WO2010084920A1 - Pantograph height measuring device and calibration method therefor - Google Patents

Pantograph height measuring device and calibration method therefor Download PDF

Info

Publication number
WO2010084920A1
WO2010084920A1 PCT/JP2010/050723 JP2010050723W WO2010084920A1 WO 2010084920 A1 WO2010084920 A1 WO 2010084920A1 JP 2010050723 W JP2010050723 W JP 2010050723W WO 2010084920 A1 WO2010084920 A1 WO 2010084920A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
image
pantograph
color region
photographing
Prior art date
Application number
PCT/JP2010/050723
Other languages
French (fr)
Japanese (ja)
Inventor
貴雅 藤澤
庭川 誠
勇介 渡部
Original Assignee
株式会社 明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 明電舎 filed Critical 株式会社 明電舎
Priority to RU2011134882/11A priority Critical patent/RU2478489C1/en
Priority to CN2010800053013A priority patent/CN102292236B/en
Publication of WO2010084920A1 publication Critical patent/WO2010084920A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/18Current collectors for power supply lines of electrically-propelled vehicles using bow-type collectors in contact with trolley wire
    • B60L5/22Supporting means for the contact bow
    • B60L5/26Half pantographs, e.g. using counter rocking beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M1/00Power supply lines for contact with collector on vehicle
    • B60M1/12Trolley lines; Accessories therefor
    • B60M1/28Manufacturing or repairing trolley lines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles

Definitions

  • the present invention relates to a pantograph height measuring device that measures the height of a pantograph using image processing and a calibration method thereof.
  • the inspection items is the measurement of the overhead line height. Since the height of this overhead line is equivalent to the height of the pantograph, which is a current collector installed on the roof of the vehicle, conventionally, the method of obtaining the height of the overhead line by measuring the height of the pantograph Is known. For example, the following is mentioned as a method of measuring the height of such a pantograph.
  • (A) Laser sensor system This system is a system in which a pantograph is scanned with a laser using a mirror or the like, and the height of the pantograph is measured by the phase difference of reflected waves or the deformation of the shape of the reflected laser.
  • (B) Light cutting sensor method This method is a method of projecting striped light onto a pantograph, receiving the stripes that are uneven according to the shape of the pantograph, and measuring the height of the pantograph.
  • (C) Image processing method As shown in FIG. 14, this method uses a line sensor camera (hereinafter referred to as a line sensor) 20 installed on the roof of the vehicle 10 to photograph the pantograph 10 a and processes the captured image. This is a method of measuring the height of the pantograph 10a by performing processing such as model matching and pattern matching in the computer 30 (see, for example, Patent Documents 1 and 2).
  • the image processing method extracts the pixel position on the image matching the model of the pantograph 10a prepared in advance from the image of the pantograph 10a taken by the line sensor 20, and the line sensor 20
  • the actual height of the pantograph 10a is calculated from the pixel position on the image based on the distance from the to the pantograph 10a, the focal length of the lens of the photographing instrument, and the like.
  • This image processing method uses a line sensor 20 as a photographing instrument to increase the spatial resolution and improve the accuracy.
  • This method has an advantage that it can be mounted not only on a test vehicle manufactured exclusively for measurement but also on a commercial vehicle because the device is smaller than the laser sensor method and the light cutting method.
  • the line sensor 20 is installed so as to look upward obliquely as shown in FIG.
  • the resolution when the pantograph 10a is low and the resolution when it is high are different.
  • the resolution is higher at the lower position, and the resolution is lower at the higher position.
  • the reason why the resolution is higher at the position where the pantograph 10a is lower is that the distance from the line sensor 20 is closer at the lower position.
  • the line sensor 20 In the method using the line sensor 20, as shown by the broken line in FIG. 14, if the line sensor 20 is installed in front of the pantograph 10a, the resolution of the image is almost constant over the fluctuation range of the height of the overhead line. Although the height of the pantograph 10a can be measured with high precision, if the line sensor 20 is installed at the same height as the pantograph 10a, the line sensor 20 may come into contact with the overhead wire 5 and lead to a serious accident.
  • the line sensor 20 is actually installed obliquely below the pantograph 10a as shown by the solid line in FIG.
  • the optical axis of the line sensor 20 is not orthogonal to the displacement direction (vertical direction) of the pantograph 10a but intersects diagonally, and the pantograph 10a
  • the resolution of the image photographed by the line sensor 20 differs depending on whether the position is low or high. Specifically, since the distance between the pantograph 10a and the line sensor 20 is closer when the pantograph 10a is at a lower position, the resolution is higher than when the position of the pantograph 10a is higher.
  • Patent Document 2 the relationship between the height of the pantograph 10a, the focal length of the camera lens of the line sensor 20, and the position (pixel position) of the pantograph 10a on the image photographed by the line sensor 20 and the actual height of the pantograph 10a.
  • the calculation is performed using the expressed ratio.
  • the actual height of the pantograph 10a is obtained using this equation (2).
  • the distance l from the line sensor 20 to the pantograph 10a may be constant, but if the line sensor 20 is installed at the position indicated by the solid line in FIG. Since the value of the distance l varies depending on the position of the upper pixel, if the calculation is performed with the distance l constant, an error occurs in the calculation result. Therefore, when the line sensor 20 is installed obliquely below the pantograph 10a, it is necessary to perform height correction calculation using projective transformation or the like. In order to perform this calculation, the elevation angle of the line sensor 20 is required, and it is necessary to perform complicated calculations.
  • an object of the present invention is to provide a pantograph height measuring apparatus and a calibration method thereof that can easily perform calibration in pantograph height measurement.
  • a pantograph height measuring device for solving the above-mentioned problems includes a line sensor installed on a roof of a vehicle, and an image processing means for analyzing an image photographed by the line sensor,
  • a pantograph height measuring device for measuring the pantograph height of a running vehicle, for calibration, the dark color region and the light color region are alternately arranged along the vertical direction in a range including the fluctuation range of the pantograph.
  • a member is detachably provided, and the image processing means includes a position on the image of the dark color region and the light color region obtained from an image obtained by photographing the calibration member by the line sensor, the dark color region, and the dark color region.
  • a relational expression with the actual height of the light-colored area is obtained, and the image of the pantograph taken by the line sensor using this relational expression Characterized in that it consists of a position to calculate the height of the actual pantograph.
  • a pantograph height measuring device for solving the above-mentioned problem is the pantograph height measuring device according to the first invention, wherein a plurality of second pantograph height measuring devices connected in the vertical direction to the calibration member.
  • a photographing line correction member comprising one color region and a second color region disposed around the first color region is detachably provided, and displays an image photographed by the line sensor.
  • the photographing line correction member includes a display unit, and the width of the first color region and the second color region displayed on the display unit changes depending on the position and inclination of the photographing line of the line sensor.
  • the shape of the first color region is set.
  • a pantograph height measuring device for solving the above-mentioned problems is the pantograph height measuring device according to the second aspect of the invention, wherein the photographing line correcting member is located at the center in the horizontal direction.
  • the upper and lower widths of the horizontal center of the first color area are formed wider than the upper and lower widths on both sides so that one color area is in contact with the adjacent first color area. It is characterized by.
  • a pantograph height measuring device for solving the above-mentioned problems is the pantograph height measuring device according to any one of the first to third aspects of the invention, wherein the image processing means is connected to the line sensor.
  • An input image creation unit that creates an input image in which input image signals are arranged in time series
  • a binarization processing unit that creates a binarized image obtained by binarizing the input image
  • the binary A color area position detecting unit for detecting positions of the dark color area and the light color area on the binarized image; a position of the dark color area and the light color area on the binarized image; and the dark color area and the light color.
  • a relational expression calculation unit that calculates the relational expression based on an actual position of the region.
  • a pantograph height measuring device for solving the above-mentioned problems is the pantograph height measuring device according to the first aspect of the invention, wherein the photographing line correcting member is a horizontal portion of the photographing line correcting member.
  • a center line is provided at the center of the direction.
  • a calibration method for a pantograph height measuring device for solving the above-described problem is that the pantograph of the running vehicle is photographed by a line sensor installed on the roof of the vehicle, and the line sensor A method for calibrating a pantograph height measuring device for analyzing the image taken by the method and measuring the height of the pantograph, wherein a dark color region and a light color region are alternately arranged along the vertical direction on the surface thereof
  • a first step of installing a calibration member in the vicinity of the pantograph a second step of photographing the calibration member by the line sensor; and an image on the image photographed by the line sensor in the image processing means.
  • detecting the position of the dark color region and the light color region of the Characterized in that comprising a third step of calculating the relationship between the actual position of the color region and the position and the dark region and the light color region on the image of the light color region.
  • a calibration method for a pantograph height measuring device for solving the above problem is the calibration method for a pantograph height measuring device according to the sixth aspect of the invention, wherein the region having the same shape is vertically aligned.
  • a plurality of first color regions connected to each other and a second color region arranged around the first color region are arranged in color, and the first color region and the second color region are An imaging line correction member arranged so that the widths of the first color area and the second color area displayed on the display means change according to the position and the inclination of the imaging line of the line sensor.
  • the photographing line correction member displayed on the display means for photographing the photographing line correction member by the line sensor and displaying an image photographed by the line sensor.
  • the Fixed shooting line while checking the image of the use members, remove the imaging line correcting member, and performs the first, second and third step.
  • a calibration method for a pantograph height measuring apparatus for solving the above problem is a calibration method for a pantograph height measuring apparatus according to the seventh aspect of the invention, wherein the photographing line correction member is: The vertical width of the horizontal center of the first color area is compared with the vertical width of both sides so that the first color area touches the adjacent first color area at the horizontal center. It is characterized by being formed wide.
  • a calibration method for a pantograph height measuring apparatus wherein the image is a calibration method for a pantograph height measuring apparatus according to any one of the sixth to eighth aspects.
  • a processing unit creates an input image in which image signals input from the line sensor are arranged in time series, creates a binarized image obtained by binarizing the input image, and outputs the binarized image. Detecting the positions of the dark color region and the light color region on the binarized image, based on the positions of the dark color region and the light color region and the actual positions of the dark color region and the light color region on the binarized image; A relational expression is calculated.
  • a calibration method for a pantograph height measuring apparatus according to the tenth aspect of the present invention.
  • a center line is provided at the center of the direction, and the photographing line is corrected based on the center line.
  • the line sensor installed on the roof of the vehicle and the image processing means for analyzing the image photographed by the line sensor are provided.
  • a calibration member is provided that is detachably provided with a dark color region and a light color region alternately arranged along the vertical direction within the range including the fluctuation range of the pantograph.
  • the image processing means obtains a relational expression between the position of the dark color region and the light color region on the image obtained from the image obtained by photographing the calibration member by the line sensor and the actual height of the dark color region and the light color region, It is configured to calculate the actual pantograph height from the position on the pantograph image taken by the line sensor using this relational expression. Therefore, by analyzing the image taken of the calibration member without considering the focal length of the camera lens of the line sensor, the distance from the line sensor to the pantograph, the resolution of the image, the elevation angle of the line sensor, etc.
  • the calibration member is provided with a plurality of first color regions connected in the vertical direction and a first color region disposed around the first color region.
  • a photographing line correction member comprising two color regions is detachably provided, and further includes display means for displaying an image photographed by the line sensor, and the photographing line correction member is displayed on the display means.
  • the shape of the first color area is set so that the width of the first color area and the second color area changes depending on the position and inclination of the photographing line of the line sensor. The position and orientation of the photographing line of the line sensor can be easily and reliably corrected so as to be orthogonal to the pantograph, and therefore, the height of the pantograph can be measured with higher accuracy.
  • the photographing line correction member is arranged so that the first color region is adjacent to the adjacent first color region at the center in the horizontal direction. Since the vertical width at the center of the first color area in the horizontal direction is formed wider than the vertical width on both sides, the first color area is displayed on the display means in order to make the photographing line orthogonal to the pantograph. It is only necessary to correct the position and inclination of the photographic line so that is continuously displayed, and it is possible to easily correct the position and inclination of the photographic line.
  • the image processing means creates an input image in which the image signals input from the line sensor are arranged in time series, and the input image
  • a binarization processing unit that creates a binarized image obtained by binarizing the color
  • a color region position detection unit that detects positions of dark and light color regions on the binarized image
  • a binarized image Since it has a relational expression calculation unit that calculates a relational expression based on the positions of the upper dark color area and the light color area and the actual position of the dark color area and the light color area, the darkness obtained from an image obtained by photographing the calibration member
  • a process of calculating a relational expression between the position of the color area and the light color area on the image and the actual height of the dark color area and the light color area can be smoothly performed.
  • the photographing line correction member has a center line at the center in the horizontal direction of the photographing line correction member, so that the inclination of the photographing line is corrected. Nevertheless, it is possible to objectively determine whether the direction in which the line sensor is rotated is correct. Further, it is possible to make corrections while viewing the image being photographed without being aware of the actual rotation or horizontal movement of the line sensor. Moreover, it is more versatile and can be easily corrected without requiring human sense or experience. Also, by increasing the accuracy of calibration, the height of the pantograph can be accurately measured.
  • a pantograph of a running vehicle is photographed by a line sensor installed on the roof of the vehicle, and an image photographed by the line sensor is analyzed.
  • a calibration method of a pantograph height measuring device for measuring the height of a pantograph wherein a calibration member in which a dark color region and a light color region are alternately arranged along a vertical direction on a surface of the pantograph is provided.
  • the position of the detected dark color region and light color region on the image and the dark color region and light color region Since it consists of a third step of calculating the relational expression with the actual position, it is not necessary to consider the focal length of the camera lens of the line sensor, the distance from the line sensor to the pantograph, the resolution of the image, the elevation angle of the line sensor, etc.
  • the relational expression with the actual height can be easily calculated, and the accuracy of pantograph height measurement can be calculated without complicated calculations even when the line sensor is shooting obliquely looking up. Can be improved.
  • the first color area formed by connecting a plurality of areas having the same shape in the vertical direction and the first color area are arranged around the first color area.
  • the first color area and the second color area are displayed on the display means, and the width of the first color area and the second color area is taken by the line sensor.
  • the first, second, and third steps are performed after correcting the shooting line while removing the shooting line correcting member while checking the image of the shooting line correcting member displayed on the means.
  • the position and orientation of the imaging line of the line sensor easily and reliably can be modified to be orthogonal to the pantograph, therefore, it is possible to perform the height measurement of the pantograph with higher accuracy.
  • the photographing line correcting member is mutually connected to the first color area adjacent to the first color area at the center in the horizontal direction. Since the vertical width of the center in the horizontal direction of the first color region is wider than the vertical width on both sides of the first color area, the display means includes the display unit in order to make the shooting line orthogonal to the pantograph. It is only necessary to correct the position and inclination of the photographing line so that the first color region is displayed continuously, and the correction of the position and inclination of the photographing line can be easily performed.
  • the image processing means creates an input image in which the image signals input from the line sensor are arranged in time series, and the input image is Create a binarized image by binarization processing, detect the position of dark and light color areas on the binarized image, and position and dark color of dark and light color areas on the binarized image Since the relational expression is calculated based on the actual position of the area and the light color area, the position of the dark color area and the light color area obtained from the image obtained by photographing the calibration member on the image, and the actual position of the dark color area and the light color area The process of calculating the relational expression with the height can be performed smoothly.
  • a center line is provided at the center in the horizontal direction of the photographing line correction member, and the photographing line is corrected based on the center line. It is possible to objectively determine whether the direction in which the line sensor is rotated is correct in correcting the inclination of the photographing line. Further, it is possible to make corrections while viewing the image being photographed without being aware of the actual rotation or horizontal movement of the line sensor. Moreover, it is more versatile and can be easily corrected without requiring human sense or experience. Also, by increasing the accuracy of calibration, the height of the pantograph can be accurately measured.
  • FIG. 1 It is a schematic block diagram which shows the application example of the pantograph height measuring apparatus which concerns on Example 1 of this invention. It is explanatory drawing which shows an example of the member for calibration which concerns on Example 1 of this invention. It is a block diagram which shows schematic structure of the computer for processing concerning Example 1 of this invention. It is a flowchart which shows the process by the computer for a process in Example 1 of this invention. It is explanatory drawing which shows an example of the image for a calibration obtained in Example 1 of this invention. It is explanatory drawing which shows an example of the binarized image obtained in Example 1 of this invention. It is a graph which shows the relationship between the pixel position of the trolley line obtained in Example 1 of this invention, and actual height.
  • FIG. 1 It is a schematic block diagram which shows the application example of the pantograph height measuring apparatus which concerns on Example 1 of this invention. It is explanatory drawing which shows an example of the member for calibration which concerns on Example 1 of this invention. It is a block diagram which shows schematic structure of the computer for
  • FIG. 8A is a front view of a photographing line correction member according to Embodiment 2 of the present invention
  • FIG. 8B is a side view of FIG. 8A. It is a flowchart which shows the process which concerns on correction of the imaging
  • FIGS. 10A, 10B, and 10C are explanatory diagrams illustrating examples of the position of the photographing line with respect to the photographing line correction member according to the second exemplary embodiment of the present invention.
  • FIGS. 11A, 11B, and 11C are explanatory diagrams illustrating examples of calibration images obtained in FIGS. 10A, 10B, and 10C, respectively.
  • FIGS. 13A and 13B are explanatory views showing another example of the photographing line correcting member. It is explanatory drawing which shows the example of installation of a line sensor. It is a front view of the member for imaging line correction which concerns on Example 3 of this invention. It is the schematic diagram which showed the apparatus structure of the correction method using the member for imaging line correction which concerns on Example 3 of this invention. It is the block diagram which showed the structural example of the correction method using the member for imaging line correction which concerns on Example 3 of this invention.
  • FIG. 1 is a schematic configuration diagram of a pantograph height measuring apparatus according to the present embodiment
  • FIG. 2 is a front view of a calibration member according to the present embodiment
  • FIG. 3 shows a structure of the pantograph height measuring apparatus according to the present embodiment.
  • FIG. 4 is a flowchart showing the flow of calibration by the pantograph height measuring apparatus according to this embodiment
  • FIG. 5 is an explanatory diagram showing an example of a calibration image in this embodiment
  • FIG. 6 is binarization.
  • FIG. 7 is a graph showing the relationship between the actual height and the pixel position on the image.
  • the pantograph height measuring apparatus includes a line sensor 20, a processing computer 30, and a calibration member 40.
  • the line sensor 20 is installed on the roof of the vehicle 10 so as to photograph the pantograph 10a. That is, the direction of the line sensor 20 is set so that the optical axis thereof is obliquely upward and the scanning line direction is orthogonal to the pantograph 10a.
  • the image signal acquired by the line sensor 20 is input to the processing computer 30.
  • the processing computer 30 has a function of calculating an approximate expression for calculating the overhead line, which is a relational expression between the position of the calibration member 40 on the image photographed by the line sensor 20 and the actual position of the calibration member 40.
  • an input image creation unit 31 a binarization processing unit 32, a pixel width extraction unit 33 as a color region position detection unit, an approximate expression calculation unit 34 as a relational expression calculation unit, and a memory 35A and 35B are provided.
  • the processing computer 30 is connected to a monitor 60 configured to display a calibration image (line sensor image) 1 and a binarized image 2 described later.
  • the input image creation unit 31 arranges image signals obtained by photographing the calibration member 40 input from the line sensor 20 in time series. A calibration image 1 (see FIG. 5) is created. The calibration image 1 is sent to the binarization processing unit 32 via the memories 35A and 35B.
  • the binarization processing unit 32 performs binarization processing on the calibration image 1 input from the input image creation unit 31 to create a binarized image 2 (see FIG. 6).
  • the binarized image 2 created in the binarization processing unit 32 is sent to the pixel width extraction unit 33 via the memory 35B.
  • the pixel width extraction unit 33 extracts a trajectory 2b of a black region 40b and a trajectory 2w of a white region 40w, which will be described later, from the binarized image 2 input from the binarization processing unit 32, respectively.
  • the width of each region 2b, 2w is obtained as the pixel width.
  • the pixel width information extracted by the pixel width extraction unit 33 is sent to the approximate expression calculation unit 34 via the memory 35B.
  • the approximate expression calculation unit 34 calculates an approximate expression for calculating the overhead line height by the least square method based on the pixel width input from the pixel width extraction unit 33 and the actual widths of the black region 40b and the white region 40w measured in advance. Ask.
  • the approximate expression for overhead line calculation calculated in the approximate expression calculation unit 34 is stored in the memory 35B.
  • the least square method means that when a set of numerical values obtained by measurement is approximated using a specific function such as a linear function or logarithmic curve assumed from an appropriate model, the assumed function is This is a method of determining a coefficient that minimizes the sum of squares of the residuals so that a good approximation can be obtained.
  • the processing computer 30 can calculate the overhead line height calculation approximate expression by analyzing the image signal input from the line sensor 20.
  • the calibration member 40 is made of, for example, a plate-like member formed in a rectangular shape.
  • the length of the calibration member 40 in the longitudinal direction is longer than the range of fluctuation of the pantograph, in other words, the range of fluctuation of the overhead wire.
  • the position of the calibration member 40 close to the end surface of the pantograph 10a on the line sensor 20 side, specifically, the height of the calibration member 40 obtained by the processing computer 30 and the height of the pantograph 10a does not cause an error. Removably attached to the position of.
  • the calibration member 40 is installed at a height that includes the range of the fluctuation range of the overhead wire.
  • the calibration member 40 has black areas 40b and white areas 40w alternately arranged along the longitudinal direction on the surface thereof.
  • the black region 40b and the white region 40w have the same width (L), and the boundary lines thereof are orthogonal to the longitudinal direction of the calibration member 40, respectively.
  • the calibration input from the line sensor 20 is performed in the processing computer 30 as shown in FIG.
  • the images of the calibration members 40 are arranged in time series to create a calibration image 1 as shown in FIG. 5 (step PA1).
  • the calibration image 1 displays a locus 1b of the black area 40b and a locus 1w of the white area 40w.
  • the optical axis of the line sensor 20 is directed obliquely upward, the area below the calibration member 40 in which the distance from the line sensor 20 to the calibration member 40 is short.
  • the width WH of the region above the calibration member 40 where the distance from the line sensor 20 to the calibration member 40 is long with respect to the width WL is displayed narrowly.
  • step PA2 binarization processing is performed on the calibration image 1 to create a binarized image 2 as shown in FIG. 6 (step PA2).
  • the binarized image 2 is substantially the same image as the calibration image 1.
  • step PA2 the locus 2b corresponding to the black region 40b and the locus 2w corresponding to the white region 40w of the calibration member 40 are extracted from the binarized image 2, and their widths (in this embodiment, this example).
  • the distances p1 to p6) from one boundary line of the locus 2b and the locus 2w shown in FIG. 6 to the other boundary line are obtained (step PA3).
  • step PA4 an approximate expression for calculating the overhead line, which is a relational expression for determining, is obtained by the method of least squares (step PA4).
  • the approximate expression for overhead line calculation can be obtained by the above processing.
  • the calibration can be performed without considering the focal length of the camera lens of the line sensor, the distance from the line sensor to the pantograph, the resolution of the image, and the like. Since an approximate expression for underline height calculation can be obtained by analyzing an image obtained by photographing the member 40, calibration can be easily performed regardless of the operator.
  • the pantograph can be obtained without performing complicated calculations taking into account the distance from the line sensor 20 to the pantograph 10a, the camera elevation angle, and the like. Measurement of the height of 10a can be performed with high accuracy.
  • FIGS. 8A is a front view of the photographing line correction member used in the present embodiment
  • FIG. 8B is a side view of the photographing line correction member shown in FIG. 8A
  • FIG. 9 is the present embodiment.
  • FIG. 10A to FIG. 10C are explanatory diagrams showing examples of the position of the photographing line with respect to the photographing line correcting member
  • FIGS. 11A to 11C are flowcharts showing the flow of processing for correcting the position of the line sensor.
  • FIG. 12 is an explanatory diagram illustrating an example of a calibration image corresponding to FIG. 11,
  • FIG. 12 is an explanatory diagram illustrating an example of the position of a photographing line with respect to a calibration member in the first embodiment of the present invention
  • FIGS. FIG. 6 is a front view showing another example of a photographing line correction member.
  • the present embodiment is an example in which the photographing line of the line sensor is corrected using the photographing line correction member 50 shown in FIG. 8 before performing the calibration operation described in the first embodiment.
  • the other configuration is substantially the same as the configuration of the first embodiment shown in FIGS. 1 to 7 described above.
  • the same members are denoted by the same reference numerals, and redundant description is omitted, and different points are mainly described. .
  • the imaging line S of the line sensor 20 is orthogonal to the pantograph 10a, in other words, the line sensor 20 moves the calibration member 40 along its longitudinal direction. Set up to shoot. Thus, if the line sensor 20 is installed, the most ideal and more accurate calibration can be performed.
  • the shooting line S is in the longitudinal direction of the calibration member 40.
  • the width Wpc of the white area 40w on the imaging line S shown in FIG. 12C is (1 / cos ⁇ ) times the width Wpa of the white area 40w on the imaging line S shown in FIG. become.
  • the resolution corresponding to the photographing line S shown in FIG. 12C is (L / P) cos ⁇ , which is cos ⁇ times the resolution L / P corresponding to the photographing line S shown in FIG.
  • the line sensor 20 captures a one-dimensional image with the image pickup elements arranged in a line, the line sensor 20 captures the position of the calibration member 40 from the image displayed on the monitor 60 for calibration. It is difficult to grasp how much the member 40 is inclined with respect to the longitudinal direction. Therefore, in order to make the photographing line S of the line sensor 20 parallel to the longitudinal direction of the calibration member 40, the work may be complicated.
  • the photographing line correction member 50 shown in FIG. 8 is used to correct the inclination of the photographing line of the line sensor 20.
  • the photographing member correction member 50 is detachably attached to the surface of the calibration member 40 on the line sensor 20 side.
  • the photographing line correcting member 50 is formed of a rectangular plate-shaped member, and a plurality of (four in FIG. 8) first black regions 50a as a first color region are arranged on a straight line along the vertical direction.
  • a white region 50b as a second color region is arranged around the black region 50a.
  • the black region 50a has a rhombus shape, and the opposite points of the adjacent photographing line correction member 50 are in contact with each other.
  • the flow of correcting the photographing line of the line sensor 20 by the pantograph height measuring apparatus will be described.
  • the direction in which the black regions 50a are connected and the center o in the width direction of the calibration member 40 match.
  • the photographing line correction member 50 is attached to the calibration member 40 (step PB1).
  • the photographing line correction member 50 is photographed by the line sensor 20 and displayed on the monitor 60 (step PB2).
  • one of the images shown in FIGS. 11A to 11C is displayed on the monitor 60 in general.
  • the shooting line S of the line sensor 20 is oblique or from the center o. It's off.
  • FIG. 11C when the same color is continuously displayed, the shooting line S coincides with the center o of the shooting line correction member 50.
  • the position of the photographing line is corrected (step PB3). That is, when the shooting line S of the line sensor 20 is shooting the position shown in FIG. 10A, an image as shown in FIG. 11A on the monitor 60, that is, the width of the black area 50a and the white area 50b. Images with the same width are displayed. In such a case, since the shooting line of the line sensor 20 is shifted in parallel from the center o, the shooting line S is moved by moving the direction of the line sensor 20 in the horizontal direction while checking the image displayed on the monitor 60. It can be corrected. The direction in which the direction of the line sensor 20 is moved may be moved in the direction in which the width of the black region 50a displayed on the monitor 60 is increased.
  • the shooting line S of the line sensor 20 is shooting the position shown in FIG. 10B, an image as shown in FIG. 11B on the monitor 60, that is, both the black area 50a and the white area 50b, respectively. Images with different widths are displayed.
  • the shooting line S of the line sensor 20 is inclined with respect to the center o, first, the width of the black region 50a and the width of the white region 50b are respectively confirmed while checking the image displayed on the monitor 60.
  • the imaging line of the line sensor 20 is rotated so that the width is substantially the same, and the imaging line S of the line sensor 20 is moved so as to be parallel to the center o, and then the line sensor 20 is moved in the horizontal direction. .
  • the shooting line S by correcting the shooting line S so that the black area 50a (or white area) is continuously displayed as shown in FIG. 11C, the position and orientation of the shooting line S are changed to the shooting line.
  • the correction is made so as to coincide with the center o of the correction member 50.
  • the photographing line correcting member 50 is removed from the calibration member 40 (step PB4), and the calibration process described in the first embodiment is performed (step PB5).
  • the operation of matching the imaging line of the line sensor 20 with the center o of the calibration member 40 can be easily performed regardless of the operator. It can be carried out.
  • the calibration can be performed in a state where the photographing line S of the line sensor 20 coincides with the center o of the calibration member 40, the height of the pantograph 10a can be measured with higher accuracy. .
  • the black region 50b of the photographing line correction member 50 is in the shape of a rhombus and the white region 50w is used as a background is illustrated.
  • the black region 51b may be a background
  • the white region 51w may be a rhombus shape.
  • the shape of the first color region is not limited to the rhombus shape, and the first color region 51b shown in FIG. It is sufficient that the vertical width of the center in the horizontal direction is wider than the vertical widths on both sides, such that one color area 52b has an elliptical shape and the periphery thereof is a second color area 52w. Needless to say, various modifications can be made without departing from the spirit of the present invention.
  • the line sensor 20 is installed so as to look up obliquely upward as shown in FIG.
  • the resolution when the pantograph 10a is low and the resolution when it is high are different.
  • the resolution is higher at the lower position, and the resolution is lower at the higher position.
  • the reason why the resolution is higher at the position where the pantograph 10a is lower is that the distance from the line sensor 20 is closer at the lower position.
  • a photographing line correcting member 50 as shown in FIG. 27 is used. This is because, as indicated by 50L in FIG. 27 (a), the vertices of the rectangle are aligned on a straight line, so if the shooting line of the line sensor 20 matches this straight line, the image is shot in the shot image.
  • the line correcting member 50 is blackened. Correction is performed while looking at the black and white width of the image so that the shooting line correction member 50 in the captured image is black.
  • black and white may be reversed, or a circle instead of a rectangle may be used.
  • the shooting line can be corrected by the above method, the following method can be used to correct the shooting line more efficiently.
  • (2) A method in which correction is performed while viewing an image being shot without being aware of the actual rotation or horizontal movement of the line sensor 20.
  • (3) A more general correction method that does not require human sense or experience.
  • FIG. 15 is a front view of the photographing line correcting member according to the present embodiment.
  • the center line 101 of the white line is in the target photographing line portion.
  • the photographing line correcting member 100 is not limited to the shape as shown in FIG. 15A, and FIG. 15B in which black and white are reversed, and FIG. ).
  • the white portion of the photographing line correction member 100 is a material that easily reflects light, and the black portion is a material that hardly reflects light.
  • FIG. 16 is a schematic diagram illustrating an apparatus configuration of a correction method using the photographing line correction member according to the present embodiment.
  • the photographing line correction member 100 is attached to the pantograph 102.
  • the side surface of the photographing line correction member 100 is shown.
  • the line sensor 103 is installed on the gonio stage 104 that can rotate in the horizontal direction. Note that the goniometer stage 104 may not be used as long as the structure can rotate without changing the center of rotation.
  • the line sensor 103 installed on the gonio stage 104 is installed on the roof of the vehicle 105.
  • an illumination 106 is installed in the vicinity of the line sensor 103 so that a black and white pattern of the photographing line correction member 100 can be photographed even in an environment with low illuminance such as at night, in a tunnel, or in a vehicle base.
  • a processing computer 107 is installed in the vehicle 105 in order to store an image photographed by the line sensor 103.
  • FIG. 17 is a block diagram illustrating a configuration example of a correction method using the photographing line correction member according to the present embodiment.
  • the “line sensor 103” in which the imaging line correction member 100 is imaged and the operator 108 corrects the imaging line.
  • the imaging line of the line sensor 103 and the “processing computer 107” necessary for correcting the imaging line while the captured image is stored and displayed and the operator 108 confirms the image.
  • a “photographing line correcting member 100” that can be removed is provided.
  • the above is the configuration of the pantograph height measuring apparatus according to the present embodiment.
  • FIG. 18 is a flowchart showing a correction method using the photographing line correction member according to the present embodiment.
  • the photographing line correction member 100 to be used is shown in FIG.
  • the photographing line correction member 100 is attached to the pantograph 102 in Step P100. At this time, the center line 101 of the photographing line correcting member 100 is made to coincide with the line to be photographed. Next, in step P ⁇ b> 101, the photographing line correction member 100 is photographed by the line sensor 103.
  • step P102 the line sensor 103 is moved in the horizontal direction while confirming the captured image.
  • the black portion of the photographing line correction member 100 on the image is moved in the direction of increasing, so that the center line 101 of the photographing line correction member 100 can be photographed on the image as shown in FIG. 19 to 22, Io represents the center of the image, Ia represents the photographing line correction member 100 on the image, and Ic represents the center line 101 of the photographing line correction member 100 on the image.
  • step P103 as shown in FIG. 19, the center line 101 of the photographing line correction member 100 on the image indicated by Ic is the image center indicated by Io on the photographing line correction member 100 on the image indicated by Ia. 20, the center line 101 of the photographing line correction member 100 indicated by Ic is close to the center of the image indicated by Io on the photographing line correction member 100 indicated by Ia as shown in FIG.
  • the horizontal direction line sensor 103 is moved until it becomes.
  • step P104 the line sensor 103 is rotated.
  • the center line 101 of the photographing line correcting member 100 moves to a position away from the image center indicated by Io in the photographing line correcting member 100 portion on the image indicated by Ia.
  • the line sensor 103 is rotated.
  • Step P105 as shown in FIG. 22, Steps P102 to P104 are repeated until the portion of the photographing line correction member 100 on the image indicated by Ia is all white, and the photographing line becomes the photographing line correction member.
  • the center line 101 matches 100 the series of processing ends.
  • FIG. 23 is a diagram illustrating an example of a shooting line before correction in the horizontal direction.
  • the image photographed at this time is shown in FIG. 19, and the center line 101 of the photographing line correction member 100 indicated by Ic is captured at a position distant from the image center indicated by Io.
  • S indicates the photographing line of the line sensor 103
  • Sc indicates the center of the photographing line of the line sensor 103.
  • FIG. 24 is a diagram illustrating an example of the photographing line after the horizontal correction.
  • S represents the photographing line of the line sensor 103
  • Sc represents the center of the photographing line of the line sensor 103
  • S ' represents the photographing line of the line sensor 103 before correction in the horizontal direction
  • M represents the photographing line. Shows the horizontal correction.
  • the photographing line of the line sensor 103 indicated by Sc is for correcting the photographing line. It does not coincide with the center line 101 of the member 100. Since the final purpose is to match the photographing line of the line sensor 103 indicated by S with the center line 101 of the photographing line correction member 100, the center of the photographing line of the line sensor 103 indicated by S is used for correcting the photographing line. It is necessary to approach the center line 101 of the member 100.
  • step P103 the center of the photographing line of the line sensor 103 indicated by Sc has approached the center line 101 of the photographing line correction member 100.
  • FIG. 25 is a diagram illustrating an example of the photographing line after the rotation direction is corrected.
  • S represents the photographing line of the line sensor 103
  • Sc represents the center of the photographing line of the line sensor 103
  • S ′′ represents the photographing line of the line sensor 103 before correction of the rotation direction
  • R represents the photographing line. Shows the correction of the direction of rotation.
  • the imaging line of the line sensor 103 indicated by S is parallel to the center line 101 of the imaging line correction member 100. Need to be.
  • the imaging line of the line sensor 103 indicated by S it is necessary to rotate in a direction parallel to the center line 101 of the imaging line correction member 100.
  • it is necessary to rotate in the direction shown in FIG. That is, as shown in FIG. 21, the center line 101 of the photographing line correction member 100 indicated by Ic on the image needs to be separated from the image center indicated by Io.
  • the photographing line of the line sensor 103 is rotated in a direction parallel to the center line 101 of the photographing line correction member 100.
  • step P104 when the line sensor 103 is rotated in step P104, it is necessary to rotate without changing the position of the center of the imaging line of the line sensor 103 indicated by Sc. Therefore, it is necessary to use an apparatus such as the gonio stage 104 that does not move the center of rotation. If the rotation center does not move, a device other than the gonio stage 104 may be used.
  • FIG. 26 is a diagram showing an example of the photographing line after the correction is completed.
  • the shooting line of the line sensor 103 shown in S coincides with the center line 101 of the shooting line correction member 100, and an image as shown in FIG. 22 is obtained.
  • S indicates the shooting line of the line sensor 103
  • Sc indicates the center of the shooting line of the line sensor 103.
  • FIG. 19 even if the photographing line correction member 100 on the image indicated by Ia on the image is not on the right side but on the left side of the image center indicated by Io, the principle of the correction method does not change.
  • the pantograph height measuring apparatus and the calibration method thereof according to the present embodiment whether or not the direction in which the line sensor 103 is rotated is objectively corrected to correct the inclination of the photographing line. Judgment can be made. Further, it is possible to make corrections while viewing the image being shot without being aware of the actual rotation or horizontal movement of the line sensor 103. Moreover, it is more versatile and can be easily corrected without requiring human sense or experience. Further, by increasing the calibration accuracy, the height of the pantograph 102 can be measured with high accuracy.
  • the present invention is suitable for application to a pantograph height measuring apparatus and its calibration method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

Provided is a pantograph height measuring device which enables easy calibration in the measurement of the height of a pantograph (10a).  Also provided is a calibration method thereof.  The pantograph height measuring device is provided with a line sensor (20) installed on the roof of a car (10), a processing computer (30) for analyzing an image captured by the line sensor (20), and a calibration member (40) detachably provided within the range including the range of fluctuation of the pantograph (10a) and configured by disposing black regions (40b) and white regions (40w) alternately along a vertical direction, wherein the processing computer (30) finds an approximate expression for calculating the height of an overhead wire, the approximate expression being an expression indicating the relationship between the positions of the black regions (40b) and the white regions (40w) obtained from an image of the calibration member (40), which is captured by the line sensor (20), in the image, and the actual heights of the black regions (40b) and the white regions (40w).

Description

パンタグラフ高さ測定装置及びそのキャリブレーション方法Pantograph height measuring device and calibration method thereof
 本発明は、画像処理を用いてパンタグラフの高さを測定するパンタグラフ高さ測定装置及びそのキャリブレーション方法に関する。 The present invention relates to a pantograph height measuring device that measures the height of a pantograph using image processing and a calibration method thereof.
 電気鉄道設備においては、架線の高さの変動幅を規定値内に収める必要があり、検査項目のひとつとして架線の高さの測定が挙げられる。この架線の高さは、車両の屋根上に設置されている集電装置であるパンタグラフの高さと同値であることから、従来、パンタグラフの高さを測定することによって架線の高さを取得する方法が公知となっている。例えば、このようなパンタグラフの高さを測定する方法として以下のものが挙げられる。 In electric railway facilities, it is necessary to keep the fluctuation range of the overhead line within the specified value. One of the inspection items is the measurement of the overhead line height. Since the height of this overhead line is equivalent to the height of the pantograph, which is a current collector installed on the roof of the vehicle, conventionally, the method of obtaining the height of the overhead line by measuring the height of the pantograph Is known. For example, the following is mentioned as a method of measuring the height of such a pantograph.
(イ)レーザセンサ方式
 この方式は、パンタグラフをミラー等によりレーザで走査し、反射波の位相差や反射したレーザの形状の変形などにより、パンタグラフの高さを測定する方式である。
(ロ)光切断センサ方式
 この方式は、パンタグラフに縞状の光を投光し、パンタグラフの形状に応じて凹凸になった縞を受光し、パンタグラフの高さを測定する方式である。
(ハ)画像処理方式
 この方式は、図14に示すように、車両10の屋根上に設置したラインセンサカメラ(以下、ラインセンサ)20でパンタグラフ10aを撮影し、撮影した画像に対して処理用コンピュータ30においてモデルマッチングやパタンマッチング等の処理を行い、パンタグラフ10aの高さを測定する方式である(例えば、特許文献1,2参照)。
(A) Laser sensor system This system is a system in which a pantograph is scanned with a laser using a mirror or the like, and the height of the pantograph is measured by the phase difference of reflected waves or the deformation of the shape of the reflected laser.
(B) Light cutting sensor method This method is a method of projecting striped light onto a pantograph, receiving the stripes that are uneven according to the shape of the pantograph, and measuring the height of the pantograph.
(C) Image processing method As shown in FIG. 14, this method uses a line sensor camera (hereinafter referred to as a line sensor) 20 installed on the roof of the vehicle 10 to photograph the pantograph 10 a and processes the captured image. This is a method of measuring the height of the pantograph 10a by performing processing such as model matching and pattern matching in the computer 30 (see, for example, Patent Documents 1 and 2).
 上記の方式のうち、画像処理方式は、ラインセンサ20により撮影したパンタグラフ10aの画像の中から、予め用意しておいたパンタグラフ10aのモデルとマッチングする画像上のピクセル位置を抽出し、ラインセンサ20からパンタグラフ10aまでの距離や撮影器具のレンズの焦点距離などに基づき、画像上のピクセル位置からパンタグラフ10aの実際の高さを算出するものである。 Among the above methods, the image processing method extracts the pixel position on the image matching the model of the pantograph 10a prepared in advance from the image of the pantograph 10a taken by the line sensor 20, and the line sensor 20 The actual height of the pantograph 10a is calculated from the pixel position on the image based on the distance from the to the pantograph 10a, the focal length of the lens of the photographing instrument, and the like.
 この画像処理方式は、撮影器具としてラインセンサ20を用いることで空間分解能を上げ、精度を向上させている。この方式は、レーザセンサ方式や光切断方式に比べて装置が小型になるので、測定専用に製造された検測車だけでなく、営業車にも搭載できるという利点がある。 This image processing method uses a line sensor 20 as a photographing instrument to increase the spatial resolution and improve the accuracy. This method has an advantage that it can be mounted not only on a test vehicle manufactured exclusively for measurement but also on a commercial vehicle because the device is smaller than the laser sensor method and the light cutting method.
 また、特許文献2の方法を使用する場合、図30のようにラインセンサ20は斜め上方を見上げる形で設置される。このとき、パンタグラフ10aの変位方向とラインセンサ20の仰角との関係より、パンタグラフ10aが低い位置の場合の分解能と高い位置の場合の分解能は異なる。具体的には図30のように、低い位置のほうが分解能は高くなり、高い位置のほうが分解能は低くなる。なお、パンタグラフ10aが低い位置において分解能が高くなるのは、低い位置の方がラインセンサ20との距離が近くなるためである。 Further, when using the method of Patent Document 2, the line sensor 20 is installed so as to look upward obliquely as shown in FIG. At this time, due to the relationship between the displacement direction of the pantograph 10a and the elevation angle of the line sensor 20, the resolution when the pantograph 10a is low and the resolution when it is high are different. Specifically, as shown in FIG. 30, the resolution is higher at the lower position, and the resolution is lower at the higher position. The reason why the resolution is higher at the position where the pantograph 10a is lower is that the distance from the line sensor 20 is closer at the lower position.
特開2006-250774号公報JP 2006-250774 A 特開2008-104312号公報JP 2008-104312 A
 ラインセンサ20を用いた方式においては、図14に破線で示すように、ラインセンサ20をパンタグラフ10aの正面に設置すれば、架線の高さの変動幅において画像の分解能はほぼ一定であるので、精度よくパンタグラフ10aの高さを測定することができるが、ラインセンサ20をパンタグラフ10aと同じ高さに設置すると、ラインセンサ20が架線5と接触し、重大な事故に繋がるおそれがある。 In the method using the line sensor 20, as shown by the broken line in FIG. 14, if the line sensor 20 is installed in front of the pantograph 10a, the resolution of the image is almost constant over the fluctuation range of the height of the overhead line. Although the height of the pantograph 10a can be measured with high precision, if the line sensor 20 is installed at the same height as the pantograph 10a, the line sensor 20 may come into contact with the overhead wire 5 and lead to a serious accident.
 そのため、実際には図14に実線で示すようにパンタグラフ10aに対して斜め下方にラインセンサ20が設置される。ところが、図14に実線で示すようにラインセンサ20を設置すると、ラインセンサ20の光軸がパンタグラフ10aの変位方向(鉛直方向)に対して直交せず、斜めに交差することとなり、パンタグラフ10aの位置が低い場合と高い場合とでラインセンサ20によって撮影される画像の分解能が異なる状態となる。具体的にはパンタグラフ10aが低い位置にあるほうが、パンタグラフ10aとラインセンサ20との距離が近くなるため、パンタグラフ10aの位置が高い場合に比較して分解能が高くなる。 Therefore, the line sensor 20 is actually installed obliquely below the pantograph 10a as shown by the solid line in FIG. However, when the line sensor 20 is installed as shown by a solid line in FIG. 14, the optical axis of the line sensor 20 is not orthogonal to the displacement direction (vertical direction) of the pantograph 10a but intersects diagonally, and the pantograph 10a The resolution of the image photographed by the line sensor 20 differs depending on whether the position is low or high. Specifically, since the distance between the pantograph 10a and the line sensor 20 is closer when the pantograph 10a is at a lower position, the resolution is higher than when the position of the pantograph 10a is higher.
 例えば、特許文献2ではパンタグラフ10aの高さをラインセンサ20のカメラレンズの焦点距離やラインセンサ20によって撮影した画像上のパンタグラフ10aの位置(ピクセル位置)と実際のパンタグラフ10aの高さとの関係を表す比を用いて演算を行っている。 For example, in Patent Document 2, the relationship between the height of the pantograph 10a, the focal length of the camera lens of the line sensor 20, and the position (pixel position) of the pantograph 10a on the image photographed by the line sensor 20 and the actual height of the pantograph 10a. The calculation is performed using the expressed ratio.
 つまり、実際のパンタグラフ10aの高さをH、ラインセンサ20によって撮影した画像上のパンタグラフ10aの位置をP、画素サイズをn、ラインセンサ20からパンタグラフ10aまでの距離をl、ラインセンサ20のレンズの焦点距離をfとすると、それぞれの関係は下記(1)式で表される。
           H:P×n=l:f  ・・・(1)
That is, the actual height of the pantograph 10a is H, the position of the pantograph 10a on the image taken by the line sensor 20 is P, the pixel size is n, the distance from the line sensor 20 to the pantograph 10a is l, and the lens of the line sensor 20 If f is the focal length, each relationship is expressed by the following equation (1).
H: P × n = 1: f (1)
 これを展開すると下記(2)式となる。
          H=(l×P×n)/f  ・・・(2)
When this is expanded, the following equation (2) is obtained.
H = (l × P × n) / f (2)
 この(2)式を用いてパンタグラフ10aの実際の高さを求めている。しかし、このような計算を行うためには、レンズの焦点距離fやラインセンサ20からパンタグラフ10aまでの距離lなどを予め測定する必要があり、作業性が悪いという問題があった。 The actual height of the pantograph 10a is obtained using this equation (2). However, in order to perform such a calculation, it is necessary to measure in advance the focal length f of the lens, the distance l from the line sensor 20 to the pantograph 10a, and there is a problem that workability is poor.
 さらに、ラインセンサ20を図14に破線で示す位置に設置すればラインセンサ20からパンタグラフ10aまでの距離lは一定でよいが、ラインセンサ20を図14に実線で示す位置に設置した場合は画像上のピクセルの位置毎に距離lの値が異なるので、距離lを一定として演算を行うと演算結果に誤差が生じる。そのため、ラインセンサ20をパンタグラフ10aに対して斜め下方に設置した場合は、射影変換などを用いて高さの補正計算を行う必要があった。この計算を行うためには、ラインセンサ20の仰角が必要であり、複雑な演算を行う必要があった。 Further, if the line sensor 20 is installed at the position indicated by the broken line in FIG. 14, the distance l from the line sensor 20 to the pantograph 10a may be constant, but if the line sensor 20 is installed at the position indicated by the solid line in FIG. Since the value of the distance l varies depending on the position of the upper pixel, if the calculation is performed with the distance l constant, an error occurs in the calculation result. Therefore, when the line sensor 20 is installed obliquely below the pantograph 10a, it is necessary to perform height correction calculation using projective transformation or the like. In order to perform this calculation, the elevation angle of the line sensor 20 is required, and it is necessary to perform complicated calculations.
 このようなことから本発明は、パンタグラフの高さ測定におけるキャリブレーションを簡易に行うことを可能としたパンタグラフ高さ測定装置及びそのキャリブレーション方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a pantograph height measuring apparatus and a calibration method thereof that can easily perform calibration in pantograph height measurement.
 上記の課題を解決するための第1の発明に係るパンタグラフ高さ測定装置は、車両の屋根上に設置されるラインセンサと、前記ラインセンサによって撮影した画像を解析する画像処理手段とを備え、走行中の車両のパンタグラフの高さを測定するパンタグラフ高さ測定装置において、前記パンタグラフの変動幅を含む範囲に、濃色領域及び淡色領域を鉛直方向に沿って交互に配してなるキャリブレーション用部材が着脱可能に設けられ、前記画像処理手段が、前記ラインセンサによって前記キャリブレーション用部材を撮影した画像から得られる前記濃色領域及び前記淡色領域の画像上の位置と前記濃色領域及び前記淡色領域の実際の高さとの関係式を求め、この関係式を用いて前記ラインセンサによって撮影した前記パンタグラフの画像上の位置から実際のパンタグラフの高さを算出するように構成されたことを特徴とする。 A pantograph height measuring device according to a first invention for solving the above-mentioned problems includes a line sensor installed on a roof of a vehicle, and an image processing means for analyzing an image photographed by the line sensor, In a pantograph height measuring device for measuring the pantograph height of a running vehicle, for calibration, the dark color region and the light color region are alternately arranged along the vertical direction in a range including the fluctuation range of the pantograph. A member is detachably provided, and the image processing means includes a position on the image of the dark color region and the light color region obtained from an image obtained by photographing the calibration member by the line sensor, the dark color region, and the dark color region. A relational expression with the actual height of the light-colored area is obtained, and the image of the pantograph taken by the line sensor using this relational expression Characterized in that it consists of a position to calculate the height of the actual pantograph.
 上記の課題を解決するための第2の発明に係るパンタグラフ高さ測定装置は、第1の発明に係るパンタグラフ高さ測定装置において、前記キャリブレーション用部材に、鉛直方向に連結される複数の第一の色領域と、前記第一の色領域の周囲に配される第二の色領域とからなる撮影ライン修正用部材が着脱可能に設けられるとともに、前記ラインセンサによって撮影された画像を表示する表示手段を備え、前記撮影ライン修正用部材は、前記表示手段に表示される該第一の色領域及び第二の色領域の幅が前記ラインセンサの撮影ラインの位置及び傾きによって変化するように前記第一の色領域の形状を設定されたことを特徴とする。 A pantograph height measuring device according to a second invention for solving the above-mentioned problem is the pantograph height measuring device according to the first invention, wherein a plurality of second pantograph height measuring devices connected in the vertical direction to the calibration member. A photographing line correction member comprising one color region and a second color region disposed around the first color region is detachably provided, and displays an image photographed by the line sensor. The photographing line correction member includes a display unit, and the width of the first color region and the second color region displayed on the display unit changes depending on the position and inclination of the photographing line of the line sensor. The shape of the first color region is set.
 上記の課題を解決するための第3の発明に係るパンタグラフ高さ測定装置は、第2の発明に係るパンタグラフ高さ測定装置において、前記撮影ライン修正用部材は、その水平方向の中心において前記第一の色領域が隣接する該第一の色領域と相互に接するように、前記第一の色領域の水平方向の中心の上下幅をその両側の上下幅に比較して幅広に形成されたことを特徴とする。 A pantograph height measuring device according to a third aspect of the present invention for solving the above-mentioned problems is the pantograph height measuring device according to the second aspect of the invention, wherein the photographing line correcting member is located at the center in the horizontal direction. The upper and lower widths of the horizontal center of the first color area are formed wider than the upper and lower widths on both sides so that one color area is in contact with the adjacent first color area. It is characterized by.
 上記の課題を解決するための第4の発明に係るパンタグラフ高さ測定装置は、第1乃至第3のいずれかの発明に係るパンタグラフ高さ測定装置において、前記画像処理手段が、前記ラインセンサから入力される画像信号を時系列的に並べてなる入力画像を作成する入力画像作成部と、前記入力画像を二値化処理してなる二値化画像を作成する二値化処理部と、前記二値化画像上の前記濃色領域と前記淡色領域の位置を検出する色領域位置検出部と、前記二値化画像上の前記濃色領域と前記淡色領域の位置及び前記濃色領域と前記淡色領域の実際の位置に基づいて前記関係式を算出する関係式演算部とを備えることを特徴とする。 A pantograph height measuring device according to a fourth aspect of the present invention for solving the above-mentioned problems is the pantograph height measuring device according to any one of the first to third aspects of the invention, wherein the image processing means is connected to the line sensor. An input image creation unit that creates an input image in which input image signals are arranged in time series, a binarization processing unit that creates a binarized image obtained by binarizing the input image, and the binary A color area position detecting unit for detecting positions of the dark color area and the light color area on the binarized image; a position of the dark color area and the light color area on the binarized image; and the dark color area and the light color. And a relational expression calculation unit that calculates the relational expression based on an actual position of the region.
 上記の課題を解決するための第5の発明に係るパンタグラフ高さ測定装置は、第1の発明に係るパンタグラフ高さ測定装置において、前記撮影ライン修正用部材は、該撮影ライン修正用部材の水平方向の中心に中心線を備えることを特徴とする。 A pantograph height measuring device according to a fifth aspect of the present invention for solving the above-mentioned problems is the pantograph height measuring device according to the first aspect of the invention, wherein the photographing line correcting member is a horizontal portion of the photographing line correcting member. A center line is provided at the center of the direction.
 上記の課題を解決するための第6の発明に係るパンタグラフ高さ測定装置のキャリブレーション方法は、車両の屋根上に設置されたラインセンサによって走行中の前記車両のパンタグラフを撮影し、前記ラインセンサによって撮影した画像を解析して前記パンタグラフの高さを測定するパンタグラフ高さ測定装置のキャリブレーション方法であって、その表面に濃色領域及び淡色領域が鉛直方向に沿って交互に配色されてなるキャリブレーション用部材を前記パンタグラフの近傍に設置する第一の工程と、前記ラインセンサによって前記キャリブレーション用部材を撮影する第二の工程と、前記画像処理手段において前記ラインセンサによって撮影された画像上の前記濃色領域及び前記淡色領域の位置を検出するとともに、検出された前記濃色領域及び前記淡色領域の画像上の位置と前記濃色領域及び前記淡色領域の実際の位置との関係式を算出する第三の工程とからなることを特徴とする。 A calibration method for a pantograph height measuring device according to a sixth aspect of the present invention for solving the above-described problem is that the pantograph of the running vehicle is photographed by a line sensor installed on the roof of the vehicle, and the line sensor A method for calibrating a pantograph height measuring device for analyzing the image taken by the method and measuring the height of the pantograph, wherein a dark color region and a light color region are alternately arranged along the vertical direction on the surface thereof A first step of installing a calibration member in the vicinity of the pantograph; a second step of photographing the calibration member by the line sensor; and an image on the image photographed by the line sensor in the image processing means. And detecting the position of the dark color region and the light color region of the Characterized in that comprising a third step of calculating the relationship between the actual position of the color region and the position and the dark region and the light color region on the image of the light color region.
 上記の課題を解決するための第7の発明に係るパンタグラフ高さ測定装置のキャリブレーション方法は、第6の発明に係るパンタグラフ高さ測定装置のキャリブレーション方法において、同一形状の領域を鉛直方向に複数連結してなる第一の色領域及び前記第一の色領域の周囲に配される第二の色領域が配色されてなり、前記第一の色領域及び前記第二の色領域が、前記表示手段に表示される該第一の色領域及び第二の色領域の幅が前記ラインセンサの撮影ラインの位置及び傾きによって変化するように配色された撮影ライン修正用部材を前記キャリブレーション用部材に設置し、前記ラインセンサによって前記撮影ライン修正用部材を撮影し、前記ラインセンサによって撮影された画像を表示する表示手段に表示される前記撮影ライン修正用部材の画像を確認しつつ前記撮影ラインを修正し、前記撮影ライン修正用部材を取り外した後、前記第一、第二及び第三の工程を行うことを特徴とする。 A calibration method for a pantograph height measuring device according to a seventh aspect of the present invention for solving the above problem is the calibration method for a pantograph height measuring device according to the sixth aspect of the invention, wherein the region having the same shape is vertically aligned. A plurality of first color regions connected to each other and a second color region arranged around the first color region are arranged in color, and the first color region and the second color region are An imaging line correction member arranged so that the widths of the first color area and the second color area displayed on the display means change according to the position and the inclination of the imaging line of the line sensor. The photographing line correction member displayed on the display means for photographing the photographing line correction member by the line sensor and displaying an image photographed by the line sensor. The Fixed shooting line while checking the image of the use members, remove the imaging line correcting member, and performs the first, second and third step.
 上記の課題を解決するための第8の発明に係るパンタグラフ高さ測定装置のキャリブレーション方法は、第7の発明に係るパンタグラフ高さ測定装置のキャリブレーション方法において、前記撮影ライン修正用部材は、その水平方向の中心において前記第一の色領域が隣接する該第一の色領域と相互に接するように、前記第一の色領域の水平方向の中心の上下幅をその両側の上下幅に比較して幅広に形成されていることを特徴とする。 A calibration method for a pantograph height measuring apparatus according to an eighth aspect of the invention for solving the above problem is a calibration method for a pantograph height measuring apparatus according to the seventh aspect of the invention, wherein the photographing line correction member is: The vertical width of the horizontal center of the first color area is compared with the vertical width of both sides so that the first color area touches the adjacent first color area at the horizontal center. It is characterized by being formed wide.
 上記の課題を解決するための第9の発明に係るパンタグラフ高さ測定装置のキャリブレーション方法は、第6乃至第8のいずれかの発明に係るパンタグラフ高さ測定装置のキャリブレーション方法において、前記画像処理手段が、前記ラインセンサから入力される画像信号を時系列的に並べてなる入力画像を作成し、前記入力画像を二値化処理してなる二値化画像を作成し、前記二値化画像上の前記濃色領域と前記淡色領域の位置を検出し、前記二値化画像上の前記濃色領域と前記淡色領域の位置及び前記濃色領域と前記淡色領域の実際の位置に基づいて前記関係式を算出することを特徴とする。 According to a ninth aspect of the present invention, there is provided a calibration method for a pantograph height measuring apparatus according to a ninth aspect, wherein the image is a calibration method for a pantograph height measuring apparatus according to any one of the sixth to eighth aspects. A processing unit creates an input image in which image signals input from the line sensor are arranged in time series, creates a binarized image obtained by binarizing the input image, and outputs the binarized image. Detecting the positions of the dark color region and the light color region on the binarized image, based on the positions of the dark color region and the light color region and the actual positions of the dark color region and the light color region on the binarized image; A relational expression is calculated.
 上記の課題を解決するための第10の発明に係るパンタグラフ高さ測定装置のキャリブレーション方法は、第6の発明に係るパンタグラフ高さ測定装置のキャリブレーション方法において、前記撮影ライン修正用部材の水平方向の中心に中心線を設け、前記中心線に基づき前記撮影ラインを修正することを特徴とする。 According to a tenth aspect of the present invention, there is provided a calibration method for a pantograph height measuring apparatus according to the tenth aspect of the present invention. A center line is provided at the center of the direction, and the photographing line is corrected based on the center line.
 上述した第1の発明に係るパンタグラフ高さ測定装置によれば、車両の屋根上に設置されるラインセンサと、ラインセンサによって撮影した画像を解析する画像処理手段とを備え、走行中の車両のパンタグラフの高さを測定するパンタグラフ高さ測定装置において、パンタグラフの変動幅を含む範囲に、濃色領域及び淡色領域を鉛直方向に沿って交互に配してなるキャリブレーション用部材が着脱可能に設けられ、画像処理手段が、ラインセンサによってキャリブレーション用部材を撮影した画像から得られる濃色領域及び淡色領域の画像上の位置と濃色領域及び淡色領域の実際の高さとの関係式を求め、この関係式を用いてラインセンサによって撮影したパンタグラフの画像上の位置から実際のパンタグラフの高さを算出するように構成されたので、ラインセンサのカメラレンズの焦点距離やラインセンサからパンタグラフまでの距離、画像の分解能、ラインセンサの仰角などを考慮しなくてもキャリブレーション用部材を撮影した画像を解析することにより、作業者によらずキャリブレーション用部材を撮影した画像から濃色領域及び淡色領域の画像上の位置と濃色領域及び淡色領域の実際の高さとの関係式を容易に求めることができ、ラインセンサが斜め上方を見上げるような状態で撮影を行う場合であっても複雑な計算をすることなく、パンタグラフの高さ測定の精度を向上させることができる。 According to the pantograph height measuring apparatus according to the first invention described above, the line sensor installed on the roof of the vehicle and the image processing means for analyzing the image photographed by the line sensor are provided. In the pantograph height measurement device that measures the height of the pantograph, a calibration member is provided that is detachably provided with a dark color region and a light color region alternately arranged along the vertical direction within the range including the fluctuation range of the pantograph. The image processing means obtains a relational expression between the position of the dark color region and the light color region on the image obtained from the image obtained by photographing the calibration member by the line sensor and the actual height of the dark color region and the light color region, It is configured to calculate the actual pantograph height from the position on the pantograph image taken by the line sensor using this relational expression. Therefore, by analyzing the image taken of the calibration member without considering the focal length of the camera lens of the line sensor, the distance from the line sensor to the pantograph, the resolution of the image, the elevation angle of the line sensor, etc. Regardless of the operator, it is possible to easily obtain the relational expression between the positions of the dark color region and the light color region on the image and the actual height of the dark color region and the light color region from the image obtained by photographing the calibration member, and the line sensor Even when shooting in a state of looking up diagonally upward, the accuracy of pantograph height measurement can be improved without complicated calculations.
 上述した第2の発明に係るパンタグラフ高さ測定装置によれば、キャリブレーション用部材に、鉛直方向に連結される複数の第一の色領域と、第一の色領域の周囲に配される第二の色領域とからなる撮影ライン修正用部材が着脱可能に設けられるとともに、ラインセンサによって撮影された画像を表示する表示手段を備え、撮影ライン修正用部材は、表示手段に表示される該第一の色領域及び第二の色領域の幅がラインセンサの撮影ラインの位置及び傾きによって変化するように第一の色領域の形状を設定されたので、第1の発明の効果に加えて、ラインセンサの撮影ラインの位置及び向きを容易に且つ確実にパンタグラフに直交するように修正することができ、そのため、より高精度にパンタグラフの高さ測定を行うことができる。 According to the pantograph height measuring apparatus according to the second invention described above, the calibration member is provided with a plurality of first color regions connected in the vertical direction and a first color region disposed around the first color region. A photographing line correction member comprising two color regions is detachably provided, and further includes display means for displaying an image photographed by the line sensor, and the photographing line correction member is displayed on the display means. In addition to the effects of the first invention, the shape of the first color area is set so that the width of the first color area and the second color area changes depending on the position and inclination of the photographing line of the line sensor. The position and orientation of the photographing line of the line sensor can be easily and reliably corrected so as to be orthogonal to the pantograph, and therefore, the height of the pantograph can be measured with higher accuracy.
 上述した第3の発明に係るパンタグラフ高さ測定装置によれば、撮影ライン修正用部材は、その水平方向の中心において第一の色領域が隣接する該第一の色領域と相互に接するように、第一の色領域の水平方向の中心の上下幅をその両側の上下幅に比較して幅広に形成されたので、撮影ラインをパンタグラフに直交させるためには表示手段に前記第一の色領域が連続して表示されるように撮影ラインの位置及び傾きを修正すればよく、撮影ラインの位置及び傾きの修正を容易に行うことができる。 According to the pantograph height measuring apparatus according to the third aspect described above, the photographing line correction member is arranged so that the first color region is adjacent to the adjacent first color region at the center in the horizontal direction. Since the vertical width at the center of the first color area in the horizontal direction is formed wider than the vertical width on both sides, the first color area is displayed on the display means in order to make the photographing line orthogonal to the pantograph. It is only necessary to correct the position and inclination of the photographic line so that is continuously displayed, and it is possible to easily correct the position and inclination of the photographic line.
 上述した第4の発明に係るパンタグラフ高さ測定装置によれば、画像処理手段が、ラインセンサから入力される画像信号を時系列的に並べてなる入力画像を作成する入力画像作成部と、入力画像を二値化処理してなる二値化画像を作成する二値化処理部と、二値化画像上の濃色領域と淡色領域の位置を検出する色領域位置検出部と、二値化画像上の濃色領域と淡色領域の位置及び濃色領域と淡色領域の実際の位置に基づいて関係式を算出する関係式演算部とを備えるので、キャリブレーション用部材を撮影した画像から得られる濃色領域及び淡色領域の画像上の位置と濃色領域及び淡色領域の実際の高さとの関係式を算出する処理を円滑に行うことができる。 According to the pantograph height measuring device according to the fourth invention described above, the image processing means creates an input image in which the image signals input from the line sensor are arranged in time series, and the input image A binarization processing unit that creates a binarized image obtained by binarizing the color, a color region position detection unit that detects positions of dark and light color regions on the binarized image, and a binarized image Since it has a relational expression calculation unit that calculates a relational expression based on the positions of the upper dark color area and the light color area and the actual position of the dark color area and the light color area, the darkness obtained from an image obtained by photographing the calibration member A process of calculating a relational expression between the position of the color area and the light color area on the image and the actual height of the dark color area and the light color area can be smoothly performed.
 上述した第5の発明に係るパンタグラフ高さ測定装置によれば、前記撮影ライン修正用部材は、該撮影ライン修正用部材の水平方向の中心に中心線を備えるので、撮影ラインの傾きを修正するのに、ラインセンサを回転させた方向が正しいかを客観的に判断することができる。
 また、実際のラインセンサの回転や水平方向の移動を意識せずに、撮影中の画像を見ながら修正を行うことができる。
 また、人の感覚や経験が必要なく、より汎用的で容易に修正することができる。
 また、キャリブレーションの精度を上げることにより、パンタグラフの高さ測定を精度良く行うことができる。
According to the pantograph height measuring apparatus according to the fifth aspect described above, the photographing line correction member has a center line at the center in the horizontal direction of the photographing line correction member, so that the inclination of the photographing line is corrected. Nevertheless, it is possible to objectively determine whether the direction in which the line sensor is rotated is correct.
Further, it is possible to make corrections while viewing the image being photographed without being aware of the actual rotation or horizontal movement of the line sensor.
Moreover, it is more versatile and can be easily corrected without requiring human sense or experience.
Also, by increasing the accuracy of calibration, the height of the pantograph can be accurately measured.
 上述した第6の発明に係るパンタグラフ高さ測定装置のキャリブレーション方法によれば、車両の屋根上に設置されたラインセンサによって走行中の車両のパンタグラフを撮影し、ラインセンサによって撮影した画像を解析してパンタグラフの高さを測定するパンタグラフ高さ測定装置のキャリブレーション方法であって、その表面に濃色領域及び淡色領域が鉛直方向に沿って交互に配色されてなるキャリブレーション用部材をパンタグラフの近傍に設置する第一の工程と、ラインセンサによってキャリブレーション用部材を撮影する第二の工程と、画像処理手段においてラインセンサによって撮影された画像上の濃色領域及び淡色領域の位置を検出するとともに、検出された濃色領域及び淡色領域の画像上の位置と濃色領域及び淡色領域の実際の位置との関係式を算出する第三の工程とからなるので、ラインセンサのカメラレンズの焦点距離やラインセンサからパンタグラフまでの距離、画像の分解能、ラインセンサの仰角などを考慮しなくてもキャリブレーション用部材を撮影した画像を解析することにより、作業者によらずキャリブレーション用部材を撮影した画像から得られる濃色領域及び淡色領域の画像上の位置と濃色領域及び淡色領域の実際の高さとの関係式を容易に演算することができ、ラインセンサが斜め上方を見上げるような状態で撮影を行う場合であっても複雑な計算をすることなく、パンタグラフの高さ測定の精度を向上させることができる。 According to the calibration method of the pantograph height measuring device according to the sixth aspect described above, a pantograph of a running vehicle is photographed by a line sensor installed on the roof of the vehicle, and an image photographed by the line sensor is analyzed. A calibration method of a pantograph height measuring device for measuring the height of a pantograph, wherein a calibration member in which a dark color region and a light color region are alternately arranged along a vertical direction on a surface of the pantograph is provided. A first step of installing in the vicinity, a second step of photographing the calibration member by the line sensor, and detecting positions of dark and light color regions on the image photographed by the line sensor in the image processing means. In addition, the position of the detected dark color region and light color region on the image and the dark color region and light color region Since it consists of a third step of calculating the relational expression with the actual position, it is not necessary to consider the focal length of the camera lens of the line sensor, the distance from the line sensor to the pantograph, the resolution of the image, the elevation angle of the line sensor, etc. In addition, by analyzing the image obtained by photographing the calibration member, the positions of the dark color region and the light color region on the image and the dark color region and the light color region obtained from the image obtained by photographing the calibration member without depending on the operator. The relational expression with the actual height can be easily calculated, and the accuracy of pantograph height measurement can be calculated without complicated calculations even when the line sensor is shooting obliquely looking up. Can be improved.
 上述した第7の発明に係るパンタグラフ高さ測定装置のキャリブレーション方法によれば、同一形状の領域を鉛直方向に複数連結してなる第一の色領域及び第一の色領域の周囲に配される第二の色領域が配色されてなり、第一の色領域及び第二の色領域が、表示手段に表示される該第一の色領域及び第二の色領域の幅がラインセンサの撮影ラインの位置及び傾きによって変化するように配色された撮影ライン修正用部材をキャリブレーション用部材に設置し、ラインセンサによって撮影ライン修正用部材を撮影し、ラインセンサによって撮影された画像を表示する表示手段に表示される撮影ライン修正用部材の画像を確認しつつ撮影ラインを修正し、撮影ライン修正用部材を取り外した後、第一、第二及び第三の工程を行うので、第5の発明の効果に加えて、ラインセンサの撮影ラインの位置及び向きを容易に且つ確実にパンタグラフに直交するように修正することができ、そのため、より高精度にパンタグラフの高さ測定を行うことができる。 According to the calibration method of the pantograph height measuring apparatus according to the seventh aspect described above, the first color area formed by connecting a plurality of areas having the same shape in the vertical direction and the first color area are arranged around the first color area. The first color area and the second color area are displayed on the display means, and the width of the first color area and the second color area is taken by the line sensor. Display that displays the image taken by the line sensor by setting the photographing line correcting member arranged in a color so as to change according to the position and inclination of the line, photographing the photographing line correcting member by the line sensor The first, second, and third steps are performed after correcting the shooting line while removing the shooting line correcting member while checking the image of the shooting line correcting member displayed on the means. In addition to the effect, the position and orientation of the imaging line of the line sensor easily and reliably can be modified to be orthogonal to the pantograph, therefore, it is possible to perform the height measurement of the pantograph with higher accuracy.
 上述した第8の発明に係るパンタグラフ高さ測定装置のキャリブレーション方法によれば、撮影ライン修正用部材は、その水平方向の中心において第一の色領域が隣接する該第一の色領域と相互に接するように、第一の色領域の水平方向の中心の上下幅をその両側の上下幅に比較して幅広に形成されているので、撮影ラインをパンタグラフに直交させるためには表示手段に前記第一の色領域が連続して表示されるように撮影ラインの位置及び傾きを修正すればよく、撮影ラインの位置及び傾きの修正を容易に行うことができる。 According to the calibration method of the pantograph height measuring apparatus according to the eighth aspect described above, the photographing line correcting member is mutually connected to the first color area adjacent to the first color area at the center in the horizontal direction. Since the vertical width of the center in the horizontal direction of the first color region is wider than the vertical width on both sides of the first color area, the display means includes the display unit in order to make the shooting line orthogonal to the pantograph. It is only necessary to correct the position and inclination of the photographing line so that the first color region is displayed continuously, and the correction of the position and inclination of the photographing line can be easily performed.
 上述した第9の発明に係るパンタグラフ高さ測定装置のキャリブレーション方法によれば、画像処理手段が、ラインセンサから入力される画像信号を時系列的に並べてなる入力画像を作成し、入力画像を二値化処理してなる二値化画像を作成し、二値化画像上の濃色領域と淡色領域の位置を検出し、二値化画像上の濃色領域と淡色領域の位置及び濃色領域と淡色領域の実際の位置に基づいて関係式を算出するので、キャリブレーション用部材を撮影した画像から得られる濃色領域及び淡色領域の画像上の位置と濃色領域及び淡色領域の実際の高さとの関係式を算出する処理を円滑に行うことができる。 According to the calibration method of the pantograph height measuring apparatus according to the ninth aspect described above, the image processing means creates an input image in which the image signals input from the line sensor are arranged in time series, and the input image is Create a binarized image by binarization processing, detect the position of dark and light color areas on the binarized image, and position and dark color of dark and light color areas on the binarized image Since the relational expression is calculated based on the actual position of the area and the light color area, the position of the dark color area and the light color area obtained from the image obtained by photographing the calibration member on the image, and the actual position of the dark color area and the light color area The process of calculating the relational expression with the height can be performed smoothly.
 上述した第10の発明に係るパンタグラフ高さ測定装置のキャリブレーション方法によれば、前記撮影ライン修正用部材の水平方向の中心に中心線を設け、前記中心線に基づき前記撮影ラインを修正するので、撮影ラインの傾きを修正するのに、ラインセンサを回転させた方向が正しいかを客観的に判断することができる。
 また、実際のラインセンサの回転や水平方向の移動を意識せずに、撮影中の画像を見ながら修正を行うことができる。
 また、人の感覚や経験が必要なく、より汎用的で容易に修正することができる。
 また、キャリブレーションの精度を上げることにより、パンタグラフの高さ測定を精度良く行うことができる。
According to the calibration method of the pantograph height measuring apparatus according to the tenth aspect described above, a center line is provided at the center in the horizontal direction of the photographing line correction member, and the photographing line is corrected based on the center line. It is possible to objectively determine whether the direction in which the line sensor is rotated is correct in correcting the inclination of the photographing line.
Further, it is possible to make corrections while viewing the image being photographed without being aware of the actual rotation or horizontal movement of the line sensor.
Moreover, it is more versatile and can be easily corrected without requiring human sense or experience.
Also, by increasing the accuracy of calibration, the height of the pantograph can be accurately measured.
本発明の実施例1に係るパンタグラフ高さ測定装置の適用例を示す概略構成図である。It is a schematic block diagram which shows the application example of the pantograph height measuring apparatus which concerns on Example 1 of this invention. 本発明の実施例1に係るキャリブレーション用部材の一例を示す説明図である。It is explanatory drawing which shows an example of the member for calibration which concerns on Example 1 of this invention. 本発明の実施例1に係る処理用コンピュータの概略構造を示すブロック図である。It is a block diagram which shows schematic structure of the computer for processing concerning Example 1 of this invention. 本発明の実施例1における処理用コンピュータによる処理を示すフローチャートである。It is a flowchart which shows the process by the computer for a process in Example 1 of this invention. 本発明の実施例1において得られるキャリブレーション用画像の一例を示す説明図である。It is explanatory drawing which shows an example of the image for a calibration obtained in Example 1 of this invention. 本発明の実施例1において得られる二値化画像の一例を示す説明図である。It is explanatory drawing which shows an example of the binarized image obtained in Example 1 of this invention. 本発明の実施例1において得られるトロリ線のピクセル位置と実際の高さとの関係を示すグラフである。It is a graph which shows the relationship between the pixel position of the trolley line obtained in Example 1 of this invention, and actual height. 図8(a)は本発明の実施例2に係る撮影ライン修正用部材の正面図、図8(b)は図8(a)の側面図である。FIG. 8A is a front view of a photographing line correction member according to Embodiment 2 of the present invention, and FIG. 8B is a side view of FIG. 8A. 本発明の実施例2における撮影ラインの修正に係る処理を示すフローチャートである。It is a flowchart which shows the process which concerns on correction of the imaging | photography line in Example 2 of this invention. 図10(a)、(b)、(c)は本発明の実施例2における撮影ライン修正用部材に対する撮影ラインの位置の例を示す説明図である。FIGS. 10A, 10B, and 10C are explanatory diagrams illustrating examples of the position of the photographing line with respect to the photographing line correction member according to the second exemplary embodiment of the present invention. 図11(a)、(b)、(c)はそれぞれ図10(a)、(b)、(c)において得られるキャリブレーション用画像の一例を示す説明図である。FIGS. 11A, 11B, and 11C are explanatory diagrams illustrating examples of calibration images obtained in FIGS. 10A, 10B, and 10C, respectively. 図12(a)、(b)、(c)は本発明の実施例1におけるキャリブレーション用部材に対する撮影ラインの位置の例を示す説明図である。12A, 12 </ b> B, and 12 </ b> C are explanatory diagrams illustrating an example of the position of the photographing line with respect to the calibration member according to the first exemplary embodiment of the present invention. 図13(a)、(b)は撮影ライン修正用部材の他の例を示す説明図である。FIGS. 13A and 13B are explanatory views showing another example of the photographing line correcting member. ラインセンサの設置例を示す説明図である。It is explanatory drawing which shows the example of installation of a line sensor. 本発明の実施例3に係る撮影ライン修正用部材の正面図である。It is a front view of the member for imaging line correction which concerns on Example 3 of this invention. 本発明の実施例3に係る撮影ライン修正用部材を用いた修正方法の装置構成を示した模式図である。It is the schematic diagram which showed the apparatus structure of the correction method using the member for imaging line correction which concerns on Example 3 of this invention. 本発明の実施例3に係る撮影ライン修正用部材を用いた修正方法の構成例を示したブロック図である。It is the block diagram which showed the structural example of the correction method using the member for imaging line correction which concerns on Example 3 of this invention. 本発明の実施例3に係る撮影ライン修正用部材を用いた修正方法を示したフローチャートである。It is the flowchart which showed the correction method using the member for imaging line correction which concerns on Example 3 of this invention. 本発明の実施例3に係る水平方向の修正を行う前の撮影画像の例を示した図である。It is the figure which showed the example of the picked-up image before performing the correction of the horizontal direction which concerns on Example 3 of this invention. 本発明の実施例3に係る水平方向の修正を行った後の撮影画像の例を示した図である。It is the figure which showed the example of the picked-up image after performing the correction of the horizontal direction which concerns on Example 3 of this invention. 本発明の実施例3に係る回転方向の修正を行った後の撮影画像の例を示した図である。It is the figure which showed the example of the picked-up image after correcting the rotation direction which concerns on Example 3 of this invention. 本発明の実施例3に係る修正終了後の撮影画像の例を示した図である。It is the figure which showed the example of the picked-up image after completion | finish of the correction which concerns on Example 3 of this invention. 本発明の実施例3に係る水平方向の修正を行う前の撮影ラインの例を示した図である。It is the figure which showed the example of the imaging | photography line before performing the correction of the horizontal direction which concerns on Example 3 of this invention. 本発明の実施例3に係る水平方向の修正を行った後の撮影ラインの例を示した図である。It is the figure which showed the example of the imaging | photography line after performing the correction of the horizontal direction which concerns on Example 3 of this invention. 本発明の実施例3に係る回転方向の修正を行った後の撮影ラインの例を示した図である。It is the figure which showed the example of the imaging | photography line after performing the correction of the rotation direction which concerns on Example 3 of this invention. 本発明の実施例3に係る修正終了後の撮影ラインの例を示した図である。It is the figure which showed the example of the imaging | photography line after completion | finish of the correction which concerns on Example 3 of this invention. 本発明の実施例1,2に係るラインセンサの撮影ライン修正用部材の形状の例を示した図である。It is the figure which showed the example of the shape of the imaging | photography line correction member of the line sensor which concerns on Example 1, 2 of this invention. 本発明の実施例1,2に係る撮影ライン修正用部材の撮影状況の例を示した図である。It is the figure which showed the example of the imaging | photography condition of the imaging line correction member which concerns on Example 1, 2 of this invention. 本発明の実施例1,2に係る撮影ライン修正部材の撮影の例を示した図である。It is the figure which showed the example of imaging | photography of the imaging line correction member which concerns on Example 1, 2 of this invention. 特許文献2に係るラインセンサの設置例を示した模式図である。It is the schematic diagram which showed the example of installation of the line sensor which concerns on patent document 2. FIG.
 以下、図面を参照して本発明に係るパンタグラフ高さ測定装置の一例を詳細に説明する。 Hereinafter, an example of a pantograph height measuring apparatus according to the present invention will be described in detail with reference to the drawings.
 図1乃至図7を用いて本発明に係るパンタグラフ高さ測定装置の第1の実施例を説明する。図1は本実施例に係るパンタグラフ高さ測定装置の概略構成図、図2は本実施例に係るキャリブレーション用部材の正面図、図3は本実施例に係るパンタグラフ高さ測定装置の構造を示すブロック図、図4は本実施例に係るパンタグラフ高さ測定装置によるキャリブレーションの流れを示すフローチャート、図5は本実施例におけるキャリブレーション用画像の例を示す説明図、図6は二値化画像の例を示す説明図、図7は実際の高さと画像上のピクセル位置との関係を示すグラフである。 A first embodiment of the pantograph height measuring apparatus according to the present invention will be described with reference to FIGS. FIG. 1 is a schematic configuration diagram of a pantograph height measuring apparatus according to the present embodiment, FIG. 2 is a front view of a calibration member according to the present embodiment, and FIG. 3 shows a structure of the pantograph height measuring apparatus according to the present embodiment. FIG. 4 is a flowchart showing the flow of calibration by the pantograph height measuring apparatus according to this embodiment, FIG. 5 is an explanatory diagram showing an example of a calibration image in this embodiment, and FIG. 6 is binarization. FIG. 7 is a graph showing the relationship between the actual height and the pixel position on the image.
 図1に示すように、本実施例に係るパンタグラフ高さ測定装置は、ラインセンサ20と、処理用コンピュータ30と、キャリブレーション用部材40とを備えて構成されている。 As shown in FIG. 1, the pantograph height measuring apparatus according to the present embodiment includes a line sensor 20, a processing computer 30, and a calibration member 40.
 ラインセンサ20は、車両10の屋根上にパンタグラフ10aを撮影するように設置されている。即ち、ラインセンサ20は、その光軸が斜め上方に向くように、且つその走査線方向がパンタグラフ10aと直交するようにその向きを設定されている。このラインセンサ20によって取得した画像信号は処理用コンピュータ30に入力される。 The line sensor 20 is installed on the roof of the vehicle 10 so as to photograph the pantograph 10a. That is, the direction of the line sensor 20 is set so that the optical axis thereof is obliquely upward and the scanning line direction is orthogonal to the pantograph 10a. The image signal acquired by the line sensor 20 is input to the processing computer 30.
 処理用コンピュータ30は、ラインセンサ20によって撮影した画像上のキャリブレーション用部材40の位置と実際のキャリブレーション用部材40の位置との関係式である架線高さ計算用近似式を算出する機能を有し、図3に示すように、入力画像作成部31、二値化処理部32、色領域位置検出部としてのピクセル幅抽出部33、関係式演算部としての近似式演算部34、及びメモリ35A,35Bを備えている。また、この処理用コンピュータ30には、後述するキャリブレーション用画像(ラインセンサ画像)1や二値化画像2を表示可能に構成されたモニタ60が接続されている。 The processing computer 30 has a function of calculating an approximate expression for calculating the overhead line, which is a relational expression between the position of the calibration member 40 on the image photographed by the line sensor 20 and the actual position of the calibration member 40. As shown in FIG. 3, an input image creation unit 31, a binarization processing unit 32, a pixel width extraction unit 33 as a color region position detection unit, an approximate expression calculation unit 34 as a relational expression calculation unit, and a memory 35A and 35B are provided. The processing computer 30 is connected to a monitor 60 configured to display a calibration image (line sensor image) 1 and a binarized image 2 described later.
 架線高さ計算用近似式を算出するための構成において、入力画像作成部31は、ラインセンサ20から入力されるキャリブレーション用部材40を撮影して得られた画像信号を時系列的に並べてなるキャリブレーション用画像1(図5参照)を作成する。このキャリブレーション用画像1は、メモリ35A,35Bを経て、二値化処理部32へ送られる。 In the configuration for calculating the approximate expression for calculating the overhead line height, the input image creation unit 31 arranges image signals obtained by photographing the calibration member 40 input from the line sensor 20 in time series. A calibration image 1 (see FIG. 5) is created. The calibration image 1 is sent to the binarization processing unit 32 via the memories 35A and 35B.
 二値化処理部32は、入力画像作成部31から入力されるキャリブレーション用画像1に対して二値化処理を施し、二値化画像2(図6参照)を作成する。この二値化処理部32において作成された二値化画像2はメモリ35Bを経てピクセル幅抽出部33へ送られる。 The binarization processing unit 32 performs binarization processing on the calibration image 1 input from the input image creation unit 31 to create a binarized image 2 (see FIG. 6). The binarized image 2 created in the binarization processing unit 32 is sent to the pixel width extraction unit 33 via the memory 35B.
 ピクセル幅抽出部33は、二値化処理部32から入力される二値化画像2から後述するキャリブレーション用部材0の黒色領域40bの軌跡2bと、白色領域40wの軌跡2wをそれぞれ抽出し、それぞれの領域2b,2wの幅をピクセル幅として求める。このピクセル幅抽出部33において抽出されたピクセル幅の情報はメモリ35Bを経て近似式演算部34へ送られる。 The pixel width extraction unit 33 extracts a trajectory 2b of a black region 40b and a trajectory 2w of a white region 40w, which will be described later, from the binarized image 2 input from the binarization processing unit 32, respectively. The width of each region 2b, 2w is obtained as the pixel width. The pixel width information extracted by the pixel width extraction unit 33 is sent to the approximate expression calculation unit 34 via the memory 35B.
 近似式演算部34は、ピクセル幅抽出部33から入力されるピクセル幅と、予め測定した黒色領域40b及び白色領域40wの実際の幅とに基づいて最小二乗法により架線高さ計算用近似式を求める。この近似式演算部34において算出された架線高さ計算用近似式は、メモリ35Bに保存される。 The approximate expression calculation unit 34 calculates an approximate expression for calculating the overhead line height by the least square method based on the pixel width input from the pixel width extraction unit 33 and the actual widths of the black region 40b and the white region 40w measured in advance. Ask. The approximate expression for overhead line calculation calculated in the approximate expression calculation unit 34 is stored in the memory 35B.
 ここで、最小二乗法とは、測定で得られた数値の組を適当なモデルから想定される一次関数、対数曲線など特定の関数を用いて近似するときに、想定する関数が測定値に対してよい近似となるように、残差の二乗和を最小とするような係数を決定する方法である。 Here, the least square method means that when a set of numerical values obtained by measurement is approximated using a specific function such as a linear function or logarithmic curve assumed from an appropriate model, the assumed function is This is a method of determining a coefficient that minimizes the sum of squares of the residuals so that a good approximation can be obtained.
 このように構成されることにより、処理用コンピュータ30はラインセンサ20から入力される画像信号を解析して架線高さ計算用近似式を算出することができる。 With this configuration, the processing computer 30 can calculate the overhead line height calculation approximate expression by analyzing the image signal input from the line sensor 20.
 キャリブレーション用部材40は、例えば矩形に形成された板状の部材からなる。このキャリブレーション用部材40の長手方向の長さは、パンタグラフの変動幅、換言すると架線の変動幅の範囲より長尺に形成されている。そしてこのキャリブレーション用部材40はパンタグラフ10aのラインセンサ20側の端面に近接する位置、具体的には、処理用コンピュータ30によって得られるキャリブレーション用部材40とパンタグラフ10a高さに誤差が生じない程度の位置に着脱可能に取り付けられている。さらにキャリブレーション用部材40は、架線の変動幅の範囲を含むような高さに設置されている。 The calibration member 40 is made of, for example, a plate-like member formed in a rectangular shape. The length of the calibration member 40 in the longitudinal direction is longer than the range of fluctuation of the pantograph, in other words, the range of fluctuation of the overhead wire. The position of the calibration member 40 close to the end surface of the pantograph 10a on the line sensor 20 side, specifically, the height of the calibration member 40 obtained by the processing computer 30 and the height of the pantograph 10a does not cause an error. Removably attached to the position of. Furthermore, the calibration member 40 is installed at a height that includes the range of the fluctuation range of the overhead wire.
 このキャリブレーション用部材40には、図2に示すように、その表面に長手方向に沿って黒色領域40bと白色領域40wとが交互に配されている。本実施例において黒色領域40bと白色領域40wとは同一幅(L)であり、その境界線は、それぞれ当該キャリブレーション用部材40の長手方向に対して直交している。 As shown in FIG. 2, the calibration member 40 has black areas 40b and white areas 40w alternately arranged along the longitudinal direction on the surface thereof. In this embodiment, the black region 40b and the white region 40w have the same width (L), and the boundary lines thereof are orthogonal to the longitudinal direction of the calibration member 40, respectively.
 図4に基づいて本実施例に係るパンタグラフ高さ測定装置を用いて架線高さ計算用近似式を算出する処理について説明する。 Referring to FIG. 4, a process for calculating an approximate expression for overhead line height calculation using the pantograph height measuring apparatus according to this embodiment will be described.
 キャリブレーション用部材40をパンタグラフ10aの近傍に設置し、ラインセンサ20によるキャリブレーション用部材40の撮影を開始したら、処理用コンピュータ30において、図4に示すように、ラインセンサ20から入力されるキャリブレーション用部材40の画像を時系列的に並べ、図5に示すようなキャリブレーション用画像1を作成する(ステップPA1)。図5に示すように、キャリブレーション用画像1には黒色領域40bの軌跡1bと、白色領域40wの軌跡1wとが表示される。 When the calibration member 40 is installed in the vicinity of the pantograph 10a and imaging of the calibration member 40 by the line sensor 20 is started, the calibration input from the line sensor 20 is performed in the processing computer 30 as shown in FIG. The images of the calibration members 40 are arranged in time series to create a calibration image 1 as shown in FIG. 5 (step PA1). As shown in FIG. 5, the calibration image 1 displays a locus 1b of the black area 40b and a locus 1w of the white area 40w.
 ここで、キャリブレーション用画像1では、ラインセンサ20の光軸が斜め上方を向いていることにより、ラインセンサ20からキャリブレーション用部材40までの距離が短いキャリブレーション用部材40の下方の領域の幅WLに対して、ラインセンサ20からキャリブレーション用部材40までの距離が長いキャリブレーション用部材40上方の領域の幅WHが狭く表示される。 Here, in the calibration image 1, since the optical axis of the line sensor 20 is directed obliquely upward, the area below the calibration member 40 in which the distance from the line sensor 20 to the calibration member 40 is short. The width WH of the region above the calibration member 40 where the distance from the line sensor 20 to the calibration member 40 is long with respect to the width WL is displayed narrowly.
 ステップPA1に続いては、キャリブレーション用画像1に対して二値化処理を行い、図6に示すような二値化画像2を作成する(ステップPA2)。図6に示すように、二値化画像2は、キャリブレーション用画像1と概ね同様の画像となる。 Subsequent to step PA1, binarization processing is performed on the calibration image 1 to create a binarized image 2 as shown in FIG. 6 (step PA2). As shown in FIG. 6, the binarized image 2 is substantially the same image as the calibration image 1.
 ステップPA2に続いては、二値化画像2からキャリブレーション用部材40の黒色領域40bに対応する軌跡2bと、白色領域40wに対応する軌跡2wとを抽出し、これらの幅(本実施例では図6に示す軌跡2bと軌跡2wの一つの境界線から他の境界線までの距離p1~p6)を求める(ステップPA3)。 Subsequent to step PA2, the locus 2b corresponding to the black region 40b and the locus 2w corresponding to the white region 40w of the calibration member 40 are extracted from the binarized image 2, and their widths (in this embodiment, this example). The distances p1 to p6) from one boundary line of the locus 2b and the locus 2w shown in FIG. 6 to the other boundary line are obtained (step PA3).
 続いて、図7に示すようにキャリブレーション用部材40の黒色領域40b、白色領域40wの実際の位置(本実施例では黒色領域40bと白色領域40wの一つの境界線から他の境界線までの距離L~6L)と、ステップPA3において求めた幅p1~p6との関係を取得し、これに基づいてラインセンサ20によって撮影した画像からパンタグラフ10aの高さ、換言すると、架線の高さを算出するための関係式である架線高さ計算用近似式を最小二乗法により求める(ステップPA4)。以上の処理により架線高さ計算用近似式を求めることができる。 Subsequently, as shown in FIG. 7, the actual positions of the black region 40b and the white region 40w of the calibration member 40 (in this embodiment, from one boundary line between the black region 40b and the white region 40w to another boundary line). The relationship between the distances L to 6L) and the widths p1 to p6 obtained in step PA3 is acquired, and based on this, the height of the pantograph 10a, in other words, the height of the overhead line is calculated from the image taken by the line sensor 20. Thus, an approximate expression for calculating the overhead line, which is a relational expression for determining, is obtained by the method of least squares (step PA4). The approximate expression for overhead line calculation can be obtained by the above processing.
 なお、この架線高さ計算用近似式を用いてパンタグラフ10aの高さ測定する場合には、まず、特許文献2のようにパタンマッチングなどの画像処理によって撮影画像中のパンタグラフ10aのピクセル位置を求める。そして、得られたピクセル位置をステップPA4で求めた近似式に代入することで、ラインセンサ20の光軸が斜めを向いた状態でも精度よくパンタグラフ10aの高さを求めることができる。なお、実際の架線の高さを求める場合は、地面からキャリブレーション用部材40までの高さなどをオフセットとして加算する必要がある。 When measuring the height of the pantograph 10a using this approximate expression for calculating the overhead line height, first, as in Patent Document 2, the pixel position of the pantograph 10a in the captured image is obtained by image processing such as pattern matching. . Then, by substituting the obtained pixel position into the approximate expression obtained in step PA4, the height of the pantograph 10a can be obtained with high accuracy even when the optical axis of the line sensor 20 is inclined. In addition, when calculating | requiring the height of an actual overhead wire, it is necessary to add the height etc. from the ground to the member 40 for calibration as an offset.
 このように構成された本実施例に係るパンタグラフ高さ測定装置によれば、ラインセンサのカメラレンズの焦点距離やラインセンサからパンタグラフまでの距離、画像の分解能などを考慮しなくても、キャリブレーション用部材40を撮影した画像を解析することで下線高さ計算用近似式を求めることができるので、作業者によらず簡単にキャリブレーションを行うことができる。 According to the pantograph height measuring apparatus according to the present embodiment configured as described above, the calibration can be performed without considering the focal length of the camera lens of the line sensor, the distance from the line sensor to the pantograph, the resolution of the image, and the like. Since an approximate expression for underline height calculation can be obtained by analyzing an image obtained by photographing the member 40, calibration can be easily performed regardless of the operator.
 これにより、ラインセンサ20の光軸が斜め上方を向いた状態で撮影した場合であっても、ラインセンサ20からパンタグラフ10aまでの距離やカメラ仰角などを考慮した複雑な計算をすることなく、パンタグラフ10aの高さの測定を高精度に行うことができる。 Thereby, even when the image is taken with the optical axis of the line sensor 20 facing obliquely upward, the pantograph can be obtained without performing complicated calculations taking into account the distance from the line sensor 20 to the pantograph 10a, the camera elevation angle, and the like. Measurement of the height of 10a can be performed with high accuracy.
 図8乃至図13を用いて本発明に係るパンタグラフ高さ測定装置の第2の実施例を説明する。図8(a)は本実施例において使用する撮影ライン修正用部材の正面図、図8(b)は図8(a)に示す撮影ライン修正用部材の側面図、図9は本実施例におけるラインセンサの位置修正の処理の流れを示すフローチャート、図10(a)~(c)は撮影ライン修正用部材に対する撮影ラインの位置の例を示す説明図、図11(a)~(c)は図11に対応するキャリブレーション用画像の例を示す説明図、図12本発明の実施例1におけるキャリブレーション用部材に対する撮影ラインの位置の例を示す説明図、図13(a),(b)は撮影ライン修正用部材の他の例を示す正面図である。 A second embodiment of the pantograph height measuring apparatus according to the present invention will be described with reference to FIGS. 8A is a front view of the photographing line correction member used in the present embodiment, FIG. 8B is a side view of the photographing line correction member shown in FIG. 8A, and FIG. 9 is the present embodiment. FIG. 10A to FIG. 10C are explanatory diagrams showing examples of the position of the photographing line with respect to the photographing line correcting member, and FIGS. 11A to 11C are flowcharts showing the flow of processing for correcting the position of the line sensor. FIG. 12 is an explanatory diagram illustrating an example of a calibration image corresponding to FIG. 11, FIG. 12 is an explanatory diagram illustrating an example of the position of a photographing line with respect to a calibration member in the first embodiment of the present invention, and FIGS. FIG. 6 is a front view showing another example of a photographing line correction member.
 本実施例は、上述した実施例1において説明したキャリブレーション作業を行う前に、図8に示す撮影ライン修正用部材50を用いてラインセンサの撮影ラインを修正するようにした例である。その他の構成は図1乃至図7に示し上述した実施例1の構成と概ね同様であり、同一の部材には同一の符合を付して重複する説明は省略し、異なる点を中心に説明する。 The present embodiment is an example in which the photographing line of the line sensor is corrected using the photographing line correction member 50 shown in FIG. 8 before performing the calibration operation described in the first embodiment. The other configuration is substantially the same as the configuration of the first embodiment shown in FIGS. 1 to 7 described above. The same members are denoted by the same reference numerals, and redundant description is omitted, and different points are mainly described. .
 実施例1においては、図12(a)に示すように、ラインセンサ20の撮影ラインSをパンタグラフ10aに直交するように、換言すると、ラインセンサ20がキャリブレーション用部材40をその長手方向に沿って撮影するように設置した。このように、ラインセンサ20を設置すれば、最も理想的でより精度の高いキャリブレーションを行うことができる。 In the first embodiment, as shown in FIG. 12A, the imaging line S of the line sensor 20 is orthogonal to the pantograph 10a, in other words, the line sensor 20 moves the calibration member 40 along its longitudinal direction. Set up to shoot. Thus, if the line sensor 20 is installed, the most ideal and more accurate calibration can be performed.
 これに対し、図12(b)に示すように撮影ラインSがキャリブレーション用部材40の幅方向の両端を横切るようにラインセンサ20を設置された場合、キャリブレーション用画像1上に現れるキャリブレーション用部材40の図12(b)に破線の円で示す部分に対応する軌跡のピクセル幅が短くなるため、正確な架線高さ計算用近似式が得られないおそれがある。 On the other hand, as shown in FIG. 12B, when the line sensor 20 is installed so that the photographing line S crosses both ends in the width direction of the calibration member 40, the calibration that appears on the calibration image 1 is displayed. Since the pixel width of the locus corresponding to the portion indicated by the broken-line circle in FIG. 12B of the working member 40 is shortened, there is a possibility that an accurate approximation formula for overhead line height cannot be obtained.
 また、図12(c)に示すように、撮影ラインSがキャリブレーション用部材40の幅方向の両端を横切らない場合であっても、撮影ラインSがキャリブレーション用部材40の長手方向に対して角度θだけ傾くと、図12(c)に示す撮影ラインS上の白色領域40wの幅Wpcは図12(a)に示す撮影ラインS上の白色領域40wの幅Wpaの(1/cosθ)倍になる。これより、図12(c)に示す撮影ラインSに対応する分解能は(L/P)cosθとなり、図12(a)に示す撮影ラインSに対応する分解能L/Pのcosθ倍になる。 In addition, as shown in FIG. 12C, even when the shooting line S does not cross both ends of the calibration member 40 in the width direction, the shooting line S is in the longitudinal direction of the calibration member 40. When the angle θ is inclined, the width Wpc of the white area 40w on the imaging line S shown in FIG. 12C is (1 / cos θ) times the width Wpa of the white area 40w on the imaging line S shown in FIG. become. Accordingly, the resolution corresponding to the photographing line S shown in FIG. 12C is (L / P) cos θ, which is cos θ times the resolution L / P corresponding to the photographing line S shown in FIG.
 ここで、例えば、θが1°や2°傾いていてもcosθの値はほぼ1であるため十分に精度を確保することができる。しかし、ラインセンサ20は撮像素子が一列に並んでいて一次元の画像を撮影するので、モニタ60に表示される画像からラインセンサ20がキャリブレーション用部材40のどの位置を撮影し、キャリブレーション用部材40の長手方向に対してどの程度傾いているかを把握するのは困難である。そのためラインセンサ20の撮影ラインSをキャリブレーション用部材40の長手方向と平行にするためには、その作業が煩雑となることも考えられる。 Here, for example, even if θ is inclined by 1 ° or 2 °, the value of cos θ is almost 1, so that sufficient accuracy can be ensured. However, since the line sensor 20 captures a one-dimensional image with the image pickup elements arranged in a line, the line sensor 20 captures the position of the calibration member 40 from the image displayed on the monitor 60 for calibration. It is difficult to grasp how much the member 40 is inclined with respect to the longitudinal direction. Therefore, in order to make the photographing line S of the line sensor 20 parallel to the longitudinal direction of the calibration member 40, the work may be complicated.
 そこで、本実施例では図8に示す撮影ライン修正用部材50を用いてラインセンサ20の撮影ラインの傾きを修正するように構成している。 Therefore, in this embodiment, the photographing line correction member 50 shown in FIG. 8 is used to correct the inclination of the photographing line of the line sensor 20.
 即ち、本実施例においてキャリブレーション用部材40には、図8に示すように、そのラインセンサ20側の表面に撮影ライン修正用部材50が着脱可能に取り付けられている。撮影ライン修正用部材50は、矩形に形成された板状の部材からなり、表面に、複数(図8では四つ)の第一の色領域としての黒色領域50aが鉛直方向に沿って一直線上に連結される一方、この黒色領域50aの周囲に第二の色領域としての白色領域50bが配色されている。黒色領域50aは菱形形状であり、隣接する当該撮影ライン修正用部材50とはその対向点同士が接している。 That is, in the present embodiment, as shown in FIG. 8, the photographing member correction member 50 is detachably attached to the surface of the calibration member 40 on the line sensor 20 side. The photographing line correcting member 50 is formed of a rectangular plate-shaped member, and a plurality of (four in FIG. 8) first black regions 50a as a first color region are arranged on a straight line along the vertical direction. On the other hand, a white region 50b as a second color region is arranged around the black region 50a. The black region 50a has a rhombus shape, and the opposite points of the adjacent photographing line correction member 50 are in contact with each other.
 図9に基づいて本実施例に係るパンタグラフ高さ測定装置によるラインセンサ20の撮影ラインを修正する流れを説明する。図9に示すように、本実施例においてラインセンサ20の撮影ラインの位置を修正する場合、まず、その黒色領域50aを連結した方向とキャリブレーション用部材40の幅方向の中心oとが一致するように、キャリブレーション用部材40に撮影ライン修正用部材50を取り付ける(ステップPB1)。 Based on FIG. 9, the flow of correcting the photographing line of the line sensor 20 by the pantograph height measuring apparatus according to the present embodiment will be described. As shown in FIG. 9, when correcting the position of the photographing line of the line sensor 20 in the present embodiment, first, the direction in which the black regions 50a are connected and the center o in the width direction of the calibration member 40 match. As described above, the photographing line correction member 50 is attached to the calibration member 40 (step PB1).
 続いて、ラインセンサ20によって撮影ライン修正用部材50を撮影し、モニタ60に表示する(ステップPB2)。このとき、モニタ60には、概ね図11(a)~図11(c)のいずれかの画像が表示されることとなる。なお、図11(a)、図11(b)に示すように、映像に白黒の領域が交互に帯状に映っている場合はラインセンサ20の撮影ラインSが斜めになっているか、中心oからずれている。一方、図11(c)に示すように、同一色が連続して表示されている場合は撮影ラインSが撮影ライン修正用部材50の中心oと一致している。 Subsequently, the photographing line correction member 50 is photographed by the line sensor 20 and displayed on the monitor 60 (step PB2). At this time, one of the images shown in FIGS. 11A to 11C is displayed on the monitor 60 in general. As shown in FIGS. 11 (a) and 11 (b), when black and white areas are alternately shown in a strip shape in the image, the shooting line S of the line sensor 20 is oblique or from the center o. It's off. On the other hand, as shown in FIG. 11C, when the same color is continuously displayed, the shooting line S coincides with the center o of the shooting line correction member 50.
 続いて、撮影ラインの位置を修正する(ステップPB3)。即ち、ラインセンサ20の撮影ラインSが図10(a)に示す位置を撮影している場合はモニタ60に図11(a)に示すような画像、つまり、黒色領域50aの幅、白色領域50bの幅がそれぞれ同一幅となった画像が表示される。このような場合はラインセンサ20の撮影ラインが中心oから平行にずれているため、モニタ60に表示される画像を確認しつつラインセンサ20の向きを水平方向に移動させることにより撮影ラインSを修正することができる。なお、ラインセンサ20の向きを移動させる方向は、モニタ60に表示される黒色領域50aの幅が大きくなる方向に移動させればよい。 Subsequently, the position of the photographing line is corrected (step PB3). That is, when the shooting line S of the line sensor 20 is shooting the position shown in FIG. 10A, an image as shown in FIG. 11A on the monitor 60, that is, the width of the black area 50a and the white area 50b. Images with the same width are displayed. In such a case, since the shooting line of the line sensor 20 is shifted in parallel from the center o, the shooting line S is moved by moving the direction of the line sensor 20 in the horizontal direction while checking the image displayed on the monitor 60. It can be corrected. The direction in which the direction of the line sensor 20 is moved may be moved in the direction in which the width of the black region 50a displayed on the monitor 60 is increased.
 また、ラインセンサ20の撮影ラインSが図10(b)に示す位置を撮影している場合はモニタ60に図11(b)に示すような画像、つまり、黒色領域50a、白色領域50bともにそれぞれ幅が異なった状態の画像が表示される。このような場合にはラインセンサ20の撮影ラインSが中心oに対して傾いているため、モニタ60に表示される画像を確認しつつ、まず黒色領域50aの幅、白色領域50bの幅がそれぞれ概ね同一幅となるようにラインセンサ20の撮影ラインを回転させてラインセンサ20の撮影ラインSを中心oと平行になるように移動させ、その後、ラインセンサ20を水平方向に移動させればよい。 Further, when the shooting line S of the line sensor 20 is shooting the position shown in FIG. 10B, an image as shown in FIG. 11B on the monitor 60, that is, both the black area 50a and the white area 50b, respectively. Images with different widths are displayed. In such a case, since the shooting line S of the line sensor 20 is inclined with respect to the center o, first, the width of the black region 50a and the width of the white region 50b are respectively confirmed while checking the image displayed on the monitor 60. The imaging line of the line sensor 20 is rotated so that the width is substantially the same, and the imaging line S of the line sensor 20 is moved so as to be parallel to the center o, and then the line sensor 20 is moved in the horizontal direction. .
 このようにして、図11(c)に示すように黒色領域50a(または白色領域)が連続して表示されるように撮影ラインSを修正することで、撮影ラインSの位置及び向きが撮影ライン修正用部材50の中心oと一致するように修正される。 In this way, by correcting the shooting line S so that the black area 50a (or white area) is continuously displayed as shown in FIG. 11C, the position and orientation of the shooting line S are changed to the shooting line. The correction is made so as to coincide with the center o of the correction member 50.
 ラインセンサ20の撮影ラインSの修正を行ったら、撮影ライン修正用部材50をキャリブレーション用部材40から取り外し(ステップPB4)、実施例1において説明したキャリブレーション処理を行う(ステップPB5)。 When the photographing line S of the line sensor 20 is corrected, the photographing line correcting member 50 is removed from the calibration member 40 (step PB4), and the calibration process described in the first embodiment is performed (step PB5).
 このように構成されたことにより、本実施例に係るパンタグラフ高さ測定装置によれば、ラインセンサ20の撮影ラインをキャリブレーション用部材40の中心oと一致させる作業を作業者によらず容易に行うことができる。 With this configuration, according to the pantograph height measuring apparatus according to the present embodiment, the operation of matching the imaging line of the line sensor 20 with the center o of the calibration member 40 can be easily performed regardless of the operator. It can be carried out.
 そして、ラインセンサ20の撮影ラインSをキャリブレーション用部材40の中心oと一致させた状態でキャリブレーションを行うことができるので、パンタグラフ10aの高さの測定をより高精度に実施することができる。 Since the calibration can be performed in a state where the photographing line S of the line sensor 20 coincides with the center o of the calibration member 40, the height of the pantograph 10a can be measured with higher accuracy. .
 なお、上述した実施例では撮影ライン修正用部材50の黒色領域50bを菱形形状、白色領域50wを背景とする例を示したが、図8(a)に示す撮影ライン修正用部材51のように黒色領域51bを背景、白色領域51wを菱形形状にしてもよく、また、第一の色領域の形状は菱形形状に限らず、図8(b)に示す撮影ライン修正用部材52のように第一の色領域52bを楕円形状とし、その周囲を第二の色領域52wとするなど、水平方向の中心の上下幅がその両側の上下幅に比較して幅広になっていればよく、本発明の趣旨を逸脱しない範囲で種々の変更が可能であることはいうまでもない。 In the above-described embodiment, an example in which the black region 50b of the photographing line correction member 50 is in the shape of a rhombus and the white region 50w is used as a background is illustrated. However, like the photographing line correction member 51 illustrated in FIG. The black region 51b may be a background, and the white region 51w may be a rhombus shape. The shape of the first color region is not limited to the rhombus shape, and the first color region 51b shown in FIG. It is sufficient that the vertical width of the center in the horizontal direction is wider than the vertical widths on both sides, such that one color area 52b has an elliptical shape and the periphery thereof is a second color area 52w. Needless to say, various modifications can be made without departing from the spirit of the present invention.
 上述したように、特許文献2の方法を使用する場合、図30のようにラインセンサ20は斜め上方を見上げる形で設置される。このとき、パンタグラフ10aの変位方向とラインセンサ20の仰角との関係より、パンタグラフ10aが低い位置の場合の分解能と高い位置の場合の分解能は異なる。具体的には、図30のように、低い位置のほうが分解能は高くなり、高い位置のほうが分解能は低くなる。なお、パンタグラフ10aが低い位置において分解能が高くなるのは、低い位置の方がラインセンサ20との距離が近くなるためである。 As described above, when using the method of Patent Document 2, the line sensor 20 is installed so as to look up obliquely upward as shown in FIG. At this time, due to the relationship between the displacement direction of the pantograph 10a and the elevation angle of the line sensor 20, the resolution when the pantograph 10a is low and the resolution when it is high are different. Specifically, as shown in FIG. 30, the resolution is higher at the lower position, and the resolution is lower at the higher position. The reason why the resolution is higher at the position where the pantograph 10a is lower is that the distance from the line sensor 20 is closer at the lower position.
 上記のような分解能の違いを解決するために、実施例1,2のようなキャリブレーション方法を提案した。実施例1,2によれば、キャリブレーション用部材40をラインセンサ20で撮影し、画像処理することによって、自動的にキャリブレーションを行うことができる。 In order to solve the difference in resolution as described above, a calibration method as in Examples 1 and 2 was proposed. According to the first and second embodiments, calibration can be automatically performed by photographing the calibration member 40 with the line sensor 20 and performing image processing.
 しかし、実施例1,2においては、キャリブレーション時にラインセンサ20の撮影ラインを修正する必要がある。ラインセンサ20の撮影ラインを修正するために、図27のような撮影ライン修正用部材50を使用する。これは、図27(a)に50Lで示すように、矩形の頂点が一直線上に並んでいるので、この直線状にラインセンサ20の撮影ラインが一致すれば、撮影された画像の中で撮影ライン修正用部材50部分は黒くなる。撮影された画像の中で撮影ライン修正用部材50部分が黒くなるように、画像の白黒幅などを見ながら修正を行っていく。なお、図27(b),(c)のように、白黒が反転していたり、矩形ではなく円であったりしても良い。 However, in the first and second embodiments, it is necessary to correct the photographing line of the line sensor 20 at the time of calibration. In order to correct the photographing line of the line sensor 20, a photographing line correcting member 50 as shown in FIG. 27 is used. This is because, as indicated by 50L in FIG. 27 (a), the vertices of the rectangle are aligned on a straight line, so if the shooting line of the line sensor 20 matches this straight line, the image is shot in the shot image. The line correcting member 50 is blackened. Correction is performed while looking at the black and white width of the image so that the shooting line correction member 50 in the captured image is black. In addition, as shown in FIGS. 27B and 27C, black and white may be reversed, or a circle instead of a rectangle may be used.
 図27(a)の撮影ライン修正用部材50を使用して修正する場合、図28(a)にSで示すように斜めに撮影されれば、図29(a)のように白の幅が不均一に表示される。ラインセンサ撮影ラインと図27(a)の中心線50Lcとを平行にするために、図29(b)のように白の幅が等間隔になるようにラインセンサ20を左右どちらかに回転させる。 When correction is performed using the shooting line correction member 50 in FIG. 27A, if the image is taken obliquely as indicated by S in FIG. 28A, the white width as shown in FIG. 29A is obtained. Displayed unevenly. In order to make the line sensor imaging line parallel to the center line 50Lc of FIG. 27A, the line sensor 20 is rotated to the left or right so that the white widths are equally spaced as shown in FIG. .
 実際には、斜め上方を見上げているので等間隔にはならず、右にいくほど白の幅が小さくなる(撮影ラインによっては右にいくほど白の幅が大きくなる)ようにラインセンサ20の傾きを修正する。この状態で水平方向に移動させ、黒の幅が大きくなる方向にラインセンサ20を修正する。最終的に図29(c)のように、撮影された画像の中で、撮影ライン修正用部材50部分が全て黒くなれば撮影ラインの修正は終了となる。 Actually, since the upper side is looked up diagonally, it is not evenly spaced, and the white width decreases toward the right (the white width increases toward the right depending on the shooting line). Correct the tilt. In this state, the line sensor 20 is moved in the horizontal direction and the line sensor 20 is corrected in the direction in which the black width increases. Finally, as shown in FIG. 29 (c), when the photographing line correction member 50 is all black in the photographed image, the photographing line correction is completed.
 上記の方法で撮影ラインを修正することは可能だが、下記のような方法があればより効率的に修正することが可能となる。
(1)撮影ラインの傾きを修正するのに、回転させた方向が正しいかを客観的に判断する方法。
(2)実際のラインセンサ20の回転や水平方向の移動を意識せずに、撮影中の画像を見ながら修正を行う方法。
(3)人の感覚や経験が必要なく、より汎用的な修正方法。
Although the shooting line can be corrected by the above method, the following method can be used to correct the shooting line more efficiently.
(1) A method of objectively determining whether the rotated direction is correct in correcting the inclination of the photographing line.
(2) A method in which correction is performed while viewing an image being shot without being aware of the actual rotation or horizontal movement of the line sensor 20.
(3) A more general correction method that does not require human sense or experience.
 以上のことから、本実施例に係るパンタグラフ高さ測定装置及びそのキャリブレーション方法においては、ラインセンサ20を用いてパンタグラフ10aの高さを測定する場合に行うキャリブレーション時の撮影ラインの修正において、実施例1,2の方法に加え、人の感覚や経験が必要なく、撮影した画像を見ながらより効率良く修正できる構成とした。 From the above, in the pantograph height measuring apparatus and its calibration method according to the present embodiment, in the correction of the photographing line at the time of calibration performed when the height of the pantograph 10a is measured using the line sensor 20, In addition to the methods of the first and second embodiments, there is no need for human sense and experience, and a configuration that allows more efficient correction while viewing the captured image is adopted.
 以下、本実施例に係るパンタグラフ高さ測定装置の構成について説明する。
 図15は、本実施例に係る撮影ライン修正用部材の正面図である。
 図15(a)のように、本実施例に係るパンタグラフ高さ測定装置における撮影ライン修正用部材100においては、目標撮影ラインの部分に白線の中心線101が入っている形になる。
Hereinafter, the configuration of the pantograph height measuring apparatus according to the present embodiment will be described.
FIG. 15 is a front view of the photographing line correcting member according to the present embodiment.
As shown in FIG. 15A, in the photographing line correcting member 100 in the pantograph height measuring apparatus according to the present embodiment, the center line 101 of the white line is in the target photographing line portion.
 なお、撮影ライン修正用部材100は図15(a)のような形に限定されるわけではなく、白黒反転している図15(b)や、矩形ではなく円形になっている図15(c)のような形でも良い。また、撮影ライン修正用部材100の白色部分は光を反射しやすい素材とし、黒色部分は光を反射しにくい素材とする。 Note that the photographing line correcting member 100 is not limited to the shape as shown in FIG. 15A, and FIG. 15B in which black and white are reversed, and FIG. ). The white portion of the photographing line correction member 100 is a material that easily reflects light, and the black portion is a material that hardly reflects light.
 図16は、本実施例に係る撮影ライン修正用部材を用いた修正方法の装置構成を示した模式図である。
 図16に示すように、パンタグラフ102に撮影ライン修正用部材100を取り付ける。なお、図16においては、撮影ライン修正用部材100の側面を示している。また、ラインセンサ103の位置や傾きを修正するために、水平方向と回転が可能なゴニオステージ104上にラインセンサ103を設置する。なお、回転中心が変わることなく回転できる構造であれば、ゴニオステージ104でなくても良い。
FIG. 16 is a schematic diagram illustrating an apparatus configuration of a correction method using the photographing line correction member according to the present embodiment.
As shown in FIG. 16, the photographing line correction member 100 is attached to the pantograph 102. In FIG. 16, the side surface of the photographing line correction member 100 is shown. Further, in order to correct the position and inclination of the line sensor 103, the line sensor 103 is installed on the gonio stage 104 that can rotate in the horizontal direction. Note that the goniometer stage 104 may not be used as long as the structure can rotate without changing the center of rotation.
 撮影ライン修正用部材100を撮影するために、ゴニオステージ104上に設置したラインセンサ103を車両105の屋根上に設置する。また、夜間やトンネル、車両基地内等の照度の低い環境下でも撮影ライン修正用部材100の白黒パターンが撮影できるように、ラインセンサ103付近に照明106を設置する。また、ラインセンサ103で撮影した画像を保存するために、車両105内に処理用コンピュータ107を設置する。 In order to photograph the photographing line correction member 100, the line sensor 103 installed on the gonio stage 104 is installed on the roof of the vehicle 105. In addition, an illumination 106 is installed in the vicinity of the line sensor 103 so that a black and white pattern of the photographing line correction member 100 can be photographed even in an environment with low illuminance such as at night, in a tunnel, or in a vehicle base. Further, a processing computer 107 is installed in the vehicle 105 in order to store an image photographed by the line sensor 103.
 図17は、本実施例に係る撮影ライン修正用部材を用いた修正方法の構成例を示したブロック図である。
 図17に示すように、本実施例に係る撮影ライン修正用部材100を用いた修正方法においては、撮影ライン修正用部材100を撮影し、作業者108が撮影ラインを修正する「ラインセンサ103」と、撮影した画像を保存及び表示し、作業者108が画像を確認しながら、撮影ラインを修正するために必要な「処理用コンピュータ107」と、ラインセンサ103の撮影ラインを容易に修正するために、取り外しが可能な「撮影ライン修正用部材100」とを備えている。
 以上が本実施例に係るパンタグラフ高さ測定装置の構成である。
FIG. 17 is a block diagram illustrating a configuration example of a correction method using the photographing line correction member according to the present embodiment.
As shown in FIG. 17, in the correction method using the imaging line correction member 100 according to the present embodiment, the “line sensor 103” in which the imaging line correction member 100 is imaged and the operator 108 corrects the imaging line. In order to easily correct the imaging line of the line sensor 103 and the “processing computer 107” necessary for correcting the imaging line while the captured image is stored and displayed and the operator 108 confirms the image. In addition, a “photographing line correcting member 100” that can be removed is provided.
The above is the configuration of the pantograph height measuring apparatus according to the present embodiment.
 以下、本実施例に係るパンタグラフ高さ測定装置におけるキャリブレーション方法について説明する。
 図18は、本実施例に係る撮影ライン修正用部材を用いた修正方法を示したフローチャートである。なお、ここでは、使用する撮影ライン修正用部材100は図15(a)とする。
Hereinafter, a calibration method in the pantograph height measuring apparatus according to the present embodiment will be described.
FIG. 18 is a flowchart showing a correction method using the photographing line correction member according to the present embodiment. Here, the photographing line correction member 100 to be used is shown in FIG.
 図18に示すように、ステップP100において、パンタグラフ102に撮影ライン修正用部材100を取り付ける。このとき、撮影ライン修正用部材100の中心線101は撮影したいライン上と一致するようにする。
 次に、ステップP101において、撮影ライン修正用部材100をラインセンサ103で撮影する。
As shown in FIG. 18, the photographing line correction member 100 is attached to the pantograph 102 in Step P100. At this time, the center line 101 of the photographing line correcting member 100 is made to coincide with the line to be photographed.
Next, in step P <b> 101, the photographing line correction member 100 is photographed by the line sensor 103.
 次に、ステップP102において、撮影した画像を確認しながら、ラインセンサ103を水平方向に移動させる。このとき、画像上の撮影ライン修正用部材100の黒部分が大きくなる方向に移動させ、図19に示すように画像上に撮影ライン修正用部材100の中心線101が撮影できるようにする。なお、図19~22中において、Ioは画像中心を、Iaは画像上の撮影ライン修正用部材100を、Icは画像上の撮影ライン修正用部材100の中心線101を示している。 Next, in step P102, the line sensor 103 is moved in the horizontal direction while confirming the captured image. At this time, the black portion of the photographing line correction member 100 on the image is moved in the direction of increasing, so that the center line 101 of the photographing line correction member 100 can be photographed on the image as shown in FIG. 19 to 22, Io represents the center of the image, Ia represents the photographing line correction member 100 on the image, and Ic represents the center line 101 of the photographing line correction member 100 on the image.
 次に、ステップP103において、図19に示すように、Icで示す画像上の撮影ライン修正用部材100の中心線101がIaで示す画像上の撮影ライン修正用部材100上でIoで示す画像中心よりも離れた位置に存在する場合は、図20に示すように、Iaで示す撮影ライン修正用部材100上にIcで示す撮影ライン修正用部材100の中心線101がIoで示す画像中心に近くなるまで、水平方向ヘラインセンサ103を移動させる。 Next, in step P103, as shown in FIG. 19, the center line 101 of the photographing line correction member 100 on the image indicated by Ic is the image center indicated by Io on the photographing line correction member 100 on the image indicated by Ia. 20, the center line 101 of the photographing line correction member 100 indicated by Ic is close to the center of the image indicated by Io on the photographing line correction member 100 indicated by Ia as shown in FIG. The horizontal direction line sensor 103 is moved until it becomes.
 次に、ステップP104において、ラインセンサ103を回転させる。このとき、図21で示すように、Iaで示す画像上の撮影ライン修正用部材100部分の中で、Ioで示す画像中心よりも離れた位置に撮影ライン修正用部材100の中心線101が移動するようにラインセンサ103を回転させる。 Next, in step P104, the line sensor 103 is rotated. At this time, as shown in FIG. 21, the center line 101 of the photographing line correcting member 100 moves to a position away from the image center indicated by Io in the photographing line correcting member 100 portion on the image indicated by Ia. Then, the line sensor 103 is rotated.
 そして、ステップP105において、図22で示すように、Iaで示す画像上の撮影ライン修正用部材100の部分が全て白くなるまで、上記ステップP102からステップP104を繰り返し、撮影ラインが撮影ライン修正用部材100の中心線101と一致したときに一連の処理を終了する。
 以上が本実施例に係る本実施例に係るパンタグラフ高さ測定装置におけるキャリブレーション方法である。
Then, in Step P105, as shown in FIG. 22, Steps P102 to P104 are repeated until the portion of the photographing line correction member 100 on the image indicated by Ia is all white, and the photographing line becomes the photographing line correction member. When the center line 101 matches 100, the series of processing ends.
The above is the calibration method in the pantograph height measuring apparatus according to the present embodiment according to the present embodiment.
 ここで、本実施例に係る撮影ライン修正方法の原理について説明する。
 図23は、水平方向の修正を行う前の撮影ラインの例を示した図である。
 このとき撮影される画像は図19となり、Icで示す撮影ライン修正用部材100の中心線101はIoで示す画像中心よりも離れた位置に撮影される。なお、図23中において、Sはラインセンサ103の撮影ラインを、Scはラインセンサ103の撮影ラインの中心を示している。
Here, the principle of the photographing line correction method according to the present embodiment will be described.
FIG. 23 is a diagram illustrating an example of a shooting line before correction in the horizontal direction.
The image photographed at this time is shown in FIG. 19, and the center line 101 of the photographing line correction member 100 indicated by Ic is captured at a position distant from the image center indicated by Io. In FIG. 23, S indicates the photographing line of the line sensor 103, and Sc indicates the center of the photographing line of the line sensor 103.
 次に、撮影ラインの水平方向の修正を行う。
 図24は、水平方向の修正を行った後の撮影ラインの例を示した図である。
 このとき、図20に示すように、Icで示す撮影ライン修正用部材100の中心線101がIoで示す画像中心に近づくということは、図24中にMで示すようにScで示すラインセンサ103の撮影ラインの中心が撮影ライン修正用部材100の中心線101に近づくことを意味する。なお、図24中において、Sはラインセンサ103の撮影ラインを、Scはラインセンサ103の撮影ラインの中心を、S’は水平方向の修正前のラインセンサ103の撮影ラインを、Mは撮影ラインの水平方向の修正を示している。
Next, the horizontal direction of the photographing line is corrected.
FIG. 24 is a diagram illustrating an example of the photographing line after the horizontal correction.
At this time, as shown in FIG. 20, the fact that the center line 101 of the photographing line correcting member 100 indicated by Ic approaches the image center indicated by Io indicates that the line sensor 103 indicated by Sc as indicated by M in FIG. This means that the center of the shooting line approaches the center line 101 of the shooting line correction member 100. In FIG. 24, S represents the photographing line of the line sensor 103, Sc represents the center of the photographing line of the line sensor 103, S 'represents the photographing line of the line sensor 103 before correction in the horizontal direction, and M represents the photographing line. Shows the horizontal correction.
 最終的に、Scで示すラインセンサ103の撮影ラインの中心が、撮影ライン修正用部材100の中心線101の延長上と一致しなければ、Sで示すラインセンサ103の撮影ラインが撮影ライン修正用部材100の中心線101と一致することはない。Sで示すラインセンサ103の撮影ラインと撮影ライン修正用部材100の中心線101とを一致させることが最終目的であるので、そのためにSで示すラインセンサ103の撮影ラインの中心を撮影ライン修正用部材100の中心線101に近づけていく必要がある。 Finally, if the center of the photographing line of the line sensor 103 indicated by Sc does not coincide with the extension of the center line 101 of the photographing line correcting member 100, the photographing line of the line sensor 103 indicated by S is for correcting the photographing line. It does not coincide with the center line 101 of the member 100. Since the final purpose is to match the photographing line of the line sensor 103 indicated by S with the center line 101 of the photographing line correction member 100, the center of the photographing line of the line sensor 103 indicated by S is used for correcting the photographing line. It is necessary to approach the center line 101 of the member 100.
 つまり、画像上においてIcで示す画像上の撮影ライン修正用部材100の中心線101をIoで示す画像中心に近づける必要がある。
 上記ステップP103の終了時には、Scで示すラインセンサ103の撮影ラインの中心が撮影ライン修正用部材100の中心線101に近づいたことになる。
That is, it is necessary to bring the center line 101 of the photographing line correction member 100 on the image indicated by Ic closer to the image center indicated by Io on the image.
At the end of step P103, the center of the photographing line of the line sensor 103 indicated by Sc has approached the center line 101 of the photographing line correction member 100.
 次に、撮影ラインの回転方向の修正を行う。
 図25は、回転方向の修正を行った後の撮影ラインの例を示した図である。
 このとき、図21で示すように、画像上においてIcで示す画像上の撮影ライン修正用部材100の中心線101がIoで示す画像中心よりも離れていくということは、図25中にRで示すようにラインセンサ103が回転したことを意味する。なお、図25中において、Sはラインセンサ103の撮影ラインを、Scはラインセンサ103の撮影ラインの中心を、S”は回転方向の修正前のラインセンサ103の撮影ラインを、Rは撮影ラインの回転方向の修正を示している。
Next, the rotation direction of the photographing line is corrected.
FIG. 25 is a diagram illustrating an example of the photographing line after the rotation direction is corrected.
At this time, as shown in FIG. 21, the fact that the center line 101 of the photographing line correcting member 100 on the image indicated by Ic is further away from the image center indicated by Io on the image is indicated by R in FIG. As shown, it means that the line sensor 103 has rotated. In FIG. 25, S represents the photographing line of the line sensor 103, Sc represents the center of the photographing line of the line sensor 103, S ″ represents the photographing line of the line sensor 103 before correction of the rotation direction, and R represents the photographing line. Shows the correction of the direction of rotation.
 Sで示すラインセンサ103の撮影ラインが撮影ライン修正用部材100の中心線101と一致するためには、Sで示すラインセンサ103の撮影ラインが撮影ライン修正用部材100の中心線101と平行になる必要がある。 In order for the imaging line of the line sensor 103 indicated by S to coincide with the center line 101 of the imaging line correction member 100, the imaging line of the line sensor 103 indicated by S is parallel to the center line 101 of the imaging line correction member 100. Need to be.
 したがって、Sで示すラインセンサ103の撮影ラインが撮影ライン修正用部材100の中心線101と平行になる方向に回転させる必要がある。そのためには、図25で示す方向に回転させる必要がある。つまり、図21に示すように、画像上においてIcで示す撮影ライン修正用部材100の中心線101がIoで示す画像中心よりも離れていく必要がある。
 上記ステップP104の終了時には、ラインセンサ103の撮影ラインが撮影ライン修正用部材100の中心線101と平行となる方向に回転したことになる。
Therefore, it is necessary to rotate the imaging line of the line sensor 103 indicated by S in a direction parallel to the center line 101 of the imaging line correction member 100. For that purpose, it is necessary to rotate in the direction shown in FIG. That is, as shown in FIG. 21, the center line 101 of the photographing line correction member 100 indicated by Ic on the image needs to be separated from the image center indicated by Io.
At the end of step P104, the photographing line of the line sensor 103 is rotated in a direction parallel to the center line 101 of the photographing line correction member 100.
 なお、上記ステップP104でラインセンサ103を回転させる場合、Scで示すラインセンサ103の撮影ラインの中心の位置を変えずに回転させる必要がある。したがって、ゴニオステージ104のような回転中心が移動しないような装置を使う必要がある。なお、回転中心が移動しなければ、ゴニオステージ104以外のものを使用しても良い。 It should be noted that when the line sensor 103 is rotated in step P104, it is necessary to rotate without changing the position of the center of the imaging line of the line sensor 103 indicated by Sc. Therefore, it is necessary to use an apparatus such as the gonio stage 104 that does not move the center of rotation. If the rotation center does not move, a device other than the gonio stage 104 may be used.
 図26は、修正終了後の撮影ラインの例を示した図である。
 上記ステップP102からステップP104を繰り返すことによって、図26で示すように、S示すラインセンサ103の撮影ラインと撮影ライン修正用部材100の中心線101が一致し、図22で示すような画像を得ることができる。なお、図26中において、Sはラインセンサ103の撮影ラインを、Scはラインセンサ103の撮影ラインの中心を示している。
 また、図19のように、画像上においてIaで示す画像上の撮影ライン修正用部材100がIoで示す画像中心よりも右側ではなく、左側にあったとしても修正方法の原理は変わらない。
FIG. 26 is a diagram showing an example of the photographing line after the correction is completed.
By repeating step P102 to step P104, as shown in FIG. 26, the shooting line of the line sensor 103 shown in S coincides with the center line 101 of the shooting line correction member 100, and an image as shown in FIG. 22 is obtained. be able to. In FIG. 26, S indicates the shooting line of the line sensor 103, and Sc indicates the center of the shooting line of the line sensor 103.
Further, as shown in FIG. 19, even if the photographing line correction member 100 on the image indicated by Ia on the image is not on the right side but on the left side of the image center indicated by Io, the principle of the correction method does not change.
 以上説明したように、本実施例に係るパンタグラフ高さ測定装置及びそのキャリブレーション方法によれば、撮影ラインの傾きを修正するのに、ラインセンサ103を回転させた方向が正しいかを客観的に判断することができる。
 また、実際のラインセンサ103の回転や水平方向の移動を意識せずに、撮影中の画像を見ながら修正を行うことができる。
 また、人の感覚や経験が必要なく、より汎用的で容易に修正することができる。
 また、キャリブレーションの精度を上げることにより、パンタグラフ102の高さ測定を精度良く行うことができる。
As described above, according to the pantograph height measuring apparatus and the calibration method thereof according to the present embodiment, whether or not the direction in which the line sensor 103 is rotated is objectively corrected to correct the inclination of the photographing line. Judgment can be made.
Further, it is possible to make corrections while viewing the image being shot without being aware of the actual rotation or horizontal movement of the line sensor 103.
Moreover, it is more versatile and can be easily corrected without requiring human sense or experience.
Further, by increasing the calibration accuracy, the height of the pantograph 102 can be measured with high accuracy.
 本発明は、パンタグラフ高さ測定装置及びそのキャリブレーション方法に適用して好適なものである。 The present invention is suitable for application to a pantograph height measuring apparatus and its calibration method.
1,3A,3B,3C キャリブレーション用画像
2 二値化画像
10 車両
20 ラインセンサ
30 処理用コンピュータ
31 入力画像作成部
32 二値化処理部
33 ピクセル幅抽出部
34 近似式演算部
35A,35B メモリ
40 キャリブレーション用部材
40b 黒色領域
40w 白色領域
50 撮影ライン修正用部材
50b 黒色領域
50w 白色領域
60 モニタ
S 撮影ライン
100 撮影ライン修正用部材
101 中心線
102 パンタグラフ
103 ラインセンサ
104 ゴニオステージ
105 車両
106 照明
107 処理用コンピュータ
108 作業者
1, 3A, 3B, 3C Calibration image 2 Binary image 10 Vehicle 20 Line sensor 30 Processing computer 31 Input image creation unit 32 Binary processing unit 33 Pixel width extraction unit 34 Approximation formula calculation unit 35A, 35B Memory 40 Calibration member 40b Black area 40w White area 50 Imaging line correction member 50b Black area 50w White area 60 Monitor S Imaging line 100 Imaging line correction member 101 Center line 102 Pantograph 103 Line sensor 104 Goniometer stage 105 Vehicle 106 Illumination 107 Processing computer 108 Worker

Claims (10)

  1.  車両の屋根上に設置されるラインセンサと、前記ラインセンサによって撮影した画像を解析する画像処理手段とを備え、走行中の車両のパンタグラフの高さを測定するパンタグラフ高さ測定装置において、
     前記パンタグラフの変動幅を含む範囲に、濃色領域及び淡色領域を鉛直方向に沿って交互に配してなるキャリブレーション用部材が着脱可能に設けられ、
     前記画像処理手段が、前記ラインセンサによって前記キャリブレーション用部材を撮影した画像から得られる前記濃色領域及び前記淡色領域の画像上の位置と前記濃色領域及び前記淡色領域の実際の高さとの関係式を求め、この関係式を用いて前記ラインセンサによって撮影した前記パンタグラフの画像上の位置から実際のパンタグラフの高さを算出するように構成された
    ことを特徴とするパンタグラフ高さ測定装置。
    In a pantograph height measuring device that includes a line sensor installed on a roof of a vehicle, and an image processing unit that analyzes an image captured by the line sensor, and that measures the height of a pantograph of a running vehicle,
    In a range including the fluctuation range of the pantograph, a calibration member formed by alternately arranging a dark color region and a light color region along the vertical direction is detachably provided,
    The image processing means includes a position on the image of the dark color region and the light color region obtained from an image obtained by photographing the calibration member by the line sensor and an actual height of the dark color region and the light color region. A pantograph height measuring apparatus configured to obtain a relational expression and calculate an actual pantograph height from a position on the image of the pantograph photographed by the line sensor using the relational expression.
  2.  前記キャリブレーション用部材に、鉛直方向に連結される複数の第一の色領域と、前記第一の色領域の周囲に配される第二の色領域とからなる撮影ライン修正用部材が着脱可能に設けられるとともに、
     前記ラインセンサによって撮影された画像を表示する表示手段を備え、
     前記撮影ライン修正用部材は、前記表示手段に表示される該第一の色領域及び第二の色領域の幅が前記ラインセンサの撮影ラインの位置及び傾きによって変化するように前記第一の色領域の形状を設定された
    ことを特徴とする請求項1記載のパンタグラフ高さ測定装置。
    An imaging line correction member comprising a plurality of first color regions connected in the vertical direction and a second color region arranged around the first color region is detachable from the calibration member. And provided
    Comprising display means for displaying an image taken by the line sensor;
    The photographing line correction member is configured such that the widths of the first color region and the second color region displayed on the display unit change according to the position and inclination of the photographing line of the line sensor. 2. The pantograph height measuring device according to claim 1, wherein the shape of the region is set.
  3.  前記撮影ライン修正用部材は、その水平方向の中心において前記第一の色領域が隣接する該第一の色領域と相互に接するように、前記第一の色領域の水平方向の中心の上下幅をその両側の上下幅に比較して幅広に形成された
    ことを特徴とする請求項2記載のパンタグラフ高さ測定装置。
    The photographing line correction member has an upper and lower width at the center in the horizontal direction of the first color region so that the first color region is in contact with the adjacent first color region at the center in the horizontal direction. 3. The pantograph height measuring device according to claim 2, wherein said pantograph height measuring device is formed wider than the vertical width on both sides thereof.
  4.  前記画像処理手段が、
     前記ラインセンサから入力される画像信号を時系列的に並べてなる入力画像を作成する入力画像作成部と、
     前記入力画像を二値化処理してなる二値化画像を作成する二値化処理部と、
     前記二値化画像上の前記濃色領域と前記淡色領域の位置を検出する色領域位置検出部と、
     前記二値化画像上の前記濃色領域と前記淡色領域の位置及び前記濃色領域と前記淡色領域の実際の位置に基づいて前記関係式を算出する関係式演算部と
    を備える
    ことを特徴とする請求項1乃至請求項3のいずれか1項に記載のパンタグラフ高さ測定装置。
    The image processing means
    An input image creating unit for creating an input image in which image signals inputted from the line sensor are arranged in time series;
    A binarization processing unit for creating a binarized image obtained by binarizing the input image;
    A color area position detection unit for detecting positions of the dark color area and the light color area on the binarized image;
    A relational expression calculation unit that calculates the relational expression based on the positions of the dark color area and the light color area on the binarized image and the actual positions of the dark color area and the light color area; The pantograph height measuring device according to any one of claims 1 to 3.
  5.  前記撮影ライン修正用部材は、該撮影ライン修正用部材の水平方向の中心に中心線を備える
    ことを特徴とする請求項1に記載のパンタグラフ高さ測定装置。
    The pantograph height measuring device according to claim 1, wherein the photographing line correction member has a center line at the center in the horizontal direction of the photographing line correction member.
  6.  車両の屋根上に設置されたラインセンサによって走行中の前記車両のパンタグラフを撮影し、前記ラインセンサによって撮影した画像を解析して前記パンタグラフの高さを測定するパンタグラフ高さ測定装置のキャリブレーション方法であって、
     その表面に濃色領域及び淡色領域が鉛直方向に沿って交互に配色されてなるキャリブレーション用部材を前記パンタグラフの近傍に設置する第一の工程と、
     前記ラインセンサによって前記キャリブレーション用部材を撮影する第二の工程と、
     前記画像処理手段において前記ラインセンサによって撮影された画像上の前記濃色領域及び前記淡色領域の位置を検出するとともに、検出された前記濃色領域及び前記淡色領域の画像上の位置と前記濃色領域及び前記淡色領域の実際の位置との関係式を算出する第三の工程と
    からなる
    ことを特徴とするパンタグラフ高さ測定装置のキャリブレーション方法。
    A calibration method for a pantograph height measuring device, which takes a pantograph of the vehicle that is running by a line sensor installed on the roof of the vehicle, analyzes the image taken by the line sensor, and measures the height of the pantograph Because
    A first step of installing a calibration member in which dark areas and light-color areas are alternately arranged in the vertical direction on the surface in the vicinity of the pantograph;
    A second step of photographing the calibration member by the line sensor;
    In the image processing means, the positions of the dark color region and the light color region on the image photographed by the line sensor are detected, and the detected positions of the dark color region and the light color region on the image and the dark color are detected. A calibration method for a pantograph height measuring apparatus, comprising: a third step of calculating a relational expression between the area and the actual position of the light-colored area.
  7.  同一形状の領域を鉛直方向に複数連結してなる第一の色領域及び前記第一の色領域の周囲に配される第二の色領域が配色されてなり、前記第一の色領域及び前記第二の色領域が、前記表示手段に表示される該第一の色領域及び第二の色領域の幅が前記ラインセンサの撮影ラインの位置及び傾きによって変化するように配色された撮影ライン修正用部材を前記キャリブレーション用部材に設置し、
     前記ラインセンサによって前記撮影ライン修正用部材を撮影し、
     前記ラインセンサによって撮影された画像を表示する表示手段に表示される前記撮影ライン修正用部材の画像を確認しつつ前記撮影ラインを修正し、
     前記撮影ライン修正用部材を取り外した後、
     前記第一、第二及び第三の工程を行う
    ことを特徴とする請求項6記載のパンタグラフ高さ測定装置のキャリブレーション方法。
    A first color region formed by connecting a plurality of regions having the same shape in the vertical direction and a second color region arranged around the first color region are arranged in color, and the first color region and the first color region Shooting line correction in which the second color area is arranged so that the widths of the first color area and the second color area displayed on the display unit change depending on the position and inclination of the shooting line of the line sensor. Installing a member for calibration on the member for calibration,
    Photographing the photographing line correction member by the line sensor,
    Correcting the shooting line while checking the image of the shooting line correction member displayed on the display means for displaying the image shot by the line sensor,
    After removing the photographing line correction member,
    The calibration method for a pantograph height measuring apparatus according to claim 6, wherein the first, second and third steps are performed.
  8.  前記撮影ライン修正用部材は、その水平方向の中心において前記第一の色領域が隣接する該第一の色領域と相互に接するように、前記第一の色領域の水平方向の中心の上下幅をその両側の上下幅に比較して幅広に形成されている
    ことを特徴とする請求項7記載のパンタグラフ高さ測定装置のキャリブレーション方法。
    The photographing line correction member has an upper and lower width at the center in the horizontal direction of the first color region so that the first color region is in contact with the adjacent first color region at the center in the horizontal direction. 8. The calibration method for a pantograph height measuring apparatus according to claim 7, wherein the width is formed wider than the vertical width on both sides thereof.
  9.  前記画像処理手段が、
     前記ラインセンサから入力される画像信号を時系列的に並べてなる入力画像を作成し、
     前記入力画像を二値化処理してなる二値化画像を作成し、
     前記二値化画像上の前記濃色領域と前記淡色領域の位置を検出し、
     前記二値化画像上の前記濃色領域と前記淡色領域の位置及び前記濃色領域と前記淡色領域の実際の位置に基づいて前記関係式を算出する
    ことを特徴とする請求項6乃至請求項8のいずれか1項に記載のパンタグラフ高さ測定装置のキャリブレーション方法。
    The image processing means
    Create an input image in which the image signals input from the line sensor are arranged in time series,
    Creating a binarized image obtained by binarizing the input image;
    Detecting the positions of the dark color region and the light color region on the binarized image;
    7. The relational expression is calculated based on positions of the dark color region and the light color region on the binarized image and actual positions of the dark color region and the light color region. 9. A calibration method for a pantograph height measuring device according to any one of items 8 to 9.
  10.  前記撮影ライン修正用部材の水平方向の中心に中心線を設け、
     前記中心線に基づき前記撮影ラインを修正する
    ことを特徴とする請求項6に記載のパンタグラフ高さ測定装置のキャリブレーション方法。
    A center line is provided at the center in the horizontal direction of the photographing line correction member,
    The calibration method for a pantograph height measuring apparatus according to claim 6, wherein the photographing line is corrected based on the center line.
PCT/JP2010/050723 2009-01-22 2010-01-21 Pantograph height measuring device and calibration method therefor WO2010084920A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2011134882/11A RU2478489C1 (en) 2009-01-22 2010-01-21 Device to measure current collector height
CN2010800053013A CN102292236B (en) 2009-01-22 2010-01-21 Pantograph height measuring device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-011648 2009-01-22
JP2009011648 2009-01-22
JP2009-269475 2009-11-27
JP2009269475A JP5418176B2 (en) 2009-01-22 2009-11-27 Pantograph height measuring device and calibration method thereof

Publications (1)

Publication Number Publication Date
WO2010084920A1 true WO2010084920A1 (en) 2010-07-29

Family

ID=42355972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050723 WO2010084920A1 (en) 2009-01-22 2010-01-21 Pantograph height measuring device and calibration method therefor

Country Status (4)

Country Link
JP (1) JP5418176B2 (en)
CN (1) CN102292236B (en)
RU (1) RU2478489C1 (en)
WO (1) WO2010084920A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2821747A4 (en) * 2012-02-29 2015-11-25 Meidensha Electric Mfg Co Ltd Pantograph measurement method, and pantograph measurement device
CN106080212A (en) * 2016-06-08 2016-11-09 中车唐山机车车辆有限公司 For the control method of pantograph in rail vehicle and control system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5712790B2 (en) * 2011-05-24 2015-05-07 株式会社明電舎 Line sensor camera calibration apparatus and calibration method
JP6035580B2 (en) * 2012-06-29 2016-11-30 株式会社明電舎 A calibration device for a pantograph measurement line sensor and a calibration support device for a pantograph measurement line sensor.
DE102013214022A1 (en) * 2013-07-17 2015-01-22 Siemens Aktiengesellschaft System for detecting the condition of a pantograph
CN104792297A (en) * 2015-04-20 2015-07-22 上海市计量测试技术研究院 Calibration device for extensometer
WO2018087931A1 (en) * 2016-11-14 2018-05-17 三菱電機株式会社 Trolley wire display device, trolley wire display system, and trolley wire display data creation method
CN109318718A (en) * 2018-09-20 2019-02-12 青岛四方法维莱轨道制动有限公司 A kind of pantograph control method judging contact rising bow height based on image procossing
CN112066921A (en) * 2019-06-11 2020-12-11 北京国联众泰科技有限公司 Novel geometric parameter calibration device for contact network
CN111006609A (en) * 2019-12-24 2020-04-14 中铁电气化局集团有限公司 Pantograph maximum operation curve detection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248805A (en) * 1989-03-23 1990-10-04 Mitsubishi Heavy Ind Ltd Method for detecting mount position of position detector
JP2001133225A (en) * 1999-11-01 2001-05-18 Ohbayashi Corp Method of measuring dimension and shape using digital camera
JP2006250774A (en) * 2005-03-11 2006-09-21 Meidensha Corp Pantagraph operation measuring device with image processing
WO2008044389A1 (en) * 2006-10-05 2008-04-17 Meidensha Corporation Trolley wire wear measuring device
JP2008104312A (en) * 2006-10-20 2008-05-01 Meidensha Corp Pantograph measurement device by image processing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2940736B2 (en) * 1992-03-26 1999-08-25 三洋電機株式会社 Image processing apparatus and distortion correction method in the image processing apparatus
RU2066645C1 (en) * 1995-05-05 1996-09-20 Забайкальская железная дорога Mobile control-and-computing diagnostic complex
JP2001116515A (en) * 1999-10-21 2001-04-27 Matsushita Electric Ind Co Ltd Calibration method
JP2006240774A (en) * 2005-03-01 2006-09-14 Canon Inc Image forming device, and control method for image forming device
JP4635657B2 (en) * 2005-03-11 2011-02-23 株式会社明電舎 Trolley wire wear measuring device by image processing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248805A (en) * 1989-03-23 1990-10-04 Mitsubishi Heavy Ind Ltd Method for detecting mount position of position detector
JP2001133225A (en) * 1999-11-01 2001-05-18 Ohbayashi Corp Method of measuring dimension and shape using digital camera
JP2006250774A (en) * 2005-03-11 2006-09-21 Meidensha Corp Pantagraph operation measuring device with image processing
WO2008044389A1 (en) * 2006-10-05 2008-04-17 Meidensha Corporation Trolley wire wear measuring device
JP2008104312A (en) * 2006-10-20 2008-05-01 Meidensha Corp Pantograph measurement device by image processing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2821747A4 (en) * 2012-02-29 2015-11-25 Meidensha Electric Mfg Co Ltd Pantograph measurement method, and pantograph measurement device
CN106080212A (en) * 2016-06-08 2016-11-09 中车唐山机车车辆有限公司 For the control method of pantograph in rail vehicle and control system

Also Published As

Publication number Publication date
CN102292236A (en) 2011-12-21
JP2010190886A (en) 2010-09-02
JP5418176B2 (en) 2014-02-19
RU2478489C1 (en) 2013-04-10
RU2011134882A (en) 2013-03-10
CN102292236B (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5418176B2 (en) Pantograph height measuring device and calibration method thereof
US8345094B2 (en) System and method for inspecting the interior surface of a pipeline
JP3837431B2 (en) Pipe inner surface shape measuring device
WO2012144430A1 (en) Tire surface shape measuring device and tire surface shape measuring method
TWI593939B (en) Overhead wire abrasion measuring apparatus and overhead wire abrasion measuring method
CN107683401A (en) Shape measuring apparatus and process for measuring shape
JP5923054B2 (en) Shape inspection device
JP5481862B2 (en) Pantograph height measuring device and calibration method thereof
CN111707668A (en) Tunnel detection and image processing method based on sequence image
JP5053947B2 (en) Shape quality determination method and shape quality determination device
KR101816616B1 (en) Visual inspection device and visual inspection method
JP2020016667A (en) Inspection device for deformed part
JP6575087B2 (en) Trolley wire wear measuring device
JP5359038B2 (en) Line sensor elevation angle measuring device by image processing
JPH07260444A (en) Method and apparatus for measuring object three-dimensionally by light section method
CN116930187A (en) Visual detection method and visual detection system for vehicle body paint surface defects
JP2011033428A (en) Pantograph height measuring device
JP2006317418A (en) Image measuring device, image measurement method, measurement processing program, and recording medium
JP4374845B2 (en) Method and apparatus for detecting bead shape of ERW pipe
JP2572286B2 (en) 3D shape and size measurement device
JP2006017676A (en) Measuring system and method
JP5367292B2 (en) Surface inspection apparatus and surface inspection method
JP3525760B2 (en) Surface profile measuring device
JP2016099135A (en) Narrow gap inspection device
JP6247191B2 (en) Perspective distortion measuring apparatus and perspective distortion measuring method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080005301.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10733527

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011134882

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 10733527

Country of ref document: EP

Kind code of ref document: A1