲存該位移與該平均放大率的一對應關係。 The method as claimed in claim 6, wherein obtaining the displacement according to the first magnification and the second magnification comprises: obtaining an average magnification by averaging the first magnification and the second magnification; and The displacement is obtained in a lookup table configured to store a correspondence between the displacement and the average magnification. 如請求項1所述的方法,其中當該位移大於一臨界值時,則確定該晶圓的該狀態為一未通過狀態,而當該位移並未大於該臨界值時,則確定該晶圓的該狀態為一通過狀態。 The method as claimed in claim 1, wherein when the displacement is greater than a critical value, it is determined that the state of the wafer is a failed state, and when the displacement is not greater than the critical value, it is determined that the wafer This state is a pass state. 如請求項9所述的方法,還包括:當該晶圓的該狀態為該未通過狀態時,則從一批晶圓中移除該晶圓;以及當該晶圓的該狀態為該通過狀態時,則該晶圓保留在該批晶圓中。 The method according to claim 9, further comprising: when the state of the wafer is the failed state, removing the wafer from a batch of wafers; and when the state of the wafer is the pass status, the wafer remains in the lot. 如請求項9所述的方法,其中該臨界值大約為1.5nm。 The method of claim 9, wherein the critical value is about 1.5nm.
TW111110901A 2021-10-22 2022-03-23 Method for manufacturing and measuring semiconductor structures TWI809775B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US17/508,961 US20230128335A1 (en) 2021-10-22 2021-10-22 Manufacturing and measuring system for semiconductor structures
US17/508,961 2021-10-22
US17/510,786 US20230125695A1 (en) 2021-10-26 2021-10-26 Manufacturing method for semiconductor structures
US17/510,786 2021-10-26

Publications (2)

Publication Number Publication Date
TW202318016A TW202318016A (en) 2023-05-01
TWI809775B true TWI809775B (en) 2023-07-21

Family

ID=86021764

Family Applications (2)

Application Number Title Priority Date Filing Date
TW111110901A TWI809775B (en) 2021-10-22 2022-03-23 Method for manufacturing and measuring semiconductor structures
TW111110899A TWI799202B (en) 2021-10-22 2022-03-23 System for manufacturing and measuring semiconductor structures

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW111110899A TWI799202B (en) 2021-10-22 2022-03-23 System for manufacturing and measuring semiconductor structures

Country Status (2)

Country Link
CN (2) CN116013796A (en)
TW (2) TWI809775B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201916122A (en) * 2017-09-28 2019-04-16 台灣積體電路製造股份有限公司 Method of forming semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019048987A1 (en) * 2017-09-06 2019-03-14 株式会社半導体エネルギー研究所 Semiconductor device, and manufacturing method for semiconductor device
US10727236B2 (en) * 2018-12-21 2020-07-28 Globalfoundries Inc. Circuits constructed from stacked field-effect transistors
US11335686B2 (en) * 2019-10-31 2022-05-17 Intel Corporation Transistors with back-side contacts to create three dimensional memory and logic
US11056492B1 (en) * 2019-12-23 2021-07-06 Intel Corporation Dense memory arrays utilizing access transistors with back-side contacts

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201916122A (en) * 2017-09-28 2019-04-16 台灣積體電路製造股份有限公司 Method of forming semiconductor device

Also Published As

Publication number Publication date
TWI799202B (en) 2023-04-11
TW202318016A (en) 2023-05-01
TW202318519A (en) 2023-05-01
CN116013796A (en) 2023-04-25
CN116013797A (en) 2023-04-25

Similar Documents

Publication Publication Date Title
TWI813647B (en) Platform and method of operating for integrated end-to-end fully self-aligned interconnect process
TWI682526B (en) Silicon wafer manufacturing method
TWI669765B (en) Wafer flatness control using back compensation structure
JP6777029B2 (en) Silicon wafer and its manufacturing method
US20200168612A1 (en) Techniques and structure for forming dynamic random access device
US20140175534A1 (en) Semiconductor device manufacturing method
TWI813595B (en) Enhancement of yield of functional microelectronic devices
TWI809775B (en) Method for manufacturing and measuring semiconductor structures
WO2022000120A1 (en) Manufacturing method for graphite island sliding block arrays
JP4849965B2 (en) Manufacturing method of semiconductor device
US20230128335A1 (en) Manufacturing and measuring system for semiconductor structures
US20230125695A1 (en) Manufacturing method for semiconductor structures
US20230012819A1 (en) REDUCED STRAIN Si/SiGe HETEROEPITAXY STACKS FOR 3D DRAM
US11392023B2 (en) Method of designing a mask and method of manufacturing a semiconductor device using the same
CN115981114B (en) Method for determining lithography limit stress and method for improving lithography process quality
US12027362B2 (en) Method for manufacturing semiconductor device using plasma-enhanced atomic layer deposition
TWI682524B (en) Silicon wafer
US20220139701A1 (en) Method for manufacturing semiconductor device using plasma-enhanced atomic layer deposition
KR100681679B1 (en) Method for fabricating of semiconductor device
JP2018041829A (en) Method for manufacturing silicon epitaxial wafer, and method for manufacturing semiconductor device
Kushibiki et al. Fabrication of silicon pillar with 25 nm half pitch using new multiple double patterning technique
CN114883189A (en) Semiconductor processing method and semiconductor device system
CN114121651A (en) Optimization method, device, medium and device for groove process edge washing width
TW202335124A (en) Method for identifying manufacturing defect cause
CN116031174A (en) Method for improving wafer warpage