TWI796944B - 螢光增強基板及螢光檢測裝置 - Google Patents

螢光增強基板及螢光檢測裝置 Download PDF

Info

Publication number
TWI796944B
TWI796944B TW111104032A TW111104032A TWI796944B TW I796944 B TWI796944 B TW I796944B TW 111104032 A TW111104032 A TW 111104032A TW 111104032 A TW111104032 A TW 111104032A TW I796944 B TWI796944 B TW I796944B
Authority
TW
Taiwan
Prior art keywords
fluorescence
photonic crystal
crystal film
fluorescent
fluorescence enhancement
Prior art date
Application number
TW111104032A
Other languages
English (en)
Other versions
TW202330738A (zh
Inventor
洪玉珠
蔣酉旺
張仲廷
吳翔發
陳啟仁
Original Assignee
國立中山大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中山大學 filed Critical 國立中山大學
Priority to TW111104032A priority Critical patent/TWI796944B/zh
Priority to US17/742,475 priority patent/US20230243747A1/en
Application granted granted Critical
Publication of TWI796944B publication Critical patent/TWI796944B/zh
Publication of TW202330738A publication Critical patent/TW202330738A/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本發明揭露一種螢光檢測裝置,其包含一螢光增強基板及一光源,該螢光增強基板上之一螢光增強層具有一光子晶體膜,該光子晶體膜由一嵌段共聚物所形成,該光源用以發射一激發光至被放置於該螢光增強層上的一螢光材料,以激發該螢光材料發出一螢光,該螢光增強層可增強該螢光之發光效率,因此可提高螢光檢測靈敏度。

Description

螢光增強基板及螢光檢測裝置
本發明關於一種螢光增強基板,特別是一種透過光子晶體增加螢光發光效率之螢光增強基板。
螢光檢測技術可應用於生醫檢測、食品安全檢測及環境安全檢測,螢光分子與檢體接觸後,照射特定波長的激發光,使電子能量自基態(ground state)躍遷至激發態(excited state),當電子自激發態返回基態時,能量以螢光形式釋放,透過光學儀器測量螢光訊號強度,可間接得知檢體含量,然而,當螢光訊號強度過低時,容易受到外界因素干擾而造成誤判。
本發明之目的在於提供一種螢光增強基板,透過該螢光增強基板上的光子晶體膜可提高螢光放光量,因此可提昇螢光檢測靈敏度。
本發明之一種螢光增強基板具有一載板及一螢光增強層,該螢光增強層位於該載板之一表面,該螢光增強層之一光子晶體膜由一嵌段共聚物所形成,且該光子晶體膜內具有複數個孔洞。
本發明之一種螢光檢測裝置具有一螢光增強基板及一光源,該螢光增強基板具有一載板及一螢光增強層,該螢光增強層位於該載板之一表面,該螢光增強層之一光子晶體膜由一嵌段共聚物所形成,且該光子晶體膜內具有複數個孔洞,該光源用以提供一激發光,當放置一螢光材料於該螢光增強層上時,該激發光用以激發該螢光材料發出一螢光,該螢光增強層用以增強該螢光之發光效率。
請參閱第1圖,其為本發明之第一實施例,一螢光檢測裝置A包含一螢光增強基板100及一光源200,該螢光增強基板100具有一載板110及一螢光增強層120,該螢光增強層120位於該載板110之一表面111,本發明不限制該載板110材質,其可為玻璃、塑膠、矽或紙製品,該光源200用以提供一激發光210,較佳地,該光源200設置於一螢光顯微鏡中,當使用者將一螢光材料300放置於該螢光增強基板100上時,該激發光210照射於該螢光材料300,以激發該螢光材料300發出一螢光310,該螢光增強層120用以增強該螢光310之發光效率,因此可增加放光量而提高螢光檢測靈敏度,有助於檢測低濃度螢光材料,該螢光材料300可為螢光染料、螢光蛋白、標記有螢光分子的抗體或抗原等螢光生物分子。
請參閱第1圖,該螢光增強層120具有一光子晶體膜121,該光子晶體膜121由一嵌段共聚物(block copolymer)所形成,呈現多孔洞結構,該嵌段共聚物可為一雙性嵌段共聚物(amphiphilic block copolymer),該雙性嵌段共聚物自組裝後形成具有週期性三維網狀結構之該光子晶體膜121,因此該光子晶體膜121內存在複數個孔洞121a,較佳地,該雙性嵌段共聚物為聚苯乙烯-聚乙烯吡啶共聚物(PS-PVP, polystyrene-block-poly(vinylpyridine)),更佳地,該雙性嵌段共聚物為聚苯乙烯-聚二乙烯吡啶共聚物(PS-P2VP, polystyrene-block-poly(2-vinylpyridine))或聚苯乙烯-聚四乙烯吡啶共聚物(PS-P4VP, polystyrene-block-poly(4-vinylpyridine))。
在本實施例中,係將PS-P2VP共聚物溶液塗佈於一基材上形成一薄膜,於塗佈成膜過程中,PS-P2VP共聚物會自組裝成具有週期性的三維網狀結構,三維網狀結構可為螺旋二十四面體奈米結構(gyroid)、聯結網狀結構(interconnected network structure)或其他三維網狀微結構,將該薄膜浸泡於極性溶劑(如乙醇)後,極性溶劑會膨潤PS-P2VP共聚物中的P2VP鏈段,而提高三維網狀結構的週期尺寸,因此膨潤後的薄膜週期尺寸大於膨潤前的薄膜週期尺寸,將薄膜自極性溶劑中取出進行乾燥,於極性溶劑揮發過程中,膨潤的P2VP鏈段會轉變為玻璃態,使得薄膜表面形成玻璃態薄層,待極性溶劑完全揮發後,三維網狀結構的週期尺寸不會回復至原始週期尺寸,而是介於膨潤前的薄膜及膨潤後的薄膜之間,以取得一固態光子晶體,最後將固態光子晶體轉印至該載板110,作為該光子晶體膜121,在其他實施例中,可直接於該載板110上形成該光子晶體膜121。
該光子晶體膜121之三維網狀結構有助於抓取更多的該螢光材料300,且可於多個方向產生相位匹配而激發出布洛赫表面波(Bloch surface wave),藉由布洛赫表面波產生的共振效應可提高該螢光310之發光效率,此外,該光子晶體膜121厚度與共振效應成正比,當該光子晶體膜121厚度越厚時,其週期性結構層數越多,因此布洛赫表面波產生的共振效應越好。
請參閱第2圖,其為本發明之第二實施例,該螢光增強層120另具有複數個金屬顆粒122,將含有該些金屬顆粒122之一溶液塗布於該光子晶體膜121表面,可使該些金屬顆粒122均勻分佈於該光子晶體膜121之該些孔洞121a中,該些金屬顆粒122之材質可選自由金、銀、銅及鋁所組成之群組中至少一種。
該光子晶體膜121之週期性多孔結構與該些金屬顆粒122構成一光柵耦合(grating coupler)架構,當該激發光210照射於該螢光增強基板100時,該光子晶體膜121及該些金屬顆粒122會耦合出表面電漿波(Surface plasmons),表面電漿波會增強電磁場,增強的電磁場作用於該螢光材料300後,會使更多的電子從基態躍遷至激發態,且自激發態返回基態而放出螢光的電子也變多,因此可提高該螢光310放光量。
請參閱第3圖,其為本發明之第三實施例,不同於第二實施例,該些金屬顆粒122位於該載板110及該光子晶體膜121之間,較佳地,該些金屬顆粒122係沉積於該載板110之該表面111,而形成厚度介於40 nm至50 nm的一金屬薄膜122a,由於該光子晶體膜121為多孔洞結構,該金屬薄膜122a與該光子晶體膜121之間存在許多表面電漿波的產生熱點,在本實施例中,係於該載板110之該表面111沈積一銀薄膜。
可根據不同需求,使該金屬薄膜122a完全覆蓋或局部覆蓋該載板110之該表面111,當全面性地使該些金屬顆粒122沉積於該載板110之該表面111時,所形成之該金屬薄膜122a完全覆蓋該表面111,當選擇性地使該些金屬顆粒122沉積於該載板110之該表面111時,所形成之該金屬薄膜122a則為局部覆蓋該表面111之圖案化金屬薄膜。
當該螢光材料300與該金屬薄膜122a距離過近時,自基態躍遷至激發態的電子與金屬距離太近,使得電子返回基態時會直接被金屬吸收,不會以發光方式釋放能量,此現象稱為能量轉移淬熄(Energy transfer quenching),反之,當該螢光材料300與該金屬薄膜122a距離過遠時,位於金屬表面的表面電漿波無法作用於該螢光材料300,無法使更多電子躍遷至激發態而釋放出螢光,因此該螢光材料300與該金屬薄膜122a之間的距離與放光效率息息相關。
在第三實施例中,該光子晶體膜121位於該螢光材料300及該金屬薄膜122a之間,因此可藉由該光子晶體膜121厚度調整該螢光材料300與該金屬薄膜122a之間的距離,較佳地,該光子晶體膜121厚度不大於3μm,更加地,該光子晶體膜121厚度介於0.5μm至3μm,藉由該光子晶體膜121可使該螢光材料300與該金屬薄膜122a保持適當距離,進而使表面電漿波有效地提昇該螢光310之發光效率。
請參閱第4圖,其為螢光檢測試驗結果,在本試驗中,該載板110之材質為玻璃,該光子晶體膜121由PS-P2VP自組裝而成,該金屬薄膜122a為銀薄膜,該光源200為螢光顯微鏡中的汞燈,汞燈的白光通過濾片後,放出綠光照射於該螢光材料300,該螢光材料300為126.3ppm的羅丹明6G(R6G,Rhodamine 6G),該螢光材料300發出的螢光反射回螢光顯微鏡,通過另一濾片後呈紅光,曝光時間為1ms。
第4a圖為對照組,係將R6G直接滴在玻璃基板上,第4b圖為實驗組,將PS-P2VP光子晶體膜轉印至玻璃基板後,再將R6G滴在PS-P2VP光子晶體膜上,第4c圖為另一實驗組,於玻璃基板鍍上銀後,將PS-P2VP光子晶體膜轉印至銀薄膜,再將R6G滴在PS-P2VP光子晶體膜上,比較對照組及實驗組可知,透過該光子晶體膜121之週期性結構所產生的布洛赫表面波,確實可提高該螢光310之發光效率,此外,該光子晶體膜121之週期性結構與金屬所耦合出的表面電漿波可更進一步提高該螢光310之發光效率。
透過改變極性溶劑的揮發所需時間,可調整該光子晶體膜121之三維網狀結構週期尺寸,使得該光子晶體膜121之三維網狀結構週期尺寸介於150nm至300nm,可用以增強不同螢光材料之發光效率。
具有不同反射波段的該光子晶體膜121可使得相同螢光材料300呈現不同發光效率,當該光子晶體膜121的反射波段越接近該螢光310放光波長範圍,該螢光材料300之發光效率越佳,請參閱第5圖,在本試驗中,該螢光材料300為126.3ppm的羅丹明6G(R6G,Rhodamine 6G),曝光時間為1ms,該光子晶體膜121反射波段分別為505nm(第5a圖)、560nm(第5b圖)及620nm(第5c圖),由於620nm最接近R6G的放光波長,因此反射波段為620nm的該光子晶體膜121可達到最佳發光效率。
透過該光子晶體膜121耦合出的布洛赫表面波,本發明之該螢光增強基板100可顯著地增加該螢光310之發光效率,將該螢光增強基板100應用於螢光檢測裝置時,可有效提昇螢光檢測靈敏度,即使螢光分子濃度小於10-7ppm,該螢光檢測裝置A仍可偵測到螢光訊號,此外,該光子晶體膜121具有可延展、可彎曲、製備簡易等優點,有利於發展低成本及高靈敏度的螢光檢測裝置。
本發明之保護範圍當視後附之申請專利範圍所界定者為準,任何熟知此項技藝者,在不脫離本發明之精神和範圍內所作之任何變化與修改,均屬於本發明之保護範圍。
100:螢光增強基板
110:載板
111:表面
120:螢光增強層
121:光子晶體膜
121a:孔洞
122:金屬顆粒
122a:金屬薄膜
200:光源
210:激發光
300:螢光材料
310:螢光
A:螢光檢測裝置
第1圖:依據本發明之第一實施例,一種螢光檢測裝置之示意圖。 第2圖:依據本發明之第二實施例,一種螢光檢測裝置之示意圖。 第3圖:依據本發明之第三實施例,一種螢光檢測裝置之示意圖。 第4圖:螢光檢測試驗結果。 第5圖:螢光檢測試驗結果。
100:螢光增強基板
110:載板
111:表面
120:螢光增強層
121:光子晶體膜
121a:孔洞
200:光源
210:激發光
300:螢光材料
310:螢光
A:螢光檢測裝置

Claims (10)

  1. 一種螢光增強基板,其包含:一載板;以及一螢光增強層,位於該載板之一表面,該螢光增強層具有一光子晶體膜及複數個金屬顆粒,該光子晶體膜由一嵌段共聚物所形成,且該光子晶體膜內具有複數個孔洞,該些金屬顆粒位於該載板及該光子晶體膜之間,且該些金屬顆粒於該載板之該表面形成一金屬薄膜。
  2. 如請求項1之螢光增強基板,其中該光子晶體膜具有一三維網狀結構。
  3. 如請求項2之螢光增強基板,其中該三維網狀結構之週期尺寸介於150nm至300nm。
  4. 如請求項1之螢光增強基板,其中該嵌段共聚物為一雙性嵌段共聚物。
  5. 如請求項4之螢光增強基板,其中該雙性嵌段共聚物為聚苯乙烯-聚乙烯吡啶共聚物(PS-PVP)。
  6. 如請求項4之螢光增強基板,其中該雙性嵌段共聚物為聚苯乙烯-聚二乙烯吡啶共聚物(PS-P2VP)或聚苯乙烯-聚四乙烯吡啶共聚物(PS-P4VP)。
  7. 如請求項1之螢光增強基板,其中該些金屬顆粒之材質選自於由金、銀、銅及鋁所組成之群組中至少一種。
  8. 如請求項1之螢光增強基板,其中該金屬薄膜厚度介於40nm至50nm。
  9. 如請求項1之螢光增強基板,其中該光子晶體膜厚度不大於3μm。
  10. 一種螢光檢測裝置,其包含:一螢光增強基板,具有一載板及一螢光增強層,該螢光增強層位於該載板之一表面,該螢光增強層具有一光子晶體膜及複數個金屬顆粒,該光子晶體膜由一嵌段共聚物所形成,且該光子晶體膜內具有複數個孔洞,該些金屬顆粒位於該載板及該光子晶體膜之間,且該些金屬顆粒於該載板之該表面形成一金屬薄膜;以及一光源,用以提供一激發光,其中當放置一螢光材料於該螢光增強層上時,該激發光用以激發該螢光材料發出一螢光,該螢光增強層用以增強該螢光之發光效率。
TW111104032A 2022-01-28 2022-01-28 螢光增強基板及螢光檢測裝置 TWI796944B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW111104032A TWI796944B (zh) 2022-01-28 2022-01-28 螢光增強基板及螢光檢測裝置
US17/742,475 US20230243747A1 (en) 2022-01-28 2022-05-12 Substrate for fluorescence enhancement and fluorescence detection device having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111104032A TWI796944B (zh) 2022-01-28 2022-01-28 螢光增強基板及螢光檢測裝置

Publications (2)

Publication Number Publication Date
TWI796944B true TWI796944B (zh) 2023-03-21
TW202330738A TW202330738A (zh) 2023-08-01

Family

ID=86692500

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111104032A TWI796944B (zh) 2022-01-28 2022-01-28 螢光增強基板及螢光檢測裝置

Country Status (2)

Country Link
US (1) US20230243747A1 (zh)
TW (1) TWI796944B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103940659A (zh) * 2014-03-26 2014-07-23 中国科学院化学研究所 具有亲疏水结构的传感器及其应用
TW201432246A (zh) * 2013-02-05 2014-08-16 Univ Nat Chiao Tung 螢光增強裝置
TWI680563B (zh) * 2018-10-22 2019-12-21 國立中山大學 固態光子晶體之製備方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9314991D0 (en) * 1993-07-20 1993-09-01 Sandoz Ltd Mechanical device
JP3645907B2 (ja) * 1994-05-27 2005-05-11 ノバルティス アクチエンゲゼルシャフト 漸減励起された発光を検出する方法
US6771376B2 (en) * 1999-07-05 2004-08-03 Novartis Ag Sensor platform, apparatus incorporating the platform, and process using the platform
US6989324B2 (en) * 2004-01-15 2006-01-24 The Regents Of The University Of California Fabrication method for arranging ultra-fine particles
RU2361193C2 (ru) * 2004-05-19 2009-07-10 Вп Холдинг, Ллс Оптический датчик с многослойной плазмонной структурой для усовершенствованного обнаружения химических групп посредством sers
US7943908B2 (en) * 2007-01-22 2011-05-17 University Of Maryland Sensor system with surface-plasmon-polariton (SPP) enhanced selective fluorescence excitation and method
US20080240543A1 (en) * 2007-03-30 2008-10-02 Wolfgang Ernst Gustav Budach Calibration and normalization method for biosensors
US7768640B2 (en) * 2007-05-07 2010-08-03 The Board Of Trustees Of The University Of Illinois Fluorescence detection enhancement using photonic crystal extraction
US20090086208A1 (en) * 2007-09-27 2009-04-02 Massachusetts Institute Of Technology Broad wavelength range tunable photonic materials
US20100035335A1 (en) * 2008-08-08 2010-02-11 Lakowicz Joseph R Metal-enhanced fluorescence for the label-free detection of interacting biomolecules
TWI404753B (zh) * 2009-07-03 2013-08-11 Nat Univ Tsing Hua 利用團聯共聚物模板製造奈米材料之方法
US10107807B2 (en) * 2014-05-22 2018-10-23 The University Of Maryland, Baltimore One dimensional photonic crystals for enhanced fluorescence based sensing, imaging and assays
KR101862468B1 (ko) * 2016-09-08 2018-05-29 연세대학교 산학협력단 광결정 구조체 및 이의 제조 방법
KR101794191B1 (ko) * 2016-09-19 2017-11-06 포항공과대학교 산학협력단 다중 나노패턴의 형성방법 및 그를 이용한 유기태양전지의 제조방법
TWI653449B (zh) * 2018-01-31 2019-03-11 國立交通大學 光子晶體與磁珠結合的螢光免疫檢測裝置和方法
TWI683085B (zh) * 2018-10-12 2020-01-21 國立交通大學 光學位移感測系統

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201432246A (zh) * 2013-02-05 2014-08-16 Univ Nat Chiao Tung 螢光增強裝置
CN103940659A (zh) * 2014-03-26 2014-07-23 中国科学院化学研究所 具有亲疏水结构的传感器及其应用
TWI680563B (zh) * 2018-10-22 2019-12-21 國立中山大學 固態光子晶體之製備方法

Also Published As

Publication number Publication date
US20230243747A1 (en) 2023-08-03
TW202330738A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
Lozano et al. Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices
US9227383B2 (en) Highly flexible near-infrared metamaterials
US4508749A (en) Patterning of polyimide films with ultraviolet light
CN106462052B (zh) 防护膜、防护膜组件、曝光原版、曝光装置及半导体装置的制造方法
US7993801B2 (en) Multilayer active mask lithography
TWI404930B (zh) Biochemical sensing wafer substrate and its preparation method
US20130003070A1 (en) Structure, chip for localized surface plasmon resonance sensor, localized surface plasmon resonance sensor, and fabricating methods therefor
US8895235B2 (en) Process for production of photoresist pattern
Yao et al. Theoretical and experimental research on terahertz metamaterial sensor with flexible substrate
Chang et al. Bifunctional Nano Lycurgus Cup Array Plasmonic Sensor for Colorimetric Sensing and Surface‐Enhanced Raman Spectroscopy
Barrios et al. Aluminum nanohole arrays fabricated on polycarbonate for compact disc-based label-free optical biosensing
CN106847797A (zh) 一种贵金属纳米颗粒‑量子点阵列发光器件制备方法
Chen et al. Enhanced normal-direction excitation and emission of dual-emitting quantum dots on a cascaded photonic crystal surface
TWI796944B (zh) 螢光增強基板及螢光檢測裝置
Lee et al. 3D multilayered plasmonic nanostructures with high areal density for SERS
Miao et al. Liquid‐Metal‐Based Nanophotonic Structures for High‐Performance SEIRA Sensing
Zhao et al. Hyperbolic nanoparticles on substrate with separate optical scattering and absorption resonances: a dual function platform for SERS and thermoplasmonics
US8960968B2 (en) Method of manufacturing an improved optical layer for a light emitting device with surface NANO-micro texturation based on coherent electromagnetic radiation speckle lithography
Ding Controllable tuning of Fabry–Perot cavities via laser printing
Blanc et al. Fabrication of sub-micron period diffraction gratings in self-processing sol–gel glasses
Ai et al. Light trapping in plasmonic nanovessels
US20160202183A1 (en) Spectral shifts and modifications in metal-enhanced fluorescence, phosphorescence and alpha-fluorescence
Zhang et al. Swelling of cross-linked polystyrene beads in toluene
Yaiwong et al. Tunable surface plasmon resonance enhanced fluorescence via the stretching of a gold quantum dot-coated aluminum-coated elastomeric grating substrate
TWI465709B (zh) 螢光增強裝置