TWI783392B - 執行用於訓練機器學習模型以產生特性圖案之方法的非暫時性電腦可讀媒體 - Google Patents

執行用於訓練機器學習模型以產生特性圖案之方法的非暫時性電腦可讀媒體 Download PDF

Info

Publication number
TWI783392B
TWI783392B TW110107274A TW110107274A TWI783392B TW I783392 B TWI783392 B TW I783392B TW 110107274 A TW110107274 A TW 110107274A TW 110107274 A TW110107274 A TW 110107274A TW I783392 B TWI783392 B TW I783392B
Authority
TW
Taiwan
Prior art keywords
feature
value
sraf
point
features
Prior art date
Application number
TW110107274A
Other languages
English (en)
Other versions
TW202201118A (zh
Inventor
峻 陶
宇 曹
克里斯多福 艾倫 史賓斯
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW202201118A publication Critical patent/TW202201118A/zh
Application granted granted Critical
Publication of TWI783392B publication Critical patent/TWI783392B/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/36Masks having proximity correction features; Preparation thereof, e.g. optical proximity correction [OPC] design processes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/46Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/761Proximity, similarity or dissimilarity measures

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Databases & Information Systems (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Image Analysis (AREA)
  • Electrophonic Musical Instruments (AREA)
  • Feedback Control In General (AREA)
  • Image Processing (AREA)
  • Electrically Operated Instructional Devices (AREA)

Abstract

一種用於訓練一機器學習模型以產生一特性圖案之方法包括獲得與一參考影像中之一參考特徵相關聯之訓練資料。該訓練資料包括(i)該參考特徵之每一部分的位置資料,及(ii)指示該參考特徵之該部分是否位於針對該參考特徵產生之一參考輔助特徵內的一存在值。該方法包括訓練該機器學習模型以基於該訓練資料中之實際存在值而預測一存在值。該預測存在值指示一特徵之一部分(例如,該特徵之一輪廓之一架構上的一架構點)是否將藉由一輔助特徵集合覆蓋。基於該訓練資料執行該訓練,使得一預測存在值與該存在值之間的一度量得以最小化。

Description

執行用於訓練機器學習模型以產生特性圖案之方法的非暫時性電腦可讀媒體
本發明大體上係關於圖案化程序,且更特定言之,係關於將機器學習用於對應於設計布局之特性圖案中的次解析度輔助特徵之置放的設備、方法及電腦程式產品。
微影投影設備可用於(例如)積體電路(IC)之製造中。在此情況下,圖案化器件(例如遮罩)可含有或提供對應於IC之個別層的圖案(「設計布局」),且此圖案可藉由諸如經由圖案化器件上之圖案來輻照目標部分的方法而經轉印至基板(例如矽晶圓)上之目標部分(例如包含一或多個晶粒)上,該目標部分已經塗佈有輻射敏感材料(「光阻」)。一般而言,單一基板含有複數個相鄰目標部分,圖案藉由微影投影設備依次地轉印至該複數個相鄰目標部分,一次一個目標部分。在一種類型之微影投影設備中,將整個圖案化器件上之圖案一次性轉印至一個目標部分上;此設備通常被稱作步進器。在通常被稱作步進掃描設備(step-and-scan apparatus)之替代設備中,投影束在給定參考方向(「掃描」方向)上遍及圖案化器件進行掃描,同時平行或反平行於此參考方向而同步地移動基板。將圖案化器件上之圖案之不同部分漸進地轉印至一個目標部分。因為 一般而言,微影投影設備將具有縮減比率M(例如,4),所以基板之移動速度F將為1/M時間,此時投影光束掃描圖案化器件。關於微影器件的更多資訊可見於例如以引用之方式併入本文中之US 6,046,792。
在將圖案自圖案化器件轉印至基板之前,基板可經歷各種工序,諸如,上底漆、抗蝕劑塗佈,及軟烘烤。在曝光之後,基板可經受其他工序(「後曝光工序」),諸如後曝光烘烤(PEB)、顯影、硬烘烤及對經轉印圖案之量測/檢測。此工序陣列係用作製造一器件(例如,IC)之個別層的基礎。基板可接著經歷各種程序,諸如,蝕刻、離子植入(摻雜)、金屬化、氧化、化學機械拋光等等,該等程序皆意欲精整器件之個別層。若在器件中需要若干層,則針對每一層來重複整個工序或其變體。最終,在基板上之每一目標部分中將存在一器件。接著藉由諸如切割或鋸切之技術來使此等器件彼此分離,由此,可將個別器件安裝於載體上、連接至接腳,等等。
因此,製造器件(諸如半導體器件)通常涉及使用多個製造程序處理基板(例如半導體晶圓)以形成器件之各種特徵及多個層。通常使用(例如)沈積、微影、蝕刻、化學機械研磨及離子植入來製造及處理此等層及特徵。可在一基板上之複數個晶粒上製作多個器件,且接著將該等器件分離成個別器件。此器件製造程序可被認為係圖案化程序。圖案化程序涉及使用圖案化設備中之圖案化器件進行圖案化步驟(諸如光學及/或奈米壓印微影)以將圖案化器件上之圖案轉印至基板,且圖案化程序通常但視情況涉及一或多個相關圖案處理步驟,諸如藉由顯影設備進行抗蝕劑顯影、使用烘烤工具來烘烤基板、使用蝕刻設備而使用圖案進行蝕刻等等。
如所提及,微影為在諸如IC之器件之製造時的中心步驟, 其中形成於基板上之圖案界定器件之功能元件,諸如微處理器、記憶體晶片等。類似微影技術亦用於形成平板顯示器、微機電系統(MEMS)及其他器件。
隨著半導體程序繼續進步,幾十年來,功能元件之尺寸已不斷地縮減,而每器件的諸如電晶體之功能元件之量已在穩固地增加,此遵循通常被稱作「莫耳定律(Moore's law)」之趨勢。在當前先進技術下,使用微影投影設備來製造器件層,微影投影設備使用來自深紫外線照明源之照明而將設計布局投影至基板上,從而產生尺寸充分地低於100nm之個別功能元件,亦即,尺寸小於來自該照明源(例如,193nm照明源)之輻射之波長的一半。
供印刷尺寸小於微影投影設備之經典解析度限制之特徵的此程序根據解析度公式CD=k1×λ/NA而通常被稱為低k1微影,其中λ為所使用輻射之波長(當前在大多數情況下為248奈米或193奈米),NA為微影投影設備中之投影光學件之數值孔徑,CD為「臨界尺寸(critical dimension)」(通常為所印刷之最小特徵大小),且k1為經驗解析度因數。大體而言,k1愈小,則在基板上再生類似於由設計者規劃之形狀及尺寸以便達成特定電功能性及效能的圖案變得愈困難。為了克服此等困難,將複雜微調步驟應用至微影投影設備、設計布局或圖案化器件。此等步驟包括例如但不限於NA及光學相干設定之最佳化、定製照明方案、相移圖案化器件之使用、設計布局中之光學近接校正(OPC,有時亦被稱作「光學及程序校正」),或通常被定義為「解析度增強技術」(RET)之其他方法。
如本文所使用之術語「投影光學件」應被廣泛地解譯為涵蓋各種類型之光學系統,包括(例如)折射光學件、反射光學件、孔隙及反 射折射光學件。術語「投影光學件」亦可包括根據此等設計類型中之任一者而操作的組件,以用於集體地或單一地導向、塑形或控制投影輻射束。術語「投影光學件」可包括微影投影設備中之任何光學組件,而不管光學組件定位於微影投影設備之光學路徑上之何處。投影光學件可包括用於在來自源之輻射通過圖案化器件之前塑形、調整及/或投影該輻射的光學組件,及/或用於在輻射通過圖案化器件之後塑形、調整及/或投影該輻射的光學組件。投影光學件通常排除光源及圖案化器件。
一種用於訓練一機器學習模型以產生一特性圖案之方法,該方法包括:獲得與一參考影像中之一參考特徵相關聯的訓練資料,其中該訓練資料包括(i)該參考特徵之複數個部分之每一部分的位置資料,及(ii)指示該參考特徵之該部分是否位於針對該參考特徵產生之一參考輔助特徵內的一存在值;及基於與該參考特徵相關聯之該訓練資料訓練該機器學習模型,使得一預測存在值與該存在值之間的一度量得以最小化。
在一些實施例中,該特性圖案用於製造一遮罩圖案,該遮罩圖案進一步用於將一目標圖案印刷於一基板上。
在一些實施例中,該參考影像為藉由使用該目標圖案模擬一光學近接校正程序而產生之一連續透射遮罩(CTM)影像,且其中該參考特徵對應於來自該目標圖案之一目標特徵。
在一些實施例中,該參考輔助特徵包括經置放圍繞該參考特徵的次解析度輔助特徵,且該等次解析度輔助特徵為直線形狀。
在一些實施例中,該訓練資料包括用於一或多個參考影像中之複數個參考特徵的訓練資料。
此外,訓練該機器學習模型之該方法包括(a)使用該訓練資料執行該機器學習模型,以輸出與該參考特徵之該對應部分相關聯之該預測存在值;(b)判定該預測存在值與該存在值之間的該度量;(c)調整該機器學習模型使得成本函數減小;(d)判定該度量是否最小化;及(e)回應於未最小化,執行步驟(a)、(b)、(c)及(d)。
在一些實施例中,該方法進一步包括:獲得一所指定參考影像;及經由使用該所指定參考影像執行該機器學習模型來判定用於相對於該所指定參考影像之一所指定特徵置放的一較佳輔助特徵,其中該所指定特徵對應於待印刷於該基板上之一目標圖案之一目標特徵。
在一些實施例中,判定該較佳輔助特徵包括:自該所指定參考影像且使用一強度臨限值獲得該所指定特徵之一所指定輪廓;產生該所指定輪廓之一架構;將位置資料及距離資料輸入至該機器學習模型,其中該位置資料包括該架構上的一點集合之座標,其中該距離資料指示自該點集合之一點至該所指定輪廓的一最近距離;及針對該點集合之每一點,自該機器學習模型獲得一預測存在值,其中該預測存在值指示該對應點是否經預測位於該較佳輔助特徵內,其中該點集合包括:(a)經預測位於該較佳輔助特徵內的一經覆蓋點集合;及(b)經預測並非位於該較佳輔助特徵內的一未經覆蓋點集合。
在一些實施例中,判定該較佳輔助特徵之該方法進一步包括:產生複數個輔助特徵集合以覆蓋來自該經覆蓋點集合之點,使用一計分函數針對每一輔助特徵集合判定一獎勵值,及將該等輔助特徵集合中具有一最高獎勵值之一第一輔助特徵集合判定為用於相對於該所指定輪廓置放的該較佳輔助特徵。
在一些實施例中,針對每一輔助特徵集合判定該獎勵值之該方法包括(i)自該未經覆蓋點集合選擇一點作為一截止點,其中該截止點將該架構劃分成複數個區段,(ii)產生用於該複數個區段之每一區段的具有一輔助特徵之一第一輔助特徵集合,其中該輔助特徵基於(a)與該點集合之每一點相關聯之一距離值,及(b)該參考輔助特徵必須滿足以供用於製造該遮罩圖案的一約束集合而產生,(iii)依據(a)與位於該第一輔助特徵集合內的每一點相關聯之強度值與(b)用於獲得該輪廓之一強度臨限值來判定與該第一輔助特徵集合相關聯之一獎勵值,藉由自該未經覆蓋點集合選擇一不同截止點、產生另一輔助特徵集合並判定其對應獎勵值來反覆步驟(i)、(ii)及(iii)。
在一些實施例中,該距離值指示自一點至該所指定輪廓的一最近距離。
在一些實施例中,該方法進一步包括運用該較佳輔助特徵產生一特性圖案,其中該特性圖案為包括相對於該所指定特徵置放之該較佳輔助特徵的一像素化影像。
在一些實施例中,產生該特性圖案之該方法包括運用複數個較佳輔助特徵產生該特性圖案,其中該等較佳輔助特徵關於該所指定參考影像之複數個參考特徵置放,其中該等較佳輔助特藉由針對該等參考特徵執行該機器學習模型判定。
在一些實施例中,產生該特性圖案之該方法包括進一步基於與該遮罩圖案之製造相關的一約束集合調整該等較佳輔助特徵之該置放。
在一些實施例中,該機器學習模型為一序列標記模型。
在一些實施例中,該序列標記模型包括一雙向長短期記憶體(BiLSTM)網路。
此外,在一些實施例中,獲得該訓練資料包括基於用於製造一遮罩圖案之一約束集合而產生用於該參考特徵的複數個輔助特徵集合,其中每一輔助特徵集合與基於一所指定計分函數而判定的一獎勵值相關聯,將該複數個輔助特徵集合中與一最高獎勵值相關聯之一所指定輔助特徵集合判定為該參考輔助特徵,依據該複數個輔助特徵集合之該獎勵值與其中該對應部分經判定位於其內的輔助特徵集合之一數目來判定針對該參考特徵之每一部分之一狀態值,及針對該參考特徵之每一部分產生該訓練資料之該位置資料及該存在值,其中該存在值在該對應部分之該狀態值滿足一狀態臨限值的情況下經設定為一第一值,該第一值指示該對應部分位於該參考輔助特徵內。
在一些實施例中,產生該存在之該方法包括在該對應部分之該狀態值不滿足該狀態臨限值的情況下,將該存在值設定為一第二值,該第二值指示該對應部分不位於該參考輔助特徵內。
在一些實施例中,產生該複數個輔助特徵集合之該方法包括產生該參考特徵之一架構;選擇該架構上的複數個截止點,其中每一截止點將該架構分割成複數個區段;及針對每一截止點,產生用於該複數個區段之每一區段的具有一參考輔助特徵之一輔助特徵集合,其中該輔助特徵集合基於該約束集合及與該架構上的一點集合之每一點相關聯的一距離值而產生。
在一些實施例中,判定具有該最高獎勵值之該輔助特徵集合的該方法包括使用該所指定計分函數依據(a)該輔助特徵集合內的影像 強度值與(b)一強度臨限值來判定該複數個輔助特徵集合之一輔助特徵集合的該獎勵值。
在一些實施例中,該強度臨限值用以產生該參考特徵之一輪廓,其中該輪廓用以產生該參考特徵之該架構。
在一些實施例中,針對該參考特徵之每一部分判定該狀態值的該方法包括針對該架構上之每一點判定該狀態值。
在一些實施例中,該方法進一步包括依據該架構上的該點集合之該等狀態值的一最大值及/或最小值來判定該狀態臨限值。
在一些實施例中,針對該參考特徵之每一部分產生該訓練資料包括針對該參考特徵之該架構上的每一點產生該位置資料及該存在值。
在一相關態樣中,一種用於產生一特性圖案之方法包括自一參考影像獲得一參考特徵之一輪廓;及藉由一硬體電腦系統且使用該輪廓執行用於將一較佳輔助特徵判定為經置放圍繞該輪廓的一機器學習模型,且其中該較佳輔助特徵具有在複數個輔助特徵之獎勵值當中最高的一獎勵值,且其中依據用以產生該輪廓之一強度臨限值來計算該獎勵值;及運用該輪廓及該較佳輔助特徵產生該特性圖案。
在一些實施例中,該特性圖案用於製造用於將一目標圖案印刷於一基板上的一遮罩圖案。
在一些實施例中,該參考影像為一CTM影像。
在一些實施例中,執行該機器學習模型以判定該較佳輔助特徵集合的該方法包括產生該輪廓之一架構,其中該架構包括一點集合;選擇該架構上的複數個截止點,其中每一截止點將該架構分割成複數個區 段;及針對每一截止點,針對該複數個區段之每一區段產生該複數個輔助特徵之一輔助特徵集合,其中該輔助特徵集合基於一約束集合及與該架構上之每一點相關聯的一距離值而產生。
在一些實施例中,該方法進一步包括依據(a)與位於該輔助特徵集合內的該架構之每一點相關聯之強度值與(b)該強度臨限值來判定一輔助特徵集合之該獎勵值;及選擇該等輔助特徵集合中具有一最高獎勵值的一者作為該較佳輔助特徵集合。
在一些實施例中,該方法進一步包括使用該較佳輔助特徵集合產生用於訓練一第二機器學習模型之訓練資料,以基於一第二參考影像而產生第二特性圖案。
在一些實施例中,該訓練資料包括用於針對來自該參考影像之複數個輪廓而產生的複數個較佳輔助特徵集合之訓練資料。
在一些實施例中,產生該訓練資料之該方法包括產生該輪廓之該架構之每一點的座標;及產生與該架構之每一點相關聯的一存在值,其中該存在值指示該對應點是否位於該較佳輔助特徵集合內。
在一些實施例中,產生每一點之該等座標的該方法包括產生對應於該參考影像中之該點的一像素之座標。
在一些實施例中,產生該存在值之該方法包括依據該複數個輔助特徵集合之該獎勵值與其中該對應點經判定位於其內的輔助特徵集合之一數目來判定針對該架構之每一點之一狀態值,依據該架構之該點集合的最大值狀態值及一最小狀態值來判定一狀態臨限值,及針對該架構之每一點產生該存在值,其中該存在值在該對應點之該狀態值滿足該狀態臨限值的情況下經設定為一第一值,該第一值指示該對應點位於該較佳輔助 特徵集合內。
在一些實施例中,該方法進一步包括基於該訓練資料訓練該第二機器學習模型,使得判定一預測存在值與該存在值之間的一差的一成本函數得以最小化。
在一相關態樣中,一種用於針對一遮罩圖案產生一特性圖案的方法包括獲得具有參考特徵之一參考影像;自該參考影像獲得該等參考特徵之一參考特徵之一輪廓;產生該輪廓之一架構;經由使用該架構執行一機器學習模型,判定一存在值,該存在值指示該架構上的一點集合之每一點是否位於將產生以供圍繞該參考特徵置放的一較佳輔助特徵集合內;及使用該存在值產生一特性圖案。
在一些實施例中,該特性圖案為包括關於該輪廓置放之該較佳輔助特徵集合的一像素化影像。
在一些實施例中,該點集合包括(a)經預測位於該較佳輔助特徵集合內的一經覆蓋點集合;及(b)經預測並非位於該較佳輔助特徵集合內的一未經覆蓋點集合。
在一些實施例中,使用該存在值產生該特性圖案的該方法包括(i)自該未經覆蓋點集合選擇一點作為一截止點,其中該截止點將該架構劃分成複數個區段;(ii)針對該複數個區段之每一區段產生具有一輔助特徵之一第一輔助特徵集合,其中該輔助特徵基於(a)與該點集合之每一點相關聯之一距離值,及(b)該參考輔助特徵必須滿足以供用於製造該遮罩圖案的一約束集合而產生;(iii)依據(a)與位於該第一輔助特徵集合內的每一點相關聯之強度值與(b)用於獲得該輪廓之一強度臨限值來判定與該第一輔助特徵集合相關聯之一獎勵值;藉由自該未經覆蓋點集合選擇一不 同截止點、產生另一輔助特徵集合並判定其對應獎勵值來反覆步驟(i)、(ii)及(iii),及將該等輔助特徵集合中具有一最高獎勵值的一者作為用於相對於該參考特徵置放的該較佳輔助特徵集合。
在一些實施例中,產生該第一輔助特徵集合之該方法包括對該第一輔助特徵集合執行一隨機干擾,且將該約束集合應用於該第一輔助特徵集合。
在一些實施例中,產生該特性圖案之該方法包括運用用於相對於來自該參考影像之複數個參考特徵置放的複數個較佳輔助特徵集合產生該特性圖案。
在一些實施例中,該參考影像為一CTM影像。
根據一實施例,提供一種電腦程式產品,其包含其上經記錄有指令之一非暫時性電腦可讀媒體。該等指令在由一電腦執行時實施申請專利範圍中所列之方法。
2:輻射源/寬頻帶(白光)輻射投影儀
4:光譜儀偵測器
10:光譜
10A:微影投影設備
11:背向投影式焦平面
12:透鏡系統
12A:輻射源
13:干涉濾光器
14:參考鏡面
14A:光學件
15:物鏡
16:部分反射表面
16Aa:光學件
16Ab:光學件
16Ac:透射光學件
17:偏振器
18:偵測器
18A:圖案化器件
20A:濾光器或孔徑
21:輻射光束
22:琢面化場鏡面器件
22A:基板平面
24:琢面化光瞳鏡面器件
26:經圖案化光束
28:反射元件
30:反射元件
31:源模型
32:投影光學件模型
35:設計布局模型
36:空中影像
37:抗蝕劑模型
38:抗蝕劑影像
81:帶電粒子束產生器
82:聚光器透鏡模組
83:探針形成物鏡模組
84:帶電粒子束偏轉模組
85:二次帶電粒子偵測器模組
86:影像形成模組
87:監測模組
88:樣本載物台
90:樣本
91:初級帶電粒子束
92:帶電粒子束探針
93:二次帶電粒子
94:二次帶電粒子偵測信號
210:熱電漿
211:源腔室
212:收集器腔室
220:圍封結構
221:開口
230:污染物截留器/污染物障壁
240:光柵光譜濾光器
251:上游輻射收集器側
252:下游輻射收集器側
253:掠入射反射器
254:掠入射反射器
255:掠入射反射器
305:參考影像
307:參考特徵
310:輪廓
315:架構
316:次解析度輔助特徵置放資料
320:特性圖案
325:較佳次解析度輔助特徵集合
350:產生器模組
351:輪廓提取器
352:架構器
353:次解析度輔助特徵置放模型
354:次解析度輔助特徵產生器模型
360:資料庫
405:輪廓影像
410:架構化表示
505:架構化表示
605:第一次解析度輔助特徵集合
606:第一截止點
607:第一次解析度輔助特徵
608:第二次解析度輔助特徵
610:第二次解析度輔助特徵集合
611:第二截止點
620:次解析度輔助特徵置放資料
621:位置資料
622:架構距離資訊
623:存在值
805:預測存在值
900:程序
910:操作
920:操作
921:操作
922:操作
923:操作
924:操作
925:操作
926:操作
927:操作
928:操作
929:操作
929b:操作
930:操作
1000:程序
1010:操作
1020:操作
1100:程序
1110:操作
1120:操作
1130:操作
1140:操作
1150:操作
1151:操作
1152:操作
1153:操作
1154:操作
1155:操作
1175:操作
2310:基板
2312:基板台
2320:電子束檢測設備
2322:電子源
2324:初級電子束
2326:聚光透鏡
2328:光束偏轉器
2330:E×B偏轉器
2332:物鏡
2334:二次電子偵測器
2336:類比/數位(A/D)轉換器
2350:影像處理系統
2354:顯示器件
2356:記憶體
2358:處理單元
AD:調整構件
B:輻射光束
BS:匯流排
C:目標部分
CC:游標控制件
CI:通信介面
CO:收集器
CS:電腦系統
DS:顯示器
ID:輸入器件
IF:虛擬源點
IL:照明系統
IN:積光器
INT:網際網路
HC:主機電腦
LA:雷射器
LAN:區域網路
LPA:微影投影設備
MA:圖案化器件
MM:主記憶體
MT:支撐結構
M1:圖案化器件對準標記
M2:圖案化器件對準標記
NDL:網路鏈路
PM:第一定位器
PRO:處理器
PS:投影系統
PS2:位置感測器
PU:處理器
PW:第二定位器
P1:基板對準標記
P2:基板對準標記
S:光點
SD:儲存器件
SO:源收集器模組
W:基板
WT:基板台
併入本說明書中且構成本說明書之一部分之隨附圖式展示本文中所揭示之主題的某些態樣,且與[實施方式]一起有助於解釋與所揭示實施例相關聯之一些原理。在圖式中,
圖1說明根據一實施例之微影投影設備之各種子系統的方塊圖。
圖2說明根據一實施例的用於模擬微影投影設備中之微影的例示性流程圖。
圖3展示符合各種實施例的用於自參考影像產生特性圖案之方塊圖。
圖4為符合各種實施例的用於產生一特徵之輪廓及架構的方塊圖。
圖5展示符合各種實施例的輪廓之另一架構化表示。
圖6為符合各種實施例的用於產生一輪廓之較佳次解析度輔助特徵(SRAF)集合的方塊圖。
圖7為符合各種實施例的用於使用訓練機器學習(ML)模型產生較佳SRAF集合的方塊圖。
圖8為符合各種實施例的用於訓練SRAF置放模型以預測SRAF置放資料的方塊圖。
圖9A為符合各種實施例的用於使用加強學習(RL)方法產生特性圖案之程序的流程圖。
圖9B為符合各種實施例的用於使用RL方法判定輪廓之較佳SRAF集合的程序之流程圖。
圖10為符合各種實施例的用於訓練機器學習模型以預測SRAF置放資料之程序的流程圖。
圖11A為符合各種實施例的用於使用藉由ML模型預測之存在值產生特性圖案的程序之流程圖。
圖11B為符合各種實施例的用於基於藉由ML模型預測之存在值判定較佳SRAF集合的程序1175之流程圖。
圖12為根據一實施例之實例電腦系統的方塊圖。
圖13為根據一實施例之微影投影設備的示意圖。
圖14為根據一實施例之另一微影投影設備之示意圖。
圖15為根據一實施例之微影投影設備的詳細視圖。
圖16為根據一實施例的微影投影設備之源收集器模組的詳細視圖。
圖17示意性地描繪根據一實施例的電子束檢測設備之一實施例。
圖18示意性地說明根據一實施例的檢測設備之另一實施例。
圖19示意性地描繪實例檢測設備及度量衡技術。
圖20示意性地描繪實例檢測設備。
圖21說明檢測設備之照明光點與度量衡目標之間的關係。
儘管在本文中可特定地參考IC之製造,但應明確地理解,本文中之描述具有許多其他可能應用。舉例而言,該等實施例可用於整合式光學系統之製造中、用於磁域記憶體之導引及偵測圖案、液晶顯示面板、薄膜磁頭,等等。熟習此項技術者將瞭解,在此類替代應用之上下文中,本文中對術語「倍縮光罩」、「晶圓」或「晶粒」之任何使用應視為可分別與更一般的術語「遮罩」、「基板」及「目標部分」互換。
在本發明之文件中,術語「輻射」及「光束」用以涵蓋所有類型之電磁輻射,包括紫外線輻射(例如具有為365nm、248nm、193nm、157nm或126nm之波長)及EUV(極紫外線輻射,例如具有在約5nm至100nm之範圍內之波長)。
圖案化器件可包含或可形成一或多個設計布局。可利用電腦輔助設計CAD)程式來產生設計布局,此程序常常被稱作電子設計自動化(EDA)。大多數CAD程式遵循一預定設計規則集合,以便產生功能設計 布局/圖案化器件。藉由處理及設計限制來設定此等規則。舉例而言,設計規則定義器件(諸如,閘、電容器等等)或互連線之間的空間容許度,以便確保電路器件或線彼此不會以不理想方式相互作用。設計規則限制中之一或多者可稱為「臨界尺寸」(CD)。器件之臨界尺寸可被定義為線或孔之最小寬度或兩條線或兩個孔之間的最小空間。因此,CD判定所設計器件之總體大小及密度。當然,器件製造之目標中之一者為在基板上如實地再生原始設計意圖(經由圖案化器件)。
如本文所使用之術語「遮罩」或「圖案化器件」可被廣泛地解譯為係指可用以向入射輻射光束賦予經圖案化橫截面之通用圖案化器件,經圖案化橫截面對應於待在基板之目標部分中產生之圖案;術語「光閥」亦可用於此內容背景中。除經典遮罩(透射性或反射性;二元、相移、混合式等)以外,其他此類圖案化器件之實例包括可程式化鏡面陣列及可程式化LCD陣列。
可程式化鏡面陣列之實例可為具有黏彈性控制層及反射表面之矩陣可定址表面。此設備所隱含之基本原理為(例如):反射表面之經定址區域將入射輻射反射為繞射輻射,而未經定址區域將入射輻射反射為非繞射輻射。在使用適當濾光器的情況下,可自反射光束濾出該非繞射輻射,從而僅留下繞射輻射;以此方式,光束根據矩陣可定址表面之定址圖案而變得圖案化。可使用合適電子構件來執行所需矩陣定址。
可程式規劃LCD陣列之實例在以引用之方式併入本文中的美國專利第5,229,872號中給出。
圖1說明根據一實施例之微影投影設備10A之各種子系統的方塊圖。主要組件為:輻射源12A,其可為深紫外線準分子雷射源或包括 極紫外線(EUV)源的其他類型之源(如上文所論述,微影投影設備自身無需具有輻射源);照明光學件,其例如限定部分相干性(被表示為均方偏差)且可包括塑形來自源12A之輻射的光學件14A、16Aa及16Ab;圖案化器件18A;及透射光學件16Ac,其將圖案化器件圖案之影像投影至基板平面22A上。在投影光學件之光瞳平面處的可調整濾光器或孔徑20A可限定照射於基板平面22A上之光束角度之範圍,其中最大可能角度界定投影光學件之數值孔徑NA=n sin(Θmax),其中n為基板與投影光學件之最後元件之間的介質之折射率,且Θmax為自投影光學件射出的仍可照射於基板平面22A上之光束的最大角度。
在微影投影設備中,源將照明(亦即,輻射)提供至圖案化器件,且投影光學件經由該圖案化器件將該照明導向至基板上且塑形該照明。投影光學件可包括組件14A、16Aa、16Ab及16Ac中之至少一些。空中影像(AI)為在基板位階處之輻射強度分佈。可使用抗蝕劑模型以自空中影像計算抗蝕劑影像,可在全部揭示內容特此以引用方式併入之美國專利申請公開案第US 2009-0157630號中找到此情形之實例。抗蝕劑模型僅與抗蝕劑層之屬性(例如在曝光、曝光後烘烤(PEB)及顯影期間發生的化學程序之效應)有關。微影投影設備之光學屬性(例如,照明、圖案化器件及投影光學件之屬性)規定空中影像且可定義於光學模型中。由於可改變用於微影投影設備中之圖案化器件,所以需要使圖案化器件之光學屬性與至少包括源及投影光學件的微影投影設備之其餘部分之光學屬性分離。用於將設計布局變換成各種微影影像(例如空中影像、抗蝕劑影像等)、使用彼等技術及模型來應用OPC且評估效能(例如依據程序窗)的技術及模型之細節描述於美國專利申請案公開案第US 2008-0301620號、第2007-0050749 號、第2007-0031745號、第2008-0309897號、第2010-0162197號及第2010-0180251號中,每一公開案之揭示內容特此以全文引用之方式併入。
理解微影程序之一種態樣係理解輻射與圖案化器件之相互作用。在輻射通過圖案化器件之後的輻射之電磁場可自在輻射到達圖案化器件之前的輻射之電磁場及特性化該相互作用之函數予以判定。此函數可稱為遮罩透射函數(其可用於描述透射圖案化器件及/或反射圖案化器件之相互作用)。
遮罩透射函數可具有各種不同形式。一種形式為二元的。二元遮罩透射函數在圖案化器件上之任何給定部位處具有兩個值(例如零及正常數)中之任一者。呈二元形式之遮罩透射函數可被稱作二元遮罩。另一種形式為連續的。即,圖案化器件之透射率(或反射率)之模數為圖案化器件上之部位的連續函數。透射率(或反射率)之相位亦可為圖案化器件上之部位的連續函數。呈連續形式之遮罩透射函數可稱為連續色調遮罩或連續透射遮罩(CTM)。舉例而言,可將CTM表示為像素化影像,其中可向每一像素指派介於0與1之間的值(例如0.1、0.2、0.3等)來代替0或1之二元值。在一實施例中,CTM可為像素化灰階影像,其中每一像素具有若干值(例如在範圍[-255,255]內、在範圍[0,1]或[-1,1]或其他適當範圍內之正規化值)。
薄遮罩近似(亦稱為克希荷夫(Kirchhoff)邊界條件)廣泛地用於簡化對輻射與圖案化器件之相互作用之判定。薄遮罩近似假定圖案化器件上之結構之厚度與波長相比極小,且遮罩上的結構之寬度與波長相比極大。因此,薄遮罩近似假定在圖案化器件之後的電磁場為入射電磁場與 遮罩透射函數之乘積。然而,當微影程序使用具有愈來愈短之波長的輻射,且圖案化器件上之結構變得愈來愈小時,對薄遮罩近似之假定可分解。舉例而言,由於結構(例如頂面與側壁之間的邊緣)之有限厚度,輻射與結構之相互作用(「遮罩3D效應」或「M3D」)可變得重要。在遮罩透射函數中涵蓋此散射可使得遮罩透射函數能夠較佳地擷取輻射與圖案化器件之相互作用。在薄遮罩近似下之遮罩透射函數可稱為薄遮罩透射函數。涵蓋M3D效應的遮罩透射函數可被稱作M3D遮罩透射函數。
根據本發明之一實施例,可產生一或多個影像。該等影像包括可藉由每一像素之像素值或強度值特性化的各種類型之信號。視影像內像素之相對值而定,信號可被稱作例如弱信號或強信號,如一般熟習此項技術者可理解。術語「強」及「弱」為基於影像內之像素之強度值的相對術語,且強度之具體值可能並不限制本發明之範疇。在實施例中,強信號及弱信號可基於所選擇之臨限值來鑑別。在一實施例中,臨限值可為固定的(例如影像內像素之最高強度與最低強度的中點。在一實施例中,強信號可指具有大於或等於跨影像之平均信號值之值的信號,且弱信號可指具有小於平均信號值之值的信號。在一實施例中,相對強度值可基於百分比。舉例而言,弱信號可為具有低於影像內像素(例如對應於目標圖案之像素可被視為具有最高強度之像素)之最高強度的50%的強度之信號。此外,影像內之每一像素被認為係變數。根據本實施例,導數或偏導數可相對於影像內之每一像素來判定,且每一像素之值可根據基於成本函數之評估及/或成本函數之基於梯度之運算來判定或修改。舉例而言,CTM影像可包括像素,其中每一像素為可採用任何實數值之變數。
圖2說明根據一實施例的用於模擬微影投影設備中之微影 的例示性流程圖。源模型31表示源之光學特性(包括輻射強度分佈及/或相位分佈)。投影光學件模型32表示投影光學件之光學特性(包括由投影光學件引起的輻射強度分佈及/或相位分佈之改變)。設計布局模型35表示設計布局之光學特性(包括由設計布局引起的輻射強度分佈及/或相位分佈之變化),該設計布局為在圖案化器件上或藉由圖案化器件形成之特徵配置的表示。可自設計布局模型35、投影光學件模型32及設計布局模型35來模擬空中影像36。可使用抗蝕劑模型37自空中影像36模擬抗蝕劑影像38。微影之模擬可例如預測抗蝕劑影像中之輪廓及CD。
更特定而言,應注意,源模型31可表示源之光學特性,該等光學特性包括但不限於數值孔徑設定、照明均方偏差(σ)設定,以及任何特定照明形狀(例如離軸輻射源,諸如環圈、四極子、偶極子等)。投影光學件模型32可表示投影光學件之光學特性,該等光學特性包括像差、失真、一或多個折射率、一或多個實體大小、一或多個實體尺寸等。設計布局模型35可表示實體圖案化器件之一或多個物理屬性,如(例如)以全文引用的方式併入之美國專利第7,587,704號中所描述。模擬之目標係準確地預測(例如)邊緣置放、空中影像強度斜率及/或CD,可接著將該等邊緣置放、空中影像強度斜率及/或CD與預期設計進行比較。預期設計通常被定義為可以諸如GDSII或OASIS或其他檔案格式之標準化數位檔案格式而提供之預OPC設計布局。
自此設計布局,可識別被稱作「剪輯」之一或多個部分。在實施例中,提取剪輯集合,其表示設計布局中之複雜圖案(通常為約50個至1000個剪輯,但可使用任何數目個剪輯)。此等圖案或剪輯表示小部分設計(亦即,電路、小區或圖案),且更詳細而言,該等剪輯通常表示需 要特定注意及/或驗證的小部分。換言之,剪輯可為設計布局之部分,或可為類似的或具有設計布局之部分的類似行為,其中一或多個臨界特徵藉由體驗(包括由客戶提供之剪輯)、試誤法或執行全晶片模擬來予以識別。剪輯可含有一或多個測試圖案或量規圖案。
可由客戶基於設計布局中需要特定影像最佳化之一或多個已知臨界特徵區域而先驗地提供初始較大剪輯集合。替代地,在另一實施例中,可藉由使用識別該一或多個臨界特徵區域之某種自動(諸如機器視覺)或手動演算法自整個設計布局提取初始較大剪輯集合。
在微影投影設備中,作為一實例,可將成本函數表達為
Figure 110107274-A0305-02-0021-1
其中(z 1 ,z 2 ,,z N )為N個設計變數或其值。f p (z 1 ,z 2 ,,z N )可為設計變數(z 1 ,z 2 ,,z N )的函數,諸如對於(z 1 ,z 2 ,,z N )之設計變數的值集合的特性之實際值與預期值之間的差。w p 為與f p (z 1 ,z 2 ,,z N )相關聯之權重常數。舉例而言,特性可為在邊緣上之給定點處量測的圖案之邊緣之位置。不同f p (z 1 ,z 2 ,,z N )可具有不同權重w p 。舉例而言,若特定邊緣具有窄准許位置範圍,則用於表示邊緣之實際位置與預期位置之間的差之f p (z 1 ,z 2 ,,z N )之權重w p 可被給出較高值。f p (z 1 ,z 2 ,,z N )亦可為層間特性之函數,層間特性又為設計變數(z 1 ,z 2 ,,z N )之函數。當然,CF(z 1 ,z 2 ,,z N )不限於方程式1中之形式。CF(z 1 ,z 2 ,,z N )可呈任何其他合適形式。
成本函數可表示微影投影設備、微影程序或基板之任何一或多個適合特性,例如,焦點、CD、影像移位、影像失真、影像旋轉、隨機變化、產出率、局域CD變化、程序窗、層間特性或其組合。在一個實施例中,設計變數(z 1 ,z 2 ,,z N )包含選自劑量、圖案化器件之全域偏置及/ 或照明形狀中之一或多者。包含選自劑量、圖案化器件之全域偏置及/或照明之形狀中之一或多者。由於抗蝕劑影像常常規定基板上之圖案,故成本函數可包括表示抗蝕劑影像之一或多個特性之函數。舉例而言,f p (z 1 ,z 2 ,,z N )可僅係抗蝕劑影像中之一點與彼點之預期位置之間的距離(亦即,邊緣置放誤差EPE p (z 1 ,z 2 ,,z N ))。設計變數可包括任何可調整參數,諸如源、圖案化器件、投影光學件之可調整參數、劑量、焦點等等。
微影設備可包括可用以調整波前及強度分佈之形狀及/或輻射光束之相移的被集體地稱為「波前操控器」之組件。在一實施例中,微影設備可調整沿著微影投影設備之光學路徑之任何部位處的波前及強度分佈,諸如在圖案化器件之前、在光瞳平面附近、在影像平面附近及/或在焦點平面附近。波前操控器可用以校正或補償由(例如)源、圖案化器件、微影投影設備中之溫度變化、微影投影設備之組件之熱膨脹等所導致的波前及強度分佈及/或相移的某些失真。調整波前及強度分佈及/或相移可改變由成本函數表示之特性的值。可自模型模擬此等變化或實際上量測此等變化。設計變數可包括波前操控器之參數。
設計變數可具有約束,該等約束可被表達為(z 1 ,z 2 ,...,z N )
Figure 110107274-A0305-02-0022-6
z,其中z為設計變數之可能值集合。可藉由微影投影設備之所要產出率來強加對設計變數之一個可能約束。在無藉由所要產出率強加之此約束的情況下,最佳化可得到不切實際的設計變數之值集合。舉例而言,若劑量為設計變數,則在無此約束之情況下,最佳化可得到使產出率經濟上不可能的劑量值。然而,約束之有用性不應解釋為必要性。舉例而言,產出率可受光瞳填充比影響。對於一些照明設計,低光瞳填充比可捨棄輻射,從而導致較低產出率。產出率亦可受抗蝕劑化學反應影響。較慢抗蝕劑(例 如要求適當地曝光較高量之輻射的抗蝕劑)導致較低產出率。
如本文中所使用,術語「圖案化程序」通常意謂作為微影程序之部分的藉由施加光之指定圖案來產生經蝕刻基板的程序。然而,「圖案化程序」亦可包括電漿蝕刻,此係因為本文中所描述之許多特徵可為使用電漿處理形成印刷圖案提供益處。
如本文中所使用,術語「目標圖案」意謂將在基板上蝕刻之理想化圖案。
如本文中所使用,術語「印刷圖案」意謂基板上之基於目標圖案蝕刻的實體圖案。印刷圖案可包括例如凹槽、溝道、凹陷、邊緣或由微影程序產生之其他兩維及三維特徵。
如本文中所使用,術語「程序模型」意謂包括模擬圖案化程序之一或多個模型的模型。舉例而言,程序模型可包括光學模型(例如模型化用以在微影程序中遞送光的透鏡系統/投影系統且可包括模型化去向光致抗蝕劑上的光之最終光學影像)、抗蝕劑模型(例如模型化抗蝕劑之實體效應,諸如歸因於光之化學效應),及OPC模型(例如可用於製造目標圖案且可包括散射條紋(SBAR)(亦被稱作次解析度抗蝕劑特徵(SRAF)等)。如本文中所使用,術語「校正」意謂修改(例如改良或調諧)及/或驗證某物,諸如程序模型。
為了印刷目標圖案,目標圖案之設計布局的幾乎每一特徵進行一些修改,使得達成基板上之經投影影像至目標圖案的高保真性。此等修改可包括邊緣位置或線寬之移位或偏置,以及意欲輔助其他特徵之投影的「輔助」特徵之應用。隨後使用經修改設計布局製造圖案化器件(例如,遮罩)。遮罩製造具有與特徵之大小、形狀及定位相關的侷限性(例 如,輔助特徵及主要特徵)。因此,經修改設計布局應同樣運用某些製造侷限性進行修改。
當前,用於產生諸如SRAF之輔助特徵的最精確遮罩設計方法中之一者係CTM方法。CTM方法首先設計灰階遮罩,被稱作連續透射映射或CTM。該方法涉及使用梯度下降最佳化灰階值,或其他最佳化方法,使得微影設備之效能度量(例如,邊緣置放誤差(EPE))得以改良。然而,CTM無法製造為遮罩自身,此係由於其為具有不可製造特徵的灰階遮罩。然而CTM被視為作為可製造遮罩之基礎的理想模型。在CTM進行最佳化之後,遮罩設計程序繼續進條柱形提取程序。實例CTM最佳化程序在描述用於微影程序之最佳化之不同流程的美國專利公開案US20170038692A1中詳細論述,其以全文引用的方式併入本文中。
在條柱提取程序中,CTM用以導引SRAF之置放。在一實施例中,SRAF可為彎曲的、矩形的或其他幾何形狀的,其中該形狀易於例如運用電子束微影製造。在條柱提取程序之後,在設計布局之主要特徵(例如,待印刷於基板上之目標圖案的目標特徵)上進行基於邊緣之OPC。在基於邊緣之OPC上,主要特徵之邊緣經調節以確保目標圖案精確印刷於基板上。
當前SRAF置放係基於參考影像(例如,CTM),且該方法包括:(a)在參考影像上導出脊狀線,(b)沿脊狀線置放SRAF,及(c)將遮罩規則檢查(MRC)約束應用於SRAF。根據脊線之界定,所產生之脊狀線對本端強度最大值或最小值敏感,且許多脊狀線可交叉相同點。因此,基於脊線之SRAF在應用MRC之前重疊很多。MRC清除步驟在執行清除過程中在運算上變得充分。當最終SRAF光柵化時,所得影像將與應用有 SRAF提取的原始參考影像極不同。
當前條柱提取方法可使用試探法導引SRAF之所要置放及大小。此等試探法可能不精確且運算上充分。用於SRAF產生之現有方法可依賴於常常(例如)在程序窗或一致性方面具有次佳結果的不精確試探法。舉例而言,有時豎直條柱經置放使得水平條柱將更自然且效果更好,或反之亦然。當此等次佳SRAF包括於遮罩圖案中時,其進一步用於微影設備中,圖案化程序之所得性能可能不符合所要性能規則。
本發明之方法試圖在產生特性圖案之過程中最佳化SRAF置放之判定。在一些實施例中,結果將為接近於CTM以及易於製造的遮罩。
本文中所描述之方法(例如,與圖6及圖8至圖10相關,包括方法1000)訓練機器學習模型,以在產生特性圖案的過程中判定SRAF之置放。在一些實施例中,特性圖案為包括易於提取之特徵的提取友好之映射或影像。作為一實例,特性圖案包括SRAF及/或主要特徵,其對應於待印刷於基板上之目標圖案的目標特徵。SRAF可為直線形狀。在另一實例中,SRAF可包括彎曲特徵。
在一實施例中,自機器學習模型判定SRAF在特性圖案中之置放,該機器學習模型經訓練以緊密遵循參考影像(例如,CTM)以及與遮罩圖案之製造相關的設計規則。在一實施例中,使用特性圖案製造之遮罩將改良圖案化程序之性能(例如,程序窗)。舉例而言,微影設備可將遮罩用於將圖案印刷於基板上。此經印刷圖案將在圖案化程序之高產出率方面具有最小誤差或結果。在一些實施例中,程序窗係允許電路得以製造且在所要規範下操作的程序參數之值的集合。舉例而言,作為一實例,微影 程序窗通常定義為{聚焦,曝光}點之集合,以將CD變體控制至所指定的範圍內。
在一實施例中,本文所使用的設計規則指代與遮罩之製造相關的侷限性,例如,遮罩規則檢查(MRC)約束。在本發明中,本文中之設計規則可不同於與設計布局(例如需要印刷於基板上之目標圖案)相關聯之設計規則(例如,最小CD、最小間距)。對於遮罩圖案,設計規則不必遵循與設計布局相關之設計規則。舉例而言,SRAF可很小,且亦違反最小間距要求。
在一實施例中,舉例而言,MRC可包括諸如特徵(例如,SRAF)相對於相鄰特徵之相對位置、SRAF相對於主要特徵或其他SRAF之方位、特徵之形狀及大小,或其一組合的參數。舉例而言,MRC約束可為具有直線形狀、彎曲形狀或其一組合之特徵,該彎曲形狀具有位於所指定範圍內之曲率半徑。在一實施例中,設計規則可基於試探法(例如,使用者經驗及過去印刷性能)進行界定。該等方法將MRC約束應用於產生特性圖案。
圖3展示符合各種實施例的用於自參考影像產生特性圖案之方塊圖。產生器模組350接受參考影像305作為輸入,且基於參考影像305產生特性圖案320。特性圖案用於製造可用於將目標圖案印刷於基板上的遮罩圖案。在一些實施例中,參考影像305為諸如CTM或遮罩影像的具有特徵(例如,諸如參考特徵307之主要特徵)之影像。主要特徵對應於待印刷於基板上之目標圖案的目標特徵。在一些實施例中,藉由對目標圖案執行一或多個OPC相關程序來產生CTM。在一些實施例中,可使用ML方法預測遮罩影像或使用其他已知方法產生遮罩影像。參考影像305可儲 存於資料庫360中。資料庫360亦可儲存其他資訊,諸如特性圖案320及產生特性圖案320所必需的任何其他資料。
在一些實施例中,特性圖案320為包括主要特徵及SRAF之影像,其中SRAF經置放於主要特徵附近。舉例而言,特性圖案320包括主要特徵之輪廓(例如,參考特徵307之輪廓310)及具有經置放於輪廓310附近之一或多個SRAF的較佳SRAF集合325。在一些實施例中,特性圖案320類似於參考影像305,但比參考影像305提取更友好,此係因為來自特性圖案320之特徵易於提取,且使用此影像製造之遮罩圖案藉由在將目標圖案印刷於基板上的過程中最小化誤差之數目及/或改良程序窗來改良圖案化程序。在一些實施例中,特性圖案可為表示最佳化遮罩設計的由矩形專門合成之影像。
產生器模組350可將方法實施於若干不同運算或訓練流程(例如,圖9A之方法900及圖11A之1100)中以產生特性圖案320。此等流程中之每一者將參考影像305(例如,CTM、CTM+或機器學習(ML)預測遮罩影像(MI))作為輸入。在CTM作為輸入的情況下,CTM可已經最佳化以印刷所要圖案。每一方法之輸出係特性圖案320。
作為一實例,在第一方法中,可使用諸如加強學習(RL)方法之ML模型來判定特性圖案320。在一些實施例中,加強學習係關注軟體代理程式應如何在環境中採取行動以便最大化一些累積式獎勵概念的機器學習之區域。加強學習係不同類型之基本機器學習範例中之一者,除監督式學習及無監督學習之外。RL不同於監督式學習,在於無需呈現所標記輸入/輸出對,且無需明確校正次佳動作。實情為,集中找出(未知領域之)探索與(目前知曉之)採用之間的平衡。RL藉由與系統互動並獲得獎勵 來收集資訊。在RL方法中,產生器模組350中之SRAF產生器模型354可獲得輪廓310之架構315,判定架構315中之每一點(被稱作「架構點」)的狀態值,(例如,隨機)選擇架構315上的截止點以基於截止點而產生架構315之多個區段,針對區段中之至少一些置放一SRAF以產生SRAF集合,且計算SRAF集合之獎勵。可針對各種截止點重複上方程序(以及將在稍後段落中描述的其他程序)以產生各種SRAF集合,且選擇具有滿足規則之獎勵值的SRAF集合(例如,具有最高獎勵值之SRAF)作為較佳SRAF集合。類似地,針對自參考影像305提取的每一輪廓判定較佳SRAF集合,且接著產生具有基於較佳SRAF集合而放置之SRAF的特性圖案320。在一些實施例中,可使用蒙地卡羅法實施RL方法,其將隨機性用於使用其他方法難以解決的確定性難題。至少參看圖6、圖9A及圖9B描述RL方法之額外細節。
雖然RL方法判定SRAF之最佳放置,但RL方法可能必須針對輪廓中之每一者重複,此係因為自一個輪廓不存在可用以產生另一輪廓之較佳SRAF集合的學習。因此,在一些實施例中,在第二方法中,可使用監督式學習訓練ML模型以產生特性圖案320(例如,圖9及10)。
作為一實例,監督式學習方法使用一神經網路,該神經網路在與使用一或多種方法產生之參考影像集合相關聯的SRAF放置資料上進行訓練,該一或多種方法包括現有方法或其他基於ML之方法,諸如上文所描述之RL方法。一旦得以訓練,可插入參考影像作為輸入,且經訓練機器學習模型產生特性圖案。舉例而言,自使用RL方法產生之較佳SRAF集合,針對每一架構315形成標記為SRAF之置放資料,其含有諸如每一架構點是否藉由輪廓之較佳SRAF集合覆蓋(例如,位於其中或其內) 的資訊,及架構點之架構距離資訊(例如,自架構點至輪廓之最小距離)。針對(例如,來自一或多個參考影像之輪廓的)若干骨架建立的此經標記資料被用作訓練資料來訓練ML模型(例如,SRAF置放模型353),以針對輸入架構預測每一架構點是否將藉由SRAF集合覆蓋。隨後使用含有關於哪些架構點將藉由SRAF集合覆蓋且哪些不應被覆蓋之資訊的經預測資料(亦被稱作「SRF置放資料」)產生用於對應於輸入架構的輪廓之較佳SRAF集合(例如,使用如上文所描述之SRAF產生器模型354)。在一些實施例中,監督ML模型包括序列標記模型,諸如雙向長短期記憶體(BiLSTM)神經網路。序列標記模型亦可使用其他ML模型實施,諸如卷積神經網路(CNN)、遞迴神經網路(RNN)、條件隨機場(CRF),或其他ML模型。至少參看圖7、圖8、圖10及圖11描述關於監督式學習方法之額外細節。
圖4為符合各種實施例的用於產生一特徵之輪廓及架構的方塊圖。參考影像305被輸入至輪廓提取器351,該輪廓提取器自參考影像305提取特徵之輪廓以產生輪廓影像405。輪廓影像405包括各種特徵之輪廓,諸如輪廓310。輪廓提取器351可使用許多影像分析技術中之一者自參考影像305提取輪廓310。舉例而言,輪廓提取器351可基於參考影像305中之像素之強度的變化而提取輪廓310。影像中的像素之強度、梯度及其類似者的變化可識別邊緣(例如,輪廓)。舉例而言,當將參考影像305表示為灰度影像時,當改變超過灰度臨限值(亦即,高於或低於定義值之強度)時,此可識別邊緣(亦即,輪廓310)。在一些實施例中,輪廓提取器351使用所指定的強度臨限值提取輪廓,諸如輪廓310。
輪廓影像405被輸入至架構器352,以產生架構化表示410,其包括來自輪廓影像405之每一輪廓的架構。作為一實例,架構化 表示410包括用於輪廓310之架構315。在形狀分析中,形狀之架構(或拓樸架構)為至其邊界等距的彼形狀之薄型版本。架構通常強調形狀之幾何及拓樸性質,諸如其拓樸、長度、方向及寬度。連同其點至形狀界線之距離(例如,架構距離),架構亦可充當形狀之表示(其含有重建構形狀必需的所有資訊)。在一些實施例中,架構為影像中的二元目標之寬為一個像素之表示,且可使用許多架構化方法中之一者產生。在一些實施例中,架構化技術包括(a)偵測邊界點之距離映射中的脊線,(b)計算藉由邊界點產生之Voronoi圖,及(c)被稱作薄化之逐層侵蝕。
架構315由若干點(被稱作「架構點」)組成。每一架構點與(a)位置資料相關聯,諸如架構點在架構化表示410中之座標,且與(b)架構距離相關聯,其為自架構點至輪廓之最小距離。雖然架構化表示包括來自參考影像305之若干輪廓的骨架,但為簡單起見,僅僅在架構化表示410中展示用於一個輪廓的架構315。圖5展示符合各種實施例的輪廓之另一架構化表示。架構化表示505包括若干輪廓及其架構。
圖6為符合各種實施例的用於產生一輪廓之較佳SRAF集合的方塊圖。在一些實施例中,SRAF產生器模型354使用RL方法(例如,蒙地卡羅法)判定用於輪廓310之較佳SRAF集合325。下文段落描述SRAF產生器模型354參考一個輪廓(例如,輪廓310)判定較佳SRAF集合325。然而,SRAF產生器模型354可針對其他輪廓(例如,架構化表示410中之每一輪廓)執行相同操作,以判定用於架構化表示410中之其他輪廓的較佳SRAF集合。
架構化表示410被輸入至SRAF產生器模型354,且SRAF產生器模型354處理架構315以判定用於輪廓310之較佳SRAF集合325。 SRAF產生器模型將以下值指派至架構315上的架構點中之每一者。此等值經初始化為「0」。
R(i):總獎勵
N(i):總覆蓋時間
S(i):狀態值
SRAF產生器模型354選擇架構315上的將架構315劃分成兩個或更多個區段之一或多個截止點,且使用架構距離及MRC約束判定每一區段之SRAF,因此產生具有多個SRAF之SRAF集合。舉例而言,選擇第一截止點606,該截止點將架構315劃分成兩個區段,且針對區段中之每一者產生SRAF,例如,第一SRAF 607及第二SRAF 608,從而形成第一SRAF集合605。
SRAF產生器模型354隨後對第一SRAF集合605執行隨機干擾程序及MRC清潔程序,以使得第一SRAF集合605與製造遮罩圖案之標準品相容。在一些實施例中,隨機干擾係將影像稍微偏移,或水平地或豎直地反映影像的程序。執行隨機干擾之原因中之一者為減輕過度擬合ML模型。如上文所描述,MRC清潔係將MRC約束應用於SRAF上以確保運用此等SRAF集合產生之特性圖案與製造遮罩圖案之標準品相容的程序。
SRAF產生器模型354使用計分函數判定第一SRAF集合605之獎勵值。計分函數將影像強度及用以提取輪廓之強度臨限值用作用於判定獎勵值之參數。用於判定獎勵值之實例計分函數r如下:
Figure 110107274-A0305-02-0031-2
其中
臨限值:用以提取輪廓之臨限值(例如,強度臨限值)
f(x):
Figure 110107274-A0305-02-0032-3
且a=0.1
I(x,y):參考影像305在SRAF集合中座標(x,y)處之影像強度
SRAF產生器模型354使用下文演算法更新架構點之狀態值S:
對於每一架構點執行{
若架構點藉由SRAF覆蓋(位於其中或其內):
N(i)=N(i)+1
R(i)=R(i)+r
S(i)=R(i)/N(i)
}/*架構點迴路*/
其中i為架構點之索引。
上方步驟(例如,自選擇截止點開始至更新狀態值)可被視為反覆「A」,且藉由選擇不同截止點(例如,隨機選擇)來重複反覆「A」以產生另一SRAF集合。舉例而言,SRAF產生器模型354藉由選擇第二截止點611來重複反覆「A」以產生第二SRAF集合610。判定第二SRAF集合610之獎勵值,且進一步更新架構點之狀態值。應注意,在產生第一SRAF集合605之後,架構點之狀態值未重設至「0」。SRAF產生器模型354藉由每一反覆選擇不同截止點,且在每一反覆「A」中產生SRAF集合,以產生「n」數目個SRAF集合來將反覆「A」重複預定義次數(例如,一千或另一數目)。
在產生「n」個SRAF集合後,SRAF產生器模型354判定狀態值之臨限值(例如,狀態臨限值)。可使用任何數目個函數判定狀態臨限值。舉例而言,狀態臨限值可經判定為架構點之狀態值的平均值。在另一 實例中,可依據架構點之最高及最低狀態(例如,最低狀態值+範圍之所指定百分比,其中範圍為最高狀態值與最低狀態值之間的差)來判定狀態臨限值。在判定狀態臨限值之後,SRAF產生器模型354將架構點中具有低於狀態臨限值之狀態值之彼等架構點判定為截止點(例如,未藉由SRAF集合覆蓋的架構點)。在判定截止點之後,SRAF產生器模型354對「n」個SRAF集合執行隨機干擾程序及MRC清潔程序以使得「n」個SRAF集合與製造遮罩圖案之標準品相容,計算SRAF集合之獎勵,並將具有滿足所指定規則之獎勵的SRAF集合(例如,SRAF集合中的最高者)判定為用於輪廓310之較佳SRAF集合325。
SRAF產生器模型354可針對來自架構化表示410的其他輪廓(例如,輪廓中之每一者)執行上方步驟(例如,自處理輪廓之架構開始至判定較佳SRAF集合),以產生用於其他輪廓之較佳SRAF集合。
在判定較佳SRAF集合之後,SRAF產生器模型354可產生特性圖案320,其包括自參考影像305提取之輪廓及其較佳SRAF集合。
運用以上RL方法的缺點中之一者在於以上方法無模型,此意味著自判定較佳SRAF集合325而獲得的學習,且因此,上文方法可能必須在每次處理新輪廓時執行,其可變得費時且運算密集。在一些實施例中,SRAF置放資料可由使用RL方法產生之較佳SRAF集合產生,且可被用作訓練資料以訓練ML模型,諸如SRAF置放模型353,以預測可用於產生用於任何輪廓之較佳SRAF集合的SRAF置放資料。舉例而言,基於較佳SRAF集合325,可產生SRAF置放資料620。SRAF置放資料620針對架構315上的每一架構點,指示(a)架構點之位置資料621;(b)架構點之架構距離資訊622(例如,自架構點至輪廓之最小距離);及(c)指示架構點是否 藉由較佳SRAF集合325覆蓋(例如,存在於其中、處於其中或其內)之存在值623(例如,標記)。存在值623可具有任何形式,例如「0」或「1」,其中「0」可指示架構點不位於較佳SRAF集合325之SRAF中、未藉由其覆蓋或未存在於其中,且「1」可指示架構點位於較佳SRAF集合325之SRAF中、藉由其覆蓋或存在於其中。由較佳SRAF集合325產生之SRAF置放資料620可用作訓練資料以訓練SRAF置放模型353。此SRAF置放資料針對(例如,來自一或多個參考影像的輪廓之)若干架構而形成,且用以訓練SRAF置放模型353以預測哪些架構點將藉由SRAF集合覆蓋。至少參看下文圖8及圖10論述關於訓練SRAF置放模型353之額外細節。
圖7為符合各種實施例的用於使用訓練ML模型產生較佳SRAF集合的方塊圖。SRAF置放模型353經訓練以預測SRAF置放資料,其針對任何給定輪廓,指示哪些架構點將藉由SRAF集合覆蓋。在一些實施例中,SRAF置放模型353為序列標記模型,諸如BiLSTM網路。
具有輪廓之架構的架構化表示(諸如具有輪廓310之架構315的架構化表示410)被輸入至SRAF置放模型353。架構化表示410由輪廓影像405產生,其由參考影像305產生,如至少參看上文圖4所描述。
SRAF置放模型353處理架構315以預測SRAF置放資料316,其含有關於架構315之哪些架構點將藉由較佳SRAF集合覆蓋且哪些不應藉由較佳SRAF集合覆蓋的資訊。舉例而言,SRAF置放資料316可包括架構點之位置資料(例如,x,y)座標,及存在值(例如,「0」或「1」),該存在值針對每一架構點指示架構點是(例如,存在值「1」)否(例如,存在值「0」)將被覆蓋。亦即,SRAF置放資料316包括:經覆蓋點集合,其為將藉由較佳SRAF集合覆蓋的架構點;及未經覆蓋點集合,其為未藉由 較佳SRAF集合覆蓋的架構點。
經預測SRAF置放資料316隨後被輸入至SRAF產生器模型354,其可判定用於輪廓310之較佳SRAF集合325,如至少參看圖6所描述。舉例而言,SRAF產生器模型354自未經覆蓋點集合選擇一或多個點作為截止點,且接著執行至少參看圖6描述之反覆「A」以產生SRAF集合並判定其獎勵。隨後,SRAF產生器模型354藉由自未經覆蓋點集合選擇不同截止點,且每次產生另一SRAF集合,來將反覆「A」重複預定義次數,從而導致「n」數目個SRAF集合的產生,其中「n」為執行反覆A之預定義次數。在產生「n」個SRAF集合之後,SRAF產生器模型354將具有滿足所指定規則之獎勵的SRAF集合(例如,SRAF集合中之最高者)判定為用於輪廓310之較佳SRAF集合325。
類似地,針對來自參考影像305之輪廓中之每一者判定較佳SRAF集合。SRAF產生器模型354基於經判定較佳SRAF集合而產生特性圖案320。
圖8為符合各種實施例的用於訓練SRAF置放模型以預測SRAF置放資料的方塊圖。如上所述,在一些實施例中,使用諸如BiLSTM神經網路之序列標記模型實施SRAF置放模型353。遞迴神經網路(RNN)為人工神經網路類別,其中節點之間的連接沿時間序列形成有向圖。RNN通常用於序列輸入/輸出學習。長短期記憶體(LSTM)為能夠習得短期及長期依賴性兩者的特殊RNN,且其包括以下組分:單元(記憶體)──負責追蹤輸入序列中之元素之間的依賴性;輸入閘極──控制新值流入至單元中的程度;遺忘閘極──控制值保持於單元中的程度;及輸出閘極──使用控制單元中之值運算LSTM單元之輸出啟動的程度。LSTM閘 極之啟動函數常常為對數S型函數。在輸入序列之所有時間步驟可用的問題中,雙向LSTM訓練兩個而非一個遞迴網路。第一者在輸入序列原樣上訓練,且第二者在輸入序列之逆時間複本上訓練。此可將額外上下文提供至網路,且有望提高網路之準確性。
SRAF置放模型353使用訓練資料進行訓練,例如,在如至少參看圖6所描述之RL方法中產生的SRAF置放資料620。訓練資料包括用於架構之SRAF置放資料620,其針對架構上之每一架構點,指示(a)架構點之位置資料621(例如,架構化表示410中之架構點的座標);(b)架構點之架構距離資訊622(例如,自架構點至輪廓之最小距離);及(c)指示架構點是否藉由較佳SRAF集合覆蓋(例如,存在於其中、處於其中或位於其內)的存在值623。存在值623可具有任何形式,例如「0」或「1」,其中「0」可指示架構點不位於較佳SRAF集合之SRAF中、未藉由其覆蓋或未存在於其中,且「1」可指示架構點位於較佳SRAF集合之SRAF中、藉由其覆蓋或存在於其中。
訓練為反覆程序,且反覆包括:將SRAF置放資料620輸入至SRAF置放模型353以產生用於架構點中之每一者的預測存在值805(例如,指示架構點是否經預測藉由較佳SRAF覆蓋);判定與預測存在值805及實際存在值相關聯之指標或成本函數(例如,預測存在值805與來自SRAF置放資料620之實際存在值之間的差);及調整模型參數以最小化指標。作為一實例,模型參數經調節以減小差。藉由運用額外SRAF置放資料執行若干反覆直至滿足所指定條件來繼續SRAF置放模型353之訓練(例如,度量經最小化或低於第一臨限值,及/或度量最小化的速率小於第二臨限值)。一旦滿足所指定的條件,SRAF置放模型353被視為進行訓練, 且經訓練SRAF置放模型353可用以預測用於任何輪廓之SRAF置放資料(例如,新的或未見過的輪廓,其為先前未藉由SRAF置放模型353處理之輪廓)。至少參看上文圖7描述使用經訓練SRAF置放模型353預測SRAF置放資料的實例。
圖9A為符合各種實施例的用於使用RL方法產生特性圖案之程序900的流程圖。
在操作910,自參考影像305獲得參考特徵307之輪廓310(例如,對應於來自待印刷於基板上之目標圖案的目標特徵的特徵)。在一些實施例中,參考影像305為CTM,且獲自資料庫360。如至少參看圖4所描述的(例如,使用強度臨限值)自參考影像305提取輪廓。
在操作920,執行SRAF產生器模型354以判定將被置放於輪廓310附近之較佳SRAF集合325。在一些實施例中,較佳SRAF集合325具有滿足所指定條件之獎勵值(例如,經產生用於輪廓310的所有SRAF集合之最高者)。獎勵值係依據強度臨限值來判定,例如,如至少參看圖6所描述。在一些實施例中,SRAF產生器模型354使用RL方法(例如,蒙地卡羅法)判定較佳SRAF集合325。在一些實施例中,SRAF產生器模型354調用至少參看圖9B描述之操作,以判定用於輪廓之較佳SRAF集合。SRAF產生器模型354將輪廓作為輸入提供至圖9B之操作,且自彼等操作接收較佳SRAF集合。
針對參考影像305種植其他輪廓(例如,每一輪廓)重複操作910及920,以判定用於其他輪廓之較佳SRAF集合。
在操作930,SRAF產生器模型354產生特性圖案320,其為提取友好影像,該提取友好影像具有來自參考影像305之參考特徵之輪廓 及經置放於對應輪廓附近的較佳SRAF集合。舉例而言,SRAF產生器模型354運用經置放於輪廓310附近的較佳SRAF集合325產生輪廓310。在一些實施例中,使用特性圖案320製造用於將目標圖案印刷於基板上的遮罩圖案。
圖9B為符合各種實施例的用於使用RL方法判定用於輪廓之較佳SRAF集合的程序950之流程圖。在一些實施例中,執行程序950作為程序900之操作920之部分。在操作921,架構器352自程序900之操作920接收輪廓(例如,輪廓310)作為輸入,且處理輪廓310以產生輪廓310之架構315。架構器352使用許多影像分析技術中之一者產生架構315,例如,如至少參看圖4所描述。
在操作922,SRAF產生器模型354將以下參數指派至架構315上的架構點中之每一者,且將其值初始化為「0」。
R(i):總獎勵
N(i):總覆蓋時間
S(i):狀態值
在操作923,SRAF產生器模型354選擇架構315上的一或多個截止點,其將架構315劃分成兩個或更多個區段。舉例而言,選擇第一截止點606,其將架構315劃分成兩個區段。
在操作924,SRAF產生器模型354使用架構距離及MRC約束針對每一區段判定一SRAF。舉例而言,對於藉由第一截止點606形成的兩個區段,SRAF產生器模型354產生第一SRAF 607及第二SRAF 608,從而形成第一SRAF集合605。
在操作925,SRAF產生器模型354對第一SRAF集合605執 行隨機干擾程序及MRC清潔程序,以使得第一SRAF集合605與製造遮罩圖案之標準品相容。在一些實施例中,隨機干擾係將影像稍微偏移,或水平地或豎直地反映影像的程序。執行隨機干擾之原因中之一者為減輕過度擬合ML模型。如上文所描述,MRC清潔係將MRC約束應用於SRAF上以確保運用此等SRAF集合產生之特性圖案與製造遮罩圖案之標準品相容的程序。
在操作926,SRAF產生器模型354使用計分函數判定第一SRAF集合605之獎勵值。計分函數將影像強度及用以提取輪廓之強度臨限值用作用於判定獎勵值之參數。用於判定獎勵值之實例計分函數r如下:
Figure 110107274-A0305-02-0039-4
其中
臨限值:用以提取輪廓之臨限值(例如,強度臨限值)
f(x):
Figure 110107274-A0305-02-0039-5
且a=0.1
I(x,y):參考影像305在SRAF集合中座標(x,y)處之影像強度
在操作927,SRAF產生器模型354使用下文演算法更新架構點之狀態值S:
對於每一架構點執行{
若架構點藉由SRAF覆蓋(位於其中或其內):
N(i)=N(i)+1
R(i)=R(i)+r
S(i)=R(i)/N(i)
}/*架構點迴路*/
其中i為架構點之索引。
SRAF產生器模型354藉由每次選擇不同截止點,且每次產生一SRAF集合,將操作至923至927重複預定義次數(例如,一千次或另一數目),從而導致「n」數目個SRAF集合之產生,其中「n」為預定義次數。判定SRAF集合中之每一者之獎勵值,且進一步更新架構點之狀態值。應注意,每次重複操作923至927時,架構點之狀態值未重設至「0」。
在操作928,SRAF產生器模型354判定狀態值之臨限值(例如,狀態臨限值)。狀態臨限值可使用任何數目個函數(例如,作為架構點之狀態值的平均值,且依據最高及最低狀態值(例如,最低狀態值+範圍之所指定百分比,其中範圍為最高狀態值與最低狀態值之間的差))來判定。在判定狀態臨限值之後,SRAF產生器模型354將架構點中具有低於狀態臨限值之一狀態值之彼等架構點判定為截止點(例如,未藉由SRAF集合覆蓋的架構點)。在判定截止點之後,SRAF產生器模型354執行操作925至927,以使得「n」個SRAF集合與製造遮罩圖案之標準品相容,且計算SRAF集合之經更新獎勵值。
在操作929,SRAF產生器模型354將具有滿足所指定規則之獎勵的SRAF集合(例如,SRAF集合中之最高者)判定為用於輪廓310之較佳SRAF集合325。較佳SRAF集合325現在返回至圖9A之操作920。
在一些實施例中,在操作929b,SRAF產生器模型354自較佳SRAF集合產生SRAF置放資料,其可用作訓練資料以訓練ML模型(諸如SRAF置放模型353),以預測可用於產生用於任何輪廓之較佳SRAF集合的SRAF置放資料。舉例而言,SRAF產生器模型354基於較佳SRAF集合 325而產生SRAF置放資料620。SRAF置放資料620針對架構315上的每一架構點,指示(a)架構點之位置資料;(b)架構點之架構距離資訊(例如,自架構點至輪廓之最小距離);及(c)指示架構點是否藉由較佳SRAF集合325覆蓋(例如,存在於其中、處於其中或其內)之存在值(例如,標記)。存在值可具有任何形式,例如「0」或「1」,其中「0」可指示架構點不位於較佳SRAF集合325之SRAF中、未藉由其覆蓋或未存在於其中,且「1」可指示架構點位於較佳SRAF集合325之SRAF中、藉由其覆蓋或存在於其中。此SRAF置放資料針對(例如,來自一或多個參考影像的輪廓之)若干架構而形成,且用以訓練SRAF置放模型353以預測哪些架構點將藉由SRAF集合覆蓋。
應注意,用以產生訓練資料的操作929b係可選的,且無需使用RL方法判定較佳SRAF集合。
圖10為符合各種實施例的用於訓練機器學習模型以預測SRAF置放資料之程序1000的流程圖。如上所述,在一些實施例中,使用BiLSTM神經網路實施SRAF置放模型353。
在操作1010,例如自資料庫360獲得與參考影像305中之參考特徵307相關聯的訓練資料。訓練資料用以訓練SRAF置放模型353,以預測可用於判定用於輪廓之較佳SRAF集合的SRAF置放資料。訓練資料包括(i)參考特徵307之複數個部分之每一部分的位置資料;及(iii)存在值623,其指示參考特徵307之該部分是否位於針對參考特徵307而產生的參考輔助特徵內。舉例而言,訓練資料包括由參考特徵307之輪廓310產生的用於架構315之SRAF置放資料620。SRAF置放資料620針對架構315上的每一架構點,指示(a)架構點315上的架構點之位置資料621;(b)架構點 之架構距離資訊622(例如,自架構點至輪廓之最小距離);及(c)指示架構點是否藉由較佳SRAF集合325覆蓋(例如,存在於其中、處於其中或其內)之存在值623。存在值623可具有任何形式,例如「0」或「1」,其中「0」可指示架構點不位於較佳SRAF集合之SRAF中、未藉由其覆蓋或未存在於其中,且「1」可指示架構點位於較佳SRAF集合325之SRAF中、藉由其覆蓋或存在於其中。在一些實施例中,訓練資料藉由SRAF產生器模型354使用如至少參看圖6及圖9之操作929b所描述的RL方法產生。在一些實施例中,訓練資料包括用於若干架構之SRAF置放資料。
在操作1020,使用與參考特徵307相關聯之訓練資料來訓練SRAF置放模型353,使得預測存在值805與存在值623之間的度量得以最小化。訓練為反覆程序,且反覆包括:將訓練資料(例如,SRAF置放資料620)輸入至SRAF置放模型353以產生用於架構點中之每一者的預測存在值805(例如,架構315之架構點),其指示架構點是否經預測藉由較佳SRAF覆蓋;判定與預測存在值805及實際存在值相關聯之指標(例如,預測存在值805與來自SRAF置放資料620之實際存在值之間的差);及調整模型參數以最小化指標。作為一實例,模型參數經調節以減小差。藉由運用額外SRAF置放資料執行若干反覆直至滿足所指定條件來繼續SRAF置放模型353之訓練(例如,度量經最小化或低於第一臨限值,及/或度量最小化的速率小於第二臨限值)。
一旦滿足所指定的條件,SRAF置放模型353被視為進行訓練,且經訓練SRAF置放模型353可用以預測用於任何輪廓之SRAF置放資料(例如,新的或未見過的輪廓,其為先前未藉由SRAF置放模型353處理之輪廓)。至少參看上文圖7及下文圖11描述使用經訓練SRAF置放模型 353預測SRAF置放資料的實例。
圖11A為符合各種實施例的用於使用藉由ML模型預測之存在值產生特性圖案的程序1100之流程圖。在一些實施例中,訓練諸如SRAF置放模型353之ML模型,以預測指示架構之哪些架構點將藉由用於輪廓之較佳SRAF集合覆蓋及哪些架構點不被該較佳SRAF集合覆蓋的存在值。如至少參看上文圖8及圖10所描述的執行訓練。下文操作使用經訓練SRAF置放模型353執行。
在操作1110,例如自資料庫360獲得參考影像305。在一些實施例中,參考影像305為CTM。
在操作1120,自參考影像305獲得參考特徵307之輪廓310(例如,對應於來自待印刷於基板上之目標圖案的目標特徵的特徵)。如至少參看圖4所描述的(例如,使用強度臨限值)自參考影像305提取輪廓。
在操作1130,架構器352處理輪廓310以產生輪廓310之架構315。架構器352使用許多影像分析技術中之一者產生架構315,例如,如至少參看圖4所描述。
在操作1140,SRAF置放模型353處理架構315以判定或產生SRAF置放資料316,其含有預測存在值805。舉例而言,SRAF置放資料316可包括架構點之位置資料(例如,x,y)座標,及存在值805(例如,「0」或「1」),該存在值指示架構點是(例如,存在值「1」)否(例如,存在值「0」)將被覆蓋。亦即,SRAF置放資料316包括:經覆蓋點集合,其為將藉由較佳SRAF集合覆蓋的架構點;及未經覆蓋點集合,其為將不藉由較佳SRAF集合覆蓋的架構點。
在操作1150,SRAF產生器模型354基於預測存在值805而 產生特性圖案320。在一些實施例中,SRAF產生器模型354在下文圖11B中所描述的操作中使用存在值805判定用於輪廓310之較佳SRAF集合。類似地,判定用於參考影像305中之其他輪廓的較佳SRAF集合。在判定用於參考影像305中之輪廓的較佳SRAF集合之後,SRAF產生器模型354基於較佳SRAF集合而產生特性圖案320。在一些實施例中,特性圖案320為提取友好影像,其具有來自參考影像305之參考特徵的輪廓及經置放於對應輪廓附近的較佳SRAF集合。在一些實施例中,使用特性圖案320製造用於將目標圖案印刷於基板上的遮罩圖案。
圖11B為符合各種實施例的用於基於藉由ML模型預測之存在值判定較佳SRAF集合的程序1175之流程圖。在一些實施例中,程序1175之操作經執行作為圖11A之程序1100之操作1150之部分,且類似於至少參考圖9B之程序950所論述的RL方法之操作的部分。程序1175接收用於架構的具有預測存在值之SRAF置放資料(例如,用於架構315的具有預測存在值805之SRAF置放資料316)作為輸入,且針對該架構輸出經預測SRAF。
在操作1151,SRAF產生器模型354自SRAF置放資料316中之未經覆蓋點集合選擇一或多個點作為截止點,該等截止點將架構315劃分成多個區段。
在操作1152,SRAF產生器模型354執行類似於程序950之操作924的操作,以使用架構距離及MRC約束針對每一區段判定一SRAF。舉例而言,對於藉由第一截止點606形成的兩個區段,SRAF產生器模型354產生第一SRAF 607及第二SRAF 608,從而形成第一SRAF集合605。
在操作1153,SRAF產生器模型354執行類似於程序950之操作925的操作,其包括對第一SRAF集合605執行隨機干擾程序及MRC清潔程序,以使得第一SRAF集合605與製造遮罩圖案之標準品相容。
在操作1154,SRAF產生器模型354執行類似於程序950之操作926的操作,以使用計分函數判定第一SRAF集合605之獎勵值。
在操作1155,SRAF產生器模型354執行類似於操作927之操作,以更新架構點之狀態值S。
在操作1156,SRAF產生器模型354執行類似於操作929之操作,以將具有滿足所指定規則之獎勵的SRAF集合(例如,SRAF集合中之最高者)判定為用於輪廓310之較佳SRAF集合325。較佳SRAF集合325現在返回至程序1100之操作1150。
圖12為根據一實施例之實例電腦系統CS的方塊圖。
電腦系統CS包括用於傳達資訊之匯流排BS或其他通信機制及與匯流排BS耦接以供處理資訊之處理器PRO(或多個處理器)。電腦系統CS亦包括耦接至匯流排BS以用於儲存待由處理器PRO執行之資訊及指令的主記憶體MM,諸如隨機存取記憶體(RAM)或其他動態儲存器件。主記憶體MM亦可用於在待由處理器PRO執行之指令的執行期間儲存暫時性變數或其他中間資訊。電腦系統CS進一步包括耦接至匯流排BS以用於儲存用於處理器PRO之靜態資訊及指令的唯讀記憶體(ROM)ROM或其他靜態儲存器件。提供諸如磁碟或光碟之儲存器件SD,且將其耦接至匯流排BS以用於儲存資訊及指令。
電腦系統CS可經由匯流排BS耦接至用於向電腦使用者顯示資訊之顯示器DS,諸如陰極射線管(CRT),或平板或觸控面板顯示器。 包括文數字及其他按鍵之輸入器件ID耦接至匯流排BS以用於將資訊及命令選擇傳達至處理器PRO。另一類型之使用者輸入器件為用於將方向資訊及命令選擇傳達至處理器PRO且用於控制顯示器DS上之游標移動的游標控制件CC,諸如滑鼠、軌跡球或游標方向按鍵。此輸入器件通常具有在兩個軸線(第一軸(例如,x)及第二軸(例如,y))上之兩個自由度,從而允許該器件指定平面中之方位。觸控面板(螢幕)顯示器亦可被用作輸入器件。
根據一個實施例,本文中所描述之一或多種方法的部分可藉由電腦系統CS回應於處理器PRO執行主記憶體MM中所含有之一或多個指令的一或多個序列來執行。可將此等指令自另一電腦可讀媒體(諸如儲存器件SD)讀取至主記憶體MM中。主記憶體MM中所含有之指令序列的執行促使處理器PRO執行本文中所描述之程序步驟。呈多處理配置之一或多個處理器亦可用於執行主記憶體MM中所含有之指令序列。在替代性實施例中,可代替或結合軟體指令而使用硬連線電路。因此,本文中之描述不限於硬體電路及軟體之任何特定組合。
如本文中所使用之術語「電腦可讀媒體」係指參與將指令提供至處理器PRO以供執行之任何媒體。此媒體可採取許多形式,包括(但不限於)非揮發性媒體、揮發性媒體及傳輸媒體。非揮發性媒體包括例如光碟或磁碟,諸如儲存器件SD。揮發性媒體包括動態記憶體,諸如主記憶體MM。傳輸媒體包括同軸纜線、銅線及光纖,包括包含匯流排BS之導線。傳輸媒體亦可採取聲波或光波之形式,諸如,在射頻(RF)及紅外線(IR)資料通信期間產生之聲波或光波。電腦可讀媒體可為非暫時性的,例如軟碟、可撓性磁碟、硬碟、磁帶、任何其他磁性媒體、CD-ROM、 DVD、任何其他光學媒體、打孔卡、紙帶、具有孔圖案之任何其他實體媒體、RAM、PROM及EPROM、FLASH-EPROM、任何其他記憶體晶片或卡匣。非暫時性電腦可讀媒體可具有記錄於其上之指令。在由電腦執行時,指令可實施本文中所描述的特徵中之任一者。暫時性電腦可讀媒體可包括載波或其他傳播電磁信號。
可在將一或多個指令之一或多個序列攜載至處理器PRO以供執行時涉及電腦可讀媒體之各種形式。舉例而言,初始地可將該等指令承載於遠端電腦之磁碟上。遠端電腦可將指令載入至其動態記憶體內,且使用數據機經由電話線而發送指令。在電腦系統CS本端之數據機可接收電話線上之資料,且使用紅外線傳輸器將資料轉換為紅外線信號。耦接至匯流排BS之紅外偵測器可接收紅外信號中所攜載之資料且將資料置放於匯流排BS上。匯流排BS將資料攜載至主記憶體MM,處理器PRO自該主記憶體擷取且執行指令。由主記憶體MM接收之指令可視情況在由處理器PRO執行之前或之後儲存於儲存器件SD上。
電腦系統CS亦可包括耦接至匯流排BS之通信介面CI。通信介面CI提供與網路鏈路NDL之雙向資料通信耦接,該網路鏈路NDL連接至區域網路LAN。舉例而言,通信介面CI可為整合服務數位網路(ISDN)卡或數據機以提供與相應類型之電話線的資料通信連接。作為另一實例,通信介面CI可為區域網路(LAN)卡以提供與相容LAN的資料通信連接。亦可實施無線鏈路。在任何此實施中,通信介面CI發送且接收攜載表示各種類型之資訊之數位資料流的電信號、電磁信號或光學信號。
網路鏈路NDL通常通過一或多個網路提供與其他資料器件之資料通信。舉例而言,網路鏈路NDL可通過區域網路LAN提供與主機 電腦HC之連接。此可包括經由全球封包資料通信網路(現在通常稱為「網際網路」INT)而提供資料通信服務。區域網路LAN(網際網路)皆使用攜載數位資料串流之電信號、電磁信號或光學信號。通過各種網路之信號及在網路資料鏈路NDL上且通過通信介面CI之信號為輸送資訊的例示性載波形式,該等信號將數位資料攜載至電腦系統CS且自該電腦系統攜載數位資料。
電腦系統CS可通過網路、網路資料鏈路NDL及通信介面CI發送訊息及接收資料(包括程式碼)。在網際網路實例中,主機電腦HC可經由網際網路INT、網路資料鏈路NDL、區域網路LAN及通信介面CI傳輸用於應用程式之經請求程式碼。例如,一個此經下載應用程式可提供本文中所描述之方法的全部或部分。所接收程式碼可在接收其時由處理器PRO執行,及/或儲存於儲存器件SD或其他非揮發性儲存器中以供稍後執行。以此方式,電腦系統CS可獲得呈載波形式之應用程式碼。
根據本發明,所揭示元件之組合及子組合構成單獨實施例。舉例而言,用於生成經預測之經量測影像之方法及用於對齊經量測影像與經預測之經量測影像之方法可包含單獨的實施例,及/或此等方法可一起用於同一實施例中。
圖13為根據一實施例之微影投影設備的示意圖。
微影投影設備可包括照明系統IL、第一物件台MT、第二物件台WT及投影系統PS。
照明系統IL可調節輻射光束B。在此特定狀況下,照明系統亦包含輻射源SO。
第一物件台(例如,圖案化器件台)MT可具有用以固持圖 案化器件MA(例如,倍縮光罩)之圖案化器件固持器,且連接至用以相對於項目PS來準確地定位圖案化器件之第一定位器。
第二物件台(基板台)WT可具備用以固持基板W(例如,抗蝕劑塗佈矽晶圓)之基板固持器,且連接至用以相對於項目PS來準確地定位該基板之第二定位器。
投影系統(「透鏡」)PS(例如,折射、反射或反射折射光學系統)可使圖案化器件MA之經輻照部分成像至基板W之目標部分C(例如,包含一或多個晶粒)上。
如本文中所描繪,設備可屬於透射型(亦即,具有透射圖案化器件)。然而,一般而言,其亦可屬於反射類型,例如(具有反射圖案化器件)。設備可將不同種類之圖案化器件用於典型遮罩;實例包括可程式化鏡面陣列或LCD矩陣。
源SO(例如,水銀燈或準分子雷射、LPP(雷射產生電漿)EUV源)產生輻射光束。舉例而言,此光束係直接地或在已橫穿諸如光束擴展器Ex之調節構件之後饋入至照明系統(照明器)IL中。照明器IL可包含調整構件AD以用於設定光束中之強度分佈的外部徑向範圍及/或內部徑向範圍(通常分別稱作σ外部及σ內部)。另外,其通常將包含各種其他組件,諸如,積光器IN及聚光器CO。以此方式,入射於圖案化器件MA上之光束B在其橫截面中具有所要均一性及強度分佈。
在一些實施例中,源SO可在微影投影設備之外殼內(如常常係在源SO為例如水銀燈時的情況),但其亦可遠離微影投影設備,源SO產生之輻射光束經引導至設備中(例如憑藉適合導向鏡面);此後一情形可為在源SO為準分子雷射(例如,基於KrF、ArF或F2發出雷射)時的情況。
光束PB隨後截取固持於圖案化器件台MT上之圖案化器件MA。在已橫穿圖案化器件MA的情況下,光束B可穿過透鏡PL,該透鏡PL將光束B聚焦至基板W之目標部分C上。憑藉第二定位構件(及干涉量測構件IF),可準確地移動基板台WT,例如以便使不同目標部分C定位於光束PB之路徑中。類似地,第一定位構件可用於例如在自圖案化器件庫機械擷取圖案化器件MA之後或在掃描期間相對於光束B之路徑來準確地定位圖案化器件MA。大體而言,可藉助於長衝程模組(粗略定位)及短衝程模組(精細定位)來實現物件台MT、WT之移動。然而,在步進器(相對於步進掃描工具)之狀況下,圖案化器件台MT可僅連接至短衝程致動器,或可固定。
可在兩種不同模式-步進模式及掃描模式中使用所描繪工具。在步進模式下,使圖案化器件台MT保持基本上靜止,且將整個圖案化器件影像一次性(亦即,單次「閃光」)投影至目標部分C上。可使基板台WT在x及/或y方向上移位,使得不同目標部分C可由光束PB輻照。
在掃描模式中,基本上相同的情形適用,不同之處在於不在單次「閃光」中曝光給定目標部分C。取而代之,圖案化器件台MT可在給定方向(所謂的「掃描方向」,例如,y方向)上以速度v移動,以使得使投影光束B在圖案化器件影像上進行掃描;同時,基板台WT以速度V=Mv在相同或相對方向上同時地移動,其中M為透鏡PL之放大率(通常,M=1/4或1/5)。以此方式,可在不必損害解析度的情況下曝光相對大目標部分C。
圖14為根據一實施例之另一微影投影設備(LPA)的示意圖。
LPA可包括源收集器模組SO、經組態以調節輻射光束B(例如EUV輻射)的照明系統(照明器)IL、支撐結構MT、基板台WT及投影系統PS。
支撐結構(例如圖案化器件台)MT可經建構以支撐圖案化器件(例如,遮罩或倍縮光罩)MA且連接至經組態以準確地定位該圖案化器件之第一定位器PM。
基板台(例如,晶圓台)WT,其可經建構以固持基板(例如,抗蝕劑塗佈晶圓)W,且連接至經組態以準確地定位該基板之第二定位器PW。
投影系統(例如,反射性投影系統)PS可經組態以將藉由圖案化器件MA賦予給輻射光束B之圖案投影於基板W的目標部分C(例如,包含一或多個晶粒)上。
如此處所描繪,LPA可屬於反射類型(例如,使用反射圖案化器件)。應注意,因為大多數材料在EUV波長範圍內具吸收性,所以圖案化器件可具有包含(例如)鉬與矽之多堆疊的多層反射器。在一個實例中,多堆疊反射器具有鉬與矽之40個層對,其中每一層之厚度層四分之一波長。可運用X射線微影來產生甚至更小的波長。因為大多數材料在EUV及x射線波長下具吸收性,所以圖案化器件構形(topography)上之經圖案化吸收材料薄片段(例如,多層反射器之頂部上之TaN吸收器)界定特徵將印刷(正型抗蝕劑)或不印刷(負型抗蝕劑)之處。
照明器IL可自源收集器模組SO接收極紫外輻射光束。用以產生EUV輻射之方法包括但未必限於用在EUV範圍內之一或多種發射譜線將具有至少一元素(例如,氙、鋰或錫)之材料轉換成電漿狀態。在一種 此類方法(常常被稱為雷射產生電漿(「LPP」))中,可藉由用雷射光束來輻照燃料(諸如,具有譜線發射元素之材料小滴、串流或叢集)而產生電漿。源收集器模組SO可為包括雷射之EUV輻射系統之部分,該雷射用於提供激發燃料的雷射光束。所得電漿發射輸出輻射(例如EUV輻射),該輸出輻射係使用安置於源收集器模組中之輻射收集器予以收集。舉例而言,當使用CO2雷射以提供用於燃料激發之雷射光束時,源及雷射與源收集器模組可為分離實體。
在此等情況下,可不認為雷射形成微影設備之部分,且輻射光束可憑藉包含例如適合導向鏡面及/或光束擴展器之光束傳遞系統而自雷射傳遞至源收集器模組。在其他狀況下,舉例而言,當源為放電產生電漿EUV產生器(常常被稱為DPP源)時,源可為源收集器模組之整體部分。
照明器IL可包含用於調整輻射光束之角強度分佈之調整器。通常,可調整照明器之光瞳平面中之強度分佈之至少外部徑向範圍及/或內部徑向範圍(通常分別被稱作σ外部及σ內部)。另外,照明器IL可包含各種其他組件,諸如,琢面化場鏡面元件及琢面化光瞳鏡面元件。照明器可用以調節輻射光束,以在其橫截面中具有所要均一性及強度分佈。
輻射光束B可入射於固持於支撐結構(例如,圖案化器件台)MT上之圖案化器件(例如,遮罩)MA上,且由該圖案化器件來圖案化。在自圖案化器件(例如,遮罩)MA反射之後,輻射光束B穿過投影系統PS,投影系統PS將該輻射光束B聚焦至基板W之目標部分C上。憑藉第二定位器PW及位置感測器PS2(例如干涉量測器件、線性編碼器或電容式感測器),可準確地移動基板台WT例如以便使不同目標部分C定位於輻射 光束B之路徑中。類似地,第一定位器PM及另一位置感測器PS1可用以相對於輻射光束B之路徑來準確定位圖案化器件(例如遮罩)MA。圖案化器件(例如,遮罩)MA及基板W可使用圖案化器件對準標記M1、M2及基板對準標記P1、P2來對準。
所描繪之設備LPA可用於以下模式中之至少一者:步進模式、掃描模式及靜止模式。
在步進模式中,在將經賦予至輻射光束之整個圖案一次性投影至目標部分C上時,使支撐結構(例如,圖案化器件台)MT及基板台WT保持基本上靜止(亦即,單次靜態曝光)。接著,使基板台WT在X及/或Y方向上移位,以使得可曝光不同目標部分C。
在掃描模式下,在將賦予至輻射光束之圖案投影至目標部分C上時,同步地掃描支撐結構(例如,圖案化器件台)MT及基板台WT(亦即,單次動態曝光)。可藉由投影系統PS之放大率(縮小率)及影像反轉特性來判定基板台WT相對於支撐結構(例如,圖案化器件台)MT之速度及方向。
在靜止模式下,在將賦予至輻射光束之圖案投影至目標部分C上時,使固持可程式化圖案化器件之支撐結構(例如圖案化器件台)MT保持基本上靜止,且移動或掃描基板台WT。在此模式中,通常使用脈衝式輻射源,且在基板台WT之每一移動之後或在一掃描期間之順次輻射脈衝之間視需要而更新可程式化圖案化器件。此操作模式可易於應用於利用可程式化圖案化器件(諸如,上文所提及之類型之可程式化鏡面陣列)之無遮罩微影。
圖15為根據一實施例之微影投影設備的詳細視圖。
如所展示,LPA可包括源收集器模組SO、照明系統IL及投影系統PS。源收集器模組SO經建構及配置成使得可將真空環境維持於源收集器模組SO之圍封結構220中。可藉由放電產生電漿源來形成EUV輻射發射電漿210。可藉由氣體或蒸汽(例如,Xe氣體、Li蒸汽或Sn蒸汽)來產生EUV輻射,其中產生極熱電漿210以發射在電磁光譜之EUV範圍內之輻射。舉例而言,藉由產生至少部分離子化電漿之放電來產生極熱電漿210。為了輻射之有效率產生,可需要為(例如)10Pa之分壓之Xe、Li、Sn蒸汽或任何其他合適氣體或蒸汽。在一實施例中,提供經激發錫(Sn)電漿以產生EUV輻射。
由熱電漿210發射之輻射係經由定位於源腔室211中之開口中或後方的視情況選用的氣體障壁或污染物截留器230(在一些狀況下,亦被稱作污染物障壁或箔片截留器)而自源腔室211傳遞至收集器腔室212中。污染物截留器230可包括通道結構。污染物截留器230亦可包括氣體障壁,或氣體障壁與通道結構之組合。如在此項技術中為吾人所知,本文中進一步所指示之污染物截留器或污染物障壁230至少包括通道結構。
收集器腔室211可包括輻射收集器CO,該輻射收集器可為所謂的掠入射收集器。輻射收集器CO具有上游輻射收集器側251及下游輻射收集器側252。橫穿收集器CO之輻射可自光柵光譜濾光器240反射,以沿著由點虛線「O」指示之光軸而聚焦在虛擬源點IF中。虛擬源點IF通常被稱作中間焦點,且源收集器模組經配置以使得中間焦點IF位於封閉結構220中之開口221處或靠近該開口。虛擬源點IF為輻射發射電漿210之影像。
隨後,輻射橫穿照明系統IL,照明系統IL可包括琢面化場 鏡面器件22及琢面化光瞳鏡面器件24,其經配置以提供在圖案化器件MA處之輻射光束21之所要角分佈,以及在圖案化器件MA處之輻射強度之所要均一性。在由支撐結構MT固持之圖案化器件MA處反射輻射光束21後,隨即形成經圖案化光束26,且經圖案化光束26藉由投影系統PS經由反射元件28、30成像至由基板台WT固持之基板W上。
比所展示器件多的器件通常可存在於照明光學件單元IL及投影系統PS中。取決於微影設備之類型,可視情況存在光柵光譜濾光器240。另外,可存在比諸圖所展示之鏡面多的鏡面,例如,在投影系統PS中可存在比圖13所展示之反射元件多1至6個的額外反射元件。
如圖13中所說明之收集器光學件CO被描繪為具有掠入射反射器253、254及255之巢套式收集器,僅僅作為收集器(或收集器鏡面)之實例。掠入射反射器253、254及255經安置成圍繞光軸O軸向地對稱,且此類型之收集器光學件CO可結合常常被稱為DPP源之放電產生電漿源而使用。
圖16為根據一實施例的微影投影設備LPA之源收集器模組SO的詳細視圖。
源收集器模組SO可為LPP輻射系統之部分。雷射器LA可經配置以將雷射能量沈積至諸如氙(Xe)、錫(Sn)或鋰(Li)之燃料中,從而產生具有數十eV的電子溫度之高度離子化電漿210。在此等離子之去激發及再結合期間所產生之高能輻射自電漿發射,由近正入射收集器光學件CO收集,且聚焦至圍封結構220中的開口221上。
本文中所揭示之概念可模擬或數學上模型化用於使子波長特徵成像之任何通用成像系統,且可尤其供能夠產生愈來愈短波長之新興 成像技術使用。已經在使用中之新興技術包括能夠藉由使用ArF雷射來產生193奈米波長且甚至能夠藉由使用氟雷射來產生157奈米波長之極紫外線(EUV)、DUV微影。此外,EUV微影能夠藉由使用同步加速器或藉由運用高能電子來撞擊材料(固體或電漿)而產生在20奈米至50奈米之範圍內的波長,以便產生在此範圍內之光子。
圖17示意性地描繪根據一實施例的電子束檢測設備2320之一實施例。在一實施例中,檢測設備可為產生曝光或轉印於基板上之結構(例如諸如積體電路之器件之某結構或全部結構)之影像的電子束檢測設備(例如與掃描電子顯微鏡(SEM)相同或相似)。自電子源2322發射之初級電子束2324係由聚光透鏡2326會聚且接著穿過光束偏轉器2328、E×B偏轉器2330及物鏡2332以在一焦點下輻照基板台2312上之基板2310。
當用電子束2324輻照基板2310時,自基板2310生成二次電子。該等二次電子係由E×B偏轉器2330偏轉且由二次電子偵測器2334偵測。二維電子束影像可藉由以下操作獲得:偵測自樣本生成之電子,而與(例如)由光束偏轉器2328對電子束之二維掃描同步或與由光束偏轉器2328在X或Y方向上對電子束2324之重複掃描同步,以及由基板台2312在X或Y方向中之另一者上連續移動基板2310。因此,在一實施例中,電子束檢測設備具有用於由角程界定之電子束之視場,在該角程內之電子束可由電子束檢測設備提供(例如偏轉器2328可藉以提供電子束2324之角程)。因此,該視場之空間範圍為電子束之角程可照射於表面上所達之空間範圍(其中該表面可為靜止的或可相對於該場移動)。
由二次電子偵測器2334偵測到之信號係由類比/數位(A/D)轉換器2336轉換成數位信號,且該數位信號被發送至影像處理系統 2350。在一實施例中,影像處理系統2350可具有記憶體2356以儲存數位影像之全部或部分以供處理單元2358處理。處理單元2358(例如經專門設計之硬體或硬體與軟體之組合或包含軟體之電腦可讀媒體)經組態以將數位影像轉換或處理成表示數位影像之資料集。在一實施例中,處理單元2358經組態或經程式化以致使執行本文中所描述之方法。另外,影像處理系統2350可具有經組態以將數位影像及對應資料集儲存於參考資料庫中之儲存媒體2356。顯示器件2354可與影像處理系統2350連接,使得操作者可藉助於圖形使用者介面進行設備之必需操作。
圖18示意性地說明根據一實施例的檢測設備之另一實施例。該系統用以檢測樣本載物台88上之樣本90(諸如基板)且包含帶電粒子束產生器81、聚光器透鏡模組82、探針形成物鏡模組83、帶電粒子束偏轉模組84、二次帶電粒子偵測器模組85及影像形成模組86。
帶電粒子束產生器81產生初級帶電粒子束91。聚光透鏡模組82將所產生之初級帶電粒子束91聚光。探針形成物鏡模組83將經聚光初級帶電粒子束聚焦為帶電粒子束探針92。帶電粒子束偏轉模組84在緊固於樣本載物台88上之樣本90上的所關注區域之表面上掃描所形成之帶電粒子束探針92。在一實施例中,帶電粒子束產生器81、聚光器透鏡模組82及探針形成物鏡模組83或其等效設計、替代方案或其任何組合一起形成產生掃描帶電粒子束探針92之帶電粒子束探針產生器。
二次帶電粒子偵測器模組85偵測在由帶電粒子束探針92轟擊後即自樣本表面發射的二次帶電粒子93(亦可能與來自樣本表面之其他反射或散射帶電粒子一起)以產生二次帶電粒子偵測信號94。影像形成模組86(例如運算器件)與二次帶電粒子偵測器模組85耦接以自二次帶電粒 子偵測器模組85接收二次帶電粒子偵測信號94,且相應地形成至少一個經掃描影像。在一實施例中,二級帶電粒子偵測器模組85及影像形成模組86或其等效設計、替代方案或其任何組合一起形成影像形成設備,該影像形成設備根據由帶電粒子束探針92轟擊的自樣本90發射之所偵測二級帶電粒子形成掃描影像。
在一實施例中,監測模組87耦接至影像形成設備之影像形成模組86以對圖案化程序進行監測、控制等,及/或使用自影像形成模組86接收到之樣本90的掃描影像來導出用於圖案化程序設計、控制、監測等的參數。因此,在實施例中,監測模組87經組態或經程式化以使得執行本文中所描述之方法。在一實施例中,監測模組87包含運算器件。在一實施例中,監測模組87包含用以提供本文中之功能性且經編碼於形成監測模組87或安置於該監測模組內的電腦可讀媒體上之電腦程式。
在一實施例中,與圖19之使用探針以檢測基板之電子束檢測工具類似,與例如諸如圖19中所描繪之CD SEM相比,圖20之系統中之電子電流顯著較大,使得探針光點足夠大使得檢測速度可為快速的。然而,歸因於大探針光點,解析度可能不與CD SEM一樣高。
可處理來自例如圖19及/或圖20之系統的SEM影像以提取影像中描述表示器件結構之物件之邊緣的輪廓。接著通常經由使用者定義之切割線處之諸如CD之度量來量化此等輪廓。因此,通常經由諸如對經提取輪廓量測之邊緣之間距離(CD)或影像之間的簡單像素差之度量來比較及量化器件結構之影像。可替代地,度量可包括如本文中所描述之EP量規。
現在,除了在圖案化程序中量測基板之外,亦常常需要使 用一或多個工具來產生例如可用於對圖案化程序進行設計、控制、監測等之結果。為進行此操作,可提供用於運算上控制、設計等圖案化程序之一或多個態樣的一或多個工具,諸如用於圖案化器件之圖案設計(包括例如添加次解析度輔助特徵或光學近接校正)、用於圖案化器件之照明等。因此,在用於對涉及圖案化之製造程序進行運算上控制、設計等之系統中,主要製造系統組件及/或程序可由各種功能模組描述。詳言之,在一實施例中,可提供描述圖案化程序之一或多個步驟及/或設備(典型地包括圖案轉印步驟)的一或多個數學模型。在一實施例中,可使用一或多個數學模型來執行圖案化程序之模擬,以模擬圖案化程序如何使用由圖案化器件提供之經量測或設計圖案來形成經圖案化基板。
雖然本文所揭示之概念可用於在諸如矽晶圓之基板上之成像,但應理解,所揭示概念可供與任何類型之微影成像系統一起使用,例如,用於在除了矽晶圓以外之的基板上之成像之微影成像系統。
圖19描繪實例檢測設備(例如,散射計)。其包含將輻射投影至基板W上之寬頻帶(白光)輻射投影儀2。重新導向輻射傳遞至光譜儀偵測器4,該光譜儀偵測器量測鏡面反射輻射之光譜10(依據波長而變化的強度),如(例如)在左下方的曲線圖中所展示。根據此資料,可藉由處理器PU例如藉由嚴密耦合波分析及非線性回歸或藉由與如圖3之右下方所展示之模擬光譜庫的比較來重建構導致偵測到之光譜的結構或剖面。一般而言,對於重新建構,結構之一般形式為吾人所知,且根據供製造結構之程序之知識來假定一些變數,從而僅留下結構之少許參數以自經量測資料予以判定。此檢測設備可經組態為正入射檢測設備或斜入射檢測設備。
圖20中展示可使用之另一檢測設備。在此器件中,由輻射 源2發射之輻射係使用透鏡系統12而準直且透射通過干涉濾光器13及偏振器17、由部分反射表面16反射且經由物鏡15而聚焦至基板W上之光點S中,該物鏡具有高數值孔徑(NA),理想地為至少0.9或至少0.95。浸潤檢測設備(使用相對高折射率之流體,諸如水)甚至可具有大於1之數值孔徑。
如在微影設備LA中,可在量測操作期間提供一或多個基板台以固持基板W。該等基板台可在形式上與圖1之基板台WT類似或相同。在檢測設備與微影設備整合之實例中,該等基板台可甚至為相同基板台。可將粗略定位器及精細定位器提供至第二定位器PW,第二定位器PW經組態以相對於量測光學系統來準確地定位基板。提供各種感測器及致動器(例如)以獲取所關注目標之位置,且將所關注目標帶入至接物鏡15下方之位置中。通常,將對基板W上之不同位置處之目標進行諸多量測。可在X及Y方向上移動基板支撐件以獲取不同目標,且可在Z方向上移動基板支撐件以獲得目標相對於光學系統之焦點之所要部位。舉例而言,當實務上光學系統可保持實質上靜止(通常在X及Y方向上但可能亦在Z方向上)且僅基板移動時,考慮且描述操作如同接物鏡被帶入至相對於基板之不同部位為方便的。假設基板及光學系統之相對位置為正確的,則以下情況原則上並不重要:基板及光學系統中之哪一者在真實世界中移動;或基板及光學系統均移動;或光學系統之一部分之組合移動(例如在Z及/或傾斜方向上),而光學系統之其餘部分靜止且基板移動(例如在X及Y方向上,但亦視情況在Z及/或傾斜方向上)。
由基板W重新導向之輻射接著通過部分反射表面16傳遞至偵測器18中以便使光譜被偵測。偵測器18可位於背向投影式焦平面11處 (亦即位於透鏡系統15之焦距處),或平面11可藉由輔助光學件(未展示)而再成像至偵測器18上。該偵測器可為二維偵測器,以使得可量測基板目標30之二維角度散射光譜。偵測器18可為(例如)CCD或CMOS感測器陣列,且可使用為(例如)每圖框40毫秒之積分時間。
參考光束可用以(例如)量測入射輻射之強度。為進行此量測,在輻射光束入射於部分反射表面16上時,使輻射光束之部分通過部分反射表面16作為參考光束而朝向參考鏡面14透射。隨後將參考光束投影至相同偵測器18之不同部分上或替代地投影至不同偵測器(未展示)上。
一或多個干涉濾光器13可用以選擇在比如405至790nm或甚至更低,諸如200至300nm,之範圍內的所關注波長。該干涉濾光器可為可調諧的,而非包含不同濾光器集合。可使用光柵來代替干涉濾光器。孔徑光闌或空間光調變器(圖中未繪示)可提供於照明路徑中以控制輻射在目標上之入射角之範圍。
偵測器18可量測在單一波長(或窄波長範圍)下之重新導向輻射之強度、分離地在多個波長下之重新導向輻射之強度,或遍及一波長範圍而整合之重新導向輻射之強度。此外,偵測器可分別量測橫向磁偏振輻射及橫向電偏振輻射之強度,及/或橫向磁偏振輻射與橫向電偏振輻射之間的相位差。
基板W上之基板目標30可為1-D光柵,其經印刷成使得在顯影之後,長條係由固體抗蝕劑線形成。目標30可為2-D光柵,其經印刷以使得在顯影之後,光柵係由抗蝕劑中之固態抗蝕劑導柱或通孔形成。長條、導柱或通孔可經蝕刻至基板中或基板上(例如,經蝕刻至基板上之一或多個層中)。圖案(例如桿體、導柱或通孔之圖案)對在圖案化程序中之 處理之改變(例如微影投影設備(特別是投影系統PS)中之光學像差、聚焦改變、劑量改變等)敏感,且將表現印刷光柵中之變化。因此,印刷光柵之量測資料被用於重建構光柵。可自印刷步驟及/或其他檢測程序之知識,將1-D光柵之一或多個參數(諸如,線寬及/或形狀),或2-D光柵之一或多個參數(諸如,導柱或介層孔寬度或長度或形狀)輸入至由處理器PU執行之重建構程序。
除了藉由重新建構進行參數之量測以外,角度解析散射量測亦用於產品及/或抗蝕劑圖案中之特徵之不對稱性之量測。不對稱性量測之特定應用係針對疊對之量測,其中目標30包含疊置於另一組週期性特徵上的一組週期性特徵。舉例而言,在美國專利申請公開案US2006-066855中描述使用圖25或圖26之器具進行之不對稱性量測之概念,該公開案之全文併入本文中。簡單地陳述,雖然目標之繞射光譜中之繞射階的位置僅藉由目標之週期性予以判定,但繞射光譜中之不對稱性指示構成目標之個別特徵中的不對稱性。在圖20之儀器中(其中偵測器18可係影像感測器),繞射階中之此不對稱性直接呈現為由偵測器18記錄之光瞳影像中之不對稱性。此不對稱性可藉由單元PU中之數位影像處理來量測,且可對照已知疊對值來校準。
圖21說明典型目標30之平面圖,及圖20之設備中之照明光點S之範圍。為了獲得擺脫來自環繞結構之干涉的繞射光譜,在一實施例中,目標30為大於照明光點S之寬度(例如,直徑)之週期性結構(例如,光柵)。光點S之寬度可小於目標之寬度及長度。換言之,目標係由照明「填充不足」,且繞射信號基本上不含來自目標自身外部之產品特徵及其類似者的任何信號。照明配置2、12、13、17可經組態以提供橫越物鏡15之背 焦平面之均一強度的照明。替代地,藉由(例如)在照明路徑中包括孔徑,照明可限於同軸或離軸方向。
可使用以下條項進一步描述實施例:
1.一種具有指令之非暫時性電腦可讀媒體,該等指令在由一電腦執行時使得該電腦執行用於訓練一機器學習模型以產生一特性圖案之一方法,該方法包含:獲得與一參考影像中之一參考特徵相關聯的訓練資料,其中該訓練資料包括(i)該參考特徵之一部分之位置資料,及(ii)指示該參考特徵之該部分是否位於針對該參考特徵產生之一參考輔助特徵內的一存在值;及基於該訓練資料訓練該機器學習模型,使得一預測存在值與該存在值之間的一度量得以最小化。
2.如條項1中任一項之電腦可讀媒體,其中該特性圖案用於製造一遮罩圖案,其進一步用於將一目標圖案印刷於一基板上。
3.如條項2中任一項之電腦可讀媒體,其中該參考影像為藉由使用目標圖案模擬一光學近接校正程序而產生之一連續透射遮罩(CTM)影像,且其中該參考特徵對應於來自該目標圖案之一目標特徵。
4.如條項2之電腦可讀媒體,其中該參考輔助特徵包括經置放圍繞該參考特徵的次解析度輔助特徵,該等次解析度輔助特徵為直線形狀。
5.如條項4之電腦可讀媒體,其中該次解析度輔助特徵為直線形狀。
6.如條項1至5中任一項之電腦可讀媒體,其中該訓練資料包括用於一或多個參考影像中之複數個參考特徵的訓練資料。
7.如條項1中任一項之電腦可讀媒體,其中該位置資料包括該參考特徵之複數個部分之每一部分的位置資料。
8.如條項1至7中任一項之電腦可讀媒體,其中訓練該機器學習模型包括:a.使用該訓練資料執行該機器學習模型,以輸出與該參考特徵之該對應部分相關聯之該預測存在值;b.判定該預測存在值與該存在值之間的該度量;c.調整該機器學習模型使得該度量減小;d.判定該度量是否最小化;及e.回應於未最小化,執行步驟(a)、(b)、(c)及(d)。
9.如條項1至8中任一項之電腦可讀媒體,該方法進一步包含:獲得一所指定參考影像;及經由使用該所指定參考影像執行該機器學習模型來判定用於相對於該所指定參考影像之一所指定特徵置放的一較佳輔助特徵,其中該所指定特徵對應於待印刷於該基板上之一目標圖案之一目標特徵。
10.如條項9之電腦可讀媒體,其中判定該等較佳輔助特徵包括:自該所指定參考影像且使用一強度臨限值獲得該所指定特徵之一所指定輪廓,產生該所指定輪廓之一架構,將位置資料及距離資料輸入至該機器學習模型,其中該位置資料包括該架構上的一點集合之座標,其中該距離資料指示自該點集合之一點至該所指定輪廓的一最近距離,及針對該點集合之每一點,自該機器學習模型獲得一預測存在值,其中該預測存在值指示該對應點是否經預測位於該較佳輔助特徵內,其中該點集合包括(a)經預測位於該較佳輔助特徵內的一經覆蓋點集合;及(b)經 預測並非位於該較佳輔助特徵內的一未經覆蓋點集合。
11.如條項10之電腦可讀媒體,該方法進一步包含:產生複數個輔助特徵集合以覆蓋來自該經覆蓋點集合之點,使用一計分函數針對每一輔助特徵集合判定一獎勵值,及將該等輔助特徵集合中具有一最高獎勵值之一第一輔助特徵集合判定為用於相對於該所指定輪廓置放的該較佳輔助特徵。
12.如條項11之電腦可讀媒體,其中判定用於每一輔助特徵集合之該獎勵值包括:(i)自該未經覆蓋點集合選擇一點作為一截止點,其中該截止點將該架構劃分成複數個區段,(ii)針對該複數個區段之每一區段產生該複數個輔助特徵集合中具有一候選輔助特徵的一輔助特徵集合,其中該候選輔助特徵係基於(a)與該點集合之每一點相關聯之該距離資料,及(b)該候選輔助特徵必須滿足以供用於製造該遮罩圖案之一約束集合而產生,(iii)依據(a)該輔助特徵集合內的影像強度值與(b)該強度臨限值來判定與該輔助特徵集合相關聯之一獎勵值,及藉由自該未經覆蓋點集合選擇一不同截止點、產生另一輔助特徵集合並判定其對應獎勵值來反覆步驟(i)、(ii)及(iii)。
13.如條項12之電腦可讀媒體,其中該距離值指示自一點至該所指定輪廓之一最近距離。
14.如條項9之電腦可讀媒體,該方法進一步包含:運用該較佳輔助特徵產生一特性圖案,其中該特性圖案為包括相對於該所指定特徵置放之該較佳輔助特徵的一像素化影像。
15.如條項14之電腦可讀媒體,其中產生該特性圖案包括:運用複數個較佳輔助特徵產生該特性圖案,其中該等較佳輔助特徵關於該所指定參考影像之複數個參考特徵置放,其中該等較佳輔助特藉由針對該等參考特徵執行該機器學習模型判定。
16.如條項15之電腦可讀媒體,其中產生該特性圖案包括:調整該等較佳輔助特徵之該置放進一步基於與該遮罩圖案之製造相關的一約束集合。
17.如條項1之電腦可讀媒體,其中該機器學習模型為一序列標記模型。
18.如條項17之電腦可讀媒體,其中該序列標記模型包括一雙向長短期記憶體(BiLSTM)網路。
19.如條項1之電腦可讀媒體,其中獲得該訓練資料包括:基於用於製造一遮罩圖案之一約束集合而產生用於該參考特徵的複數個輔助特徵集合,其中每一輔助特徵集合與基於一所指定計分函數而判定的一獎勵值相關聯,將該複數個輔助特徵集合中與一最高獎勵值相關聯之一所指定輔助特徵集合判定為該參考輔助特徵,依據該複數個輔助特徵集合之該獎勵值與其中該對應部分經判定位於其內的輔助特徵集合之一數目來判定針對該參考特徵之每一部分之一狀態值,及針對該參考特徵之每一部分產生該訓練資料之該位置資料及該存在值,其中該存在值在該對應部分之該狀態值滿足一狀態臨限值的情況下經設定為一第一值,該第一值指示該對應部分位於該參考輔助特徵內。
20.如條項19之電腦可讀媒體,其中產生該存在值包括:a.在該對應部分之該狀態值不滿足該狀態臨限值的情況下,將該存在值設定為一第二值,該第二值指示該對應部分不位於該參考輔助特徵內。
21.如條項19之電腦可讀媒體,其中產生該複數個輔助特徵集合包括:產生該參考特徵之一架構,選擇該架構上的複數個截止點,其中每一截止點將該架構分割成複數個區段,及針對每一截止點,針對該複數個區段之每一區段產生具有一參考輔助特徵之一輔助特徵集合,其中該輔助特徵集合基於該約束集合及與該架構上的一點集合之每一點相關聯的一距離值而產生。
22.如條項21之電腦可讀媒體,其中判定具有該最高獎勵值之該所指定輔助特徵集合包括:使用該所指定計分函數依據(a)該輔助特徵集合內的影像強度值與(b)一強度臨限值來判定該複數個輔助特徵集合之一輔助特徵集合的該獎勵值。
23.如條項22之電腦可讀媒體,其中該強度臨限值用以產生該參考特徵之一輪廓,其中該輪廓用以產生該參考特徵之該架構。
24.如條項21之電腦可讀媒體,其中針對該參考特徵之每一部分判定該狀態值包括:針對該架構上之每一點判定該狀態值。
25.如條項24之電腦可讀媒體,該方法進一步包含: 依據該架構上的該點集合之該等狀態值的一最大值及/或最小值來判定該狀態臨限值。
26.如條項21之電腦可讀媒體,其中針對該參考特徵之每一部分產生該訓練資料包括:針對該參考特徵之該架構上的每一點產生該位置資料及該存在值。
27.一種具有指令之非暫時性電腦可讀媒體,該等指令在由一電腦執行時使得該電腦執行用於產生一特性圖案之一方法,該方法包含:自一參考影像獲得一參考特徵之一輪廓;藉由一硬體電腦系統且使用該輪廓執行用於將一較佳輔助特徵集合判定為經置放圍繞該輪廓的一機器學習模型,且其中該較佳輔助特徵集合具有在複數個輔助特徵集合之獎勵值當中最高的一獎勵值,且其中依據用以產生該輪廓之一強度臨限值來計算該獎勵值;及運用該輪廓及該較佳輔助特徵集合產生該特性圖案。
28.如條項27之電腦可讀媒體,其中該特性圖案用於製造用於將一目標圖案印刷於一基板上的一遮罩圖案。
29.如條項27之電腦可讀媒體,其中該參考影像為一CTM影像。
30.如條項27之電腦可讀媒體,其中執行該機器學習模型以判定該較佳輔助特徵集合包括:產生該輪廓之一架構,其中該架構包括一點集合,選擇該架構上的複數個截止點,其中每一截止點將該架構分割成複數個區段,及針對每一截止點,產生該複數個輔助特徵集合之一輔助特徵集合,其中該輔助特徵集合具有用於該複數個區段之每一區段的一輔助特徵,其 中該輔助特徵集合基於一約束集合及與該架構上之每一點相關聯的一距離值而產生。
31.如條項30之電腦可讀媒體,該方法進一步包含:依據(a)與位於該輔助特徵集合內的該架構之每一點相關聯之強度值與(b)該強度臨限值來判定該輔助特徵集合之該獎勵值,及選擇該等輔助特徵集合中具有一最高獎勵值的一者作為該較佳輔助特徵集合。
32.如條項30之電腦可讀媒體,其進一步包含:a.使用該較佳輔助特徵集合產生用於訓練一第二機器學習模型之訓練資料,以基於一第二參考影像而產生一第二特性圖案。
33.如條項32之電腦可讀媒體,其中該訓練資料包括用於針對來自該參考影像之複數個輪廓而產生的複數個較佳輔助特徵集合之訓練資料。
34.如條項33之電腦可讀媒體,其中產生該訓練資料包括:產生該輪廓之該架構之每一點的座標,及產生與該架構之每一點相關聯的一存在值,其中該存在值指示該對應點是否位於該較佳輔助特徵集合內。
35.如條項34之電腦可讀媒體,其中產生每一點之該等座標包括產生對應於該參考影像中之該點的一像素之座標。
36.如條項34之電腦可讀媒體,其中產生該存在值包括:依據該複數個輔助特徵集合之該獎勵值與其中該對應點經判定位於其內的輔助特徵集合之一數目來判定針對該架構之每一點之一狀態值,依據該架構之該點集合的最大值狀態值及一最小狀態值來判定一狀態臨限值,及 針對該架構之每一點產生該存在值,其中該存在值在該對應點之該狀態值滿足該狀態臨限值的情況下經設定為一第一值,該第一值指示該對應點位於該較佳輔助特徵集合內。
37.如條項32之電腦可讀媒體,該方法進一步包含:基於該訓練資料訓練該第二機器學習模型,使得判定一預測存在值與該存在值之間的一差的一成本函數得以最小化。
38.一種具有指令之非暫時性電腦可讀媒體,該等指令在由一電腦執行時使得該電腦執行用於針對一遮罩圖案產生一特性圖案之一方法,該方法包含:獲得具有參考特徵之一參考影像;自該參考影像獲得該等參考特徵之一參考特徵之一輪廓;產生該輪廓之一架構;經由使用該架構執行一機器學習模型,判定一存在值,該存在值指示該架構上的一點集合之每一點是否位於將產生以供圍繞該參考特徵置放的一較佳輔助特徵集合內;及使用該存在值產生一特性圖案。
39.如條項38之電腦可讀媒體,其中該特性圖案為包括關於該輪廓置放之該較佳輔助特徵集合的一像素化影像。
40.如條項38之電腦可讀媒體,其中該點集合包括(a)經預測位於該較佳輔助特徵集合內的一經覆蓋點集合;及(b)經預測並非位於該較佳輔助特徵集合內的一未經覆蓋點集合。
41.如條項40之電腦可讀媒體,其中使用該存在值產生該特性圖案包括: (i)自該未經覆蓋點集合選擇一點作為一截止點,其中該截止點將該架構劃分成複數個區段,(ii)針對該複數個區段之每一區段產生具有一輔助特徵之一第一輔助特徵集合,其中該輔助特徵基於(a)與該點集合之每一點相關聯之一距離值,及(b)該參考輔助特徵必須滿足以供用於製造該遮罩圖案的一約束集合而產生,(iii)依據(a)與位於該第一輔助特徵集合內的每一點相關聯之強度值與(b)用於獲得該輪廓之一強度臨限值來判定與該第一輔助特徵集合相關聯之一獎勵值,藉由自該未經覆蓋點集合選擇一不同截止點、產生另一輔助特徵集合並判定其對應獎勵值來反覆步驟(i)、(ii)及(iii),及將該等輔助特徵集合中具有一最高獎勵值的一者作為用於相對於該參考特徵置放的該較佳輔助特徵集合。
42.如條項41之電腦可讀媒體,其中產生該第一輔助特徵集合包括對該第一輔助特徵集合執行一隨機干擾,且將該約束集合應用於該第一輔助特徵集合。
43.如條項38之電腦可讀媒體,其中產生該特性圖案包括運用用於相對於來自該參考影像之複數個參考特徵置放的複數個較佳輔助特徵集合產生該特性圖案。
44.如條項38之電腦可讀媒體,其中該參考影像為一CTM影像。
45.一種用於訓練一機器學習模型以針對一遮罩圖案產生一特性圖案的方法,該方法包含:獲得與用於產生該遮罩圖案之一參考影像中的一參考特徵相關聯之 訓練資料,其中該訓練資料包括(i)該參考特徵之複數個部分之每一部分的位置資料,及(ii)指示該參考特徵之該部分是否位於針對該參考特徵而產生之一參考輔助特徵內的一存在值;及藉由一硬體電腦系統且基於與該參考特徵相關聯之該訓練資料,訓練該機器學習模型,使得一預測存在值與該存在值之間的一度量得以最小化。
46.一種用於針對一遮罩圖案產生一特性圖案的方法,該方法包含:自一參考影像獲得一參考特徵之一輪廓;及藉由一硬體電腦系統且使用該輪廓執行用於將一較佳輔助特徵判定為經置放圍繞該輪廓的一機器學習模型,且其中該較佳輔助特徵具有在複數個輔助特徵之獎勵值當中最高的一獎勵值,且其中依據用以產生該輪廓之一強度臨限值來計算該獎勵值;及運用該輪廓及該較佳輔助特徵產生該特性圖案。
47.一種用於針對一遮罩圖案產生一特性圖案的方法,該方法包含:獲得具有參考特徵之一參考影像;自該參考影像獲得一參考特徵之一輪廓;產生該輪廓之一架構;藉由一硬體系統且經由使用該架構執行一機器學習模型,判定一存在值,該存在值指示該架構上的一點集合之每一點是否位於將產生以供圍繞該參考特徵置放的一較佳輔助特徵內;及使用該存在值產生一特性圖案。
48.一種非暫時性電腦可讀媒體,其上記錄有指令,該等指令在由一電腦執行時實施如以上條項中任一項之方法。
上方描述意欲為說明性,而非限制性的。因此,對於熟習此項技術者將顯而易見,可在不脫離下文所闡明之申請專利範圍之範疇的情況下如所描述進行修改。
305:參考影像
307:參考特徵
310:輪廓
315:架構
316:次解析度輔助特徵置放資料
320:特性圖案
325:較佳次解析度輔助特徵集合
350:產生器模組
351:輪廓提取器
352:架構器
353:次解析度輔助特徵置放模型
354:次解析度輔助特徵產生器模型
360:資料庫

Claims (15)

  1. 一種具有指令之非暫時性電腦可讀媒體,該等指令在由一電腦執行時使得該電腦執行用於訓練一機器學習模型(machine learning model)以產生一特性圖案(characteristic pattern)之一方法,該方法包含:獲得與一參考影像中之一參考特徵相關聯的訓練資料,其中該訓練資料包括(i)該參考特徵之一部分之位置資料,及(ii)指示該參考特徵之該部分是否位於針對該參考特徵產生之一參考輔助特徵(reference assist feature)內的一存在值(presence value);及基於該訓練資料訓練該機器學習模型,使得一預測存在值與該存在值之間的一度量得以最小化。
  2. 如請求項1之電腦可讀媒體,其中該參考影像為藉由使用一目標圖案模擬一光學近接校正程序(optical proximity correction process)而產生之一連續透射遮罩(CTM)影像,且其中該參考特徵對應於來自該目標圖案之一目標特徵。
  3. 如請求項1之電腦可讀媒體,其中該參考輔助特徵包括經置放圍繞該參考特徵的次解析度輔助特徵,該等次解析度輔助特徵為直線形狀。
  4. 如請求項1之電腦可讀媒體,其中該訓練資料包括用於一或多個參考影像中之複數個參考特徵的訓練資料。
  5. 如請求項1之電腦可讀媒體,其中該位置資料包括該參考特徵之複數個部分之每一部分的位置資料。
  6. 如請求項1之媒體,其中訓練該機器學習模型包括:(a)使用該訓練資料執行該機器學習模型,以輸出與該參考特徵之該對應部分相關聯之該預測存在值;(b)判定該預測存在值與該存在值之間的該度量;(c)調整該機器學習模型使得該度量減小;(d)判定該度量是否最小化;及(e)回應於未最小化,執行步驟(a)、(b)、(c)及(d)。
  7. 如請求項1之電腦可讀媒體,該方法進一步包含:獲得一所指定參考影像;及經由使用該所指定參考影像執行該機器學習模型來判定用於相對於該所指定參考影像之一所指定特徵置放的一較佳輔助特徵,其中該所指定特徵對應於待印刷於該基板上之一目標圖案之一目標特徵,及/或其中判定該較佳輔助特徵包括:自該所指定參考影像且使用一強度臨限值獲得該所指定特徵之一所指定輪廓(contour),產生該所指定輪廓之一架構,將位置資料及距離資料輸入至該機器學習模型,其中該位置資料包括該架構上的一點集合之座標,其中該距離資料指示自該點集合之一點至該所指定輪廓的一最近距離,及 針對該點集合之每一點,自該機器學習模型獲得一預測存在值,其中該預測存在值指示該對應點是否經預測位於該較佳輔助特徵內,其中該點集合包括(a)經預測位於該較佳輔助特徵內的一經覆蓋點集合;及(b)經預測並非位於該較佳輔助特徵內的一未經覆蓋點集合。
  8. 如請求項7之電腦可讀媒體,該方法進一步包含:產生複數個輔助特徵集合以覆蓋來自該經覆蓋點集合之點,使用一計分函數(scoring function)針對每一輔助特徵集合判定一獎勵值(reward value),及將該等輔助特徵集合中具有一最高獎勵值之一第一輔助特徵集合判定為用於相對於該所指定輪廓置放的該較佳輔助特徵,及/或其中針對每一輔助特徵集合判定該獎勵值包括:(i)自該未經覆蓋點集合選擇一點作為一截止點,其中該截止點將該架構劃分成複數個區段,(ii)針對該複數個區段之每一區段產生該複數個輔助特徵集合中具有一候選輔助特徵的一輔助特徵集合,其中該候選輔助特徵係基於(a)與該點集合之每一點相關聯之該距離資料,及(b)該候選輔助特徵必須滿足以供用於製造一遮罩圖案之一約束集合而產生,(iii)依據(a)該輔助特徵集合內的影像強度值與(b)該強度臨限值來判定與該輔助特徵集合相關聯之一獎勵值,及藉由自該未經覆蓋點集合選擇一不同截止點、產生另一輔助特徵集合並判定其對應獎勵值來步驟(i)、(ii)及(iii),及/或,其中該距離值指示 自一點至該所指定輪廓的一最近距離。
  9. 如請求項7之電腦可讀媒體,該方法進一步包含:運用該較佳輔助特徵產生一特性圖案,其中該特性圖案為包括相對於該所指定特徵置放之該較佳輔助特徵的一像素化影像。
  10. 如請求項9之電腦可讀媒體,其中產生該特性圖案包括:運用複數個較佳輔助特徵產生該特性圖案,其中該等較佳輔助特徵關於該所指定參考影像之複數個參考特徵置放,其中該等較佳輔助特徵藉由針對該等參考特徵執行該機器學習模型判定,及/或其中產生該特性圖案包括:調整該等較佳輔助特徵之該置放進一步基於與該遮罩圖案之製造相關的一約束集合。
  11. 如請求項1之電腦可讀媒體,其中獲得該訓練資料包括:基於用於製造一遮罩圖案之一約束集合而產生用於該參考特徵的複數個輔助特徵集合,其中每一輔助特徵集合與基於一所指定計分函數而判定的一獎勵值相關聯,將該複數個輔助特徵集合中與一最高獎勵值相關聯之一所指定輔助特徵集合判定為該參考輔助特徵,依據該複數個輔助特徵集合之該獎勵值與其中該對應部分經判定位於其內的輔助特徵集合之一數目來判定針對該參考特徵之每一部分之一狀態值,及 針對該參考特徵之每一部分產生該訓練資料之該位置資料及該存在值,其中該存在值在該對應部分之該狀態值滿足一狀態臨限值的情況下經設定為一第一值,該第一值指示該對應部分位於該參考輔助特徵內。
  12. 如請求項11之電腦可讀媒體,其中產生該存在值包括:在該對應部分之該狀態值不滿足該狀態臨限值的情況下,將該存在值設定為一第二值,該第二值指示該對應部分不位於該參考輔助特徵內,及/或其中依據該架構上的該點集合之該等狀態值的一最大值及/或最小值來判定該狀態臨限值。
  13. 如請求項11之電腦可讀媒體,其中產生該複數個輔助特徵集合包括:產生該參考特徵之一架構,選擇該架構上的複數個截止點,其中每一截止點將該架構分割成複數個區段,及針對每一截止點,針對該複數個區段之每一區段產生具有一參考輔助特徵之一輔助特徵集合,其中該輔助特徵集合基於該約束集合及與該架構上的一點集合之每一點相關聯的一距離值而產生,及/或其中針對該參考特徵之每一部分判定該狀態值包括:針對該架構上之每一點判定該狀態值。
  14. 如請求項13之電腦可讀媒體,其中判定具有該最高獎勵值之該所指定輔助特徵集合包括: 使用該所指定計分函數依據(a)該輔助特徵集合內的影像強度值及(b)一強度臨限值來判定該複數個輔助特徵集合之一輔助特徵集合的該獎勵值,及/或其中該強度臨限值用以產生該參考特徵之一輪廓,其中該輪廓用以產生該參考特徵之該架構。
  15. 如請求項13之電腦可讀媒體,其中針對該參考特徵之每一部分產生該訓練資料包括:針對該參考特徵之該架構上的每一點產生該位置資料及該存在值。
TW110107274A 2020-03-03 2021-03-02 執行用於訓練機器學習模型以產生特性圖案之方法的非暫時性電腦可讀媒體 TWI783392B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202062984396P 2020-03-03 2020-03-03
US62/984,396 2020-03-03

Publications (2)

Publication Number Publication Date
TW202201118A TW202201118A (zh) 2022-01-01
TWI783392B true TWI783392B (zh) 2022-11-11

Family

ID=74661384

Family Applications (2)

Application Number Title Priority Date Filing Date
TW111139025A TWI823616B (zh) 2020-03-03 2021-03-02 執行用於訓練機器學習模型以產生特性圖案之方法的非暫時性電腦可讀媒體
TW110107274A TWI783392B (zh) 2020-03-03 2021-03-02 執行用於訓練機器學習模型以產生特性圖案之方法的非暫時性電腦可讀媒體

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW111139025A TWI823616B (zh) 2020-03-03 2021-03-02 執行用於訓練機器學習模型以產生特性圖案之方法的非暫時性電腦可讀媒體

Country Status (4)

Country Link
US (1) US20230107556A1 (zh)
CN (1) CN115190985A (zh)
TW (2) TWI823616B (zh)
WO (1) WO2021175570A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220128899A1 (en) * 2020-10-22 2022-04-28 D2S, Inc. Methods and systems to determine shapes for semiconductor or flat panel display fabrication
TWI833241B (zh) * 2021-06-18 2024-02-21 荷蘭商Asml荷蘭公司 使用機器學習模型產生輔助特徵之非暫時性電腦可讀媒體
KR20240142493A (ko) * 2022-01-28 2024-09-30 디2에스, 인코포레이티드 레티클 향상 기술을 위한 방법 및 시스템
TWI806412B (zh) * 2022-02-08 2023-06-21 中華精測科技股份有限公司 標記產品全域高點的方法
CN114967370B (zh) * 2022-06-16 2023-08-11 深圳国微福芯技术有限公司 一种基于骨架结构的亚分辨率散射条生成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201901285A (zh) * 2017-05-26 2019-01-01 荷蘭商Asml荷蘭公司 基於機器學習之輔助特徵置放
WO2019048506A1 (en) * 2017-09-08 2019-03-14 Asml Netherlands B.V. METHODS OF LEARNING OPTICAL CORRECTION OF PROXIMITY ERROR ASSISTED BY AUTOMATIC APPRENTICESHIP
WO2019162346A1 (en) * 2018-02-23 2019-08-29 Asml Netherlands B.V. Methods for training machine learning model for computation lithography
TW201942769A (zh) * 2018-02-23 2019-11-01 荷蘭商Asml荷蘭公司 用於圖案語意分割之深度學習
CN110476159A (zh) * 2017-03-30 2019-11-19 日本电气株式会社 信息处理系统、特征值说明方法和特征值说明程序

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229872A (en) 1992-01-21 1993-07-20 Hughes Aircraft Company Exposure device including an electrically aligned electronic mask for micropatterning
WO1997033205A1 (en) 1996-03-06 1997-09-12 Philips Electronics N.V. Differential interferometer system and lithographic step-and-scan apparatus provided with such a system
KR101115477B1 (ko) * 2003-06-30 2012-03-06 에이에스엠엘 마스크툴즈 비.브이. 이미지 필드 맵을 이용하여 어시스트 피처를 생성하는방법, 프로그램물 및 장치
US7791727B2 (en) 2004-08-16 2010-09-07 Asml Netherlands B.V. Method and apparatus for angular-resolved spectroscopic lithography characterization
KR100958714B1 (ko) 2005-08-08 2010-05-18 브라이언 테크놀로지스, 인코포레이티드 리소그래피 공정의 포커스-노광 모델을 생성하는 시스템 및방법
US7695876B2 (en) 2005-08-31 2010-04-13 Brion Technologies, Inc. Method for identifying and using process window signature patterns for lithography process control
CN102662309B (zh) 2005-09-09 2014-10-01 Asml荷兰有限公司 采用独立掩模误差模型的掩模验证系统和方法
US7694267B1 (en) 2006-02-03 2010-04-06 Brion Technologies, Inc. Method for process window optimized optical proximity correction
US7882480B2 (en) 2007-06-04 2011-02-01 Asml Netherlands B.V. System and method for model-based sub-resolution assist feature generation
US7707538B2 (en) 2007-06-15 2010-04-27 Brion Technologies, Inc. Multivariable solver for optical proximity correction
US20090157630A1 (en) 2007-10-26 2009-06-18 Max Yuan Method of extracting data and recommending and generating visual displays
NL2003699A (en) 2008-12-18 2010-06-21 Brion Tech Inc Method and system for lithography process-window-maximixing optical proximity correction.
US8404403B2 (en) * 2010-06-25 2013-03-26 Intel Corporation Mask design and OPC for device manufacture
TWI624765B (zh) 2014-04-14 2018-05-21 Asml荷蘭公司 用以改良微影程序之電腦實施方法及電腦程式產品
KR102682483B1 (ko) * 2016-09-30 2024-07-05 삼성전자주식회사 픽셀 기반 학습을 이용한 마스크 최적화 방법
US10262100B2 (en) * 2017-05-24 2019-04-16 Synopsys, Inc. Rule based assist feature placement using skeletons
CN109491195A (zh) * 2018-12-25 2019-03-19 上海微阱电子科技有限公司 一种建立辅助图形曝光模型的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110476159A (zh) * 2017-03-30 2019-11-19 日本电气株式会社 信息处理系统、特征值说明方法和特征值说明程序
TW201901285A (zh) * 2017-05-26 2019-01-01 荷蘭商Asml荷蘭公司 基於機器學習之輔助特徵置放
WO2019048506A1 (en) * 2017-09-08 2019-03-14 Asml Netherlands B.V. METHODS OF LEARNING OPTICAL CORRECTION OF PROXIMITY ERROR ASSISTED BY AUTOMATIC APPRENTICESHIP
TW201921151A (zh) * 2017-09-08 2019-06-01 荷蘭商Asml荷蘭公司 機器學習輔助光學接近誤差校正的訓練方法
WO2019162346A1 (en) * 2018-02-23 2019-08-29 Asml Netherlands B.V. Methods for training machine learning model for computation lithography
TW201942769A (zh) * 2018-02-23 2019-11-01 荷蘭商Asml荷蘭公司 用於圖案語意分割之深度學習

Also Published As

Publication number Publication date
US20230107556A1 (en) 2023-04-06
TWI823616B (zh) 2023-11-21
WO2021175570A1 (en) 2021-09-10
CN115190985A (zh) 2022-10-14
TW202305499A (zh) 2023-02-01
TW202201118A (zh) 2022-01-01

Similar Documents

Publication Publication Date Title
TWI753517B (zh) 半導體裝置幾何方法及系統
TWI782317B (zh) 用於改良圖案化程序之程序模型的方法以及改良圖案化程序之光學近接校正模型的方法
TWI788672B (zh) 用於訓練一圖案化製程之一逆製程模型之方法及用於判定一圖案化製程之一圖案化器件佈局之方法
TWI791180B (zh) 用於改良用於圖案化製程之製程模型之方法及相關聯電腦程式產品
CN113196173A (zh) 用于对图像图案分组以确定图案化过程中晶片行为的设备和方法
TWI758810B (zh) 用於改善圖案化製程之訓練機器學習模型的方法
TWI783392B (zh) 執行用於訓練機器學習模型以產生特性圖案之方法的非暫時性電腦可讀媒體
TWI747003B (zh) 用於判定經印刷圖案中缺陷之存在的方法、用於改良圖案化程序之程序模型的方法、及電腦程式產品
TWI791357B (zh) 用於選擇與圖案化程序相關聯之資料之方法及相關的非暫時性電腦可讀媒體
US20220404712A1 (en) Machine learning based image generation for model base alignments
TWI651760B (zh) 基於位移之疊對或對準
TW201437736A (zh) 用於三維圖案化器件之微影模型
TWI778722B (zh) 用於選擇資訊模式以訓練機器學習模型之設備及方法
TW202006317A (zh) 利用圖案識別以自動地改善掃描電子顯微鏡(sem)的輪廓量測精準度及穩定性
TWI687781B (zh) 用於減少光阻模型預測錯誤之系統及方法
TW202307722A (zh) 蝕刻系統、模型、及製造程序
TWI791216B (zh) 判定用於基板上之圖案的部分之度量
CN115729052A (zh) 记录有指令的非瞬态计算机可读介质
TWI850733B (zh) 評估經選擇圖案集合之方法
TW202424656A (zh) 多層級蝕刻程序之模型化
TW202240316A (zh) 依據微影設備或製程特徵所特徵化之表示選擇圖案
CN118265950A (zh) 模拟模型稳定性确定方法