TWI804960B - Method for manufacturing memory, and capacitor - Google Patents

Method for manufacturing memory, and capacitor Download PDF

Info

Publication number
TWI804960B
TWI804960B TW110131529A TW110131529A TWI804960B TW I804960 B TWI804960 B TW I804960B TW 110131529 A TW110131529 A TW 110131529A TW 110131529 A TW110131529 A TW 110131529A TW I804960 B TWI804960 B TW I804960B
Authority
TW
Taiwan
Prior art keywords
layer
bit line
dielectric layer
conductive
hole
Prior art date
Application number
TW110131529A
Other languages
Chinese (zh)
Other versions
TW202209640A (en
Inventor
華文宇
謙 陶
劉藩東
夏季
Original Assignee
大陸商無錫舜銘存儲科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商無錫舜銘存儲科技有限公司 filed Critical 大陸商無錫舜銘存儲科技有限公司
Publication of TW202209640A publication Critical patent/TW202209640A/en
Application granted granted Critical
Publication of TWI804960B publication Critical patent/TWI804960B/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/20Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the three-dimensional arrangements, e.g. with cells on different height levels

Landscapes

  • Semiconductor Memories (AREA)

Abstract

A method for manufacturing a memory includes forming a first interconnection structure, wherein the first interconnection structure includes a capacitor conductive column, a bit line conductive column, and a first dielectric layer between the capacitor conductive column and the bit line conductive column; forming a first bit line conductive plug, wherein the first bit line conductive plug includes a metal conductive column electrically connected to the bit line conductive column and a second dielectric layer around the metal conductive column; sequentially forming a third dielectric layer and a hard mask layer; patterning hard mask layer;etching the second dielectric layer and the third dielectric layer using the patterned hard mask layer as a mask to form a deep hole; removing the patterned hard mask layer so that the deep hole exposes the capacitor conductive column; forming a first electrode layer; forming a highdielectric constant ferroelectric oxide layer and a second electrode layer; and forming a metal connection portion, a plate line, and a bit line.

Description

記憶體的製造方法及電容器Manufacturing method of memory and capacitor

.    本發明涉及記憶體的技術領域。具體而言,本發明涉及一種記憶體的製造方法及電容器。. The present invention relates to the technical field of memory. Specifically, the present invention relates to a manufacturing method of a memory and a capacitor.

.    鐵電記憶體是一種以特殊製程製成的非易失性的記憶體。當電場被施加到鐵電晶體時,中心原子順著電場停在第一低能量狀態位置,而當電場反轉被施加到同一鐵電晶體時,中心原子順著電場的方向在晶體裡移動並停在第二低能量狀態。大量中心原子在晶體單胞中移動耦合形成鐵電疇,鐵電疇在電場作用下形成極化電荷。鐵電疇在電場下反轉所形成的極化電荷較高,鐵電疇在電場下無反轉所形成的極化電荷較低,這種鐵電材料的二元穩定狀態使得鐵電可以作為記憶體。. Ferroelectric memory is a non-volatile memory made with a special process. When an electric field is applied to a ferroelectric crystal, the central atom stops in the first low-energy state position along the electric field, and when an electric field reversal is applied to the same ferroelectric crystal, the central atom moves in the crystal along the direction of the electric field and Stop in the second lowest energy state. A large number of central atoms move and couple in the crystal unit cell to form ferroelectric domains, and the ferroelectric domains form polarized charges under the action of an electric field. The polarization charge formed by the ferroelectric domain reversal under the electric field is higher, and the polarization charge formed by the ferroelectric domain without reversal under the electric field is lower. The binary stable state of this ferroelectric material makes ferroelectricity can be used as Memory.

.    當移去電場後,中心原子處於低能量狀態保持不動,記憶體的狀態也得以保存不會消失,因此可利用鐵電疇在電場下反轉形成高極化電荷,或無反轉形成低極化電荷來判別記憶單元是在“1”或“0”狀態。鐵電疇的反轉不需要高電場,僅用一般的工作電壓就可以改變記憶單元是在“1”或“0”的狀態;也不需要電荷泵來產生高電壓數據擦除,因而沒有擦寫延遲的現象。這種特性使鐵電記憶體在掉電後仍能夠繼續保存數據,寫入速度快且具有無限次寫入壽命,不容易寫壞。並且,與現有的非易失性內存技術比較,鐵電記憶體具有更高的寫入速度和更長的讀寫壽命。. When the electric field is removed, the central atom stays in a low-energy state and remains unchanged, and the state of the memory is preserved and will not disappear. Therefore, the ferroelectric domain can be used to reverse under the electric field to form a high polarization charge, or without reversal to form a low Polarization charges are used to determine whether the memory cell is in the "1" or "0" state. The inversion of ferroelectric domain does not require high electric field, only general working voltage can change the state of memory cell is "1" or "0"; it also does not need charge pump to generate high voltage data erasing, so there is no erasing write delay phenomenon. This feature enables the ferroelectric memory to continue to save data after power failure, has a fast writing speed and has an unlimited writing life, and is not easy to write to damage. Moreover, compared with the existing non-volatile memory technology, the ferroelectric memory has a higher write speed and a longer read and write life.

.    圖1示出了示例性鐵電記憶單元100的電路示意圖。鐵電記憶單元100是鐵電記憶體的記憶元件,並且可以包括各種設計和配置。如圖1所示,鐵電記憶單元100是“1T-1C”單元,其包括電容器12和電晶體14。電晶體14為NMOS電晶體。電晶體14的源極S電連接到位線BL。電晶體14的閘極電連接到字線WL。電晶體14的汲極D電連接到電容器12的下電極16。電容器12的上電極18連接到板線PL。. FIG. 1 shows a schematic circuit diagram of an exemplary ferroelectric memory cell 100. Ferroelectric memory cell 100 is a memory element of ferroelectric memory and can include various designs and configurations. As shown in FIG. 1 , the ferroelectric memory cell 100 is a “1T-1C” cell, which includes a capacitor 12 and a transistor 14 . Transistor 14 is an NMOS transistor. The source S of transistor 14 is electrically connected to bit line BL. The gate of transistor 14 is electrically connected to word line WL. The drain D of the transistor 14 is electrically connected to the lower electrode 16 of the capacitor 12 . The upper electrode 18 of the capacitor 12 is connected to the plate line PL.

.    圖2示出了示例性鐵電記憶單元100的立體示意圖。為保證鐵電記憶單元100的鐵電電容器的極化發生變化時能得到較強的信號,鐵電電容器的面積需足夠大。如圖2所示,現有的平面的電容器12佔據的面積較大,限制了該鐵電記憶單元的集成度。. FIG. 2 shows a perspective view of an exemplary ferroelectric memory unit 100. In order to ensure that a strong signal can be obtained when the polarization of the ferroelectric capacitor of the ferroelectric memory unit 100 changes, the area of the ferroelectric capacitor must be large enough. As shown in FIG. 2 , the existing planar capacitor 12 occupies a relatively large area, which limits the integration of the ferroelectric memory unit.

.    本發明的目的是提供一種記憶體的製造方法及電容器,來提高鐵電記憶體的集成度,並降低鐵電記憶體芯片的成本。. The purpose of the present invention is to provide a method of manufacturing memory and capacitors to improve the integration of ferroelectric memory and reduce the cost of ferroelectric memory chips.

.    根據本發明的一個實施例,提供一種記憶體的製造方法,包括: 提供半導體基板,所述半導體基板包括鐵電記憶單元區,所述鐵電記憶單元區具有源區、汲區、閘極區、間隔區以及各個功能區上方的電極及互連金屬線; 形成第一互連結構,所述第一互連結構包括電容器導電柱、位線導電柱,以及導電柱之間的第一介質層; 形成第一位線導電插塞,所述第一位線導電插塞包括與所述位線導電柱電連接的金屬導電柱以及金屬導電柱之間的第二介質層; 依序形成第三介質層和硬掩模層; 通過光刻和刻蝕製程使硬掩模層圖案化,並以圖案化後的硬掩模層作為掩模進行刻蝕,在第二介質層和第三介質層中形成深孔,然後去除硬掩模層,所述深孔的底部暴露出所述電容器導電柱; 形成第一電極層; 形成高介電常數鐵電氧化物層和第二電極層;以及 形成金屬互連部、板線和位線。. According to one embodiment of the present invention, a method of manufacturing a memory is provided, including: A semiconductor substrate is provided, the semiconductor substrate includes a ferroelectric memory cell area, and the ferroelectric memory cell area has a source area, a drain area, a gate area, a spacer area, and electrodes and interconnection metal lines above each functional area; forming a first interconnection structure, the first interconnection structure including capacitor conductive pillars, bit line conductive pillars, and a first dielectric layer between the conductive pillars; forming a first bit line conductive plug, the first bit line conductive plug includes a metal conductive column electrically connected to the bit line conductive column and a second dielectric layer between the metal conductive column; sequentially forming a third dielectric layer and a hard mask layer; The hard mask layer is patterned by photolithography and etching processes, and the patterned hard mask layer is used as a mask for etching to form deep holes in the second dielectric layer and the third dielectric layer, and then remove the hard mask layer. a mask layer, the bottom of the deep hole exposes the conductive column of the capacitor; forming a first electrode layer; forming a high dielectric constant ferroelectric oxide layer and a second electrode layer; and Metal interconnects, platelines and bitlines are formed.

.    在本發明的一個實施例中,形成第一電極層包括:沉積第一電極層;以及去除第三介質層頂面的第一電極層,僅保留深孔底部和側面的第一電極層。. In one embodiment of the present invention, forming the first electrode layer includes: depositing the first electrode layer; and removing the first electrode layer on the top surface of the third dielectric layer, leaving only the first electrode layer on the bottom and sides of the deep hole.

.    在本發明的一個實施例中,記憶體的製造方法還包括:在形成高介電常數鐵電氧化物層和第二電極層之後,沉積鎢金屬,然後通過化學器械研磨去除第三介質層頂面的鎢金屬、高介電常數鐵電氧化物層和第二電極層,僅保留深孔中的鎢金屬、高介電常數鐵電氧化物層和第二電極層。. In one embodiment of the present invention, the manufacturing method of the memory further includes: after forming the high dielectric constant ferroelectric oxide layer and the second electrode layer, depositing tungsten metal, and then removing the third dielectric layer by chemical instrument grinding The tungsten metal, the high dielectric constant ferroelectric oxide layer and the second electrode layer on the top surface only retain the tungsten metal, the high dielectric constant ferroelectric oxide layer and the second electrode layer in the deep hole.

.    在本發明的一個實施例中,形成金屬互連部、板線和位線包括:在第三介質層的頂面形成第四介質層;在第四介質層上鑽孔並形成導電結構,所述導電結構分別與第二電極層和第一位線導電插塞電連接;在所述導電結構上方形成板線,所述板線與第二電極層電連接;以及在板線上方形成位線及外接焊盤,所述位線與第一位線導電插塞電連接。. In one embodiment of the present invention, forming the metal interconnection, the plate line and the bit line includes: forming a fourth dielectric layer on the top surface of the third dielectric layer; drilling holes on the fourth dielectric layer and forming a conductive structure, The conductive structure is electrically connected to the second electrode layer and the first bit line conductive plug respectively; a plate line is formed above the conductive structure, and the plate line is electrically connected to the second electrode layer; and a bit line is formed above the plate line. line and an external pad, and the bit line is electrically connected to the first bit line conductive plug.

.    在本發明的一個實施例中,記憶體的製造方法還包括:在形成高介電常數鐵電氧化物層和第二電極層之後,通過光刻、刻蝕等製程去除頂面的部分第一電極層、高介電常數鐵電氧化物層和第二電極層,僅保留深孔側壁、底部及頂部四周的第一電極層、高介電常數鐵電氧化物層和第二電極層,從而使得每個電容器相互分離開。. In one embodiment of the present invention, the manufacturing method of the memory further includes: after forming the high dielectric constant ferroelectric oxide layer and the second electrode layer, removing part of the first part of the top surface by photolithography, etching and other processes An electrode layer, a high dielectric constant ferroelectric oxide layer and a second electrode layer, only the first electrode layer, the high dielectric constant ferroelectric oxide layer and the second electrode layer around the sidewall, bottom and top of the deep hole are reserved, Thus making each capacitor separate from each other.

.    在本發明的一個實施例中,形成金屬互連部、板線和位線包括:在第三介質層的頂面形成第四介質層;在第四介質層上鑽孔並形成導電結構,所述導電結構分別與第二電極層和第一位線導電插塞電連接,其中與第二電極層電連接的導電結構從深孔底部的第二電極層延伸到第四介質層頂部,或者與第二電極層電連接的導電結構從深孔頂部四周的第二電極層延伸到第四介質層頂部;在所述導電結構上方形成板線,所述板線與第二電極層電連接;以及在板線上方形成位線及外接焊盤,所述位線與第一位線導電插塞電連接。. In one embodiment of the present invention, forming the metal interconnection, the plate line and the bit line includes: forming a fourth dielectric layer on the top surface of the third dielectric layer; drilling holes on the fourth dielectric layer and forming a conductive structure, The conductive structures are respectively electrically connected to the second electrode layer and the first bit line conductive plug, wherein the conductive structure electrically connected to the second electrode layer extends from the second electrode layer at the bottom of the deep hole to the top of the fourth dielectric layer, or A conductive structure electrically connected to the second electrode layer extends from the second electrode layer around the top of the deep hole to the top of the fourth dielectric layer; a plate line is formed above the conductive structure, and the plate line is electrically connected to the second electrode layer; And forming a bit line and an external pad above the plate line, the bit line is electrically connected to the first bit line conductive plug.

.    在本發明的一個實施例中,記憶體的製造方法還包括:在形成深孔並去除硬掩模層之後,對深孔頂部進行擴孔,形成擴孔,所述擴孔處於深孔的頂部且截面面積大於深孔的截面面積。. In one embodiment of the present invention, the manufacturing method of the memory further includes: after forming the deep hole and removing the hard mask layer, expanding the top of the deep hole to form the expanded hole, the expanded hole is located at the bottom of the deep hole The top and the cross-sectional area is larger than the cross-sectional area of the deep hole.

. 在本發明的一個實施例中,形成第一電極層包括:沉積第一電極層;去除第三介質層頂面、擴孔側壁和底部的第一電極層,僅保留擴孔下方的深孔底部和側面的第一電極層;形成高介電常數鐵電氧化物層和第二電極層,使所述第二電極層完全填充深孔和擴孔;以及通過化學機械研磨的方式去除第三介質層頂面的高介電常數鐵電氧化物層和第二電極層。. In one embodiment of the present invention, forming the first electrode layer includes: depositing the first electrode layer; removing the first electrode layer on the top surface of the third dielectric layer, the sidewall and the bottom of the expanded hole, and only retaining the deep hole below the expanded hole The first electrode layer on the bottom and side; forming a high dielectric constant ferroelectric oxide layer and a second electrode layer, so that the second electrode layer completely fills the deep hole and expands the hole; and removes the third electrode layer by chemical mechanical grinding. A high dielectric constant ferroelectric oxide layer and a second electrode layer on the top surface of the dielectric layer.

.    在本發明的一個實施例中,第二介質層和第三介質層單獨或它們的組合由至少兩種不同的絕緣材料層疊形成,以及所述方法還包括在形成深孔並去除硬掩模層之後,通過濕法刻蝕對深孔的側壁進行處理,所述濕法刻蝕對至少兩種不同的絕緣材料的刻蝕速率不同,從而在深孔側壁上形成一個或多個凸起。. In one embodiment of the present invention, the second dielectric layer and the third dielectric layer are formed individually or in combination by stacking at least two different insulating materials, and the method further includes forming the deep hole and removing the hard mask After the layer, the sidewalls of the deep hole are processed by wet etching that has different etch rates for at least two different insulating materials, thereby forming one or more protrusions on the sidewalls of the deep hole.

.    根據本發明的另一個實施例,提供一種記憶體的電容器,包括: 半導體基板,所述半導體基板包括鐵電記憶單元區,所述鐵電記憶單元區具有源區、汲區、閘極區、間隔區以及各個功能區上方的電極及互連金屬線, 設置在半導體基板上方的第一互連結構,所述第一互連結構包括電容器導電柱、位線導電柱以及導電柱之間的第一介質層; 第一位線導電插塞,所述第一位線導電插塞包括與所述位線導電柱電連接的金屬導電柱以及金屬導電柱之間的第二介質層; 層疊在第二介質層上的第三介質層; 形成在第二介質層和第三介質層中的深孔,所述深孔暴露出所述電容器導電柱; 依序沉積在深孔的側壁和底部的第一電極層、高介電常數鐵電氧化物層和第二電極層;以及 板線和位線,所述板線通過金屬互連部連接到所述第二電極層,所述位線通過金屬互連部連接到第一位線導電插塞。. According to another embodiment of the present invention, a memory capacitor is provided, comprising: A semiconductor substrate, the semiconductor substrate includes a ferroelectric memory unit area, the ferroelectric memory unit area has a source area, a drain area, a gate area, a spacer area, and electrodes and interconnected metal lines above each functional area, A first interconnection structure disposed above the semiconductor substrate, the first interconnection structure comprising capacitor conductive pillars, bit line conductive pillars, and a first dielectric layer between the conductive pillars; A first bit line conductive plug, the first bit line conductive plug includes a metal conductive column electrically connected to the bit line conductive column and a second dielectric layer between the metal conductive columns; a third dielectric layer stacked on the second dielectric layer; deep holes formed in the second dielectric layer and the third dielectric layer, the deep holes exposing the conductive pillars of the capacitor; sequentially depositing a first electrode layer, a high-k ferroelectric oxide layer, and a second electrode layer on the sidewalls and bottom of the deep hole; and A plate line and a bit line, the plate line is connected to the second electrode layer through the metal interconnection, and the bit line is connected to the first bit line conductive plug through the metal interconnection.

.    在本發明的另一個實施例中,所述第二介質層和第三介質層單獨或它們的組合由至少兩種不同的絕緣材料層疊形成,以及所述深孔的側壁具有一個或多個凸起。. In another embodiment of the present invention, the second dielectric layer and the third dielectric layer are formed by stacking at least two different insulating materials alone or in combination, and the sidewall of the deep hole has one or more raised.

.    在本發明的另一個實施例中,記憶體的電容器還包括通過對深孔頂部進行刻蝕形成的擴孔,所述擴孔處於深孔的頂部且截面面積大於深孔的截面面積,所述第一電極層僅設置在擴孔下方的深孔底部和側面,以及所述高介電常數鐵電氧化物層和第二電極層形成在深孔和擴孔的側壁和底部。. In another embodiment of the present invention, the capacitor of the memory also includes a reaming hole formed by etching the top of the deep hole, the reaming hole is located at the top of the deep hole and has a cross-sectional area greater than that of the deep hole, so The first electrode layer is only arranged on the bottom and side of the deep hole below the expanded hole, and the high dielectric constant ferroelectric oxide layer and the second electrode layer are formed on the sidewall and bottom of the deep hole and the expanded hole.

.    在本發明提供的記憶體的製造方法及電容器中,通過形成多個深孔,在每一深孔中依序形成電容器的下電極層、鐵電材料層及上電極層,同時在電容器之間形成位線,並使位線延伸至電容器之上,實現了三維鐵電電容器。本發明的這種結構也稱為在位線的下方鐵電電容器(Ferroelectric Capacitor Under Bitline,FCUB)。採用深孔型結構的下電極和上電極,可以在同等正對平面面積下,顯著提高鐵電電容器的等效剩餘極化強度,使得鐵電記憶體可以繼續等比縮小而依然仍提供足夠大的電壓窗口,在130nm製程節點以下,可以實現鐵電電容器的三維化,且使鐵電電容器的存儲密度大。. In the manufacturing method of the memory provided by the present invention and the capacitor, by forming a plurality of deep holes, the lower electrode layer, the ferroelectric material layer and the upper electrode layer of the capacitor are sequentially formed in each deep hole, and at the same time, between the capacitor A bit line is formed between them, and the bit line is extended to the capacitor, realizing a three-dimensional ferroelectric capacitor. This structure of the present invention is also referred to as a Ferroelectric Capacitor Under Bitline (FCUB). The lower electrode and the upper electrode with a deep hole structure can significantly increase the equivalent remanent polarization strength of the ferroelectric capacitor under the same facing area, so that the ferroelectric memory can continue to be scaled down while still providing a large enough The voltage window is lower than the 130nm process node, which can realize the three-dimensionalization of ferroelectric capacitors and increase the storage density of ferroelectric capacitors.

.    本發明的記憶體的製造方法完全與CMOS製程兼容,便於集成,及降低製造成本。. The manufacturing method of the memory of the present invention is completely compatible with the CMOS process, which facilitates integration and reduces manufacturing costs.

.    在以下的描述中,參考各實施例對本發明進行描述。然而,本領域的技術人員將認識到可在沒有一個或多個特定細節的情況下或者與其它替換和/或附加方法、材料或組件一起實施各實施例。在其它情形中,未示出或未詳細描述習知的結構、材料或操作以免使本發明的各實施例的諸方面晦澀。類似地,為了解釋的目的,闡述了特定數量、材料和配置,以便提供對本發明的實施例的全面理解。然而,本發明可在沒有特定細節的情況下實施。此外,應理解附圖中示出的各實施例是說明性表示且不一定按比例繪製。. In the following description, the present invention is described with reference to various embodiments. One skilled in the art will recognize, however, that the various embodiments may be practiced without one or more of the specific details, or with other alternative and/or additional methods, materials, or components. In other instances, well-known structures, materials, or operations are not shown or described in detail so as not to obscure aspects of the various embodiments of the invention. Similarly, for purposes of explanation, specific quantities, materials and configurations are set forth in order to provide a thorough understanding of embodiments of the invention. However, the invention may be practiced without these specific details. Furthermore, it should be understood that the various embodiments shown in the drawings are illustrative representations and are not necessarily drawn to scale.

.    在本說明書中,對“一個實施例”或“該實施例”的引用意味著結合該實施例描述的特定特徵、結構或特性被包括在本發明的至少一個實施例中。在本說明書各處中出現的短語“在一個實施例中”並不一定全部指代同一實施例。. In this specification, reference to "one embodiment" or "the embodiment" means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. The appearances of the phrase "in one embodiment" in various places in this specification are not necessarily all referring to the same embodiment.

.    一般來說,術語可以至少部分地根據上下文中的使用來理解。例如,在此使用的術語“一或多個”,至少部分地根據上下文,可用於以單數形式來描述任何特徵、結構或特性,或以複數形式來描述特徵、結構或特性的組合。類似地,諸如“一個”、“一”、或“該”之類的術語又可以至少部分地根據上下文被理解為表達單數用法或表達複數用法。. In general terms can be understood at least in part according to the context in which they are used. For example, the term "one or more" as used herein may be used to describe any feature, structure or characteristic in the singular or any combination of features, structures or characteristics in the plural, depending at least in part on the context. Similarly, terms such as "a", "an", or "the" may in turn be understood to express singular usage or to express plural usage, depending at least in part on the context.

.    能容易地理解的是,“在……上”、“在……之上”、以及“在……上方”在本發明中的含義應該以最寬泛方式來解釋,使得“在……上”不僅指直接處於某物上,而且還可以包括在有中間特徵或中間層位於二者之間的情況下處於某物上,並且“在……之上”、或“在…….上方”不僅指處於某物之上或上方,而且還可以包括在二者之間沒有中間特徵或中間層的情況下處於在某物之上或上方(即直接處於某物上)。. It will be readily understood that the meanings of "on", "over", and "above" in the present invention should be interpreted in the broadest manner such that "on ” not only refers to being directly on something, but can also include being on something with an intermediate feature or intermediate layer in between, and “over” or “over” Not only means being on or over something, but can also include being on or over something without an intervening feature or layer in between (ie directly on something).

.    此外空間相關術語,如“在……下面”、“在……之下”、“下部”、“在……之上”、“上部”等等可以在此用於方便描述一個元素或特徵相對於另一元素或特徵在附圖中示出的關係。空間相關術語旨在除了涵蓋器件在附圖中描述的取向以外還涵蓋該器件在使用或操作時的其它取向。裝置可以以其它方式被定向(旋轉90°或處於其它取向),並且這裡所用的空間相關描述相應地也可同樣地來解釋。. In addition, space-related terms such as "below", "beneath", "lower", "above", "upper", etc. may be used herein for convenience in describing an element or feature The relationship shown in a drawing with respect to another element or feature. Spatially relative terms are intended to cover other orientations of the device in use or operation in addition to the orientation of the device as depicted in the figures. The device may be otherwise oriented (rotated 90° or at other orientations) and the spatially relative descriptions used herein interpreted accordingly.

.    這裡所用的術語“基板”是指後續材料層所添加到的材料。基板本身可以被圖案化。添加到基板之上的材料可以被圖案化,或者可保持未經圖案化。此外,基板可包括多種多樣的半導體材料,如矽、鍺、砷化鎵、磷化銦等。可替代地,基板也可由電學非導電材料,如玻璃、塑料、或藍寶石晶片製成。. The term "substrate" as used herein refers to a material to which subsequent layers of material are added. The substrate itself can be patterned. Materials added over the substrate can be patterned, or can remain unpatterned. In addition, the substrate may include various semiconductor materials, such as silicon, germanium, gallium arsenide, indium phosphide, and the like. Alternatively, the substrate may also be made of an electrically non-conductive material, such as glass, plastic, or a sapphire wafer.

.    這裡所用的術語“層”是指包括具有厚度的某一區域的材料部位。層可以延伸到下方或上方結構的全部之上,或可以具有小於下方或上方結構的伸展。此外,層可以是同質或異質的連續結構的一個區域,該區域的厚度小於該連續結構的厚度。例如,層可位於任何一對水平平面之間,或位於該連續結構的頂面或底面處。層可水平地、垂直地、和/或沿錐形表面延伸。基板可以是層,可包括一個或多個層在其中,和/或可以具有一個或多個層在其上,和/或一個或多個層在其下。一層可包括多層。例如,互連層可包括一個或多個導體和接觸層(其中形成接觸部、互連線和/或通孔)和一個或多個介電層。. The term "layer" as used herein refers to a portion of material comprising a region having a thickness. A layer may extend over all of the underlying or overlying structure, or may have less extension than the underlying or overlying structure. Furthermore, a layer may be a region of a homogeneous or heterogeneous continuous structure, the thickness of which is less than the thickness of the continuous structure. For example, a layer may be located between any pair of horizontal planes, or at the top or bottom of the continuous structure. Layers may extend horizontally, vertically, and/or along the tapered surface. A substrate may be a layer, may include one or more layers therein, and/or may have one or more layers thereon, and/or one or more layers thereon. A layer may include multiple layers. For example, interconnect layers may include one or more conductor and contact layers (in which contacts, interconnect lines, and/or vias are formed) and one or more dielectric layers.

.    圖3A至圖3O示出根據本發明的一個實施例的形成鐵電記憶單元的電容器的過程的截面圖。圖4示出根據本發明的一個實施例的形成鐵電記憶單元的電容器的流程圖。結合圖3A至圖3O以及圖4描述形成鐵電記憶單元的電容器的過程。. FIGS. 3A to 3O show cross-sectional views of a process of forming a capacitor of a ferroelectric memory cell according to an embodiment of the present invention. FIG. 4 shows a flow diagram of forming a capacitor for a ferroelectric memory cell according to one embodiment of the present invention. The process of forming the capacitor of the ferroelectric memory unit is described with reference to FIG. 3A to FIG. 3O and FIG. 4 .

.    首先,在步驟410,提供半導體基板310,如圖3A所示。半導體基板310可以已經完成功能區的製造製程。例如,半導體基板310包括電路區311和鐵電記憶單元區312。電路區311和鐵電記憶單元區312已經形成有器件的源區、汲區(圖中未示出)、閘極區313、間隔區314以及各個功能區上方的電極及互連金屬線(圖中未示出)。為了清楚並簡化本發明的描述,在圖3A中,僅示出了部分電路區311和鐵電記憶單元區312。電路區311可用於對鐵電記憶單元區312進行控制。. First, in step 410, a semiconductor substrate 310 is provided, as shown in FIG. 3A. The semiconductor substrate 310 may have completed the manufacturing process of the functional region. For example, the semiconductor substrate 310 includes a circuit region 311 and a ferroelectric memory cell region 312 . The circuit region 311 and the ferroelectric memory unit region 312 have been formed with source regions, drain regions (not shown in the figure), gate regions 313, spacer regions 314, electrodes and interconnection metal lines above each functional region of the device (Fig. not shown). In order to clarify and simplify the description of the present invention, in FIG. 3A, only part of the circuit region 311 and the ferroelectric memory cell region 312 are shown. The circuit area 311 can be used to control the ferroelectric memory cell area 312 .

.    接下來,在步驟420,在半導體基板310上形成第一互連結構。如圖3B所示,在本發明的一個實施例中,形成第一互連結構可包括:在基板表面形成介質層321;通過通孔光刻和刻蝕等製程在介質層321中形成通孔,該通孔暴露出半導體基板310上各功能區的外接電極;依序沉積粘合層和鎢金屬層填充該通孔;最後進行化學機械研磨製程去除多餘的介質層321、粘合層和鎢金屬層,形成從半導體基板310表面電極延伸到介質層321頂面的多個鎢導電柱。在圖3B所示的具體實施例中,在鎢導電柱與半導體基板310表面電極之間以及鎢導電柱與介質層之間可以形成氮化鈦作為粘合層(圖中未示出)。多個鎢導電柱可包括電路導電柱323、電容器導電柱324、位線導電柱325等等。電路導電柱323與電路區311表面電極連接,電容器導電柱324用於將鐵電記憶單元區312的電晶體的摻雜區(源極或汲極)與電容器形成電連接,位線導電柱325用於將鐵電記憶單元區312的電晶體另一摻雜區(汲極或源極)與位線形成電連接。. Next, in step 420, a first interconnection structure is formed on the semiconductor substrate 310. As shown in FIG. 3B, in one embodiment of the present invention, forming the first interconnection structure may include: forming a dielectric layer 321 on the surface of the substrate; forming a via hole in the dielectric layer 321 through processes such as via lithography and etching. , the through hole exposes the external electrodes of each functional area on the semiconductor substrate 310; an adhesive layer and a tungsten metal layer are sequentially deposited to fill the through hole; finally, a chemical mechanical polishing process is performed to remove the excess dielectric layer 321, the adhesive layer and the tungsten The metal layer forms a plurality of tungsten conductive pillars extending from the surface electrodes of the semiconductor substrate 310 to the top surface of the dielectric layer 321 . In the specific embodiment shown in FIG. 3B , titanium nitride can be formed as an adhesive layer (not shown in the figure) between the tungsten conductive pillar and the surface electrode of the semiconductor substrate 310 and between the tungsten conductive pillar and the dielectric layer. The plurality of tungsten conductive pillars may include circuit conductive pillars 323, capacitor conductive pillars 324, bit line conductive pillars 325, and the like. The circuit conductive column 323 is connected to the surface electrode of the circuit area 311, the capacitor conductive column 324 is used to electrically connect the doped region (source or drain) of the transistor in the ferroelectric memory cell area 312 with the capacitor, and the bit line conductive column 325 It is used to electrically connect another doped region (drain or source) of the transistor of the ferroelectric memory cell region 312 to the bit line.

.    在本發明的實施例中,介質層321可以為氧化矽、氮氧矽、硼矽酸鹽玻璃、矽酸磷玻璃(PSG)、硼磷矽酸鹽玻璃(BPSG)、氟化玻璃矽酸鹽玻璃(FSG)或低介電常數介質等無機材料;也可以為聚醯亞胺、感光型環氧樹脂、阻焊油墨、綠漆、乾膜、感光型增層材料、雙苯環丁烯樹脂(BCB)或苯基苯並二惡唑樹脂(PBO)等有機材料。介質層可以通過化學氣相沉積、滾壓、旋塗、噴塗、印刷、非旋轉塗覆、熱壓、真空壓合、浸泡或壓力貼合等方式製作。介質層321可以是單一材料層,也可以是多層材料層疊形成的複合材料層。. In an embodiment of the present invention, the dielectric layer 321 can be silicon oxide, silicon oxynitride, borosilicate glass, phosphosilicate glass (PSG), borophosphosilicate glass (BPSG), fluorinated glass silicate Inorganic materials such as salt glass (FSG) or low dielectric constant dielectric; it can also be polyimide, photosensitive epoxy resin, solder resist ink, green paint, dry film, photosensitive build-up material, diphenylcyclobutene Organic materials such as resin (BCB) or phenylbenzobisoxazole resin (PBO). The dielectric layer can be produced by chemical vapor deposition, rolling, spin coating, spray coating, printing, non-spin coating, hot pressing, vacuum lamination, soaking or pressure lamination. The dielectric layer 321 can be a single material layer, or a composite material layer formed by laminating multiple layers of materials.

.    本領域的技術人員應該理解,第一互連結構的形成方法不限於上述具體示例。此外,還可以在第一互連結構形成之前或之後進行其他製程,例如,形成一或多個其他導電互連結構。. Those skilled in the art should understand that the method for forming the first interconnection structure is not limited to the above specific examples. In addition, other processes may be performed before or after the formation of the first interconnection structure, for example, forming one or more other conductive interconnection structures.

.    然後,在步驟430,形成第一位線導電插塞,如圖3C所示。在本發明的一個實施例中,形成第一位線導電插塞可包括在第一互連結構表面形成介質層331;通過通孔光刻和刻蝕等製程在介質層331中形成通孔,該通孔暴露出位線導電柱325的頂面;依序沉積粘合層和鎢金屬層填充該通孔;最後進行化學機械研磨製程去除多餘的介質層331和鎢金屬層,形成從位線導電柱325的頂面延伸到介質層331頂面的鎢導電柱作為第一位線導電插塞332。在上述第一位線導電插塞的形成過程的同時,可以在電路區311上方形成與電路導電柱323電連接的鎢導電柱,從而使電路導電柱323延伸到介質層331的頂面。. Then, in step 430, a first bit line conductive plug is formed, as shown in FIG. 3C. In one embodiment of the present invention, forming the first bit line conductive plug may include forming a dielectric layer 331 on the surface of the first interconnection structure; forming a via hole in the dielectric layer 331 through a process such as via photolithography and etching, The through hole exposes the top surface of the bit line conductive pillar 325; sequentially deposits an adhesive layer and a tungsten metal layer to fill the through hole; finally performs a chemical mechanical polishing process to remove the excess dielectric layer 331 and the tungsten metal layer to form a slave bit line The top surface of the conductive column 325 extends to the tungsten conductive column on the top surface of the dielectric layer 331 as the first bit line conductive plug 332 . Simultaneously with the formation of the first bit line conductive plug, a tungsten conductive column electrically connected to the circuit conductive column 323 may be formed above the circuit region 311 , so that the circuit conductive column 323 extends to the top surface of the dielectric layer 331 .

.    在本發明的實施例中,介質層331可以是與介質層321相同的材料,也可以是與介質層321不同的材料。. In an embodiment of the present invention, the dielectric layer 331 can be the same material as the dielectric layer 321, or it can be a different material from the dielectric layer 321.

.    在實際操作中,可以多次重複形成一或多層介質層以及位於介質層內的第一位線導電插塞341,如圖3D所示,從而形成具有所需高度的第一位線導電插塞341。同樣,可以在記憶單元區形成具有一層或多層結構的第一位線導電插塞341的同時,在電路區311上方形成與電路導電柱323電連接的具有一層或多層的鎢導電柱。在圖3D所示的示例中,第一位線導電插塞341具有兩層鎢導電柱結構,然而本領域的技術人員應該理解,在本發明的其他實施例,第一位線導電插塞341可以僅具有一層鎢導電柱結構,或者具有三層或更多層鎢導電柱結構。第一位線導電插塞341的每一層結構中所採用的介質材料可以相同也可以不同。In actual operation, one or more dielectric layers and the first bit line conductive plug 341 located in the dielectric layer can be repeatedly formed, as shown in FIG. 3D, so as to form the first bit line conductive plug with the required height Plug 341. Likewise, while forming the first bit line conductive plug 341 with one or more layers of structure in the memory cell region, one or more layers of tungsten conductive pillars electrically connected to the circuit conductive pillars 323 are formed above the circuit region 311 . In the example shown in FIG. 3D, the first bit line conductive plug 341 has a two-layer tungsten conductive column structure, but those skilled in the art should understand that in other embodiments of the present invention, the first bit line conductive plug 341 There may be only one layer of tungsten conductive column structure, or three or more layers of tungsten conductive column structure. The dielectric materials used in each layer structure of the first bit line conductive plug 341 may be the same or different.

.    接下來,在步驟440,依序形成介質層351、碳層352和氮氧化矽層353,以作為進行深孔刻蝕的硬掩模,如圖3E所示。在本發明的實施例中,可根據具體要求選擇介質層351、碳層352和氮氧化矽層353的製程和尺寸。Next, in step 440, a dielectric layer 351, a carbon layer 352 and a silicon oxynitride layer 353 are sequentially formed as a hard mask for deep hole etching, as shown in FIG. 3E. In the embodiment of the present invention, the process and size of the dielectric layer 351 , the carbon layer 352 and the silicon oxynitride layer 353 can be selected according to specific requirements.

.    在步驟450,通過刻蝕製程形成電容器深孔361,並去除碳層352和氮氧化矽層353,如圖3F所示。在本發明的實施例中,通過刻蝕製程形成電容器深孔361可包括通過光刻刻蝕製程在氮氧化矽層353中形成窗口露出下方碳層352,以氮氧化矽層353為掩模刻蝕碳層352,形成窗口露出下方介質層351,以碳層352作為掩模刻蝕介質層351、342和331直到暴露出電容器導電柱324的頂端,最後去除碳層352和氮氧化矽層353。其中電容器深孔的底部的直徑大於電容器導電柱324頂端的尺寸。在有些實施例中,在刻蝕深孔時,刻蝕到電容器導電柱324時刻蝕停止,但導電柱324周圍的介質層繼續向下刻蝕,會在電容器導電柱周邊形成凹陷。. In step 450, the capacitor deep hole 361 is formed by an etching process, and the carbon layer 352 and the silicon oxynitride layer 353 are removed, as shown in FIG. 3F. In an embodiment of the present invention, forming the capacitor deep hole 361 through an etching process may include forming a window in the silicon oxynitride layer 353 to expose the underlying carbon layer 352 through a photolithography process, and using the silicon oxynitride layer 353 as a mask to etch Etch the carbon layer 352 to form a window to expose the lower dielectric layer 351, use the carbon layer 352 as a mask to etch the dielectric layers 351, 342 and 331 until the top of the capacitor conductive column 324 is exposed, and finally remove the carbon layer 352 and the silicon oxynitride layer 353 . The diameter of the bottom of the capacitor deep hole is greater than the size of the top of the capacitor conductive post 324 . In some embodiments, when etching the deep hole, the etching stops when the capacitor conductive pillar 324 is etched, but the dielectric layer around the conductive pillar 324 continues to be etched downward, forming a depression around the capacitor conductive pillar.

.    在步驟460,在電容器深孔361的底部和側壁上形成第一電極層371。第一電極層371是電容器的一個電極層,例如,可以是以下材料中的一種或多種:鈦(Ti)、氮化鈦(TiN)、氮化鈦矽(TiSiNx)、氮化鈦鋁(TiAlNx)、碳氮化鈦(TiCNx)、氮化鉭(TaNx)、氮化鉭矽(TaSiNx)、氮化鉭鋁(TaAlNx)、氮化鎢(WNx)、矽化鎢(WSix)、碳氮化鎢(WCNx)、釕(Ru)、氧化釕(RuOx)、銥(Ir)、經摻雜的多晶矽、透明導電氧化物(Transparent Conductive Oxide,TCO)或氧化銥(IrOx)或這些材料的複合物。可通過原子層沉積(atomic layer deposition,ALD)、化學氣相沉積(chemical vapor deposition,CVD)、物理氣相沉積(physical vapor deposition,PVD)、電子束(electron beam)蒸發沉積、分子束磊晶(molecular beam epitaxy,MBE)沉積、脈衝式雷射沉積(pulsed laser deposition,PLD)以及類似的沉積製程中的一種或多種製程來沉積第一電極層371,如圖3G所示。然後去除介質層頂面的材料層,僅保留電容器深孔361底部和側面的材料層,如圖3H所示。. In step 460, a first electrode layer 371 is formed on the bottom and sidewalls of the capacitor deep hole 361. The first electrode layer 371 is an electrode layer of a capacitor, for example, it can be one or more of the following materials: titanium (Ti), titanium nitride (TiN), titanium silicon nitride (TiSiNx), titanium aluminum nitride (TiAlNx ), titanium carbonitride (TiCNx), tantalum nitride (TaNx), tantalum silicon nitride (TaSiNx), tantalum aluminum nitride (TaAlNx), tungsten nitride (WNx), tungsten silicide (WSix), tungsten carbonitride (WCNx), ruthenium (Ru), ruthenium oxide (RuOx), iridium (Ir), doped polysilicon, transparent conductive oxide (Transparent Conductive Oxide, TCO) or iridium oxide (IrOx) or a composite of these materials. Through atomic layer deposition (atomic layer deposition, ALD), chemical vapor deposition (chemical vapor deposition, CVD), physical vapor deposition (physical vapor deposition, PVD), electron beam (electron beam) evaporation deposition, molecular beam epitaxy The first electrode layer 371 is deposited by one or more processes of molecular beam epitaxy (MBE) deposition, pulsed laser deposition (PLD) and similar deposition processes, as shown in FIG. 3G . Then the material layer on the top surface of the dielectric layer is removed, and only the material layer on the bottom and sides of the capacitor deep hole 361 remains, as shown in FIG. 3H .

.    在步驟470,形成高介電常數鐵電氧化物層381和第二電極層382,如圖3I所示。高介電常數鐵電氧化物層381是電容器的介質層,例如,可以是以下材料中的一種或多種:所述鐵電材料包括氧和一種或多種鐵電金屬,所述鐵電金屬包括鋯(Zr)、鉿(Hf)、鈦(Ti)、鋁(Al)、鎳(Ni)和/或鐵(Fe)等,並且鐵電材料可以摻雜第II族元素(例如鈣(Ca)、鍶(Sr)或鋇(Ba));第III族元素(例如鈧(Sc)、釔(Y)、鋁(Al)、鎵(Ga)以及銦(In));以及鑭系元素(即,鑭(La)、鈰(Ce)、鐠(Pr)、釹(Nd)、鉕(Pm)、釤(Sm)、銪(Eu)、釓(Gd)、鋱(Tb)、鏑(Dy)、鈥(Ho)、鉺(Er)、銩(Tm)、鐿(Yb)、鑥(Lu))或這些材料的複合。可通過原子層沉積(ALD)、化學氣相沉積(CVD)、物理氣相沉積(PVD)、電子束(electron beam)蒸發沉積、分子束磊晶(MBE)沉積、脈衝式雷射沉積(PLD)以及類似的沉積製程中的一種或多種製程來沉積第一沉積層。第二電極層382是電容器的另一個電極層,例如,可以是以下材料中的一種或多種:鈦(Ti)、氮化鈦(TiN)、氮化鈦矽(TiSiNx)、氮化鈦鋁(TiAlNx)、碳氮化鈦(TiCNx)、氮化鉭(TaNx)、氮化鉭矽(TaSiNx)、氮化鉭鋁(TaAlNx)、氮化鎢(WNx)、矽化鎢(WSix)、碳氮化鎢(WCNx)、釕(Ru)、氧化釕(RuOx)、銥(Ir)、經摻雜的多晶矽、透明導電氧化物(TCO)或氧化銥(IrOx)或這些材料的複合物。可通過原子層沉積(ALD)、化學氣相沉積(CVD)、物理氣相沉積(PVD)、電子束(electron beam)蒸發沉積、分子束磊晶(MBE)沉積、脈衝式雷射沉積(PLD)以及類似的沉積製程中的一種或多種製程來沉積第二電極層382。. In step 470, a high dielectric constant ferroelectric oxide layer 381 and a second electrode layer 382 are formed, as shown in FIG. 3I. The high dielectric constant ferroelectric oxide layer 381 is the dielectric layer of the capacitor, for example, it can be one or more of the following materials: the ferroelectric material includes oxygen and one or more ferroelectric metals, and the ferroelectric metal includes zirconium (Zr), hafnium (Hf), titanium (Ti), aluminum (Al), nickel (Ni) and/or iron (Fe), etc., and ferroelectric materials can be doped with group II elements (such as calcium (Ca), strontium (Sr) or barium (Ba)); group III elements (such as scandium (Sc), yttrium (Y), aluminum (Al), gallium (Ga), and indium (In)); and lanthanides (ie, Lanthanum (La), cerium (Ce), 鐠 (Pr), neodymium (Nd), 鉕 (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), 鋱 (Tb), dysprosium (Dy), ™ (Ho), erbium (Er), 銩 (Tm), ytterbium (Yb), 鑥 (Lu)) or a composite of these materials. Atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), electron beam (electron beam) evaporation deposition, molecular beam epitaxy (MBE) deposition, pulsed laser deposition (PLD) ) and one or more of similar deposition processes to deposit the first deposition layer. The second electrode layer 382 is another electrode layer of the capacitor, for example, it can be one or more of the following materials: titanium (Ti), titanium nitride (TiN), titanium silicon nitride (TiSiNx), titanium aluminum nitride ( TiAlNx), titanium carbonitride (TiCNx), tantalum nitride (TaNx), tantalum silicon nitride (TaSiNx), tantalum aluminum nitride (TaAlNx), tungsten nitride (WNx), tungsten silicide (WSix), carbonitride Tungsten (WCNx), ruthenium (Ru), ruthenium oxide (RuOx), iridium (Ir), doped polysilicon, transparent conductive oxide (TCO) or iridium oxide (IrOx) or composites of these materials. Atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), electron beam (electron beam) evaporation deposition, molecular beam epitaxy (MBE) deposition, pulsed laser deposition (PLD) ) and one or more of similar deposition processes to deposit the second electrode layer 382 .

.    在步驟480,進行鎢金屬391填充,如圖3J所示,然後通過化學器械研磨去除介質層351頂面的鎢金屬391、高介電常數鐵電氧化物層381和第二電極層382,如圖3K所示,僅保留電容器深孔361中的鎢金屬391、高介電常數鐵電氧化物層381和第二電極層382。. In step 480, the tungsten metal 391 is filled, as shown in FIG. 3J , and then the tungsten metal 391, the high dielectric constant ferroelectric oxide layer 381 and the second electrode layer 382 on the top surface of the dielectric layer 351 are removed by chemical instrument grinding, As shown in FIG. 3K , only the tungsten metal 391 , the high-k ferroelectric oxide layer 381 and the second electrode layer 382 in the capacitor deep hole 361 remain.

.    接下來,在步驟490,形成金屬互連部、板線及位線。在本發明的一個實施例中,形成金屬互連部、板線及位線可包括:首先在介質層351的頂面形成一層介質層392,如圖3L所示;在介質層392上鑽孔並形成多個導電柱390,該導電柱390連接到鎢金屬391、電路導電柱323和第一位線導電插塞341,如圖3M所示;然後再在介質層392上形成一層介質層395,在介質層395上刻蝕開孔,在開孔內沉積金屬銅形成金屬線,以作為板線393,並且形成金屬互連部394,如圖3N所示;然後再在介質層395上形成介質層396,再在介質層396上開槽,然後在槽內沉積金屬銅形成金屬線作為位線397,如圖3O。至此形成了記憶體的鐵電電容、板線及位線,然後在板線和位線的上方再形成介質層、金屬互連部和其他金屬層等結構以形成對外的連接,此處不再一一詳細說明。. Next, in step 490, metal interconnects, plate lines and bit lines are formed. In one embodiment of the present invention, forming metal interconnections, plate lines and bit lines may include: first forming a layer of dielectric layer 392 on the top surface of dielectric layer 351, as shown in FIG. 3L ; drilling holes on dielectric layer 392 And form a plurality of conductive columns 390, the conductive columns 390 are connected to the tungsten metal 391, the circuit conductive column 323 and the first bit line conductive plug 341, as shown in Figure 3M; and then form a layer of dielectric layer 395 on the dielectric layer 392 , etch openings on the dielectric layer 395, deposit metal copper in the openings to form metal lines, as plate lines 393, and form metal interconnections 394, as shown in FIG. 3N; then form on the dielectric layer 395 Dielectric layer 396, and then grooves are made on the dielectric layer 396, and then metal copper is deposited in the grooves to form metal lines as bit lines 397, as shown in FIG. 3O. So far, the ferroelectric capacitors, plate lines and bit lines of the memory are formed, and then the dielectric layer, metal interconnection and other metal layers are formed above the plate lines and bit lines to form external connections. Explain in detail.

.    介質層392可以是與介質層321相同的材料,也可以是與介質層321不同的材料。. The dielectric layer 392 can be the same material as the dielectric layer 321, or it can be a different material from the dielectric layer 321.

.    在前述實施例中,形成第一互連結構的介質層321可以稱為第一介質層,形成鐵電電容的介質層331、342、351可以統稱為第二介質層,覆蓋鐵電電容的介質層392可以稱為第三介質層,第三介質層上方的介質層395可以稱為第四介質層,第四介質層395上方的介質層396可以稱為第五介質層。. In the foregoing embodiments, the dielectric layer 321 forming the first interconnection structure can be called the first dielectric layer, and the dielectric layers 331, 342, and 351 forming the ferroelectric capacitor can be collectively referred to as the second dielectric layer, covering the ferroelectric capacitor. The dielectric layer 392 may be referred to as a third dielectric layer, the dielectric layer 395 above the third dielectric layer may be referred to as a fourth dielectric layer, and the dielectric layer 396 above the fourth dielectric layer 395 may be referred to as a fifth dielectric layer.

.    在上述實施例中,將外圍電路區域311的金屬互連部的製程與鐵電記憶單元區312的電容器及金屬互連部的製程結合在一起,從而在電容器形成的同時完成外圍電路區域311與鐵電記憶單元區312的金屬互連部並將其引出,有利於簡化製程步驟並降低製造成本。. In the above embodiment, the manufacturing process of the metal interconnection in the peripheral circuit area 311 is combined with the manufacturing process of the capacitor and the metal interconnection in the ferroelectric memory cell area 312, so that the peripheral circuit area 311 is completed at the same time as the capacitor is formed Interconnecting with the metal part of the ferroelectric memory cell region 312 and leading it out is beneficial to simplify the process steps and reduce the manufacturing cost.

.    在鐵電電容器的金屬-絕緣體-金屬(metal-insulator-metal,MIM)薄膜沉積後,會通過化學機械拋光製程進行平坦化,將深孔外的MIM薄膜磨去而形成獨立的鐵電電容器結構,如圖5所示,通過平坦化製程,容易在圖5的圓圈標記處出現金屬離子殘留,導致上、下電極的漏電,若上電極4發生光刻對準偏差,容易造成上、下電極的直接短路;因此圖6至圖8的實施例針對上述問題,提出了一種新的方案。. After the deposition of the metal-insulator-metal (MIM) film of the ferroelectric capacitor, it will be planarized by a chemical mechanical polishing process, and the MIM film outside the deep hole will be removed to form an independent ferroelectric capacitor structure, as shown in Figure 5, through the planarization process, metal ions are likely to remain at the circle marks in Figure 5, resulting in leakage of the upper and lower electrodes. The direct short circuit of the electrodes; therefore, the embodiment of FIG. 6 to FIG. 8 proposes a new solution for the above problems.

.    圖6示出根據本發明的一個實施例的形成鐵電記憶單元的電容器的流程圖。在圖6所示的實施例中,步驟610至步驟650與上面圖4所示步驟410至450類似,為了簡化說明,省略步驟610至步驟650的詳細描述。. Figure 6 shows a flow chart of forming a capacitor for a ferroelectric memory cell according to one embodiment of the present invention. In the embodiment shown in FIG. 6 , steps 610 to 650 are similar to steps 410 to 450 shown in FIG. 4 above, and detailed descriptions of steps 610 to 650 are omitted for simplicity of description.

.    在步驟660,依序形成第一電極層711、高介電常數鐵電氧化物層712和第二電極層713,如圖7A所示。第一電極層711、高介電常數鐵電氧化物層712和第二電極層713材料和形成製程與上述第一電極層、高介電常數鐵電氧化物層和第二電極層的材料和形成製程類似,因此不再詳細描述。. In step 660, a first electrode layer 711, a high dielectric constant ferroelectric oxide layer 712 and a second electrode layer 713 are sequentially formed, as shown in FIG. 7A. The materials and formation process of the first electrode layer 711, the high dielectric constant ferroelectric oxide layer 712 and the second electrode layer 713 are the same as those of the above-mentioned first electrode layer, high dielectric constant ferroelectric oxide layer and the second electrode layer. The forming process is similar, so it will not be described in detail.

.    在步驟670,填充介質層,然後通過光刻、刻蝕等製程去除頂面的部分第一電極層711、高介電常數鐵電氧化物層712和第二電極層713,僅保留深孔714側壁、底部及四周的第一電極層711、高介電常數鐵電氧化物層712和第二電極層713,從而使得每個電容器相互分離開,如圖7B所示。圖8示出根據本發明的一個實施例的採用步驟670進行光刻和刻蝕後分隔開的電容器單元的立體示意圖。如圖所示與傳統的平面電容器不同,所述電容器為三維立體結構。. In step 670, fill the dielectric layer, and then remove part of the first electrode layer 711, high dielectric constant ferroelectric oxide layer 712 and second electrode layer 713 on the top surface by photolithography, etching and other processes, leaving only deep holes 714 sidewall, bottom and surrounding first electrode layer 711 , high dielectric constant ferroelectric oxide layer 712 and second electrode layer 713 , so that each capacitor is separated from each other, as shown in FIG. 7B . FIG. 8 shows a schematic perspective view of separated capacitor units after photolithography and etching in step 670 according to an embodiment of the present invention. As shown in the figure, different from the traditional planar capacitor, the capacitor has a three-dimensional structure.

.    接下來,在步驟680,形成金屬互連部、板線及位線。在本發明的實施例中,形成金屬互連部、板線及位線可包括形成介質層715,如圖7C所示,在介質層715中鑽孔,並形成多個導電柱731、732、733,導電柱731、732、733分別連接到第二電極層713、電路導電柱716和第一位線導電插塞717,其中與第二電極層713連接的導電柱731是位於電容器的中心位置。在圖7C所示的實施例中,導電柱731從電容器深孔底部延伸到介質層715的頂部。在本發明的另一個實施例中,與電容器第二電極層713連接的導電柱731可以設置在電容器深孔頂部邊緣的位置,如圖7D所示。形成與電容器的第二電極層相連接的導電柱731之後,剩下的步驟可以參照圖3N的步驟,用銅金屬形成與導電柱731相連的板線393,然後參照圖3O的步驟形成介質層,以及用銅金屬形成與導電柱733相連接的位線397。. Next, in step 680, metal interconnects, plate lines and bit lines are formed. In an embodiment of the present invention, forming metal interconnections, plate lines and bit lines may include forming a dielectric layer 715, as shown in FIG. 7C, drilling holes in the dielectric layer 715, and forming a plurality of conductive columns 731, 732, 733, the conductive columns 731, 732, 733 are respectively connected to the second electrode layer 713, the circuit conductive column 716 and the first bit line conductive plug 717, wherein the conductive column 731 connected to the second electrode layer 713 is located at the center of the capacitor . In the embodiment shown in FIG. 7C , the conductive pillar 731 extends from the bottom of the capacitor well to the top of the dielectric layer 715 . In another embodiment of the present invention, the conductive column 731 connected to the second electrode layer 713 of the capacitor can be disposed at the top edge of the deep hole of the capacitor, as shown in FIG. 7D . After forming the conductive post 731 connected to the second electrode layer of the capacitor, the remaining steps can refer to the step in FIG. 3N, using copper metal to form the plate line 393 connected to the conductive post 731, and then refer to the step in FIG. 3O to form a dielectric layer , and the bit line 397 connected to the conductive pillar 733 is formed with copper metal.

.    圖9示出根據本發明的一個實施例的形成鐵電記憶單元的電容器的流程圖。在圖9所示的實施例中,步驟910至步驟950及步驟990與上面圖4所示步驟410至450及步驟490類似,為了簡化說明,省略步驟910至步驟950及步驟990的詳細描述。. Figure 9 shows a flow diagram of forming a capacitor for a ferroelectric memory cell according to one embodiment of the present invention. In the embodiment shown in FIG. 9, step 910 to step 950 and step 990 are similar to steps 410 to 450 and step 490 shown in FIG.

.    在步驟951,對深孔101頂部進行擴孔,如圖10A所示。具體而言,可通過乾法刻蝕在深孔101頂部進行擴孔,形成擴孔102,擴孔102處於深孔101的頂部且截面面積大於深孔101的截面面積。. In step 951, the top of the deep hole 101 is reamed, as shown in Figure 10A. Specifically, the top of the deep hole 101 may be reamed by dry etching to form the reamed hole 102 .

.    在步驟960,形成第一電極層103,如圖10B所示。第一電極層103是電容器的底部電極層。然後去除介質層頂面、擴孔側壁和底部的材料層,僅保留擴孔下方的深孔101底部和側面的材料層,如圖10C所示。. In step 960, the first electrode layer 103 is formed, as shown in FIG. 10B. The first electrode layer 103 is the bottom electrode layer of the capacitor. Then remove the material layer on the top surface of the dielectric layer, the sidewall and bottom of the reamed hole, and only keep the material layer on the bottom and side of the deep hole 101 below the reamed hole, as shown in FIG. 10C .

.    在步驟970,形成高介電常數鐵電氧化物層104和第二電極層105,其中高介電常數鐵電氧化物層104完全覆蓋深孔101內的第一電極層以及擴孔102的內表面,如圖10D所示。第二電極層105完全填充深孔101和擴孔102。. In step 970, a high dielectric constant ferroelectric oxide layer 104 and a second electrode layer 105 are formed, wherein the high dielectric constant ferroelectric oxide layer 104 completely covers the first electrode layer in the deep hole 101 and the expanded hole 102 The inner surface, as shown in Figure 10D. The second electrode layer 105 completely fills the deep hole 101 and the expanded hole 102 .

.    在步驟980,通過化學機械研磨的方式將晶基板表面多餘的高介電常數鐵電氧化物層104和第二電極層105磨掉,以形成鐵電電容結構,如圖10E。. In step 980, the redundant high dielectric constant ferroelectric oxide layer 104 and the second electrode layer 105 on the surface of the crystal substrate are ground away by means of chemical mechanical grinding, so as to form a ferroelectric capacitor structure, as shown in FIG. 10E.

.    在步驟990,在鐵電電容結構的上方形成一層介質層106,在介質層106上形成通孔,在通孔內形成與鐵電電容結構的上電極相連的導電柱107。然後再在介質層106上方形成金屬互連部、板線和位線,如圖10F所示。形成金屬互連部、板線和位線的具體步驟可以參考圖3N和圖3O,並結合前述實施例的步驟490的描述來形成金屬互連部、板線及位線。. In step 990, a dielectric layer 106 is formed above the ferroelectric capacitor structure, a via hole is formed on the dielectric layer 106, and a conductive column 107 connected to the upper electrode of the ferroelectric capacitor structure is formed in the via hole. Then, metal interconnections, plate lines and bit lines are formed on the dielectric layer 106, as shown in FIG. 10F. For specific steps of forming metal interconnects, plate lines and bit lines, reference may be made to FIG. 3N and FIG. 3O , and the metal interconnects, plate lines and bit lines are formed in combination with the description of step 490 of the previous embodiment.

.    圖11A和圖11B顯示本發明的另一個實施例,其提供一種形成鐵電記憶單元的電容器的方法。在該實施例中,形成鐵電記憶單元的電容器的方法可以與上面圖4、圖6和圖9所示流程類似。該實施例主要區別在於:前述圖3O所示的實施例中,介質層331、342和351統稱為第二介質層,其中介質層331、342和351是由至少兩種不同的絕緣材料層疊形成,並且在步驟450、650和950之後增加通過濕法刻蝕對電容器深孔的側壁進行處理,在深孔側壁上形成一個或多個凸起。圖11A示出了根據本發明的一個實施例的通過刻蝕製程形成電容器深孔並去除碳層和氮氧化矽層後的電容器深孔部分的截面示意圖。如圖11A所示,第二介質層包括三層第一絕緣材料層111和二層第二絕緣材料層112,每一層第一絕緣材料層111與第二絕緣材料層112依序交替層疊。在形成鐵電電容結構的深孔時,先形成如圖11A所示的側壁平齊的深孔113。在刻蝕形成圖11A的結構之後,對圖11A形成的結構再進行濕法刻蝕。通過該濕法刻蝕製程對介質層中不同絕緣材料的刻蝕速率不同,形成不同的刻蝕深度,從而使不同層之間的側壁凹陷程度不同,形成在不同層之間的凸出結構114。例如,第一絕緣材料層111的刻蝕速率低於第二絕緣材料層112的刻蝕速率,經過特定時間,第一絕緣材料層111相對於第二絕緣材料層112凸出,如圖11B所示,從而可以在相同的孔徑下增加電容器的面積,實現鐵電性能的提升。然後,在具有不同層的凸出結構114所構成的深孔內沉積形成鐵電電容結構的下電極層、鐵電材料層和上電極層,具體的步驟可以參考前述的460-490、660-690和960-990步驟的描述。本領域的技術人員應該理解,用於形成在鐵電電容結構的深孔內的第二介質層不限於圖11A所示的三層第一絕緣材料層111和二層第二絕緣材料層112的交替層疊結構,用於形成在鐵電電容結構的深孔內的第二介質層可以包括三種或更多種絕緣材料的層疊結構,並且可以根據實際需要設置每層絕緣材料的厚度和位置。用於形成在鐵電電容結構的深孔內的第二介質層的材料可以選自:氧化矽、氮氧矽、硼矽酸鹽玻璃、矽酸磷玻璃(PSG)、硼磷矽酸鹽玻璃(BPSG)、氟化玻璃矽酸鹽玻璃(FSG)或低介電常數介質等無機材料;也可以為聚醯亞胺、感光型環氧樹脂、阻焊油墨、綠漆、乾膜、感光型增層材料、雙苯環丁烯樹脂(BCB)或者苯基苯並二惡唑樹脂(PBO)等有機材料或它們的組合。濕法刻蝕製程可以是用鹽酸、磷酸、氫氟酸等酸性溶液進行刻蝕。. Figures 11A and 11B show another embodiment of the present invention, which provides a method of forming a capacitor for a ferroelectric memory cell. In this embodiment, the method for forming the capacitor of the ferroelectric memory unit may be similar to the processes shown in FIG. 4 , FIG. 6 and FIG. 9 above. The main difference of this embodiment is that in the aforementioned embodiment shown in FIG. 3O, the dielectric layers 331, 342 and 351 are collectively referred to as the second dielectric layer, wherein the dielectric layers 331, 342 and 351 are formed by stacking at least two different insulating materials. , and after steps 450, 650 and 950, wet etching is added to process the sidewall of the deep hole of the capacitor to form one or more protrusions on the sidewall of the deep hole. FIG. 11A shows a schematic cross-sectional view of the capacitor deep hole after forming the capacitor deep hole through an etching process and removing the carbon layer and the silicon oxynitride layer according to an embodiment of the present invention. As shown in FIG. 11A , the second dielectric layer includes three first insulating material layers 111 and two second insulating material layers 112 , and each first insulating material layer 111 and second insulating material layer 112 are stacked alternately in sequence. When forming the deep hole of the ferroelectric capacitor structure, the deep hole 113 whose sidewall is flush as shown in FIG. 11A is formed first. After the structure of FIG. 11A is formed by etching, wet etching is performed on the structure formed in FIG. 11A . Through this wet etching process, the etching rates of different insulating materials in the dielectric layer are different, and different etching depths are formed, so that the degree of sidewall depression between different layers is different, and the protruding structure 114 between different layers is formed. . For example, the etching rate of the first insulating material layer 111 is lower than the etching rate of the second insulating material layer 112. After a certain time, the first insulating material layer 111 protrudes relative to the second insulating material layer 112, as shown in FIG. 11B Therefore, the area of the capacitor can be increased under the same aperture, and the ferroelectric performance can be improved. Then, deposit the lower electrode layer, the ferroelectric material layer and the upper electrode layer of the ferroelectric capacitance structure in the deep hole formed by the protruding structure 114 with different layers. For the specific steps, please refer to the aforementioned 460-490, 660- Description of steps 690 and 960-990. Those skilled in the art should understand that the second dielectric layer used to be formed in the deep hole of the ferroelectric capacitor structure is not limited to the three-layer first insulating material layer 111 and the two-layer second insulating material layer 112 shown in FIG. 11A Alternately stacked structure, the second dielectric layer used to form the deep hole of the ferroelectric capacitor structure can include a stacked structure of three or more insulating materials, and the thickness and position of each layer of insulating material can be set according to actual needs. The material used to form the second dielectric layer in the deep hole of the ferroelectric capacitor structure can be selected from: silicon oxide, silicon oxynitride, borosilicate glass, phosphosilicate glass (PSG), borophosphosilicate glass Inorganic materials such as (BPSG), fluorinated glass silicate glass (FSG) or low dielectric constant dielectric; it can also be polyimide, photosensitive epoxy resin, solder resist ink, green paint, dry film, photosensitive Build-up materials, organic materials such as bis-benzocyclobutene resin (BCB) or phenylbenzobisoxazole resin (PBO), or a combination thereof. The wet etching process may be etched with an acidic solution such as hydrochloric acid, phosphoric acid, or hydrofluoric acid.

.    前述實施例雖然分別介紹了幾種實施例的步驟,但前述不同實施例所介紹的步驟並非完全不可拆分的,各個實施例的具體步驟及結構也可以相互替換或結合,此處不再一一舉例說明。. Although the aforementioned embodiments have introduced the steps of several embodiments, the steps described in the aforementioned different embodiments are not completely inseparable, and the specific steps and structures of each embodiment can also be replaced or combined with each other, and will not be repeated here One by one examples.

.    在本發明提供的記憶體的製造方法及電容器中,通過形成多個深孔,在每一深孔中依序形成電容器的下電極層、鐵電材料層及上電極層,同時在電容器之間形成位線,並使位線延伸至電容器之上,實現了三維鐵電電容器。本發明的這種結構也稱為在位線的下方鐵電電容器(Ferroelectric Capacitor Under Bitline,FCUB)。採用深孔型結構的下電極和上電極,可以在同等正對平面面積下,顯著提高鐵電電容器的等效剩餘極化強度,使得鐵電記憶體可以繼續等比縮小而依然仍提供足夠大的電壓窗口,在130 nm製程節點以下,可以實現鐵電電容器的三維化,且使鐵電電容器的存儲密度大。. In the manufacturing method of the memory provided by the present invention and the capacitor, by forming a plurality of deep holes, the lower electrode layer, the ferroelectric material layer and the upper electrode layer of the capacitor are sequentially formed in each deep hole, and at the same time, between the capacitor A bit line is formed between them, and the bit line is extended to the capacitor, realizing a three-dimensional ferroelectric capacitor. This structure of the present invention is also referred to as a Ferroelectric Capacitor Under Bitline (FCUB). The lower electrode and the upper electrode with a deep hole structure can significantly increase the equivalent remanent polarization strength of the ferroelectric capacitor under the same facing area, so that the ferroelectric memory can continue to be scaled down while still providing a large enough The voltage window of the 130 nm process node can realize the three-dimensionalization of ferroelectric capacitors and increase the storage density of ferroelectric capacitors.

.    本發明的記憶體的製造方法完全與CMOS製程兼容,便於集成,及降低製造成本。. The manufacturing method of the memory of the present invention is completely compatible with the CMOS process, which facilitates integration and reduces manufacturing costs.

.    儘管上文描述了本發明的各實施例,但是,應該理解,它們只是作為示例來呈現的,而不作為限制。對於相關領域的技術人員顯而易見的是,可以對其做出各種組合、變型和改變而不背離本發明的精神和範圍。因此,此處所公開的本發明的寬度和範圍不應被上述所公開的示例性實施例所限制,而應當僅根據所附的發明申請專利範圍及其等同替換來定義。. While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. It will be apparent to those skilled in the relevant art that various combinations, modifications and changes can be made thereto without departing from the spirit and scope of the invention. Therefore, the breadth and scope of the present invention disclosed herein should not be limited by the above-disclosed exemplary embodiments, but should be defined only in accordance with the appended patent claims and their equivalents.

. 4:上電極 12:電容器 14:電晶體 16:下電極 18:上電極 100:鐵電記憶單元 101:深孔 102:擴孔 103:第一電極層 104:鐵電氧化物層 105:第二電極層 106:介質層 107:導電柱 111:第一絕緣材料層 112:第二絕緣材料層 113:深孔 114:凸出結構 310:半導體基板 311:電路區 312:鐵電記憶單元區 313:閘極區 314:間隔區 321:介質層 323:電路導電柱 324:電容器導電柱 325:位線導電柱 331:介質層 332:第一位線導電插塞 341:第一位線導電插塞 342:介質層 351:介質層 352:碳層 353:氮氧化矽層 361:電容器深孔 371:第一電極層 381:高介電常數鐵電氧化物層 382:第二電極層 390:導電柱 391:鎢金屬 392:介質層 393:金屬線 394:金屬互連部 395:介質層 396:介質層 397:位線 410,420,430,440,450,460,470,480,490:步驟 610,620,630,640,650,660,670,680:步驟 711:第一電極層 712:高介電常數鐵電氧化物層 713:第二電極層 714:深孔 715:介質層 716:電路導電柱 717:第一位線導電插塞 731:導電柱 732:導電柱 733:導電柱 910,920,930,940,950,951,960,970,980,990:步驟 BL:位線 D:汲極 PL:板線 S:源極 WL:字線. 4: Upper electrode 12: Capacitor 14: Transistor 16: Bottom electrode 18: Upper electrode 100: ferroelectric memory cell 101: deep hole 102: Reaming 103: The first electrode layer 104: ferroelectric oxide layer 105: Second electrode layer 106: medium layer 107: Conductive column 111: the first insulating material layer 112: the second insulating material layer 113: deep hole 114: Protruding structure 310: Semiconductor substrate 311: circuit area 312: Ferroelectric memory unit area 313: gate area 314: spacer 321: medium layer 323: circuit conductive column 324: Capacitor conductive column 325: bit line conductive column 331: medium layer 332: first bit line conductive plug 341: first bit wire conductive plug 342: medium layer 351: medium layer 352: carbon layer 353: silicon oxynitride layer 361: capacitor deep hole 371: the first electrode layer 381: High dielectric constant ferroelectric oxide layer 382: second electrode layer 390: conductive column 391: Tungsten metal 392: medium layer 393: metal wire 394: Metal interconnection 395: medium layer 396: medium layer 397: bit line 410,420,430,440,450,460,470,480,490: steps 610, 620, 630, 640, 650, 660, 670, 680: steps 711: the first electrode layer 712: High dielectric constant ferroelectric oxide layer 713: second electrode layer 714: deep hole 715: medium layer 716: circuit conductive column 717: first bit wire conductive plug 731: Conductive column 732: Conductive column 733: Conductive column 910, 920, 930, 940, 950, 951, 960, 970, 980, 990: steps BL: bit line D: drain PL: plate line S: source WL: word line

. [圖1]示出了示例性鐵電記憶單元的電路示意圖。 [圖2]示出了示例性鐵電記憶單元的立體示意圖。 [圖3A]至[圖3O]示出根據本發明的一個實施例的形成鐵電記憶單元的電容器的過程的截面圖。 [圖4]示出根據本發明的一個實施例的形成鐵電記憶單元的電容器的流程圖。 [圖5]示出根據本發明的一個實施例的對電容器進行平坦化製程的截面示意圖。 [圖6]示出根據本發明的一個實施例的對電容器進行平坦化製程的截面示意圖。 [圖7A]至[圖7D]是圖6的鐵電電容器的立體示意圖。 [圖8] 示出根據本發明的一個實施例的分隔開的電容器單元的立體示意圖。 [圖9]示出根據本發明的一個實施例的形成鐵電記憶單元的電容器的流程圖。 [圖10A]至[圖10F]示出根據本發明的一個實施例的形成鐵電記憶單元的電容器的過程的截面圖。 [圖11A]示出了根據本發明的一個實施例的通過刻蝕製程形成電容器深孔並去除碳層和氮氧化矽層後的電容器深孔部分的截面示意圖。 [圖11B]示出了根據本發明的一個實施例的側壁具有凸起的電容器深孔部分的截面示意圖。. [ Fig. 1 ] A schematic circuit diagram showing an exemplary ferroelectric memory cell. [ Fig. 2 ] A schematic perspective view showing an exemplary ferroelectric memory cell. [ FIG. 3A ] to [ FIG. 3O ] are cross-sectional views illustrating a process of forming a capacitor of a ferroelectric memory cell according to one embodiment of the present invention. [ Fig. 4 ] A flowchart showing a capacitor forming a ferroelectric memory cell according to an embodiment of the present invention. [ Fig. 5 ] A schematic cross-sectional view showing a planarization process for a capacitor according to an embodiment of the present invention. [ Fig. 6 ] A schematic cross-sectional view showing a planarization process for a capacitor according to an embodiment of the present invention. [ FIG. 7A ] to [ FIG. 7D ] are schematic perspective views of the ferroelectric capacitor of FIG. 6 . [ Fig. 8 ] A schematic perspective view showing a divided capacitor unit according to an embodiment of the present invention. [ Fig. 9 ] A flowchart showing a capacitor forming a ferroelectric memory cell according to an embodiment of the present invention. [ FIG. 10A ] to [ FIG. 10F ] are cross-sectional views illustrating a process of forming a capacitor of a ferroelectric memory cell according to an embodiment of the present invention. [ FIG. 11A ] shows a schematic cross-sectional view of the capacitor deep hole part after forming the capacitor deep hole through an etching process and removing the carbon layer and the silicon oxynitride layer according to an embodiment of the present invention. [ FIG. 11B ] A schematic cross-sectional view showing a deep hole portion of a capacitor having a sidewall having protrusions according to an embodiment of the present invention.

410,420,430,440,450,460,470,480,490:步驟410,420,430,440,450,460,470,480,490: steps

Claims (18)

一種記憶體的製造方法,其包括:提供半導體基板,其中所述半導體基板包括鐵電記憶單元區,所述鐵電記憶單元區具有多個功能區及在各個功能區上方的電極及互連金屬線,所述多個功能區包含源區、汲區、閘極區及間隔區;形成第一互連結構,其中所述第一互連結構包括電容器導電柱、位線導電柱,以及在所述電容器導電柱及所述位線導電柱之間的第一介質層;形成第一位線導電插塞,其中所述第一位線導電插塞包括與所述位線導電柱電連接的金屬導電柱及在所述金屬導電柱周圍的第二介質層;依序形成第三介質層和硬掩模層;通過光刻和刻蝕製程使所述硬掩模層圖案化;以所述圖案化後的硬掩模層作為掩模進行刻蝕,以在所述第二介質層和所述第三介質層中形成深孔;去除所述圖案化後的硬掩模層,以使所述深孔的底部暴露出所述電容器導電柱;依序形成第一電極層、高介電常數鐵電氧化物層和第二電極層;去除部分第一電極層、高介電常數鐵電氧化物層和第二電極層,僅保留在所述深孔的側壁、底部及頂部四周的第一電極層、高介電常數鐵電氧化物層和第二電極層,使得由所述第一電極層、高介電常數鐵電氧化物層和第二電極層構成的鐵電電容器相互分開;在所述第三介質層的頂面形成第四介質層; 在所述第四介質層上鑽孔並形成多個導電結構,其中所述多個導電結構分別與所述第二電極層和所述第一位線導電插塞電連接,以及與所述第二電極層電連接的導電結構是從所述深孔底部的第二電極層延伸到所述第四介質層頂部;在所述導電結構上方形成板線,其中所述板線通過與所述第二電極層電連接的導電結構與所述第二電極層電連接;以及在所述板線上方形成位線及外接焊盤,其中所述位線通過與所述第一位線導電插塞電連接的導電結構與所述第一位線導電插塞電連接。 A method of manufacturing a memory, which includes: providing a semiconductor substrate, wherein the semiconductor substrate includes a ferroelectric memory unit area, and the ferroelectric memory unit area has a plurality of functional areas and electrodes and interconnection metals above each functional area line, the plurality of functional areas include a source area, a drain area, a gate area and a spacer area; a first interconnection structure is formed, wherein the first interconnection structure includes a capacitor conductive column, a bit line conductive column, and in the The first dielectric layer between the capacitor conductive column and the bit line conductive column; form a first bit line conductive plug, wherein the first bit line conductive plug includes a metal electrically connected to the bit line conductive column Conductive pillars and a second dielectric layer around the metal conductive pillars; sequentially forming a third dielectric layer and a hard mask layer; patterning the hard mask layer through photolithography and etching processes; The patterned hard mask layer is used as a mask for etching to form deep holes in the second dielectric layer and the third dielectric layer; the patterned hard mask layer is removed to make the The bottom of the deep hole exposes the conductive pillar of the capacitor; sequentially forming a first electrode layer, a high dielectric constant ferroelectric oxide layer and a second electrode layer; removing part of the first electrode layer, high dielectric constant ferroelectric oxide layer and the second electrode layer, only the first electrode layer, the high dielectric constant ferroelectric oxide layer and the second electrode layer around the sidewall, bottom and top of the deep hole remain, so that the first electrode layer , the ferroelectric capacitor formed by the high dielectric constant ferroelectric oxide layer and the second electrode layer are separated from each other; a fourth dielectric layer is formed on the top surface of the third dielectric layer; Drill holes on the fourth dielectric layer to form a plurality of conductive structures, wherein the plurality of conductive structures are respectively electrically connected to the second electrode layer and the first bit line conductive plug, and are connected to the first bit line conductive plug. The conductive structure electrically connected to the two electrode layers extends from the second electrode layer at the bottom of the deep hole to the top of the fourth dielectric layer; a plate line is formed above the conductive structure, wherein the plate line passes through and connects with the first electrode layer. The conductive structure in which the two electrode layers are electrically connected is electrically connected to the second electrode layer; and a bit line and an external pad are formed above the plate line, wherein the bit line is electrically connected to the first bit line conductive plug. The connected conductive structure is electrically connected to the first bit line conductive plug. 如請求項1之記憶體的製造方法,其中所述第一互連結構还包括包覆所述位線導電柱外圍的黏合層。 The manufacturing method of the memory according to claim 1, wherein the first interconnection structure further includes an adhesive layer covering the periphery of the bit line conductive pillar. 如請求項1之記憶體的製造方法,其還包括:在所述形成深孔並去除硬掩模層之後,對所述深孔頂部進行擴孔,以形成擴孔,其中所述擴孔處於所述深孔的頂部且其截面面積大於所述深孔的截面面積。 The memory manufacturing method according to claim 1, further comprising: after forming the deep hole and removing the hard mask layer, expanding the top of the deep hole to form an expanded hole, wherein the expanded hole is at The top of the deep hole has a cross-sectional area greater than that of the deep hole. 如請求項1之記憶體的製造方法,其中所述第二介質層和所述第三介質層中的至少一者由至少兩種不同的絕緣材料層疊形成,以及在所述形成深孔並去除硬掩模層之後,所述方法還包括:通過濕法刻蝕對所述深孔的側壁進行處理,所述濕法刻蝕對所述至少兩種不同的絕緣材料的刻蝕速率不同,從而在所述深孔的側壁上形成一個或多個凸起。 The manufacturing method of memory according to claim 1, wherein at least one of the second dielectric layer and the third dielectric layer is formed by stacking at least two different insulating materials, and the deep hole is formed and removed After the hard mask layer, the method further includes: processing the sidewall of the deep hole by wet etching, the wet etching has different etching rates for the at least two different insulating materials, thereby One or more protrusions are formed on sidewalls of the well. 一種記憶體的電容器,包括:半導體基板,其包括鐵電記憶單元區,其中所述鐵電記憶單元區具有多個功能區及在各個功能區上方的電極及互連金屬線,所述多個功能區包含源區、汲區、閘極區及間隔區; 第一互連結構,其設置在所述半導體基板上方,且包括電容器導電柱、位線導電柱,以及在所述電容器導電柱及所述位線導電柱之間的第一介質層;第一位線導電插塞,其包括與所述位線導電柱電連接的金屬導電柱以及在所述金屬導電柱之間的第二介質層;第三介質層,其層疊在所述第二介質層上;深孔,其形成在所述第二介質層和所述第三介質層中,且暴露出所述電容器導電柱;依序層疊在所述深孔的側壁、底部及頂部四周的第一電極層、高介電常數鐵電氧化物層和第二電極層;第四介質層,其設置在所述第三介質層的頂面;多個導電結構,其分別與所述第二電極層和所述第一位線導電插塞電連接,其中與所述第二電極層電連接的導電結構是從所述深孔底部的第二電極層延伸到所述第四介質層頂部;板線,其通過與所述第二電極層電連接的導電結構電連接到所述第二電極層;以及位線,其通過與所述第一位線導電插塞電連接的導電結構電連接到所述第一位線導電插塞。 A memory capacitor, comprising: a semiconductor substrate, which includes a ferroelectric memory unit area, wherein the ferroelectric memory unit area has a plurality of functional areas and electrodes and interconnected metal lines above each functional area, the plurality of The functional area includes source area, drain area, gate area and spacer area; A first interconnection structure, which is disposed above the semiconductor substrate, and includes a capacitor conductive column, a bit line conductive column, and a first dielectric layer between the capacitor conductive column and the bit line conductive column; the first A bit line conductive plug, which includes a metal conductive column electrically connected to the bit line conductive column and a second dielectric layer between the metal conductive columns; a third dielectric layer, which is stacked on the second dielectric layer top; a deep hole, which is formed in the second dielectric layer and the third dielectric layer, and exposes the conductive column of the capacitor; the first layer stacked in sequence around the sidewall, bottom and top of the deep hole An electrode layer, a high dielectric constant ferroelectric oxide layer and a second electrode layer; a fourth dielectric layer, which is arranged on the top surface of the third dielectric layer; a plurality of conductive structures, which are respectively connected to the second electrode layer Electrically connected to the first bit line conductive plug, wherein the conductive structure electrically connected to the second electrode layer extends from the second electrode layer at the bottom of the deep hole to the top of the fourth dielectric layer; plate line , which is electrically connected to the second electrode layer through a conductive structure electrically connected to the second electrode layer; and a bit line, which is electrically connected to the second electrode layer through a conductive structure electrically connected to the first bit line conductive plug. The first bit line conductive plug. 如請求項5之記憶體的電容器,其中所述第二介質層和所述第三介質層中的至少一者由至少兩種不同的絕緣材料層疊形成,所述深孔的側壁具有一個或多個凸起。 The memory capacitor according to claim 5, wherein at least one of the second dielectric layer and the third dielectric layer is formed by stacking at least two different insulating materials, and the sidewall of the deep hole has one or more a bump. 如請求項5之記憶體的電容器,其還包括通過對深孔頂部進行刻蝕形成的擴孔,所述擴孔處於所述深孔的頂部且其截面面積大於所述深孔的 截面面積,所述第一電極層僅設置在所述擴孔下方的深孔底部和側面,所述高介電常數鐵電氧化物層和所述第二電極層形成在所述深孔和所述擴孔的側壁和底部。 The capacitor of the memory according to claim 5, which further includes a reamed hole formed by etching the top of the deep hole, the reamed hole is located at the top of the deep hole and its cross-sectional area is larger than that of the deep hole The cross-sectional area, the first electrode layer is only arranged on the bottom and side of the deep hole below the expanded hole, the high dielectric constant ferroelectric oxide layer and the second electrode layer are formed on the deep hole and the The side walls and bottom of the reamed hole. 一種記憶體的製造方法,其包括:在半導體基板上形成記憶單元區和外圍電路區,其中在所述記憶單元區內的半導體基板上形成電晶體,且所述電晶體包括源極、汲極和閘極;在所述記憶單元區及所述外圍電路區內的半導體基板的電晶體層上沉積第一介質層,在所述第一介質層內形成與所述電晶體的源極及汲極對應的第一通孔和第二通孔,在所述第一通孔內形成第一位線導電柱,以及在所述第二通孔內形成電容導電柱;在所述第一介質層上沉積第二介質層;在所述第二介質層上與所述電容導電柱對應的位置形成深孔,以暴露出電容導電柱;在所述深孔內依序沉積下電極層、鐵電材料層和上電極層,以形成鐵電電容結構;在所述第二介質層中對應於所述第一位線導電柱的部分形成第三通孔;在所述第三通孔內形成第二位線導電柱;在所述鐵電電容結構上方形成第三介質層;去除在所述深孔外的鐵電電容結構的部分及所述第三介質層的部分,以形成分離的鐵電電容結構;在所述第三介質層的頂面形成第四介質層; 在所述第二介質層及所述第四介質層中對應於第二位線導電柱的部分形成位線通孔,以及在所述位線通孔內形成與第二位線導電柱連接的第三位線導電柱;在所述第二介質層、所述第三介質層及所述第四介質層中對應於所述鐵電電容結構的上電極層的中心區域的部分形成通孔,以及在所述通孔內形成與上電極層相連的電容金屬導電柱;在所述第四介質層上方形成第五介質層,在所述第五介質層形成與所述電容金屬導電柱相連接的金屬板線,在所述第五介質層對應於所述位線導電金屬的部分形成第四通孔,以及在所述第四通孔內形成金屬位線導電插塞;以及在所述第五介質層上方形成第六介質層,以及在所述第六介質層形成與所述金屬位線導電插塞連通的金屬位線。 A method of manufacturing a memory, comprising: forming a memory cell area and a peripheral circuit area on a semiconductor substrate, wherein a transistor is formed on the semiconductor substrate in the memory cell area, and the transistor includes a source electrode and a drain electrode and gate; deposit a first dielectric layer on the transistor layer of the semiconductor substrate in the memory cell area and the peripheral circuit area, and form the source and drain of the transistor in the first dielectric layer The first through hole and the second through hole corresponding to each other, a first bit line conductive column is formed in the first through hole, and a capacitor conductive column is formed in the second through hole; in the first dielectric layer A second dielectric layer is deposited on top; a deep hole is formed on the second dielectric layer at a position corresponding to the capacitive conductive column to expose the capacitive conductive column; a lower electrode layer, a ferroelectric conductive column are sequentially deposited in the deep hole a material layer and an upper electrode layer to form a ferroelectric capacitor structure; a third through hole is formed in the second dielectric layer corresponding to the first bit line conductive column; a third through hole is formed in the third through hole Two-bit line conductive column; form a third dielectric layer above the ferroelectric capacitor structure; remove the part of the ferroelectric capacitor structure outside the deep hole and the part of the third dielectric layer to form a separate ferroelectric capacitor a container structure; forming a fourth dielectric layer on the top surface of the third dielectric layer; Form a bit line via hole in the second dielectric layer and the fourth dielectric layer corresponding to the second bit line conductive column, and form a bit line connected to the second bit line conductive column in the bit line via hole The third bit line conductive column; forming a through hole in the part corresponding to the central area of the upper electrode layer of the ferroelectric capacitor structure in the second dielectric layer, the third dielectric layer and the fourth dielectric layer, And forming a capacitor metal conductive column connected to the upper electrode layer in the through hole; forming a fifth dielectric layer above the fourth dielectric layer, forming a capacitor metal conductive column connected to the capacitor metal conductive column on the fifth dielectric layer metal plate line, forming a fourth via hole in the portion of the fifth dielectric layer corresponding to the bit line conductive metal, and forming a metal bit line conductive plug in the fourth via hole; and forming a metal bit line conductive plug in the fourth via hole; A sixth dielectric layer is formed above the five dielectric layers, and a metal bit line connected to the metal bit line conductive plug is formed on the sixth dielectric layer. 如請求項8之方法,其中所述第二介質層包括多層結構,以及所述方法還包括:在所述多層結構中,每一層與前一層的位線導電柱對應的部分形成通孔和位線導電柱。 The method according to claim 8, wherein the second dielectric layer comprises a multi-layer structure, and the method further includes: in the multi-layer structure, the part of each layer corresponding to the bit line conductive column of the previous layer forms a via hole and a bit Conductive wire column. 如請求項8之方法,其中所述形成深孔的步驟還包括:在所述第二介質層上方形成介電抗反射塗層,以作為刻蝕所述深孔的硬掩模,所述抗反射塗層包括碳層和氮氧化矽層。 The method according to claim 8, wherein the step of forming the deep hole further comprises: forming a dielectric anti-reflective coating on the second dielectric layer as a hard mask for etching the deep hole, the anti-reflective coating The reflective coating includes a carbon layer and a silicon oxynitride layer. 如請求項8之方法,其中所述形成深孔的步驟進一步包括:先刻蝕形成具有第一截面尺寸的深孔,然後在所述深孔上方刻蝕形成擴孔,所述擴孔處於所述深孔的頂部且其截面面積大於所述深孔的截面面積。 The method according to claim 8, wherein the step of forming a deep hole further comprises: first etching to form a deep hole with a first cross-sectional size, and then etching above the deep hole to form a reamed hole, the reamed hole is in the The top of the deep hole and its cross-sectional area is larger than the cross-sectional area of the deep hole. 如請求項8之方法,其還包括:在所述第一通孔內形成包覆所述第一位線導電柱外圍的第一黏合層; 在所述第三通孔內形成包覆所述第二位線導電柱外圍的第二黏合層;以及在所述位線通孔內形成包覆所述第三位線導電柱外圍的第三黏合層。 The method according to claim 8, further comprising: forming a first adhesive layer covering the periphery of the first bit line conductive pillar in the first through hole; A second adhesive layer covering the periphery of the second bit line conductive pillar is formed in the third through hole; and a third adhesive layer covering the periphery of the third bit line conductive pillar is formed in the bit line through hole. adhesive layer. 如請求項9之方法,其中所述刻蝕形成深孔的步驟進一步包括:先對所述多層結構進行刻蝕,以形成平齊的深孔內壁;然後再經過濕法刻蝕,以形成在所述多層結構的不同層之間的凸出結構。 The method of claim 9, wherein the step of forming a deep hole by etching further includes: first etching the multilayer structure to form a flat inner wall of the deep hole; and then performing wet etching to form Protruding structures between different layers of the multilayer structure. 如請求項9之方法,其中所述位線導電柱由鎢製成,且所述金屬位線導電插塞由銅製成。 The method of claim 9, wherein the bit line conductive post is made of tungsten, and the metal bit line conductive plug is made of copper. 如請求項8之方法,其中在所述深孔中沉積所述鐵電電容結構時,還包括:在沉積所述下電極層之前沉積一層保護層,並在沉積完上電極層之後沉積一層保護層。 The method according to claim 8, wherein when depositing the ferroelectric capacitive structure in the deep hole, further comprising: depositing a protective layer before depositing the lower electrode layer, and depositing a protective layer after depositing the upper electrode layer layer. 如請求項8之方法,其中去除在所述深孔外的鐵電電容結構的一部分的步驟是採用光罩刻蝕製程。 The method as claimed in claim 8, wherein the step of removing a part of the ferroelectric capacitor structure outside the deep hole is a photomask etching process. 如請求項8之方法,其中在所述第二介質層對應所述電容導電柱的部分形成所述深孔以暴露出所述電容導電柱時,刻蝕至所述電容導電柱時停止,在所述電容導電柱周圍的介質層繼續向下刻蝕,在所述電容器導電柱的周邊形成凹陷。 The method according to claim 8, wherein when the deep hole is formed in the part of the second dielectric layer corresponding to the capacitive conductive column to expose the capacitive conductive column, the etching stops when the capacitive conductive column is reached, and The dielectric layer around the conductive pillar of the capacitor is etched downwards to form a depression around the conductive pillar of the capacitor. 如請求項8之方法,其中所述鐵電電容結構的上電極層和下電極層的材料包括下列中的至少之一者:氮化鈦(TiN)、氮化鈦矽(TiSiNx)、氮化鈦鋁(TiAlNx)、碳氮化鈦(TiCNx)、氮化鉭(TaNx)、氮化鉭矽(TaSiNx)、氮化鉭鋁(TaAlNx)、氮化鎢(WNx)、矽化鎢(WSix)、碳氮化鎢(WCNx)、釕(Ru)、氧化釕(RuOx)、銥(Ir)、經摻雜多的晶矽、透明導電氧化物(TCO)及氧化銥(IrOx);以及所述鐵電材料層的材料包括氧和下列材料中的一或多種: 鐵電金屬及摻雜有鈣(Ca)、鍶(Sr)、鋇(Ba)、鈧(Sc)、釔(Y)、鋁(Al)、鎵(Ga)、銦(In)、鑭(La)、鈰(Ce)、鐠(Pr)、釹(Nd)、鉕(Pm)、釤(Sm)、銪(Eu)、釓(Gd)、鋱(Tb)、鏑(Dy)、鈥(Ho)、鉺(Er)、銩(Tm)、鐿(Yb)或鑥(Lu)的該鐵電金屬,以及該鐵電金屬包括鋯(Zr)、鉿(Hf)、鈦(Ti)、鋁(Al)、鎳(Ni)及鐵(Fe)中的一或多種。 The method of claim 8, wherein the materials of the upper electrode layer and the lower electrode layer of the ferroelectric capacitor structure include at least one of the following: titanium nitride (TiN), titanium silicon nitride (TiSiNx), nitride Titanium aluminum (TiAlNx), titanium carbonitride (TiCNx), tantalum nitride (TaNx), tantalum silicon nitride (TaSiNx), tantalum aluminum nitride (TaAlNx), tungsten nitride (WNx), tungsten silicide (WSix), Tungsten carbonitride (WCNx), ruthenium (Ru), ruthenium oxide (RuOx), iridium (Ir), polydoped crystalline silicon, transparent conductive oxide (TCO) and iridium oxide (IrOx); and said iron The material of the electrical material layer includes oxygen and one or more of the following materials: Ferroelectric metals and doped with calcium (Ca), strontium (Sr), barium (Ba), scandium (Sc), yttrium (Y), aluminum (Al), gallium (Ga), indium (In), lanthanum (La ), cerium (Ce), 鐠 (Pr), neodymium (Nd), 鉕 (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), 鋱 (Tb), dysprosium (Dy), « (Ho ), erbium (Er), 銩 (Tm), ytterbium (Yb) or 鑥 (Lu) of the ferroelectric metal, and the ferroelectric metal includes zirconium (Zr), hafnium (Hf), titanium (Ti), aluminum ( One or more of Al), nickel (Ni) and iron (Fe).
TW110131529A 2020-08-26 2021-08-25 Method for manufacturing memory, and capacitor TWI804960B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010870280.7A CN111968980B (en) 2020-08-26 2020-08-26 Method for manufacturing memory device and capacitor thereof
CN202010870280.7 2020-08-26

Publications (2)

Publication Number Publication Date
TW202209640A TW202209640A (en) 2022-03-01
TWI804960B true TWI804960B (en) 2023-06-11

Family

ID=73390632

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110131529A TWI804960B (en) 2020-08-26 2021-08-25 Method for manufacturing memory, and capacitor

Country Status (3)

Country Link
CN (1) CN111968980B (en)
TW (1) TWI804960B (en)
WO (1) WO2022042407A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3010852C (en) 2016-01-07 2023-09-19 The Research Foundation For The State University Of New York Multi-well selenium device and method for fabrication thereof
CN111968980B (en) * 2020-08-26 2021-11-23 无锡拍字节科技有限公司 Method for manufacturing memory device and capacitor thereof
CN115623776A (en) * 2021-07-13 2023-01-17 长鑫存储技术有限公司 Memory structure
CN115701210A (en) * 2021-07-16 2023-02-07 长鑫存储技术有限公司 Semiconductor structure and manufacturing method thereof
CN113644053A (en) * 2021-08-06 2021-11-12 无锡拍字节科技有限公司 Structure and method for testing continuity of conductive film
CN117981490A (en) * 2021-09-08 2024-05-03 无锡舜铭存储科技有限公司 Ferroelectric memory device and method of manufacturing the same
US20230337421A1 (en) * 2022-04-19 2023-10-19 Macronix International Co., Ltd. Capacitors in memory devices
CN116209257B (en) * 2023-05-05 2023-07-21 长鑫存储技术有限公司 Semiconductor device and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6215187B1 (en) * 1999-06-11 2001-04-10 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and manufacturing method thereof
CN1741266A (en) * 2004-08-24 2006-03-01 恩益禧电子股份有限公司 Method for manufacturing semiconductor device
CN104576598A (en) * 2013-10-25 2015-04-29 台湾积体电路制造股份有限公司 Semiconductor arrangement having capacitor separated from active region
CN110910926A (en) * 2018-09-14 2020-03-24 英特尔公司 Diagonally arranged transistor and ferroelectric capacitor memory cell
CN111448649A (en) * 2017-12-21 2020-07-24 索尼半导体解决方案公司 Semiconductor device and method for manufacturing the same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4167727B2 (en) * 1995-11-20 2008-10-22 株式会社日立製作所 Semiconductor memory device
US6344413B1 (en) * 1997-12-22 2002-02-05 Motorola Inc. Method for forming a semiconductor device
US6165864A (en) * 1998-07-28 2000-12-26 Siemens Aktiengesellschaft Tapered electrode for stacked capacitors
US6281535B1 (en) * 1999-01-22 2001-08-28 Agilent Technologies, Inc. Three-dimensional ferroelectric capacitor structure for nonvolatile random access memory cell
JP4322347B2 (en) * 1999-03-15 2009-08-26 エルピーダメモリ株式会社 Semiconductor device and manufacturing method thereof
US7075134B2 (en) * 2001-11-29 2006-07-11 Symetrix Corporation Ferroelectric and high dielectric constant integrated circuit capacitors with three-dimensional orientation for high-density memories, and method of making the same
JP2004047754A (en) * 2002-07-12 2004-02-12 Renesas Technology Corp Semiconductor device and its manufacturing method
JP2005167128A (en) * 2003-12-05 2005-06-23 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP4646595B2 (en) * 2004-10-27 2011-03-09 パナソニック株式会社 Semiconductor memory device
JP2006318992A (en) * 2005-05-10 2006-11-24 Nec Electronics Corp Semiconductor device and manufacturing method therefor
JP2008153439A (en) * 2006-12-18 2008-07-03 Elpida Memory Inc Semiconductor device, and method for manufacturing same
JP5128851B2 (en) * 2007-05-30 2013-01-23 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
JP2010016218A (en) * 2008-07-04 2010-01-21 Elpida Memory Inc Semiconductor device and manufacturing method thereof
CN101989539B (en) * 2009-08-04 2012-03-28 中芯国际集成电路制造(上海)有限公司 Capacitor manufacturing method
JP2015179727A (en) * 2014-03-19 2015-10-08 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit device and manufacturing method thereof
JP2015211108A (en) * 2014-04-25 2015-11-24 ルネサスエレクトロニクス株式会社 Semiconductor device
US10396145B2 (en) * 2017-01-12 2019-08-27 Micron Technology, Inc. Memory cells comprising ferroelectric material and including current leakage paths having different total resistances
CN111900170B (en) * 2020-07-31 2024-03-05 无锡舜铭存储科技有限公司 Three-dimensional ferroelectric memory structure and manufacturing method thereof
CN111968980B (en) * 2020-08-26 2021-11-23 无锡拍字节科技有限公司 Method for manufacturing memory device and capacitor thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6215187B1 (en) * 1999-06-11 2001-04-10 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and manufacturing method thereof
CN1741266A (en) * 2004-08-24 2006-03-01 恩益禧电子股份有限公司 Method for manufacturing semiconductor device
CN104576598A (en) * 2013-10-25 2015-04-29 台湾积体电路制造股份有限公司 Semiconductor arrangement having capacitor separated from active region
CN111448649A (en) * 2017-12-21 2020-07-24 索尼半导体解决方案公司 Semiconductor device and method for manufacturing the same
CN110910926A (en) * 2018-09-14 2020-03-24 英特尔公司 Diagonally arranged transistor and ferroelectric capacitor memory cell

Also Published As

Publication number Publication date
CN111968980B (en) 2021-11-23
CN111968980A (en) 2020-11-20
TW202209640A (en) 2022-03-01
WO2022042407A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
TWI804960B (en) Method for manufacturing memory, and capacitor
WO2022042411A1 (en) Method for manufacturing fcob storage device, and capacitor thereof
US5907782A (en) Method of forming a multiple fin-pillar capacitor for a high density dram cell
US6114201A (en) Method of manufacturing a multiple fin-shaped capacitor for high density DRAMs
TWI635578B (en) Methods of fabricating an f-ram
CN111900170B (en) Three-dimensional ferroelectric memory structure and manufacturing method thereof
JP4572020B2 (en) Capacitor manufacturing method for integrated circuit device using CMP blocking film
JP5744790B2 (en) Integrated circuit and method
JP2000216362A (en) Capacitor structure of integrated circuit
US6064085A (en) DRAM cell with a multiple fin-shaped structure capacitor
US11856788B2 (en) Semiconductor device and method of fabricating the same
KR20040078828A (en) Method for forming capacitor in semiconductor device
JP2007081013A (en) Semiconductor device and manufacturing method therefor
CN112382633A (en) Three-dimensional ferroelectric memory and method of manufacturing the same
TW200411944A (en) Capacitor and method for fabricating the same
KR100415537B1 (en) Method for fabrication of semiconductor device
US20020173097A1 (en) Fabricating ferroelectric memory device
JP2007095898A (en) Semiconductor storage device and method of manufacturing same
KR100624696B1 (en) Method for fabricating capacitor in semiconductor device
JP2004363118A (en) Process for fabricating semiconductor device and process for depositing film
JP2006041246A (en) Method for manufacturing ferroelectric capacitor
JP3942814B2 (en) Manufacturing method of semiconductor device
KR100968428B1 (en) Fabricating method for protecting loss of area of ferroelectric capacitor
TW202320309A (en) Semiconductor device and method for fabricating the same
KR100609533B1 (en) A method for forming a capacitor of semiconductor device