TWI683085B - 光學位移感測系統 - Google Patents

光學位移感測系統 Download PDF

Info

Publication number
TWI683085B
TWI683085B TW107135911A TW107135911A TWI683085B TW I683085 B TWI683085 B TW I683085B TW 107135911 A TW107135911 A TW 107135911A TW 107135911 A TW107135911 A TW 107135911A TW I683085 B TWI683085 B TW I683085B
Authority
TW
Taiwan
Prior art keywords
light
incident
sensing system
optical
displacement sensing
Prior art date
Application number
TW107135911A
Other languages
English (en)
Other versions
TW202014670A (zh
Inventor
黃正昇
王彥傑
Original Assignee
國立交通大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立交通大學 filed Critical 國立交通大學
Priority to TW107135911A priority Critical patent/TWI683085B/zh
Priority to US16/600,158 priority patent/US11015918B2/en
Application granted granted Critical
Publication of TWI683085B publication Critical patent/TWI683085B/zh
Publication of TW202014670A publication Critical patent/TW202014670A/zh
Priority to US17/240,491 priority patent/US11480426B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/04Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving
    • G01B11/043Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving for measuring length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/38Forming the light into pulses by diffraction gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/268Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3534Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being diffractive, i.e. a grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3616Holders, macro size fixtures for mechanically holding or positioning fibres, e.g. on an optical bench
    • G02B6/3624Fibre head, e.g. fibre probe termination

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

一種光學位移感測系統,透過設置光感測器於移動平台,搭配寬頻光源和光頻譜分析儀的配置,使光感測器的波導光柵於移動平台移動時共振而反射具有共振波長的反射光,且波導光柵具有複數個週期,因此,當移動平台移動至不同的位置點而使寬頻光源對應不同的週期時,將使各位置點對應不同的共振波長。透過前述的設置,能依據共振波長的不同得知位置點,而不需光學尺的設置,並能達成微米或奈米等級的位移偵測。

Description

光學位移感測系統
本發明關於一種光學位移感測系統,透過具有複數個週期的波導光柵的設置及搭配移動平台的配置,使入射光於移動平台移動時入射波導光柵而產生具有共振波長的反射光,能依據共振波長的不同辨識各位置點。
習知光學位置感測為利用光柵結構的繞射圖案偵測位移,具體而言,光源發射入射光於具有光柵結構的光學尺而產生繞射圖案,當光學尺位移時,則產生不同的繞射圖案,得知習知光學式位置感測為透過繞射圖案的不同來辨識各位置點,然而,當光學尺受到震動時,繞射圖案變化,而使位置點的偵測產生誤差,因此習知光學位置感測對光學尺的穩定要求相當高。
美國專利公告號7155087B2之專利前案利用兩個互相平行的圓孔陣列偵測位移變化,具體而言,入射光先入射並穿透兩個圓孔陣列而取得原透射光譜,當兩個圓孔陣列的距離發生變化時,原透射光譜相應改變為後透射光譜,能根據原透射光譜和後透射光譜間的變化得知位移量,但卻需達要讓入射光於圓孔陣列耦合而共振,因此入射光的極化狀態以及入射光的環境勢必需適當地選擇,且兩個圓孔陣列的設置會導致位移感測系統的長度拉長。
綜觀前所述,本發明之發明者思索並設計一種光學位移感測系統,以期針對習知技術之缺失加以改善,進而增進產業上之實施利用。
有鑑於上述習知之問題,本發明的目的在於提供一種光學位移感測系統,用以解決習知技術中所面臨之問題。
基於上述目的,本發明提供一種光學位移感測系統,其包括寬頻光源、光纖準直鏡、光感測器、移動平台以及光頻譜分析儀。寬頻光源發射入射光;光纖準直鏡具有輸入端、感測端以及輸出端,輸入端耦接寬頻光源以接收入射光,並透過感測端傳送入射光;光感測器設置於鄰近感測端並位於入射光行進的方向以接收入射光,其包括基板以及波導光柵具有複數個彼此相異的週期及設置於基板上,且透過波導光柵導引入射光,使波導光柵共振而反射具有共振波長的反射光至感測端;移動平台鄰近設置於光感測器及位於該入射光的行進方向,移動平台移動至不同的位置點而對應不同的週期,從而使各位置點對應不同的共振波長;光頻譜分析儀耦接輸出端以顯示反射光的光譜。透過前述的設置,能依據共振波長的不同辨識各位置點,而不需光學尺的設置及特定相位的入射光,另外,本發明之光學位移感測系統所需的元件取得容易及低成本,且比習知的光學位移感測系統的長度短,並具有耐電磁干擾之優點。
較佳地,基板位於遠離光纖準直鏡的一側或靠近光纖準直鏡的一側。
較佳地,波導光柵包括光柵結構以及波導層,光柵結構設置於基板上,波導層設置於光柵結構上。
較佳地,波導光柵由複數個高折射率區以及複數個低折射率區交替組成。
較佳地,各位置點之間的位移量為微米等級。
較佳地,本發明之光學位移感測系統更包括偏振器,偏振器設置於光感測器和感測端之間,以極化入射光。
較佳地,複數個彼此相異的週期包括最大週期以及最小週期,最小週期以變化量梯度變化至最大週期。
較佳地,移動平台以對應最小週期的位置點為參考點移動。
基於上述目的,本發明提供一種光學位移感測系統,其包括光放大器、第一光纖準直鏡、第二光纖準值鏡、入射鏡、光感測器、反射鏡以及移動平台。光放大器具有入射端以及反射端,並從入射端發出入射光;第一光纖準直鏡耦接入射端;第二光纖準直鏡耦接反射端;入射鏡位於第一光纖準直鏡之相對於入射端的一側以轉向入射光;光感測器鄰近設置於入射鏡以接收入射光,其包括基板以及波導光柵,波導光柵具有複數個彼此相異的週期及設置於基板上,且透過波導光柵導引入射光,使波導光柵反射反射光至入射鏡,入射鏡從而將反射光反射至第一光纖準直鏡;反射鏡位於第二光纖準直鏡之相對於反射端的一側,接收第二光纖準直鏡所發出的反射光,並將反射光反射至第二光纖準直鏡,進而將反射光反射至光感測器,使反射光來回於光感測器和反射鏡之間達到雷射條件而產生雷射光;移動平台鄰近設置於光感測器及位於入射光的行進方向。其中,雷射光透過第一光纖準直鏡入射至入射鏡時,雷射光進而入射至光感測器而使光感測器的波導光柵共振而反射具有共振波長的反射雷射光,移動平台移動至不同的位置點而對應不同的週期,從而使各位置點對應不同的共振波長,由於雷射光的同調性及具有多個週期的波導光柵的設置,使各共振波長對應不同的位置點,且各共振波長的半高寬相當窄,使各位置點的辨別相當容易。
較佳地,基板位於遠離反射鏡的一側或靠近反射鏡的一側。
較佳地,波導光柵結構包括光柵結構以及波導層,光柵結構設置於基板上,波導層設置於光柵結構上。
較佳地,波導光柵由複數個高折射率區以及複數個低折射率區交替組成。
較佳地,各位置點之間的位移量為奈米等級。
較佳地,本發明之光學位移感測系統更包括分光器以及光頻譜分析儀,分光器位於反射鏡和第二光纖準直鏡之間,分光器將反射雷射光轉向至光頻譜分析儀。
較佳地,複數個彼此相異的週期包括最大週期以及最小週期,最小週期以變化量梯度變化至最大週期。
較佳地,移動平台以對應最小週期的位置點為參考點移動。
承上所述,本發明之光學位移感測系統,其可具有一個或多個下述優點:
(1)本發明之光學位移感測系統,利用光柵結構使反射光具有共振波長,根據共振波長的不同辨識各位置點,而不需光學尺的設置及特定波長的入射光,即能達成微米等級或奈米等級的位移偵測。
(2)本發明之光學位移感測系統所需的元件取得容易且低成本,並具有耐電磁干擾的優點。
10‧‧‧寬頻光源
20‧‧‧光纖準直鏡
21‧‧‧輸入端
22‧‧‧感測端
23‧‧‧輸出端
24‧‧‧準直鏡
30、500‧‧‧光感測器
31、501‧‧‧基板
32、502‧‧‧光柵結構
33、503‧‧‧波導層
40、700‧‧‧移動平台
50、900‧‧‧光頻譜分析儀
60‧‧‧偏振器
70‧‧‧傳感器
80‧‧‧控制器
100‧‧‧光放大器
101‧‧‧入射端
102‧‧‧反射端
200‧‧‧第一光纖準直鏡
201‧‧‧第一準直鏡
300‧‧‧第二光纖準直鏡
301‧‧‧第二準直鏡
400‧‧‧入射鏡
600‧‧‧反射鏡
800‧‧‧分光器
HR‧‧‧高折射率區
LR‧‧‧低折射率區
WG‧‧‧波導光柵
第1圖為本發明之光學位移感測系統之第一實施例的配置圖。
第2圖為本發明之光學位移感測系統之第一實施例的光感測器製造流程圖。
第3圖為本發明之光學位移感測系統之第一實施例的光感測器結構圖。
第4圖為本發明之光學位移感測系統之第一實施例的光感測器的擺放位置圖。
第5圖為本發明之光學位移感測系統之第一實施例的波導光柵的備擇結構圖。
第6圖為本發明之光學位移感測系統之第一實施例的反射光譜及位置和波長的曲線圖。
第7圖為本發明之光學位移感測系統之第一實施例的位置和波長的曲線圖。
第8圖為本發明之光學位移感測系統之第一實施例的單波長量測位移的配置圖。
第9圖為本發明之光學位移感測系統之第一實施例應用於加速度量測的配置圖。
第10圖為本發明之光學位移感測系統之第一實施例應用於剪應力量測的配置圖。
第11圖為本發明之光學位移感測系統之第二實施例的配置圖。
第12圖為本發明之光學位移感測系統之第二實施例的反射光譜及位置和波長的曲線圖。
第13圖為本發明之光學位移感測系統之第二實施例的反射光譜及位置和波長的曲線圖。
第14圖為本發明之光學位移感測系統之第二實施例應用於扭力感測的配置圖。
第15圖本發明之光學位移感測系統之第三實施例的配置圖。
本發明之優點、特徵以及達到之技術方法將參照例示性實施例及所附圖式進行更詳細地描述而更容易理解,且本發明可以不同形式來實現,故不應被理解僅限於此處所陳述的實施例,相反地,對所屬技術領域具有通常知識者而言,所提供的實施例將使本揭露更加透徹與全面且完整地傳達本發明的範疇,且本發明將僅為所附加的申請專利範圍所定義。
請參閱第1~3圖,其為本發明之光學位移感測系統之實施例的配置圖。於本實施例中,本發明之光學位移感測系統,其包括寬頻光源10、光纖準直鏡20、光感測器30、移動平台40以及光頻譜分析儀50。寬頻光源10發射入射光;光纖準直鏡20可為2對1的光纖模組並具有輸入端21、感測端22、輸出端23以及準直鏡24,輸入端21耦接寬頻光源10以接收入射光,準直鏡24設置於感測端22,並透過感測端22傳送入射光,入射光經過準直鏡24而朝向光感測器30邁進;光感測器30設置於鄰近感測端22並位於入射光行進的方向以接收入射光,其包括基板31及波導光柵WG,波導光柵WG包括波導層33以及光柵結構32,光柵結構32具有複數個彼此相異的週期P1~Pn及設置於基板31上,波導層33設置於光柵結構32上,且透過波導光柵WG導引入射光,使波導光柵WG共振而反射具有共振波長的反射光至感測端22;移動平台40鄰近設置於光感測器30及位於 入射光的行進方向,且移動平台40和光感測器30的擺放位置垂直於入射光的行進方向,移動平台40移動至不同的位置點而對應不同的週期,從而使各位置點對應不同的共振波長;光頻譜分析儀50耦接輸出端23以顯示反射光的光譜,從而得知反射光的共振波長。透過前述的設置,能依據共振波長的不同辨識各位置點,而不需光學尺的設置及特定相位的入射光,且本發明之光學位移系統能感測到各位置點之間的微米等級的位移量,另外,本發明之光學位移感測系統所需的元件取得容易及低成本,且比習知的光學位移感測系統的系統尺寸小,並具有耐電磁干擾之優點。
需提及的是,本發明之光學位移感測系統可應用於會移動的物品或設備上,而並非一定需要移動平台40的輔助移動來偵測,移動平台40僅為輔助光感測器30的移動,舉例來說,可將光感測器30設置於微米等級的晶片移動設備,搭配本發明之光學位移感測系統之除了移動平台40之外的元件,而能準確地量測出晶片的位移量是否精準。
需說明的是,本發明之光學位移感測系統為利用導膜共振(guided-mode resonance)原理進行波導光柵的共振,波導光柵為由光柵結構和波導組合而成,詳言之,由於波導光柵的材料以及其週期、厚度以及層數的設定,僅會讓特定波長的入射光在波導內進行全反射,由於漸逝波(evanescent wave)的現象,特定波長的入射光仍會從光柵結構耦合出去成多道反射光,特定波長的入射光也會從基板耦合出去成多道透射光,多道反射光產生建設性干涉,使得反射光在特定波長的反射率為接近100%,多道透射光則與垂直入射的透射波產生破壞性干涉,使得透射光在特定波長的穿透率接近零,由於此現象的存在,常利用導膜共振原理製作濾波器。
具體而言,複數個彼此相異的週期P1~Pn包括最大週期Pn以及最小週期P1,最小週期P1以變化量梯度變化至最大週期Pn,舉例來說,最大週期Pn為550nm,最小週期P1為250nm,最小週期P1以2nm的變化量變化至最大週期Pn,當然也可根據光柵結構32的設計需求而加以調整,並未侷限於本發明所列舉的範圍;移動平台40以對應最小週期P1的位置點為參考點移動,且因光柵結構32具有各種週期P1~Pn,俾使移動平台40在移動時而對應不同的週期,進而使反射光的共振波長產生變化,與習知的光學位移感測系統的元件配置相比更加簡易,當然也能根據位移所需調整其他週期所對應的位置點為參考點,並未侷限於本發明所闡述的範圍。
另外,本發明之光學位移感測系統更包括偏振器60,偏振器60設置於光感測器30和感測端22之間,以極化入射光及使入射光的相位產生改變,入射光則可變為例如TE(transverse electric mode)模態或TM(transverse magnetic mode)模態的光,進而量測到TE模態或TM模態的入射光入射時所產生的共振波長。
值得一提的是,光纖準直鏡20可為2對2的光纖模組而比2對1的光纖模組多出一個感測端22,亦即,光纖準直鏡20具有兩個感測端22,一個感測端22為發出入射光的端口,另一個感測端22為接收反射光的端口,因而能調整入射光的入射角,進而達成入射光斜向入射於光感測器30及反射光斜向反射至光纖準直鏡20的目的,光感測器30處於斜向位置時仍能透過2對2的光纖準直鏡20進行位移量測。
請參閱第2圖及第3圖,其分別為本發明之光學位移感測系統之第一實施例的光感測器製造流程圖以及本發明之光學位移感測系統之第一實施例 的光感測器結構圖。於此,搭配第2圖和第3圖,且基板31為PET基板、光柵結構32由Norland68組成以及波導層33為二氧化鈦(TiO2)組成,說明光感測器30的製作流程如下:(1)先在矽模具上滴上Norland68,其中,矽模的結構為對應光柵結構32。(2)設置PET基板於Norland68上方,接續利用紫外光(UV)照射於Norland68以使其固化成光柵結構32。(3)進行翻模程序,亦即,將具有Norland68的PET基板從矽模具脫離。(4)最後沉積二氧化鈦層於Norland68上以作為波導層33,從而形成如第3圖所示的光感測器30,其中,沉積二氧化鈦層的方法可為濺鍍法(sputter)、化學氣相沉積法(chemical vapor deposition)、脈衝雷射沉積(pulsed laser deposition)或分子束磊晶(molecular beam epitaxy),當然也可為其他能沉積二氧化鈦的方法,並未侷限於本發明所列舉的範圍。
需提及的是,光柵結構32的形成也可透過先沉積半導體層再進行濕式蝕刻或乾式蝕刻成光柵結構32,而並未侷限於本發明所闡述的範圍;光柵結構32的共振波長的範圍則能依據週期、材料以及厚度的挑選來決定,光源的波段範圍隨而決定,因而不加以限定共振波長和寬頻光源10的波長範圍。
請參閱第4圖,為本發明之光學位移感測系統之第一實施例的光感測器的擺放位置圖。如第4圖所示,入射光可先入射至基板31再入射至波導光柵WG而產生具有共振波長的反射光,亦即基板31位於靠近光纖準直鏡20的一側;入射光也可先入射至波導光柵WG再入射至基板31而產生具有共振波長的反射光,亦即,基板31位於遠離光纖準直鏡20的一側。前述兩種配置皆能產出具有共振波長的反射光,因而皆能達到感測位移之目的。
請參閱第5圖,為本發明之光學位移感測系統之第一實施例的波導光柵的備擇結構圖。如第5圖所示,波導光柵WG僅為單層結構及由複數個高 折射率區HR和複數個低折射率區LR交替組成,單個高折射率HR和單個低折射率區LR及構成一個週期,且能根據共振波長的需求,調整各高折射率區HR及各低折射率區LR的厚度、材料以及週期,使波導光柵WG具有複數個彼此相異的週期P1~Pn而能反射出具有共振波長的反射光,也能根據位移量所需,調整高折射率區HR和低折射率區LR之數目,而並未侷限於本發明所闡述的範圍;其中,高折射率區HR的材料包括五氧化二鉭(Ta2O5)、五氧化二鈮(Nb2O5)、二氧化鈦(TiO2)、二氧化鋯(ZrO2)、二氧化鉿(HfO2)以及氧化鋅(ZnO),低折射率區LR的材料包括氟化鎂(MgF2)、二氧化矽(SiO2)、氟化鈣(CaF2)、氟化鋇(BaF2)以及氧化鋁(Al2O3)。
請參閱第6圖,其為本發明之光學位移感測系統之第一實施例的反射光譜及位置和波長的曲線圖。如第6圖的a部分所示,移動平台40從參考點0mm開始以0.5mm進行移動,每0.5mm為一個位置點(亦即位移量為0.5mm)及以6mm的位置為最後移動處,各位置點由於對應的週期並不一樣,導致各位置點所對應的最高反射率的波長相異,亦即,各位置點的共振波長並不一樣,整合各位置點的共振波長如第6圖的b部分所示,共振波長和位移量並非呈線性關係,但能透過電腦線性擬合出y=67.315x+455.72的直線(y為共振波長及x為位置點),斜率值即為靈敏度,得知本發明之光學位移感測系統的平均靈敏度為67.315nm/mm。
請參閱第7圖,本發明之光學位移感測系統之第一實施例的位置和波長的曲線圖。如第7圖的a部分、b部分以及c部分所示,分別以1mm、3mm以及5mm的位置點為參考點,以0.05mm為位移量移動,同樣地進行擬合直線,得知其靈敏度分別為80.2nm/mm、59.5nm/mm以及56.8nm/mm。總括而言,1mm 的位置點所對應的週期為小於5mm的位置點所對應的週期,造成1mm的位置點所對應的靈敏度大於5mm的位置點所對應的靈敏度。
請參閱第8圖,其為本發明之光學位移感測系統之第一實施例的單波長量測位移的配置圖。如第8圖所示,設定入射光為600nm的單波長,入射光則透過感測端22分別入射至共振波長600nm在移動平台40的位置點以及共振波長620nm在移動平台40的位置點,而共振波長為600nm所對應的週期和共振波長為620nm所對應的週期不同,因此造成共振波長為600nm所對應的週期之處和共振波長為620nm所對應的週期之處的共振效果相異,入射光共振波長為600nm的位置點由於入射光的波長與其相符而增加光強度,共振波長為620nm的位置點由於入射光的波長與其相異而減少光強度;從前述得知,單波長的光會在對應共振波長的位置點共振效果加強,而使對應共振波長的位置點之光強度增強,單波長的光會在未對應共振波長的位置點共振效果減少,而使對應共振波長的位置點之光強度減弱,進而得知光強度與位移距離呈相關性。因此,仍能應用單波長的光以及其對應的位置點為參考點,並根據光強度的大小判斷其他位置點和參考點之間的位移距離。
請參閱第9圖,其為本發明之光學位移感測系統之第一實施例應用於加速度量測的配置圖。如第9圖所示,當移動平台40加速移動時,光感測器30透過輔助軸而呈現懸空狀態,且因慣性原理而往相對於移動平台40的加速度方向往反方向運動,入射光分別於移動平台40加速前和移動平台40加速後入射的波導光柵WG的週期之處並不同,因而導致入射光分別於移動平台40加速前和移動平台40加速後的共振波長不同,根據共振波長的差異取得位移量,位移量再搭配時間差即能得出加速度。
請參閱第10圖,其為本發明之光學位移感測系統之第一實施例應用於剪應力量測的配置圖。如第10圖所示,在移動平台40的挖空處設置光感測器30,光感測器30透過輔助軸而呈現懸空狀態;當移動平台40受到剪應力時,光感測器30從而移動,入射光分別於移動平台40遭受剪應力前和移動平台40遭受剪應力後入射的波導光柵WG的週期之處並不同,因而導致入射光分別於移動平台40遭受剪應力前和移動平台40遭受剪應力後的共振波長不同,根據共振波長的差異取得位移量,並利用剪應力公式和位移量來取得剪應力的數值。
請參閱第11圖,其為本發明之光學位移感測系統之第二實施例的配置圖。如第11圖所示,第二實施例和第一實施例的配置差異在於移動平台40為旋轉式移動平台和傳感器70及控制器80的設置,第二實施例的其餘元件與第一實施例相同而不再重複敘述。詳言之,設置光感測器30於圓柱,並將具有光感測器30的圓柱聯接到轉盤上,轉盤下方設置傳感器70,傳感器70和控制器80電性連接,透過控制器80和傳感器70的輔助旋轉移動平台40。
續言之,當控制器80下達控制命令至傳感器70時,傳感器70據此旋轉移動平台40,則入射光所打入之波導光柵WG的週期之處也隨之改變,根據波導光柵WG的週期之處的不同,共振波長的位置也隨之變化。
另外,本發明之光學位移感測系統可應用於會旋轉的物品上,而並非一定需要傳感器70、控制器80以及移動平台40的輔助旋轉來偵測,傳感器70、控制器80以及移動平台40僅為輔助光感測器30的旋轉,舉例來說,本發明之光學位移感測系統應用於馬達,搭配本發明之光學位移感測系統之除了移動平台40之外的元件,而能準確地量測出馬達的旋轉角度,得知馬達的運轉狀況。
請參閱第12圖,其為本發明之光學位移感測系統之第二實施例的反射光譜及位置和波長的曲線圖。如第12圖的a部分所示,移動平台40從參考點0度開始以0.5度進行移動,每0.5度為一個位置點(亦即位移量為0.5度)及以7度的位置點為最後移動處,各位置點由於對應的週期並不一樣,導致各位置點所對應的最高反射率的波長相異,亦即,各位置點的共振波長並不一樣,整合各位置點的共振波長如第4圖的b部分所示,共振波長和位移量並非呈線性關係,但能透過電腦擬合出y=51.677x+434.24的直線(y為共振波長及x為位置點),斜率值即為靈敏度,得知本發明之光學位移感測系統的平均靈敏度為51.677nm/度。
請參閱第13圖,其為本發明之光學位移感測系統之第二實施例的反射光譜及位置和波長的曲線圖。如第13圖的a部分,於位置點為0.5度所在之處的反射率曲線透過電腦的高斯曲線擬合出平滑的反射率曲線;如第13圖的b部分,位置點為0.5度作為起點及以0.005度為位移量進行量測,並透過電腦的高斯曲線擬合出五條平滑的反射率曲線。
續言之,如第11圖的c部分、d部分以及e部分所示,分別以0.5度、3.5度以及6.5度的位置點為參考點,以0.005度為位移量移動,同樣地進行擬合直線,得知其靈敏度分別為57nm/度、41.8nm/度以及27.5nm/度。總括而言,0.5度的位置點所對應的週期為小於6.5度的位置點所對應的週期,造成0.5度的位置點所對應的靈敏度大於6.5度的位置點所對應的靈敏度。
請參閱第14圖,為本發明之光學位移感測系統之第二實施例應用於扭力感測的配置圖。如第14圖所示,當施加扭力於扭力軸時,移動平台40隨之旋轉,設置於移動平台40的光感測器30因而旋轉,入射光分別於移動平台40遭受扭力前和移動平台40遭受扭力後入射的波導光柵WG的週期之處並不同,因 而導致入射光分別於移動平台40遭受扭力前和移動平台40遭受扭力後的共振波長不同,根據共振波長的差異取得位移量,並利用扭力公式和位移量來取得扭力的數值。
請參閱第15圖,其為本發明之光學位移感測系統之第三實施例的配置圖。於本實施例中,本發明之光學位移感測系統,其包括光放大器100、第一光纖準直鏡200、第二光纖準值鏡300、入射鏡400、光感測器500、反射鏡600以及移動平台700。光放大器100為半導體光放大器及具有入射端101以及反射端102,並從入射端101發出入射光;第一光纖準直鏡200為單模光纖配上第一準直鏡201,準直鏡201透過單模光纖耦接入射端101;第二光纖準直鏡300為單模光纖配上第二準直鏡301,準直鏡301透過單模光纖耦接反射端102;入射鏡400位於第一光纖準直鏡200之相對於入射端101的一側以轉向入射光;光感測器500鄰近設置於入射鏡400及位於入射光行進方向以接收入射光,其包括基板501以及波導光柵WG,波導光柵WG包括波導層503以及光柵結構502,光柵結構502具有複數個彼此相異的週期P1~Pn及設置於基板501上,波導層503設置於光柵結構502上,且透過波導光柵WG導引入射光,使波導光柵WG反射反射光至入射鏡400,入射鏡400從而將反射光反射至第一光纖準直鏡200;反射鏡600位於第二光纖準直鏡300之相對於反射端102的一側,接收第二光纖準直鏡300所發出的反射光,並將反射光反射至第二光纖準直鏡300,進而將反射光反射至光感測器500,使反射光來回於光感測器500和反射鏡600之間達到雷射條件而產生雷射光;移動平台700鄰近設置於光感測器500及位於入射光的行進方向其中,雷射光透過第一光纖準直鏡200入射至入射鏡400時,雷射光進而入射至光感測器500而使光感測器500的光柵結構502共振而反射具有共振波長的反射雷射光,移動平台700移 動至不同的位置點而對應不同的週期,從而使各位置點對應不同的共振波長,由於雷射光的同調性及具有多個週期的光柵結構502的設置,使各共振波長對應不同的位置點,且各共振波長的半高寬相當窄,使各位置點的辨別相當容易,並能感測到各位置點之間的奈米等級的位移量。
需說明的是,光感測器500和反射鏡600形成共振腔,反射光在共振腔內來回反射而不斷進行光增益及光損失,同時反射光在打入光柵結構502時即有共振波長的出現,並搭配光放大器100的電流控制,使反射光的共振波長的強度增強並窄化反射光的半高寬(full width half maximum),當反射光達成光增益大於光損失的雷射條件時,半高寬極窄的雷射光形成。
需說明的是,第三實施例的光感測器500與第一實施例的光感測器30相同,複數個彼此相異的週期P1~Pn包括最大週期Pn以及最小週期P1,最小週期P1以變化量梯度變化至最大週期Pn,舉例來說,最大週期Pn為550nm,最小週期P1為250nm,最小週期P1以2nm的變化量變化至最大週期Pn,當然也可根據光柵結構502的設計需求而加以調整,並未侷限於本發明所列舉的範圍;移動平台700以對應最小週期P1的位置點為參考點移動,且因光柵結構502具有各種週期P1~Pn,俾使移動平台700在移動時而對應不同的週期,進而使反射光的共振波長產生變化,與習知的光學位移感測系統的元件配置相比更加簡易,當然也能根據位移所需調整其他週期所對應的位置點為參考點,並未侷限於本發明所闡述的範圍。
另外,本發明之光學位移感測系統更包括分光器800以及光頻譜分析儀900,分光器800位於反射鏡600和第二光纖準直鏡300之間以將雷射光進 行分光,分光器800將反射雷射光轉向至光頻譜分析儀900以觀看反射雷射光的光譜。
值得一提的是,由於光感測器500和反射鏡600形成的共振腔和光放大器100的電流控制,將反射雷射光的共振波長的強度增強並窄化反射雷射光的半高寬,得出高品質因子(quality factor)的雷射光,進而改善共振波長的標準差及達成感測到奈米等級位移量之目標。
同樣地,入射光可先入射至基板501再入射至波導光柵WG而產生具有共振波長的反射光,亦即基板501位於靠近反射鏡600的一側;入射光也可先入射至波導光柵WG再入射至基板501而產生具有共振波長的反射光,亦即,基板501位於遠離反射鏡600的一側,前述兩種配置皆能產出具有共振波長的反射光,因而皆能達到感測位移之目的;另外,在此實施例中,波導光柵WG也可如第5圖所示僅為單層結構及由複數個高折射率區HR和複數個低折射率區LR交替組成,單個高折射率HR和單個低折射率區LR及構成一個週期,且能根據共振波長的需求,調整各高折射率區HR及各低折射率區LR的厚度、材料以及週期,使波導光柵WG具有複數個彼此相異的週期P1~Pn而能反射出具有共振波長的反射光,也能根據位移量所需,調整高折射率區HR和低折射率區LR之數目,而並未侷限於本發明所闡述的範圍,高折射率區HR和低折射率區LR的材料於第一實施例已描述而不再重複敘述。
綜上所述,本發明之光學位移感測系統,透過光柵結構32的複數個彼此相異的週期P1~Pn的設計,使移動平台40在移動時對應不同的週期之處,使各位置點的共振波長相異,並根據共振波長的差異得知位移量,而不需光學尺的設置及特定相位的入射光,達成微米等級的位移量偵測之目的,另,本發 明之光學位移感測系統能應用於角度、加速度、剪應力以及扭力的偵測。總括而言,本發明之光學位移感測系統具有如上述的優點,所需的元件取得容易及低成本,且能達成微米級位移量的偵測,甚至能偵測奈米級位移量。
以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。
10‧‧‧寬頻光源
20‧‧‧光纖準直鏡
21‧‧‧輸入端
22‧‧‧感測端
23‧‧‧輸出端
24‧‧‧準直鏡
30‧‧‧光感測器
40‧‧‧移動平台
50‧‧‧光頻譜分析儀
60‧‧‧偏振器

Claims (16)

  1. 一種光學位移感測系統,其包括:一寬頻光源,發射一入射光;一光纖準直鏡,具有一輸入端、一感測端以及一輸出端,該輸入端耦接該寬頻光源以接收該入射光,並透過該感測端傳送該入射光;一光感測器,設置於鄰近該感測端並位於該入射光的行進方向以接收該入射光,其包括:一基板;以及一波導光柵,具有複數個彼此相異的週期及設置於該基板上,且透過該波導光柵導引該入射光,使該波導光柵共振而反射具有一共振波長的一反射光至該感測端;一移動平台,鄰近設置於該光感測器及位於該入射光的行進方向,該移動平台移動至不同的一位置點而對應不同的該週期,從而使各該位置點對應不同的該共振波長;以及一光頻譜分析儀,耦接該輸出端以顯示該反射光的光譜。
  2. 如申請專利範圍第1項所述之光學位移感測系統,其中,該基板位於遠離該光纖準直鏡的一側或靠近該光纖準直鏡的一側。
  3. 如申請專利範圍第1項所述之光學位移感測系統,該波導光柵包括一光柵結構以及一波導層,該光柵結構設置於該基板上,該波導層設置於該光柵結構上。
  4. 如申請專利範圍第1項所述之光學位移感測系統,該波導光柵由複數個高折射率區和複數個低折射率區交替組成。
  5. 如申請專利範圍第1項所述之光學位移感測系統,其中,各該位置點之間的一位移量為微米等級。
  6. 如申請專利範圍第1項所述之光學位移感測系統,其中,更包括一偏振器,該偏振器設置於該光感測器和該感測端之間。
  7. 如申請專利範圍第1項所述之光學位移感測系統,其中,該複數個彼此相異的週期包括一最大週期以及一最小週期,該最小週期以一變化量梯度變化至該最大週期。
  8. 如申請專利範圍第7項所述之光學位移感測系統,其中,該移動平台以對應該最小週期的該位置點為一參考點移動。
  9. 一種光學位移感測系統,其包括:一光放大器,具有一入射端以及一反射端,並從該入射端發出一入射光;一第一光纖準直鏡,耦接該入射端;一第二光纖準直鏡,耦接該反射端;一入射鏡,位於該第一光纖準直鏡之相對於該入射端的一側,以轉向該入射光;一光感測器,鄰近設置於該入射鏡及位於該入射光的行進方向以接收該入射光,其包括:一基板;以及一波導光柵,具有複數個彼此相異的週期及設置於該基板上,且透過該波導光柵導引該入射光,使該波導光柵反射一反射光至該入射鏡,該入射鏡從而將該反射光反射至該第一光纖準直鏡; 一反射鏡,位於該第二光纖準直鏡之相對於該反射端的一側,接收該第二光纖準直鏡所發出的該反射光,並將該反射光反射至該第二光纖準直鏡,進而將該反射光反射至該光感測器,使該反射光來回於該光感測器和該反射鏡之間達到一雷射條件而產生一雷射光;以及一移動平台,鄰近設置於該光感測器及位於該入射光的行進方向;其中,該雷射光透過該第一光纖準直鏡入射至該入射鏡時,該雷射光進而入射至該光感測器而使該光感測器的該波導光柵共振而反射具有一共振波長的一反射雷射光,該移動平台移動至不同的一位置點而對應不同的該週期,從而使各該位置點對應不同的該共振波長。
  10. 如申請專利範圍第9項所述之光學位移感測系統,其中,該基板位於遠離該入射鏡的一側或靠近該入射鏡的一側。
  11. 如申請專利範圍第9項所述之光學位移感測系統,該波導光柵包括一光柵結構以及一波導層,該光柵結構設置於該基板上,該波導層設置於該光柵結構上。
  12. 如申請專利範圍第9項所述之光學位移感測系統,該波導光柵由複數個高折射率區和複數個低折射率區交替組成。
  13. 如申請專利範圍第9項所述之光學位移感測系統,其中,各該位置點之間的一位移量為奈米等級。
  14. 如申請專利範圍第9項所述之光學位移感測系統,其中,更包括一分光器以及一光頻譜分析儀,該分光器位於該反射鏡和該第二光纖準直鏡之間,該分光器將該反射雷射光轉向至該光頻譜分 析儀。
  15. 如申請專利範圍第9項所述之光學位移感測系統,其中,該複數個彼此相異的週期包括一最大週期以及一最小週期,該最小週期以一變化量梯度變化至該最大週期。
  16. 如申請專利範圍第15項所述之光學位移感測系統,其中,該移動平台以對應該最小週期的該位置點為一參考點移動。
TW107135911A 2018-10-12 2018-10-12 光學位移感測系統 TWI683085B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW107135911A TWI683085B (zh) 2018-10-12 2018-10-12 光學位移感測系統
US16/600,158 US11015918B2 (en) 2018-10-12 2019-10-11 Optical displacement sensing system
US17/240,491 US11480426B2 (en) 2018-10-12 2021-04-26 Optical displacement sensing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107135911A TWI683085B (zh) 2018-10-12 2018-10-12 光學位移感測系統

Publications (2)

Publication Number Publication Date
TWI683085B true TWI683085B (zh) 2020-01-21
TW202014670A TW202014670A (zh) 2020-04-16

Family

ID=69942511

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107135911A TWI683085B (zh) 2018-10-12 2018-10-12 光學位移感測系統

Country Status (2)

Country Link
US (2) US11015918B2 (zh)
TW (1) TWI683085B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113804242A (zh) * 2020-06-16 2021-12-17 中移(上海)信息通信科技有限公司 路面监测系统、传感器布设位置的确定方法以及装置
CN113237498A (zh) * 2021-05-13 2021-08-10 华北水利水电大学 一种基于平面变周期透射光栅的光学位移传感系统
TWI796944B (zh) * 2022-01-28 2023-03-21 國立中山大學 螢光增強基板及螢光檢測裝置
CN115128800B (zh) * 2022-06-27 2024-02-02 西北工业大学 基于f-p腔的光学位移敏感单元及逆设计方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030174344A1 (en) * 2002-03-18 2003-09-18 Mitutoyo Corporation Optical displacement sensing device with reduced sensitivity to misalignment
TWI297767B (en) * 2006-05-30 2008-06-11 Nat Univ Tsing Hua Measuring apparatus and method using surface plasmon resonance
JP2010266364A (ja) * 2009-05-15 2010-11-25 Mitsutoyo Corp レーザ変位計
TWI383139B (zh) * 2008-11-20 2013-01-21 Nat Chung Cheng University Inv Tubular waveguide type plasma resonance sensing device and sensing system
TWI500950B (zh) * 2011-11-30 2015-09-21 Omron Tateisi Electronics Co 光學式位移感測器
CN108362210A (zh) * 2018-05-07 2018-08-03 长春理工大学光电信息学院 具有直线结构的单透镜激光位移测头

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1031828B1 (en) * 1999-02-25 2006-09-13 C.S.E.M. Centre Suisse D'electronique Et De Microtechnique Sa Integrated-optical sensor and method for integrated-optically sensing a substance
EP1085315B1 (en) * 1999-09-15 2003-07-09 CSEM Centre Suisse d'Electronique et de Microtechnique SA Integrated-optical sensor
US7155087B2 (en) 2002-10-11 2006-12-26 The Board Of Trustees Of The Leland Stanford Junior University Photonic crystal reflectors/filters and displacement sensing applications
JP5195112B2 (ja) * 2008-07-18 2013-05-08 株式会社リコー 屈折率センサ、屈折率センサアレイおよびバイオセンサ
US8619260B2 (en) * 2009-11-02 2013-12-31 Corning Incorporated Multi-grating biosensor for label-independent optical readers
WO2011059999A1 (en) * 2009-11-16 2011-05-19 Corning Incorporated Non-spectroscopic label-independent optical reader system and methods
US9518926B2 (en) * 2011-02-14 2016-12-13 Ben-Gurion University Of The Negev Research & Development Authority Optical sensor with enhanced sensitivity
TWI541493B (zh) * 2015-09-01 2016-07-11 國立交通大學 一種分光器及其光譜儀
KR102285677B1 (ko) * 2016-02-22 2021-08-05 한국전자통신연구원 광센서
TWI653449B (zh) * 2018-01-31 2019-03-11 國立交通大學 光子晶體與磁珠結合的螢光免疫檢測裝置和方法
TWI673481B (zh) * 2018-02-02 2019-10-01 國立交通大學 共振波長量測裝置及其量測方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030174344A1 (en) * 2002-03-18 2003-09-18 Mitutoyo Corporation Optical displacement sensing device with reduced sensitivity to misalignment
TWI297767B (en) * 2006-05-30 2008-06-11 Nat Univ Tsing Hua Measuring apparatus and method using surface plasmon resonance
TWI383139B (zh) * 2008-11-20 2013-01-21 Nat Chung Cheng University Inv Tubular waveguide type plasma resonance sensing device and sensing system
JP2010266364A (ja) * 2009-05-15 2010-11-25 Mitsutoyo Corp レーザ変位計
TWI500950B (zh) * 2011-11-30 2015-09-21 Omron Tateisi Electronics Co 光學式位移感測器
CN108362210A (zh) * 2018-05-07 2018-08-03 长春理工大学光电信息学院 具有直线结构的单透镜激光位移测头

Also Published As

Publication number Publication date
US20200116472A1 (en) 2020-04-16
US11480426B2 (en) 2022-10-25
TW202014670A (zh) 2020-04-16
US20210247177A1 (en) 2021-08-12
US11015918B2 (en) 2021-05-25

Similar Documents

Publication Publication Date Title
TWI683085B (zh) 光學位移感測系統
JP6289525B2 (ja) 光学測定装置
US9285534B2 (en) Fiber-optic surface plasmon resonance sensor and sensing method using the same
CN107917672B (zh) 一种用于提高超薄金属薄膜测试灵敏度的测试方法
Suzuki et al. Fundamental characteristics of a dual-colour fibre optic SPR sensor
Mahani et al. Design of an efficient Fabry-Perot biosensor using high-contrast slanted grating couplers on a dual-core single-mode optical fiber tip
US9945740B2 (en) Two wavelength optical interferometric pressure switch and pressure transducers
CN103733112A (zh) 标准具及标准具的制造方法
US7630590B2 (en) Optical sensor for measuring thin film disposition in real time
Raghuwanshi et al. High-sensitivity detection of hazardous chemical by special featured grating-assisted surface plasmon resonance sensor based on bimetallic layer
US20080137706A1 (en) Laser mirror for a ring laser gyroscope
JP2010210384A (ja) 屈折率計
KR102452388B1 (ko) 고분해능을 가지는 패브리-페로 필터
JP6560952B2 (ja) 検出装置、インテロゲータ、及びひずみ検出システム
Tang et al. One-dimensional photonic crystal inner coated hollow fiber sensor based on Bloch surface wave with ultra-high figure of merit
JP4975162B2 (ja) 紫外線用自己クローニングフォトニック結晶
JP7498221B2 (ja) 光学部品用の光学コーティングを提供する方法、装置、及びシステム
JP5566968B2 (ja) エタロンフィルタ及びエタロンフィルタの設計方法
Hsu et al. Optimization of a guided-mode resonance filter by varying the thickness of the buffer layer
Belardini et al. Anomalous refraction of self assembled gold nanowires studied by the generalized Snell's law
Imas González et al. Multi-sensing platform design with a grating-based nanostructure on a coverslip substrate
Gobi et al. Fiber Optic Displacement Sensor for Measuring the Thickness of a Transparent Plate
JP5416175B2 (ja) エタロンフィルタの製造方法
TW202146839A (zh) 測量特定波長之折射率的系統及方法
Zhao et al. Simultaneous excitation of cavity resonance and surface plasmon resonance in Ag/Al 2 O 3/Ag layer structure