TWI808132B - 離子注入裝置以及測定裝置 - Google Patents

離子注入裝置以及測定裝置 Download PDF

Info

Publication number
TWI808132B
TWI808132B TW108106626A TW108106626A TWI808132B TW I808132 B TWI808132 B TW I808132B TW 108106626 A TW108106626 A TW 108106626A TW 108106626 A TW108106626 A TW 108106626A TW I808132 B TWI808132 B TW I808132B
Authority
TW
Taiwan
Prior art keywords
angle
measuring device
angle information
angle measuring
ion
Prior art date
Application number
TW108106626A
Other languages
English (en)
Other versions
TW201941251A (zh
Inventor
院田佳昭
Original Assignee
日商住友重機械離子科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商住友重機械離子科技股份有限公司 filed Critical 日商住友重機械離子科技股份有限公司
Publication of TW201941251A publication Critical patent/TW201941251A/zh
Application granted granted Critical
Publication of TWI808132B publication Critical patent/TWI808132B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/15Means for deflecting or directing discharge
    • H01J2237/152Magnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • H01J2237/24514Beam diagnostics including control of the parameter or property diagnosed
    • H01J2237/24528Direction of beam or parts thereof in view of the optical axis, e.g. beam angle, angular distribution, beam divergence, beam convergence or beam landing angle on sample or workpiece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • H01J2237/24514Beam diagnostics including control of the parameter or property diagnosed
    • H01J2237/24535Beam current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24571Measurements of non-electric or non-magnetic variables
    • H01J2237/24578Spatial variables, e.g. position, distance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30472Controlling the beam
    • H01J2237/30483Scanning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31701Ion implantation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本發明揭示一種離子注入裝置以及測定裝置,可高速獲取離子束的二維角度資訊。本發明的離子注入裝置具備:第1角度測定器(51),測定離子束的第1方向的角度資訊;第2角度測定器(52),測定離子束的第2方向的角度資訊;相對移動機構,沿規定的相對移動方向改變相對於離子束之第1角度測定器(51)及第2角度測定器(52)的相對位置;及控制裝置,依據藉由第1角度測定器(51)測定之第1方向的角度資訊及藉由第2角度測定器(52)測定之第2方向的角度資訊,計算與射束行進方向及相對移動方向均正交之第3方向的角度資訊。

Description

離子注入裝置以及測定裝置
本發明係有關一種離子注入裝置以及測定裝置。
半導體製造步驟中,出於改變半導體的導電性之目的、改變半導體的晶體結構之目的等,標準性地實施向半導體晶圓注入離子之步驟(亦稱為離子注入步驟)。已知依據照射於晶圓之離子束的角度,離子束與晶圓的相互作用的樣態會發生變化,並影響離子注入的處理結果,因此在離子注入前測定離子束的角度分佈。例如,利用沿狹縫寬度方向排列之複數個電極來測定通過狹縫之射束的電流值,藉此能夠獲得狹縫寬度方向的角度分佈(例如,參閱專利文獻1)。 (先前技術文獻) (專利文獻)
專利文獻1:日本特開2016-4614號公報
(本發明所欲解決之課題)
為了準確掌握離子束的角度資訊,不僅獲得射束截面內的特定位置的角度分佈,還獲得射束捆束整體的角度分佈為較佳。然而,為了測定射束捆束整體的角度分佈,需要一邊使狹縫沿橫切射束之方向移動,一邊在射束截面內的複數個位置測定角度,因此至測定結束為止需要時間。為了獲得二維角度資訊,例如需要一邊使狹縫分別朝水平方向和垂直方向這兩個方向移動,一邊測定角度資訊,因此耗費更多的測定時間。為了提高半導體製造步驟的吞吐量,能夠在更短的時間內獲取射束的角度分佈為較佳。
本發明的一樣態的例示性目的之一為,提供一種高速獲取離子束的二維角度資訊之技術。 (用以解決課題之手段)
本發明的一樣態的離子注入裝置具備:射束線裝置,輸送要照射於晶圓之離子束;第1角度測定器,測定離子束的角度資訊中與射束行進方向正交之第1方向的角度資訊;第2角度測定器,測定離子束的角度資訊中與射束行進方向正交並且與第1方向交叉之第2方向的角度資訊;相對移動機構,朝向與射束行進方向正交並且與第1方向及第2方向均不正交的規定的相對移動方向,改變相對於離子束之第1角度測定器及第2角度測定器的相對位置;及控制裝置,依據一邊改變相對於離子束之相對位置,一邊藉由第1角度測定器測定之第1方向的角度資訊、及一邊改變相對於離子束之相對位置,一邊藉由第2角度測定器測定之第2方向的角度資訊,計算與射束行進方向及相對移動方向均正交之第3方向的角度資訊。
本發明的其他樣態為測定離子束的角度資訊之測定裝置。該裝置具備:第1角度測定器,測定離子束的角度資訊中與射束行進方向正交之第1方向的角度資訊;第2角度測定器,測定離子束的角度資訊中與射束行進方向正交並且與第1方向交叉之第2方向的角度資訊;及控制裝置,依據一邊朝向與射束行進方向正交並且與第1方向及第2方向均不正交的相對移動方向,改變相對於離子束之第1角度測定器的規定的相對位置,一邊藉由第1角度測定器測定之第1方向的角度資訊、及一邊朝向相對移動方向改變相對於離子束之第2角度測定器的相對位置,一邊藉由第2角度測定器測定之第2方向的角度資訊,計算與射束行進方向及相對移動方向均正交之第3方向的角度資訊。
另外,在方法、裝置、系統等之間相互置換以上的構成要件的任意組合、本發明的構成要件和表現形式者,作為本發明的樣態亦有效。 (發明之效果)
依本發明,能夠高速獲取離子束的二維角度資訊。
以下,參閱圖面對用於實施本發明的形態進行詳細說明。另外,圖面說明中對相同要件標註相同符號,並適當省略重複說明。又,以下所述之結構為例示,並不對本發明的範圍進行任何限定。
第1圖係概略地表示本發明的一實施形態之離子注入裝置100之頂視圖。離子注入裝置100為所謂高能量離子注入裝置。高能量離子注入裝置為具有高頻直線加速方式的離子加速器和高能量離子輸送用射束線之離子注入裝置,對在離子源10產生之離子進行加速,且將如此獲得之離子束B沿射束線輸送至被處理物(例如基板或晶圓W),並在被處理物注入離子。
高能量離子注入裝置100具備:離子束生成單元12,生成離子並進行質譜分析;高能量多段直線加速單元14,對離子束進行加速而使其成為高能量離子束;射束偏轉單元16,進行高能量離子束的能量分析、軌道校正、能量分散的控制;射束輸送線路單元18,將經過分析之高能量離子束輸送至晶圓W;及基板傳送處理單元20,將所輸送之高能量離子束注入於半導體晶圓。
離子束生成單元12具有離子源10、引出電極11及質譜分析裝置22。離子束生成單元12中,射束從離子源10通過引出電極11被引出的同時被加速,被引出並加速之射束藉由質譜分析裝置22進行質譜分析。質譜分析裝置22具有質譜分析磁石22a、質譜分析狹縫22b。質譜分析狹縫22b有時還配置於質譜分析磁石22a的正後方,但實施例中,配置於其下一個結構,亦即高能量多段直線加速單元14的入口部內。藉由質譜分析裝置22進行之質譜分析的結果,只選出注入所需的離子種,被選之離子種的離子束被導入下一個高能量多段直線加速單元14。
高能量多段直線加速單元14具備進行離子束的加速之複數個直線加速裝置,亦即隔著一個以上的高頻共振器之加速間隙。高能量多段直線加速單元14能夠藉由高頻(RF)電場的作用來對離子進行加速。高能量多段直線加速單元14具備本身具有高能量離子注入用的基本的複數段的高頻共振器之第1直線加速器15a。高能量多段直線加速單元14亦可以額外具備本身具有超高能量離子注入用的附加的複數段的高頻共振器之第2直線加速器15b。藉由高能量多段直線加速單元14而進一步被加速之離子束的方向藉由射束偏轉單元16而發生變化。
從將離子束加速至高能量之高頻方式的高能量多段直線加速單元14出來之高能量離子束具有一定範圍的能量分佈。因此,為了在高能量多段直線加速單元14的下游對高能量的離子束進行射束掃描及射束平行化而照射於晶圓,需要預先實施高精度的能量分析、軌道校正及射束收斂發散的調整。
射束偏轉單元16進行高能量離子束的能量分析、軌道校正、能量分散的控制。射束偏轉單元16具備至少兩個高精度偏轉電磁鐵、至少一個能量寬度限制狹縫、至少一個能量分析狹縫、至少一個橫向收斂設備。複數個偏轉電磁鐵構成為可進行高能量離子束的能量分析、離子注入角度的精密的校正及能量分散的抑制。
射束偏轉單元16具有能量分析電磁鐵24、抑制能量分散之橫向收斂四極透鏡26、能量分析狹縫28及提供轉向(軌道校正)之偏轉電磁鐵30。另外,能量分析電磁鐵24有時亦被稱為能量過濾電磁鐵(EFM)。高能量離子束藉由射束偏轉單元16而轉換方向,並朝向晶圓W的方向。
射束輸送線路單元18為輸送從射束偏轉單元16出來之離子束B之射束線裝置,其具有由收斂/發散透鏡組構成之射束整形器32、射束掃描器34、射束平行化器36及最終能量過濾器38(包括最終能量分離狹縫)。射束輸送線路單元18的長度配合將離子束生成單元12與高能量多段直線加速單元14加在一起之長度而設計,藉由射束偏轉單元16被連結,整體形成U字形的佈局。
在射束輸送線路單元18的下游側的終端設置有基板傳送處理單元20。在基板傳送處理單元20設置有保持離子注入過程中的晶圓W並朝向與射束掃描方向成直角的方向移動晶圓W之壓板驅動裝置40。又,在基板傳送處理單元20設置有用於測定離子束B的射束電流及角度分佈的測定裝置50。測定裝置50具備包括第1角度測定器51及第2角度測定器52之射束測定機構54、移動機構56及控制部58。射束測定機構54例如構成為朝向以箭頭X表示之方向移動而能夠插入於離子注入過程中配置晶圓W之“注入位置”,並測定注入位置上之離子束的角度分佈。關於測定裝置50,詳細在後面另行敘述。
離子注入裝置100的射束線部構成為具有對置之2條長直線部之水平的U字形的折返型射束線。上游的長直線部由對離子束生成單元12中生成之離子束B進行加速之複數個單元構成。下游的長直線部由對相對於上游的長直線部被轉換方向之離子束B進行調整而注入至晶圓W之複數個單元構成。2條長直線部構成為大致相同的長度。2條長直線部之間為了維護作業而設置有足夠寬的作業空間R1。
第2圖係詳細表示基板傳送處理單元20的結構之側視圖,且表示自最終能量過濾器38至下游側的結構。離子束B藉由最終能量過濾器38的角度能量過濾(AEF;Angular Energy Filter)電極64向下方偏轉並入射至基板傳送處理單元20。基板傳送處理單元20包括執行離子注入步驟之注入處理室60及設置有用於傳送晶圓W的傳送機構之基板傳送部62。注入處理室60及基板傳送部62經由基板傳送口61而相連。
注入處理室60具備保持1片或複數片晶圓W之壓板驅動裝置40。壓板驅動裝置40包括晶圓保持裝置42、往復運動機構44、扭轉角調整機構46及傾斜角調整機構48。晶圓保持裝置42包括用於保持晶圓W的靜電卡盤等。往復運動機構44藉由使晶圓保持裝置42沿著與射束掃描方向(x方向)正交之往復運動方向(y方向)進行往復運動來使被晶圓保持裝置42保持之晶圓W沿y方向進行往復運動。第2圖中,以箭頭Y1例示出晶圓W的往復運動。
扭轉角調整機構46為調整晶圓W的旋轉角之機構,藉由以晶圓處理面的法線為軸而使晶圓W旋轉來調整設置於晶圓的外周部之對準標記與基準位置之間的扭轉角。在此,晶圓的對準標記是指設置於晶圓的外周部之刻痕及定向平面,是指成為晶圓的結晶軸方向和晶圓的周方向的角度位置的基準之標記。扭轉角調整機構46設置於晶圓保持裝置42與往復運動機構44之間,且與晶圓保持裝置42一起往復運動。
傾斜角調整機構48為調整晶圓W的斜率之機構,其調整朝向晶圓處理面之離子束B的行進方向(z方向)與晶圓處理面的法線之間的傾斜角。本實施形態中,作為傾斜角對晶圓W的傾斜角中以x方向的軸為旋轉的中心軸之角度進行調整。傾斜角調整機構48設置於往復運動機構44與注入處理室60的壁面之間,且構成為藉由使包括往復運動機構44之壓板驅動裝置40整體沿R方向旋轉來調整晶圓W的傾斜角。
在注入處理室60沿離子束B的軌道從上游側朝向下游側設置有能量狹縫66、電漿噴淋裝置68、射束阻尼器63。在注入處理室60設置有射束測定機構54,該射束測定機構54能夠插入於離子注入過程中配置晶圓W之注入位置。圖面中,用虛線表示插入於注入位置時的射束測定機構54的位置。
能量狹縫66設置於AEF電極64的下游側,進行與AEF電極64一起入射於晶圓W之離子束B的能量分析。能量狹縫66為由沿射束掃描方向(x方向)為橫長的狹縫構成之能量限制狹縫(EDS;Energy Defining Slit)。能量狹縫66使所希望的能量值或能量範圍的離子束B朝向晶圓W通過,屏蔽除此以外的離子束。
電漿噴淋裝置68位於能量狹縫66的下游側。電漿噴淋裝置68依據離子束B的射束電流量向離子束及晶圓處理面供給低能量電子,並抑制離子注入中產生之晶圓處理面的正電荷的充電。電漿噴淋裝置68例如包括離子束B通過之噴淋管及向噴淋管內供給電子之電漿產生裝置。
射束阻尼器63設置於射束軌道的最下游,例如安裝於基板傳送口61的下方。因此,射束軌道上不存在晶圓W和射束測定機構54時,離子束B入射於射束阻尼器63。亦可以在射束阻尼器63設置與上述射束測定機構54不同的射束測定裝置。
射束測定機構54測定晶圓W的表面(晶圓處理面)上之離子束B的射束電流和角度資訊。射束測定機構54呈可動式,注入時從晶圓位置退避,晶圓W不位於注入位置時插入於晶圓位置。射束測定機構54例如構成為能夠藉由第1圖所示之移動機構56沿x方向移動。
第3圖係模式地表示射束測定機構54的結構之俯視圖,表示向射束行進方向(z方向)觀察時的第1角度測定器51及第2角度測定器52的配置結構。第1角度測定器51構成為測定第1方向(例如,以箭頭A1表示之方向)的角度資訊,第2角度測定器52構成為測定第2方向(例如,以箭頭A2表示之方向)的角度資訊。在此,“第1方向”為與射束行進方向(z方向)正交之方向之一,在圖示之例中為離子束B的掃描方向(x方向)。又,“第2方向”為與射束行進方向正交並且與第1方向交叉之方向之一,在圖示之例中為與第1方向以角度θ傾斜交叉之方向。“第2方向”被設定為和與射束行進方向及規定的相對移動方向正交之第3方向(例如y方向)不同的方向。在此,規定的相對移動方向為相對於離子束B改變射束測定機構54的相對位置之方向,詳細在後面另行敘述。圖示之例中,第1方向與第2方向所成之角度θ為45°。
第1角度測定器51具有狹縫寬度方向與第1方向一致之第1狹縫70及用於測定通過第1狹縫70之射束成分的第1方向的角度分佈的第1電荷檢測部74(參閱第4圖)。第1狹縫70沿y方向從第1端部71連續延伸至第2端部72,且將入射於第1端部71至第2端部72之測定範圍C之離子束B作為測定對象。測定範圍C的y方向的長度例如被設定為大於離子束B的y方向的束徑,離子束B的y方向的射束寬度整體成為測定對象。
第4圖係模式地表示第1角度測定器51的內部結構之剖面圖,與第3圖的D-D線剖面相對應。第1角度測定器51具有設置於從第1狹縫70沿射束行進方向(z方向)分離之位置之第1電荷檢測部74。第1電荷檢測部74包括在第1狹縫70的狹縫寬度方向(亦即,第1方向或x方向)上排列配置之複數個第1電極76。複數個第1電極76例如構成為相鄰之電極的間距p與第1狹縫70的狹縫寬度w相同。第1角度測定器51依據分別由複數個第1電極76檢測之電流量來測定入射之離子束B的角度δ。第1角度測定器51的角度分辨率例如構成為1°以下,構成為0.5°以下為較佳,構成為0.1°左右為更佳。
返回到第3圖,第2角度測定器52由複數個角度測定部52a、52b、52c構成。複數個角度測定部52a~52c分別具有狹縫寬度方向與第2方向一致之第2狹縫80a、80b、80c(亦統稱為第2狹縫80)及用於測定分別通過第2狹縫80a~80c之射束成分的第2方向的角度分佈的第2電荷檢測部(未圖示)。複數個角度測定部52a~52c分別構成為與第4圖所示之第1角度測定器51相同。角度測定部52a~52c各自的第2電荷檢測部設置於從第2狹縫80沿射束行進方向(z方向)分離之位置,且包括在第2狹縫80的狹縫寬度方向(亦即,第2方向)上排列配置之複數個第2電極。各角度測定部52a~52c的角度分辨率例如構成為1°以下,構成為0.5°以下為較佳,構成為0.1°左右為更佳。
複數個角度測定部52a~52c在第3方向(例如y方向)上排列配置。複數個角度測定部52a~52c以各自的測定範圍C1~C3在y方向上連續排列之方式配置,並且以各自的測定範圍C1~C3在y方向上不重疊的方式配置。藉此,第2角度測定器52實現與在整個測定範圍C內具有在y方向上連續之單一狹縫之角度測定器相等的測定。將具有沿傾斜方向延伸之第2狹縫80之第2角度測定器52分割為複數個,藉此與設置單一的連續延伸之第2狹縫之情況相比,能夠縮小第2角度測定器52所佔之x方向的尺寸,從而能夠實現射束測定機構54的小型化。
圖示之結構中,第2角度測定器52被分割為三個角度測定部52a~52c。第2角度測定器52包括在y方向上依次排列之上側角度測定部52a、中央角度測定部52b、下側角度測定部52c。上側角度測定部52a的第2狹縫80a的第1端部81a與第1狹縫70的第1端部71在y方向上的位置一致。上側角度測定部52a的第2狹縫80a的第2端部82a與中央角度測定部52b的第2狹縫80b的第1端部81b在y方向上的位置一致。同樣地,中央角度測定部52b的第2狹縫80b的第2端部82b與下側角度測定部52c的第2狹縫80c的第1端部81c在y方向上的位置一致。又,下側角度測定部52c的第2狹縫80c的第2端部82c與第1狹縫70的第2端部72在y方向上的位置一致。藉由該種配置關係,能夠使第1角度測定器51與第2角度測定器52的測定範圍C一致並且使複數個角度測定部52a~52c的測定範圍C1~C3在y方向上不重複地連續。第3圖中,使第2角度測定器52的複數個角度測定部52a~52c的第2狹縫80a~80c在x方向上的位置相互一致,但第2狹縫80a~80c的位置可以彼此在x方向上錯開。
另外,第2角度測定器52的分割數並不限於3個,分割數可以是2個,亦可以是4個以上(例如,後述的第6圖)。又,可以不分割第2角度測定器52,亦可以使用具有在整個測定範圍C連續延伸之單一的第2狹縫80之第2角度測定器52(例如,後述的第7圖)。又,亦可以由將第1角度測定器51沿y方向進行分割之複數個角度測定部構成。
射束測定機構54一邊朝向規定的相對移動方向改變相對於離子束B之射束測定機構54的相對位置,一邊測定射束的角度資訊。藉此,射束測定機構54測定規定的相對移動方向整體的離子束B。射束測定機構54的相對移動方向為與上述第1方向及第2方向均不正交的方向,例如為與上述第1方向(例如x方向)一致之方向。因此,亦能夠將射束測定機構54的相對移動方向稱為不與第1狹縫70及第2狹縫80所延伸之方向一致的方向。
相對於離子束B之射束測定機構54的相對移動能夠以複數個方法來實現。例如,亦可以在離子束B保持靜止的狀態下使射束測定機構54朝向規定的相對移動方向移動。該情況下,可以將第1圖的移動機構56用來作為相對移動機構,沿第1方向移動射束測定機構54的位置。另一方面,亦可以在射束測定機構54保持靜止的狀態下使離子束B朝向規定的相對移動方向偏轉。該情況下,可以將第1圖的射束掃描器34等射束偏轉裝置用來作為相對移動機構,而使離子束B朝向第1方向掃描。除此之外,亦可以一邊使離子束B沿x方向掃描一邊使射束測定機構54沿x方向移動,藉此實現相對於離子束B之射束測定機構54的相對移動。
第1角度測定器51一邊相對於離子束B沿第1方向(例如,x方向)進行相對移動,一邊測定離子束B的第1方向的角度分佈。第1角度測定器51在比離子束B的第1方向的射束寬度大的範圍進行相對移動,藉此測定離子束B的x方向及y方向這兩個方向的整個射束寬度的第1方向的角度分佈。同樣地,第2角度測定器52一邊相對於離子束B沿第1方向(例如,x方向)進行相對移動,一邊測定離子束B的第2方向的角度分佈。第2角度測定器52在比將離子束B的第1方向的射束寬度與第2狹縫80的x方向的範圍相加之距離大的範圍進行相對移動,藉此測定離子束B的x方向及y方向這兩個方向的整個射束寬度的第2方向的角度分佈。
控制部58依據藉由第1角度測定器51測定之第1方向的角度資訊與藉由第2角度測定器52測定之第2方向的角度資訊,計算與射束行進方向及相對移動方向均正交之第3方向(例如y方向)的角度資訊。控制部58例如利用離子束B的第1方向的角度分佈及第2方向的角度分佈來計算離子束B的第3方向的角度分佈。控制部58可以計算離子束B的二維角度分佈,例如亦可以計算x方向及y方向的二維角度分佈。以下,對藉由控制部58進行的角度分佈的計算方法進行說明。
第5圖係模式地表示離子束B的二維角度分佈90與所測定或所計算之一維角度分佈91、92、93之圖。如在第5圖的中央模式地示出,離子束B可具有朝x方向及y方向擴展之二維角度分佈90。第5圖中,將x方向的角度成分標為x’,將y方向的角度成分標為y’。離子束B的二維角度分佈90為典型的二維常態分佈(高斯分佈:Gaussian distribution),其分佈形狀能夠以x方向及y方向的標準偏差σ的大小來指定。x方向及y方向的標準偏差σx’、σy’的大小與二維角度分佈90的圓形或橢圓形等高線的x方向及y方向的軸的長度相對應。例如,與二維角度分佈90的標準偏差相對應之等高線E能夠在x’及y’的二維座標上表示為(x’/σx’)2 +(y’/σy’)2 =1。另外,在本實施形態中,並不直接測定二維角度分佈90,而是假定二維常態分佈,藉此依據第1方向(x方向)的角度分佈91及第2方向(t方向)的角度分佈92計算。
在第5圖的下方示出之x方向的角度分佈91係將二維角度分佈90沿y方向進行積分而投影到x軸上者,其與能夠藉由第1角度測定器51測定的第1方向的角度分佈相對應。x方向的角度分佈91不包含y方向的角度資訊,但包含二維角度分佈90的x方向的角度資訊。因此,能夠依據x方向的角度分佈91計算二維角度分佈90中之x方向的角度資訊(例如,x方向的標準偏差σx’)。例如,相對於藉由第1角度測定器51測定之第1方向的角度分佈的測定值擬合出常態分佈,藉此能夠求出有關x方向的角度分佈之參數(例如,x方向的標準偏差σx’)。
在第5圖的右上方示出之角度分佈92為相對於x方向以角度θ傾斜交叉之第2方向(t方向)的角度分佈,係將二維角度分佈90投影到t軸上者。t方向的角度分佈92與能夠藉由第2角度測定器52測定的第2方向的角度分佈相對應。依據t方向的角度分佈92,能夠計算二維角度分佈90中之t方向的角度資訊(例如,t方向的標準偏差σt’)。例如,相對於藉由第2角度測定器52測定之第2方向的角度分佈的測定值擬合出常態分佈,藉此能夠求出有關t方向的角度分佈之參數(例如,t方向的標準偏差σt’)。
藉由利用如此計算之x方向及t方向的角度資訊,能夠計算或推定y方向的角度資訊。t方向的角度資訊與將x方向及y方向的角度資訊進行向量合成者相對應,因此藉由從t方向的角度資訊去除x方向的角度資訊,能夠求出y方向的角度資訊。例如,依據x方向及t方向的標準偏差σx’、σt’,能夠推定二維角度分佈90的y方向的標準偏差σy’。例如,假定x方向及y方向的角度成分彼此獨立時,x方向、y方向及t方向的標準偏差σx’、σy’、σt’之間成立以下式(1)。 上述式(1)例如將構成離子束B之各個離子粒子的行進方向解釋為向量,假定x方向及y方向的角度成分彼此獨立的基礎上,能夠藉由向量運算來求出離子粒子的t方向的角度成分而導出。
因此,與已知的標準偏差σx’、σt’相對應之未知的y方向的標準偏差σy’能夠利用以下式(2)而獲得。 藉由利用式(2),能夠求出在第5圖的左側示出之y方向的角度分佈93。又,亦能夠求出在第5圖的中央示出之二維角度分佈90。
另外,依據x方向及t方向的角度分佈91、92計算y方向的角度分佈93或二維角度分佈90之具體方法並不限於上述方法,能夠採用其他方法。例如,可以假定x方向及y方向的角度成分彼此獨立,而以x方向、t方向及y方向的角度分佈91~93的分佈形狀彼此整合之方式執行優化計算,藉此計算y方向的角度分佈93。該情況下,可以依據與二維角度分佈90為二維常態分佈這一限制條件不同的條件,計算y方向的角度分佈93。例如,可以先求出表示t方向的角度分佈92與y方向的角度分佈93的相關關係之向量函數,並利用該向量函數來計算y方向的角度分佈93。
依據x方向及t方向的角度分佈計算y方向的角度分佈時,x方向與t方向所成之角度θ是任意的,但角度θ越大(接近90°),越能夠提高y方向的角度分佈的計算精度。具體而言,x方向與t方向所成之角度θ為30°以上為較佳,45°以上或60°以上為更佳。另一方面,若使角度θ過於接近90°,則第2角度測定器52的x方向的長度變得極大,導致難以使用第2角度測定器52來測定y方向的整個射束寬度的離子束B。因此,角度θ為85°以下為較佳,80°以下或75°以下為更佳。
依本實施形態,僅使射束測定機構54相對於離子束B沿一個方向相對移動,便能夠求出離子束B的x方向及y方向這兩個方向的角度資訊。通常,測定具有規定的射束寬度之離子束B整體的角度分佈時,需要使狹縫沿狹縫寬度方向在整個射束寬度上進行相對移動。為了獲得二維角度資訊,必須沿x方向相對移動x方向的角度測定器並沿y方向相對移動y方向的角度測定器,而且需要進行彼此正交之兩個方向的相對移動。另一方面,依本實施形態,藉由使用與x方向傾斜交叉之t方向的角度測定器,僅沿x方向相對移動,便能夠由x方向及t方向的角度測定器這兩者測定整個射束寬度。此外,能夠依據所測定之兩個方向的角度資訊計算不直接測定的y方向的角度資訊。因此,依本實施形態,能夠縮短為了獲取彼此正交之兩個方向的角度資訊所耗費之測定時間,從而能夠高速獲取二維角度資訊。此外,藉由射束掃描器34進行的離子束B朝向x方向的掃描來實現相對移動,藉此能夠將相對移動所需之時間控制得極短(例如1秒以下,幾毫秒左右)。
第6圖係模式地表示變形例之射束測定機構54的結構之俯視圖。本變形例中,第1方向(A1方向)與第2方向(A2方向)所成之角度θ為60°,第2角度測定器52被分割為四個角度測定部52a~52d。四個角度測定部52a~52d以各自的測定範圍C1~C4在y方向上連續排列之方式配置,並且以各自的測定範圍C1~C4在y方向上不重疊的方式配置。依本變形例,能夠以比上述實施形態更高精度地計算y方向的角度資訊。
第7圖係模式地表示其他變形例之射束測定機構54的結構之圖。本變形例中,第2角度測定器52未被分割為複數個角度測定部,而構成為第2角度測定器52的第2狹縫80在第1角度測定器51的整個測定範圍C連續延伸。更具體而言,第2狹縫80的第1端部81與第1狹縫70的第1端部71在y方向的位置一致,第2狹縫80的第2端部82與第1狹縫70的第2端部72在y方向的位置一致。本變形例中,射束測定機構54的x方向的尺寸變大,但能夠實現與上述實施形態相同的作用效果。
第7圖的變形例中,可以在未設置第1角度測定器51及第2角度測定器52的區域配置額外的射束測定部53。額外的射束測定部53例如可以是用於測定離子束B的射束電流的法拉第杯和用於測定離子束B的射束輪廓的分析儀等。藉由在射束測定機構54設置與角度測定不同用途的額外的射束測定部53,能夠在測定角度資訊的同時測定離子束B的其他特性。
第8圖係詳細表示其他實施形態之基板傳送處理單元20的結構之側視圖。本實施形態中,代替上述實施形態之射束測定機構54而設置有遮罩板152及電荷檢測部154這一點上與上述實施形態不同。
測定裝置150具備遮罩板152、電荷檢測部154、移動機構156及控制部158。遮罩板152具有狹縫寬度方向與第1方向一致之第1狹縫及狹縫寬度方向與第2方向一致之第2狹縫。電荷檢測部154具有用於測定第1方向的角度分佈的第1電荷檢測部及用於測定第2方向的角度分佈的第2電荷檢測部。通過遮罩板152的第1狹縫之射束的一部分藉由電荷檢測部154的第1電荷檢測部被檢測,並被測定第1方向的角度分佈。通過遮罩板152的第2狹縫之射束的一部分藉由電荷檢測部154的第2電荷檢測部被檢測,並被測定第2方向的角度分佈。因此,本實施形態中,由遮罩板152與電荷檢測部154的組合發揮第1角度測定器及第2角度測定器的功能。
遮罩板152比晶圓W的注入位置更靠上游側配置,例如比能量狹縫66更靠上游側配置。另一方面,電荷檢測部154比晶圓W的注入位置更靠下游側配置,例如配置於成為射束軌道的最下游側之射束阻尼器的位置。藉由加大遮罩板152至電荷檢測部154為止的射束行進方向(z方向)的距離,能夠提高測定裝置150的角度分辨率。
遮罩板152安裝於移動機構156,且構成為可沿y方向移動。移動機構156構成為沿y方向移動遮罩板152。遮罩板152在測定時配置於射束軌道上,注入時從射束軌道退避。移動機構156可以構成為沿x方向移動遮罩板152,亦可以在測定時實現相對於離子束B之遮罩板152的x方向的相對移動。
第9圖(a)及第9圖(b)係表示遮罩板152及電荷檢測部154的結構之俯視圖。如第9圖(a)所示,遮罩板152具有狹縫寬度方向與第1方向一致之第1狹縫170a、170b、170c(亦統稱為第1狹縫170)及狹縫寬度方向與第2方向一致之第2狹縫180a、180b(亦統稱為第2狹縫180)。圖示之例中,第1狹縫170a~170c設置於遮罩板152的左方、中央、右方這三處,第2狹縫180a、180b設置於遮罩板152的左方及右方這兩處。第1狹縫170及第2狹縫180在規定的測定範圍C沿y方向連續設置,且以y方向的狹縫的長度相互一致之方式設置。
如第9圖(b)所示,電荷檢測部154具有測定第1方向的角度分佈之第1電荷檢測部174a、174b、174c及測定第2方向的角度分佈之第2電荷檢測部184a、184b。第1電荷檢測部174a~174c分別具有在第1方向上排列配置之複數個第1電極176a、176b、176c。第1電荷檢測部174a~174c設置於與相對應之第1狹縫170a~170c沿射束行進方向(z方向)相對向之位置。第2電荷檢測部184a、184b分別具有在第2方向上排列配置之複數個第2電極186a、186b。第2電荷檢測部184a、184b設置於與相對應之第2狹縫180a、180b在射束行進方向(z方向)上相對向之位置。電荷檢測部154可以構成為能夠沿x方向移動的分析儀。例如,藉由移動機構156來實現遮罩板152的x方向的相對移動時,可以構成為與遮罩板152的x方向的移動同步地沿x方向移動電荷檢測部154。
控制部158依據藉由第1電荷檢測部174a~174c測定之射束的第1方向的角度資訊及藉由第2電荷檢測部184a、184b測定之射束的第2方向的角度資訊,計算離子束B的第3方向的角度資訊。控制部158亦可以計算離子束B的二維角度分佈。本實施形態中,亦能夠實現與上述實施形態相同的作用效果。
以上,依據實施形態對本發明進行了說明。本發明並不限定於上述實施形態,本領域技術人員當然理解能夠進行各種設計變更,並且這種變形例亦屬於本發明的範圍的情況。
上述實施形態中,以第1方向為x方向,第2方向為與x方向傾斜交叉之方向,第3方向為y方向,相對移動方向為x方向之情況為中心進行了說明。關於該等方向設定之具體的方向並不限於此。本實施形態的特徵為,為了計算離子束與射束測定機構的相對移動方向正交之方向的角度資訊,利用不與相對移動方向正交的任意的第1方向及第2方向的角度資訊。因此,第1方向可以不是x方向,例如,第1方向可以是與x方向傾斜交叉之方向。該情況下,第2方向可以是與不同於第1方向之x方向傾斜交叉之方向。又,第3方向可以不是y方向,可以是與射束行進方向正交之方向,亦即與第1方向及第2方向不同的任意的方向。
第10圖係模式地表示變形例之射束測定機構54的結構之俯視圖。本變形例中,構成為第1角度測定器51的角度資訊的測定方向,亦即第1方向A1,及第2角度測定器52的角度資訊的測定方向,亦即第2方向A2均相對於x方向傾斜。圖示之例中,相對於x方向之第1方向A1的角度θ1為10°,相對於x方向之第2方向A2的角度θ2為45°。如此藉由使第1方向及第2方向這兩個方向相對於相對移動方向(x方向)以不同的角度傾斜,能夠與上述實施形態相同地計算x方向及y方向各自的角度資訊。另外,相對於相對移動方向之第1方向的角度θ1與第2方向的角度θ2的值的組合是任意的,例如能夠從10°、15°、25°、30°、45°、60°、75°及80°中任意選擇。又,第1方向的角度θ1與第2方向的角度θ2的大小的絕對值可以互不相同,亦可以是兩者大小的絕對值相同但傾斜方向(旋轉方向)彼此相反。例如,作為第1方向的角度θ1與第2方向的角度θ2的值的組合(θ1,θ2),可以選擇(+30°,-30°)、(+45°,-45°)、(+60°,-60°)中的任一個。又,第1方向A1與第2方向A2所成之角度可以是90°,亦可以是與90°不同的角度。
10‧‧‧離子注入裝置 34‧‧‧射束掃描器 50‧‧‧測定裝置 51‧‧‧第1角度測定器 52‧‧‧第2角度測定器 54‧‧‧射束測定機構 56‧‧‧移動機構 58‧‧‧控制部 70‧‧‧第1狹縫 74‧‧‧第1電荷檢測部 80‧‧‧第2狹縫 W‧‧‧晶圓
第1圖係概略地表示實施形態之離子注入裝置之頂視圖。 第2圖係詳細表示基板傳送處理單元的結構之側視圖。 第3圖係模式地表示射束測定機構的結構之俯視圖。 第4圖係模式地表示第1角度測定器的內部結構之剖面圖。 第5圖係模式地表示離子束的二維角度分佈與在不同的方向上測定或計算之一維的角度分佈之圖。 第6圖係模式地表示變形例之射束測定機構的結構之俯視圖。 第7圖係模式地表示其他變形例之射束測定機構的結構之俯視圖。 第8圖係詳細表示其他實施形態之基板傳送處理單元的結構之側視圖。 第9圖(a)及第9圖(b)係表示遮罩板及電荷檢測部的結構之俯視圖。 第10圖係模式地表示變形例之射束測定機構的結構之俯視圖。
51‧‧‧第1角度測定器
52‧‧‧第2角度測定器
52a‧‧‧角度測定部
52b‧‧‧角度測定部
52c‧‧‧角度測定部
54‧‧‧射束測定機構
70‧‧‧第1狹縫
71‧‧‧第1端部
72‧‧‧第2端部
80a‧‧‧第2狹縫
80b‧‧‧第2狹縫
80c‧‧‧第2狹縫
81a‧‧‧第1端部
81b‧‧‧第1端部
81c‧‧‧第1端部
82a‧‧‧第2端部
82b‧‧‧第2端部
82c‧‧‧第2端部
C‧‧‧測定範圍
C1‧‧‧測定範圍
C2‧‧‧測定範圍
C3‧‧‧測定範圍

Claims (19)

  1. 一種離子注入裝置,其特徵為,具備: 射束線裝置,輸送要照射於晶圓之離子束; 第1角度測定器,測定前述離子束的角度資訊中與射束行進方向正交之第1方向的角度資訊; 第2角度測定器,測定前述離子束的角度資訊中與前述射束行進方向正交並且與前述第1方向交叉之第2方向的角度資訊; 相對移動機構,朝向與前述射束行進方向正交並且與前述第1方向及前述第2方向均不正交的規定的相對移動方向,改變相對於前述離子束之前述第1角度測定器及前述第2角度測定器的相對位置;及 控制裝置,依據一邊改變相對於前述離子束之相對位置,一邊藉由前述第1角度測定器測定之前述第1方向的角度資訊、與一邊改變相對於前述離子束之相對位置,一邊藉由前述第2角度測定器測定之前述第2方向的角度資訊,計算與前述射束行進方向及前述相對移動方向均正交之第3方向的角度資訊。
  2. 如申請專利範圍第1項所述之離子注入裝置,其中, 前述第1角度測定器具有前述第1方向與狹縫寬度方向一致之第1狹縫、及用於測定通過前述第1狹縫之射束成分的前述第1方向的角度分佈的第1電荷檢測部, 前述第2角度測定器具有前述第2方向與狹縫寬度方向一致之第2狹縫、及用於測定通過前述第2狹縫之射束成分的前述第2方向的角度分佈的第2電荷檢測部。
  3. 如申請專利範圍第1或2項所述之離子注入裝置,其中,具備包括前述第1角度測定器及前述第2角度測定器之一體的射束測定機構。
  4. 如申請專利範圍第3項所述之離子注入裝置,其中, 前述相對移動機構使前述射束測定機構朝向前述相對移動方向移動。
  5. 如申請專利範圍第1或2項所述之離子注入裝置,其中, 前述相對移動機構為使前述離子束朝向前述相對移動方向偏轉之射束偏轉裝置。
  6. 如申請專利範圍第5項所述之離子注入裝置,其中, 前述射束偏轉裝置為在向前述晶圓照射射束時用於使前述離子束往復掃描的射束掃描器。
  7. 如申請專利範圍第1或2項所述之離子注入裝置,其中, 前述控制裝置依據前述第1方向的角度資訊及前述第2方向的角度資訊,藉由向量運算計算前述第3方向的角度資訊。
  8. 如申請專利範圍第1或2項所述之離子注入裝置,其中, 前述控制裝置依據前述第1方向的角度資訊及前述第2方向的角度資訊計算前述離子束的二維角度分佈資訊。
  9. 如申請專利範圍第1或2項所述之離子注入裝置,其中, 前述控制裝置依據前述第1方向的角度資訊及前述第2方向的角度資訊計算在向前述晶圓照射射束時使前述離子束往復掃描之射束掃描方向的角度資訊、及在向前述晶圓照射射束時使前述晶圓往復運動之往復運動方向的角度資訊。
  10. 如申請專利範圍第1或2項所述之離子注入裝置,其中, 前述第1角度測定器及前述第2角度測定器構成為將前述離子束的前述第3方向的整個射束寬度作為測定對象。
  11. 如申請專利範圍第10項所述之離子注入裝置,其中, 前述第1角度測定器與前述第2角度測定器中的至少一個具有在整個前述第3方向的測定對象範圍連續延伸之單一狹縫。
  12. 如申請專利範圍第1或2項所述之離子注入裝置,其中, 前述第1角度測定器與前述第2角度測定器中的至少一個被分割為在前述第3方向上排列配置之複數個角度測定部。
  13. 如申請專利範圍第12項所述之離子注入裝置,其中, 前述複數個角度測定部分別配置成在前述第3方向上相鄰之兩個角度測定部的測定對象範圍在前述第3方向上不重疊。
  14. 如申請專利範圍第12項所述之離子注入裝置,其中, 前述複數個角度測定部配置於前述離子束的前述第3方向的整個射束寬度。
  15. 如申請專利範圍第12項所述之離子注入裝置,其中, 前述控制裝置綜合前述複數個角度測定部各自所測定之一部分角度資訊來計算前述第1方向的角度資訊及前述第2方向的角度資訊中的至少一種。
  16. 如申請專利範圍第1或2項所述之離子注入裝置,其中, 前述第1角度測定器及前述第2角度測定器構成為前述第1方向與前述第2方向彼此傾斜交叉。
  17. 如申請專利範圍第16項所述之離子注入裝置,其中, 前述第1方向與前述第2方向之間的角度為45度以上且85度以下。
  18. 如申請專利範圍第1或2項所述之離子注入裝置,其中, 前述相對移動方向與前述第1方向平行。
  19. 一種測定裝置,是測定離子束的角度資訊的測定裝置,其特徵為,具備: 第1角度測定器,測定前述離子束的角度資訊中與射束行進方向正交之第1方向的角度資訊; 第2角度測定器,測定前述離子束的角度資訊中與前述射束行進方向正交並且與前述第1方向交叉之第2方向的角度資訊;及 控制部,依據一邊朝向與前述射束行進方向正交並且與前述第1方向及前述第2方向均不正交的規定的相對移動方向,改變相對於前述離子束之前述第1角度測定器的相對位置,一邊藉由前述第1角度測定器測定之前述第1方向的角度資訊、及一邊朝向前述相對移動方向改變相對於前述離子束之前述第2角度測定器的相對位置,一邊藉由前述第2角度測定器測定之前述第2方向的角度資訊,計算與前述射束行進方向及前述相對移動方向均正交之第3方向的角度資訊。
TW108106626A 2018-03-26 2019-02-27 離子注入裝置以及測定裝置 TWI808132B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-057573 2018-03-26
JP2018057573A JP6982531B2 (ja) 2018-03-26 2018-03-26 イオン注入装置および測定装置

Publications (2)

Publication Number Publication Date
TW201941251A TW201941251A (zh) 2019-10-16
TWI808132B true TWI808132B (zh) 2023-07-11

Family

ID=67984313

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108106626A TWI808132B (zh) 2018-03-26 2019-02-27 離子注入裝置以及測定裝置

Country Status (5)

Country Link
US (1) US10790117B2 (zh)
JP (1) JP6982531B2 (zh)
KR (1) KR102509728B1 (zh)
CN (1) CN110364407B (zh)
TW (1) TWI808132B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6982531B2 (ja) * 2018-03-26 2021-12-17 住友重機械イオンテクノロジー株式会社 イオン注入装置および測定装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008536268A (ja) * 2005-04-01 2008-09-04 アクセリス テクノロジーズ インコーポレーテッド ビーム角度の測定方法
JP2016004614A (ja) * 2014-06-13 2016-01-12 住友重機械イオンテクノロジー株式会社 ビーム照射装置及びビーム照射方法
US20170098458A1 (en) * 2015-10-02 2017-04-06 Canon Anelva Corporation Ion beam etching method and ion beam etching apparatus
TW201730911A (zh) * 2015-10-14 2017-09-01 漢辰科技股份有限公司 離子佈植系統與製程
US20170271127A1 (en) * 2016-03-18 2017-09-21 Sumitomo Heavy Industries Ion Technology Co., Ltd. Ion implantation apparatus and measurement device

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4438325B2 (ja) 2003-06-10 2010-03-24 ソニー株式会社 荷電粒子の強度分布測定方法および装置、並びに半導体製造装置
WO2006036221A1 (en) * 2004-05-17 2006-04-06 Massachusetts Institute Of Technology Spatial-phase locking of energy beams for determining two-dimensional location and beam shape
US7394073B2 (en) * 2005-04-05 2008-07-01 Varian Semiconductor Equipment Associates, Inc. Methods and apparatus for ion beam angle measurement in two dimensions
US7453070B2 (en) 2006-06-29 2008-11-18 Varian Semiconductor Associates, Inc. Methods and apparatus for beam density measurement in two dimensions
US7479644B2 (en) * 2006-10-30 2009-01-20 Applied Materials, Inc. Ion beam diagnostics
US8168941B2 (en) 2009-01-22 2012-05-01 Axcelis Technologies, Inc. Ion beam angle calibration and emittance measurement system for ribbon beams
JP5808706B2 (ja) * 2012-03-29 2015-11-10 住友重機械イオンテクノロジー株式会社 イオン注入装置及びその制御方法
JP6045445B2 (ja) * 2013-06-14 2016-12-14 住友重機械イオンテクノロジー株式会社 高エネルギーイオン注入装置
JP6150632B2 (ja) * 2013-06-26 2017-06-21 住友重機械イオンテクノロジー株式会社 イオンビーム測定装置及びイオンビーム測定方法
JP6253362B2 (ja) * 2013-11-21 2017-12-27 住友重機械イオンテクノロジー株式会社 高エネルギーイオン注入装置、ビーム電流調整装置、及びビーム電流調整方法
JP6207418B2 (ja) * 2014-02-10 2017-10-04 住友重機械イオンテクノロジー株式会社 高エネルギーイオン注入装置、ビーム平行化器、及びビーム平行化方法
JP6117136B2 (ja) * 2014-03-14 2017-04-19 住友重機械イオンテクノロジー株式会社 イオン注入装置、ビームエネルギー測定装置、及びビームエネルギー測定方法
JP6257411B2 (ja) * 2014-03-27 2018-01-10 住友重機械イオンテクノロジー株式会社 イオン注入装置、最終エネルギーフィルター、及びイオン注入方法
JP6415090B2 (ja) * 2014-04-23 2018-10-31 住友重機械イオンテクノロジー株式会社 イオン注入装置及びイオン注入方法
JP6442295B2 (ja) * 2015-01-19 2018-12-19 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム像の回転角測定方法、マルチ荷電粒子ビーム像の回転角調整方法、及びマルチ荷電粒子ビーム描画装置
JP6644596B2 (ja) 2016-03-18 2020-02-12 住友重機械イオンテクノロジー株式会社 イオン注入方法およびイオン注入装置
JP6662549B2 (ja) * 2016-11-21 2020-03-11 住友重機械イオンテクノロジー株式会社 イオン注入方法およびイオン注入装置
JP6959880B2 (ja) * 2018-02-08 2021-11-05 住友重機械イオンテクノロジー株式会社 イオン注入装置およびイオン注入方法
JP6985951B2 (ja) * 2018-02-08 2021-12-22 住友重機械イオンテクノロジー株式会社 イオン注入装置および測定装置
JP6982531B2 (ja) * 2018-03-26 2021-12-17 住友重機械イオンテクノロジー株式会社 イオン注入装置および測定装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008536268A (ja) * 2005-04-01 2008-09-04 アクセリス テクノロジーズ インコーポレーテッド ビーム角度の測定方法
JP2016004614A (ja) * 2014-06-13 2016-01-12 住友重機械イオンテクノロジー株式会社 ビーム照射装置及びビーム照射方法
US20170098458A1 (en) * 2015-10-02 2017-04-06 Canon Anelva Corporation Ion beam etching method and ion beam etching apparatus
TW201730911A (zh) * 2015-10-14 2017-09-01 漢辰科技股份有限公司 離子佈植系統與製程
US20170271127A1 (en) * 2016-03-18 2017-09-21 Sumitomo Heavy Industries Ion Technology Co., Ltd. Ion implantation apparatus and measurement device
TW201735125A (zh) * 2016-03-18 2017-10-01 Sumitomo Heavy Industries Ion Technology Co Ltd 離子植入裝置及測定裝置

Also Published As

Publication number Publication date
US20190295818A1 (en) 2019-09-26
KR20190112654A (ko) 2019-10-07
KR102509728B1 (ko) 2023-03-15
CN110364407B (zh) 2023-07-25
TW201941251A (zh) 2019-10-16
JP2019169407A (ja) 2019-10-03
CN110364407A (zh) 2019-10-22
JP6982531B2 (ja) 2021-12-17
US10790117B2 (en) 2020-09-29

Similar Documents

Publication Publication Date Title
US9502210B2 (en) Ion implanter, ion implantation method, and beam measurement apparatus
TWI786261B (zh) 離子植入裝置及離子植入方法
JP2006156259A (ja) ビーム照射装置及びビーム照射精度高度化方法
TW201820421A (zh) 離子植入方法及離子植入裝置
TWI808132B (zh) 離子注入裝置以及測定裝置
US10825654B2 (en) Ion implantation apparatus and measurement device
TWI824079B (zh) 離子植入裝置及測定裝置
JP7332437B2 (ja) イオン注入装置
CN112349574A (zh) 离子注入装置及离子注入方法
KR20210010328A (ko) 이온 주입 장치 및 이온 주입 방법
KR102702539B1 (ko) 이온 주입 장치 및 측정 장치
CN112349573A (zh) 离子注入装置及离子注入方法
TW202240629A (zh) 離子植入裝置及離子植入方法