KR20210010328A - 이온 주입 장치 및 이온 주입 방법 - Google Patents

이온 주입 장치 및 이온 주입 방법 Download PDF

Info

Publication number
KR20210010328A
KR20210010328A KR1020200079136A KR20200079136A KR20210010328A KR 20210010328 A KR20210010328 A KR 20210010328A KR 1020200079136 A KR1020200079136 A KR 1020200079136A KR 20200079136 A KR20200079136 A KR 20200079136A KR 20210010328 A KR20210010328 A KR 20210010328A
Authority
KR
South Korea
Prior art keywords
faraday cup
implantation
ion
cup
calibration
Prior art date
Application number
KR1020200079136A
Other languages
English (en)
Inventor
히로유키 가리야
유우지 다카하시
Original Assignee
스미도모쥬기가이 이온 테크놀로지 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스미도모쥬기가이 이온 테크놀로지 가부시키가이샤 filed Critical 스미도모쥬기가이 이온 테크놀로지 가부시키가이샤
Publication of KR20210010328A publication Critical patent/KR20210010328A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/24405Faraday cages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31701Ion implantation
    • H01J2237/31703Dosimetry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

빔전류의 측정정밀도를 장기간에 걸쳐 유지한다.
이온 주입 장치(10)는, 웨이퍼(W)에 이온빔을 조사하는 주입공정이 이루어지는 주입 처리실(16)과, 주입 처리실(16) 내에 마련되어, 주입공정의 전에 이루어지는 준비공정에 있어서 이온빔의 빔전류를 측정하도록 구성되는 제1 패러데이컵과, 주입 처리실(16) 내에 마련되어, 제1 패러데이컵의 빔전류 측정값을 교정하기 위한 교정공정에 있어서 이온빔의 빔전류를 측정하도록 구성되는 제2 패러데이컵과, 제2 패러데이컵을 향하는 이온빔을 차폐하기 위한 차폐부재(43)를 구비한다. 차폐부재(43)는, 주입공정 및 준비공정에 있어서 이온빔이 제2 패러데이컵에 입사 불가능해지고, 교정공정에 있어서 이온빔이 제2 패러데이컵에 입사 가능해지도록 구성된다.

Description

이온 주입 장치 및 이온 주입 방법{ION IMPLANTER AND ION IMPLANTATION METHOD}
본 발명은, 이온 주입 장치 및 이온 주입 방법에 관한 것이다.
본원은, 2019년 7월 19일에 출원된 일본 특허출원 2019-133352호에 근거하여 우선권을 주장한다. 그 출원의 전체 내용은 이 명세서 중에 참고로 원용되어 있다.
반도체 제조공정에서는, 반도체의 도전성을 변화시키는 목적, 반도체의 결정구조를 변화시키는 목적 등을 위하여, 반도체 웨이퍼에 이온을 주입하는 공정(이온주입공정이라고도 함)이 표준적으로 실시되고 있다. 웨이퍼에 조사되는 이온빔의 전류량을 보다 정밀하게 측정하기 위하여, 통상의 주입 시에 사용하는 전류검출기와는 별도로 교정용 전류검출기를 구동스테이지에 배치한 구성이 제안되어 있다. 교정용 전류검출기는, 예를 들면 통상용 전류검출기의 교환 시에 통상용 전류검출기를 교정하기 위하여 이용된다(예를 들면, 특허문헌 1 참조).
일본 공개특허공보 2011-108557호
교정용 전류검출기가 구동스테이지에 배치될 경우, 장기간의 사용에 의하여 교정용 전류검출기가 소모되거나 오염되거나 할 우려가 있다. 교정용 전류검출기에 소모나 오염이 생기면 교정용 전류검출기의 측정정밀도가 저하되고, 통상용 전류검출기를 교환했을 때에 통상용 전류검출기를 고정밀도로 교정할 수 없게 된다.
본 발명의 일 양태의 예시적인 목적의 하나는, 빔전류의 측정정밀도를 장기간에 걸쳐 유지하는 기술을 제공하는 것에 있다.
본 발명의 일 양태의 이온 주입 장치는, 웨이퍼에 이온빔을 조사하는 주입공정이 이루어지는 주입 처리실과, 주입 처리실 내에 마련되어, 주입공정의 전에 이루어지는 준비공정에 있어서 이온빔의 빔전류를 측정하도록 구성되는 제1 패러데이컵과, 주입 처리실 내에 마련되어, 제1 패러데이컵의 빔전류 측정값을 교정하기 위한 교정공정에 있어서 이온빔의 빔전류를 측정하도록 구성되는 제2 패러데이컵과, 제2 패러데이컵을 향하는 이온빔을 차폐하기 위한 차폐부재를 구비한다. 차폐부재는, 주입공정 및 준비공정에 있어서 이온빔이 제2 패러데이컵에 입사 불가능해지고, 교정공정에 있어서 이온빔이 제2 패러데이컵에 입사 가능해지도록 구성된다.
본 발명의 다른 양태는, 이온 주입 방법이다. 이 방법은, 웨이퍼에 이온빔을 조사하는 주입공정과, 주입공정의 전에 이온빔의 빔전류를 제1 패러데이컵을 이용하여 측정하는 준비공정과, 이온빔의 빔전류를 제2 패러데이컵을 이용하여 측정하여, 제1 패러데이컵의 빔전류 측정값을 교정하는 교정공정을 구비한다. 주입공정 및 준비공정에 있어서, 제2 패러데이컵을 향하는 이온빔이 차폐부재에 의하여 차폐되어, 이온빔이 제2 패러데이컵에 입사 불가능해지고, 교정공정에 있어서 이온빔이 제2 패러데이컵에 입사 가능해진다.
또한, 이상의 구성요소의 임의의 조합이나 본 발명의 구성요소나 표현을, 방법, 장치, 시스템 등의 사이에서 상호 치환한 것 또한, 본 발명의 양태로서 유효하다.
본 발명에 의하면, 빔의 전류의 측정정밀도를 장기간에 걸쳐 유지할 수 있다.
도 1은 실시형태에 관한 이온 주입 장치의 개략구성을 나타내는 상면도이다.
도 2는 도 1의 이온 주입 장치의 개략구성을 나타내는 측면도이다.
도 3은 도 1의 주입 처리실 내의 개략구성을 나타내는 정면도이다.
도 4는 주입공정에 있어서의 주입 처리실 내의 구성을 모식적으로 나타내는 상면도이다.
도 5는 준비공정에 있어서의 주입 처리실 내의 구성을 모식적으로 나타내는 상면도이다.
도 6은 교정공정에 있어서의 주입 처리실 내의 구성을 모식적으로 나타내는 상면도이다.
도 7은 다른 실시형태에 관한 주입 처리실 내의 구성을 모식적으로 나타내는 상면도이다.
도 8은 또 다른 실시형태에 관한 주입 처리실 내의 구성을 모식적으로 나타내는 상면도이다.
이하, 도면을 참조하면서, 본 발명을 실시하기 위한 형태에 대하여 상세하게 설명한다. 또한, 도면의 설명에 있어서 동일한 요소에는 동일한 부호를 붙이고, 중복되는 설명을 적절히 생략한다. 또, 이하에 서술하는 구성은 예시이며, 본 발명의 범위를 한정하는 것은 전혀 아니다.
실시형태를 상세히 서술하기 전에 개요를 설명한다. 본 실시형태에 관한 이온 주입 장치는, 웨이퍼에 이온빔을 조사하는 주입공정이 이루어지는 주입 처리실을 구비한다. 주입 처리실 내에는, 주입공정의 전에 이루어지는 준비공정에 있어서 빔전류를 측정하는 제1 패러데이컵과, 제1 패러데이컵을 교정하기 위한 교정공정에 있어서 빔전류를 측정하는 제2 패러데이컵과, 제2 패러데이컵을 향하는 이온빔을 차폐하기 위한 차폐부재가 마련된다. 차폐부재는, 주입공정 및 준비공정에 있어서 이온빔이 제2 패러데이컵에 입사 불가능해지고, 교정공정에 있어서 이온빔이 제2 패러데이컵에 입사 가능해지도록 구성된다.
제1 패러데이컵은, 준비공정에 있어서 빔전류를 측정하기 위하여 반복사용되기 때문에, 이온 주입 장치를 연속적으로 사용함으로써 소모되거나 오염되거나 한다. 패러데이컵에 소모나 오염이 생기면, 패러데이컵의 측정정밀도가 저하되기 때문에, 정기적으로 클리닝이나 교환과 같은 메인터넌스가 필요해진다. 제1 패러데이컵을 메인터넌스한 경우, 메인터넌스의 전후로 제1 패러데이컵의 측정감도가 변화할 수 있기 때문에, 교정용 제2 패러데이컵을 이용하여 메인터넌스 후의 제1 패러데이컵의 측정값을 교정할 필요가 있다.
본 실시형태에 의하면, 교정용 제2 패러데이컵이 주입 처리실에 마련되기 때문에, 제1 패러데이컵을 교정하기 위한 측정을 주입 처리실 내에서 실시할 수 있다. 그 때문, 메인터넌스 후에 있어서의 제1 패러데이컵의 장착 정밀도와 같은 제1 패러데이컵의 손모 자체와는 다른 요인에 의한 측정감도의 변화에 대해서도 적절히 교정할 수 있다. 또, 본 실시형태에 의하면, 차폐부재를 마련함으로써, 교정공정 이외에 있어서 제2 패러데이컵이 이온빔조사에 의하여 소모되거나 오염되거나 하는 것을 방지할 수 있고, 장기간에 걸쳐 제2 패러데이컵의 측정 정밀도를 유지할 수 있다. 그 결과, 제1 패러데이컵의 메인터넌스가 복수 회 발생하는 것과 같은 장기간에 걸쳐 제2 패러데이컵의 측정정밀도를 유지할 수 있고, 통상측정용 제1 패러데이컵의 교정정밀도가 높은 상태를 유지할 수 있다.
도 1은, 실시형태에 관한 이온 주입 장치(10)를 개략적으로 나타내는 상면도이고, 도 2는, 이온 주입 장치(10)의 개략구성을 나타내는 측면도이다. 이온 주입 장치(10)는, 피처리물(W)의 표면에 이온주입처리를 실시하도록 구성된다. 피처리물(W)은, 예를 들면 기판이며, 예를 들면 반도체 웨이퍼이다. 설명의 편의를 위하여, 본 명세서에 있어서 피처리물(W)을 웨이퍼(W)라고 부르는 경우가 있지만, 이것은 주입처리의 대상을 특정 물체로 한정하는 것을 의도하지 않는다.
이온 주입 장치(10)는, 빔을 일방향으로 왕복주사시키고, 웨이퍼(W)를 주사방향과 직교하는 방향으로 왕복운동시킴으로써 웨이퍼(W)의 처리면 전체에 걸쳐 이온빔을 조사하도록 구성된다. 본서에서는 설명의 편의상, 설계상의 빔라인(A)을 따라 나아가는 이온빔의 진행방향을 z방향으로 하고, z방향에 수직인 면을 xy면으로 정의한다. 이온빔을 피처리물(W)에 대하여 주사하는 경우에 있어서, 빔의 주사방향을 x방향으로 하고, z방향 및 x방향에 수직인 방향을 y방향으로 한다. 따라서, 빔의 왕복주사는 x방향으로 행해지고, 웨이퍼(W)의 왕복운동은 y방향으로 행해진다.
이온 주입 장치(10)는, 이온 생성 장치(12)와, 빔라인 장치(14)와, 주입 처리실(16)과, 웨이퍼 반송 장치(18)를 구비한다. 이온 생성 장치(12)는, 이온빔을 빔라인 장치(14)에 부여하도록 구성된다. 빔라인 장치(14)는, 이온 생성 장치(12)로부터 주입 처리실(16)에 이온빔을 수송하도록 구성된다. 주입 처리실(16)에는, 주입대상이 되는 웨이퍼(W)가 수용되고, 빔라인 장치(14)로부터 부여되는 이온빔을 웨이퍼(W)에 조사하는 주입처리가 이루어진다. 웨이퍼 반송 장치(18)는, 주입처리 전의 미처리 웨이퍼를 주입 처리실(16)에 반입하고, 주입처리 후의 처리된 웨이퍼를 주입 처리실(16)로부터 반출하도록 구성된다. 이온 주입 장치(10)는, 이온 생성 장치(12), 빔라인 장치(14), 주입 처리실(16) 및 웨이퍼 반송 장치(18)에 원하는 진공환경을 제공하기 위한 진공배기계(도시하지 않음)를 구비한다.
빔라인 장치(14)는, 빔라인(A)의 상류측으로부터 순서대로, 질량분석부(20), 빔파크장치(24), 빔정형부(30), 빔주사부(32), 빔평행화부(34) 및 각도에너지필터(AEF; Angular Energy Filter)(36)를 구비한다. 또한, 빔라인(A)의 상류란, 이온 생성 장치(12)에 가까운 측을 말하며, 빔라인(A)의 하류란 주입 처리실(16)(또는 빔스토퍼(46))에 가까운 측을 말한다.
질량분석부(20)는, 이온 생성 장치(12)의 하류에 마련되고, 이온 생성 장치(12)로부터 인출된 이온빔으로부터 필요한 이온종을 질량분석에 의하여 선택하도록 구성된다. 질량분석부(20)는, 질량분석자석(21)과, 질량분석렌즈(22)와, 질량분석슬릿(23)을 갖는다.
질량분석자석(21)은, 이온 생성 장치(12)로부터 인출된 이온빔에 자장을 인가하고, 이온의 질량 전하비 M=m/q(m은 질량, q는 전하)의 값에 따라 다른 경로로 이온빔을 편향시킨다. 질량분석자석(21)은, 예를 들면 이온빔에 y방향(도 1 및 도 2에서는 -y방향)의 자장을 인가하여 이온빔을 x방향으로 편향시킨다. 질량분석자석(21)의 자장강도는, 원하는 질량 전하비 M을 갖는 이온종이 질량분석슬릿(23)을 통과하도록 조정된다.
질량분석렌즈(22)는, 질량분석자석(21)의 하류에 마련되고, 이온빔에 대한 수속/발산력을 조정하도록 구성된다. 질량분석렌즈(22)는, 질량분석슬릿(23)을 통과하는 이온빔의 빔진행방향(z방향)의 수속위치를 조정하고, 질량분석부(20)의 질량분해능 M/dM을 조정한다. 또한, 질량분석렌즈(22)는 필수의 구성은 아니며, 질량분석부(20)에 질량분석렌즈(22)가 마련되지 않아도 된다.
질량분석슬릿(23)은, 질량분석렌즈(22)의 하류에 마련되고, 질량분석렌즈(22)로부터 떨어진 위치에 마련된다. 질량분석슬릿(23)은, 질량분석자석(21)에 의한 빔편향방향(x방향)이 슬릿폭이 되도록 구성되고, x방향이 상대적으로 짧으며, y방향이 상대적으로 긴 형상의 개구(23a)를 갖는다.
질량분석슬릿(23)은, 질량분해능의 조정을 위하여 슬릿폭이 가변이 되도록 구성되어도 된다. 질량분석슬릿(23)은, 슬릿폭방향으로 이동 가능한 2매의 차폐체에 의하여 구성되고, 2매의 차폐체의 간격을 변화시킴으로써 슬릿폭이 조정 가능하도록 구성되어도 된다. 질량분석슬릿(23)은, 슬릿폭이 다른 복수의 슬릿 중 어느 하나로 전환함으로써 슬릿폭이 가변이 되도록 구성되어도 된다.
빔파크장치(24)는, 빔라인(A)으로부터 이온빔을 일시적으로 퇴피하고, 하류의 주입 처리실(16)(또는 웨이퍼(W))을 향하는 이온빔을 차폐하도록 구성된다. 빔파크장치(24)는, 빔라인(A)의 도중의 임의의 위치에 배치할 수 있지만, 예를 들면 질량분석렌즈(22)와 질량분석슬릿(23)의 사이에 배치할 수 있다. 질량분석렌즈(22)와 질량분석슬릿(23)의 사이에는 일정한 거리가 필요하기 때문에, 그 사이에 빔파크장치(24)를 배치함으로써, 다른 위치에 배치하는 경우보다 빔라인(A)의 길이를 짧게 할 수 있어, 이온 주입 장치(10)의 전체를 소형화할 수 있다.
빔파크장치(24)는, 한 쌍의 파크전극(25(25a, 25b))과, 빔덤프(26)를 구비한다. 한 쌍의 파크전극(25a, 25b)은, 빔라인(A)을 사이에 두고 대향하고, 질량분석자석(21)의 빔편향방향(x방향)과 직교하는 방향(y방향)에 대향한다. 빔덤프(26)는, 파크전극(25a, 25b)보다 빔라인(A)의 하류측에 마련되고, 빔라인(A)으로부터 파크전극(25a, 25b)의 대향방향으로 떨어져 마련된다.
제1 파크전극(25a)은 빔라인(A)보다 중력방향 상측에 배치되고, 제2 파크전극(25b)은 빔라인(A)보다 중력방향 하측에 배치된다. 빔덤프(26)는, 빔라인(A)보다 중력방향 하측으로 떨어진 위치에 마련되고, 질량분석슬릿(23)의 개구(23a)의 중력방향 하측에 배치된다. 빔덤프(26)는, 예를 들면 질량분석슬릿(23)의 개구(23a)가 형성되어 있지 않은 부분으로 구성된다. 빔덤프(26)는, 질량분석슬릿(23)과는 별체로서 구성되어도 된다.
빔파크장치(24)는, 한 쌍의 파크전극(25a, 25b)의 사이에 인가되는 전장을 이용하여 이온빔을 편향시키고, 빔라인(A)으로부터 이온빔을 퇴피시킨다. 예를 들면, 제1 파크전극(25a)의 전위를 기준으로 하여 제2 파크전극(25b)에 부(負)전압을 인가함으로써, 이온빔을 빔라인(A)으로부터 중력방향 하방으로 편향시켜 빔덤프(26)에 입사시킨다. 도 2에 있어서, 빔덤프(26)를 향하는 이온빔의 궤적을 파선(破線)으로 나타내고 있다. 또, 빔파크장치(24)는, 한 쌍의 파크전극(25a, 25b)을 동전위로 함으로써, 이온빔을 빔라인(A)을 따라 하류측에 통과시킨다. 빔파크장치(24)는, 이온빔을 하류측에 통과시키는 제1 모드와, 이온빔을 빔덤프(26)에 입사시키는 제2 모드를 전환하여 동작 가능하도록 구성된다.
질량분석슬릿(23)의 하류에는 인젝터패러데이컵(28)이 마련된다. 인젝터패러데이컵(28)은, 인젝터구동부(29)의 동작에 의하여 빔라인(A)에 출입 가능하도록 구성된다. 인젝터구동부(29)는, 인젝터패러데이컵(28)을 빔라인(A)이 뻗는 방향과 직교하는 방향(예를 들면 y방향)으로 이동시킨다. 인젝터패러데이컵(28)은, 도 2의 파선으로 나타내는 바와 같이 빔라인(A) 상에 배치된 경우, 하류측을 향하는 이온빔을 차단한다. 한편, 도 2의 실선으로 나타내는 바와 같이, 인젝터패러데이컵(28)이 빔라인(A) 상으로부터 벗어난 경우, 하류측을 향하는 이온빔의 차단이 해제된다.
인젝터패러데이컵(28)은, 질량분석부(20)에 의하여 질량분석된 이온빔의 빔전류를 계측하도록 구성된다. 인젝터패러데이컵(28)은, 질량분석자석(21)의 자장강도를 변화시키면서 빔전류를 측정함으로써, 이온빔의 질량분석스펙트럼을 계측할 수 있다. 계측한 질량분석스펙트럼을 이용하여, 질량분석부(20)의 질량분해능을 산출할 수 있다.
빔정형부(30)는, 수속/발산 사중극렌즈(Q렌즈) 등의 수속/발산장치를 구비하고 있고, 질량분석부(20)를 통과한 이온빔을 원하는 단면형상으로 정형하도록 구성되어 있다. 빔정형부(30)는, 예를 들면 전장식의 삼단사중극렌즈(트리플렛Q렌즈라고도 함)로 구성되고, 3개의 사중극렌즈(30a, 30b, 30c)를 갖는다. 빔정형부(30)는, 3개의 렌즈장치(30a~30c)를 이용함으로써, 이온빔의 수속 또는 발산을 x방향 및 y방향의 각각에 대하여 독립적으로 조정할 수 있다. 빔정형부(30)는, 자장식의 렌즈장치를 포함해도 되고, 전장과 자장의 쌍방을 이용하여 빔을 정형하는 렌즈장치를 포함해도 된다.
빔주사부(32)는, 빔의 왕복주사를 제공하도록 구성되고, 정형된 이온빔을 x방향으로 주사하는 빔편향장치이다. 빔주사부(32)는, 빔주사방향(x방향)에 대향하는 주사전극쌍을 갖는다. 주사전극쌍은 가변전압전원(도시하지 않음)에 접속되어 있으며, 주사전극쌍의 사이에 인가되는 전압을 주기적으로 변화시킴으로써, 전극 간에 발생하는 전계를 변화시켜 이온빔을 다양한 각도로 편향시킨다. 그 결과, 이온빔이 x방향의 주사범위 전체에 걸쳐 주사된다. 도 1에 있어서, 화살표 X에 의하여 빔의 주사방향 및 주사범위를 예시하고, 주사범위에서의 이온빔의 복수의 궤적을 일점쇄선으로 나타내고 있다.
빔평행화부(34)는, 주사된 이온빔의 진행방향을 설계상의 빔라인(A)의 궤도와 평행이 되도록 구성된다. 빔평행화부(34)는, y방향의 중앙부에 이온빔의 통과슬릿이 마련된 원호형상의 복수의 평행화렌즈전극을 갖는다. 평행화렌즈전극은, 고압전원(도시하지 않음)에 접속되어 있으며, 전압인가에 의하여 발생하는 전계를 이온빔에 작용시켜, 이온빔의 진행방향을 평행으로 맞춘다. 또한, 빔평행화부(34)는 다른 빔평행화 장치로 치환되어도 되고, 빔평행화 장치는 자계를 이용하는 자석장치로서 구성되어도 된다.
빔평행화부(34)의 하류에는, 이온빔을 가속 또는 감속시키기 위한 AD(Accel/Decel) 칼럼(도시하지 않음)이 마련되어도 된다.
각도에너지필터(AEF)(36)는, 이온빔의 에너지를 분석하고 필요한 에너지의 이온을 하방으로 편향하여 주입 처리실(16)로 유도하도록 구성되어 있다. 각도에너지필터(36)는, 전계편향용 AEF 전극쌍을 갖는다. AEF 전극쌍은, 고압전원(도시하지 않음)에 접속된다. 도 2에 있어서, 상측의 AEF 전극에 정(正)전압, 하측의 AEF 전극에 부전압을 인가시킴으로써, 이온빔을 하방으로 편향시킨다. 또한, 각도에너지필터(36)는, 자계편향용 자석장치로 구성되어도 되고, 전계편향용 AEF 전극쌍과 자석장치의 조합으로 구성되어도 된다.
이와 같이 하여, 빔라인 장치(14)는, 웨이퍼(W)에 조사되어야 하는 이온빔을 주입 처리실(16)에 공급한다.
주입 처리실(16)은, 빔라인(A)의 상류측으로부터 순서대로, 에너지슬릿(38), 플라스마샤워장치(40), 사이드컵(42(42L, 42R)), 프로파일러컵(44) 및 빔스토퍼(46)를 구비한다. 주입 처리실(16)은, 도 2에 나타나는 바와 같이, 1매 또는 복수 매의 웨이퍼(W)를 지지하는 플래튼구동장치(50)를 구비한다.
에너지슬릿(38)은, 각도에너지필터(36)의 하류측에 마련되고, 각도에너지필터(36)와 함께 웨이퍼(W)에 입사하는 이온빔의 에너지분석을 한다. 에너지슬릿(38)은, 빔주사방향(x방향)으로 가로방향의 슬릿으로 구성되는 에너지제한슬릿(EDS; Energy Defining Slit)이다. 에너지슬릿(38)은, 원하는 에너지값 또는 에너지범위의 이온빔을 웨이퍼(W)를 향하여 통과시키고, 그 이외의 이온빔을 차폐한다.
플라스마샤워장치(40)는, 에너지슬릿(38)의 하류측에 위치한다. 플라스마샤워장치(40)는, 이온빔의 빔전류량에 따라 이온빔 및 웨이퍼(W)의 표면(웨이퍼처리면)에 저에너지전자를 공급하고, 이온주입으로 발생하는 웨이퍼처리면의 정(正)전하의 차지업을 억제한다. 플라스마샤워장치(40)는, 예를 들면 이온빔이 통과하는 샤워튜브와, 샤워튜브 내에 전자를 공급하는 플라스마발생장치를 포함한다.
사이드컵(42(42R, 42L))은, 웨이퍼(W)로의 이온주입처리 중에 이온빔의 빔전류를 측정하도록 구성된다. 도 2에 나타나는 바와 같이, 사이드컵(42R, 42L)은, 빔라인(A) 상에 배치되는 웨이퍼(W)에 대하여 좌우(x방향)로 어긋나게 배치되어 있고, 이온주입 시에 웨이퍼(W)를 향하는 이온빔을 차단하지 않는 위치에 배치된다. 이온빔은, 웨이퍼(W)가 위치하는 범위를 초과하여 x방향으로 주사되기 때문에, 이온주입 시에 있어서도 주사되는 빔의 일부가 사이드컵(42R, 42L)에 입사한다. 이로 인하여, 이온주입처리 중의 빔전류량이 사이드컵(42R, 42L)에 의하여 계측된다.
프로파일러컵(44)은, 웨이퍼처리면에 있어서의 빔전류를 측정하도록 구성된다. 프로파일러컵(44)은, 프로파일러구동장치(45)의 동작에 의하여 가동되도록 구성되고, 이온주입 시에 웨이퍼(W)가 위치하는 주입위치로부터 퇴피되며, 웨이퍼(W)가 주입위치에 없을 때에 주입위치에 삽입된다. 프로파일러컵(44)은, x방향으로 이동하면서 빔전류를 측정함으로써, x방향의 빔주사범위의 전체에 걸쳐 빔전류를 측정할 수 있다. 프로파일러컵(44)은, 빔주사방향(x방향)의 복수의 위치에 있어서의 빔전류를 동시에 계측 가능하도록, 복수의 패러데이컵이 x방향으로 나열되어 어레이형상으로 형성되어도 된다.
프로파일러컵(44)은, 제1 프로파일러컵(44a)과, 제2 프로파일러컵(44b)을 포함한다. 제1 프로파일러컵(44a)은, 주입공정의 전에 이루어지는 준비공정에서 사용되는 제1 패러데이컵이며, 통상측정용 패러데이컵이다. 제2 프로파일러컵(44b)은, 교정공정에서 사용되는 제2 패러데이컵이며, 통상시에 사용되지 않는 교정용 패러데이컵이다. 제2 프로파일러컵(44b)의 앞에는 차폐부재(43)가 마련되어 있으며, 주입공정이나 준비공정에 있어서 제2 프로파일러컵(44b)에 이온빔이 입사 불가능해지도록 구성된다. 또한, 차폐부재(43)는, 제2 프로파일러컵(44b)으로의 이온빔의 입사를 차단하기 위한 전용부재가 아니어도 되며, 주입 처리실(16) 내에 마련되는 임의의 구조체가 차폐부재(43)로서 기능해도 된다. 예를 들면, 주입 처리실(16) 내에 마련되는 임의의 구조체의 적어도 일부가 차폐부재(43)여도 된다.
제2 프로파일러컵(44b)은, 제1 프로파일러컵(44a)에 비하여 측정정밀도가 높아지도록 구성되어도 된다. 예를 들면, 제2 프로파일러컵(44b)은, 제1 프로파일러컵(44a)보다 구성부품의 가공정밀도가 높아지도록 구성되고, 측정대상으로 하는 이온빔이 입사하는 개구의 사이즈의 공차가 작아지도록 가공되어도 된다. 또, 제2 프로파일러컵(44b)은, 제1 프로파일러컵(44a)에 비하여 사용에 의한 측정정밀도의 저하가 늦어지도록 구성되어도 된다. 예를 들면, 제2 프로파일러컵(44b)은, 제1 프로파일러컵(44a)보다 구성부품의 내소모성이 높아지도록 구성되어도 된다.
제1 프로파일러컵(44a) 및 제2 프로파일러컵(44b)은, 서로 독립적으로 가동되도록 구성된다. 제1 프로파일러컵(44a)은, 프로파일러구동장치(45)의 제1 구동축(45a)을 따라 x방향으로 이동 가능해지도록 구성된다. 제2 프로파일러컵(44b)은, 프로파일러구동장치(45)의 제2 구동축(45b)을 따라 x방향으로 이동 가능해지도록 구성된다. 제1 프로파일러컵(44a) 및 제2 프로파일러컵(44b)은, 서로 평행으로 이동 가능해지도록 구성된다.
사이드컵(42) 및 프로파일러컵(44)의 적어도 일방은, 빔전류량을 측정하기 위한 단일의 패러데이컵을 구비해도 되고, 빔의 각도정보를 측정하기 위한 각도계측기를 구비해도 된다. 각도계측기는, 예를 들면 슬릿과 슬릿으로부터 빔진행방향(z방향)으로 떨어져 마련되는 복수의 전류검출부를 구비한다. 각도계측기는, 예를 들면 슬릿을 통과한 빔을 슬릿폭방향으로 나열되는 복수의 전류검출부에서 계측함으로써, 슬릿폭방향의 빔의 각도성분을 측정할 수 있다. 사이드컵(42) 및 프로파일러컵(44)의 적어도 일방은, x방향의 각도정보를 측정 가능한 제1 각도측정기와, y방향의 각도정보를 측정 가능한 제2 각도측정기를 구비해도 된다.
플래튼구동장치(50)는, 웨이퍼 지지 장치(52)와, 왕복운동기구(54)와, 트위스트각 조정기구(56)와, 틸트각 조정기구(58)를 포함한다. 웨이퍼 지지 장치(52)는, 웨이퍼(W)를 지지하기 위한 정전척 등을 포함한다. 왕복운동기구(54)는, 빔주사방향(x방향)과 직교하는 왕복운동방향(y방향)으로 웨이퍼 지지 장치(52)를 왕복운동시킴으로써, 웨이퍼 지지 장치(52)에 지지되는 웨이퍼를 y방향으로 왕복운동시킨다. 도 2에 있어서, 화살표 Y에 의하여 웨이퍼(W)의 왕복운동을 예시한다.
트위스트각 조정기구(56)는, 웨이퍼(W)의 회전각을 조정하는 기구이며, 웨이퍼처리면의 법선을 축으로 하여 웨이퍼(W)를 회전시킴으로써, 웨이퍼의 외주부에 마련되는 얼라인먼트마크와 기준위치의 사이의 트위스트각을 조정한다. 여기서, 웨이퍼의 얼라인먼트마크란, 웨이퍼의 외주부에 마련되는 노치나 오리엔테이션플랫을 말하며, 웨이퍼의 결정축방향이나 웨이퍼의 둘레방향의 각도위치의 기준이 되는 마크를 말한다. 트위스트각 조정기구(56)는, 웨이퍼 지지 장치(52)와 왕복운동기구(54)의 사이에 마련되고, 웨이퍼 지지 장치(52)와 함께 왕복운동된다.
틸트각 조정기구(58)는, 웨이퍼(W)의 기울기를 조정하는 기구이며, 웨이퍼처리면을 향하는 이온빔의 진행방향과 웨이퍼처리면의 법선의 사이의 틸트각을 조정한다. 본 실시형태에서는, 웨이퍼(W)의 경사각 중, x방향의 축을 회전의 중심축으로 하는 각도를 틸트각으로 하여 조정한다. 틸트각 조정기구(58)는, 왕복운동기구(54)와 주입 처리실(16)의 내벽의 사이에 마련되어 있으며, 왕복운동기구(54)를 포함하는 플래튼구동장치(50) 전체를 R방향으로 회전시킴으로써 웨이퍼(W)의 틸트각을 조정하도록 구성된다.
플래튼구동장치(50)는, 이온빔이 웨이퍼(W)에 조사되는 주입위치와, 웨이퍼 반송 장치(18)의 사이에 웨이퍼(W)가 반입 또는 반출되는 반송위치의 사이에서 웨이퍼(W)가 이동 가능해지도록 웨이퍼(W)를 지지한다. 도 2는, 웨이퍼(W)가 주입위치에 있는 상태를 나타내고 있으며, 플래튼구동장치(50)는, 빔라인(A)과 웨이퍼(W)가 교차하도록 웨이퍼(W)를 지지한다. 웨이퍼(W)의 반송위치는, 웨이퍼 반송 장치(18)에 마련되는 반송기구 또는 반송로봇에 의하여 반송구(48)를 통하여 웨이퍼(W)가 반입 또는 반출될 때의 웨이퍼 지지 장치(52)의 위치에 대응한다.
빔스토퍼(46)는, 빔라인(A)의 최하류에 마련되고, 예를 들면 주입 처리실(16)의 내벽에 장착된다. 빔라인(A) 상에 웨이퍼(W)가 존재하지 않을 경우, 이온빔은 빔스토퍼(46)에 입사한다. 빔스토퍼(46)는, 주입 처리실(16)과 웨이퍼 반송 장치(18)의 사이를 접속하는 반송구(48)의 근처에 위치하고 있으며, 반송구(48)보다 연직하방의 위치에 마련된다.
빔스토퍼(46)에는, 복수의 튜닝컵(47(47a, 47b, 47c, 47d))이 마련되어 있다. 복수의 튜닝컵(47)은, 빔스토퍼(46)에 입사하는 이온빔의 빔전류를 측정하도록 구성되는 패러데이컵이다. 복수의 튜닝컵(47)은, x방향으로 간격을 두고 배치되어 있다. 복수의 튜닝컵(47)은, 예를 들면 주입위치에 있어서의 빔전류를 프로파일러컵(44)을 이용하지 않고 간이적으로 측정하기 위하여 이용된다.
이온 주입 장치(10)는, 제어장치(60)를 더 구비한다. 제어장치(60)는, 이온 주입 장치(10)의 동작전반을 제어한다. 제어장치(60)는, 하드웨어적으로는, 컴퓨터의 CPU나 메모리를 비롯한 소자나 기계장치로 실현되고, 소프트웨어적으로는 컴퓨터프로그램 등에 의하여 실현된다. 제어장치(60)에 의하여 제공되는 각종 기능은, 하드웨어 및 소프트웨어의 연계에 의하여 실현될 수 있다.
도 3은, 도 1의 주입 처리실(16) 내의 개략구성을 나타내는 정면도이며, 이온빔(B)이 조사되는 웨이퍼(W)의 처리면(WS)을 정면에서 보고 있다. 이온빔(B)은, 화살표 X로 나타나는 바와 같이 x방향으로 왕복주사되고, x방향으로 왕복주사된 스캔빔(SB)으로서 웨이퍼(W)에 입사한다. 웨이퍼(W)는, 플래튼구동장치(50)에 지지되어 화살표 Y로 나타나는 바와 같이 y방향으로 왕복운동된다. 도 3에서는, 플래튼구동장치(50)의 동작에 의하여 y방향으로 왕복운동하는 웨이퍼(W)에 대하여, 최상위치의 웨이퍼(W1)와 최하위치의 웨이퍼(W2)를 파선으로 도시하고 있다. 또, 주입공정에 있어서 웨이퍼처리면(WS)에 스캔빔(SB)이 입사하여 이온이 주입되는 주입위치(70)를 가는 실선으로 나타내고 있다.
이온빔(B)은, 웨이퍼(W)가 위치하는 주입범위(62)와, 주입범위(62)보다 외측의 모니터범위(64L, 64R)를 포함하는 조사범위(66)에 걸쳐 왕복주사된다. 좌우의 모니터범위(64L, 64R)의 각각에는, 좌우의 사이드컵(42L, 42R)이 배치되어 있다. 좌우의 사이드컵(42L, 42R)은, 주입공정에 있어서 모니터범위(64L, 64R)까지 오버스캔되는 이온빔(B)을 측정할 수 있다. 주입위치(70)의 x방향의 위치는, 주입범위(62)와 일치한다. 주입위치(70)의 y방향의 위치는, 이온빔(B) 또는 스캔빔(SB)의 y방향의 위치와 일치한다. 주입위치(70)의 z방향의 위치는, 웨이퍼처리면(WS)의 z방향의 위치와 일치한다.
프로파일러컵(44)은, 주입공정에 있어서 조사범위(66)보다 외측의 비조사범위(68R)에 퇴피되어 있다. 도시하는 구성에서는, 프로파일러구동장치(45)가 우측에 배치되고, 주입공정에 있어서, 제1 프로파일러컵(44a) 및 제2 프로파일러컵(44b)이 우측의 비조사범위(68R)에 퇴피되어 있다. 또한, 프로파일러구동장치(45)가 좌측에 배치되는 구성에서는, 주입공정에 있어서, 제1 프로파일러컵(44a) 및 제2 프로파일러컵(44b)이 좌측의 비조사범위(68L)에 퇴피되어도 된다.
차폐부재(43)는, 우측의 비조사범위(68R)에 마련되고, 빔진행방향(z방향)으로 보아 제2 프로파일러컵(44b)과 중첩되는 위치에 배치되어 있다. 환언하면, 차폐부재(43)의 빔진행방향과 직교하는 방향(x 및 y방향)의 위치는, 제2 프로파일러컵(44b)의 빔진행방향과 직교하는 방향(x 및 y방향)의 위치와 적어도 부분적으로 일치하고 있다. 차폐부재(43)는, 교정공정 이외에 있어서 제2 프로파일러컵(44b)을 향하는 이온빔(B)을 차폐하기 위하여 마련된다. 차폐부재(43)를 마련함으로써, 교정공정 이외에 있어서 이온빔(B)이 제2 프로파일러컵(44b)에 입사 불가능해지고, 이온빔(B)이 입사하는 것에 의한 제2 프로파일러컵(44b)의 소모나 오염이 방지된다.
계속해서, 이온 주입 장치(10)의 동작에 대하여 설명한다. 제어장치(60)는, 이온 주입 장치(10)의 동작을 제어하고, 주입공정, 준비공정 및 교정공정이 실행되도록 한다.
도 4는, 주입공정에 있어서의 주입 처리실(16) 내의 구성을 모식적으로 나타내는 상면도이다. 도 4는, 도 3에 나타나는 웨이퍼(W) 및 프로파일러컵(44)의 배치에 대응한다. 주입공정에 있어서, 웨이퍼(W)는 주입범위(62)에 배치되고, 프로파일러컵(44)은 비조사범위(68)에 배치된다. 제1 프로파일러컵(44a)은, 파선으로 나타나는 제1 퇴피위치(71)에 배치되고, 제2 프로파일러컵(44b)은, 파선으로 나타나는 제2 퇴피위치(72)에 배치된다. 제1 퇴피위치(71) 및 제2 퇴피위치(72)는, 우측의 비조사범위(68R)에 위치한다. 도시하는 예에 있어서, 제1 퇴피위치(71) 및 제2 퇴피위치(72)는, x방향으로 서로 이웃하고 있다. 제1 퇴피위치(71)는, 제2 퇴피위치(72)보다 좌측에 위치하고, 제2 퇴피위치(72)보다 주입위치(70)의 근처에 위치한다. 제2 퇴피위치(72)에는, 차폐부재(43)가 마련되어 있다. 차폐부재(43)는, 제2 퇴피위치(72)에 있는 제2 프로파일러컵(44b)의 입구를 막도록 배치되어 있다.
도 4의 주입공정에서는, 사이드컵(42L, 42R)을 이용하여 빔전류를 상시 측정할 수 있다. 한편, 주입공정에서는, 프로파일러컵(44)이나 튜닝컵(47)을 이용하여 빔전류를 상시 측정하지는 못하고, 간헐적인 측정밖에 할 수 없다. 따라서, 주입공정에서는, 사이드컵(42L, 42R)에 의하여 측정되는 빔전류 측정값에 근거하여, 웨이퍼처리면(WS)에 주입되는 이온의 도스양이 제어된다. 주입공정의 도중에 사이드컵(42L, 42R)에 의하여 측정되는 빔전류 측정값이 변화한 경우, 웨이퍼(W)의 y방향의 왕복운동의 속도를 변화시킴으로써, 웨이퍼처리면(WS)의 도스양 분포가 조정된다. 예를 들면, 웨이퍼처리면(WS)의 면 내에서 균일한 도스양 분포를 실현하고자 할 경우, 사이드컵(42L, 42R)에 의하여 모니터되는 빔전륫값에 비례하는 속도로 웨이퍼(W)를 왕복운동시킨다. 구체적으로는, 모니터하는 빔전류 측정값이 증가할 경우에는 웨이퍼(W)의 왕복운동을 빠르게 하고, 모니터하는 빔전륫값이 저하할 경우에는 웨이퍼(W)의 왕복운동을 느리게 한다. 이로 인하여, 스캔빔(SB)의 빔전류의 변동에 기인하는 웨이퍼처리면 내에 있어서의 도스양 분포의 편차를 방지할 수 있다.
주입공정에 있어서, 제어장치(60)는, 사이드컵(42L, 42R)에 의하여 측정되는 빔전륫값을 취득하고, 취득한 빔전륫값에 근거하여 플래튼구동장치(50)의 동작을 제어한다. 제어장치(60)는, 사이드컵(42L, 42R)으로부터 취득한 빔전륫값에 비례하는 속도로 웨이퍼(W)가 왕복운동되도록 플래튼구동장치(50)의 속도지령을 생성하여, 플래튼구동장치(50)의 동작을 제어한다.
도 5는, 준비공정에 있어서의 주입 처리실(16) 내의 구성을 모식적으로 나타내는 상면도이다. 준비공정은, 주입공정의 사전에 실행되고, 주입범위(62) 및 모니터범위(64L, 64R)에 있어서의 스캔빔(SB)의 빔전류가 측정된다. 주입범위(62)에 있어서의 빔전류는, 제1 프로파일러컵(44a) 또는 튜닝컵(47)을 이용하여 측정할 수 있다. 모니터범위(64L, 64R)에 있어서의 빔전류는, 주입공정과 동일하게, 사이드컵(42L, 42R)을 이용하여 측정할 수 있다.
제1 프로파일러컵(44a)은, 준비공정에 있어서, 제1 퇴피위치(71)로부터 복수의 제1 측정위치(76)에 x방향으로 이동한다. 복수의 제1 측정위치(76)는, 빔진행방향으로 보아 주입위치(70)와 중첩되고, 주입공정에 있어서의 웨이퍼처리면(WS)에 일치하는 평면(측정면(MS)이라고도 함)에 있다. 환언하면, 복수의 제1 측정위치(76)의 빔진행방향과 직교하는 방향(x 및 y방향)의 위치는, 주입위치(70)의 빔진행방향과 직교하는 방향(x 및 y방향)의 위치에 일치하고 있다. 따라서, 제1 프로파일러컵(44a)은, 주입공정에 있어서 웨이퍼(W)에 이온이 주입되는 주입위치(70)와 동일한 위치에서 빔전류를 측정 가능하다. 제1 프로파일러컵(44a)은, x방향으로 이동하면서 빔전류를 측정함으로써, 주입위치(70)(또는 측정면(MS))에 있어서의 x방향의 빔전류 밀도분포를 측정할 수도 있다.
복수의 튜닝컵(47)은, 빔진행방향으로 보아 주입위치(70)와 중첩되지만, 주입위치(70)(또는 측정면(MS))로부터 빔진행방향의 하류측으로 떨어져 있다. 복수의 튜닝컵(47)은, 제1 프로파일러컵(44a)과 같이 제1 퇴피위치(71)와 제1 측정위치(76)의 사이에서 이동시킬 필요가 없기 때문에, 제1 프로파일러컵(44a)에 비하여 간이적으로 주입범위(62)에 있어서의 빔전류를 측정할 수 있다.
제어장치(60)는, 준비공정에 있어서, 주입 처리실(16) 내에 마련되는 각종 패러데이컵에 의하여 측정되는 빔전류 측정값을 취득한다. 구체적으로는, 사이드컵(42L, 42R), 제1 프로파일러컵(44a) 및 복수의 튜닝컵(47)에 의하여 측정되는 빔전류 측정값을 각각 취득한다. 제어장치(60)는, 취득한 빔전류 측정값 간의 비율을 기억하고, 주입공정에 있어서 사이드컵(42L, 42R)에 의하여 측정되는 빔전류 측정값으로부터 주입위치(70)(즉, 웨이퍼처리면(WS))에 있어서의 빔전륫값을 산출할 수 있도록 한다. 통상, 각종 패러데이컵에 의하여 측정되는 빔전류 측정값 간의 비율은, 빔라인 장치(14)의 빔광학계의 설정에 의존하고, 이온 생성 장치(12)로부터 인출되는 이온빔(B)의 빔전류가 다소 변동했다고 하더라도, 빔전류 측정값의 비율은 대략 일정하다. 즉, 준비공정에 있어서 빔광학계의 설정이 정해지면, 그 후의 주입공정에 있어서의 빔전류 측정값 간의 비율도 변하지 않는다. 따라서, 준비공정에 있어서 빔전류 측정값 간의 비율을 기억해 두면, 그 비율과, 사이드컵(42L, 42R)에 의하여 측정되는 빔전류 측정값에 근거하여, 주입공정에 있어서 웨이퍼(W)에 이온이 주입되는 주입위치(70)(즉, 웨이퍼처리면(WS))에서의 빔전륫값을 산출할 수 있다.
또한, 도 4의 주입공정 및 도 5의 준비공정에서는, 제2 프로파일러컵(44b)은 사용되지 않는다. 주입공정 및 준비공정에 있어서, 제2 프로파일러컵(44b)은, 차폐부재(43)에 의하여 스캔빔(SB)의 입사가 차단되는 제2 퇴피위치(72)에 배치된 채가 된다. 제2 프로파일러컵(44b)은, 제1 프로파일러컵(44a)의 빔전류 측정값을 교정하기 위한 교정공정에 있어서만 사용된다.
도 6은, 교정공정에 있어서의 주입 처리실(16) 내의 구성을 모식적으로 나타내는 상면도이다. 제2 프로파일러컵(44b)은, 교정공정에 있어서, 제2 퇴피위치(72)로부터 복수의 제2 측정위치(77)에 x방향으로 이동한다. 복수의 제2 측정위치(77)는, 빔진행방향으로 보아 주입위치(70)와 중첩된다. 환언하면, 복수의 제2 측정위치(77)의 빔진행방향과 직교하는 방향(x 및 y방향)의 위치는, 주입위치(70)의 빔진행방향과 직교하는 방향(x 및 y방향)의 위치에 일치하고 있다. 또, 복수의 제2 측정위치(77)는, 주입위치(70)(또는 측정면(MS))에 있으며, 빔진행방향의 위치가 복수의 제1 측정위치(76)와 동등하다. 따라서, 복수의 제2 측정위치(77)의 각각은, 복수의 제1 측정위치(76)의 각각과 적어도 부분적으로 일치한다. 제2 프로파일러컵(44b)은, 주입공정에 있어서의 웨이퍼처리면(WS)과 동일한 위치에서 빔전류를 측정 가능하고, 제1 프로파일러컵(44a)과 동일한 위치에서 빔전류를 측정 가능하다. 제2 프로파일러컵(44b)은, x방향으로 이동하면서 빔전류를 측정함으로써, 주입위치(70)(또는 측정면(MS))에 있어서의 x방향의 빔전류 밀도분포를 측정해도 된다.
교정공정에 있어서, 제1 프로파일러컵(44a)은, 제1 퇴피위치(71)와는 다른 제3 퇴피위치(73)에 배치되어도 된다. 제3 퇴피위치(73)는, 좌측의 비조사범위(68L)에 위치한다. 제3 퇴피위치(73)는, 주입범위(62)를 사이에 두고 제1 퇴피위치(71) 및 제2 퇴피위치(72)와는 반대측에 위치한다. 제1 프로파일러컵(44a)을 제3 퇴피위치(73)에 퇴피시킴으로써, 제2 프로파일러컵(44b)을 제2 퇴피위치(72)로부터 복수의 제2 측정위치(77)로 이동시킬 수 있다.
교정공정에 있어서, 제1 프로파일러컵(44a) 및 제2 프로파일러컵(44b)의 각각을 독립적으로 이동시켜도 되고, 각각을 동시에 이동시켜도 된다. 독립적으로 이동시킬 경우, 먼저 제1 프로파일러컵(44a)을 복수의 제1 측정위치(76) 중 적어도 어느 하나로 이동시키고, 제 1 프로파일러컵(44a)에 의하여 주입위치(70)의 빔전류 측정값을 측정한다. 계속해서, 제2 프로파일러컵(44b)을 복수의 제2 측정위치(77) 중 적어도 어느 하나로 이동시키고, 제2 프로파일러컵(44b)에 의하여 주입위치(70)의 빔전류 측정값을 측정한다. 또, 동시에 이동시킬 경우, 제1 프로파일러컵(44a)을 제1 퇴피위치(71)로부터 제3 퇴피위치(73)를 향하여 x방향으로 이동시킴과 동시에, 복수의 제1 측정위치(76)에서 제1 프로파일러컵(44a)에 의하여 빔전류 측정값을 측정한다. 이 때에, 제2 프로파일러컵(44b)을 제2 퇴피위치(72)로부터 복수의 제2 측정위치(77) 중 적어도 1개에 이동시키고, 복수의 제2 측정위치(77) 중 적어도 1개에 있어서 제2 프로파일러컵(44b)에 의하여 빔전류 측정값을 측정한다. 이와 같이 프로파일러컵(44)을 동작시킴으로써, 동일 조건의 스캔빔(SB)에 대하여, 제1 프로파일러컵(44a) 및 제2 프로파일러컵(44b)의 각각을 이용하여, 주입위치(70)에 있어서의 동일한 측정위치에 의하여 측정되는 빔전류 측정값을 취득할 수 있다.
제어장치(60)는, 제1 프로파일러컵(44a) 및 제2 프로파일러컵(44b)에 의하여 측정되는 빔전류 측정값에 근거하여, 제1 프로파일러컵(44a)의 빔전류 측정값을 교정하기 위한 교정파라미터를 결정한다. 교정공정에 있어서 제1 프로파일러컵(44a)에 의하여 측정되는 제1 빔전류 측정값을 I1로 하고, 교정공정에 있어서 제2 프로파일러컵(44b)에 의하여 측정되는 제2 빔전류 측정값을 I2로 했을 경우, 교정파라미터 k는, 제1 빔전류 측정값 I1과 제2 빔전류 측정값 I2의 비율 I2/I1로 나타낼 수 있다(즉, k=I2/I1). 교정파라미터 k를 결정함으로써, 준비공정에서 제1 프로파일러컵(44a)에 의하여 측정되는 빔전류 측정값 I1에 근거하여, 제2 프로파일러컵(44b)을 기준으로 하는 교정된 빔전륫값 I2를 I2=kI1의 식을 이용하여 산출할 수 있다. 주입공정에 있어서는, 교정파라미터 k를 이용하여 교정된 빔전륫값 kI1을 기준으로 하여 웨이퍼처리면(WS)에 있어서의 도스양이 제어된다.
계속해서, 교정공정의 실행타이밍에 대하여 설명한다. 교정공정은, 미사용 이온 주입 장치(10)의 운용개시 시 및 제1 프로파일러컵(44a)의 클리닝이나 교환과 같은 메인터넌스 시에 실행된다. 이온 주입 장치(10)의 운용개시 시에 있어서는, 교정파라미터 k가 미정이기 때문에, 이온 주입 장치(10)의 운용개시 시에 교정공정을 실행함으로써, 교정파라미터의 초깃값 kA, 0이 결정된다. 또, 제1 프로파일러컵(44a)의 메인터넌스 시에는, 메인터넌스 후의 제1 프로파일러컵(44a)에 대한 교정파라미터 k가 미정이기 때문에, 메인터넌스 후에 교정공정을 실행함으로써, 메인터넌스 후에 있어서의 교정파라미터의 초깃값 kA, i(i=1, 2, 3…)가 결정된다. 여기서, 첨자의 i는, 메인터넌스를 식별하기 위한 번호이며, 예를 들면 메인터넌스를 실행한 횟수 i이다. 예를 들면, 1회째의 메인터넌스 후에는 초깃값 kA, 1이 결정되고, 2회째의 메인터넌스 후에는 초깃값 kA, 2가 결정되며, 3회째의 메인터넌스 후에는 초깃값 kA, 3이 결정된다. 제어장치(60)는, 이와 같이 하여 결정된 교정파라미터의 초깃값 kA, i(i=0, 1, 2, 3…)를 각각 기억한다. 제어장치(60)는, 교정파라미터의 초깃값 kA, i와 함께, 초깃값 kA, i의 결정일시나 교정공정의 전에 실시한 메인터넌스의 내용을 나타내는 정보를 기억해도 된다.
교정공정은, 운용개시 시나 메인터넌스 시 이외의 임의의 타이밍에 실행되어도 되고, 예를 들면 이온 주입 장치(10)의 운용 시에 정기적으로 교정공정을 실행해도 된다. 구체적으로는, 전회의 교정공정으로부터 소정 시간 경과했을 경우나, 전회의 교정공정의 후에 제1 프로파일러컵(44a)에 의하여 측정되는 빔전류 측정값의 적산값이 소정의 임곗값을 초과한 경우에 교정공정을 실행해도 된다. 이와 같은 교정공정에 있어서는, 교정파라미터의 갱신값 kB, j(j=1, 2, 3…)가 결정된다. 교정파라미터의 갱신값 kB, j는, 교정파라미터의 초깃값 kA, i와는 구별하여 기억된다. 여기서, 첨자의 j는, 교정공정을 식별하기 위한 번호이며, 예를 들면 교정공정을 실행한 횟수 j이다. 예를 들면, 교정파라미터의 초깃값 kA, i의 결정 후에 있어서의 1회째의 교정공정에 있어서 제1 갱신값 kB, 1이 결정되고, 2회째의 교정공정에 있어서 제2 갱신값 kB, 2가 결정되며, 3회째의 교정공정에 있어서 제3 갱신값 kB, 3이 결정된다. 교정파라미터의 갱신 후의 주입공정에 있어서는, 교정파라미터의 갱신값 kB, j를 이용하여 교정된 빔전륫값 kB, jI1을 기준으로 하여 웨이퍼처리면(WS)에 있어서의 도스양이 제어된다. 구체적으로는, 최신의 교정공정에 있어서 결정된 교정파라미터의 갱신값 kB, j를 이용한다. 제어장치(60)는, 이와 같이 하여 결정된 교정파라미터의 갱신값 kB, j(j=1, 2, 3…)를 각각 기억한다. 제어장치(60)는, 교정파라미터의 갱신값 kB, j와 함께, 교정공정의 실행일시나 교정공정을 실행하는 계기가 된 사상(事象)을 나타내는 정보를 기억해도 된다.
제어장치(60)는, 교정공정에 있어서 결정되는 교정파라미터의 값이 소정 조건을 충족시킬 경우에만 교정파라미터를 갱신해도 된다. 예를 들면, 교정공정에 있어서 새롭게 결정되는 교정파라미터의 값 k와 교정파라미터의 초깃값 kA, i의 차가 소정 범위 내인 경우에 교정파라미터의 값을 갱신해도 된다. 한편, 교정공정에 있어서 새롭게 결정되는 교정파라미터의 값 k와 교정파라미터의 초깃값 kA, i의 차가 소정 범위 내가 아닌 경우에 교정파라미터의 값을 갱신하지 않고 얼러트를 출력해도 된다. 교정파라미터의 변화량이 소정 범위 내에 들어가지 않는 경우는, 측정계에 있어서 어떠한 이상이 발생되어 있을 가능성이 높기 때문이다. 제어장치(60)는, 교정공정에 있어서 새롭게 결정되는 교정파라미터의 값 k와 교정파라미터의 초깃값 kA, i의 차의 크기에 근거하여, 제1 프로파일러컵(44a)의 클리닝이나 교환을 유저에게 촉구해도 된다. 비교 대상으로 하는 교정파라미터의 초깃값 kA, i는, 최신 교정파라미터의 초깃값이어도 된다. 예를 들면, 메인터넌스가 3회 실행되어 있는 경우(즉, i=3), 최신 교정파라미터의 초깃값 kA, 3을 비교 대상으로 해도 된다. 또한, 비교 대상으로 하는 교정파라미터의 초깃값 kA, i는, 최신 교정파라미터의 초깃값이 아니어도 된다. 예를 들면, 메인터넌스가 3회 실행되어 있는 경우(즉, i=3), 운용개시 시의 교정파라미터의 초깃값 kA, 0을 비교 대상으로 해도 되고, 1회째나 2회째의 메인터넌스 후의 교정파라미터의 초깃값 kA, 1, kA, 2를 비교 대상으로 해도 된다. 복수의 교정파라미터의 초깃값 kA, i(예를 들면, i=0, 1, 2, 3)의 어느 둘 이상을 비교 대상으로 해도 된다.
제어장치(60)는, 교정파라미터의 초깃값 kA, i를 결정하는 초기상태의 교정공정에 있어서, 사이드컵(42)이나 튜닝컵(47)과 같은 "제3 패러데이컵"에 의하여 측정되는 빔전류 측정값을 취득해도 된다. 사이드컵(42) 및 튜닝컵(47)은, 통상측정용 제1 패러데이컵(제1 프로파일러컵(44a)) 및 교정측정용 제2 패러데이컵(제2 프로파일러컵(44b))과는 다르다는 점에서, 제3 패러데이컵이라 할 수 있다. 사이드컵(42)은, 빔진행방향으로 보아 주입위치(70)와 중첩되지 않는 위치에서 빔전류를 측정하는 제3 패러데이컵이라 할 수 있다. 한편, 튜닝컵(47)은, 빔진행방향으로 보아 주입위치(70)와 중첩되는 위치에서 빔전류를 측정하는 제3 패러데이컵이라 할 수 있다.
제어장치(60)는, 초기상태의 교정공정에 있어서, 제1 패러데이컵 및 제3 패러데이컵의 빔전류 측정값을 취득하고, 이들 빔전류 측정값 간의 비율을 초깃값으로서 기억한다. 제어장치(60)는, 예를 들면 제1 프로파일러컵(44a)과 사이드컵(42)의 각각에 의하여 측정되는 빔전류 측정값 간의 비율의 초깃값을 기억해도 되고, 제1 프로파일러컵(44a)과 튜닝컵(47)의 각각에 의하여 측정되는 빔전류 측정값 간의 비율의 초깃값을 기억해도 된다.
제어장치(60)는, 초기상태의 교정공정에 있어서, 복수의 제3 패러데이컵의 빔전류 측정값 간의 비율을 취득하고, 이들 전류 측정값 간의 비율을 초깃값으로서 기억해도 된다. 제어장치(60)는, 좌우의 사이드컵(42L, 42R)의 각각에 의하여 측정되는 빔전류 측정값 간의 비율의 초깃값을 기억해도 되고, 복수의 튜닝컵(47a~47d)의 각각에 의하여 측정되는 빔전류 측정값 간의 비율의 초깃값을 기억해도 된다. 제어장치(60)는, 사이드컵(42)과 튜닝컵(47)에 의하여 측정되는 빔전류 측정값 간의 비율의 초깃값을 기억해도 된다.
제어장치(60)는, 준비공정에 있어서 각종 패러데이컵에 의하여 측정되는 빔전류 측정값 간의 비율에 근거하여, 교정공정의 필요 여부를 판정해도 된다. 제어장치(60)는, 예를 들면 초기상태의 교정공정에 있어서 제1 패러데이컵과 제3 패러데이컵에 의하여 측정되는 빔전륫값 간의 비율의 초깃값과, 준비공정에 있어서 제1 패러데이컵과 제3 패러데이컵에 의하여 측정되는 빔전륫값 간의 비율을 비교하고, 양자의 차가 제1 임곗값을 초과할 경우에 교정공정을 실행하도록 해도 된다. 제어장치(60)는, 초기상태의 교정공정에 있어서 제1 패러데이컵과 제3 패러데이컵에 의하여 측정되는 빔전륫값의 비율의 초깃값 간과 준비공정에 있어서 제1 패러데이컵과 제3 패러데이컵에 의하여 측정되는 빔전륫값 간의 비율의 차가 제1 임곗값보다 큰 제2 임곗값을 초과할 경우에 측정계에 어떠한 이상이 발생했다고 간주하고 얼러트를 출력해도 된다.
제어장치(60)는, 준비공정에 있어서 복수의 제3 패러데이컵에 의하여 측정되는 빔전륫값 간의 비율에 근거하여, 교정공정의 필요 여부를 판정하거나 얼러트를 출력하거나 해도 된다. 예를 들면, 초기상태의 교정공정에 있어서 복수의 제3 패러데이컵에 의하여 측정되는 빔전륫값 간의 비율의 초깃값과, 준비공정에 있어서 복수의 제3 패러데이컵에 의하여 측정되는 빔전륫값 간의 비율을 비교하고, 양자의 차가 제3 임곗값을 초과할 경우에 교정공정을 실행하도록 해도 된다. 또, 초기상태의 교정공정에 있어서 복수의 제3 패러데이컵에 의하여 측정되는 빔전륫값 간의 비율의 초깃값과, 준비공정에 있어서 복수의 제3 패러데이컵에 의하여 측정되는 빔전륫값 간의 비율의 차가 제3 임곗값보다 큰 제4 임곗값을 초과할 경우에 측정계에 어떠한 이상이 발생했다고 간주하고 얼러트를 출력해도 된다.
제어장치(60)는, 준비공정에 있어서 각종 패러데이컵에 의하여 측정되는 빔전류 측정값 간의 비율의 변화량에 근거하여, 교정공정의 필요 여부를 판정하거나 얼러트를 출력하거나 해도 된다. 제어장치(60)는, 준비공정에 있어서 각종 패러데이컵에 의하여 측정되는 빔전류 측정값 간의 비율의 변화량이 소정의 임곗값을 초과한 경우에, 교정공정을 실행하거나 얼러트를 출력하거나 해도 된다.
본 실시형태에 의하면, 준비공정에 있어서 제1 패러데이컵 및 제3 패러데이컵의 각각에 의하여 측정되는 빔전류 측정값에 근거하여, 제1 패러데이컵의 재교정의 필요 여부나 메인터넌스의 필요 여부를 자동적으로 검지할 수 있다. 제1 패러데이컵의 재교정이 필요하다는 것이 검지된 경우에는, 교정공정을 자동 실행함으로써, 제1 패러데이컵의 교정파라미터를 적절한 값으로 자동 갱신할 수 있다. 그 결과, 이온 주입 장치(10)를 장기간에 걸쳐 연속적으로 사용하는 경우여도, 제1 패러데이컵이 고정밀도로 교정된 상태를 유지할 수 있고, 제1 패러데이컵을 이용하는 측정의 정밀도가 높은 상태를 유지할 수 있다.
또한, 본 실시형태에 있어서, 제1 프로파일러컵(44a)과 제2 프로파일러컵(44b)은, 동일한 측정면(MS)에서 빔전류를 측정하도록 구성되지 않아도 된다. 예를 들면, 제1 프로파일러컵(44a)이 웨이퍼처리면(WS)에 일치하는 제1 측정면(MS)에서 빔전류를 측정하도록 구성되는 한편, 제2 프로파일러컵(44b)이 제1 측정면(MS)으로부터 빔진행방향으로 어긋난 제2 측정면에서 빔전류를 측정하도록 구성되어도 된다. 제2 프로파일러컵(44b)은, 제1 프로파일러컵(44a)보다 빔진행방향의 상류측에 배치되어도 되고, 제1 프로파일러컵(44a)보다 빔진행방향의 하류측에 배치되어도 된다.
본 실시형태에 있어서, 제1 프로파일러컵(44a)과 제2 프로파일러컵(44b)은 서로 평행으로 이동 가능해지도록 구성되지 않아도 된다. 예를 들면, 제1 프로파일러컵(44a)이 빔진행방향과 직교하는 제1 방향으로 이동 가능해지도록 구성되고, 제2 프로파일러컵(44b)이 빔진행방향과 직교하는 제2 방향으로 이동 가능해지도록 구성되는 경우에 있어서, 제1 방향과 제2 방향이 비평행이어도 된다. 예를 들면, 제1 방향이 x방향인 한편, 제2 방향이 y방향이어도 된다. 이 경우, 제2 측정위치(77)는, 빔진행방향으로 보아 복수의 제1 측정위치(76) 중 적어도 1개와 중첩되어 있으면 된다.
도 7은, 다른 실시형태에 관한 주입 처리실(116) 내의 구성을 모식적으로 나타내는 상면도이다. 본 실시형태에서는, 제1 프로파일러컵(144a)과 제2 프로파일러컵(144b)이 동일한 스테이지(145a)에 장착되고, 동일한 구동축(145b)을 따라 함께 x방향으로 이동하도록 구성된다. 본 실시형태에 대하여, 상술한 실시형태와의 상이점을 중심으로 설명한다.
주입 처리실(116)에는, 사이드컵(42L, 42R), 프로파일러컵(144) 및 복수의 튜닝컵(47(47a~47d))이 마련된다. 사이드컵(42L, 42R) 및 복수의 튜닝컵(47)은, 상술한 실시형태와 동일하게 구성된다. 프로파일러컵(144)은, 제1 프로파일러컵(144a)과, 제2 프로파일러컵(144b)을 포함한다. 제1 프로파일러컵(144a)은, 통상측정용 제1 패러데이컵이며, 제2 프로파일러컵(144b)은, 교정용 제2 패러데이컵이다.
프로파일러구동장치(145)는, 프로파일러컵(144)을 x방향으로 이동시킨다. 프로파일러구동장치(145)는, 스테이지(145a)와, 구동축(145b)을 포함한다. 스테이지(145a)는, 구동축(145b)을 따라 x방향으로 이동 가능해지도록 구성된다. 제1 프로파일러컵(144a) 및 제2 프로파일러컵(144b)은, 스테이지(145a)에 탑재된다. 제2 프로파일러컵(144b)은, 제1 프로파일러컵(144a)에 대한 위치가 고정된 채로 제1 프로파일러컵(144a)과 함께 x방향으로 이동 가능해지도록 구성되어 있다. 제2 프로파일러컵(144b)은, 제1 프로파일러컵(144a)의 x방향의 옆에 배치되어 있다. 제2 프로파일러컵(144b)은, 제1 프로파일러컵(144a)과 빔진행방향의 위치가 동일해지도록 배치되어 있다.
제2 프로파일러컵(144b)에는 차폐부재(143)가 장착되어 있다. 차폐부재(143)는, 제2 프로파일러컵(144b)에 대하여 착탈 가능하도록 구성된다. 차폐부재(143)는, 예를 들면 나사나 볼트와 같은 체결부재를 이용하여 제2 프로파일러컵(144b)에 고정된다. 차폐부재(143)는, 준비공정 및 주입공정에 있어서 제2 프로파일러컵(144b)에 장착된 상태가 되고, 교정공정에 있어서 제2 프로파일러컵(144b)으로부터 제거된 상태가 된다. 차폐부재(143)는, 예를 들면 교정공정의 실행 전에 주입 처리실(116)을 대기개방함으로써 제2 프로파일러컵(144b)으로부터 수동으로 제거된다. 차폐부재(143)는, 교정공정의 실행 후에 주입 처리실(116)을 재차 대기개방함으로써 제2 프로파일러컵(144b)에 수동으로 장착된다. 준비공정 및 주입공정에 있어서 스테이지(145a)가 x방향으로 이동할 때, 차폐부재(143)는, 제2 프로파일러컵(144b)과 함께 x방향으로 이동한다.
차폐부재(143)는, 제2 프로파일러컵(144b)에 대하여 변위 가능하도록 구성되어도 된다. 차폐부재(143)는, 슬라이드문이나 플랩문으로서 구성되고, 도시하지 않은 구동기구에 의하여 개폐 가능하도록 구성되어도 된다. 차폐부재(143)는, 주입공정이나 준비공정에 있어서 제2 프로파일러컵(144b)과 빔진행방향으로 보아 중첩되고, 교정공정에 있어서 제2 프로파일러컵(144b)과 빔진행방향으로 보아 중첩되지 않도록 구성되어도 된다. 차폐부재(143)는, 제1 프로파일러컵(144a)의 클리닝이나 교환과 같은 메인터넌스 시에 있어서, 동시에 클리닝이나 교환이 이루어져도 된다.
본 실시형태에 있어서도, 통상측정용 제1 프로파일러컵(144a)과는 별도로, 교정용 제2 프로파일러컵(144b)을 마련함으로써, 제1 프로파일러컵(144a)의 빔전류 측정값을 적절히 교정할 수 있다. 또, 준비공정 및 주입공정에 있어서 제2 프로파일러컵(144b)에 차폐부재(143)를 장착해 둠으로써, 교정공정 이외에 있어서 제2 패러데이컵이 이온빔조사에 의하여 소모되거나 오염되거나 하는 것을 방지할 수 있다.
도 8은, 또 다른 실시형태에 관한 주입 처리실(216) 내의 구성을 모식적으로 나타내는 상면도이다. 본 실시형태에서는, 교정용 제2 패러데이컵으로서 주입범위(62)의 중앙에 배치되는 교정용 튜닝컵(247)을 이용한다. 따라서, 본 실시형태에서는, 교정용 제2 패러데이컵이 주입 처리실(216)에 대하여 고정되어 있으며, 이동 불가능이 되도록 구성된다. 본 실시형태에 대하여, 상술한 실시형태와의 상이점을 중심으로 설명한다.
주입 처리실(216)에는, 사이드컵(42L, 42R), 프로파일러컵(244), 복수의 튜닝컵(47(47a~47d)) 및 교정용 튜닝컵(247)이 마련된다. 사이드컵(42L, 42R) 및 복수의 튜닝컵(47)은, 상술한 실시형태와 동일하게 구성된다. 프로파일러컵(244)은, 통상측정용 제1 패러데이컵이다. 교정용 튜닝컵(247)은, 교정용 제2 패러데이컵이다.
프로파일러구동장치(245)는, 프로파일러컵(244)을 x방향으로 이동시킨다. 프로파일러구동장치(245)는, 프로파일러컵(244)을 적어도 제1 퇴피위치(271)와 제1 측정위치(276)의 사이에서 이동시킨다. 제1 측정위치(276)는, 빔진행방향으로 보아 교정용 튜닝컵(247)과 중첩된다. 환언하면, 제1 측정위치(276)의 빔진행방향과 직교하는 방향(x방향, y방향)의 위치는, 교정용 튜닝컵(247)의 빔진행방향과 직교하는 방향(x방향, y방향)의 위치와 동일하다. 프로파일러구동장치(245)는, 상술한 실시형태와 동일하게, 프로파일러컵(244)을 복수의 제1 측정위치로 이동시켜도 되고, 측정면(MS)에 있어서의 x방향의 빔전류 밀도분포의 측정을 가능하게 해도 된다.
교정용 튜닝컵(247)은, 주입범위(62)의 중앙에 배치되고, 제2 튜닝컵(47b)과 제3 튜닝컵(47c)의 사이에 배치되어 있다. 교정용 튜닝컵(247)은, 빔 방향으로 보아 주입위치(70)와 중첩되는 위치에 배치되어 있다. 교정용 튜닝컵(247)은, 빔스토퍼(46)에 마련되기 때문에, 주입위치(70)(또는 측정면(MS))보다 빔진행방향의 하류측으로 떨어져 있다. 교정용 튜닝컵(247)이 마련되는 위치는, 제2 측정위치(277)라고 할 수도 있다. 따라서, 본 실시형태에 있어서, 제2 측정위치(277)는, 빔진행방향으로 보아 제1 측정위치(276)와 중첩되지만, 빔진행방향으로 제1 측정위치(276)로부터 어긋나 있다. 즉, 제2 측정위치(277)는, 제1 측정위치(276)와 빔진행방향의 위치가 다르다.
또한, 교정용 튜닝컵(247)은, 빔진행방향으로 보아 주입위치(70)와 중첩되는 위치이면, 빔스토퍼(46)의 임의의 위치에 마련할 수 있다. 교정용 튜닝컵(247)은, 예를 들면 제1 튜닝컵(47a)과 제2 튜닝컵(47b)의 사이에 배치되어도 되고, 제3 튜닝컵(47c)과 제4 튜닝컵(47d)의 사이에 배치되어도 된다.
교정용 튜닝컵(247)에는 차폐부재(243)가 장착되어 있다. 차폐부재(243)는, 교정용 튜닝컵(247)에 대하여 착탈 가능하도록 구성된다. 차폐부재(243)는, 예를 들면 나사나 볼트와 같은 체결부재를 이용하여 교정용 튜닝컵(247)에 고정된다. 차폐부재(243)는, 준비공정 및 주입공정에 있어서 교정용 튜닝컵(247)에 장착된 상태가 되고, 교정공정에 있어서 교정용 튜닝컵(247)으로부터 제거된 상태가 된다. 차폐부재(243)는, 예를 들면 교정공정의 실행 전에 주입 처리실(216)을 대기개방함으로써 교정용 튜닝컵(247)으로부터 수동으로 제거된다. 차폐부재(243)는, 교정공정의 실행 후에 주입 처리실(216)을 재차 대기개방함으로써 교정용 튜닝컵(247)에 수동으로 장착된다.
차폐부재(243)는, 교정용 튜닝컵(247)에 대하여 변위 가능하도록 구성되고, 예를 들면 슬라이드문이나 플랩문으로서 구성되어도 된다. 차폐부재(243)는, 주입공정이나 준비공정에 있어서 교정용 튜닝컵(247)과 빔진행방향으로 보아 중첩되고, 교정공정에 있어서 교정용 튜닝컵(247)과 빔진행방향으로 보아 중첩되지 않도록 구성되어도 된다. 차폐부재(243)는, 프로파일러컵(244)의 클리닝이나 교환과 같은 메인터넌스 시에 있어서, 동시에 클리닝이나 교환이 이루어져도 된다.
본 실시형태에 있어서도, 교정용 튜닝컵(247)을 마련함으로써, 프로파일러컵(244)의 빔전류 측정값을 적절히 교정할 수 있다. 또, 준비공정 및 주입공정에 있어서 교정용 튜닝컵(247)에 차폐부재(243)를 장착해 둠으로써, 교정공정 이외에 있어서 교정용 튜닝컵(247)이 이온빔조사에 의하여 소모되거나 오염되거나 하는 것을 방지할 수 있다.
이상, 본 발명을 상술한 각 실시형태를 참조하여 설명했지만, 본 발명은 상술한 각 실시형태에 한정되는 것은 아니며, 각 실시형태의 구성을 적절히 조합한 것이나 치환한 것에 대해서도 본 발명에 포함되는 것이다. 또, 당업자의 지식에 근거하여 각 실시형태에 있어서의 조합이나 처리의 순번을 적절히 재조합한 것이나 각종 설계변경 등의 변형을 실시형태에 대하여 더하는 것도 가능하며, 그와 같은 변형이 더해진 실시형태도 본 발명의 범위에 포함될 수 있다.
10…이온 주입 장치
16…주입 처리실
42…사이드컵
43…차폐부재
44…프로파일러컵
44a…제1 프로파일러컵
44b…제2 프로파일러컵
47…튜닝컵
60…제어장치
70…주입위치
71…제1 퇴피위치
72…제2 퇴피위치
76…제1 측정위치
77…제2 측정위치
B…이온빔
W…웨이퍼

Claims (20)

  1. 웨이퍼에 이온빔을 조사하는 주입공정이 이루어지는 주입 처리실과,
    상기 주입 처리실 내에 마련되어, 상기 주입공정의 전에 이루어지는 준비공정에 있어서 상기 이온빔의 빔전류를 측정하도록 구성되는 제1 패러데이컵과,
    상기 주입 처리실 내에 마련되어, 상기 제1 패러데이컵의 빔전류 측정값을 교정하기 위한 교정공정에 있어서 상기 이온빔의 빔전류를 측정하도록 구성되는 제2 패러데이컵과,
    상기 제2 패러데이컵을 향하는 상기 이온빔을 차폐하기 위한 차폐부재로서, 상기 주입공정 및 상기 준비공정에 있어서 상기 이온빔이 상기 제2 패러데이컵에 입사 불가능해지고, 상기 교정공정에 있어서 상기 이온빔이 상기 제2 패러데이컵에 입사 가능해지도록 구성되는 차폐부재를 구비하는 것을 특징으로 하는, 이온 주입 장치.
  2. 제1항에 있어서,
    상기 제1 패러데이컵은, 제1 측정위치와 제1 퇴피위치의 사이에서 상기 이온빔의 빔진행방향과 직교하는 제1 방향으로 이동 가능해지도록 구성되며, 상기 제1 측정위치는, 상기 주입공정에 있어서 상기 웨이퍼에 이온이 주입되는 주입위치와 상기 빔진행방향으로 보아 중첩되고, 상기 제1 퇴피위치는, 상기 주입위치와 상기 빔진행방향으로 보아 중첩되지 않으며,
    상기 제2 패러데이컵은, 제2 측정위치와 제2 퇴피위치의 사이에서 상기 빔진행방향에 직교하는 제2 방향으로 이동 가능해지도록 구성되고, 상기 제2 측정위치는, 상기 제1 측정위치와 상기 빔진행방향으로 보아 중첩되며, 상기 제2 퇴피위치는, 상기 주입위치와 상기 빔진행방향으로 보아 중첩되지 않는 것을 특징으로 하는, 이온 주입 장치.
  3. 제2항에 있어서,
    상기 제2 패러데이컵은, 상기 제1 패러데이컵의 이동과 독립적으로 이동 가능해지도록 구성되는 것을 특징으로 하는, 이온 주입 장치.
  4. 제3항에 있어서,
    상기 제2 방향은, 상기 제1 방향과 평행이며, 상기 제2 퇴피위치는, 상기 주입위치를 사이에 두고 상기 제1 퇴피위치와는 반대측에 있는 것을 특징으로 하는, 이온 주입 장치.
  5. 제2항에 있어서,
    상기 제2 패러데이컵은, 상기 제1 패러데이컵에 대한 위치가 고정된 채로 상기 제1 패러데이컵과 함께 이동 가능해지도록 구성되는 것을 특징으로 하는, 이온 주입 장치.
  6. 제5항에 있어서,
    상기 제2 패러데이컵은, 상기 제1 패러데이컵의 상기 제1 방향의 옆에 배치되는 것을 특징으로 하는, 이온 주입 장치.
  7. 제2항 내지 제6항 중 어느 한 항에 있어서,
    상기 제2 측정위치는, 상기 제1 측정위치와 상기 빔진행방향의 위치가 동일한 것을 특징으로 하는, 이온 주입 장치.
  8. 제2항 내지 제6항 중 어느 한 항에 있어서,
    상기 제2 측정위치는, 상기 제1 측정위치와 상기 빔진행방향의 위치가 다른 것을 특징으로 하는, 이온 주입 장치.
  9. 제1항에 있어서,
    상기 제1 패러데이컵은, 제1 측정위치와 제1 퇴피위치의 사이에서 상기 이온빔의 빔진행방향과 직교하는 제1 방향으로 이동 가능해지도록 구성되며, 상기 제1 측정위치는, 상기 주입공정에 있어서 상기 웨이퍼에 이온이 주입되는 주입위치와 상기 빔진행방향으로 보아 중첩되고, 상기 제1 퇴피위치는, 상기 주입위치와 상기 빔진행방향으로 보아 중첩되지 않으며,
    상기 제2 패러데이컵은, 제2 측정위치에 고정되어 있고, 상기 제2 측정위치는, 상기 제1 측정위치보다 상기 빔진행방향의 하류측에 있으며, 상기 제1 측정위치와 상기 빔진행방향으로 보아 중첩되는 것을 특징으로 하는, 이온 주입 장치.
  10. 제2항 내지 제6항 중 어느 한 항에 있어서,
    상기 이온빔을 상기 제1 방향으로 왕복스캔시키는 빔스캐너를 더 구비하고,
    상기 제1 패러데이컵은, 상기 제1 방향으로 다른 복수의 제1 측정위치에서 상기 이온빔의 빔전류를 측정 가능하며,
    상기 제2 패러데이컵은, 상기 복수의 제1 측정위치 중 적어도 1개와 상기 빔진행방향으로 보아 중첩되는 상기 제2 측정위치에서 상기 이온빔의 빔전류를 측정 가능한 것을 특징으로 하는, 이온 주입 장치.
  11. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 차폐부재는, 상기 제2 패러데이컵에 대하여 변위 가능하며, 상기 주입공정 및 상기 준비공정에 있어서 상기 제2 패러데이컵과 상기 이온빔의 빔진행방향으로 보아 겹치도록 배치되고, 상기 교정공정에 있어서 상기 제2 패러데이컵과 상기 빔진행방향으로 보아 중첩되지 않도록 배치되는 것을 특징으로 하는, 이온 주입 장치.
  12. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 차폐부재는, 상기 제2 패러데이컵에 대하여 착탈 가능하고, 상기 주입공정 및 상기 준비공정에 있어서 상기 제2 패러데이컵에 장착되며, 상기 교정공정에 있어서 상기 제2 패러데이컵으로부터 제거되는 것을 특징으로 하는, 이온 주입 장치.
  13. 제2항 내지 제4항 중 어느 한 항에 있어서,
    상기 제2 패러데이컵은, 상기 주입공정 및 상기 준비공정에 있어서 상기 제2 퇴피위치에 있으며,
    상기 차폐부재는, 상기 제2 퇴피위치에 있는 상기 제2 패러데이컵의 입구를 막도록 배치되는 것을 특징으로 하는, 이온 주입 장치.
  14. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 교정공정에 있어서 상기 제1 패러데이컵 및 상기 제2 패러데이컵의 각각에 의하여 측정되는 빔전류 측정값에 근거하여, 상기 제1 패러데이컵의 빔전류 측정값을 교정하기 위한 교정파라미터를 결정하는 제어장치를 더 구비하는 것을 특징으로 하는, 이온 주입 장치.
  15. 제14항에 있어서,
    상기 제어장치는, 상기 교정파라미터의 초깃값을 유지하고, 상기 교정공정에서 결정한 교정파라미터의 값과 상기 교정파라미터의 초깃값의 차가 소정 범위 내인 경우에 상기 교정파라미터의 값을 갱신하며, 상기 차가 상기 소정 범위 내가 아닌 경우에 상기 교정파라미터의 값을 갱신하지 않고 얼러트를 출력하는 것을 특징으로 하는, 이온 주입 장치.
  16. 제14항에 있어서,
    상기 이온빔의 빔전류를 측정하도록 구성되는 제3 패러데이컵을 더 구비하고,
    상기 제어장치는, 상기 제1 패러데이컵 및 상기 제3 패러데이컵에 의하여 측정되는 빔전류 측정값 간의 비율의 초깃값을 유지하며, 상기 준비공정에 있어서 상기 제1 패러데이컵 및 상기 제3 패러데이컵에 의하여 측정되는 빔전류 측정값 간의 비율과 상기 비율의 초깃값의 차가 소정의 임곗값을 초과할 경우에 상기 교정공정을 실행하여 상기 교정파라미터를 결정하는 것을 특징으로 하는, 이온 주입 장치.
  17. 제14항에 있어서,
    상기 이온빔의 빔전류를 측정하도록 구성되는 제3 패러데이컵을 더 구비하고,
    상기 제어장치는, 상기 제1 패러데이컵 및 상기 제3 패러데이컵에 의하여 측정되는 빔전류 측정값 간의 비율을 모니터하며, 상기 모니터되는 상기 비율의 변화량이 소정의 임곗값을 초과할 경우에 상기 교정공정을 실행하여 상기 교정파라미터를 결정하는 것을 특징으로 하는, 이온 주입 장치.
  18. 제16항에 있어서,
    상기 제3 패러데이컵은, 상기 주입공정에 있어서 상기 웨이퍼에 이온이 주입되는 주입위치와 상기 이온빔의 빔진행방향으로 보아 중첩되지 않는 위치에서 상기 이온빔의 빔전류를 측정하도록 구성되는 것을 특징으로 하는, 이온 주입 장치.
  19. 제16항에 있어서,
    상기 제3 패러데이컵은, 상기 주입공정에 있어서 상기 웨이퍼에 이온이 주입되는 주입위치와 상기 이온빔의 빔진행방향으로 보아 중첩되는 위치에서 상기 이온빔의 빔전류를 측정하도록 구성되는 것을 특징으로 하는, 이온 주입 장치.
  20. 웨이퍼에 이온빔을 조사하는 주입공정과,
    상기 주입공정의 전에 이온빔의 빔전류를 제1 패러데이컵을 이용하여 측정하는 준비공정과,
    상기 이온빔의 빔전류를 제2 패러데이컵을 이용하여 측정하여, 상기 제1 패러데이컵의 빔전류 측정값을 교정하는 교정공정을 구비하며,
    상기 주입공정 및 상기 준비공정에 있어서, 상기 제2 패러데이컵을 향하는 상기 이온빔이 차폐부재에 의하여 차폐되어, 상기 이온빔이 상기 제2 패러데이컵에 입사 불가능해지고, 상기 교정공정에 있어서 상기 이온빔이 상기 제2 패러데이컵에 입사 가능해지는 것을 특징으로 하는, 이온 주입 방법.
KR1020200079136A 2019-07-19 2020-06-29 이온 주입 장치 및 이온 주입 방법 KR20210010328A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2019-133352 2019-07-19
JP2019133352A JP7234066B2 (ja) 2019-07-19 2019-07-19 イオン注入装置およびイオン注入方法

Publications (1)

Publication Number Publication Date
KR20210010328A true KR20210010328A (ko) 2021-01-27

Family

ID=74170447

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200079136A KR20210010328A (ko) 2019-07-19 2020-06-29 이온 주입 장치 및 이온 주입 방법

Country Status (4)

Country Link
US (1) US11581163B2 (ko)
JP (1) JP7234066B2 (ko)
KR (1) KR20210010328A (ko)
CN (1) CN112242287A (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024116747A1 (ja) * 2022-12-02 2024-06-06 住友重機械イオンテクノロジー株式会社 イオン注入装置およびイオン注入方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108557A (ja) 2009-11-19 2011-06-02 Canon Inc イオンビームを用いた加工方法および加工装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945274A (ja) * 1995-07-31 1997-02-14 Nissin Electric Co Ltd イオン注入装置のドーズ量補正装置
JP3341590B2 (ja) * 1996-07-26 2002-11-05 日新電機株式会社 イオン注入装置
JP2970851B1 (ja) 1998-08-11 1999-11-02 山口日本電気株式会社 イオン注入装置
JP2003272553A (ja) 2002-03-15 2003-09-26 Seiko Epson Corp イオン注入量測定方法及びこれを用いたイオン注入装置
JP2006041046A (ja) * 2004-07-23 2006-02-09 Canon Inc 光電計測装置及び露光装置
US7253423B2 (en) 2005-05-24 2007-08-07 Varian Semiconductor Equipment Associates, Inc. Technique for uniformity tuning in an ion implanter system
JP5403852B2 (ja) * 2005-08-12 2014-01-29 株式会社荏原製作所 検出装置及び検査装置
CN101764029A (zh) * 2008-12-04 2010-06-30 北京中科信电子装备有限公司 一种精确检测和校正离子束平行度的方法及装置
CN102005362B (zh) * 2009-09-03 2012-05-30 北京中科信电子装备有限公司 一种离子注入机双法拉第杯测量比值校正系统及校正方法
JP5808706B2 (ja) * 2012-03-29 2015-11-10 住友重機械イオンテクノロジー株式会社 イオン注入装置及びその制御方法
JP6195538B2 (ja) * 2014-04-25 2017-09-13 住友重機械イオンテクノロジー株式会社 イオン注入方法及びイオン注入装置
JP6509089B2 (ja) * 2015-09-30 2019-05-08 住友重機械イオンテクノロジー株式会社 イオン注入装置
JP6517163B2 (ja) 2016-03-18 2019-05-22 住友重機械イオンテクノロジー株式会社 イオン注入装置及びスキャン波形作成方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108557A (ja) 2009-11-19 2011-06-02 Canon Inc イオンビームを用いた加工方法および加工装置

Also Published As

Publication number Publication date
US11581163B2 (en) 2023-02-14
US20210020401A1 (en) 2021-01-21
JP7234066B2 (ja) 2023-03-07
TW202105448A (zh) 2021-02-01
JP2021018904A (ja) 2021-02-15
CN112242287A (zh) 2021-01-19

Similar Documents

Publication Publication Date Title
US9576771B2 (en) High energy ion implanter, beam current adjuster, and beam current adjustment method
JP5100963B2 (ja) ビーム照射装置
TWI786261B (zh) 離子植入裝置及離子植入方法
JP4901094B2 (ja) ビーム照射装置
KR20140139407A (ko) 고에너지 이온주입장치
US9384944B2 (en) Ion implanter and ion implantation method
JP5068928B2 (ja) 低エネルギービーム増大化方法及びビーム照射装置
KR20210010328A (ko) 이온 주입 장치 및 이온 주입 방법
US10825654B2 (en) Ion implantation apparatus and measurement device
US11823863B2 (en) Ion implanter and model generation method
TWI844686B (zh) 離子植入裝置及離子植入方法
KR20220041732A (ko) 이온주입장치 및 파티클검출방법
US20200211816A1 (en) Ion implanter and measuring device
TWI808132B (zh) 離子注入裝置以及測定裝置
KR20200055661A (ko) 이온주입장치 및 빔파크장치
US20230260741A1 (en) Ion implanter and ion implantation method
CN116053106A (zh) 离子注入方法、离子注入装置及半导体器件的制造方法

Legal Events

Date Code Title Description
A201 Request for examination