TWI806780B - System and method for detecting and compensating depth - Google Patents
System and method for detecting and compensating depth Download PDFInfo
- Publication number
- TWI806780B TWI806780B TW111136766A TW111136766A TWI806780B TW I806780 B TWI806780 B TW I806780B TW 111136766 A TW111136766 A TW 111136766A TW 111136766 A TW111136766 A TW 111136766A TW I806780 B TWI806780 B TW I806780B
- Authority
- TW
- Taiwan
- Prior art keywords
- depth
- rectangular
- deviation
- sliding window
- depth image
- Prior art date
Links
Images
Landscapes
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
- Measurement Of Optical Distance (AREA)
Abstract
Description
本揭露是有關於旋轉待測物並掃描待測物側面深度的檢測系統與方法,特別是可補償旋轉時所造成的偏差。The present disclosure relates to a detection system and method for rotating a test object and scanning the depth of the side surface of the test object, especially to compensate for deviation caused by rotation.
在鋼廠中,鋼帶在經過冷軋以後的厚度較薄,容易產生邊裂或鋸齒邊缺陷,為了避免有邊緣缺陷的鋼帶進入後續的製程產生問題,必須依照檢測系統來檢查鋼帶的邊緣是否有缺陷。一種做法是將鋼帶盤捲為鋼卷以後利用攝影機來拍攝鋼卷的側面,但由於鋼卷的半徑相當大,攝影機難以涵蓋整個鋼卷的範圍。In the steel mill, the thickness of the steel strip after cold rolling is relatively thin, which is prone to edge cracks or jagged edge defects. In order to avoid problems caused by the steel strip with edge defects entering the subsequent process, the steel strip must be inspected according to the inspection system. Whether the edge is flawed. One method is to use a camera to shoot the side of the steel coil after the steel strip is coiled into a steel coil, but because the radius of the steel coil is quite large, it is difficult for the camera to cover the entire range of the steel coil.
本揭露的實施例提出一種深度檢測與補償系統,包括待測物、多個旋轉模組、深度感測模組與計算模組。旋轉模組用以將待測物繞著軸線旋轉,待測物從軸線視之的輪廓為圓形。深度感測模組設置在待測物的一側,用以取得矩形深度影像,其中矩形深度影像具有取樣方向與旋轉方向,深度感測模組的掃瞄範圍小於圓形的直徑。計算模組通訊連接至旋轉模組與深度感測模組,用以套用滑動視窗在矩形深度影像上,滑動視窗沿著取樣方向移動以得到多個深度值。計算模組用以根據深度值判斷矩形深度影像是否有偏差,若有的話補償偏差。Embodiments of the present disclosure provide a depth detection and compensation system, including an object to be measured, a plurality of rotating modules, a depth sensing module, and a computing module. The rotating module is used to rotate the object to be tested around the axis, and the outline of the object to be tested is circular when viewed from the axis. The depth sensing module is arranged on one side of the object to be measured to obtain a rectangular depth image, wherein the rectangular depth image has a sampling direction and a rotation direction, and the scanning range of the depth sensing module is smaller than the diameter of a circle. The calculation module is connected to the rotation module and the depth sensing module in communication, and is used to apply the sliding window on the rectangular depth image, and the sliding window moves along the sampling direction to obtain multiple depth values. The calculation module is used to judge whether there is a deviation in the rectangular depth image according to the depth value, and to compensate the deviation if there is.
在一些實施例中,滑動視窗在取樣方向上的長度大於1,滑動視窗在旋轉方向上的長度等於矩形深度影像在旋轉方向上的長度。計算模組用以根據滑動視窗執行一移動平均演算法,滑動視窗的每一個位置對應至一個深度值。In some embodiments, the length of the sliding window in the sampling direction is greater than 1, and the length of the sliding window in the rotation direction is equal to the length of the rectangular depth image in the rotation direction. The computing module is used to execute a moving average algorithm according to the sliding window, and each position of the sliding window corresponds to a depth value.
在一些實施例中,計算模組還用以計算每兩個相鄰的深度值之間的斜率,並根據斜率是否超出範圍來判斷矩形深度影像是否具有線性偏差或是非線性偏差。In some embodiments, the calculation module is also used to calculate the slope between every two adjacent depth values, and judge whether the rectangular depth image has a linear deviation or a nonlinear deviation according to whether the slope is out of range.
在一些實施例中,計算模組還用以根據深度值執行線性迴歸演算法,並根據線性迴歸演算法的結果來判斷矩形深度影像是否具有線性偏差或是非線性偏差。In some embodiments, the calculation module is also used to execute a linear regression algorithm according to the depth value, and determine whether the rectangular depth image has a linear deviation or a nonlinear deviation according to the result of the linear regression algorithm.
在一些實施例中,待測物為圓筒狀的鋼卷。In some embodiments, the object to be tested is a cylindrical steel coil.
以另一個角度來說,本揭露的實施例提出一種深度檢測與補償方法,適用於電腦系統。此深度檢測與補償方法包括:透過多個旋轉模組將待測物繞著軸線旋轉,其中待測物從軸線視之的輪廓為圓形;透過深度感測模組取得矩形深度影像,其中深度感測模組設置在待測物的一側,矩形深度影像具有取樣方向與旋轉方向,深度感測模組的掃瞄範圍小於圓形的直徑;套用滑動視窗在矩形深度影像上,滑動視窗沿著取樣方向移動以得到多個深度值;以及根據深度值判斷矩形深度影像是否有偏差,若有的話補償偏差。From another point of view, the embodiments of the present disclosure provide a depth detection and compensation method suitable for computer systems. The depth detection and compensation method includes: rotating the object to be measured around the axis through a plurality of rotation modules, wherein the outline of the object to be measured viewed from the axis is a circle; obtaining a rectangular depth image through the depth sensing module, wherein the depth The sensing module is set on one side of the object to be tested. The rectangular depth image has a sampling direction and a rotation direction. The scanning range of the depth sensing module is smaller than the diameter of a circle; apply a sliding window to the rectangular depth image, and slide the window along the moving along the sampling direction to obtain multiple depth values; and judging whether there is a deviation in the rectangular depth image according to the depth value, and compensating for the deviation if there is.
在一些實施例中,滑動視窗在取樣方向上的長度大於1,滑動視窗在旋轉方向上的長度等於矩形深度影像在旋轉方向上的長度。深度檢測與補償方法還包括:根據滑動視窗執行移動平均演算法,滑動視窗的每一個位置對應至其中一個深度值。In some embodiments, the length of the sliding window in the sampling direction is greater than 1, and the length of the sliding window in the rotation direction is equal to the length of the rectangular depth image in the rotation direction. The depth detection and compensation method further includes: performing a moving average algorithm according to the sliding window, and each position of the sliding window corresponds to one of the depth values.
在一些實施例中,深度檢測與補償方法還包括:計算兩個相鄰的深度值之間的斜率,並根據斜率是否超出範圍來判斷矩形深度影像是否具有線性偏差或是非線性偏差。In some embodiments, the depth detection and compensation method further includes: calculating a slope between two adjacent depth values, and judging whether the rectangular depth image has a linear deviation or a nonlinear deviation according to whether the slope is out of range.
在一些實施例中,深度檢測與補償方法還包括:根據深度值執行線性迴歸演算法,並根據線性迴歸演算法的結果來判斷矩形深度影像是否具有線性偏差或是非線性偏差。In some embodiments, the depth detection and compensation method further includes: performing a linear regression algorithm according to the depth value, and judging whether the rectangular depth image has a linear deviation or a nonlinear deviation according to the result of the linear regression algorithm.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail together with the accompanying drawings.
關於本文中所使用之「第一」、「第二」等,並非特別指次序或順位的意思,其僅為了區別以相同技術用語描述的元件或操作。The terms "first", "second" and the like used herein do not specifically refer to a sequence or sequence, but are only used to distinguish elements or operations described with the same technical terms.
圖1是根據一實施例繪示檢測系統的示意圖。請參照圖1,深度檢測與補償系統100包括了待測物110、多個旋轉模組121~122、深度感測模組130與計算模組140。待測物110例如為圓筒狀的鋼卷,但本揭露並不限於此,在其他實施例中待測物110也可以是圓柱狀或圓盤狀,待測物110的材料可以包含任意金屬、有機物、金屬化合物等材質。旋轉模組121~122可包括滾子以及馬達,用以將待測物110繞著軸線150旋轉。FIG. 1 is a schematic diagram illustrating a detection system according to an embodiment. Referring to FIG. 1 , the depth detection and
深度感測模組130可包含結構光模組、紅外光模組、雙攝影機模組、雷射距離感測器、或任意可以感測場景深度的模組。待測物110在軸線150上有兩側,從任何一側來觀察,待測物110的輪廓(最外圍的形狀)為圓形,深度感測模組130設置在其中一側,用以拍攝待測物110的側面。在一些實施例中,深度感測模組130為線掃描器,當待測物110旋轉時深度感測模組130持續掃描,所拍攝到的影像稱為矩形深度影像,特別的是深度感測模組130的掃瞄範圍小於上述圓形的直徑,例如只需要大於等於圓形的半徑。The
計算模組140通訊連接至深度感測模組130與旋轉模組121~122,此通訊連接可以用任意的有線或無線通訊手段來達成。計算模組140例如為中央控制器、處理器、電腦系統、伺服器、或任意有計算能力的電子裝置。計算模組140會控制旋轉模組121~122,藉此決定待測物110旋轉的角速度,計算模組140也會從深度感測模組130接收矩形深度影像。The
待測物110在轉動時可能會有一些位移,這些位移會導致所感測的矩形深度影像有偏差。舉例來說,軸線160與軸線150垂直,待測物110可能會沿著軸線160旋轉一角度,造成待測物110有一部份會較靠近深度感測模組130,另一部分較遠離深度感測模組130,這使得所感測到的矩形深度影像有線性的偏差。此外,待測物110的旋轉速度可能不一致,這樣不定速的旋轉會使得感測到的矩形深度影像有非線性的偏差。計算模組140會執行一個深度檢測與補償方法,用以偵測矩形深度影像是否有偏差,若有的話會補償此偏差,以下將說明此方法。The object under
圖2是根據一實施例繪示深度檢測與補償方法的流程圖。圖3是根據一實施例繪示偵測偏差的示意圖。請參照圖2與圖3,在步驟201,透過深度感測模組取得矩形深度影像300,此矩形深度影像300具有取樣方向301與旋轉方向302。取樣方向301也是線掃描器的掃描方向,而旋轉方向302是待測物110的旋轉方向,線掃描器每掃描一次可以產生一列(row)的像素,每個像素的灰階代表深度,而隨著待測物110旋轉,在下個取樣時間線掃描器會取得下一列的像素。FIG. 2 is a flowchart illustrating a depth detection and compensation method according to an embodiment. FIG. 3 is a schematic diagram illustrating a detection deviation according to an embodiment. Referring to FIG. 2 and FIG. 3 , in
在步驟202,判斷矩形深度影像300是否有偏差,如果有偏差,則在步驟203進一步判斷偏差種類。具體來說,可先套用一個滑動視窗(sliding window)310在矩形深度影像300上,此滑動視窗310在取樣方向301上的長度大於1(例如為3),滑動視窗310在旋轉方向302上的長度例如等於矩形深度影像300在旋轉方向302上的長度。滑動視窗310是用以執行移動平均演算法(moving average),也就是計算滑動視窗310內所有像素的平均。滑動視窗310是沿著取樣方向301移動,例如每次移動一或多個像素,在移動的過程中每一個位置都可計算出一個平均值。在一些實施例中,不同位置的滑動視窗310的範圍可彼此重疊。In
為了說明起見,以下將利用移動平均演算法所計算出的平均稱為深度值,接下來根據這些深度值判斷矩形深度影像300是否有偏差。在沒有偏差的理想狀況,深度值的分佈類似於圖表320所示,其中橫軸為取樣方向,縱軸為深度值的大小,圖表320中的每一個點321都代表深度值,為了簡化起見在此並未標示所有的深度值321。此外,直線322代表這些深度值321的趨勢,理想狀況下直線322的斜率應該趨近於0。For the sake of illustration, the average calculated by using the moving average algorithm is referred to as the depth value hereinafter, and then it is determined whether the
如上所述,當待測物110沿著垂直的軸線160旋轉一角度時會有線性偏差,此時深度值的分佈會類似於圖表330,這些深度值331會逐漸下降,因此代表趨勢的直線332的斜率會小於0;或者深度值331逐漸上升,代表趨勢的直線斜率大於0。當有非線性偏差時會形成圖表340,深度值341也是逐漸下降,但在不同的片段341~344中下降的速度不相同,也就是說片段342的斜率會大於片段343的斜率,片段343的斜率會大於片段344的斜率。或者,深度值341可逐漸上升,但在不同片段中的斜率不相同。在此可以利用斜率或是線性迴歸演算法來判斷是屬於哪一種偏差。As mentioned above, when the
首先說明斜率的作法,首先從左至右(沿著取樣方向301)計算每兩個相鄰的深度值之間的斜率,
表示第i個斜率,i為正整數。接下來設定一個範圍,表示為-R~+R,其中R為正整數。此外也設定一個基準值T,其初始值設定為0。對於每一個深度值
,如果
成立,則產生一個新的片段,並且設定新的基準值
,否則處理下一個深度值。在處理所有的深度值以後,判斷片段的個數,如果片段的個數為0,則表示沒有偏差。如果片段的個數為1,則有可能是有個轉折點或是線性偏差,因此可以進一步判斷所有斜率
的標準差,如果標準差在某個臨界值以下,則判斷為線性偏差。如果片段的個數大於1則表示非線性偏差。在圖表340的實施例中會產生片段342~344,這是因為片段交界處的斜率超出了上述的範圍。
Firstly, the method of slope is described. Firstly, the slope between every two adjacent depth values is calculated from left to right (along the sampling direction 301), Indicates the ith slope, where i is a positive integer. Next, set a range, expressed as -R~+R, where R is a positive integer. In addition, a reference value T is also set, and its initial value is set to 0. For each depth value ,if is established, a new segment is generated and a new benchmark value is set , otherwise process the next depth value. After processing all the depth values, judge the number of fragments, if the number of fragments is 0, it means there is no deviation. If the number of fragments is 1, there may be a turning point or a linear deviation, so all slopes can be further judged The standard deviation of , if the standard deviation is below a certain critical value, it is judged as a linear deviation. A non-linear deviation is indicated if the number of fragments is greater than 1. In the embodiment of
接下來說明線性迴歸演算法,可以用一個線性函數來逼近所有的深度值,以下用 表示第i個深度值。線性迴歸演算法是要執行以下數學式1的最佳化演算法。 [數學式1] Next, the linear regression algorithm is described. A linear function can be used to approximate all depth values. The following uses Indicates the i-th depth value. The linear regression algorithm is an optimization algorithm that executes the following Mathematical Expression 1. [mathematical formula 1]
其中
為深度值
所對應在取樣方向上的位置,
代表一個線性方程式,
為變數,數學式1的目的是要找到一條直線來逼近這些深度值,變數
代表直線的斜率。如果數學式1所計算出的誤差小於一臨界值且變數
在範圍-R~+R之內,則表示矩形深度影像300沒有偏差。如果數學式1計算出的誤差小於臨界值但變數
在範圍-R~+R之外,則表示為線性偏差。如果數學式1計算出的誤差大於等於臨界值,則表示為非線性偏差。當判斷為非線性偏差以後,可以再進一步判斷出片段,例如執行以下的最佳化演算法。
[數學式2]
in is the depth value corresponding to the position in the sampling direction, represents a linear equation, is a variable, the purpose of Mathematical Formula 1 is to find a straight line to approximate these depth values, the variable represents the slope of the line. If the error calculated by Mathematical Formula 1 is less than a critical value and the variable Within the range −R˜+R, it means that the
其中k為正整數,代表兩個片段的交界。線性方程式
是用以逼近第一個片段內的深度值,而線性方程式
是用以逼近第二個片段內的深度值。數學式2是要找到正整數k以及兩個線性方程式中的變數
,使得數學式2的目標函數有最小的誤差。如果數學式2所計算出的誤差大於一第二臨界值,則表示有多於2個片段,可以新增一個片段重複類似的最佳化演算法,直到誤差小於第二臨界值為止。換言之,根據線性迴歸演算法的結果可判斷矩形深度影像300是否具有線性偏差或是非線性偏差。
Where k is a positive integer, representing the junction of two segments. linear equation is used to approximate the depth value in the first fragment, while the linear equation is used to approximate the depth value in the second fragment. Mathematical formula 2 is to find the positive integer k and the variables in the two linear equations , so that the objective function of Mathematical Formula 2 has the minimum error. If the error calculated by the mathematical formula 2 is greater than a second critical value, it means that there are more than 2 segments, and a similar optimization algorithm can be repeated until the error is smaller than the second critical value. In other words, according to the results of the linear regression algorithm, it can be determined whether the
除了上述斜率與線性迴歸的做法,本領域具有通常知識者當可採用任意的演算法來判斷深度值是否可近似為水平直線(無偏差)、斜直線(線性偏差)或多個片段(非線性偏差),本揭露並不限於上述做法。In addition to the above slope and linear regression methods, those skilled in the art can use any algorithm to determine whether the depth value can be approximated by a horizontal line (no bias), a sloped line (linear deviation) or multiple segments (non-linear Deviation), the present disclosure is not limited to the above-mentioned practice.
在偵測偏差以後,可以根據是否有偏差進行補償,如果沒有偏差則在步驟350不進行補償。如果是線性偏差,則可以在步驟204進行線性補償。具體來說,在上述做法中可以找到線性方程式的變數
,對深度值
的補償可以寫為
。如果是採用斜率方法,則可以計算所有斜率
的平均當作是斜率
。如此一來,補償後的深度值會接近圖表320所示的水平直線。由於深度值
代表矩形深度影像300多個像素的平均,因此可對所有對應像素都執行上述的補償。如果是非線性偏差,則可以在步驟205進行非線性補償。具體來說,在第一個片段中的補償類似於線性補償,寫為
;在第二個片段中的補償寫為
,如果有更多片段則以此類推。補償以後的深度值會接近圖表320所示的水平直線。類似的,由於深度值
代表矩形深度影像300多個像素的平均,因此可對所有對應像素都執行上述的補償。
After the deviation is detected, compensation can be performed according to whether there is a deviation, and if there is no deviation, no compensation is performed in
請回到圖2,如果步驟202的結果為否或者是經過步驟204、205的補償,在步驟206中可以得到理想資料型態(類似於圖表320)。在步驟207,可以對補償後的矩形深度影像300進行後處理,例如將矩形影像的直角座標轉換為極座標,變成符合鋼捲形狀的圓形影像。Please return to FIG. 2 , if the result of
在上述的深度檢測與補償系統中,藉由讓待測物旋轉,深度感測模組130的掃瞄範圍可以不用涵蓋整個待測物,可以降低深度感測模組130的硬體需求或是提升掃描精確度。此外,由於待測物可能會沿著垂直的軸線旋轉或是速度不固定導致感測的深度有偏差,在此也提出偵測並補償偏差的辦法。In the above-mentioned depth detection and compensation system, by rotating the object to be measured, the scanning range of the
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above with the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field may make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention should be defined by the scope of the appended patent application.
100:深度檢測與補償系統
110:待測物
121,122:旋轉模組
130:深度感測模組
140:計算模組
150,160:軸線
201~207:步驟
300:矩形深度影像
301:取樣方向
302:旋轉方向
310:滑動視窗
320,330,340:圖表
321,331,341:深度值
322,332:直線
342~344:片段
350:步驟
100: Depth detection and compensation system
110: The object to be tested
121,122:Rotary module
130: Depth sensing module
140: Calculation module
150,160:
圖1是根據一實施例繪示檢測系統的示意圖。 圖2是根據一實施例繪示深度檢測與補償方法的流程圖。 圖3是根據一實施例繪示偵測偏差的示意圖。 FIG. 1 is a schematic diagram illustrating a detection system according to an embodiment. FIG. 2 is a flowchart illustrating a depth detection and compensation method according to an embodiment. FIG. 3 is a schematic diagram illustrating a detection deviation according to an embodiment.
201~207:步驟 201~207: Steps
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111136766A TWI806780B (en) | 2022-09-28 | 2022-09-28 | System and method for detecting and compensating depth |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111136766A TWI806780B (en) | 2022-09-28 | 2022-09-28 | System and method for detecting and compensating depth |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI806780B true TWI806780B (en) | 2023-06-21 |
TW202412960A TW202412960A (en) | 2024-04-01 |
Family
ID=87803278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111136766A TWI806780B (en) | 2022-09-28 | 2022-09-28 | System and method for detecting and compensating depth |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI806780B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05312528A (en) * | 1992-05-14 | 1993-11-22 | Nisshin Steel Co Ltd | Method and apparatus for detecting winding profile of coil side face |
KR20040020358A (en) * | 2002-08-30 | 2004-03-09 | 주식회사 포스코 | Device and method for telescope measurement for steel coil |
CN101846504A (en) * | 2009-03-26 | 2010-09-29 | 有进Instec株式会社 | The shape inspection method and the testing fixture of sheet material volume |
US8982337B2 (en) * | 2009-07-31 | 2015-03-17 | The Mill Steel Co. | Apparatus for determining gauge profile for flat rolled material with laser-based lap counter |
CN112654833A (en) * | 2018-08-29 | 2021-04-13 | Posco公司 | Tower-shaped measuring device for rolled plate |
CN113465511A (en) * | 2021-06-19 | 2021-10-01 | 精锐视觉智能科技(上海)有限公司 | Online measurement and omnibearing end surface defect online detection method for steel coil size |
CN113701652A (en) * | 2021-09-23 | 2021-11-26 | 安徽工业大学 | Intelligent high-precision detection and defect diagnosis system for inner diameter of steel coil |
-
2022
- 2022-09-28 TW TW111136766A patent/TWI806780B/en active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05312528A (en) * | 1992-05-14 | 1993-11-22 | Nisshin Steel Co Ltd | Method and apparatus for detecting winding profile of coil side face |
KR20040020358A (en) * | 2002-08-30 | 2004-03-09 | 주식회사 포스코 | Device and method for telescope measurement for steel coil |
CN101846504A (en) * | 2009-03-26 | 2010-09-29 | 有进Instec株式会社 | The shape inspection method and the testing fixture of sheet material volume |
US8982337B2 (en) * | 2009-07-31 | 2015-03-17 | The Mill Steel Co. | Apparatus for determining gauge profile for flat rolled material with laser-based lap counter |
CN112654833A (en) * | 2018-08-29 | 2021-04-13 | Posco公司 | Tower-shaped measuring device for rolled plate |
CN113465511A (en) * | 2021-06-19 | 2021-10-01 | 精锐视觉智能科技(上海)有限公司 | Online measurement and omnibearing end surface defect online detection method for steel coil size |
CN113701652A (en) * | 2021-09-23 | 2021-11-26 | 安徽工业大学 | Intelligent high-precision detection and defect diagnosis system for inner diameter of steel coil |
Also Published As
Publication number | Publication date |
---|---|
TW202412960A (en) | 2024-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8107064B2 (en) | Disc wafer inspecting device and inspecting method | |
US20060070417A1 (en) | Flatness monitor | |
CN110906875B (en) | Visual processing method for aperture measurement | |
JP6314798B2 (en) | Surface defect detection method and surface defect detection apparatus | |
US10102631B2 (en) | Edge detection bias correction value calculation method, edge detection bias correction method, and edge detection bias correcting program | |
WO2010084920A1 (en) | Pantograph height measuring device and calibration method therefor | |
Che et al. | Real-time monitoring of workpiece diameter during turning by vision method | |
CN110514110B (en) | Platform leveling control method | |
CN115791830A (en) | Steel plate detection system, steel plate detection method and electronic equipment | |
CN117649404A (en) | Medicine packaging box quality detection method and system based on image data analysis | |
CN116630327A (en) | Boiler state abnormity monitoring system based on thermodynamic diagram | |
TWI806780B (en) | System and method for detecting and compensating depth | |
JP2019056671A (en) | Wall surface damage inspection device | |
CN103052863B (en) | Glass bottle inspection device | |
CN115096202B (en) | Method for detecting deformation defect of cylindrical surface to-be-detected body | |
JP4023295B2 (en) | Surface inspection method and surface inspection apparatus | |
Zhang et al. | The defects recognition of wheel tread based on linear CCD | |
Duan et al. | Measuring of train wheel surface defect based on linear CCD imaging | |
JP2003254719A (en) | Method of inspecting coating area | |
JP5403653B2 (en) | Disc-shaped substrate inspection equipment | |
JP5087165B1 (en) | Adjustment device for outputting data for adjusting surface inspection device, adjustment data output method and program | |
JP2001255136A (en) | On-line measuring accuracy inspecting method for width and length measuring instruments | |
CN114111638A (en) | Curved surface detection method based on phase deflection | |
Yang et al. | Development of a camber measurement system in a hot rolling mill | |
Marcotuli et al. | A Vision-based Measurement System for Semi-Finished Cylindrical Geometries |