WO2022042411A1 - Method for manufacturing fcob storage device, and capacitor thereof - Google Patents

Method for manufacturing fcob storage device, and capacitor thereof Download PDF

Info

Publication number
WO2022042411A1
WO2022042411A1 PCT/CN2021/113445 CN2021113445W WO2022042411A1 WO 2022042411 A1 WO2022042411 A1 WO 2022042411A1 CN 2021113445 W CN2021113445 W CN 2021113445W WO 2022042411 A1 WO2022042411 A1 WO 2022042411A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
capacitor
dielectric layer
forming
deep hole
Prior art date
Application number
PCT/CN2021/113445
Other languages
French (fr)
Chinese (zh)
Inventor
华文宇
陶谦
刘藩东
夏季
Original Assignee
无锡拍字节科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡拍字节科技有限公司 filed Critical 无锡拍字节科技有限公司
Publication of WO2022042411A1 publication Critical patent/WO2022042411A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/20Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the three-dimensional arrangements, e.g. with cells on different height levels

Landscapes

  • Semiconductor Memories (AREA)

Abstract

Disclosed is a method for manufacturing a storage device, comprising: providing a semiconductor substrate; forming a first dielectric layer on the semiconductor substrate; forming a conductive pillar on the first dielectric layer; forming a second dielectric layer on the first dielectric layer; forming a conductive interconnect and a metal bit line on the second dielectric layer; forming a third dielectric layer on the second dielectric layer; forming a capacitor contact pad on the third dielectric layer; forming a fourth dielectric layer on the third dielectric layer; forming a ferroelectric capacitor on the fourth dielectric layer; forming a fifth dielectric layer on the fourth dielectric layer; forming on the fifth dielectric layer a metal plate line connected to the upper electrode of the capacitor.

Description

一种FCOB存储器件的制造方法及其电容器A kind of manufacturing method of FCOB memory device and capacitor thereof 技术领域technical field
本发明涉及存储器的制造领域。具体而言,本发明涉及一种FCOB(铁电电容在位线的上方FerroelectricCapacitor Over Bitline)存储器件的制造方法及其电容器。The present invention relates to the field of manufacturing of memories. Specifically, the present invention relates to a manufacturing method of an FCOB (Ferroelectric Capacitor Over Bitline) storage device and a capacitor thereof.
背景技术Background technique
铁电存储器是一种特殊工艺的非易失性的存储器。当电场被施加到铁晶体管时,中心原子顺着电场停在第一低能量状态位置,而当电场反转被施加到同一铁晶体管时,中心原子顺着电场的方向在晶体里移动并停在第二低能量状态。大量中心原子在晶体单胞中移动耦合形成铁电畴,铁电畴在电场作用下形成极化电荷。铁电畴在电场下反转所形成的极化电荷较高,铁电畴在电场下无反转所形成的极化电荷较低,这种铁电材料的二元稳定状态使得铁电可以作为存储器。Ferroelectric memory is a special process of non-volatile memory. When an electric field is applied to the iron transistor, the central atom follows the electric field and stops at the first low-energy state position, and when an electric field inversion is applied to the same iron transistor, the central atom moves in the crystal in the direction of the electric field and stops at The second lowest energy state. A large number of central atoms move and couple in the crystal unit cell to form ferroelectric domains, and the ferroelectric domains form polarized charges under the action of an electric field. The polarization charge formed by the reversal of the ferroelectric domain under the electric field is higher, and the polarization charge formed by the ferroelectric domain without reversal under the electric field is lower. memory.
当移去电场后,中心原子处于低能量状态保持不动,存储器的状态也得以保存不会消失,因此可利用铁电畴在电场下反转形成高极化电荷,或无反转形成低极化电荷来判别存储单元是在“1”或“0”状态。铁电畴的反转不需要高电场,仅用一般的工作电压就可以改变存储单元是在“1”或“0”的状态;也不需要电荷泵来产生高电压数据擦除,因而没有擦写延迟的现象。这种特性使铁电存储器在掉电后仍能够继续保存数据,写入速度快且具有无限次写入寿命,不容易写坏。并且,与现有的非易失性内存技术比较,铁电存储器具有更高的写入速度和更长的读写寿命。When the electric field is removed, the central atom remains in a low-energy state, and the state of the memory is also preserved and will not disappear. Therefore, the ferroelectric domain can be used to invert under the electric field to form high-polarization charges, or no inversion to form low-polarity charges. The electric charge is used to determine whether the memory cell is in the "1" or "0" state. The inversion of the ferroelectric domain does not require a high electric field, and only the general working voltage can change the state of the memory cell to be in "1" or "0"; it also does not require a charge pump to generate high-voltage data erasure, so there is no erasure Write delay phenomenon. This feature enables the ferroelectric memory to continue to save data after power failure, with fast writing speed and unlimited write life, and it is not easy to write bad. And, compared with existing non-volatile memory technologies, ferroelectric memory has higher write speed and longer read and write life.
图1示出了示例性铁电存储单元100的电路示意图。铁电存储单元100是铁电存储器件的存储元件,并且可以包括各种设计和配置。如图1所示,铁电存储单元100是“1T-1C”单元,其包括电容器12和晶体管14。晶体管14为NMOS晶体管。晶体管14的源极S电连接到位线BL。晶体管14的栅极电 连接到字线WL。晶体管14的漏极D电连接到电容器12的下电极18。电容器12的上电极16连接到板线PL。FIG. 1 shows a schematic circuit diagram of an exemplary ferroelectric memory cell 100 . The ferroelectric memory cell 100 is a memory element of a ferroelectric memory device, and may include various designs and configurations. As shown in FIG. 1 , ferroelectric memory cell 100 is a “1T-1C” cell that includes capacitor 12 and transistor 14 . Transistor 14 is an NMOS transistor. The source S of the transistor 14 is electrically connected to the bit line BL. The gate of transistor 14 is electrically connected to word line WL. The drain D of the transistor 14 is electrically connected to the lower electrode 18 of the capacitor 12 . The upper electrode 16 of the capacitor 12 is connected to the plate line PL.
图2示出了示例性铁电存储单元100的立体示意图。为保证铁电存储单元100的铁电电容极化发生变化时能得到较强的信号,需要铁电电容的面积足够大。如图2所示,现有的平面铁电电容器12占据的面积较大,限制了该铁电存储单元的集成度。FIG. 2 shows a schematic perspective view of an exemplary ferroelectric memory cell 100 . In order to ensure that a strong signal can be obtained when the polarization of the ferroelectric capacitor of the ferroelectric memory cell 100 changes, the area of the ferroelectric capacitor needs to be large enough. As shown in FIG. 2 , the area occupied by the existing planar ferroelectric capacitor 12 is relatively large, which limits the integration degree of the ferroelectric memory unit.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种存储器件的制造方法及其电容器,通过根据本发明的存储器件的制造方法及其电容器,提高铁电存储器的集成度,较低铁电存储器芯片成本。The purpose of the present invention is to provide a method for manufacturing a storage device and a capacitor thereof, and the method for manufacturing a storage device and a capacitor thereof according to the present invention can improve the integration degree of the ferroelectric memory and reduce the cost of the ferroelectric memory chip.
根据本发明的一个实施例,提供一种存储器件的制造方法,包括:According to an embodiment of the present invention, a method for manufacturing a memory device is provided, including:
提供半导体衬底,所述半导体衬底包括铁电存储单元区,所述铁电存储单元区具有源区、漏区、栅极区、隔离区以及各个功能区上方的电极及互连金属线;a semiconductor substrate is provided, the semiconductor substrate includes a ferroelectric memory cell region, the ferroelectric memory cell region has a source region, a drain region, a gate region, an isolation region, electrodes and interconnecting metal lines above each functional region;
形成第一互连结构,所述第一互连结构包括电容器导电柱、位线导电柱以、电容器导电柱顶部的电容器导电互连、位线导电柱顶部的金属位线,及它们之间的第一介质层;A first interconnect structure is formed that includes capacitor conductive pillars, bit line conductive pillars, capacitor conductive interconnects on top of the capacitor conductive pillars, metal bit lines on top of the bit line conductive pillars, and between them. the first dielectric layer;
形成电容器接触盘,所述电容器接触盘包括与所述电容器导电柱电连接的金属导电柱、金属导电柱顶部的接触盘、以及它们之间的第二介质层;forming a capacitor contact pad, the capacitor contact pad comprising a metal conductive post electrically connected to the capacitor conductive post, a contact pad on top of the metal conductive post, and a second dielectric layer therebetween;
依次形成第三介质层和硬掩模层;forming a third dielectric layer and a hard mask layer in sequence;
通过光刻和刻蚀工艺使硬掩模层图案化,并以图案化后的硬掩模层作为掩模进行刻蚀,在第三介质层中形成深孔,然后去除硬掩模层,所述深孔的底部暴露出所述电容器接触盘;The hard mask layer is patterned through photolithography and etching processes, and the patterned hard mask layer is used as a mask for etching to form deep holes in the third dielectric layer, and then the hard mask layer is removed. the bottom of the deep hole exposes the capacitor contact pad;
形成第一电极层;forming a first electrode layer;
形成高K铁电氧化物层和第二电极层;forming a high-K ferroelectric oxide layer and a second electrode layer;
形成金属互连及板线。Form metal interconnects and board wires.
在本发明的一个实施例中,形成第一电极层包括:依次沉积保护层和第一电极层;In an embodiment of the present invention, forming the first electrode layer includes: depositing the protective layer and the first electrode layer in sequence;
去除第三介质层顶面的保护层和第一电极层,仅保留深孔底部和侧面的保护层和第一电极层。The protective layer and the first electrode layer on the top surface of the third dielectric layer are removed, and only the protective layer and the first electrode layer on the bottom and sides of the deep hole are retained.
在本发明的一个实施例中,存储器件的制造方法还包括:在形成高K铁电氧化物层和第二电极层之后,沉积保护层和填充金属,然后通过化学器械研磨去除第三介质层顶面的导电金属、高K铁电氧化物层和第二电极层,仅保留深孔中的保护层、导电金属、高K铁电氧化物层和第二电极层。In one embodiment of the present invention, the method for manufacturing a memory device further includes: after forming the high-K ferroelectric oxide layer and the second electrode layer, depositing a protective layer and a filling metal, and then removing the third dielectric layer by chemical equipment grinding The conductive metal, the high-K ferroelectric oxide layer and the second electrode layer on the top surface, only the protective layer, the conductive metal, the high-K ferroelectric oxide layer and the second electrode layer in the deep hole remain.
在本发明的一个实施例中,形成金属互连及板线包括:在第三介质层的顶面形成第四介质层;在第四介质层上钻孔并形成金属互连,所述金属互连与第二电极层电连接;在所述金属互连上方形成板线。In one embodiment of the present invention, forming the metal interconnection and the plate wire includes: forming a fourth dielectric layer on the top surface of the third dielectric layer; drilling holes on the fourth dielectric layer and forming the metal interconnection, the metal interconnection The connection is electrically connected to the second electrode layer; a plate line is formed over the metal interconnection.
在本发明的一个实施例中,存储器件的制造方法还包括:在形成高K铁电氧化物层和第二电极层之后,通过光刻、刻蚀等工艺去除顶面的部分第一电极层、高K铁电氧化物层和第二电极层,仅保留深孔侧壁、底部及顶部四周的第一电极层、高K铁电氧化物层和第二电极层,从而使得每个电容器相互分离开。In one embodiment of the present invention, the method for manufacturing a memory device further includes: after forming the high-K ferroelectric oxide layer and the second electrode layer, removing part of the first electrode layer on the top surface through a process such as photolithography and etching , the high-K ferroelectric oxide layer and the second electrode layer, only the first electrode layer, the high-K ferroelectric oxide layer and the second electrode layer around the sidewall, bottom and top of the deep hole are retained, so that each capacitor is mutually separate.
在本发明的一个实施例中,形成金属互连及板线包括:在第三介质层的顶面形成第四介质层;在第四介质层上钻孔并形成金属互连,所述金属互连与第二电极层电连接,其中所述金属互连从深孔底部的第二电极层延伸到第四介质层顶部,或者所述金属互连从深孔顶部四周的第二电极层延伸到第四介质层顶部;在所述金属互连上方形成板线。In one embodiment of the present invention, forming the metal interconnection and the plate wire includes: forming a fourth dielectric layer on the top surface of the third dielectric layer; drilling holes on the fourth dielectric layer and forming the metal interconnection, the metal interconnection is electrically connected to the second electrode layer, wherein the metal interconnection extends from the second electrode layer at the bottom of the deep hole to the top of the fourth dielectric layer, or the metal interconnection extends from the second electrode layer around the top of the deep hole to the top of the fourth dielectric layer A top of the fourth dielectric layer; a plate line is formed over the metal interconnect.
在本发明的一个实施例中,存储器件的制造方法还包括:在形成第一电极层之后,对深孔顶部进行扩孔,形成扩孔结构,所述扩孔结构处于深孔的顶部且截面面积大于深孔的截面面积。In one embodiment of the present invention, the method for manufacturing a memory device further includes: after forming the first electrode layer, reaming the top of the deep hole to form a reaming structure, wherein the reaming structure is located at the top of the deep hole and has a cross section. The area is larger than the cross-sectional area of the deep hole.
在本发明的一个实施例中,第三介质层由至少两种不同的绝缘材料层叠形成,In an embodiment of the present invention, the third dielectric layer is formed by laminating at least two different insulating materials,
所述方法还包括在形成深孔并去除硬掩模层之后,通过湿法刻蚀对深孔的侧壁进行处理,所述湿法刻蚀对至少两种不同的绝缘材料的刻蚀速率不同,从而在深孔侧壁上形成一个或多个凸起。The method further includes, after forming the deep hole and removing the hard mask layer, processing the sidewall of the deep hole by wet etching, the wet etching having different etching rates for the at least two different insulating materials , thereby forming one or more protrusions on the sidewall of the deep hole.
根据本发明的另一个实施例,提供一种存储器件的电容器,包括:According to another embodiment of the present invention, there is provided a capacitor for a memory device, comprising:
半导体衬底,所述半导体衬底包括铁电存储单元区,所述铁电存储单元区 具有源区、漏区、栅极区、隔离区以及各个功能区上方的电极及互连金属线;a semiconductor substrate, the semiconductor substrate includes a ferroelectric memory cell region, the ferroelectric memory cell region has a source region, a drain region, a gate region, an isolation region, electrodes and interconnecting metal lines above each functional region;
第一互连结构,所述第一互连结构包括电容器导电柱、位线导电柱、电容器导电柱顶部的电容器导电互连、位线导电柱顶部的金属位线及它们之间的第一介质层;a first interconnect structure comprising capacitor conductive pillars, bit line conductive pillars, capacitor conductive interconnects on top of the capacitor conductive pillars, metal bit lines on top of the bit line conductive pillars, and a first dielectric therebetween Floor;
电容器接触盘,所述电容器接触盘包括与所述电容器导电柱电连接的金属导电柱、金属导电柱顶部的接触盘、以及它们之间的第二介质层;a capacitor contact pad, the capacitor contact pad comprising a metal conductive post electrically connected to the capacitor conductive post, a contact pad on top of the metal conductive post, and a second dielectric layer therebetween;
层叠在第二介质层上的第三介质层;a third dielectric layer stacked on the second dielectric layer;
形成在第三介质层中的深孔,所述深孔的底部暴露出所述电容器接触盘;a deep hole formed in the third dielectric layer, the bottom of the deep hole exposing the capacitor contact pad;
依次沉积在深孔的侧壁和底部的第一电极层、高K铁电氧化物层和第二电极层;depositing a first electrode layer, a high-K ferroelectric oxide layer and a second electrode layer on the sidewall and bottom of the deep hole in sequence;
板线,所述板线通过金属互连连接到所述第二电极层。a plate wire connected to the second electrode layer by a metal interconnect.
在本发明的另一个实施例中,所述第三介质层至少两种不同的绝缘材料层叠形成,所述深孔的侧壁具有一个或多个凸起。In another embodiment of the present invention, the third dielectric layer is formed by stacking at least two different insulating materials, and the sidewall of the deep hole has one or more protrusions.
在本发明的另一个实施例中,存储器件的电容器还包括通过对深孔顶部进行刻蚀形成的扩孔结构,所述扩孔结构处于深孔的顶部且截面面积大于深孔结构的截面面积,所述第一电极层仅设置在扩孔结构下方的深孔底部和侧面,所述高K铁电氧化物层和第二电极层形成在深孔和扩孔结构的侧壁和底部。In another embodiment of the present invention, the capacitor of the memory device further includes a reaming structure formed by etching the top of the deep hole, the reaming structure is located at the top of the deep hole and the cross-sectional area is larger than that of the deep hole structure , the first electrode layer is only provided on the bottom and side of the deep hole below the hole-reaming structure, and the high-K ferroelectric oxide layer and the second electrode layer are formed on the sidewall and bottom of the deep hole and the hole-reaming structure.
在本发明提供的铁电电容器及其制造方法中,形成位线,在位线上形成多个深孔结构,在所述深孔结构中依次形成电容器的下电极、铁电材料层及上电极,实现了三维铁电电容器结构,因此,本发明的这种结构也称为FCOB(铁电电容在位线的上方FerroelectricCapacitor Over Bitline)。采用深孔型结构的下电极和上电极,可以在同等正对平面面积下,显著提高铁电电容的等效剩余极化强度,使得铁电存储器可以继续等比缩小而依然提供足够大的电压窗口,在130nm工艺节点以下可以实现铁电电容三维化,存储密度大。In the ferroelectric capacitor and the manufacturing method thereof provided by the present invention, a bit line is formed, a plurality of deep hole structures are formed on the bit line, and a lower electrode, a ferroelectric material layer and an upper electrode of the capacitor are sequentially formed in the deep hole structure. , realizes a three-dimensional ferroelectric capacitor structure, therefore, this structure of the present invention is also called FCOB (Ferroelectric Capacitor Over Bitline). The use of the bottom electrode and the top electrode of the deep hole structure can significantly improve the equivalent remanent polarization of the ferroelectric capacitor under the same face-to-face area, so that the ferroelectric memory can continue to be proportionally reduced and still provide a large enough voltage Window, below the 130nm process node, three-dimensional ferroelectric capacitors can be realized, and the storage density is high.
本发明的三维铁电电容器件的制备方法完全与CMOS工艺兼容,便于集成,降低制造成本。The preparation method of the three-dimensional ferroelectric capacitor of the present invention is completely compatible with the CMOS process, which is convenient for integration and reduces the manufacturing cost.
附图说明Description of drawings
为了进一步阐明本发明的各实施例的以上和其它优点和特征,将参考附图 来呈现本发明的各实施例的更具体的描述。可以理解,这些附图只描绘本发明的典型实施例,因此将不被认为是对其范围的限制。在附图中,为了清楚明了,相同或相应的部件将用相同或类似的标记表示。In order to further clarify the above and other advantages and features of the various embodiments of the present invention, a more specific description of the various embodiments of the present invention will be presented with reference to the accompanying drawings. It is understood that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. In the drawings, the same or corresponding parts will be denoted by the same or similar numerals for clarity.
图1示出了示例性铁电存储单元100的电路示意图。FIG. 1 shows a schematic circuit diagram of an exemplary ferroelectric memory cell 100 .
图2示出了示例性铁电存储单元100的立体示意图。FIG. 2 shows a schematic perspective view of an exemplary ferroelectric memory cell 100 .
图3A至图3K示出根据本发明的一个实施例的形成铁电存储单元的电容器的过程的截面图。3A-3K illustrate cross-sectional views of a process of forming a capacitor of a ferroelectric memory cell according to one embodiment of the present invention.
图4示出根据本发明的一个实施例的形成铁电存储单元的电容器的流程图。Figure 4 shows a flow diagram of forming a capacitor for a ferroelectric memory cell according to one embodiment of the present invention.
图5示出根据本发明的一个实施例的对电容器进行平坦化工艺的截面示意图。FIG. 5 shows a schematic cross-sectional view of a planarization process for a capacitor according to an embodiment of the present invention.
图6示出根据本发明的一个实施例的形成铁电存储单元的电容器的流程图。Figure 6 shows a flow diagram of forming a capacitor of a ferroelectric memory cell according to one embodiment of the present invention.
图7A至图7E示出根据本发明的一个实施例的形成铁电存储单元的电容器的过程的截面图。7A-7E illustrate cross-sectional views of a process of forming a capacitor of a ferroelectric memory cell according to one embodiment of the present invention.
图8示出根据本发明的一个实施例的分隔开的电容器单元的立体示意图。Figure 8 shows a schematic perspective view of a spaced capacitor cell according to one embodiment of the present invention.
图9示出根据本发明的一个实施例的形成铁电存储单元的电容器的流程图。9 shows a flow diagram of forming a capacitor for a ferroelectric memory cell according to one embodiment of the present invention.
图10示出根据本发明的一个实施例的形成铁电存储单元的电容器的截面图。10 shows a cross-sectional view of a capacitor forming a ferroelectric memory cell in accordance with one embodiment of the present invention.
图11A示出了根据本发明的一个实施例的通过刻蚀工艺形成电容器深孔并去除碳层和氮氧化硅层后的电容器深孔部分的截面示意图。11A shows a schematic cross-sectional view of the capacitor deep hole portion after forming the capacitor deep hole through an etching process and removing the carbon layer and the silicon oxynitride layer according to an embodiment of the present invention.
图11B示出了根据本发明的一个实施例的侧壁具有凸起的电容器深孔部分的截面示意图。FIG. 11B shows a schematic cross-sectional view of a capacitor deep hole portion having a sidewall with protrusions according to an embodiment of the present invention.
具体实施方式detailed description
在以下的描述中,参考各实施例对本发明进行描述。然而,本领域的技术人员将认识到可在没有一个或多个特定细节的情况下或者与其它替换和/或附加方法、材料或组件一起实施各实施例。在其它情形中,未示出或未详细描述 公知的结构、材料或操作以免使本发明的各实施例的诸方面晦涩。类似地,为了解释的目的,阐述了特定数量、材料和配置,以便提供对本发明的实施例的全面理解。然而,本发明可在没有特定细节的情况下实施。此外,应理解附图中示出的各实施例是说明性表示且不一定按比例绘制。In the following description, the invention is described with reference to various embodiments. However, one skilled in the art will recognize that the various embodiments may be practiced without one or more of the specific details or with other alternative and/or additional methods, materials or components. In other instances, well-known structures, materials, or operations are not shown or described in detail so as not to obscure aspects of the various embodiments of the invention. Similarly, for purposes of explanation, specific quantities, materials and configurations are set forth in order to provide a thorough understanding of the embodiments of the invention. However, the present invention may be practiced without the specific details. Furthermore, it is to be understood that the various embodiments shown in the drawings are illustrative representations and are not necessarily drawn to scale.
在本说明书中,对“一个实施例”或“该实施例”的引用意味着结合该实施例描述的特定特征、结构或特性被包括在本发明的至少一个实施例中。在本说明书各处中出现的短语“在一个实施例中”并不一定全部指代同一实施例。In this specification, reference to "one embodiment" or "the embodiment" means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. The appearances of the phrase "in one embodiment" in various places in this specification are not necessarily all referring to the same embodiment.
一般来说,术语可以至少部分地根据上下文中的使用来理解。例如,在此使用的术语“一个或多个”,至少部分地根据上下文,可用于以单数形式来描述任何特征、结构或特性,或以复数形式来描述特征、结构或特性的组合。类似地,诸如“一个”、“一”、或“该”之类的术语又可以至少部分地根据上下文被理解为表达单数用法或表达复数用法。In general, terms are to be understood, at least in part, from the context in which they are used. For example, the term "one or more" as used herein may be used to describe any feature, structure or characteristic in the singular or a combination of features, structures or characteristics in the plural depending at least in part on context. Similarly, terms such as "a," "an," or "the" may in turn be construed to express singular usage or to express plural usage, depending at least in part on the context.
能容易地理解的是,“在……上”、“在……之上”、以及“在……上方”在本发明中的含义应该以最宽泛方式来解释,使得“在……上”不仅指直接处于某物上,而且还可以包括在有中间特征或中间层位于二者之间的情况下处于某物上,并且“在……之上”、或“在…….上方”不仅指处于某物之上或上方,而且还可以包括在二者之间没有中间特征或中间层的情况下处于在某物之上或上方(即直接处于某物上)。It can be easily understood that the meanings of "on", "on", and "over" in the present invention should be interpreted in the broadest manner such that "on" Not only means being directly on something, but can also include being on something with intervening features or layers in between, and "on", or "over" not only Means being on or over something, and can also include being over or over something (ie, directly over something) without intervening features or layers in between.
此外空间相关术语,如“在……下面”、“在……之下”、“下部”、“在……之上”、“上部”等等可以在此用于方便描述一个元素或特征相对于另一元素或特征在附图中示出的关系。空间相关术语旨在除了涵盖器件在附图中描述的取向以外还涵盖该器件在使用或操作时的其它取向。装置可以以其它方式被定向(旋转90°或处于其它取向),并且这里所用的空间相关描述相应地也可同样地来解释。Additionally, spatially relative terms such as "below", "under", "lower", "above", "upper", etc. may be used herein to facilitate the description of an element or feature relative to relationship to another element or feature as shown in the drawings. Spatially relative terms are intended to encompass other orientations of the device in use or operation in addition to the orientation of the device as depicted in the figures. The device may be otherwise oriented (rotated 90° or at other orientations) and the spatially relative descriptions used herein interpreted accordingly as well.
这里所用的术语“衬底”是指后续材料层所添加到的材料。衬底本身可以被图案化。添加到衬底之上的材料可以被图案化,或者可保持未经图案化。此外,衬底可包括多种多样的半导体材料,如硅、锗、砷化镓、磷化铟等。可替代地,衬底也可由电学非导电材料,如玻璃、塑料、或蓝宝石晶片制成。The term "substrate" as used herein refers to the material to which subsequent layers of material are added. The substrate itself can be patterned. The material added over the substrate may be patterned, or may remain unpatterned. Additionally, the substrate may comprise a wide variety of semiconductor materials such as silicon, germanium, gallium arsenide, indium phosphide, and the like. Alternatively, the substrate can also be made of an electrically non-conductive material, such as glass, plastic, or a sapphire wafer.
这里所用的术语“层”是指包括具有厚度的某一区域的材料部位。层可以 延伸到下方或上方结构的全部之上,或可以具有小于下方或上方结构的伸展。此外,层可以是同质或异质的连续结构的一个区域,该区域的厚度小于该连续结构的厚度。例如,层可位于任何一对水平平面之间,或位于该连续结构的顶面或底面处。层可水平地、垂直地、和/或沿锥形表面延伸。衬底可以是层,可包括一个或多个层在其中,和/或可以具有一个或多个层在其上,和/或一个或多个层在其下。一层可包括多层。例如,互连层可包括一个或多个导体和接触层(其中形成接触部、互连线和/或通孔)和一个或多个介电层。The term "layer" as used herein refers to a site of material that includes a region of thickness. A layer may extend over all of the underlying or overlying structure, or may have less extension than the underlying or overlying structure. Furthermore, a layer may be a region of a homogeneous or heterogeneous continuous structure, the region having a thickness that is less than the thickness of the continuous structure. For example, layers may be located between any pair of horizontal planes, or at the top or bottom surface of the continuous structure. The layers may extend horizontally, vertically, and/or along tapered surfaces. The substrate may be a layer, may include one or more layers therein, and/or may have one or more layers above and/or one or more layers below. A layer may include multiple layers. For example, an interconnect layer may include one or more conductor and contact layers (in which contacts, interconnect lines, and/or vias are formed) and one or more dielectric layers.
图3A至图3K示出根据本发明的一个实施例的形成铁电存储单元的电容器的过程的截面图。图4示出根据本发明的一个实施例的形成铁电存储单元的电容器的流程图。结合图3A至图3K以及图4描述形成铁电存储单元的电容器的过程。3A-3K illustrate cross-sectional views of a process of forming a capacitor of a ferroelectric memory cell according to one embodiment of the present invention. Figure 4 shows a flow diagram of forming a capacitor for a ferroelectric memory cell according to one embodiment of the present invention. A process of forming a capacitor of a ferroelectric memory cell is described in conjunction with FIGS. 3A-3K and FIG. 4 .
首先,在步骤410,提供半导体衬底310,如图3A所示。衬底310可以已经完成功能区的制造工艺。例如,衬底310包括电路区311和铁电存储单元区312。电路区311和铁电存储单元区312已经形成有器件的源区、漏区(图中未示出)、栅极区313、器件间隔离区314以及各个功能区上方的电极及互连金属线(图中未示出)。为了清楚并简化本发明的描述,在图3A中,仅示出了部分电路区311和铁电存储单元区312。电路区311可用于对铁电存储单元区312进行控制。First, at step 410, a semiconductor substrate 310 is provided, as shown in FIG. 3A. The substrate 310 may have completed the fabrication process of the functional regions. For example, the substrate 310 includes a circuit region 311 and a ferroelectric memory cell region 312 . The circuit region 311 and the ferroelectric memory cell region 312 have been formed with source regions, drain regions (not shown in the figure), gate regions 313, inter-device isolation regions 314, electrodes and interconnecting metal lines above the respective functional regions (not shown in the figure). In order to clarify and simplify the description of the present invention, in FIG. 3A , only part of the circuit region 311 and the ferroelectric memory cell region 312 are shown. The circuit area 311 may be used to control the ferroelectric memory cell area 312 .
接下来,在步骤420,在衬底310上形成第一互连结构。在本发明的一个实施例中,形成第一互连结构可包括:在衬底表面形成介质层321;通过通孔光刻和刻蚀等工艺在介质层321中形成通孔,该通孔暴露出衬底310上各功能区的外接电极;依次沉积粘合层和钨金属层填充该通孔;进行化学机械研磨工艺去除多余的介质层321、粘合层和钨金属层,形成从衬底310表面电极延伸到介质层321顶面的多个钨导电柱323、324、325,如图3B所示,然后在多个钨导电柱上形成介质层329和第一金属层,如图3C所示。在本发明的其他实施例中,可以采用其他金属作为形成导电柱的材料。在图3B所示的具体实施例中,在钨导电柱与衬底310表面电极之间以及钨导电柱与介质层之间可以形成氮化钛作为粘合层(图中未示出)。多个钨导电柱可包括电路导电柱323、电容器导电柱324、位线导电柱325等等。电路导电柱323与电路区311表面 电极连接,电容器导电柱324用于将铁电存储单元区312的晶体管的掺杂区(源极或漏极)与电容器形成电连接,位线导电柱325用于将铁电存储单元区312的晶体管的另一掺杂区(源极或漏极)与位线形成电连接。在图3C所示的具体实施例中,第一金属层为金属铜层,其可包括电路线路326、电容器导电互连327、金属位线328。电路线路326与电路导电柱323电连接,电容器导电互连327与电容器导电柱324电连接,金属位线328与位线导电柱325电连接。其中电容器导电互连327从顶面俯视为一个方块,金属位线328为垂直纸面的一条金属线。Next, at step 420 , a first interconnect structure is formed on the substrate 310 . In one embodiment of the present invention, forming the first interconnection structure may include: forming a dielectric layer 321 on the surface of the substrate; The external electrodes of each functional area on the substrate 310 are removed; the adhesive layer and the tungsten metal layer are sequentially deposited to fill the through hole; the chemical mechanical polishing process is performed to remove the excess dielectric layer 321, the adhesive layer and the tungsten metal layer to form a secondary layer from the substrate 310 The surface electrode extends to a plurality of tungsten conductive pillars 323, 324, 325 on the top surface of the dielectric layer 321, as shown in FIG. 3B, and then a dielectric layer 329 and a first metal layer are formed on the plurality of tungsten conductive pillars, as shown in FIG. 3C Show. In other embodiments of the present invention, other metals may be used as materials for forming the conductive pillars. In the specific embodiment shown in FIG. 3B , titanium nitride can be formed as an adhesive layer (not shown in the figure) between the tungsten conductive pillars and the surface electrodes of the substrate 310 and between the tungsten conductive pillars and the dielectric layer. The plurality of tungsten conductive pillars may include circuit conductive pillars 323, capacitor conductive pillars 324, bit line conductive pillars 325, and the like. The circuit conductive column 323 is connected to the surface electrode of the circuit region 311, the capacitor conductive column 324 is used to electrically connect the doped region (source or drain) of the transistor in the ferroelectric memory cell region 312 with the capacitor, and the bit line conductive column 325 is used for The other doped region (source or drain) of the transistor in the ferroelectric memory cell region 312 is electrically connected to the bit line. In the specific embodiment shown in FIG. 3C , the first metal layer is a metal copper layer, which may include circuit lines 326 , capacitor conductive interconnects 327 , and metal bit lines 328 . The circuit line 326 is electrically connected to the circuit conductive post 323 , the capacitor conductive interconnect 327 is electrically connected to the capacitor conductive post 324 , and the metal bit line 328 is electrically connected to the bit line conductive post 325 . The capacitor conductive interconnect 327 is a square when viewed from the top surface, and the metal bit line 328 is a metal line perpendicular to the paper surface.
本领域的技术人员应该理解,第一互连结构的形成方法不限于上述具体示例。此外,还可以在第一互连结构形成之前或之后进行其他工艺,例如,形成一层或多个其他导电互连结构。Those skilled in the art should understand that the formation method of the first interconnect structure is not limited to the above specific examples. In addition, other processes may also be performed before or after the formation of the first interconnect structure, eg, to form one or more other conductive interconnect structures.
然后,在步骤430,形成电容器接触盘330,如图3D所示。在本发明的一个实施例中,形成电容器接触盘可包括在第一金属层表面形成介质层331;通过光刻和刻蚀等工艺在介质层331中形成通孔,该窗口暴露出电容器导电互连327的部分顶面;沉积金属层填充通孔,在该实施例中该金属层为金属铜;去除多余金属层,形成从电容器导电互连327的顶面延伸到介质层331顶面的导电柱334;在导电柱334的顶面形成介质层333和电容器接触盘330。在上述电容器接触盘330的形成过程的同时,可以在电路区311上方形成与电路线路326电连接的导电柱335和电路线路332,从而使电路导电柱323延伸到介质层的顶面。在该实施例中导电柱335和电路线路332均为铜金属,在该实施例中导电柱和电路线路为分两步分别进行通孔刻蚀和填充,在其他实施例中也可以是先统一刻蚀导电柱和电路线路的通孔然后一次性填充金属同时形成导电柱和电路线路,同样的在该实施例中在存储单元区导电柱334和电容器接触盘330是分两步分别进行通孔刻蚀和填充,在其他实施例中也可以是先统一刻蚀导电柱和电容器接触盘的通孔然后一次性填充金属同时形成导电柱和电容器接触盘。电容器接触盘330的面积大于后续形成的深孔的底部面积,因此该电容器接触盘330可以用作深孔刻蚀的刻蚀停止层。Then, at step 430, capacitor contact pads 330 are formed, as shown in Figure 3D. In one embodiment of the present invention, forming the capacitor contact pad may include forming a dielectric layer 331 on the surface of the first metal layer; forming a through hole in the dielectric layer 331 through processes such as photolithography and etching, the window exposing the capacitor conductive interconnection Part of the top surface of the connection 327; depositing a metal layer to fill the via hole, in this embodiment the metal layer is metal copper; removing the excess metal layer to form a conductive layer extending from the top surface of the capacitor conductive interconnect 327 to the top surface of the dielectric layer 331 pillars 334 ; a dielectric layer 333 and a capacitor contact pad 330 are formed on the top surfaces of the conductive pillars 334 . At the same time as the above-mentioned forming process of the capacitor contact pad 330 , the conductive pillars 335 and the circuit lines 332 electrically connected to the circuit lines 326 may be formed above the circuit region 311 , so that the circuit conductive pillars 323 extend to the top surface of the dielectric layer. In this embodiment, the conductive pillars 335 and the circuit lines 332 are both copper metal. In this embodiment, the conductive pillars and the circuit lines are respectively etched and filled in two steps. In other embodiments, they can also be unified first. The conductive pillars and the through holes of the circuit lines are etched and then filled with metal at one time to form the conductive pillars and the circuit lines. Similarly, in this embodiment, the conductive pillars 334 and the capacitor contact pads 330 in the memory cell area are respectively made through holes in two steps. For etching and filling, in other embodiments, the conductive pillars and the through-holes of the capacitor contact pads may be uniformly etched first, and then metal is filled at one time to form the conductive pillars and the capacitor contact pads at the same time. The area of the capacitor contact pad 330 is larger than the bottom area of the subsequently formed deep hole, so the capacitor contact pad 330 can be used as an etch stop layer for deep hole etching.
在本发明的实施例中,介质层331、333可以是与介质层321、329相同的材料,也可以是与介质层321、329不同的材料。In the embodiment of the present invention, the dielectric layers 331 and 333 may be of the same material as the dielectric layers 321 and 329 , or may be of different materials from the dielectric layers 321 and 329 .
在实际操作中,可以在电路区域多次重复形成电路导电柱和电路线路的步骤,如图3E所示,从而形成具有所需高度的电路导电柱和电路线路结构。在图3E所示的示例中,电路导电柱和电路线路具有五层电路导电柱和电路线路结构,然而本领域的技术人员应该理解,在本发明的其他实施例,电路区可以具有更多或更少的导电柱和电路线路结构。每一层导电柱和电路线路结构中所采用的介质材料和金属材料可以相同也可以不同。In actual operation, the steps of forming circuit conductive pillars and circuit lines can be repeated in the circuit area for many times, as shown in FIG. 3E , thereby forming circuit conductive pillars and circuit line structures with required heights. In the example shown in FIG. 3E, the circuit conductive pillars and circuit lines have five layers of circuit conductive pillars and circuit line structures, however, those skilled in the art should understand that in other embodiments of the present invention, the circuit area may have more or Fewer conductive posts and circuit trace structures. The dielectric materials and metal materials used in the conductive pillars and circuit structures of each layer may be the same or different.
在上述步骤以及后续步骤中,可根据实际工艺要求为导电柱和线路选择合适的金属,例如导电柱可以是钨金属导电柱,线路可以是铜。同样,导电柱和线路之间的多个介质层(例如,介质层331、333等)单独或组合起来可以是单一材料层,也可以是多层材料层叠形成的复合材料层。在本发明的实施例中,介质层可以为氧化硅、氮氧硅、硼硅酸盐玻璃、硅酸磷玻璃(PSG)、硼磷硅酸盐玻璃(BPSG)、氟化玻璃硅酸盐玻璃(FSG)、low-K介质等无机材料;也可以为聚酰亚胺、感光型环氧树脂、阻焊油墨、绿漆、干膜、感光型增层材料、BCB(双苯环丁烯树脂)或者PBO(苯基苯并二恶唑树脂)等有机材料。介质层可以通过化学气相沉积、滚压、旋涂、喷涂、印刷、非旋转涂覆、热压、真空压合、浸泡、压力贴合等方式制作介质层。In the above steps and subsequent steps, suitable metals can be selected for the conductive pillars and lines according to actual process requirements. For example, the conductive pillars can be tungsten metal conductive pillars and the lines can be copper. Likewise, the multiple dielectric layers (eg, the dielectric layers 331, 333, etc.) between the conductive pillars and the lines may be a single material layer or a composite material layer formed by stacking multiple layers of materials individually or in combination. In the embodiment of the present invention, the dielectric layer may be silicon oxide, silicon oxynitride, borosilicate glass, phosphorous silicate glass (PSG), borophosphosilicate glass (BPSG), fluorinated glass silicate glass (FSG), low-K medium and other inorganic materials; can also be polyimide, photosensitive epoxy resin, solder resist ink, green paint, dry film, photosensitive build-up material, BCB (bisphenylcyclobutene resin) ) or organic materials such as PBO (phenylbenzobisoxazole resin). The dielectric layer can be fabricated by chemical vapor deposition, rolling, spin coating, spray coating, printing, non-spin coating, hot pressing, vacuum pressing, soaking, pressure bonding and the like.
接下来,在步骤440,形成多层介质层336、337,并通过刻蚀工艺在介质层336、337形成电容器深孔361,如图3F所示。与前述介质层331、333类似,在本实施例中,介质层336、337可以是多层结构,也可以是单一材料层。在本发明的实施例中,通过刻蚀工艺形成电容器深孔361可包括形成掩模层,通过光刻刻蚀工艺在掩模层中形成窗口露出下方介质层,刻蚀介质层直到暴露出电容器接触盘的顶端,最后去除掩模层。电容器接触盘可以作为深孔刻蚀工艺的刻蚀停止层。电容器接触盘的面积大于深孔361的底面积。Next, in step 440, multilayer dielectric layers 336, 337 are formed, and capacitor deep holes 361 are formed in the dielectric layers 336, 337 through an etching process, as shown in FIG. 3F. Similar to the aforementioned dielectric layers 331 and 333 , in this embodiment, the dielectric layers 336 and 337 may be a multi-layer structure or a single material layer. In an embodiment of the present invention, forming the capacitor deep hole 361 through an etching process may include forming a mask layer, forming a window in the mask layer through a photolithography process to expose the underlying dielectric layer, and etching the dielectric layer until the capacitor is exposed The top of the pad is contacted and the mask layer is finally removed. The capacitor contact pad can be used as an etch stop layer for the deep hole etch process. The area of the capacitor contact pad is larger than the bottom area of the deep hole 361 .
在步骤450,在深孔361的底部和侧壁上形成第一电极层371,如图3G所示。第一电极层371是电容器的一个电极层,例如,可以是以下材料中的一种或多种:TiNx、TaNx、TiAlNx、TiCNx、TaAlNx、TaCNx、AlNx、Ru、RuOx、Ir、IrOx、W、WCNx、Wsix、Pt、Au、Ni、Mo或这些材料的复合。可通过原子层沉积ALD、化学气相沉积CVD、物理气相沉积PVD、电子束Ebeam蒸发沉积、分子束外延MBE沉积、脉冲激光沉积PLD以及类似沉积工艺中的一种 或多种工艺来沉积第一电极层371,然后去除介质层顶面的材料层,仅保留深孔361底部和侧面的材料层。在本发明的具体实施例中,如果电容器接触盘是铜焊盘,为了防止铜迁移,在沉积第一电极层371之前,先沉积保护层372;如果电容器接触盘是钨焊盘,则可以省略保护层372的沉积步骤。保护层372可以是氮化钽(TaN)或者氮化钨(WNx)等。At step 450, a first electrode layer 371 is formed on the bottom and sidewalls of the deep hole 361, as shown in FIG. 3G. The first electrode layer 371 is an electrode layer of the capacitor, for example, can be one or more of the following materials: TiNx, TaNx, TiAlNx, TiCNx, TaAlNx, TaCNx, AlNx, Ru, RuOx, Ir, IrOx, W, WCNx, Wsix, Pt, Au, Ni, Mo or a combination of these materials. The first electrode may be deposited by one or more of atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), electron beam Ebeam deposition, molecular beam epitaxy MBE deposition, pulsed laser deposition (PLD), and similar deposition processes layer 371 , and then remove the material layer on the top surface of the dielectric layer, leaving only the material layer on the bottom and side surfaces of the deep hole 361 . In a specific embodiment of the present invention, if the capacitor contact pad is a copper pad, in order to prevent copper migration, a protective layer 372 is deposited before the first electrode layer 371 is deposited; if the capacitor contact pad is a tungsten pad, it can be omitted Deposition step of protective layer 372 . The protective layer 372 may be tantalum nitride (TaN), tungsten nitride (WNx), or the like.
在步骤460,形成铁电材料层和第二电极层382,在该实施例中铁电材料层为高K铁电氧化物层381,如图3H所示。高K铁电氧化物层381是电容器的介质层,例如,可以是以下材料中的一种或多种:HfO x、AlO x、ZrO x、LaO x、TaO x、NbO x、GdO x、YO x、SiOx、SrO x或这些材料的复合。可通过原子层沉积ALD、化学气相沉积CVD、物理气相沉积PVD、电子束Ebeam蒸发沉积、分子束外延MBE沉积、脉冲激光沉积PLD以及类似沉积工艺中的一种或多种工艺来沉积高K铁电氧化物层。第二电极层382是电容器的另一个电极层,例如,可以是以下材料中的一种或多种:钛(Ti)、氮化钛(TiN)、氮化钛硅(TiSiNx)、氮化钛铝(TiAlNx)、碳氮化钛(TiCNx)、氮化钽(TaNx)、氮化钽硅(TaSiNx)、氮化钽铝(TaAlNx)、氮化钨(WNx)、硅化钨(WSix)、碳氮化钨(WCNx)、钌(Ru)、氧化钌(RuOx)、铱(Ir)、掺杂多晶硅、透明导电氧化物(TCO)或氧化铱(IrOx)或这些材料的复合。可通过原子层沉积ALD、化学气相沉积CVD、物理气相沉积PVD、电子束Ebeam蒸发沉积、分子束外延MBE沉积、脉冲激光沉积PLD以及类似沉积工艺中的一种或多种工艺来沉积第二电极层382。 At step 460, a ferroelectric material layer and a second electrode layer 382 are formed, which in this embodiment is a high-K ferroelectric oxide layer 381, as shown in FIG. 3H. The high-K ferroelectric oxide layer 381 is the dielectric layer of the capacitor, for example, can be one or more of the following materials : HfOx, AlOx , ZrOx , LaOx , TaOx , NbOx , GdOx , YO x , SiOx , SrOx or a composite of these materials. High-K iron can be deposited by one or more of atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), electron beam Ebeam deposition, molecular beam epitaxy MBE deposition, pulsed laser deposition (PLD), and similar deposition processes electrical oxide layer. The second electrode layer 382 is another electrode layer of the capacitor, for example, can be one or more of the following materials: titanium (Ti), titanium nitride (TiN), titanium silicon nitride (TiSiNx), titanium nitride Aluminum (TiAlNx), Titanium Carbonitride (TiCNx), Tantalum Nitride (TaNx), Tantalum Silicon Nitride (TaSiNx), Tantalum Aluminum Nitride (TaAlNx), Tungsten Nitride (WNx), Tungsten Silicide (WSix), Carbon Tungsten nitride (WCNx), ruthenium (Ru), ruthenium oxide (RuOx), iridium (Ir), doped polysilicon, transparent conductive oxide (TCO) or iridium oxide (IrOx) or a composite of these materials. The second electrode may be deposited by one or more of atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), electron beam Ebeam deposition, molecular beam epitaxy MBE deposition, pulsed laser deposition (PLD), and similar deposition processes Layer 382.
在步骤470,形成保护层391和填充金属392,如图3I所示,然后通过化学器械研磨去除介质层顶面的保护层391和填充金属392、高K铁电氧化物层381和第二电极层382,如图3J所示,仅保留深孔361中的保护层391和接触层392、高K铁电氧化物层381和第二电极层382。在本发明的一个实施例中,保护层391与保护层372类似,可以是但不限于TaN或者氮化钨等。填充金属392与接触盘类似,可以是但不限于铜。In step 470, a protective layer 391 and a filling metal 392 are formed, as shown in FIG. 3I, and then the protective layer 391 and the filling metal 392 on the top surface of the dielectric layer, the high-K ferroelectric oxide layer 381 and the second electrode are removed by chemical equipment grinding Layer 382, as shown in FIG. 3J, only the protective layer 391 and the contact layer 392, the high-K ferroelectric oxide layer 381 and the second electrode layer 382 in the deep hole 361 remain. In an embodiment of the present invention, the protective layer 391 is similar to the protective layer 372, and may be, but not limited to, TaN or tungsten nitride. Fill metal 392 is similar to the contact pads and can be, but not limited to, copper.
接下来,在步骤480,形成金属互连及板线。在本发明的一个实施例中,形成金属互连及板线可包括:首先形成一层介质层393;在介质层393上钻孔并在孔内沉积金属,其中沉积的金属层在电路区形成与下方的导电线路及导电 柱连接的导电柱395,然后在导电柱上形成电路线路397,在存储单元区形成与电容上电极上沉积的填充金属392连接的导电柱396,然后在导电柱396上形成金属板线394如图3K所示,其中金属板线394为垂直纸面延伸的一条金属线。在该实施例中导电柱和电路线路为分两步分别进行通孔刻蚀和填充,在其他实施例中也可以是先统一刻蚀导电柱和电路线路的通孔然后一次性填充金属同时形成导电柱和电路线路,在该实施例中导电柱和金属板线为分两步分别进行通孔刻蚀和填充,在其他实施例中也可以是先统一刻蚀导电柱和金属板线的通孔然后一次性填充金属同时形成导电柱和金属板线。至此形成了存储器的铁电电容和板线,然后在板线的上方再形成介质层、金属互连和其他金属层等结构以形成对外的连接,此处不再一一详细说明。Next, at step 480, metal interconnects and board lines are formed. In one embodiment of the present invention, forming metal interconnects and board lines may include: firstly forming a dielectric layer 393; drilling holes on the dielectric layer 393 and depositing metal in the holes, wherein the deposited metal layer is formed in the circuit area Conductive pillars 395 connected to the underlying conductive lines and conductive pillars, then a circuit line 397 is formed on the conductive pillars, and a conductive pillar 396 connected to the filling metal 392 deposited on the upper electrode of the capacitor is formed in the memory cell area, and then on the conductive pillars 396 A metal plate wire 394 is formed thereon as shown in FIG. 3K , wherein the metal plate wire 394 is a metal wire extending perpendicular to the paper surface. In this embodiment, the conductive pillars and the circuit lines are etched and filled in two steps, respectively. In other embodiments, the conductive pillars and the through holes of the circuit lines can also be etched uniformly, and then filled with metal at one time. Conductive pillars and circuit lines. In this embodiment, the conductive pillars and the metal plate lines are etched and filled in two steps, respectively. The holes are then filled with metal in one go while forming conductive pillars and sheet metal lines. So far, the ferroelectric capacitors and plate lines of the memory are formed, and then structures such as dielectric layers, metal interconnections, and other metal layers are formed on the plate lines to form external connections, which will not be described in detail here.
介质层392可以是与介质层321相同的材料,也可以是与介质层321不同的材料。在前述实施例中采用铜金属作为导电柱以及金属线路的时候均可以在铜金属层外先沉积一层氮化钽或者氮化钨以防止金属铜扩散的保护层。The dielectric layer 392 may be of the same material as the dielectric layer 321 , or may be of a different material from the dielectric layer 321 . In the foregoing embodiments, when copper metal is used as the conductive pillars and metal lines, a protective layer of tantalum nitride or tungsten nitride can be deposited outside the copper metal layer to prevent the diffusion of metal copper.
在前述实施例中,形成第一互连结构的介质层321可以称为第一介质层,形成金属位线的介质层329可以称为第二介质层,形成电容器接触盘的介质层331、333可以称为第三介质层,形成铁电电容的介质层336、337可以统称为第四介质层,覆盖铁电电容的介质层393可以称为第五介质层。In the foregoing embodiments, the dielectric layer 321 forming the first interconnect structure may be referred to as the first dielectric layer, the dielectric layer 329 forming the metal bit lines may be referred to as the second dielectric layer, and the dielectric layers 331 and 333 forming the capacitor contact pads It may be referred to as the third dielectric layer, the dielectric layers 336 and 337 forming the ferroelectric capacitor may be collectively referred to as the fourth dielectric layer, and the dielectric layer 393 covering the ferroelectric capacitor may be referred to as the fifth dielectric layer.
在上述实施例中,将外围电路区域311的金属互连工艺与铁电存储单元区312的电容器及金属互连工艺结合在一起,从而在电容器形成的同时完成外围电路区域311与铁电存储单元区312金属互连及引出,有利于简化工艺步骤并降低制造成本。In the above embodiment, the metal interconnection process of the peripheral circuit region 311 is combined with the capacitor and metal interconnection process of the ferroelectric memory cell region 312, so that the peripheral circuit region 311 and the ferroelectric memory cell are completed at the same time as the capacitor is formed. The metal interconnection and lead-out of the region 312 is beneficial to simplify the process steps and reduce the manufacturing cost.
在本发明的实施例中,电容器单元的结构为电容器接触盘-保护层-第一电极层-高K铁电氧化物层-第二电极层-保护层-填充金属的层叠结构。在形成电容器单元之前形成位线并在位线上形成接触盘,电容器单元在金属位线之上形成,因此本发明的这种结构也称为FCOB(铁电电容在位线的上方FerroelectricCapacitor Over Bitline)。采用深孔型结构的下电极和上电极,可以在同等正对平面面积下,显著提高铁电电容的等效剩余极化强度,使得铁电存储器可以继续等比缩小而依然提供足够大的电压窗口,在130nm工艺节点以下可以实现铁电电容三维化,存储密度大。In the embodiment of the present invention, the structure of the capacitor unit is a stacked structure of the capacitor contact pad-protective layer-first electrode layer-high-K ferroelectric oxide layer-second electrode layer-protective layer-filling metal. The bit line is formed and the contact pad is formed on the bit line before the capacitor cell is formed, and the capacitor cell is formed on the metal bit line, so this structure of the present invention is also called FCOB (Ferroelectric Capacitor Over Bitline (Ferroelectric Capacitor Over Bitline) ). The use of the bottom electrode and the top electrode of the deep hole structure can significantly improve the equivalent remanent polarization of the ferroelectric capacitor under the same face-to-face area, so that the ferroelectric memory can continue to be proportionally reduced and still provide a large enough voltage Window, below the 130nm process node, three-dimensional ferroelectric capacitors can be realized, and the storage density is large.
本发明的三维铁电电容器件的制备方法完全与CMOS工艺兼容,便于集成,降低制造成本The preparation method of the three-dimensional ferroelectric capacitor of the present invention is completely compatible with the CMOS process, is convenient for integration, and reduces the manufacturing cost
在铁电电容器的MIM结构薄膜沉积后,会通过化学机械抛光工艺进行平坦化,将深孔结构外的MIM薄膜磨去而形成独立的铁电电容器结构,如图5所示,通过平坦化工艺,容易在图5的圆圈标记处出现金属离子残留,导致上下电极的漏电,若上电极4发生光刻对准偏差,容易造成上下电极的直接短路;因此图6至图8的实施例针对上述问题,提出了一种新的方案。After the MIM structure film of the ferroelectric capacitor is deposited, it will be planarized by a chemical mechanical polishing process, and the MIM film outside the deep hole structure will be ground off to form an independent ferroelectric capacitor structure, as shown in Figure 5, through the planarization process , metal ion residues are likely to appear at the circle marks in FIG. 5, resulting in leakage of the upper and lower electrodes. If the lithography alignment deviation occurs on the upper electrode 4, it is easy to cause a direct short circuit of the upper and lower electrodes; therefore, the embodiments of FIGS. 6 to 8 are aimed at the above problem, a new solution was proposed.
图6示出根据本发明的一个实施例的形成铁电存储单元的电容器的流程图。在图6所示的实施例中,步骤610至步骤640与上面图4所示步骤410至440类似,为了简化说明,省略步骤610至步骤640的详细描述。Figure 6 shows a flow diagram of forming a capacitor of a ferroelectric memory cell according to one embodiment of the present invention. In the embodiment shown in FIG. 6 , steps 610 to 640 are similar to steps 410 to 440 shown in FIG. 4 above. To simplify the description, detailed descriptions of steps 610 to 640 are omitted.
在步骤650,依次形成第一电极层711、高K铁电氧化物层712和第二电极层713,如图7A所示。第一电极层711、高K铁电氧化物层712和第二电极层713材料和形成工艺与上述第一电极层、高K铁电氧化物层和第二电极层的材料和形成工艺类似,同样的,在铜金属接触盘与铁电电容的下电极711之间形成有一层防止铜扩散的保护层(图中未标号),此处不再详细描述。In step 650, a first electrode layer 711, a high-K ferroelectric oxide layer 712 and a second electrode layer 713 are sequentially formed, as shown in FIG. 7A. The materials and formation processes of the first electrode layer 711, the high-K ferroelectric oxide layer 712 and the second electrode layer 713 are similar to the materials and formation processes of the above-mentioned first electrode layer, the high-K ferroelectric oxide layer and the second electrode layer, Similarly, a protective layer (not numbered in the figure) for preventing copper diffusion is formed between the copper metal contact pad and the lower electrode 711 of the ferroelectric capacitor, which will not be described in detail here.
在步骤660,填充介质层,然后通过光刻、刻蚀等工艺去除顶面的部分第一电极层711、高K铁电氧化物层712和第二电极层713,仅保留深孔714侧壁、底部及四周的第一电极层711、高K铁电氧化物层712和第二电极层713,从而使得每个电容器相互分离开,如图7B所示。图8示出根据本发明的一个实施例的采用步骤660进行光刻和刻蚀后分隔开的电容器单元的立体示意图,其中省略了保护层的示意图,如图所示与传统的平面电容不同,所述电容器为三维立体结构。In step 660, the dielectric layer is filled, and then a part of the first electrode layer 711, the high-K ferroelectric oxide layer 712 and the second electrode layer 713 on the top surface are removed through photolithography, etching and other processes, and only the sidewalls of the deep hole 714 are left. , the first electrode layer 711, the high-K ferroelectric oxide layer 712, and the second electrode layer 713 at the bottom and the periphery, so that each capacitor is separated from each other, as shown in FIG. 7B. FIG. 8 shows a schematic perspective view of a capacitor unit separated after photolithography and etching in step 660 according to an embodiment of the present invention, wherein the schematic diagram of the protective layer is omitted, which is different from the conventional planar capacitor as shown in the figure , the capacitor has a three-dimensional structure.
接下来,在步骤670,形成金属互连及板线。在本发明的实施例中,形成金属互连及板线可包括形成介质层715,在介质层715中钻孔,并形成多个导电柱731、732,导电柱731、732分别连接到第二电极层713、电路导电柱716,接下来,在电容导电柱731上方形成介质层然后开孔沉积金属形成与导电柱731连通的金属板线733,而在电路区开孔沉积金属形成与电路导电柱716连通的金属线路734,如图7C所示。在图7C所示的实施例中,导电柱731从电容器深孔底部延伸到介质层715的顶部。在本发明的另一个实施例中,导电柱 731可以设置在电容器深孔顶部边缘,如图7D所示。在本发明的又一个实施例中,在深孔中填充导电金属,然后在导电金属顶部形成导电柱731,如图7E所示。Next, at step 670, metal interconnects and board lines are formed. In an embodiment of the present invention, forming metal interconnects and board lines may include forming a dielectric layer 715, drilling holes in the dielectric layer 715, and forming a plurality of conductive pillars 731, 732, which are respectively connected to the second Electrode layer 713, circuit conductive pillars 716, next, a dielectric layer is formed above the capacitive conductive pillars 731, and metal is formed by opening holes to form metal plate lines 733 connected to the conductive pillars 731, and holes are deposited in the circuit area to form a conductive circuit with the circuit. The metal lines 734 connected to the posts 716 are shown in FIG. 7C. In the embodiment shown in FIG. 7C , the conductive pillars 731 extend from the bottom of the capacitor deep hole to the top of the dielectric layer 715 . In another embodiment of the present invention, the conductive pillars 731 may be provided at the top edge of the capacitor deep hole, as shown in Figure 7D. In yet another embodiment of the present invention, conductive metal is filled in the deep hole, and then conductive pillars 731 are formed on top of the conductive metal, as shown in FIG. 7E .
图9示出根据本发明的一个实施例的形成铁电存储单元的电容器的流程图。在图9所示的实施例中,步骤910至步骤940与上面图4所示步骤410至440类似,为了简化说明,省略步骤910至步骤940的详细描述。9 shows a flow diagram of forming a capacitor for a ferroelectric memory cell according to one embodiment of the present invention. In the embodiment shown in FIG. 9 , steps 910 to 940 are similar to steps 410 to 440 shown in FIG. 4 above. To simplify the description, detailed descriptions of steps 910 to 940 are omitted.
与前述实施例不同,在步骤940形成电容器深孔后,在步骤951,对深孔结构101顶部进行扩孔,如图10A所示。具体而言,可通过干法刻蚀在深孔顶部进行扩孔,形成扩孔结构102,扩孔结构102处于深孔的顶部且截面面积大于深孔结构的截面面积。Different from the previous embodiments, after the capacitor deep hole is formed in step 940, in step 951, the top of the deep hole structure 101 is reamed, as shown in FIG. 10A. Specifically, reaming can be performed on the top of the deep hole by dry etching to form the reaming structure 102 . The reaming structure 102 is located at the top of the deep hole and has a cross-sectional area larger than that of the deep hole structure.
在步骤950,形成第一电极层103,如图10B所示。第一电极层103是电容器的底部电极层。然后去除介质层顶面、扩孔结构侧壁和底部的材料层,仅保留扩孔结构下方的深孔101底部和侧面的材料层,如图10C所示。At step 950, a first electrode layer 103 is formed, as shown in FIG. 10B. The first electrode layer 103 is the bottom electrode layer of the capacitor. Then, the material layers on the top surface of the dielectric layer, the sidewalls and the bottom of the hole reaming structure are removed, and only the material layers on the bottom and side surfaces of the deep hole 101 below the hole reaming structure are retained, as shown in FIG. 10C .
在步骤960,形成高K铁电氧化物层104和第二电极层105,其中高K铁电氧化物层104完全覆盖深孔的第一电极层以及扩孔结构的内表面,如图10D所示。第二电极层105完全填充深孔101和扩孔结构102。In step 960, a high-K ferroelectric oxide layer 104 and a second electrode layer 105 are formed, wherein the high-K ferroelectric oxide layer 104 completely covers the first electrode layer of the deep hole and the inner surface of the expanded hole structure, as shown in FIG. 10D Show. The second electrode layer 105 completely fills the deep hole 101 and the hole reaming structure 102 .
在步骤970,通过化学机械研磨的方式将晶衬底表面多余的高K铁电氧化物层104和第二电极层105磨掉形成铁电电容结构,如图10E。In step 970 , the excess high-K ferroelectric oxide layer 104 and the second electrode layer 105 on the surface of the crystal substrate are ground off by chemical mechanical grinding to form a ferroelectric capacitor structure, as shown in FIG. 10E .
在步骤980,在铁电电容的上方形成一层介质层106,在介质层106上形成通孔,在通孔内形成与铁电电容上电极相连的导电柱107。然后再在介质层106上方形成形成金属互连、板线和位线,如图10F所示。形成金属互连、板线和位线的具体步骤可以参考图3K并结合前述实施例的步骤480的描述来形成金属互连及板线、位线。In step 980, a dielectric layer 106 is formed above the ferroelectric capacitor, through holes are formed on the dielectric layer 106, and conductive pillars 107 connected to the upper electrodes of the ferroelectric capacitor are formed in the through holes. Then, metal interconnects, plate lines and bit lines are formed over the dielectric layer 106, as shown in FIG. 10F. For specific steps of forming metal interconnections, plate lines and bit lines, reference may be made to FIG. 3K in conjunction with the description of step 480 in the foregoing embodiment to form metal interconnections, plate lines, and bit lines.
图11A和图11B显示本发明的另一个实施例,其提供一种形成铁电存储单元的电容器的方法。在该实施例中,形成铁电存储单元的电容器的方法可以与上面图4、图6和图9所示流程类似。该实施例主要区别在于:前述图3K所示实施例中,一层或多层介质层336、337统称为第四介质层,其中介质层336、337由至少两种不同的绝缘材料层叠形成,并且在步骤440、640和940之后增加通过湿法刻蚀对电容器深孔的侧壁进行处理,在深孔侧壁上形成一个 或多个凸起。图11A示出了根据本发明的一个实施例的通过刻蚀工艺形成电容器深孔并去除碳层和氮氧化硅层后的电容器深孔部分的截面示意图。如图11A所示,第四介质层可包括三层第一绝缘材料111和二层第二绝缘112材料,每一层第一绝缘材料与第二绝缘材料依次交替层叠。在形成铁电电容的深孔结构时,先形成如图11A所示的侧壁平齐的深孔结构113,在刻蚀形成图11A的结构之后,对图11A形成的结构再进行湿法刻蚀,通过该湿法刻蚀工艺对介质层中不同绝缘材料的刻蚀速率不同形成不同的刻蚀深度,从而形成不同层之间的侧壁凹陷程度不同,形成不同层之间的凸出结构114。例如,第一绝缘材料层111的刻蚀速率低于第二绝缘材料层112的刻蚀速率,经过特定时间,第一绝缘材料层111相对于第二绝缘材料层112凸出,如图11B所示,从而可以在相同的孔径下增加电容的面积,实现铁电性能的提升。然后,在具有不同层的凸出结构的深孔114内沉积形成铁电电容的底电极层、铁电材料层和顶电极层,具体的步骤可以参考前述的460-480、660-670和960-980步骤的描述。本领域的技术人员应该理解,用于形成铁电电容深孔结构的第四介质层不限于图11A所示的三层第一绝缘材料111和二层第二绝缘材料112交替层叠结构,用于形成铁电电容深孔结构的第四介质层可以包括三种或更多种绝缘材料的层叠结构,并且可以根据实际需要设置每层绝缘材料的厚度和位置。11A and 11B show another embodiment of the present invention, which provides a method of forming a capacitor for a ferroelectric memory cell. In this embodiment, the method of forming the capacitor of the ferroelectric memory cell may be similar to the processes shown in FIGS. 4 , 6 and 9 above. The main difference of this embodiment is that in the aforementioned embodiment shown in FIG. 3K , one or more dielectric layers 336 and 337 are collectively referred to as the fourth dielectric layer, wherein the dielectric layers 336 and 337 are formed by laminating at least two different insulating materials. And after steps 440 , 640 and 940 , the sidewalls of the capacitor deep holes are processed by wet etching, and one or more protrusions are formed on the sidewalls of the deep holes. 11A shows a schematic cross-sectional view of the capacitor deep hole portion after forming the capacitor deep hole through an etching process and removing the carbon layer and the silicon oxynitride layer according to an embodiment of the present invention. As shown in FIG. 11A , the fourth dielectric layer may include three layers of the first insulating material 111 and two layers of the second insulating material 112 , and each layer of the first insulating material and the second insulating material are alternately stacked in sequence. When forming the deep hole structure of the ferroelectric capacitor, the deep hole structure 113 with flush sidewalls as shown in FIG. 11A is first formed, and after the structure of FIG. 11A is formed by etching, the structure formed in FIG. 11A is then wet-etched Etching, through the wet etching process, the etching rates of different insulating materials in the dielectric layer are different to form different etching depths, thereby forming different degrees of sidewall depression between different layers, forming a protruding structure between different layers. 114. For example, the etching rate of the first insulating material layer 111 is lower than the etching rate of the second insulating material layer 112, and after a certain time, the first insulating material layer 111 protrudes from the second insulating material layer 112, as shown in FIG. 11B Therefore, the area of the capacitor can be increased under the same aperture, and the ferroelectric performance can be improved. Then, the bottom electrode layer, the ferroelectric material layer and the top electrode layer for forming the ferroelectric capacitor are deposited in the deep hole 114 with the protruding structure of different layers. For the specific steps, please refer to the aforementioned 460-480, 660-670 and 960 -980 Step description. Those skilled in the art should understand that the fourth dielectric layer used to form the deep hole structure of the ferroelectric capacitor is not limited to the alternately stacked structure of three layers of the first insulating material 111 and two layers of the second insulating material 112 shown in FIG. 11A . The fourth dielectric layer forming the ferroelectric capacitor deep hole structure may include a stacked structure of three or more insulating materials, and the thickness and position of each insulating material may be set according to actual needs.
用于形成铁电电容深孔结构的第二介质层的材料可以选自:氧化硅、氮氧硅、硼硅酸盐玻璃、硅酸磷玻璃(PSG)、硼磷硅酸盐玻璃(BPSG)、氟化玻璃硅酸盐玻璃(FSG)、low-K介质等无机材料;也可以为聚酰亚胺、感光型环氧树脂、阻焊油墨、绿漆、干膜、感光型增层材料、BCB(双苯环丁烯树脂)或者PBO(苯基苯并二恶唑树脂)等有机材料或它们的组合。湿法刻蚀工艺可以是盐酸、磷酸、氢氟酸等酸性溶液进行刻蚀。The material used to form the second dielectric layer of the ferroelectric capacitor deep hole structure can be selected from: silicon oxide, silicon oxynitride, borosilicate glass, phosphosilicate glass (PSG), borophosphosilicate glass (BPSG) , fluorinated glass silicate glass (FSG), low-K medium and other inorganic materials; can also be polyimide, photosensitive epoxy resin, solder resist ink, green paint, dry film, photosensitive build-up material, Organic materials such as BCB (bisphenylcyclobutene resin) or PBO (phenylbenzobisoxazole resin), or a combination thereof. The wet etching process may be etched with an acidic solution such as hydrochloric acid, phosphoric acid, and hydrofluoric acid.
前述实施例虽然分别介绍了几种实施例的步骤,但前述不同实施例所介绍的步骤并非完全不可拆分的,各个实施例的具体步骤及结构也可以相互替换或结合,此处不再一一举例说明。Although the foregoing embodiments respectively introduce the steps of several embodiments, the steps described in the foregoing different embodiments are not completely inseparable, and the specific steps and structures of the various embodiments can also be replaced or combined with each other, and no one will be described here. An example.
在本发明提供的铁电电容器及其制造方法中,形成位线,在位线上形成多个深孔结构,在所述深孔结构中依次形成电容器的下电极、铁电材料层及上电极,实现了三维铁电电容器结构,因此,本发明的这种结构也称为FCOB(铁 电电容在位线的上方FerroelectricCapacitor Over Bitline)。采用深孔型结构的下电极和上电极,可以在同等正对平面面积下,显著提高铁电电容的等效剩余极化强度,使得铁电存储器可以继续等比缩小而依然提供足够大的电压窗口,在130nm工艺节点以下可以实现铁电电容三维化,存储密度大。In the ferroelectric capacitor and the manufacturing method thereof provided by the present invention, a bit line is formed, a plurality of deep hole structures are formed on the bit line, and a lower electrode, a ferroelectric material layer and an upper electrode of the capacitor are sequentially formed in the deep hole structure. , realizes a three-dimensional ferroelectric capacitor structure, therefore, this structure of the present invention is also called FCOB (Ferroelectric Capacitor Over Bitline). The use of the bottom electrode and the top electrode of the deep hole structure can significantly improve the equivalent remanent polarization of the ferroelectric capacitor under the same face-to-face area, so that the ferroelectric memory can continue to be proportionally reduced and still provide a large enough voltage Window, below the 130nm process node, three-dimensional ferroelectric capacitors can be realized, and the storage density is high.
本发明的三维铁电电容器件的制备方法完全与CMOS工艺兼容,便于集成,降低制造成本。The preparation method of the three-dimensional ferroelectric capacitor of the present invention is completely compatible with the CMOS process, which is convenient for integration and reduces the manufacturing cost.
尽管上文描述了本发明的各实施例,但是,应该理解,它们只是作为示例来呈现的,而不作为限制。对于相关领域的技术人员显而易见的是,可以对其做出各种组合、变型和改变而不背离本发明的精神和范围。因此,此处所公开的本发明的宽度和范围不应被上述所公开的示例性实施例所限制,而应当仅根据所附权利要求书及其等同替换来定义。While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. It will be apparent to those skilled in the relevant art that various combinations, modifications and changes can be made therein without departing from the spirit and scope of the present invention. Therefore, the breadth and scope of the invention disclosed herein should not be limited by the above-disclosed exemplary embodiments, but should be defined only in accordance with the appended claims and their equivalents.

Claims (25)

  1. 一种存储器件的制造方法,包括:A method of manufacturing a memory device, comprising:
    提供半导体衬底,所述半导体衬底包括铁电存储单元区,所述铁电存储单元区具有源区、漏区、栅极区、隔离区以及各个功能区上方的电极及互连金属线;a semiconductor substrate is provided, the semiconductor substrate includes a ferroelectric memory cell region, the ferroelectric memory cell region has a source region, a drain region, a gate region, an isolation region, electrodes and interconnecting metal lines above each functional region;
    形成第一互连结构,所述第一互连结构包括电容器导电柱、位线导电柱、电容器导电柱顶部的电容器导电互连、位线导电柱顶部的金属位线,及它们之间的第一介质层;A first interconnect structure is formed, the first interconnect structure including a capacitor conductive pillar, a bit line conductive pillar, a capacitor conductive interconnect on top of the capacitor conductive pillar, a metal bit line on top of the bit line conductive pillar, and a th a dielectric layer;
    形成电容器接触盘,所述电容器接触盘包括与所述电容器导电柱电连接的金属导电柱、金属导电柱顶部的接触盘、以及它们之间的第二介质层;forming a capacitor contact pad, the capacitor contact pad comprising a metal conductive post electrically connected to the capacitor conductive post, a contact pad on top of the metal conductive post, and a second dielectric layer therebetween;
    依次形成第三介质层和硬掩模层;forming a third dielectric layer and a hard mask layer in sequence;
    通过光刻和刻蚀工艺使硬掩模层图案化,并以图案化后的硬掩模层作为掩模进行刻蚀,在第三介质层中形成深孔,然后去除硬掩模层,所述深孔的底部暴露出所述电容器接触盘;The hard mask layer is patterned through photolithography and etching processes, and the patterned hard mask layer is used as a mask for etching to form deep holes in the third dielectric layer, and then the hard mask layer is removed. the bottom of the deep hole exposes the capacitor contact pad;
    形成第一电极层;forming a first electrode layer;
    形成高K铁电氧化物层和第二电极层;forming a high-K ferroelectric oxide layer and a second electrode layer;
    形成金属互连及板线。Form metal interconnects and board wires.
  2. 如权利要求1所述的存储器件的制造方法,其特征在于,形成第一电极层包括:依次沉积保护层和第一电极层;The method for manufacturing a memory device according to claim 1, wherein forming the first electrode layer comprises: depositing the protective layer and the first electrode layer in sequence;
    去除第三介质层顶面的保护层和第一电极层,仅保留深孔底部和侧面的保护层和第一电极层。The protective layer and the first electrode layer on the top surface of the third dielectric layer are removed, and only the protective layer and the first electrode layer on the bottom and sides of the deep hole are retained.
  3. 如权利要求1所述的存储器件的制造方法,其特征在于,还包括:在形成高K铁电氧化物层和第二电极层之后,沉积保护层和填充金属,然后通过化学器械研磨去除第三介质层顶面的导电金属、高K铁电氧化物层和第二电极层,仅保留深孔中的保护层、导电金属、高K铁电氧化物层和第二电极层。The method for manufacturing a memory device according to claim 1, further comprising: after forming the high-K ferroelectric oxide layer and the second electrode layer, depositing a protective layer and a filling metal, and then removing the first The conductive metal, the high-K ferroelectric oxide layer and the second electrode layer on the top surface of the three dielectric layers only retain the protective layer, the conductive metal, the high-K ferroelectric oxide layer and the second electrode layer in the deep hole.
  4. 如权利要求1所述的存储器件的制造方法,其特征在于,形成金属互连及板线包括:在第三介质层的顶面形成第四介质层;在第四介质层上钻孔并形成金属互连,所述金属互连与第二电极层电连接;在所述金属互连上方形成 板线。The method for manufacturing a memory device according to claim 1, wherein forming the metal interconnection and the plate line comprises: forming a fourth dielectric layer on the top surface of the third dielectric layer; drilling holes on the fourth dielectric layer and forming a metal interconnection that is electrically connected to the second electrode layer; a plate line is formed over the metal interconnection.
  5. 如权利要求1所述的存储器件的制造方法,其特征在于,还包括:在形成高K铁电氧化物层和第二电极层之后,通过光刻、刻蚀等工艺去除顶面的部分第一电极层、高K铁电氧化物层和第二电极层,仅保留深孔侧壁、底部及顶部四周的第一电极层、高K铁电氧化物层和第二电极层,从而使得每个电容器相互分离开。The method for manufacturing a memory device according to claim 1, further comprising: after forming the high-K ferroelectric oxide layer and the second electrode layer, removing part of the top surface by photolithography, etching and other processes An electrode layer, a high-K ferroelectric oxide layer and a second electrode layer, only the first electrode layer, the high-K ferroelectric oxide layer and the second electrode layer around the sidewall, bottom and top of the deep hole are retained, so that each capacitors are separated from each other.
  6. 如权利要求5所述的存储器件的制造方法,其特征在于,形成金属互连及板线包括:在第三介质层的顶面形成第四介质层;在第四介质层上钻孔并形成金属互连,所述金属互连与第二电极层电连接,其中所述金属互连从深孔底部的第二电极层延伸到第四介质层顶部,或者所述金属互连从深孔顶部四周的第二电极层延伸到第四介质层顶部;在所述金属互连上方形成板线。The method of manufacturing a memory device according to claim 5, wherein forming the metal interconnection and the plate line comprises: forming a fourth dielectric layer on the top surface of the third dielectric layer; drilling holes on the fourth dielectric layer and forming a metal interconnection electrically connected to the second electrode layer, wherein the metal interconnection extends from the second electrode layer at the bottom of the deep hole to the top of the fourth dielectric layer, or the metal interconnection extends from the top of the deep hole The surrounding second electrode layer extends to the top of the fourth dielectric layer; a plate line is formed over the metal interconnection.
  7. 如权利要求1所述的存储器件的制造方法,其特征在于,还包括:在形成第一电极层之后,对深孔顶部进行扩孔,形成扩孔结构,所述扩孔结构处于深孔的顶部且截面面积大于深孔的截面面积。The method for manufacturing a memory device according to claim 1, further comprising: after forming the first electrode layer, reaming the top of the deep hole to form a reaming structure, wherein the reaming structure is located at the bottom of the deep hole. the top and the cross-sectional area is larger than the cross-sectional area of the deep hole.
  8. 如权利要求1所述的存储器件的制造方法,其特征在于,第三介质层由至少两种不同的绝缘材料层叠形成,The method for manufacturing a memory device according to claim 1, wherein the third dielectric layer is formed by laminating at least two different insulating materials,
    所述方法还包括在形成深孔并去除硬掩模层之后,通过湿法刻蚀对深孔的侧壁进行处理,所述湿法刻蚀对至少两种不同的绝缘材料的刻蚀速率不同,从而在深孔侧壁上形成一个或多个凸起。The method further includes, after forming the deep hole and removing the hard mask layer, processing the sidewall of the deep hole by wet etching, the wet etching having different etching rates for the at least two different insulating materials , thereby forming one or more protrusions on the sidewall of the deep hole.
  9. 一种存储器件的电容器,包括:A capacitor for a memory device, comprising:
    半导体衬底,所述半导体衬底包括铁电存储单元区,所述铁电存储单元区具有源区、漏区、栅极区、隔离区以及各个功能区上方的电极及互连金属线;a semiconductor substrate, the semiconductor substrate includes a ferroelectric memory cell region, the ferroelectric memory cell region has a source region, a drain region, a gate region, an isolation region, electrodes and interconnecting metal lines above each functional region;
    第一互连结构,所述第一互连结构包括电容器导电柱、位线导电柱、电容器导电柱顶部的电容器导电互连、位线导电柱顶部的金属位线及它们之间的第一介质层;a first interconnect structure comprising capacitor conductive pillars, bit line conductive pillars, capacitor conductive interconnects on top of the capacitor conductive pillars, metal bit lines on top of the bit line conductive pillars, and a first dielectric therebetween Floor;
    电容器接触盘,所述电容器接触盘包括与所述电容器导电柱电连接的金属导电柱、金属导电柱顶部的接触盘、以及它们之间的第二介质层;a capacitor contact pad, the capacitor contact pad comprising a metal conductive post electrically connected to the capacitor conductive post, a contact pad on top of the metal conductive post, and a second dielectric layer therebetween;
    层叠在第二介质层上的第三介质层;a third dielectric layer stacked on the second dielectric layer;
    形成在第三介质层中的深孔,所述深孔的底部暴露出所述电容器接触盘;a deep hole formed in the third dielectric layer, the bottom of the deep hole exposing the capacitor contact pad;
    依次沉积在深孔的侧壁和底部的第一电极层、高K铁电氧化物层和第二电极层;depositing a first electrode layer, a high-K ferroelectric oxide layer and a second electrode layer on the sidewall and bottom of the deep hole in sequence;
    板线,所述板线通过金属互连连接到所述第二电极层。a plate wire connected to the second electrode layer by a metal interconnect.
  10. 如权利要求9所述的存储器件的电容器,其特征在于,所述第三介质层至少两种不同的绝缘材料层叠形成,所述深孔的侧壁具有一个或多个凸起。The capacitor of the storage device according to claim 9, wherein the third dielectric layer is formed by stacking at least two different insulating materials, and the sidewall of the deep hole has one or more protrusions.
  11. 如权利要求9所述的存储器件的电容器,其特征在于,还包括通过对深孔顶部进行刻蚀形成的扩孔结构,所述扩孔结构处于深孔的顶部且截面面积大于深孔结构的截面面积,所述第一电极层仅设置在扩孔结构下方的深孔底部和侧面,所述高K铁电氧化物层和第二电极层形成在深孔和扩孔结构的侧壁和底部。10. The capacitor of the storage device according to claim 9, further comprising a hole expansion structure formed by etching the top of the deep hole, wherein the hole expansion structure is located at the top of the deep hole and has a cross-sectional area larger than that of the deep hole structure. The cross-sectional area, the first electrode layer is only provided on the bottom and side of the deep hole under the reaming structure, the high-K ferroelectric oxide layer and the second electrode layer are formed on the sidewall and bottom of the deep hole and the reaming structure .
  12. 一种存储器件的制造方法,其包括:A method of manufacturing a memory device, comprising:
    在半导体衬底上形成存储单元区和外围电路区,其中在存储单元区的衬底上形成晶体管,所述晶体管包括源极、漏极和栅极;forming a memory cell region and a peripheral circuit region on a semiconductor substrate, wherein a transistor is formed on the substrate of the memory cell region, and the transistor includes a source electrode, a drain electrode and a gate electrode;
    在存储单元区及外围电路区衬底的晶体管层上沉积第一介质层,在第一介质层内形成与晶体管源极或漏极对应的通孔,在通孔内形成位线导电柱和电容导电柱;A first dielectric layer is deposited on the transistor layer of the substrate in the memory cell area and the peripheral circuit area, a through hole corresponding to the source or drain of the transistor is formed in the first dielectric layer, and a bit line conductive column and a capacitor are formed in the through hole conductive column;
    在第一介质层上形成第二介质层,在第二介质层形成与电容导电柱连接的电容器导电互连,在第二介质层形成与位线导电柱连接的金属位线;forming a second dielectric layer on the first dielectric layer, forming a capacitor conductive interconnection connected to the capacitor conductive column on the second dielectric layer, and forming a metal bit line connected to the bit line conductive column on the second dielectric layer;
    在第二介质层上形成第三介质层,在第三介质层形成与电容器导电互连相连的电容器接触盘;forming a third dielectric layer on the second dielectric layer, and forming a capacitor contact pad connected to the conductive interconnection of the capacitor on the third dielectric layer;
    在第三介质层上形成第四介质层,在第四介质层与前述电容器接触盘对应的位置刻蚀形成深孔暴露出电容器接触盘,在深孔内依次沉积下电极层、铁电材料层和上电极层形成铁电电容结构;A fourth dielectric layer is formed on the third dielectric layer, a deep hole is formed by etching at the position corresponding to the aforementioned capacitor contact pad, and the capacitor contact pad is exposed, and a lower electrode layer and a ferroelectric material layer are sequentially deposited in the deep hole and the upper electrode layer to form a ferroelectric capacitor structure;
    在铁电电容上方形成第五介质层,在第五介质层形成与铁电电容上电极相连的金属板线。A fifth dielectric layer is formed above the ferroelectric capacitor, and a metal plate line connected to the upper electrode of the ferroelectric capacitor is formed on the fifth dielectric layer.
  13. 如权利要求12所述的方法,其中所述电容器导电互连、金属位线、金属板线为铜金属。13. The method of claim 12, wherein the capacitor conductive interconnects, metal bit lines, metal plate lines are copper metal.
  14. 如权利要求12所述的方法,其中所述铁电电容结构还包括形成于下电极与电容器接触盘之间的铜扩散保护层,在上电极上形成有一层铜扩散保护层。13. The method of claim 12, wherein the ferroelectric capacitor structure further comprises a copper diffusion protection layer formed between the lower electrode and the capacitor contact pad, and a copper diffusion protection layer is formed on the upper electrode.
  15. 如权利要求12所述的方法,其中所述铁电电容的底面积小于电容器接触盘的面积,刻蚀形成深孔时,电容器接触盘构成深孔刻蚀阻挡层。The method of claim 12 , wherein the bottom area of the ferroelectric capacitor is smaller than the area of the capacitor contact pad, and when the deep hole is formed by etching, the capacitor contact pad forms a deep hole etching barrier.
  16. 如权利要求12所述的方法,其中形成铁电电容器结构的步骤还包括通过化学机械研磨工艺研磨去除深孔外的电容器的上电极、铁电材料层和下电极,仅保留深孔中的电容器上电极、铁电材料层和下电极的步骤。13. The method of claim 12, wherein the step of forming the ferroelectric capacitor structure further comprises grinding and removing the upper electrode, the ferroelectric material layer and the lower electrode of the capacitor outside the deep hole by a chemical mechanical polishing process, leaving only the capacitor in the deep hole The steps of upper electrode, ferroelectric material layer and lower electrode.
  17. 如权利要求12所述的方法,其中在形成铁电电容器的步骤还包括在深孔内电容器的上电极上沉积金属层填充深孔,然后通过化学机械研磨工艺研磨去除深孔外的金属层和电容器的上电极、铁电材料层和下电极,仅保留深孔中的金属层和电容器上电极、铁电材料层和下电极的步骤。The method of claim 12, wherein the step of forming the ferroelectric capacitor further comprises depositing a metal layer on the upper electrode of the capacitor in the deep hole to fill the deep hole, and then grinding and removing the metal layer and the metal layer outside the deep hole by a chemical mechanical polishing process. For the upper electrode, ferroelectric material layer and lower electrode of the capacitor, only the metal layer in the deep hole and the steps of the upper electrode, ferroelectric material layer and lower electrode of the capacitor are retained.
  18. 如权利要求17所述的方法,其中形成与电容器上电极相连的金属板线的步骤包括,在电容器结构上形成介质层,在介质层的电容器中心位置形成与电容器上电极上的填充金属层连通的导电互连,在导电互连上方形成介质层,在介质层形成开孔,在开孔内沉积金属形成金属板线。18. The method of claim 17, wherein the step of forming a metal plate line connected to the upper electrode of the capacitor comprises forming a dielectric layer on the capacitor structure, and forming a dielectric layer at the center of the capacitor in communication with the filler metal layer on the upper electrode of the capacitor A dielectric layer is formed above the conductive interconnection, an opening is formed in the dielectric layer, and metal is deposited in the opening to form a metal plate wire.
  19. 如权利要求12所述的方法,其中形成与电容器上电极相连的金属板线的步骤包括,在电容器结构上形成介质层,在介质层的电容器结构的中心位置形成通孔,在通孔内形成导电柱连接电容器的上电极,在导电柱上形成介质层,在介质层形成开孔,在开孔内沉积金属形成金属板线。13. The method of claim 12, wherein the step of forming a metal plate line connected to the upper electrode of the capacitor comprises forming a dielectric layer on the capacitor structure, forming a through hole in the dielectric layer at a central position of the capacitor structure, and forming a through hole in the through hole The conductive column is connected to the upper electrode of the capacitor, a dielectric layer is formed on the conductive column, an opening is formed in the dielectric layer, and metal is deposited in the opening to form a metal plate wire.
  20. 如权利要求12所述的方法,其中形成电容器结构的步骤包括,在深孔内沉积电容器下电极、铁电材料层和上电极后,通过光罩刻蚀深孔边缘的铁电电容下电极材料层、铁电材料层和上电极材料层将相邻铁电电容器分隔开,保留深孔边缘四周的电容下电极材料层、铁电材料层和上电极材料层的步骤。13. The method of claim 12, wherein the step of forming the capacitor structure comprises, after depositing the capacitor lower electrode, the ferroelectric material layer and the upper electrode in the deep hole, etching the ferroelectric capacitor lower electrode material at the edge of the deep hole through a photomask The layer, the ferroelectric material layer and the upper electrode material layer separate the adjacent ferroelectric capacitors and retain the lower electrode material layer, the ferroelectric material layer and the upper electrode material layer around the edge of the deep hole.
  21. 如权利要求20所述的方法,其中形成与电容器上电极相连的金属板线的步骤包括,在铁电电容的深孔边缘部位形成通孔,在通孔内形成导电柱连接电容器的上电极,在导电柱上形成介质层,在介质层形成开孔,在开孔内沉积金属形成金属板线。The method of claim 20, wherein the step of forming a metal plate wire connected to the upper electrode of the capacitor comprises forming a through hole in the edge portion of the deep hole of the ferroelectric capacitor, and forming a conductive column in the through hole to connect the upper electrode of the capacitor, A dielectric layer is formed on the conductive pillar, an opening is formed in the dielectric layer, and metal is deposited in the opening to form a metal plate line.
  22. 如权利要求12所述的方法,其中在形成深孔的步骤进一步包括先刻 蚀形成具有第一截面尺寸的深孔,然后在深孔上方刻蚀形成扩孔结构的步骤,扩孔结构处于深孔的顶部且截面面积大于深孔结构的截面面积。The method as claimed in claim 12, wherein the step of forming the deep hole further comprises the step of first etching to form a deep hole with a first cross-sectional size, and then etching over the deep hole to form a hole reaming structure, wherein the reaming structure is in the deep hole and the cross-sectional area is larger than the cross-sectional area of the deep hole structure.
  23. 如权利要求22所述的方法,其中形成铁电电容的步骤进一步包括:在深孔结构和扩孔结构内形成电容的底部电极层的第一电极层,然后去除介质层顶面、扩孔结构侧壁和底部的底部电极层,仅保留扩孔结构下方的深孔底部和侧面的第一电极层;The method of claim 22, wherein the step of forming the ferroelectric capacitor further comprises: forming a first electrode layer of the bottom electrode layer of the capacitor in the deep hole structure and the expanded hole structure, and then removing the top surface of the dielectric layer and the expanded hole structure The bottom electrode layer on the sidewall and the bottom, only the first electrode layer on the bottom and side of the deep hole below the hole reaming structure is retained;
    在底部电极层上形成铁电材料层和铁电材料层上的第二电极层,其中铁电材料层完全覆盖深孔的第一电极层以及扩孔结构的内表面,第二电极层完全填充深孔和扩孔结构;A ferroelectric material layer and a second electrode layer on the ferroelectric material layer are formed on the bottom electrode layer, wherein the ferroelectric material layer completely covers the first electrode layer of the deep hole and the inner surface of the expanded hole structure, and the second electrode layer completely fills Deep hole and reaming structure;
    通过化学机械研磨的方式将晶衬底表面的铁电材料层和第二电极层磨掉形成铁电电容结构。A ferroelectric capacitor structure is formed by grinding off the ferroelectric material layer and the second electrode layer on the surface of the crystal substrate by means of chemical mechanical grinding.
  24. 如权利要求12所述的方法,其中第四介质层包括多层结构,刻蚀形成深孔的步骤进一步包括先对多层结构进行刻蚀,形成平齐的深孔内壁,然后再经过湿法刻蚀形成不同层之间的凸出结构。The method of claim 12, wherein the fourth dielectric layer comprises a multi-layer structure, and the step of etching to form the deep hole further comprises etching the multi-layer structure to form a flush inner wall of the deep hole, and then performing a wet method Etching forms protruding structures between the different layers.
  25. 如权利要求12所述的方法,其中所述铁电电容的上电极层和下电极层的材料包括下列各项至少之一:氮化钛(TiN)、氮化钛硅(TiSiNx)、氮化钛铝(TiAlNx)、碳氮化钛(TiCNx)、氮化钽(TaNx)、氮化钽硅(TaSiNx)、氮化钽铝(TaAlNx)、氮化钨(WNx)、硅化钨(WSix)、碳氮化钨(WCNx)、钌(Ru)、氧化钌(RuOx)、铱(Ir)、掺杂多晶硅、透明导电氧化物(TCO)或氧化铱(IrOx);所述铁电材料层的材料包括氧和一种或多种铁电金属,所述铁电金属包括锆(Zr)、铪(Hf)、钛(Ti)、铝(Al)、镍(Ni)和/或铁(Fe),并且铁电材料可以掺杂第II族元素钙(Ca)、锶(Sr)或钡(Ba)或第III族元素钪(Sc)、钇(Y)、铝(Al)、镓(Ga)以及铟(In)或者镧系元素镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。The method of claim 12, wherein the material of the upper electrode layer and the lower electrode layer of the ferroelectric capacitor comprises at least one of the following: titanium nitride (TiN), titanium silicon nitride (TiSiNx), nitride Titanium aluminum (TiAlNx), titanium carbonitride (TiCNx), tantalum nitride (TaNx), tantalum silicon nitride (TaSiNx), tantalum aluminum nitride (TaAlNx), tungsten nitride (WNx), tungsten silicide (WSix), Tungsten carbonitride (WCNx), ruthenium (Ru), ruthenium oxide (RuOx), iridium (Ir), doped polysilicon, transparent conductive oxide (TCO) or iridium oxide (IrOx); the material of the ferroelectric material layer comprising oxygen and one or more ferroelectric metals including zirconium (Zr), hafnium (Hf), titanium (Ti), aluminium (Al), nickel (Ni) and/or iron (Fe), And the ferroelectric material can be doped with group II elements calcium (Ca), strontium (Sr) or barium (Ba) or group III elements scandium (Sc), yttrium (Y), aluminum (Al), gallium (Ga) and Indium (In) or lanthanide elements Lanthanum (La), Cerium (Ce), Praseodymium (Pr), Neodymium (Nd), Promethium (Pm), Samarium (Sm), Europium (Eu), Gadolinium (Gd), Terbium ( Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu).
PCT/CN2021/113445 2020-08-26 2021-08-19 Method for manufacturing fcob storage device, and capacitor thereof WO2022042411A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010871391.XA CN111968981B (en) 2020-08-26 2020-08-26 Manufacturing method of FCOB storage device and capacitor thereof
CN202010871391.X 2020-08-26

Publications (1)

Publication Number Publication Date
WO2022042411A1 true WO2022042411A1 (en) 2022-03-03

Family

ID=73390485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113445 WO2022042411A1 (en) 2020-08-26 2021-08-19 Method for manufacturing fcob storage device, and capacitor thereof

Country Status (3)

Country Link
CN (1) CN111968981B (en)
TW (1) TW202209639A (en)
WO (1) WO2022042411A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11508858B2 (en) 2016-01-07 2022-11-22 The Research Foundation For The State University Of New York Multi-well selenium device and method for fabrication thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111968981B (en) * 2020-08-26 2021-12-24 无锡拍字节科技有限公司 Manufacturing method of FCOB storage device and capacitor thereof
CN117981490A (en) * 2021-09-08 2024-05-03 无锡舜铭存储科技有限公司 Ferroelectric memory device and method of manufacturing the same
CN116963505A (en) * 2022-04-11 2023-10-27 华为技术有限公司 Memory, manufacturing method thereof and electronic equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1202982A (en) * 1995-11-20 1998-12-23 株式会社日立制作所 Semiconductor storage device and process for manufacturing the same
US6215187B1 (en) * 1999-06-11 2001-04-10 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and manufacturing method thereof
US6281535B1 (en) * 1999-01-22 2001-08-28 Agilent Technologies, Inc. Three-dimensional ferroelectric capacitor structure for nonvolatile random access memory cell
US20040129961A1 (en) * 2001-11-29 2004-07-08 Symetrix Corporation Ferroelectric and high dielectric constant integrated circuit capacitors with three-dimensional orientation for high-density memories, and method of making the same
CN104576598A (en) * 2013-10-25 2015-04-29 台湾积体电路制造股份有限公司 Semiconductor arrangement having capacitor separated from active region
CN104934423A (en) * 2014-03-19 2015-09-23 瑞萨电子株式会社 Semiconductor Integrated Circuit Device and Method For Producing The Same
CN107204324A (en) * 2016-03-17 2017-09-26 台湾积体电路制造股份有限公司 Semiconductor devices, MIM capacitor and its manufacture method
CN111968981A (en) * 2020-08-26 2020-11-20 无锡拍字节科技有限公司 Manufacturing method of FCOB storage device and capacitor thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6165864A (en) * 1998-07-28 2000-12-26 Siemens Aktiengesellschaft Tapered electrode for stacked capacitors
JP5731341B2 (en) * 2011-09-26 2015-06-10 ルネサスエレクトロニクス株式会社 Semiconductor memory device, semiconductor device, and method of manufacturing semiconductor memory device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1202982A (en) * 1995-11-20 1998-12-23 株式会社日立制作所 Semiconductor storage device and process for manufacturing the same
US6281535B1 (en) * 1999-01-22 2001-08-28 Agilent Technologies, Inc. Three-dimensional ferroelectric capacitor structure for nonvolatile random access memory cell
US6215187B1 (en) * 1999-06-11 2001-04-10 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and manufacturing method thereof
US20040129961A1 (en) * 2001-11-29 2004-07-08 Symetrix Corporation Ferroelectric and high dielectric constant integrated circuit capacitors with three-dimensional orientation for high-density memories, and method of making the same
CN104576598A (en) * 2013-10-25 2015-04-29 台湾积体电路制造股份有限公司 Semiconductor arrangement having capacitor separated from active region
CN104934423A (en) * 2014-03-19 2015-09-23 瑞萨电子株式会社 Semiconductor Integrated Circuit Device and Method For Producing The Same
CN107204324A (en) * 2016-03-17 2017-09-26 台湾积体电路制造股份有限公司 Semiconductor devices, MIM capacitor and its manufacture method
CN111968981A (en) * 2020-08-26 2020-11-20 无锡拍字节科技有限公司 Manufacturing method of FCOB storage device and capacitor thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11508858B2 (en) 2016-01-07 2022-11-22 The Research Foundation For The State University Of New York Multi-well selenium device and method for fabrication thereof

Also Published As

Publication number Publication date
CN111968981A (en) 2020-11-20
TW202209639A (en) 2022-03-01
CN111968981B (en) 2021-12-24

Similar Documents

Publication Publication Date Title
WO2022042407A1 (en) Manufacturing method for memory device and capacitor of memory device
WO2022042411A1 (en) Method for manufacturing fcob storage device, and capacitor thereof
CN111900170B (en) Three-dimensional ferroelectric memory structure and manufacturing method thereof
US7371589B2 (en) Ferroelectric random access memory capacitor and method for manufacturing the same
KR20200047300A (en) Via landing enhancement for memory device
US11856788B2 (en) Semiconductor device and method of fabricating the same
US20230238331A1 (en) Semiconductor memory device including wiring contact plugs
CN112382633A (en) Three-dimensional ferroelectric memory and method of manufacturing the same
CN113421882A (en) Ferroelectric memory and manufacturing method thereof
KR20060000878A (en) Method for fabricating semiconductor memory device
JP4427563B2 (en) Manufacturing method of semiconductor device
CN112992901A (en) Semiconductor memory device having contact plug
KR100624696B1 (en) Method for fabricating capacitor in semiconductor device
JP2008235815A (en) Nonvolatile memory
KR100537203B1 (en) Capacitor in ferroelectric memory device and fabricating method for thereof
KR100744038B1 (en) Method for fabricating capacitor in semiconductor device
JP2006041246A (en) Method for manufacturing ferroelectric capacitor
JP3942814B2 (en) Manufacturing method of semiconductor device
CN117395998A (en) Three-dimensional ferroelectric memory structure and manufacturing method thereof
KR100866709B1 (en) Manufacturing method for capacitor of semiconductor device
KR100847040B1 (en) Semiconductor device and process for fabricating same
KR100640781B1 (en) Method for fabricating capacitor in semiconductor device
JP2009081229A (en) Semiconductor device and manufacturing method thereof
JP2004289004A (en) Semiconductor device and its manufacturing method
KR20040091322A (en) A method for forming a capacitor of a semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21860249

Country of ref document: EP

Kind code of ref document: A1