TWI782378B - memory device - Google Patents

memory device Download PDF

Info

Publication number
TWI782378B
TWI782378B TW109146328A TW109146328A TWI782378B TW I782378 B TWI782378 B TW I782378B TW 109146328 A TW109146328 A TW 109146328A TW 109146328 A TW109146328 A TW 109146328A TW I782378 B TWI782378 B TW I782378B
Authority
TW
Taiwan
Prior art keywords
signal
mentioned
command
level
input
Prior art date
Application number
TW109146328A
Other languages
Chinese (zh)
Other versions
TW202137003A (en
Inventor
菅原昭雄
長井裕士
Original Assignee
日商鎧俠股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商鎧俠股份有限公司 filed Critical 日商鎧俠股份有限公司
Priority to TW109146328A priority Critical patent/TWI782378B/en
Publication of TW202137003A publication Critical patent/TW202137003A/en
Application granted granted Critical
Publication of TWI782378B publication Critical patent/TWI782378B/en

Links

Images

Abstract

本發明之記憶裝置包含:記憶胞陣列,其記憶資料;控制電路,其應答指令而控制記憶胞陣列;及接收器,其係基於第1信號、第2信號、或位址及指令之運算結果而變成啟動狀態,而可接收指令或資料。The memory device of the present invention includes: a memory cell array, which stores data; a control circuit, which responds to commands to control the memory cell array; and a receiver, which is based on the first signal, the second signal, or the operation result of the address and the command And become activated state, and can receive instruction or data.

Description

記憶裝置memory device

實施形態係關於一種記憶裝置。 The embodiment relates to a memory device.

作為記憶裝置,已知有NAND(Not-AND:反及)型快閃記憶體。 As a memory device, a NAND (Not-AND: Inverted And) type flash memory is known.

實施形態之記憶裝置包含:記憶胞陣列,其記憶資料;控制電路,其應答指令而控制記憶胞陣列;及接收器,其係基於第1信號、第2信號、或位址及指令之運算結果而變成啟動狀態,而可接收指令或資料。 The memory device of the embodiment includes: a memory cell array, which stores data; a control circuit, which responds to commands to control the memory cell array; and a receiver, which is based on the first signal, the second signal, or the operation result of the address and the command And become activated state, and can receive instruction or data.

01h:寫入指令 01h: write command

05h:讀出指令 05h: read command

1:記憶體系統 1: Memory system

10:NAND快閃記憶體 10: NAND flash memory

11a:PMOS電晶體 11a: PMOS transistor

11b:NMOS電晶體 11b: NMOS transistor

11c~11f:PMOS電晶體 11c~11f: PMOS transistor

11g~11i:NMOS電晶體 11g~11i: NMOS transistor

20:記憶體控制器 20: Memory controller

30:主機機器 30: host machine

80h:寫入指令 80h: write command

100:LUN 100:LUN

101:輸入輸出介面 101: Input and output interface

101a:AND運算電路 101a: AND operation circuit

101b:OR運算電路 101b: OR operation circuit

101c:NAND運算電路 101c: NAND operation circuit

101d:反相器 101d: Inverter

101g:NAND運算電路 101g: NAND operation circuit

101g1:NAND運算電路 101g1: NAND operation circuit

101h:NAND運算電路 101h: NAND operation circuit

101i:NAND運算電路 101i: NAND operation circuit

101j:OR運算電路 101j: OR operation circuit

101k:NAND運算電路 101k: NAND operation circuit

101l:NAND運算電路 101l: NAND operation circuit

101m:NAND運算電路 101m: NAND operation circuit

101n:反相器 101n: inverter

101o:AND運算電路 101o: AND operation circuit

101p:OR運算電路 101p:OR operation circuit

101q:開關電路 101q: switch circuit

101r:開關電路 101r: switch circuit

101s:OR運算電路 101s: OR operation circuit

101t:開關電路 101t: switch circuit

101u:開關電路 101u: switch circuit

101v:第1接收器 101v: 1st receiver

101w:第2接收器 101w: The second receiver

102:控制信號輸入介面 102: Control signal input interface

103:控制電路 103: Control circuit

104:指令暫存器 104: instruction register

104a:記憶部 104a: memory department

105:位址暫存器 105: Address register

105a:記憶部 105a: memory department

106:狀態暫存器 106: Status register

110:記憶胞陣列 110: memory cell array

111:感測放大器 111: sense amplifier

112:資料暫存器 112: data register

113:行解碼器 113: row decoder

114:行緩衝器 114: line buffer

115:列位址解碼器 115: column address decoder

116:列位址緩衝解碼器 116: column address buffer decoder

120:接收器 120: Receiver

130:發送器 130: Transmitter

210:主機介面(主機I/F) 210: host interface (host I/F)

220:內置記憶體(RAM) 220: built-in memory (RAM)

230:處理器(CPU) 230: Processor (CPU)

240:緩衝記憶體 240: buffer memory

250:NAND介面(NAND I/F) 250: NAND interface (NAND I/F)

ADD:位址 ADD: address

ALE:位址閂鎖賦能信號 ALE: address latch enable signal

BCE:晶片賦能信號 BCE: chip enable signal

BDQS:資料選通信號 BDQS: data strobe signal

BRE:讀取賦能信號 BRE: read enable signal

BWE:寫入賦能信號 BWE: write enable signal

BWP:寫入保護信號 BWP: write protection signal

C1:行位址 C1: row address

C2:行位址 C2: row address

CLE:指令閂鎖賦能信號 CLE: command latch enable signal

CMD:指令 CMD: command

D0~Dn:寫入資料 D0~Dn: write data

DQ:輸入輸出信號 DQ: Input and output signals

DQ0~DQ7:輸入輸出信號 DQ0~DQ7: Input and output signals

DQS:資料選通信號 DQS: data strobe signal

E0h:指令 E0h: instruction

EFh:指令 EFh: instruction

ENBn:信號 ENBn: signal

EN:信號 EN:Signal

FFh:初始化指令 FFh: initialization command

GP0:記憶體組 GP0: memory group

GP1:記憶體組 GP1: memory group

IREFN:參照電壓 IREFN: reference voltage

MS:信號 MS: signal

N1~N7:節點 N1~N7: nodes

NP:信號 NP:signal

R1~R3:列位址 R1~R3: column address

RE:讀取賦能信號 RE: read enable signal

RY/BBY:就緒.忙碌信號 RY/BBY: Ready. busy signal

T0~T29:時刻 T0~T29: time

tCALS:期間 t CALS : period

VDD:電源電壓 VDD: power supply voltage

VREF:參照電壓 VREF: reference voltage

W-B0~W-B3:資訊 W-B0~W-B3: Information

XXh:指令 XXh: instruction

YYh:指令 YYh: instruction

~ALE:反轉信號 ~ ALE: reversal signal

~BCE:反轉信號 ~ BCE: reverse signal

~BWE:反轉信號 ~ BWE: reverse signal

~BWP:反轉信號 ~ BWP: reverse signal

~CLE:反轉信號 ~ CLE: reverse signal

圖1係第1實施形態之記憶體系統之方塊圖。 Fig. 1 is a block diagram of the memory system of the first embodiment.

圖2係第1實施形態之記憶體系統之LUN之方塊圖。 Fig. 2 is a block diagram of the LUN of the memory system of the first embodiment.

圖3係第1實施形態之記憶體系統之輸入輸出介面之電路圖。 Fig. 3 is a circuit diagram of the input/output interface of the memory system of the first embodiment.

圖4係第1實施形態之記憶體系統之動作之概要圖。 Fig. 4 is a schematic diagram of the operation of the memory system of the first embodiment.

圖5係表示第1實施形態之記憶體系統之寫入動作例之時序圖。 Fig. 5 is a timing chart showing an example of a write operation in the memory system of the first embodiment.

圖6係表示第1實施形態之記憶體系統之讀出動作例之時序圖。 Fig. 6 is a timing chart showing an example of the read operation of the memory system of the first embodiment.

圖7係第2實施形態之記憶體系統之輸入輸出介面之電路圖。 Fig. 7 is a circuit diagram of the input-output interface of the memory system of the second embodiment.

圖8係表示第2實施形態之記憶體系統之寫入動作例之時序圖。 Fig. 8 is a timing chart showing an example of a write operation in the memory system of the second embodiment.

圖9係表示第2實施形態之記憶體系統之寫入動作例之時序圖。 Fig. 9 is a timing chart showing an example of a write operation in the memory system of the second embodiment.

圖10係表示第2實施形態之記憶體系統之寫入動作例之時序圖。 Fig. 10 is a timing chart showing an example of a write operation in the memory system of the second embodiment.

圖11係表示第2實施形態之記憶體系統之讀出動作例之時序圖。 Fig. 11 is a timing chart showing an example of the read operation of the memory system of the second embodiment.

圖12係表示第2實施形態之記憶體系統之讀出動作例之時序圖。 Fig. 12 is a timing chart showing an example of the read operation of the memory system according to the second embodiment.

圖13係表示第2實施形態之記憶體系統之讀出動作例之時序圖。 Fig. 13 is a timing chart showing an example of the read operation of the memory system according to the second embodiment.

圖14係表示第2實施形態之記憶體系統之讀出動作例之時序圖。 Fig. 14 is a timing chart showing an example of the read operation of the memory system of the second embodiment.

圖15係表示第2實施形態之變化例1之記憶體系統之寫入動作例之時序圖。 Fig. 15 is a timing chart showing an example of a write operation in the memory system according to Variation 1 of the second embodiment.

圖16係表示第2實施形態之變化例1之記憶體系統之讀出動作例之時序圖。 Fig. 16 is a timing chart showing an example of a read operation of the memory system according to Variation 1 of the second embodiment.

圖17係第2實施形態之變化例2之記憶體系統之輸入輸出介面之電路圖。 Fig. 17 is a circuit diagram of the input/output interface of the memory system according to Variation 2 of the second embodiment.

圖18係第3實施形態之記憶體系統之輸入輸出介面之電路圖。 Fig. 18 is a circuit diagram of the input/output interface of the memory system of the third embodiment.

圖19係表示第3實施形態之記憶體系統之寫入動作例之時序圖。 Fig. 19 is a timing chart showing an example of a write operation in the memory system of the third embodiment.

圖20係表示第3實施形態之記憶體系統之寫入動作例之時序圖。 Fig. 20 is a timing chart showing an example of a write operation in the memory system of the third embodiment.

圖21係表示第3實施形態之記憶體系統之寫入動作例之時序圖。 Fig. 21 is a timing chart showing an example of a write operation in the memory system of the third embodiment.

圖22係表示第3實施形態之記憶體系統之讀出動作例之時序圖。 Fig. 22 is a timing chart showing an example of the read operation of the memory system according to the third embodiment.

圖23係表示第3實施形態之記憶體系統之讀出動作例之時序圖。 Fig. 23 is a timing chart showing an example of the read operation of the memory system according to the third embodiment.

圖24係表示第3實施形態之記憶體系統之讀出動作例之時序圖。 Fig. 24 is a timing chart showing an example of the read operation of the memory system according to the third embodiment.

圖25係表示第3實施形態之記憶體系統之讀出動作例之時序圖。 Fig. 25 is a timing chart showing an example of the read operation of the memory system according to the third embodiment.

圖26係表示第3實施形態之記憶體系統之寫入動作例之時序圖。 Fig. 26 is a timing chart showing an example of a write operation in the memory system of the third embodiment.

圖27係表示第3實施形態之記憶體系統之讀出動作例之時序圖。 Fig. 27 is a timing chart showing an example of the read operation of the memory system according to the third embodiment.

圖28係第3實施形態之變化例之記憶體系統之輸入輸出介面之電路圖。 Fig. 28 is a circuit diagram of the input/output interface of the memory system according to the variation of the third embodiment.

圖29係第4實施形態之記憶體系統之輸入輸出介面之電路圖。 Fig. 29 is a circuit diagram of the input/output interface of the memory system of the fourth embodiment.

圖30係表示第4實施形態之記憶體系統之模式選擇動作之圖。 Fig. 30 is a diagram showing the mode selection operation of the memory system of the fourth embodiment.

圖31係第4實施形態之變化例1之記憶體系統之輸入輸出介面之電路圖。 Fig. 31 is a circuit diagram of the input/output interface of the memory system of the first modification of the fourth embodiment.

圖32係第4實施形態之變化例2之記憶體系統之輸入輸出介面之電路圖。 Fig. 32 is a circuit diagram of the input/output interface of the memory system of the second modification of the fourth embodiment.

圖33係第4實施形態之變化例3之記憶體系統之輸入輸出介面之電路圖。 Fig. 33 is a circuit diagram of the input/output interface of the memory system according to Variation 3 of the fourth embodiment.

圖34係第5實施形態之記憶體系統之輸入輸出介面之電路圖。 Fig. 34 is a circuit diagram of the input/output interface of the memory system of the fifth embodiment.

圖35係表示第5實施形態之記憶體系統之寫入動作例之時序圖。 Fig. 35 is a timing chart showing an example of a write operation in the memory system of the fifth embodiment.

圖36係表示第5實施形態之記憶體系統之寫入動作例之時序圖。 Fig. 36 is a timing chart showing an example of a write operation in the memory system of the fifth embodiment.

圖37係表示第5實施形態之記憶體系統之寫入動作例之時序圖。 Fig. 37 is a timing chart showing an example of a write operation in the memory system of the fifth embodiment.

圖38係表示第5實施形態之記憶體系統之讀出動作例之時序圖。 Fig. 38 is a timing chart showing an example of the read operation of the memory system according to the fifth embodiment.

圖39係表示第5實施形態之記憶體系統之讀出動作例之時序圖。 Fig. 39 is a timing chart showing an example of the read operation of the memory system according to the fifth embodiment.

圖40係表示第5實施形態之記憶體系統之讀出動作例之時序圖。 Fig. 40 is a timing chart showing an example of the read operation of the memory system according to the fifth embodiment.

圖41係表示第5實施形態之記憶體系統之讀出動作例之時序圖。 Fig. 41 is a timing chart showing an example of the read operation of the memory system according to the fifth embodiment.

圖42係表示第5實施形態之變化例之記憶體系統之寫入動作例之時序圖。 Fig. 42 is a timing chart showing an example of a write operation in the memory system according to a modification of the fifth embodiment.

圖43係表示第5實施形態之變化例之記憶體系統之寫入動作例之時序圖。 Fig. 43 is a timing chart showing an example of a write operation in the memory system according to a modified example of the fifth embodiment.

圖44係表示第5實施形態之變化例之記憶體系統之寫入動作例之時序圖。 Fig. 44 is a timing chart showing an example of a write operation in the memory system according to a modified example of the fifth embodiment.

圖45係表示第5實施形態之變化例之記憶體系統之讀出動作例之時序圖。 Fig. 45 is a timing chart showing an example of the read operation of the memory system according to the modified example of the fifth embodiment.

圖46係表示第5實施形態之變化例之記憶體系統之讀出動作例之時序 圖。 Fig. 46 shows the timing sequence of the example of the read operation of the memory system in the modification example of the fifth embodiment picture.

圖47係表示第5實施形態之變化例之記憶體系統之讀出動作例之時序圖。 Fig. 47 is a timing chart showing an example of the read operation of the memory system according to the modified example of the fifth embodiment.

圖48係表示第5實施形態之變化例之記憶體系統之讀出動作例之時序圖。 Fig. 48 is a timing chart showing an example of the read operation of the memory system according to the modified example of the fifth embodiment.

圖49係第6實施形態之記憶體系統之輸入輸出介面之電路圖。 Fig. 49 is a circuit diagram of the input/output interface of the memory system of the sixth embodiment.

圖50係表示第7實施形態之記憶體系統之接收器之電路圖。 Fig. 50 is a circuit diagram showing a receiver of the memory system according to the seventh embodiment.

圖51係表示第7實施形態之記憶體系統之第1接收器之電路圖。 Fig. 51 is a circuit diagram showing the first receiver of the memory system according to the seventh embodiment.

圖52係表示第7實施形態之記憶體系統之第2接收器之電路圖。 Fig. 52 is a circuit diagram showing the second receiver of the memory system according to the seventh embodiment.

圖53係表示第1~5實施形態之記憶體系統之動作條件之圖。 Fig. 53 is a diagram showing operating conditions of the memory system in the first to fifth embodiments.

以下,參照圖式對實施形態進行說明。於上述說明時,遍及全部圖,對共通之部分標註共通之參照符號。 Hereinafter, embodiments will be described with reference to the drawings. In the above description, common reference signs are attached to common parts throughout the entire drawings.

<1>第1實施形態 <1> First Embodiment

對第1實施形態之半導體記憶裝置進行說明。於以下,作為半導體記憶裝置,列舉NAND型快閃記憶體為例進行說明。 The semiconductor memory device of the first embodiment will be described. In the following, as a semiconductor memory device, a NAND type flash memory is taken as an example for description.

<1-1>構成 <1-1> Composition

<1-1-1>記憶體系統之整體構成 <1-1-1> The overall composition of the memory system

首先,使用圖1對本實施形態之包含半導體記憶裝置之記憶體系統之大致整體構成進行說明。圖1係本實施形態之記憶體系統之方塊圖。 First, a general configuration of a memory system including a semiconductor memory device according to the present embodiment will be described using FIG. 1 . Fig. 1 is a block diagram of the memory system of the present embodiment.

如圖1所示,記憶體系統1具備NAND型快閃記憶體10及記憶體控制器20。NAND型快閃記憶體10與記憶體控制器20係例如可藉由上述等之組合構成一個半導體裝置,作為其例可列舉如SD卡(Secure Digital Card:安全數位卡)般之記憶卡、或SSD(solid state drive:固態驅動器)等。 As shown in FIG. 1 , the memory system 1 includes a NAND flash memory 10 and a memory controller 20 . The NAND type flash memory 10 and the memory controller 20 are, for example, a semiconductor device that can be formed by combining the above, for example, an SD card (Secure Digital Card: Secure Digital Card) like memory card, or SSD (solid state drive: solid state drive), etc.

NAND型快閃記憶體10具備複數個記憶胞電晶體,而非揮發性地記憶資料。記憶體控制器20藉由NAND匯流排而連接於NAND型快閃記憶體10,且藉由主機匯流排而連接於主機機器30。而且,記憶體控制器20控制NAND型快閃記憶體10,應答自主機機器30接收之命令,而對NAND型快閃記憶體10進行存取。主機機器30係例如數位相機或個人電腦等,主機匯流排係例如遵照SDTM(Study Data Tabulation Model:研究資料製表模型)介面之匯流排。 The NAND type flash memory 10 has a plurality of memory cell transistors, and does not store data volatilely. The memory controller 20 is connected to the NAND flash memory 10 through the NAND bus, and connected to the host machine 30 through the host bus. Furthermore, the memory controller 20 controls the NAND type flash memory 10 , responds to the command received from the host device 30 , and accesses the NAND type flash memory 10 . The host device 30 is, for example, a digital camera or a personal computer, and the host bus is, for example, a bus conforming to the SDTM (Study Data Tabulation Model: Research Data Tabulation Model) interface.

NAND匯流排進行遵照NAND介面之信號之收發。上述信號之具體例為晶片賦能信號BCE、指令閂鎖賦能信號CLE、位址閂鎖賦能信號ALE、寫入賦能信號BWE、讀取賦能信號RE、BRE、寫入保護信號BWP、資料選通信號DQS、BDQS、輸入輸出信號DQ、及就緒.忙碌信號RY/BBY。於無需區分上述各信號之情形時,亦可僅記載為信號。 The NAND bus carries out the sending and receiving of signals according to the NAND interface. Specific examples of the above signals are chip enable signal BCE, command latch enable signal CLE, address latch enable signal ALE, write enable signal BWE, read enable signal RE, BRE, write protect signal BWP , data strobe signal DQS, BDQS, input and output signal DQ, and ready. Busy signal RY/BBY. In cases where it is not necessary to distinguish the above-mentioned signals, they may be described only as signals.

晶片賦能信號BCE係用於選擇NAND型快閃記憶體10所包含之LUN(Logical unit number:邏輯單元號碼)100之信號。晶片賦能信號BCE於選擇LUN100時確立(“低(Low)”位準)。 The chip enable signal BCE is a signal for selecting a LUN (Logical unit number) 100 included in the NAND flash memory 10 . Chip enable signal BCE is asserted (“Low” level) when LUN 100 is selected.

指令閂鎖賦能信號CLE係用於將對NAND型快閃記憶體10之輸入輸出信號DQ為指令通知給NAND型快閃記憶體10之信號。指令閂鎖賦能信號CLE於將指令擷取至NAND型快閃記憶體10時確立(“高(High)”位準(低<高))。 The command latch enable signal CLE is used to notify the NAND flash memory 10 of the input and output signal DQ to the NAND flash memory 10 as a command. The command latch enable signal CLE is asserted (“High” level (Low<High)) when the command is fetched into the NAND flash memory 10 .

位址閂鎖賦能信號ALE係用於將對NAND型快閃記憶體10之輸入輸出信號DQ為位址通知給NAND型快閃記憶體10之信號。位址閂鎖賦能信 號ALE於將位址擷取至NAND型快閃記憶體10時確立(“高”位準)。 The address latch enable signal ALE is used to inform the NAND flash memory 10 of the input and output signal DQ to the NAND flash memory 10 as an address. Address Latch Enable Letter The signal ALE is asserted (“high” level) when an address is fetched into the NAND-type flash memory 10 .

寫入賦能信號BWE係用於將輸入輸出信號DQ擷取至NAND型快閃記憶體10之信號。寫入賦能信號BWE於將輸入輸出信號DQ擷取至NAND型快閃記憶體10時確立(“低”位準)。 The write enable signal BWE is a signal for capturing the input and output signal DQ to the NAND flash memory 10 . The write enable signal BWE is asserted (“low” level) when the input and output signals DQ are captured to the NAND flash memory 10 .

讀取賦能信號RE係用於自NAND型快閃記憶體10讀出輸入輸出信號DQ之信號。讀取賦能信號BRE係RE之互補信號。讀取賦能信號RE及BRE於自NAND型快閃記憶體10讀出輸入輸出信號DQ時確立(RE=“高”位準,BRE=“低”位準)。 The read enable signal RE is a signal for reading the input/output signal DQ from the NAND flash memory 10 . The read enable signal BRE is the complementary signal of RE. The read enable signals RE and BRE are established when the input and output signals DQ are read from the NAND flash memory 10 (RE=“high” level, BRE=“low” level).

寫入保護信號BWP係用以於NAND型快閃記憶體10之接通電源時、或切斷電源時等之輸入信號不確定之情形時,保護資料不受意外之抹除或寫入之信號。寫入保護信號BWP於保護資料時確立(“低”位準)。 The write protection signal BWP is a signal used to protect data from accidental erasure or writing when the input signal is uncertain when the NAND flash memory 10 is powered on or cut off. . The write protect signal BWP is asserted (“low” level) when protecting data.

輸入輸出信號DQ係例如8位元之信號。而且,輸入輸出信號DQ係於NAND型快閃記憶體10與記憶體控制器20之間進行收發之指令、位址、寫入資料、及讀出資料等。 The input/output signal DQ is, for example, an 8-bit signal. Moreover, the input and output signals DQ are commands, addresses, writing data, reading data, etc. that are sent and received between the NAND flash memory 10 and the memory controller 20 .

資料選通信號DQS係用於將輸入輸出信號DQ(資料)於記憶體控制器20、與NAND型快閃記憶體10之間收發之信號。資料選通信號BDQS係DQS之互補信號。NAND型快閃記憶體10配合自記憶體控制器20供給之資料選通信號DQS及BDQS之時序而接收輸入輸出信號DQ(資料)。記憶體控制器20配合自NAND型快閃記憶體10供給之資料選通信號DQS及BDQS之時序而接收輸入輸出信號DQ(資料)。資料選通信號DQS及BDQS於收發輸入輸出信號DQ時確立(DQS=“低”位準,BDQS=“高”位準)。 The data strobe signal DQS is a signal for transmitting and receiving the input and output signal DQ (data) between the memory controller 20 and the NAND flash memory 10 . The data strobe signal BDQS is the complementary signal of DQS. The NAND flash memory 10 receives the input and output signal DQ (data) in accordance with the timing of the data strobe signals DQS and BDQS supplied from the memory controller 20 . The memory controller 20 receives the input and output signals DQ (data) in accordance with the timing of the data strobe signals DQS and BDQS supplied from the NAND flash memory 10 . The data strobe signals DQS and BDQS are established when the input and output signals DQ are sent and received (DQS=“low” level, BDQS=“high” level).

就緒.忙碌信號RY/BBY係表示LUN100是處於就緒狀態(可接收來自記憶體控制器20之命令之狀態)、還是處於忙碌狀態(無法接收來自記憶體 控制器20之命令之狀態)之信號。就緒.忙碌信號RY/BBY於忙碌狀態之情形時設為“低”位準。 Ready. Busy signal RY/BBY represents whether the LUN 100 is in a ready state (a state that can receive commands from the memory controller 20) or a busy state (cannot receive commands from the memory controller 20). The status of the command of the controller 20) signal. Ready. Busy signal RY/BBY is set to "low" level in case of busy state.

<1-1-2>記憶體控制器之構成 <1-1-2> The composition of the memory controller

使用圖1,對記憶體控制器20之構成之詳細情況進行說明。如圖1所示,記憶體控制器20具備主機介面(Host I/F)210、內置記憶體(RAM:Random access memory,隨機存取記憶體)220、處理器(CPU:Central processing unit,中央處理單元)230、緩衝記憶體240、及NAND介面(NAND I/F)250。 The details of the configuration of the memory controller 20 will be described using FIG. 1 . As shown in Figure 1, the memory controller 20 has a host interface (Host I/F) 210, a built-in memory (RAM: Random access memory, random access memory) 220, a processor (CPU: Central processing unit, central processing unit) 230, buffer memory 240, and NAND interface (NAND I/F) 250.

主機介面210經由主機匯流排而與主機機器30連接,且將自主機機器30接收之命令及資料分別傳送至處理器230及緩衝記憶體240。主機介面210應答處理器230之命令,而將緩衝記憶體240內之資料傳送至主機機器30。 The host interface 210 is connected to the host machine 30 through a host bus, and transmits commands and data received from the host machine 30 to the processor 230 and the buffer memory 240 respectively. The host interface 210 responds to the command of the processor 230 and transmits the data in the buffer memory 240 to the host machine 30 .

處理器230控制記憶體控制器20整體之動作。例如,處理器230於自主機機器30接收寫入命令時,應答其而對NAND介面250發行寫入命令。讀出及抹除之時亦相同。處理器230執行耗損平均等、用於管理NAND型快閃記憶體10之各種處理。 The processor 230 controls the overall operation of the memory controller 20 . For example, when the processor 230 receives a write command from the host device 30 , it issues a write command to the NAND interface 250 in response thereto. The same is true for reading and erasing. The processor 230 executes various processes for managing the NAND flash memory 10 such as wear leveling.

NAND介面250經由NAND匯流排而與NAND型快閃記憶體10連接,負責與NAND型快閃記憶體10之通信。而且,基於自處理器230接收之命令,而將晶片賦能信號BCE、指令閂鎖賦能信號CLE、位址閂鎖賦能信號ALE、寫入賦能信號BWE、讀取賦能信號RE、BRE、寫入保護信號BWP、及資料選通信號DQS、BDQS輸出至NAND型快閃記憶體10。於寫入時,將由處理器230發行之寫入指令、及緩衝記憶體240內之寫入資料作為輸入輸出信號DQ傳送至NAND型快閃記憶體10。進而,於讀出時, 將由處理器230發行之讀出指令作為輸入輸出信號DQ傳送至NAND型快閃記憶體10,進而將自NAND型快閃記憶體10讀出之資料作為輸入輸出信號DQ接收,並將其傳送至緩衝記憶體240。 The NAND interface 250 is connected to the NAND flash memory 10 through the NAND bus, and is responsible for communication with the NAND flash memory 10 . Furthermore, based on the command received from the processor 230, the chip enable signal BCE, the command latch enable signal CLE, the address latch enable signal ALE, the write enable signal BWE, the read enable signal RE, BRE, the write protection signal BWP, and the data strobe signals DQS and BDQS are output to the NAND flash memory 10 . When writing, the write command issued by the processor 230 and the write data in the buffer memory 240 are sent to the NAND flash memory 10 as the input and output signals DQ. Furthermore, when reading out, The read command issued by the processor 230 is sent to the NAND flash memory 10 as the input and output signal DQ, and then the data read from the NAND flash memory 10 is received as the input and output signal DQ and sent to the Buffer memory 240.

緩衝記憶體240暫時保持寫入資料或讀出資料。 The buffer memory 240 temporarily holds written data or read data.

內置記憶體220係例如DRAM(Dynamic random access memory:動態隨機存取記憶體)等半導體記憶體,且用作處理器230之作業區域。而且,內置記憶體220保持用以管理NAND型快閃記憶體10之韌體、或各種管理表格等。 The built-in memory 220 is, for example, a semiconductor memory such as DRAM (Dynamic random access memory), and is used as a working area of the processor 230 . Moreover, the built-in memory 220 holds firmware for managing the NAND flash memory 10, various management tables, and the like.

<1-1-3>NAND型快閃記憶體 <1-1-3> NAND flash memory

<1-1-3-1>NAND型快閃記憶體之構成 <1-1-3-1> Composition of NAND flash memory

其次,對NAND型快閃記憶體10之構成進行說明。 Next, the configuration of the NAND flash memory 10 will be described.

如圖1所示,NAND型快閃記憶體10具備複數個記憶體組(於圖1之例中,作為一例為GP0及GP1)。 As shown in FIG. 1 , the NAND flash memory 10 includes a plurality of memory banks (in the example of FIG. 1 , GP0 and GP1 as an example).

記憶體組GP分別具備複數個LUN100(於圖1之例中作為一例為4個)。於分別區分複數個LUN100之情形時,以LUN(m:m為任意之整數)之標記表示。具體而言,記憶體組GP0具備LUN(0)~LUN(3),記憶體組GP1具備LUN(4)~LUN(7)。LUN100係能夠獨立控制之最小單位。LUN100只要具備至少一個記憶體晶片即可,亦可具備2個以上之記憶體晶片。於本實施形態中,就LUN100具備一個記憶體晶片之情形進行說明。 Each memory group GP includes a plurality of LUNs 100 (four as an example in the example of FIG. 1 ). When differentiating a plurality of LUNs 100, it is indicated by a symbol of LUN (m: m is an arbitrary integer). Specifically, the memory group GP0 has LUN(0)-LUN(3), and the memory group GP1 has LUN(4)-LUN(7). LUN100 is the smallest unit that can be controlled independently. LUN100 only needs to have at least one memory chip, and may also have more than two memory chips. In this embodiment, the case where the LUN 100 has one memory chip will be described.

於本實施形態中,設為對每一記憶體組GP輸入獨立之晶片賦能信號BCE者。換言之,即對同一記憶體組GP內之LUN100,輸入同一晶片賦能信號BCE。 In this embodiment, an independent chip enable signal BCE is input to each memory group GP. In other words, the same chip enable signal BCE is input to the LUNs 100 in the same memory group GP.

於某記憶體組GP中,動作之LUN100既可為一個,亦可為複數個。 In a certain memory group GP, the active LUN 100 can be one or multiple.

<1-1-3-2>LUN100之構成 <1-1-3-2> The composition of LUN100

其次,使用圖2對LUN100之構成進行說明。 Next, the configuration of the LUN 100 will be described using FIG. 2 .

記憶體控制器20與LUN100係經由輸入輸出介面(Input/output interface)101及控制信號輸入介面(Control signal input interface)102而連接。 The memory controller 20 and the LUN 100 are connected through an input/output interface 101 and a control signal input interface 102 .

輸入輸出介面101具備接收器120及發送器130。而且,接收器120經由資料輸入輸出線(NAND匯流排之中,收發輸入輸出信號DQ之配線),而輸入輸入輸出信號(DQ0~DQ7)。發送器130經由資料輸入輸出線,而輸出輸入輸出信號(DQ0~DQ7)。 The input-output interface 101 has a receiver 120 and a transmitter 130 . Furthermore, the receiver 120 inputs the input and output signals ( DQ0 ˜ DQ7 ) through the data input and output lines (wiring for transmitting and receiving the input and output signals DQ in the NAND bus). The transmitter 130 outputs input and output signals ( DQ0 ˜ DQ7 ) through the data input and output lines.

輸入輸出介面101於自資料輸入輸出線輸出輸入輸出信號(DQ0~DQ7)時,對記憶體控制器20輸出資料選通信號DQS及BDQS。 The I/O interface 101 outputs the data strobe signals DQS and BDQS to the memory controller 20 when outputting the I/O signals (DQ0-DQ7) from the data I/O lines.

控制信號輸入介面102自記憶體控制器20接收晶片賦能信號BCE、指令閂鎖賦能信號CLE、位址閂鎖賦能信號ALE、寫入賦能信號BWE、讀取賦能信號RE、BRE、寫入保護信號BWP、及資料選通信號DQS、BDQS。 The control signal input interface 102 receives chip enable signal BCE, command latch enable signal CLE, address latch enable signal ALE, write enable signal BWE, read enable signal RE, BRE from the memory controller 20 , write protection signal BWP, and data strobe signals DQS, BDQS.

雖於圖2中未圖示,但於LUN100亦設置電力供給用之Vcc/Vss/Vccq/Vssq端子等。 Although not shown in FIG. 2 , Vcc/Vss/Vccq/Vssq terminals and the like for power supply are also provided on the LUN 100 .

控制電路103經由輸入輸出介面101將自記憶胞陣列(Memory cell array)110讀出之資料輸出至記憶體控制器20。控制電路103經由控制信號輸入介面102,接收寫入、讀出、抹除、及狀態.讀取等各種指令、位址、及寫入資料。 The control circuit 103 outputs the data read from the memory cell array (Memory cell array) 110 to the memory controller 20 through the I/O interface 101 . The control circuit 103 receives write, read, erase, and status via the control signal input interface 102. Read and other commands, addresses, and write data.

控制電路103控制指令暫存器(Command register)104、位址暫存器 (Address register)105、狀態暫存器(Status register)106、感測放大器(Sense amp)111、資料暫存器(Data register)112、行解碼器(Column decoder)113、及列位址解碼器(Row address decoder)115。 The control circuit 103 controls the command register (Command register) 104, the address register (Address register) 105, status register (Status register) 106, sense amplifier (Sense amp) 111, data register (Data register) 112, row decoder (Column decoder) 113, and column address decoder (Row address decoder) 115.

控制電路103於資料之編程、驗證、讀出、抹除時,對記憶胞陣列110、感測放大器111、及列解碼器115供給所需之電壓。 The control circuit 103 supplies required voltages to the memory cell array 110 , the sense amplifier 111 , and the column decoder 115 during data programming, verification, reading, and erasing.

指令暫存器104記憶自控制電路103輸入之指令。 The command register 104 stores commands input from the control circuit 103 .

位址暫存器105記憶例如自記憶體控制器20供給之位址。而且,位址暫存器105將記憶之位址轉換為內部實體位址(行位址及列位址)。然後,位址暫存器105將行位址供給至行緩衝器(Column buffer)114,且將列位址供給至列位址緩衝解碼器(Row address buffer decoder)116。 The address register 105 stores, for example, an address supplied from the memory controller 20 . Moreover, the address register 105 converts the stored address into an internal physical address (row address and column address). Then, the address register 105 supplies the row address to the column buffer (Column buffer) 114 , and supplies the column address to the column address buffer decoder (Row address buffer decoder) 116 .

狀態暫存器106係用以將LUN100內部之各種狀態通知給外部者。狀態暫存器106具有保持表示LUN100是處於就緒/忙碌狀態之哪一者之資料之就緒/忙碌暫存器(未圖示)、及保持表示寫入之通過/失敗之資料之寫入狀態暫存器(未圖示)等。 The state register 106 is used to notify the outside of various states of the LUN 100 . The status register 106 has a ready/busy register (not shown) that holds data indicating whether the LUN 100 is in a ready/busy state, and a write status register that holds data indicating pass/fail of writing. memory (not shown), etc.

記憶胞陣列110包含複數條位元線BL、複數條字元線WL、及源極線SL。上述記憶胞陣列110係以將能夠電性重寫之記憶胞電晶體(亦簡稱為記憶胞)MC矩陣狀地配置而成之複數個區塊BLK構成。記憶胞電晶體MC係例如具有包含控制閘極電極及電荷儲存層(例如浮動閘極電極)之積層閘極,且根據由注入於浮動閘極電極之電荷量決定之電晶體之閾值之變化而記憶二值、或多值資料。又,記憶體胞電晶體MC亦可為具有於氮化膜捕集電子之MONOS(Metal-Oxide-Nitride-Oxide-Silicon:金屬氧化氮氧化矽)構造者。 The memory cell array 110 includes a plurality of bit lines BL, a plurality of word lines WL, and source lines SL. The memory cell array 110 is composed of a plurality of blocks BLK in which electrically rewritable memory cell transistors (also referred to simply as memory cells) MC are arranged in a matrix. The memory cell transistor MC has, for example, a multilayer gate including a control gate electrode and a charge storage layer (for example, a floating gate electrode), and changes the threshold value of the transistor according to the amount of charge injected into the floating gate electrode. Memorize binary or multi-valued data. In addition, the memory cell transistor MC may also have a MONOS (Metal-Oxide-Nitride-Oxide-Silicon: Metal-Oxide-Nitride-Oxide-Silicon) structure that traps electrons in a nitride film.

進而,關於記憶胞陣列110之構成亦可為其他構成。即,關於記憶胞 陣列110之構成,例如記載於稱為“三維積層非揮發性半導體記憶體”之2009年3月19日申請之美國專利申請案12/407,403號。又,記載於稱為“三維積層非揮發性半導體記憶體”之2009年3月18日申請之美國專利申請案12/406,524號、稱為“非揮發性半導體記憶裝置及其製造方法”之2010年3月25日申請之美國專利申請案12/679,991號、及稱為“半導體記憶體及其製造方法”之2009年3月23日申請之美國專利申請案12/532,030號。上述等專利申請案係其整體以參照之方式併入本申請案說明書中。 Furthermore, the configuration of the memory cell array 110 may also be other configurations. That is, with respect to memory cells The configuration of the array 110 is described, for example, in US Patent Application No. 12/407,403 filed on March 19, 2009, entitled "Three-dimensional Laminated Non-Volatile Semiconductor Memory". Also, it is described in U.S. Patent Application No. 12/406,524 filed on March 18, 2009 entitled "Three-dimensional Laminated Non-Volatile Semiconductor Memory", 2010 entitled "Non-Volatile Semiconductor Memory Device and Method of Manufacturing It" U.S. Patent Application No. 12/679,991, filed March 25, 2009, and U.S. Patent Application No. 12/532,030, filed March 23, 2009, entitled "Semiconductor Memory and Method of Manufacturing Same." The patent applications mentioned above are incorporated in the specification of this application by reference in their entirety.

感測放大器111於資料之讀出動作時,感測自記憶胞電晶體MC讀取至位元線之資料。 The sense amplifier 111 senses the data read from the memory cell transistor MC to the bit line when the data is read out.

資料暫存器112係以SRAM((Static Random Access Memory:靜態隨機存取記憶體)等構成。資料暫存器112記憶自記憶體控制器20供給之資料、或藉由感測放大器111偵測之驗證結果等。 The data temporary register 112 is constituted by SRAM ((Static Random Access Memory: static random access memory) etc. The data temporary register 112 memorizes the data supplied from the memory controller 20, or is detected by the sense amplifier 111 verification results, etc.

行解碼器113將記憶於行緩衝器114之行位址信號解碼,且將選擇位元線BL之任一者之選擇信號輸出至感測放大器111。 The row decoder 113 decodes the row address signal stored in the row buffer 114 , and outputs a selection signal for selecting any one of the bit lines BL to the sense amplifier 111 .

行緩衝器114暫時記憶自位址暫存器105輸入之行位址信號。 The row buffer 114 temporarily stores the row address signal input from the address register 105 .

列位址解碼器115將經由列位址緩衝解碼器116輸入之列位址信號解碼。而且,列位址解碼器115選擇驅動記憶胞陣列110之字元線WL及選擇閘極線SGD、SGS。 The column address decoder 115 decodes the column address signal input through the column address buffer decoder 116 . Moreover, the column address decoder 115 selects and drives the word line WL and the selection gate lines SGD and SGS of the memory cell array 110 .

列位址緩衝解碼器116暫時記憶自位址暫存器105輸入之列位址信號。 The column address buffer decoder 116 temporarily stores the column address signal input from the address register 105 .

<1-1-3-3>輸入輸出介面之構成 <1-1-3-3> Composition of input and output interface

其次,使用圖3對輸入輸出介面101之構成進行具體說明。 Next, the configuration of the input/output interface 101 will be specifically described using FIG. 3 .

如圖3所示,輸入輸出介面101基於指令閂鎖賦能信號CLE、位址閂 鎖賦能信號ALE、及來自指令暫存器104或位址暫存器105之信號,而進行輸入輸出信號DQ之輸入輸出。 As shown in Figure 3, the input and output interface 101 is based on the command latch enable signal CLE, address latch The lock enable signal ALE and the signal from the instruction register 104 or the address register 105 are used to input and output the signal DQ.

具體而言,指令暫存器104基於寫入賦能信號BWE,將記憶於記憶部104a之指令CMD輸出至輸入輸出介面101之AND(“與”)運算電路101a。指令暫存器104於輸出指令CMD時,於輸入下一指令之前維持“高”位準狀態。位址暫存器105基於寫入賦能信號BWE,將記憶於記憶部105a之位址ADD輸出至輸入輸出介面101之AND運算電路101a。位址暫存器105於選擇本身之LUN100之情形時,維持“高”位準狀態。 Specifically, the command register 104 outputs the command CMD stored in the storage unit 104 a to the AND (AND) operation circuit 101 a of the input-output interface 101 based on the write enable signal BWE. When the command register 104 outputs the command CMD, it maintains the "high" level state before inputting the next command. The address register 105 outputs the address ADD stored in the memory unit 105 a to the AND operation circuit 101 a of the input-output interface 101 based on the write enable signal BWE. When the address register 105 selects its own LUN 100, it maintains the "high" level state.

AND運算電路101a基於指令CMD及位址ADD,而將運算結果輸出至OR(“或”)運算電路101b。AND運算電路101a僅於指令CMD及位址ADD均為“高”位準之情形時,輸出“高”位準之信號。 The AND operation circuit 101a outputs the operation result to the OR ("or") operation circuit 101b based on the command CMD and the address ADD. The AND operation circuit 101a outputs a signal of a "high" level only when the command CMD and the address ADD are both at a "high" level.

OR運算電路101b基於AND運算電路101a之運算結果、指令閂鎖賦能信號CLE、或位址閂鎖賦能信號ALE,而產生信號EN。OR運算電路101b僅於AND運算電路101a之運算結果、指令閂鎖賦能信號CLE、及位址閂鎖賦能信號ALE之全部為“低”位準之情形時,輸出“低”位準之信號EN。換言之,即OR運算電路101b於AND運算電路101a之運算結果、指令閂鎖賦能信號CLE、及位址閂鎖賦能信號ALE之至少一個為“高”位準之情形時,輸出“高”位準之信號EN。於以下,有時對將信號EN自“低”位準設為“高”位準記載為「上升」,且對將信號EN自“高”位準設為“低”位準記載為「下降」。 The OR operation circuit 101b generates the signal EN based on the operation result of the AND operation circuit 101a, the command latch enable signal CLE, or the address latch enable signal ALE. The OR operation circuit 101b outputs a "low" level only when all of the operation result of the AND operation circuit 101a, the command latch enable signal CLE, and the address latch enable signal ALE are "low" levels. Signal EN. In other words, the OR operation circuit 101b outputs "high" when at least one of the operation result of the AND operation circuit 101a, the command latch enable signal CLE, and the address latch enable signal ALE is at a "high" level Level signal EN. In the following, it is sometimes described as "rising" for setting the signal EN from the "low" level to the "high" level, and "falling" for setting the signal EN from the "high" level to the "low" level. ".

接收器120基於信號EN、及輸入輸出信號DQ,而於LUN100之內部接收輸入輸出信號DQ。具體而言,NAND運算電路101c基於自OR運算電路101b供給之信號EN、及自記憶體控制器20供給之輸入輸出信號DQ,而 產生信號。NAND運算電路101c僅於信號EN、及輸入輸出信號DQ均為“高”位準之情形時,產生“低”位準之信號。而且,反相器101d將NAND運算電路101c之運算結果反轉輸出。即,接收器120僅於信號EN、及輸入輸出信號DQ均為“高”位準之情形時,於LUN100之內部接收輸入輸出信號DQ。 The receiver 120 receives the input and output signal DQ inside the LUN 100 based on the signal EN and the input and output signal DQ. Specifically, the NAND operation circuit 101c is based on the signal EN supplied from the OR operation circuit 101b and the input/output signal DQ supplied from the memory controller 20, and generate a signal. The NAND operation circuit 101c generates a signal of a "low" level only when the signal EN and the input and output signals DQ are both at a "high" level. Furthermore, the inverter 101d inverts and outputs the operation result of the NAND operation circuit 101c. That is, the receiver 120 receives the input and output signal DQ inside the LUN 100 only when the signal EN and the input and output signal DQ are at “high” levels.

於以下,有時將對接收器120輸入“高”位準之信號EN之狀態記載為「啟動狀態」,且將輸入“低”位準之信號EN之狀態記載為「待機狀態」。接收器120為啟動狀態時,處於能夠接收輸入輸出資料DQ之狀態。進而,接收器120為待機狀態時,處於無法接收輸入輸出資料DQ之狀態。 In the following, the state in which the signal EN of the "high" level is input to the receiver 120 may be described as an "activation state", and the state in which the signal EN of the "low" level is input may be described as a "standby state". When the receiver 120 is activated, it is in a state capable of receiving input and output data DQ. Furthermore, when the receiver 120 is in the standby state, it is in a state where it cannot receive input/output data DQ.

<1-2>動作 <1-2> Action

<1-2-1>記憶體系統之動作之概要 <1-2-1> Summary of the actions of the memory system

使用圖4,對本實施形態之記憶體系統之動作之概要進行說明。 The outline of the operation of the memory system of this embodiment will be described using FIG. 4 .

於圖4中,著眼於記憶體組GP0之動作,說明將存取(寫入動作、讀出動作等)自LUN(0)變更至LUN(1)之情形之動作之概要。如圖4所示,於對LUN(0)之存取中LUN(0)內之信號EN成為“高”位準,LUN(1)~LUN(3)內之信號EN成為“低”位準。即,於對LUN(0)之存取中,LUN(0)之接收器120被設為啟動狀態,LUN(1)~LUN(3)之接收器120被設為待機狀態。 In FIG. 4 , focusing on the operation of the memory group GP0, the outline of the operation in the case of changing the access (write operation, read operation, etc.) from LUN(0) to LUN(1) will be described. As shown in Figure 4, during the access to LUN(0), the signal EN in LUN(0) becomes "high" level, and the signal EN in LUN(1)~LUN(3) becomes "low" level . That is, during access to LUN(0), the receiver 120 of LUN(0) is set to the active state, and the receivers 120 of LUN(1)˜LUN(3) are set to the standby state.

而且,於時刻T0,記憶體系統1進行LUN切換動作。此時,至少記憶體組GP0內之所有LUN(LUN(0)~LUN(3))內之信號EN變成“高”位準。即,於LUN切換動作時,至少記憶體組GP0內之所有LUN(LUN(0)~LUN(3))內之接收器120被設為啟動狀態。 Moreover, at time T0, the memory system 1 performs a LUN switching operation. At this time, at least the signal EN in all LUNs (LUN(0)˜LUN(3)) in the memory group GP0 becomes “high”. That is, during the LUN switching operation, at least the receivers 120 in all the LUNs (LUN(0)˜LUN(3)) in the memory group GP0 are set to the active state.

於時刻T1,若將LUN(1)之位址確定為選擇LUN位址,則開始對 LUN(1)之存取。於對LUN(1)之存取中LUN(1)內之信號EN成為“高”位準,LUN(0)、LUN(2)、LUN(3)內之信號EN成為“低”位準。即,於對LUN(1)之存取中,LUN(1)之接收器120被設為啟動狀態,LUN(0)、LUN(2)、LUN(3)之接收器120被設為待機狀態。 At time T1, if the address of LUN(1) is determined as the selected LUN address, start to Access to LUN(1). During the access to LUN(1), the signal EN in LUN(1) becomes "high" level, and the signals EN in LUN(0), LUN(2), and LUN(3) become "low" level. That is, during access to LUN(1), the receiver 120 of LUN(1) is set to the active state, and the receivers 120 of LUN(0), LUN(2), and LUN(3) are set to the standby state .

<1-2-2>寫入動作例1 <1-2-2> Writing operation example 1

使用圖5,對本實施形態之記憶體系統1之寫入動作例1進行說明。此處,針對記憶體組GP0之指令序列進行說明。 Using FIG. 5, an example 1 of the writing operation of the memory system 1 of this embodiment will be described. Here, the instruction sequence of the memory group GP0 is described.

於時刻T2,記憶體控制器20確立(“高”位準)指令閂鎖賦能信號CLE。於時刻T2之時間點,晶片賦能信號BCE確立(“低”位準)。若指令閂鎖賦能信號CLE確立,則如圖3所說明般信號EN變成“高”位準。 At time T2, the memory controller 20 asserts (“high” level) the command latch enable signal CLE. At the time point of time T2, the chip enable signal BCE is asserted (“low” level). If the command latch enable signal CLE is asserted, the signal EN becomes “high” as illustrated in FIG. 3 .

LUN100必須等待期間tCALS,作為自指令閂鎖賦能信號CLE確立起,用於指令輸入之設置所需之期間。 The LUN 100 must wait for the period t CALS as the period required for setting the command input from the assertion of the command latch enable signal CLE.

於自時刻T2經過期間tCALS後之時刻T3,記憶體控制器20發行指令“01h”及“80h”。 At time T3 after the time period t CALS elapses from time T2, the memory controller 20 issues commands “01h” and “80h”.

指令“01h”係於記憶胞電晶體MC可保持3位元資料之情形等發行之指令。更具體而言,指令“01h”係指定第1頁之指令。此處雖記載指令“01h”作為1例,但並不限於此。若記憶體控制器20指定其他頁之情形時,亦可輸入其他指令。指令“80h”係用於指定寫入動作之指令。 The command "01h" is a command issued when the memory cell transistor MC can hold 3-bit data. More specifically, the command "01h" is a command specifying the first page. Although the command "01h" is described here as an example, it is not limited thereto. If the memory controller 20 specifies other pages, other commands can also be input. Command "80h" is a command for specifying a write operation.

記憶體控制器20係每當發行指令、位址、及資料等之信號時,確立(“低”位準)寫入賦能信號BWE。而且,每當寫入賦能信號BWE觸變時,將信號擷取至LUN100。 The memory controller 20 asserts ("low" level) the write enable signal BWE whenever signals such as commands, addresses, and data are issued. Moreover, whenever the write enable signal BWE is triggered, the signal is captured to the LUN 100 .

接著,記憶體控制器20例如跨5週期發行位址(C1、C2:行位址,R1~R3:列位址),並且確立(“高”位準)位址閂鎖賦能信號ALE。 Next, the memory controller 20 issues addresses (C1, C2: row addresses, R1~R3: column addresses) over 5 cycles, for example, and asserts ("high" level) the address latch enable signal ALE.

於發行位址時,指令閂鎖賦能信號CLE雖被否定(“低”位準),但位址閂鎖賦能信號ALE被確立。若位址閂鎖賦能信號ALE確立,則如圖3所說明般信號EN變成“高”位準。即,於接收位址時,LUN100將信號EN維持在“高”位準。 When issuing addresses, the command latch enable signal CLE is negated ("low" level), but the address latch enable signal ALE is asserted. If the address latch enable signal ALE is asserted, the signal EN becomes "high" as illustrated in FIG. 3 . That is, when receiving the address, the LUN 100 maintains the signal EN at a "high" level.

但是,藉由例如於列位址R3包含選擇LUN位址,且將列位址R3供給至LUN100,則選擇LUN100確定。若選擇LUN100確定,則如圖3所說明般於選擇LUN100中,位址閂鎖電路105輸出“高”位準之信號。其結果,選擇LUN100中之信號EN維持“高”位準。另一方面,於非選擇LUN100中,位址閂鎖電路105輸出“低”位準之信號。其結果,選擇LUN100中之信號EN變成“低”位準。換言之,即選擇LUN100之接收器120維持為啟動狀態,非選擇LUN100之接收器120成為待機狀態。 However, for example, by including the selected LUN address in the column address R3 and supplying the column address R3 to the LUN 100 , the selection of the LUN 100 is determined. If the selection of the LUN 100 is confirmed, the address latch circuit 105 outputs a signal of "high" level in the selection of the LUN 100 as illustrated in FIG. 3 . As a result, the signal EN in the selection LUN 100 maintains the "high" level. On the other hand, in the non-selected LUN 100, the address latch circuit 105 outputs a signal of "low" level. As a result, the signal EN in the selection LUN 100 becomes "low". In other words, the receiver 120 of the selected LUN 100 is maintained in the active state, and the receiver 120 of the non-selected LUN 100 is in the standby state.

其次,記憶體控制器20跨複數個週期而輸出寫入資料(D0~Dn)。上述期間,信號ALE及CLE被否定(“L”位準)。由LUN100所接收之寫入資料係保持於感測放大器111內之頁緩衝器。 Secondly, the memory controller 20 outputs the writing data (D0˜Dn) over a plurality of cycles. During the above period, the signals ALE and CLE are negated (“L” level). Write data received by LUN 100 is held in a page buffer within sense amplifier 111 .

雖於圖5中未圖示,但記憶體控制器20發行寫入指令“10H”,並且確立指令閂鎖賦能信號CLE。若接收指令“10h”,則控制電路103開始寫入動作,且LUN100變成忙碌狀態(RY/BBY=“低”位準)。 Although not shown in FIG. 5 , the memory controller 20 issues the write command “10H” and asserts the command latch enable signal CLE. If the command “10h” is received, the control circuit 103 starts the writing operation, and the LUN 100 becomes busy (RY/BBY=“low” level).

<1-2-3>讀出動作例1 <1-2-3> Read operation example 1

使用圖6,對本實施形態之記憶體系統1之讀出動作例1進行說明。此處,針對記憶體組GP0之指令序列進行說明。 Using FIG. 6, an example 1 of the read operation of the memory system 1 of this embodiment will be described. Here, the instruction sequence of the memory group GP0 is described.

於時刻T5,記憶體控制器20確立指令閂鎖賦能信號CLE。於時刻T5之時間點,晶片賦能信號BCE確立。若指令閂鎖賦能信號CLE確立,則信號EN變成“高”位準。 At time T5, the memory controller 20 asserts the command latch enable signal CLE. At the time point of time T5, the chip enable signal BCE is asserted. If the command latch enable signal CLE is asserted, the signal EN becomes "high".

於自時刻T5經過期間tCALS後之時刻T6,記憶體控制器20發行讀出指令“05h”。 At time T6 after the time period t CALS elapses from time T5, the memory controller 20 issues the read command "05h".

接著,記憶體控制器20例如跨5週期發行位址(C1、C2:行位址,R1~R3:列位址),並且確立(“高”位準)位址閂鎖賦能信號ALE。 Next, the memory controller 20 issues addresses (C1, C2: row addresses, R1~R3: column addresses) over 5 cycles, for example, and asserts ("high" level) the address latch enable signal ALE.

記憶體控制器20發行指令“E0h”。LUN100若接收指令“E0h”則開始讀出動作。 The memory controller 20 issues the command "E0h". The LUN 100 starts a read operation upon receiving the command "E0h".

指令暫存器104辨識自記憶體控制器20請求之動作為讀出動作。然後,指令暫存器104將“低”位準之信號供給至AND運算電路101a(參照圖3)。藉此,信號EN變成“低”位準。 The command register 104 recognizes the action requested from the memory controller 20 as a read action. Then, the instruction register 104 supplies the signal of "low" level to the AND operation circuit 101a (refer to FIG. 3 ). Thereby, the signal EN becomes "low" level.

即,接收器120變成待機狀態。 That is, the receiver 120 becomes a standby state.

<1-3>效果 <1-3> Effect

根據上述之實施形態,使用位址ADD、指令CMD、指令閂鎖賦能信號CLE、位址閂鎖賦能信號ALE等,適當控制LUN100與資料輸入輸出線之電性連接。 According to the above-mentioned embodiment, the electrical connection between the LUN 100 and the data input and output lines is appropriately controlled by using the address ADD, the command CMD, the command latch enable signal CLE, the address latch enable signal ALE, and the like.

例如於寫入動作中,若非選擇LUN100接收到寫入資料,則於LUN100流通無用之電流。然而,藉由採用上述之實施形態,可抑制非選擇LUN100之動作電流。 For example, in the write operation, if the non-selected LUN 100 receives write data, useless current flows through the LUN 100 . However, by adopting the above-mentioned embodiment, the operating current of the non-selected LUN 100 can be suppressed.

又,於讀出動作中,LUN100無需接收資料。藉由採用上述之實施形態,可抑制LUN100之動作電流。 Also, in the read operation, LUN 100 does not need to receive data. By adopting the above-mentioned embodiment, the operating current of LUN 100 can be suppressed.

<2>第2實施形態 <2> Second Embodiment

對第2實施形態進行說明。於第2實施形態中,針對輸入輸出介面之另一構成進行說明。再者,第2實施形態之記憶裝置之基本構成及基本動作與上述之第1實施形態之記憶裝置相同。因此,省略對上述之第1實施形 態所說明之事項及能夠自上述第1實施形態類推之事項之說明。 The second embodiment will be described. In the second embodiment, another configuration of the input/output interface will be described. Furthermore, the basic configuration and basic operation of the memory device of the second embodiment are the same as those of the memory device of the first embodiment described above. Therefore, the description of the first embodiment described above is omitted. Explanation of the matters described in the first embodiment and the matters that can be deduced from the above-mentioned first embodiment.

<2-1>輸入輸出介面之構成 <2-1> Composition of input and output interface

其次,使用圖7,對第2實施形態之記憶體系統之輸入輸出介面101之構成進行具體說明。 Next, the configuration of the input/output interface 101 of the memory system according to the second embodiment will be specifically described using FIG. 7 .

如圖7所示,輸入輸出介面101基於指令閂鎖賦能信號CLE、位址閂鎖賦能信號ALE、及來自指令暫存器104或位址暫存器105之信號,而進行輸入輸出信號DQ之輸入輸出。 As shown in FIG. 7 , the input and output interface 101 performs input and output signals based on the command latch enable signal CLE, the address latch enable signal ALE, and signals from the command register 104 or the address register 105. DQ input and output.

具體而言,NAND運算電路101g基於指令閂鎖賦能信號CLE及位址閂鎖賦能信號ALE,而將運算結果輸出至NAND運算電路101h。NAND運算電路101g僅於指令閂鎖賦能信號CLE及位址閂鎖賦能信號ALE均為“高”位準之情形時,產生“低”位準之信號。 Specifically, the NAND operation circuit 101g outputs an operation result to the NAND operation circuit 101h based on the command latch enable signal CLE and the address latch enable signal ALE. The NAND operation circuit 101g generates a signal of a "low" level only when the command latch enable signal CLE and the address latch enable signal ALE are both at a "high" level.

NAND運算電路101h及NAND運算電路101i構成RS正反器電路。具體而言,NAND運算電路101h基於NAND運算電路101g及NAND運算電路101i之運算結果,而輸出運算結果。NAND運算電路101i基於NAND運算電路101h之運算結果、及來自指令暫存器104之信號(例如指令CMD),而輸出運算結果。 The NAND arithmetic circuit 101h and the NAND arithmetic circuit 101i constitute an RS flip-flop circuit. Specifically, the NAND arithmetic circuit 101h outputs an arithmetic result based on the arithmetic results of the NAND arithmetic circuit 101g and the NAND arithmetic circuit 101i. The NAND operation circuit 101i outputs the operation result based on the operation result of the NAND operation circuit 101h and the signal (such as the command CMD) from the command register 104 .

對本RS正反器電路之動作進行簡單說明。於來自NAND運算電路101g之信號為“高”位準、且來自指令暫存器104之信號為“低”位準之情形時,NAND運算電路101h輸出“低”位準之信號。進而,於來自NAND運算電路101g之信號為“低”位準、且來自指令暫存器104之信號為“高”位準之情形時,NAND運算電路101h輸出“高”位準之信號。又,於NAND運算電路101h之輸出信號確定之狀態下,即使來自NAND運算電路101g之信號、或來自指令暫存器104之信號變化,亦保持NAND運 算電路101h之輸出信號。 Briefly explain the operation of this RS flip-flop circuit. When the signal from the NAND operation circuit 101g is at a "high" level and the signal from the command register 104 is at a "low" level, the NAND operation circuit 101h outputs a signal at a "low" level. Furthermore, when the signal from the NAND operation circuit 101g is at a "low" level and the signal from the instruction register 104 is at a "high" level, the NAND operation circuit 101h outputs a signal at a "high" level. Also, in the state where the output signal of the NAND operation circuit 101h is determined, even if the signal from the NAND operation circuit 101g or the signal from the command register 104 changes, the NAND operation is maintained. Calculate the output signal of circuit 101h.

OR運算電路101j基於NAND運算電路101h之運算結果、及來自位址暫存器105之信號,而產生信號EN。OR運算電路101j僅於NAND運算電路101h之運算結果、來自位址暫存器105之信號均為“低”位準之情形時,輸出“低”位準之信號EN。換言之,即OR運算電路101j於NAND運算電路101h之運算結果、來自位址暫存器105之信號之至少一個為“高”位準之情形時,輸出“高”位準之信號EN。 The OR operation circuit 101j generates the signal EN based on the operation result of the NAND operation circuit 101h and the signal from the address register 105 . The OR operation circuit 101j outputs the signal EN of the "low" level only when the operation result of the NAND operation circuit 101h and the signal from the address register 105 are both at the "low" level. In other words, when at least one of the operation result of the NAND operation circuit 101h and the signal from the address register 105 is at a "high" level, the OR operation circuit 101j outputs a "high" level signal EN.

接收器120僅於信號EN、及輸入輸出信號DQ均為“高”位準之情形時,於LUN100之內部接收輸入輸出信號DQ。 The receiver 120 receives the input and output signal DQ inside the LUN 100 only when the signal EN and the input and output signal DQ are both at “high” level.

<2-2>動作 <2-2> Action

第1實施形態所說明之動作與第2實施形態之動作之不同在於,LUN100內之信號EN之上升方法。 The difference between the operation described in the first embodiment and the operation in the second embodiment lies in the rising method of the signal EN in the LUN 100 .

於第1實施形態之記憶體系統1中,係基於指令閂鎖賦能信號CLE之確立而將信號EN上升。於第2實施形態之記憶體系統1中,係藉由同時確立指令閂鎖賦能信號CLE及位址閂鎖賦能信號ALE,而將信號EN上升。同時確立指令閂鎖賦能信號CLE及位址閂鎖賦能信號ALE之動作成為用於將信號EN上升之動作。 In the memory system 1 of the first embodiment, the signal EN is raised based on the assertion of the command latch enable signal CLE. In the memory system 1 of the second embodiment, the signal EN is raised by simultaneously asserting the command latch enable signal CLE and the address latch enable signal ALE. The operation of simultaneously asserting the command latch enable signal CLE and the address latch enable signal ALE is an operation for raising the signal EN.

<2-2-1>寫入動作例2 <2-2-1> Writing operation example 2

使用圖8,對本實施形態之記憶體系統1之寫入動作例2進行說明。此處,針對記憶體組GP0之指令序列進行說明。 Using FIG. 8, an example 2 of the write operation of the memory system 1 of this embodiment will be described. Here, the instruction sequence of the memory group GP0 is described.

於時刻T8,記憶體控制器20確立指令閂鎖賦能信號CLE及位址閂鎖賦能信號ALE。藉此,如使用圖7所說明般,信號EN變成“高”位準。然後,記憶體控制器20否定指令閂鎖賦能信號CLE及位址閂鎖賦能信號 ALE。因此,由於NAND運算電路101h之輸入信號雖變化,但NAND運算電路101i之輸入信號不變化,故而NAND運算電路101h之輸出信號被保持為“高”位準。其結果,信號EN被保持為“高”位準。 At time T8, the memory controller 20 asserts the command latch enable signal CLE and the address latch enable signal ALE. Thereby, as explained using FIG. 7, the signal EN becomes "high" level. Then, the memory controller 20 negates the command latch enable signal CLE and the address latch enable signal ALE. Therefore, although the input signal of the NAND operation circuit 101h changes, the input signal of the NAND operation circuit 101i does not change, so the output signal of the NAND operation circuit 101h is maintained at a "high" level. As a result, signal EN is held at "high" level.

於自時刻T8經過期間tCALS後之時刻T9,記憶體控制器20發行寫入指令“01h”及“80h”。 At time T9 after the time period tCALS elapses from time T8, the memory controller 20 issues write commands "01h" and "80h".

於時刻T10,若選擇LUN100確定,則如圖7所說明般於選擇LUN100內,位址閂鎖電路105輸出“高”位準之信號。其結果,LUN100內之信號EN維持“高”位準。另一方面,於非選擇LUN100內,位址閂鎖電路105輸出“低”位準之信號。其結果,選擇LUN100內之信號EN變成“低”位準。換言之,即選擇LUN100之接收器120維持啟動狀態,非選擇LUN100被設為待機狀態。 At time T10, if the selection of the LUN 100 is determined, the address latch circuit 105 outputs a signal of "high" level in the selected LUN 100 as illustrated in FIG. 7 . As a result, the signal EN in the LUN 100 maintains the "high" level. On the other hand, in the non-selected LUN 100, the address latch circuit 105 outputs a signal of "low" level. As a result, the signal EN in the selection LUN 100 becomes "low". In other words, the receiver 120 of the selected LUN 100 maintains the active state, and the non-selected LUN 100 is set to the standby state.

記憶體控制器20例如跨5週期發行位址(C1、C2:行位址,R1~R3:列位址),並且確立(“高”位準)位址閂鎖賦能信號ALE。 The memory controller 20 issues addresses (C1, C2: row addresses, R1~R3: column addresses) over 5 cycles, for example, and asserts ("high" level) the address latch enable signal ALE.

其次,記憶體控制器20跨複數個週期輸出寫入資料(D0~Dn)。上述期間,信號ALE及CLE被否定。由LUN100所接收之寫入資料係保持於感測放大器111內之頁緩衝器。 Secondly, the memory controller 20 outputs the writing data (D0˜Dn) across a plurality of cycles. During the above-mentioned period, the signals ALE and CLE are negated. Write data received by LUN 100 is held in a page buffer within sense amplifier 111 .

<2-2-2>寫入動作例3 <2-2-2> Writing operation example 3

使用圖9、圖10,對本實施形態之記憶體系統1之寫入動作例3進行說明。此處,針對記憶體組GP0之指令序列進行說明。 Using FIG. 9 and FIG. 10, an example 3 of the writing operation of the memory system 1 of this embodiment will be described. Here, the instruction sequence of the memory group GP0 is described.

寫入動作例3之信號EN之上升方法因與寫入動作例2相同,故而省略說明。此處,針對非選擇LUN100之信號EN之下降時序進行說明。 The rising method of the signal EN in the writing operation example 3 is the same as that in the writing operation example 2, so the description is omitted. Here, the falling timing of the signal EN of the non-selected LUN 100 will be described.

例如,於列位址R3中包含選擇LUN位址。藉由將列位址R3供給至LUN100,而確定選擇LUN100。若選擇LUN100確定,則選擇LUN100內 之信號EN被維持“高”位準,且非選擇LUN100內之信號EN變成“低”位準。換言之,即選擇LUN100之接收器120被維持為啟動狀態,非選擇LUN100被設為待機狀態。 For example, the selected LUN address is included in the column address R3. By supplying the column address R3 to the LUN100, the selection of the LUN100 is confirmed. If you select LUN100 to confirm, select the The signal EN in the non-selected LUN 100 is maintained at a "high" level, and the signal EN in the non-selected LUN 100 becomes a "low" level. In other words, the receiver 120 of the selected LUN 100 is maintained in the active state, and the non-selected LUN 100 is set in the standby state.

如圖9所示,亦可於接收列位址R3之後,非選擇LUN100內之信號EN立刻變成“低”位準。如圖10所示,亦可按資料之輸入輸出前後之時序,而非選擇LUN100內之信號EN變成“低”位準。 As shown in FIG. 9, after receiving the column address R3, the signal EN in the non-selected LUN 100 becomes "low" immediately. As shown in FIG. 10 , the signal EN in the LUN 100 can also be changed to "low" level according to the timing before and after the input and output of data.

<2-2-3>讀出動作例2 <2-2-3> Read operation example 2

使用圖11,對本實施形態之記憶體系統1之讀出動作例2進行說明。此處,針對記憶體組GP0之指令序列進行說明。 Using FIG. 11, an example 2 of the read operation of the memory system 1 of this embodiment will be described. Here, the instruction sequence of the memory group GP0 is described.

讀出動作例2之信號EN之上升方法與寫入動作例2相同。 The rising method of the signal EN in the read operation example 2 is the same as that in the write operation example 2.

於時刻T13,記憶體控制器20確立指令閂鎖賦能信號CLE及位址閂鎖賦能信號ALE。藉此,如使用圖7所說明般,信號EN變成“高”位準。 At time T13, the memory controller 20 asserts the command latch enable signal CLE and the address latch enable signal ALE. Thereby, as explained using FIG. 7, the signal EN becomes "high" level.

於自時刻T13經過期間tCALS後之時刻T14,發行讀出指令“05h”。 At time T14 after the period t CALS has elapsed from time T13, the read command "05h" is issued.

指令暫存器104若接收“05h”則辨識自記憶體控制器20請求之動作為讀出動作。然後,指令暫存器104將“低”位準之信號供給至AND運算電路101a(參照圖3)。藉此,信號EN變成“低”位準。 If the command register 104 receives “05h”, it will recognize the action requested from the memory controller 20 as a read action. Then, the instruction register 104 supplies the signal of "low" level to the AND operation circuit 101a (refer to FIG. 3 ). Thereby, the signal EN becomes "low" level.

即,接收器120變成待機狀態。 That is, the receiver 120 becomes a standby state.

<2-2-4>讀出動作例3 <2-2-4> Read operation example 3

使用圖12~圖14,對本實施形態之記憶體系統1之讀出動作例3進行說明。此處,針對記憶體組GP0之指令序列進行說明。 Using FIGS. 12 to 14, an example 3 of the read operation of the memory system 1 according to this embodiment will be described. Here, the instruction sequence of the memory group GP0 is described.

讀出動作例3之信號EN之上升方法因與讀出動作例2相同,故而省略說明。此處,針對LUN100之信號EN之下降時序進行說明。 The rising method of the signal EN in the read operation example 3 is the same as that in the read operation example 2, so the description thereof is omitted. Here, the falling timing of the signal EN of the LUN 100 will be described.

指令暫存器104辨識自記憶體控制器20請求之動作為讀出動作。然 後,指令暫存器104將“低”位準之信號供給至AND運算電路101a(參照圖3)。藉此,信號EN變成“低”位準。 The command register 104 recognizes the action requested from the memory controller 20 as a read action. However Then, the instruction register 104 supplies the signal of "low" level to the AND operation circuit 101a (refer to FIG. 3 ). Thereby, the signal EN becomes "low" level.

即,接收器120變成待機狀態。 That is, the receiver 120 becomes a standby state.

如圖12所示,亦可於接收列位址R3之後,LUN100內之信號EN立刻變成“低”位準。又,如圖13所示,亦可於接收指令“E0h”之後,LUN100內之信號EN立刻變成“低”位準。又,如圖14所示,亦可按資料之輸入輸出前後之時序,而LUN100內之信號EN變成“低”位準。 As shown in FIG. 12, after receiving the column address R3, the signal EN in the LUN 100 becomes "low" immediately. Also, as shown in FIG. 13, the signal EN in the LUN 100 may immediately become "low" after receiving the command "E0h". Also, as shown in FIG. 14, the signal EN in the LUN 100 may be changed to a "low" level according to the timing before and after the input and output of data.

<2-3>效果 <2-3> Effect

根據上述之實施形態,藉由同時確立指令閂鎖賦能信號CLE及位址閂鎖賦能信號ALE,而複數個LUN100之接收器120變成啟動狀態。 According to the above-mentioned embodiment, by simultaneously asserting the command latch enable signal CLE and the address latch enable signal ALE, the receivers 120 of the plurality of LUNs 100 become activated.

伴隨資料之輸入輸出之高速化,而必須將指令位址輸入週期高速化。例如,於第1實施形態之情形時,若將資料之輸入輸出高速化,則自指令閂鎖賦能信號CLE確立起,用於指令輸入之設置所需之期間變得不足,而有產生來不及設置之問題之可能性。換言之,即有於輸入指令之前,未能經由接收器120將LUN100電性連接於資料輸入輸出線,而產生LUN100無法適當地接收指令之問題之可能性。 With the high speed of data input and output, it is necessary to speed up the instruction address input cycle. For example, in the case of the first embodiment, if the input and output of data are speeded up, the period required for setting the command input becomes insufficient after the establishment of the command latch enable signal CLE, and it is too late to generate Possibility of setting problems. In other words, before the command is input, the LUN 100 cannot be electrically connected to the data input and output line through the receiver 120 , and there is a possibility that the LUN 100 cannot properly receive the command.

因此,於本實施形態中,於為了輸入指令而確立指令閂鎖賦能信號CLE之前,將接收器120設為啟動狀態。藉此,與第1實施形態相比,可緩和實質上之期間tCALS。因此,可提供一種伴隨資料之輸入輸出之高速化,能夠適當地進行輸入輸出信號DQ之收發之記憶體系統。 Therefore, in the present embodiment, before the command latch enable signal CLE is asserted for command input, the receiver 120 is set to the active state. Thereby, compared with the first embodiment, the substantial period t CALS can be relaxed. Therefore, it is possible to provide a memory system capable of appropriately transmitting and receiving the input and output signals DQ as the input and output speeds of data are increased.

<2-4>第2實施形態之變化例1 <2-4> Variation 1 of the second embodiment

<2-4-1>寫入動作例4 <2-4-1> Writing operation example 4

使用圖15,對本實施形態之記憶體系統1之寫入動作例4進行說明。 此處,針對記憶體組GP0之指令序列進行說明。 Using FIG. 15, an example 4 of the write operation of the memory system 1 of this embodiment will be described. Here, the instruction sequence of the memory group GP0 is described.

寫入動作例4之信號EN之上升方法因與第2實施形態之寫入動作例2相同,故而省略說明。此處,針對非選擇LUN100之信號EN之下降時序進行說明。 The rising method of the signal EN in the address operation example 4 is the same as that in the address operation example 2 of the second embodiment, so the description thereof is omitted. Here, the falling timing of the signal EN of the non-selected LUN 100 will be described.

例如,於列位址R3中包含選擇LUN位址。藉由將列位址R3供給至LUN100,而確定選擇LUN100。如圖7所示,若選擇LUN100確定,進而輸入指令“XXh”,則指令暫存器104之輸出信號變成“低”位準。另一方面,於選擇LUN100中,位址暫存器105維持“高”位準之信號,於非選擇LUN100中,位址暫存器105輸出“低”位準之信號。因此,選擇LUN100內之信號EN維持“高”位準,且非選擇LUN100內之信號EN變成“低”位準。換言之,即選擇LUN100之接收器120維持啟動狀態,非選擇LUN100之接收器120被設為待機狀態。 For example, the selected LUN address is included in the column address R3. By supplying the column address R3 to the LUN100, the selection of the LUN100 is confirmed. As shown in FIG. 7 , if the LUN 100 is selected and the command “XXh” is input, the output signal of the command register 104 becomes “low”. On the other hand, in the selected LUN 100, the address register 105 maintains the signal of “high” level, and in the non-selected LUN 100, the address register 105 outputs the signal of “low” level. Therefore, the signal EN in the selected LUN 100 maintains a "high" level, and the signal EN in the non-selected LUN 100 becomes a "low" level. In other words, the receiver 120 of the selected LUN 100 maintains the activated state, and the receiver 120 of the non-selected LUN 100 is set to the standby state.

<2-4-2>讀出動作例4 <2-4-2> Read operation example 4

使用圖16,對本實施形態之記憶體系統1之讀出動作例4進行說明。此處,針對記憶體組GP0之指令序列進行說明。 Using FIG. 16, an example 4 of the read operation of the memory system 1 of this embodiment will be described. Here, the instruction sequence of the memory group GP0 is described.

讀出動作例4之信號EN之上升方法因與第2實施形態之讀出動作例2相同,故而省略說明。此處,針對LUN100之信號EN之下降時序進行說明。 The rising method of the signal EN in the read operation example 4 is the same as that in the read operation example 2 of the second embodiment, so the description thereof is omitted. Here, the falling timing of the signal EN of the LUN 100 will be described.

指令暫存器104若接收“XXh”則辨識自記憶體控制器20請求之動作為讀出動作。然後,指令暫存器104將“低”位準之信號供給至AND運算電路101a(參照圖3)。藉此,信號EN變成“低”位準。即,接收器120變成待機狀態。 If the command register 104 receives “XXh”, it will recognize the action requested from the memory controller 20 as a read action. Then, the instruction register 104 supplies the signal of "low" level to the AND operation circuit 101a (refer to FIG. 3 ). Thereby, the signal EN becomes "low" level. That is, the receiver 120 becomes a standby state.

<2-5>第2實施形態之變化例2 <2-5> Variation 2 of the second embodiment

使用圖17,對第2實施形態之變化例2之記憶體系統之輸入輸出介面101之構成進行具體說明。 Using FIG. 17, the structure of the input-output interface 101 of the memory system of the modification 2 of 2nd Embodiment is demonstrated concretely.

圖17所示之輸入輸出介面101具備以於輸出資料時,接收器120不電性連接於LUN100與資料輸入輸出線之方式進行控制之電路。 The input/output interface 101 shown in FIG. 17 has a circuit for controlling in such a manner that the receiver 120 is not electrically connected to the LUN 100 and the data input/output line when outputting data.

具體而言,如圖17所示,輸入輸出介面101具備NAND運算電路101k。而且,NAND運算電路101k基於指令閂鎖賦能信號CLE之反轉信號~CLE、位址閂鎖賦能信號ALE之反轉信號~ALE、晶片賦能信號BCE之反轉信號~BCE、寫入賦能信號BWE,而將運算結果輸出至NAND運算電路101l。NAND運算電路101k僅於信號~CLE、~ALE、~BCE、及BWE全部為“高”位準之情形時,產生“低”位準之信號。 Specifically, as shown in FIG. 17 , the input/output interface 101 includes a NAND arithmetic circuit 101k. Moreover, the NAND operation circuit 101k is based on the inverted signal ~CLE of the command latch enable signal CLE, the inverted signal ~ ALE of the address latch enable signal ALE, the inverted signal ~ BCE of the chip enable signal BCE, and write The enabling signal BWE is enabled, and the operation result is output to the NAND operation circuit 101l. The NAND operation circuit 101k generates a signal of a "low" level only when the signals ~ CLE, ~ ALE, ~ BCE, and BWE are all at a "high" level.

NAND運算電路101l及NAND運算電路101m構成RS正反器電路。具體而言,NAND運算電路101l基於NAND運算電路101k及NAND運算電路101m之運算結果,而輸出運算結果。NAND運算電路101m基於NAND運算電路101l之運算結果、及讀取賦能信號BRE,而輸出運算結果。 The NAND arithmetic circuit 101l and the NAND arithmetic circuit 101m constitute an RS flip-flop circuit. Specifically, the NAND arithmetic circuit 101l outputs an arithmetic result based on the arithmetic results of the NAND arithmetic circuit 101k and the NAND arithmetic circuit 101m. The NAND operation circuit 101m outputs the operation result based on the operation result of the NAND operation circuit 101l and the read enable signal BRE.

對本RS正反器電路之動作進行簡單說明。於來自NAND運算電路101k之信號為“高”位準、且讀取賦能信號BRE為“低”位準之情形時,NAND運算電路101l輸出“低”位準之信號。進而,於來自NAND運算電路101k之信號為“低”位準、且讀取賦能信號BRE為“高”位準之情形時,NAND運算電路101l輸出“高”位準之信號。又,於NAND運算電路101l之輸出信號確定之狀態下,即使來自NAND運算電路101k之信號、或讀取賦能信號BRE變化,亦保持NAND運算電路101l之輸出信號。 Briefly explain the operation of this RS flip-flop circuit. When the signal from the NAND operation circuit 101k is at a "high" level and the read enable signal BRE is at a "low" level, the NAND operation circuit 101l outputs a signal at a "low" level. Furthermore, when the signal from the NAND operation circuit 101k is at a "low" level and the read enable signal BRE is at a "high" level, the NAND operation circuit 101l outputs a signal at a "high" level. Also, in the state where the output signal of the NAND arithmetic circuit 101l is fixed, even if the signal from the NAND arithmetic circuit 101k or the read enable signal BRE changes, the output signal of the NAND arithmetic circuit 101l is held.

而且,反相器101n將NAND運算電路101l之輸出信號反轉,並供給至AND運算電路101o。 And the inverter 101n inverts the output signal of the NAND operation circuit 101l, and supplies it to the AND operation circuit 101o.

AND運算電路101o基於反相器101n之輸出信號及來自位址暫存器105之信號,將運算結果輸出至OR運算電路101p。AND運算電路101a僅於反相器101n之輸出信號及來自位址暫存器105之信號均為“高”位準之情形時,輸出“高”位準之信號。 The AND operation circuit 101o outputs the operation result to the OR operation circuit 101p based on the output signal of the inverter 101n and the signal from the address register 105 . The AND operation circuit 101a outputs a signal of a "high" level only when the output signal of the inverter 101n and the signal from the address register 105 are both at a "high" level.

OR運算電路101p基於AND運算電路101o及NAND運算電路101h之運算結果,而產生信號EN。OR運算電路101p僅於AND運算電路101o及NAND運算電路101h之運算結果均為“低”位準之情形時,輸出“低”位準之信號EN。換言之,即OR運算電路101p於AND運算電路101o及NAND運算電路101h之運算結果之至少一個為“高”位準之情形時,輸出“高”位準之信號EN。 The OR operation circuit 101p generates a signal EN based on the operation results of the AND operation circuit 101o and the NAND operation circuit 101h. The OR operation circuit 101p outputs the signal EN of the "low" level only when the operation results of the AND operation circuit 101o and the NAND operation circuit 101h are both at the "low" level. In other words, the OR operation circuit 101p outputs a signal EN of a "high" level when at least one of the operation results of the AND operation circuit 101o and the NAND operation circuit 101h is at a "high" level.

於資料之輸出期間,信號~CLE、~ALE、~BCE、BWE、及BREA全部變成“高”位準。其結果,NAND運算電路101l之輸出信號係輸出“高”位準之信號。其結果,於資料之輸出期間,信號EN變成“低”位準。 During data output, the signals ~ CLE, ~ ALE, ~ BCE, BWE, and BREA all become "high" levels. As a result, the output signal of the NAND operation circuit 1011 is a signal of "high" level. As a result, the signal EN becomes "low" during data output.

如此,第2實施形態之變化例2之記憶體系統之輸入輸出介面101可以於輸出資料時,接收器120不電性連接於LUN100與資料輸入輸出線之方式進行控制。 In this way, the I/O interface 101 of the memory system in the second modification of the second embodiment can be controlled in such a way that the receiver 120 is not electrically connected to the LUN 100 and the data I/O line when outputting data.

<3>第3實施形態 <3> Third Embodiment

對第3實施形態進行說明。於第3實施形態中,針對輸入輸出介面之另一構成進行說明。再者,第3實施形態之記憶裝置之基本構成及基本動作與上述之第1、第2實施形態之記憶裝置相同。因此,省略對上述之第1、第2實施形態所說明之事項及能夠自上述第1、第2實施形態類推之事項之說明。 A third embodiment will be described. In the third embodiment, another configuration of the input/output interface will be described. Furthermore, the basic configuration and basic operation of the memory device of the third embodiment are the same as those of the memory devices of the first and second embodiments described above. Therefore, the description of the matters described in the above-mentioned first and second embodiments and the matters that can be inferred from the above-mentioned first and second embodiments will be omitted.

<3-1>輸入輸出介面之構成 <3-1> Composition of input and output interface

其次,使用圖18,對第3實施形態之記憶體系統之輸入輸出介面101之構成進行具體說明。第3實施形態之記憶體系統之輸入輸出介面101與第2實施形態之記憶體系統之輸入輸出介面101相比,進而基於寫入賦能信號BWE之反轉信號~BWE,而進行輸入輸出信號DQ之輸入輸出。 Next, using FIG. 18, the configuration of the input/output interface 101 of the memory system according to the third embodiment will be specifically described. The input/output interface 101 of the memory system of the third embodiment is compared with the input/output interface 101 of the memory system of the second embodiment, and further based on the inversion signal ~ BWE of the write enable signal BWE, the input and output signals are performed. DQ input and output.

具體而言,NAND運算電路101g1基於信號CLE、ALE、及~BWE,而將運算結果輸出至NAND運算電路101h。NAND運算電路101g1僅於信號CLE、ALE、及~BWE全部為“高”位準之情形時,產生“低”位準之信號。 Specifically, the NAND calculation circuit 101g1 outputs calculation results to the NAND calculation circuit 101h based on the signals CLE, ALE, and ~ BWE. The NAND operation circuit 101g1 generates a signal of a "low" level only when the signals CLE, ALE, and -BWE are all at a "high" level.

<3-2>動作 <3-2> Action

第2實施形態所說明之動作與第3實施形態之動作之不同在於,LUN100內之信號EN之上升方法。 The difference between the operation described in the second embodiment and the operation in the third embodiment lies in the rising method of the signal EN in the LUN 100 .

於第2實施形態之記憶體系統1中,係藉由同時確立指令閂鎖賦能信號CLE及位址閂鎖賦能信號ALE,而將信號EN上升。另一方面,於第3實施形態之記憶體系統1中,係藉由同時確立指令閂鎖賦能信號CLE、位址閂鎖賦能信號ALE、及寫入賦能信號BWE,而將信號EN上升。即,同時確立號CLE、ALE、及BWE之動作成為用於將信號EN上升之動作。 In the memory system 1 of the second embodiment, the signal EN is raised by simultaneously asserting the command latch enable signal CLE and the address latch enable signal ALE. On the other hand, in the memory system 1 of the third embodiment, by simultaneously asserting the command latch enable signal CLE, the address latch enable signal ALE, and the write enable signal BWE, the signal EN rise. That is, the operation of simultaneously asserting the signals CLE, ALE, and BWE is an operation for raising the signal EN.

<3-2-1>寫入動作例5 <3-2-1> Writing operation example 5

使用圖19,對本實施形態之記憶體系統1之寫入動作例5進行說明。此處,針對記憶體組GP0之指令序列進行說明。 Using FIG. 19, an example 5 of the writing operation of the memory system 1 of this embodiment will be described. Here, the instruction sequence of the memory group GP0 is described.

於時刻T8,記憶體控制器20確立指令閂鎖賦能信號CLE、位址閂鎖賦能信號ALE、及寫入賦能信號BWE。藉此,如使用圖18所說明般,信號EN變成“高”位準。然後,記憶體控制器20否定指令閂鎖賦能信號 CLE、位址閂鎖賦能信號ALE、及寫入賦能信號BWE。因此,由於NAND運算電路101h之輸入信號雖變化,但NAND運算電路101i之輸入信號不變化,故而NAND運算電路101h之輸出信號被保持為“高”位準。其結果,信號EN被保持為“高”位準。 At time T8, the memory controller 20 asserts the command latch enable signal CLE, the address latch enable signal ALE, and the write enable signal BWE. Thereby, as explained using FIG. 18, the signal EN becomes "high" level. Then, the memory controller 20 negates the instruction latch enable signal CLE, address latch enable signal ALE, and write enable signal BWE. Therefore, although the input signal of the NAND operation circuit 101h changes, the input signal of the NAND operation circuit 101i does not change, so the output signal of the NAND operation circuit 101h is kept at a "high" level. As a result, signal EN is held at "high" level.

時刻T9以後之動作與使用圖8所說明之動作相同。 Operations after time T9 are the same as those described using FIG. 8 .

<3-2-2>其他存取動作 <3-2-2> Other access actions

如圖20所示,亦可於圖9所說明之寫入動作例3中,應用寫入動作例5之信號EN之上升方法。 As shown in FIG. 20 , the rising method of the signal EN in the writing operation example 5 can also be applied to the writing operation example 3 described in FIG. 9 .

同樣地,如圖21所示,亦可於圖10所說明之寫入動作例3中,應用寫入動作例5之信號EN之上升方法。 Similarly, as shown in FIG. 21 , the rising method of the signal EN in the writing operation example 5 can also be applied to the writing operation example 3 described in FIG. 10 .

如圖22所示,亦可於圖11所說明之寫入動作例2中,應用寫入動作例5之信號EN之上升方法。 As shown in FIG. 22 , the rising method of the signal EN in the writing operation example 5 can also be applied to the writing operation example 2 described in FIG. 11 .

同樣地,如圖23所示,亦可於圖12所說明之寫入動作例3中,應用寫入動作例5之信號EN之上升方法。 Similarly, as shown in FIG. 23 , the rising method of the signal EN in the writing operation example 5 can also be applied to the writing operation example 3 described in FIG. 12 .

同樣地,如圖24所示,亦可於圖13所說明之寫入動作例3中,應用寫入動作例5之信號EN之上升方法。 Similarly, as shown in FIG. 24 , the rising method of the signal EN in the writing operation example 5 can also be applied to the writing operation example 3 described in FIG. 13 .

同樣地,如圖25所示,亦可於圖14所說明之寫入動作例3中,應用寫入動作例5之信號EN之上升方法。 Similarly, as shown in FIG. 25 , the rising method of the signal EN in the writing operation example 5 can also be applied to the writing operation example 3 described in FIG. 14 .

同樣地,如圖26所示,亦可於圖15所說明之寫入動作例4中,應用寫入動作例5之信號EN之上升方法。 Similarly, as shown in FIG. 26 , the rising method of the signal EN in the writing operation example 5 can also be applied to the writing operation example 4 described in FIG. 15 .

同樣地,如圖27所示,亦可於圖16所說明之寫入動作例4中,應用寫入動作例5之信號EN之上升方法。 Similarly, as shown in FIG. 27 , the rising method of the signal EN in the writing operation example 5 can also be applied to the writing operation example 4 described in FIG. 16 .

<3-3>效果 <3-3>Effect

根據上述之實施形態,可取得與第2實施形態相同之效果。 According to the above-mentioned embodiment, the same effect as that of the second embodiment can be obtained.

<3-4>第3實施形態之變化例 <3-4> Variation of the third embodiment

其次,使用圖28,對第3實施形態之變化例之記憶體系統之輸入輸出介面101之構成進行具體說明。第3實施形態之變化例之記憶體系統之輸入輸出介面101與第2實施形態之變化例2之記憶體系統之輸入輸出介面101相比,進而基於寫入賦能信號BWE之反轉信號~BWE,而進行輸入輸出信號DQ之輸入輸出。 Next, using FIG. 28, the configuration of the input/output interface 101 of the memory system according to the modified example of the third embodiment will be specifically described. The I/O interface 101 of the memory system in the variation of the third embodiment is compared with the I/O interface 101 of the memory system in the variation 2 of the second embodiment, and further based on the inversion signal of the write enable signal BWE ~ BWE, and carry out the input and output of the input and output signal DQ.

具體而言,NAND運算電路101g1基於信號CLE、ALE、及~BWE,而將運算結果輸出至NAND運算電路101h。NAND運算電路101g1僅於信號CLE、ALE、及~BWE全部為“高”位準之情形時,產生“低”位準之信號。 Specifically, the NAND calculation circuit 101g1 outputs calculation results to the NAND calculation circuit 101h based on the signals CLE, ALE, and ~ BWE. The NAND operation circuit 101g1 generates a signal of a "low" level only when the signals CLE, ALE, and -BWE are all at a "high" level.

<4>第4實施形態 <4> Fourth Embodiment

對第4實施形態進行說明。於第4實施形態中,針對輸入輸出介面之另一構成進行說明。再者,第4實施形態之記憶裝置之基本構成及基本動作與上述之第1~第3實施形態之記憶裝置相同。因此,省略對上述之第1~第3實施形態所說明之事項及能夠自上述第1~第3實施形態類推之事項之說明。 A fourth embodiment will be described. In the fourth embodiment, another configuration of the input/output interface will be described. Furthermore, the basic configuration and basic operation of the memory device of the fourth embodiment are the same as those of the memory devices of the first to third embodiments described above. Therefore, the description of the matters described in the above-mentioned first to third embodiments and the matters that can be inferred from the above-mentioned first to third embodiments will be omitted.

<4-1>輸入輸出介面之構成 <4-1> Composition of input and output interface

如圖29所示,可組合第1實施形態之記憶體系統1之輸入輸出介面101、與第2實施形態之記憶體系統1之輸入輸出介面101。 As shown in FIG. 29, the input-output interface 101 of the memory system 1 of the first embodiment and the input-output interface 101 of the memory system 1 of the second embodiment can be combined.

而且,如圖29所示,可藉由開關電路101q,選擇使用第1實施形態之記憶體系統1之輸入輸出介面101、與第2實施形態之記憶體系統1之輸入輸出介面101之哪一者之信號EN。例如,可藉由利用設定特徵(Set Feature)”動作等,產生信號MS,並輸入至開關電路101q,而選擇輸出信號。“設定特徵”動作係例如變更LUN100之動作模式等之動作。 Furthermore, as shown in FIG. 29, it is possible to select which one of the input/output interface 101 of the memory system 1 of the first embodiment and the input/output interface 101 of the memory system 1 of the second embodiment is used by a switch circuit 101q. The signal EN of the person. For example, by using the Set feature (Set Feature)" action, etc., generate a signal MS, and input it to the switch circuit 101q, and select the output signal. "Set feature" action is, for example, an action to change the operation mode of LUN100.

<4-2>動作 <4-2> Action

此處,使用圖30,對本實施形態之記憶體系統之模式選擇動作進行說明。 Here, the mode selection operation of the memory system of this embodiment will be described using FIG. 30 .

如圖30所示,於記憶體系統1之接入電源(Power on)時,將LUN100設定為第1動作模式。而且,記憶體控制器20發行初始化指令“FFh”。接著,記憶體控制器20進行“設定特徵”動作。 As shown in FIG. 30 , when the memory system 1 is powered on (Power on), the LUN 100 is set to the first operation mode. Furthermore, the memory controller 20 issues an initialization command "FFh". Next, the memory controller 20 performs a "set feature" action.

具體而言,記憶體控制器20依序對LUN100發行“設定特徵”動作之指令“EFh”及“YYh”,然後,發行動作模式之變更之資訊(W-B0~W-B3)。 Specifically, the memory controller 20 sequentially issues the commands "EFh" and "YYh" of the "setting feature" operation to the LUN 100, and then issues information on changing the operation mode (W-B0~W-B3).

LUN100若接收指令“EFh”及“YYh”、與資訊(W-B0~W-B3),則變更動作模式。例如,於本實施例中,變更為第2動作模式。 If the LUN 100 receives the commands “EFh” and “YYh” and information (W-B0~W-B3), it changes the operation mode. For example, in this embodiment, it is changed to the second operation mode.

此處,關於自第1動作模式變更為第2動作模式之情形之開關電路101q之動作進行簡單說明。如圖29所示,例如,於第1動作模式中,有時以將OR電路101b之輸出信號選擇輸出為信號EN之方式控制開關電路101q。但是,藉由切換為第2動作模式,而以將OR電路101j之輸出信號選擇輸出為信號EN之方式控制開關電路101q。 Here, the operation of the switch circuit 101q when changing from the first operation mode to the second operation mode will be briefly described. As shown in FIG. 29, for example, in the first operation mode, the switch circuit 101q may be controlled so as to selectively output the output signal of the OR circuit 101b as a signal EN. However, by switching to the second operation mode, the switch circuit 101q is controlled so that the output signal of the OR circuit 101j is selectively output as the signal EN.

然後,藉由“設定特徵”動作,只要不變動動作模式,則LUN100以第2動作模式動作。 Then, the LUN 100 operates in the second operation mode as long as the operation mode is not changed by the "setting characteristic" operation.

於欲使LUN100以第1動作模式動作之情形時,必須再次藉由“設定特徵”動作,變更動作模式。 When it is desired to operate the LUN 100 in the first operation mode, it is necessary to change the operation mode by performing the "setting feature" operation again.

<4-3>效果 <4-3> Effect

藉由如以上般使用開關電路101q,可適當地組合第1及第2實施形態而使其適當地動作。 By using the switch circuit 101q as described above, the first and second embodiments can be appropriately combined and operated appropriately.

<4-4>第4實施形態之變化例1 <4-4> Variation 1 of the fourth embodiment

如圖31所示,可組合第1實施形態之記憶體系統1之輸入輸出介面101、與第2實施形態之變化例2之記憶體系統1之輸入輸出介面101。 As shown in FIG. 31, the input/output interface 101 of the memory system 1 of the first embodiment and the input/output interface 101 of the memory system 1 of the modification 2 of the second embodiment can be combined.

而且,如圖31所示,可藉由開關電路101r,選擇使用第1實施形態之記憶體系統1之輸入輸出介面101、與第2實施形態之變化例2之記憶體系統1之輸入輸出介面101之哪一者之信號。例如,可藉由利用“設定特徵”動作等,產生信號MS,並輸入至開關電路101r,而選擇輸出信號。關於“設定特徵”動作,係與使用圖30所說明之動作相同。 Moreover, as shown in FIG. 31, the input/output interface 101 of the memory system 1 of the first embodiment and the input/output interface of the memory system 1 of the second modification of the second embodiment can be selected and used by a switch circuit 101r. Which one of 101 is the signal. For example, the output signal can be selected by generating the signal MS by utilizing the action of "set feature" and inputting it to the switch circuit 101r. The "setting feature" operation is the same as that described using FIG. 30 .

<4-5>第4實施形態之變化例2 <4-5> Variation 2 of the fourth embodiment

如圖32所示,可組合第1實施形態之記憶體系統1之輸入輸出介面101、與第3實施形態之記憶體系統1之輸入輸出介面101。 As shown in FIG. 32, the input-output interface 101 of the memory system 1 of the first embodiment and the input-output interface 101 of the memory system 1 of the third embodiment can be combined.

而且,如圖32所示,可藉由開關電路101q,選擇使用第1實施形態之記憶體系統1之輸入輸出介面101、與第3實施形態之記憶體系統1之輸入輸出介面101之哪一者之信號。例如,可藉由利用“設定特徵”動作等,產生信號MS,並輸入至開關電路101q,而選擇輸出信號。關於“設定特徵”動作,係與使用圖30所說明之動作相同。 Furthermore, as shown in FIG. 32, it is possible to select which one of the input/output interface 101 of the memory system 1 of the first embodiment and the input/output interface 101 of the memory system 1 of the third embodiment is used by a switch circuit 101q. the signal of the For example, the output signal can be selected by generating the signal MS by utilizing the action of "set feature" and inputting it to the switch circuit 101q. The "setting feature" operation is the same as that described using FIG. 30 .

<4-6>第4實施形態之變化例3 <4-6> Variation 3 of the fourth embodiment

如圖33所示,可組合第1實施形態之記憶體系統1之輸入輸出介面101、與第3實施形態之變化例之記憶體系統1之輸入輸出介面101。 As shown in FIG. 33, the input/output interface 101 of the memory system 1 of the first embodiment and the input/output interface 101 of the memory system 1 of the modified example of the third embodiment can be combined.

而且,如圖33所示,可藉由開關電路101r,選擇使用第1實施形態之記憶體系統1之輸入輸出介面101、與第3實施形態之變化例之記憶體系統 1之輸入輸出介面101之哪一者之信號。例如,可藉由利用“設定特徵”動作等,產生信號MS,並輸入至開關電路101r,而選擇輸出信號。關於“設定特徵”動作,係與使用圖30所說明之動作相同。 Moreover, as shown in FIG. 33, the input/output interface 101 of the memory system 1 of the first embodiment and the memory system of the modification example of the third embodiment can be selected and used by a switch circuit 101r. Which one of the input and output interfaces 101 is the signal of 1. For example, the output signal can be selected by generating the signal MS by utilizing the action of "set feature" and inputting it to the switch circuit 101r. The "setting feature" operation is the same as that described using FIG. 30 .

<5>第5實施形態 <5> Fifth Embodiment

對第5實施形態進行說明。於第5實施形態中,針對輸入輸出介面之另一構成進行說明。再者,第5實施形態之記憶裝置之基本構成及基本動作與上述之第1、第2實施形態之記憶裝置相同。因此,省略對上述之第1、第2實施形態所說明之事項及能夠自上述第1、第2實施形態類推之事項之說明。 A fifth embodiment will be described. In the fifth embodiment, another configuration of the input/output interface will be described. Furthermore, the basic configuration and basic operation of the memory device of the fifth embodiment are the same as those of the memory devices of the first and second embodiments described above. Therefore, the description of the matters described in the above-mentioned first and second embodiments and the matters that can be inferred from the above-mentioned first and second embodiments will be omitted.

<5-1>輸入輸出介面之構成 <5-1> Composition of input and output interface

其次,使用圖34對輸入輸出介面101之構成進行具體說明。 Next, the configuration of the input/output interface 101 will be specifically described using FIG. 34 .

如圖34所示,輸入輸出介面101基於寫入保護信號BWP之反轉信號~BWP、或來自位址暫存器105之信號,而進行輸入輸出信號DQ之輸入輸出。 As shown in FIG. 34 , the I/O interface 101 performs input and output of the I/O signal DQ based on the inversion signal ~ BWP of the write-protect signal BWP or the signal from the address register 105 .

OR運算電路101s基於信號~BWP及來自位址暫存器105之信號,而產生信號EN。OR運算電路101s僅於信號~BWP及來自位址暫存器105之信號均為“低”位準之情形時,輸出“低”位準之信號EN。換言之,即OR運算電路101s於信號~BWP及來自位址暫存器105之信號之至少一者為“高”位準之情形時,輸出“高”位準之信號EN。 The OR operation circuit 101s generates the signal EN based on the signal ~ BWP and the signal from the address register 105 . The OR operation circuit 101s outputs the signal EN of the "low" level only when the signal ~ BWP and the signal from the address register 105 are both at the "low" level. In other words, when at least one of the signal ~ BWP and the signal from the address register 105 is at a "high" level, the OR operation circuit 101s outputs a "high" level signal EN.

接收器120基於信號EN、及輸入輸出信號DQ,而於LUN100之內部接收輸入輸出信號DQ。接收器120僅於信號EN、及輸入輸出信號DQ均為“高”位準之情形時,於LUN100之內部接收輸入輸出信號DQ。 The receiver 120 receives the input and output signal DQ inside the LUN 100 based on the signal EN and the input and output signal DQ. The receiver 120 receives the input and output signal DQ inside the LUN 100 only when the signal EN and the input and output signal DQ are both at “high” level.

<5-2>動作 <5-2> Action

<5-2-1>寫入動作例6 <5-2-1> Writing operation example 6

使用圖35,對本實施形態之記憶體系統1之寫入動作例6進行說明。此處,針對記憶體組GP0之指令序列進行說明。 Using FIG. 35, an example 6 of the write operation of the memory system 1 of this embodiment will be described. Here, the instruction sequence of the memory group GP0 is described.

於時刻T20,記憶體控制器20確立(“低”位準)寫入保護信號BWP。於寫入保護信號BWP確立之期間,信號EN被保持為“高”位準。 At time T20, the memory controller 20 asserts (“low” level) the write protect signal BWP. During the assertion of the write-protect signal BWP, the signal EN is kept at a "high" level.

於自時刻T20經過期間tCALS後之時刻T21,記憶體控制器20發行寫入指令“01h”及“80h”。 At time T21 after the period t CALS elapses from time T20, the memory controller 20 issues write commands "01h" and "80h".

於確定LUN100之位址之後,於時刻T22,記憶體控制器20否定(“高”位準)寫入保護信號BWP。若寫入保護信號BWP被否定,則非選擇LUN100內之信號EN變成“低”位準。另一方面,於選擇LUN100內,因位址暫存器105之信號被保持為“高”位準,故信號EN被保持為“高”位準。 After determining the address of the LUN 100 , at time T22 , the memory controller 20 negates (“high” level) the write-protect signal BWP. If the write protect signal BWP is negated, the signal EN in the unselected LUN 100 becomes "low". On the other hand, in the selected LUN 100, since the signal of the address register 105 is kept at a "high" level, the signal EN is kept at a "high" level.

其他動作與使用圖8所說明之動作相同。 Other operations are the same as those described using FIG. 8 .

如以上,於本實施形態中,使用寫入保護信號BWP,控制信號EN。另一方面,於實現本動作之情形時,無法進行寫入保護動作。但是,若使用“設定特徵”等動作,則可適當地切換使本實施形態動作之模式、與使用寫入保護動作之模式。 As described above, in this embodiment, the write protect signal BWP is used to control the signal EN. On the other hand, when this operation is realized, the write protection operation cannot be performed. However, if an operation such as "setting a feature" is used, it is possible to appropriately switch between the mode in which the present embodiment is operated and the mode in which the write-protect operation is used.

<5-2-2>寫入動作例7 <5-2-2> Writing operation example 7

使用圖36、圖37,對本實施形態之記憶體系統1之寫入動作例7進行說明。此處,針對記憶體組GP0之指令序列進行說明。 Using FIG. 36 and FIG. 37, a write operation example 7 of the memory system 1 of this embodiment will be described. Here, the instruction sequence of the memory group GP0 is described.

寫入動作例7之信號EN之上升方法因與寫入動作例6相同,故而省略說明。此處,針對非選擇LUN100之信號EN之下降時序進行說明。 The rising method of the signal EN in the write operation example 7 is the same as that in the write operation example 6, so the description is omitted. Here, the falling timing of the signal EN of the non-selected LUN 100 will be described.

例如,於列位址R3中包含選擇LUN位址。於確定LUN100之位址之 後,於時刻T23,記憶體控制器20否定(“高”位準)寫入保護信號BWP。若寫入保護信號BWP被否定,則非選擇LUN100內之信號EN變成“低”位準。另一方面,於選擇LUN100內,因位址暫存器105之信號被保持為“高”位準,故信號EN被保持為“高”位準。 For example, the selected LUN address is included in the column address R3. After determining the address of LUN100 Then, at time T23, the memory controller 20 negates ("high" level) the write-protect signal BWP. If the write protect signal BWP is negated, the signal EN in the unselected LUN 100 becomes "low". On the other hand, in the selected LUN 100, since the signal of the address register 105 is kept at a "high" level, the signal EN is kept at a "high" level.

如圖36所示,亦可於接收列位址R3之後,非選擇LUN100內之信號EN立刻變成“低”位準。如圖37所示,亦可按資料之輸入輸出前後之時序,而非選擇LUN100內之信號EN變成“低”位準。 As shown in FIG. 36, after receiving the column address R3, the signal EN in the non-selected LUN 100 becomes "low" immediately. As shown in FIG. 37 , the signal EN in the LUN 100 may not be selected to become "low" according to the timing before and after the input and output of data.

<5-2-3>讀出動作例5 <5-2-3> Read operation example 5

使用圖38,對本實施形態之記憶體系統1之讀出動作例5進行說明。此處,針對記憶體組GP0之指令序列進行說明。 Using FIG. 38, a fifth example of the read operation of the memory system 1 of this embodiment will be described. Here, the instruction sequence of the memory group GP0 is described.

於時刻T25,記憶體控制器20確立寫入保護信號BWP。於寫入保護信號BWP確立之期間,信號EN被保持為“高”位準。 At time T25, the memory controller 20 asserts the write protect signal BWP. During the assertion of the write-protect signal BWP, the signal EN is kept at a "high" level.

於自時刻T25經過期間tCALS後之時刻T26,發行讀出指令“05h”。 At time T26 after the time period t CALS elapses from time T25, the read command "05h" is issued.

於確定為讀出動作之後,於時刻T27,記憶體控制器20否定(“高”位準)寫入保護信號BWP。若寫入保護信號BWP被否定,則選擇LUN100內之信號EN變成“低”位準。 After determining the read operation, at time T27, the memory controller 20 negates ("high" level) the write-protect signal BWP. If the write-protect signal BWP is negated, the signal EN in the selection LUN 100 becomes "low".

<5-2-4>讀出動作例6 <5-2-4> Read operation example 6

使用圖39~圖41,對本實施形態之記憶體系統1之讀出動作例6進行說明。此處,針對記憶體組GP0之指令序列進行說明。 Using FIGS. 39 to 41, an example 6 of the read operation of the memory system 1 of this embodiment will be described. Here, the instruction sequence of the memory group GP0 is described.

讀出動作例6之信號EN之上升方法因與讀出動作例5相同,故而省略說明。此處,針對LUN100之信號EN之下降時序進行說明。 The rising method of the signal EN in the read operation example 6 is the same as that in the read operation example 5, so the description thereof is omitted. Here, the falling timing of the signal EN of the LUN 100 will be described.

於確定為讀出動作之後,於時刻T28,記憶體控制器20否定(“高”位準)寫入保護信號BWP。若寫入保護信號BWP被否定,則選擇LUN100 內之信號EN變成“低”位準。 After determining the read operation, at time T28, the memory controller 20 negates ("high" level) the write-protect signal BWP. If the write protect signal BWP is negated, LUN100 is selected The internal signal EN becomes "low" level.

如圖39所示,亦可於接收列位址R3之後,LUN100內之信號EN立刻變成“低”位準。又,如圖40所示,亦可於接收指令“E0h”之後,LUN100內之信號EN立刻變成“低”位準。又,如圖41所示,亦可按資料之輸入輸出前後之時序,而LUN100內之信號EN變成“低”位準。 As shown in FIG. 39, after receiving the column address R3, the signal EN in the LUN 100 becomes "low" immediately. Also, as shown in FIG. 40, the signal EN in the LUN 100 may immediately become "low" after receiving the command "E0h". Also, as shown in FIG. 41, the signal EN in the LUN 100 may be changed to "low" level according to the timing before and after the input and output of data.

<5-3>效果 <5-3> Effect

根據上述之實施形態,可取得與第2實施形態相同之效果。 According to the above-mentioned embodiment, the same effect as that of the second embodiment can be obtained.

<5-4>第5實施形態之變化例 <5-4> Variations of the fifth embodiment

於第5實施形態中,使用寫入保護信號BWP,進行信號EN之控制。但是,亦可採用信號EN之控制專用之信號NP。於上述情形時,如圖34所示,取代信號~BWP而將信號NP輸入至OR運算電路101s。上述信號NP係設為自記憶體控制器20輸入至NAND型快閃記憶體10者。 In the fifth embodiment, the signal EN is controlled using the write protect signal BWP. However, it is also possible to use the signal NP dedicated to the control of the signal EN. In the above case, as shown in FIG. 34 , instead of the signal ~ BWP, the signal NP is input to the OR operation circuit 101s. The above-mentioned signal NP is set to be input from the memory controller 20 to the NAND flash memory 10 .

<5-4-1>寫入動作例8 <5-4-1> Writing operation example 8

使用圖42,對本實施形態之記憶體系統1之寫入動作例8進行說明。此處,針對記憶體組GP0之指令序列進行說明。 Using FIG. 42, an example 8 of the writing operation of the memory system 1 of this embodiment will be described. Here, the instruction sequence of the memory group GP0 is described.

於時刻T20,記憶體控制器20確立(“高”位準)信號NP。於信號NP確立之期間,信號EN被保持為“高”位準。 At time T20, the memory controller 20 asserts (“high” level) the signal NP. During the assertion of the signal NP, the signal EN is kept at a "high" level.

於自時刻T20經過期間tCALS後之時刻T21,記憶體控制器20發行寫入指令“01h”及“80h”。 At time T21 after the period t CALS elapses from time T20, the memory controller 20 issues write commands "01h" and "80h".

於確定LUN100之位址之後,於時刻T22,記憶體控制器20否定(“低”位準)信號NP。若信號NP被否定,則非選擇LUN100內之信號EN變成“低”位準。另一方面,於選擇LUN100內,因位址暫存器105之信號被保持為“高”位準,故而信號EN被保持為“高”位準。 After determining the address of the LUN 100, at time T22, the memory controller 20 negates ("low" level) the signal NP. If the signal NP is negated, the signal EN in the non-selected LUN 100 becomes "low". On the other hand, in the selected LUN 100, since the signal of the address register 105 is kept at the "high" level, the signal EN is kept at the "high" level.

其他動作與使用圖8所說明之動作相同。 Other operations are the same as those described using FIG. 8 .

如以上,於本實施形態中,使用信號NP,控制信號EN。 As above, in this embodiment, the signal EN is controlled using the signal NP.

<5-4-2>寫入動作例9 <5-4-2> Writing operation example 9

使用圖43、圖44,對本實施形態之記憶體系統1之寫入動作例9進行說明。此處,針對記憶體組GP0之指令序列進行說明。 Using FIG. 43 and FIG. 44, a write operation example 9 of the memory system 1 of this embodiment will be described. Here, the instruction sequence of the memory group GP0 is described.

寫入動作例9之信號EN之上升方法因與寫入動作例8相同,故而省略說明。此處,針對非選擇LUN100之信號EN之下降時序進行說明。 The rising method of the signal EN in the write operation example 9 is the same as that in the write operation example 8, so the description is omitted. Here, the falling timing of the signal EN of the non-selected LUN 100 will be described.

例如,於列位址R3中包含選擇LUN位址。於確定LUN100之位址之後,於時刻T23,記憶體控制器20否定信號NP。若信號NP被否定,則非選擇LUN100內之信號EN變成“低”位準。另一方面,於選擇LUN100內,因位址暫存器105之信號被保持為“高”位準,故而信號EN被保持為“高”位準。 For example, the selected LUN address is included in the column address R3. After determining the address of the LUN 100, at time T23, the memory controller 20 negates the signal NP. If the signal NP is negated, the signal EN in the non-selected LUN 100 becomes "low". On the other hand, in the selected LUN 100, since the signal of the address register 105 is kept at the "high" level, the signal EN is kept at the "high" level.

如圖43所示,亦可於接收列位址R3之後,非選擇LUN100內之信號EN立刻變成“低”位準。如圖44所示,亦可按資料之輸入輸出前後之時序,而非選擇LUN100內之信號EN變成“低”位準。 As shown in FIG. 43, after receiving the column address R3, the signal EN in the non-selected LUN 100 becomes "low" immediately. As shown in FIG. 44 , the signal EN in the LUN 100 may not be selected to become "low" according to the timing before and after the input and output of data.

<5-4-3>讀出動作例7 <5-4-3> Read operation example 7

使用圖45,對本實施形態之記憶體系統1之讀出動作例7進行說明。此處,針對記憶體組GP0之指令序列進行說明。 Using FIG. 45, an example 7 of the read operation of the memory system 1 of this embodiment will be described. Here, the instruction sequence of the memory group GP0 is described.

於時刻T25,記憶體控制器20確立信號NP。於信號NP確立之期間,信號EN被保持為“高”位準。 At time T25, the memory controller 20 asserts the signal NP. During the assertion of the signal NP, the signal EN is kept at a "high" level.

於自時刻T25經過期間tCALS後之時刻T26,發行讀出指令“05h”。 At time T26 after the time period t CALS elapses from time T25, the read command "05h" is issued.

於確定為讀出動作之後,於時刻T27,記憶體控制器20否定信號NP。若信號NP被否定,則選擇LUN100內之信號EN變成“低”位準。 After determining the read operation, at time T27, the memory controller 20 negates the signal NP. If the signal NP is negated, the signal EN in the selection LUN 100 becomes "low".

<5-4-4>讀出動作例8 <5-4-4> Read operation example 8

使用圖46~圖48,對本實施形態之記憶體系統1之讀出動作例8進行說明。此處,針對記憶體組GP0之指令序列進行說明。 Using FIGS. 46 to 48, an example 8 of the read operation of the memory system 1 of this embodiment will be described. Here, the instruction sequence of the memory group GP0 is described.

讀出動作例8之信號EN之上升方法因與讀出動作例7相同,故而省略說明。此處,針對LUN100之信號EN之下降時序進行說明。 The rising method of the signal EN in the read operation example 8 is the same as that in the read operation example 7, so the description thereof is omitted. Here, the falling timing of the signal EN of the LUN 100 will be described.

於確定為讀出動作之後,於時刻T28,記憶體控制器20否定信號NP。若信號NP被否定,則選擇LUN100內之信號EN變成“低”位準。 After determining the read action, at time T28, the memory controller 20 negates the signal NP. If the signal NP is negated, the signal EN in the selection LUN 100 becomes "low".

如圖46所示,亦可於接收列位址R3之後,LUN100內之信號EN立刻變成“低”位準。又,如圖47所示,亦可於接收指令“E0h”之後,LUN100內之信號EN立刻變成“低”位準。又,如圖48所示,亦可按資料之輸入輸出前後之時序,而LUN100內之信號EN變成“低”位準。 As shown in FIG. 46, after receiving the column address R3, the signal EN in the LUN 100 becomes "low" immediately. Also, as shown in FIG. 47, the signal EN in the LUN 100 may immediately become "low" after receiving the command "E0h". Also, as shown in FIG. 48, the signal EN in the LUN 100 can be changed to "low" level according to the timing before and after the input and output of data.

<6>第6實施形態 <6> sixth embodiment

對第6實施形態進行說明。於第6實施形態中,針對輸入輸出介面之另一構成進行說明。再者,第6實施形態之記憶裝置之基本構成及基本動作與上述之第1、第5實施形態之記憶裝置相同。因此,省略對上述之第1、第5實施形態所說明之事項及能夠自上述第1、第5實施形態類推之事項之說明。 The sixth embodiment will be described. In the sixth embodiment, another configuration of the input/output interface will be described. Furthermore, the basic configuration and basic operation of the memory device of the sixth embodiment are the same as those of the memory devices of the first and fifth embodiments described above. Therefore, the description of the matters described in the above-mentioned first and fifth embodiments and the matters that can be inferred from the above-mentioned first and fifth embodiments will be omitted.

<6-1>輸入輸出介面之構成 <6-1> Composition of input and output interface

如圖49所示,可組合第1實施形態之記憶體系統1之輸入輸出介面101、與第5實施形態之記憶體系統1之輸入輸出介面101。 As shown in FIG. 49, the input-output interface 101 of the memory system 1 of the first embodiment and the input-output interface 101 of the memory system 1 of the fifth embodiment can be combined.

而且,如圖49所示,可藉由開關電路101t,選擇使用第1實施形態之記憶體系統1之輸入輸出介面101、與第5實施形態之記憶體系統1之輸入輸出介面101之哪一者之信號EN。例如,可藉由利用“設定特徵”動作 等,產生信號MS,並輸入至開關電路101t,而選擇輸出信號。關於“設定特徵”動作,係與使用圖30所說明之動作相同。 Furthermore, as shown in FIG. 49, it is possible to select which of the input/output interface 101 of the memory system 1 of the first embodiment and the input/output interface 101 of the memory system 1 of the fifth embodiment is to be used by a switch circuit 101t. The signal EN of the person. For example, by using the Set Feature action and so on, the signal MS is generated and input to the switch circuit 101t to select the output signal. The "setting feature" operation is the same as that described using FIG. 30 .

<7>第7實施形態 <7> seventh embodiment

對第7實施形態進行說明。於第7實施形態中,針對接收器之另一構成進行說明。再者,第7實施形態之記憶裝置之基本構成及基本動作與上述之第1~第6實施形態之記憶裝置相同。因此,省略對上述第1~第6實施形態所說明之事項及能夠自上述第1~第6實施形態類推之事項之說明。於以下說明之接收器可應用於上述之各實施形態。 A seventh embodiment will be described. In the seventh embodiment, another configuration of the receiver will be described. Furthermore, the basic configuration and basic operation of the memory device of the seventh embodiment are the same as those of the memory devices of the first to sixth embodiments described above. Therefore, the description of the matters described in the above-mentioned first to sixth embodiments and the matters that can be inferred from the above-mentioned first to sixth embodiments will be omitted. The receiver described below can be applied to each of the above-mentioned embodiments.

<7-1>接收器之構成 <7-1> The composition of the receiver

使用圖50,對接收器120之另一例進行說明。 Another example of the receiver 120 will be described using FIG. 50 .

例如,於待機時(未進行資料之授受時),就消耗電力之削減而言,抑制消耗電流較佳。因此,於本實施形態中,接收器120具備雖於高速下無法動作但低消耗電流之第1接收器101v、雖可高速地動作但高消耗電流之第2接收器101w、及選擇第1接收器101v及第2接收器101w之連接之開關電路101u。 For example, during standby (when data is not being exchanged), it is preferable to suppress the consumption current in order to reduce power consumption. Therefore, in this embodiment, the receiver 120 includes a first receiver 101v that cannot operate at high speed but consumes a low current, a second receiver 101w that can operate at high speed but consumes a high current, and selects the first receiver 101v. The switch circuit 101u connecting the device 101v and the second receiver 101w.

開關電路101u係於信號EN為“低”位準之時,將資料輸入輸出線連接於第1接收器101v,於信號EN為“高”位準之時,將資料輸入輸出線連接於第2接收器101w。 The switch circuit 101u connects the data input and output lines to the first receiver 101v when the signal EN is at a "low" level, and connects the data input and output lines to the second receiver 101v when the signal EN is at a "high" level. Receiver 101w.

<7-2>第1接收器之構成 <7-2> The composition of the first receiver

使用圖51,對第1接收器101v之電路例進行說明。 A circuit example of the first receiver 101v will be described using FIG. 51 .

如圖51所示,第1接收器101v具備包含PMOS(Positive-channel Metal Oxide Aemiconductor:正通道金屬氧化物半導體)電晶體11a與NMOS(Negative-channel Metal Mxide Memiconductor:負通道金屬氧化 物半導體)電晶體11b之反相器。 As shown in FIG. 51, the first receiver 101v includes a PMOS (Positive-channel Metal Oxide Aemiconductor: positive channel metal oxide semiconductor) transistor 11a and an NMOS (Negative-channel Metal Oxide Semiconductor: negative channel metal oxide semiconductor). material semiconductor) transistor 11b inverter.

對PMOS電晶體11a之源極施加電源電壓VDD,汲極係連接於輸出端子(節點N2),於閘極連接輸入端子(節點N1)。於NMOS電晶體11b之汲極連接輸出端子(節點N2),源極係連接於接地電位,於閘極連接輸入端子(節點N1)。 The power supply voltage VDD is applied to the source of the PMOS transistor 11a, the drain is connected to the output terminal (node N2), and the gate is connected to the input terminal (node N1). The drain of the NMOS transistor 11b is connected to the output terminal (node N2), the source is connected to the ground potential, and the gate is connected to the input terminal (node N1).

即,第1接收器101v係於輸入信號為“低”位準之情形時,自輸出端子輸出“高”位準之信號,於輸入信號為“高”位準之情形時,自輸出端子輸出“低”位準之信號。 That is, the first receiver 101v outputs a "high" level signal from the output terminal when the input signal is "low" level, and outputs a "high" level signal from the output terminal when the input signal is "high" level. "Low" level signal.

<7-3>第2接收器之構成 <7-3> The composition of the second receiver

使用圖52,對第2接收器101w之電路例進行說明。 A circuit example of the second receiver 101w will be described using FIG. 52 .

如圖52所示,第2接收器101w具備包含PMOS電晶體11c、11d、11e、11f與NMOS電晶體11g、11h、11i之鏡電路。 As shown in FIG. 52, the second receiver 101w includes a mirror circuit including PMOS transistors 11c, 11d, 11e, and 11f and NMOS transistors 11g, 11h, and 11i.

對PMOS電晶體11c之源極施加電源電壓VDD,對閘極輸入信號ENBn(信號EN之反轉信號)。PMOS電晶體11c於信號ENBn為“低”位準之時流通電流。 The power supply voltage VDD is applied to the source of the PMOS transistor 11c, and the signal ENBn (an inverted signal of the signal EN) is input to the gate. The PMOS transistor 11c flows current when the signal ENBn is at a "low" level.

於PMOS電晶體11e之源極連接PMOS電晶體11c之汲極,且汲極係連接於閘極。 The source of the PMOS transistor 11e is connected to the drain of the PMOS transistor 11c, and the drain is connected to the gate.

對PMOS電晶體11d之源極施加電源電壓VDD,對閘極輸入信號ENBn。PMOS電晶體11d於信號ENBn為“低”位準之時流通電流。 The power supply voltage VDD is applied to the source of the PMOS transistor 11d, and the signal ENBn is input to the gate. The PMOS transistor 11d flows current when the signal ENBn is at a "low" level.

於PMOS電晶體11f之源極連接PMOS電晶體11d之汲極,且汲極係連接於輸出端子(節點N6),閘極係連接於節點N5。PMOS電晶體11f流通與PMOS電晶體11e相同之電流。 The source of the PMOS transistor 11f is connected to the drain of the PMOS transistor 11d, and the drain is connected to the output terminal (node N6), and the gate is connected to the node N5. The PMOS transistor 11f flows the same current as the PMOS transistor 11e.

NMOS電晶體11g係汲極連接於節點N5,源極連接於節點N7,且對 閘極施加參照電壓VREF。NMOS電晶體11g流通參照電流。 The drain of the NMOS transistor 11g is connected to the node N5, the source is connected to the node N7, and The gate applies a reference voltage VREF. The NMOS transistor 11g flows a reference current.

NMOS電晶體11h係汲極連接於輸出端子(節點N6),源極連接於節點N7,且於閘極連接輸入端子。 The drain of the NMOS transistor 11h is connected to the output terminal (node N6), the source is connected to the node N7, and the gate is connected to the input terminal.

NMOS電晶體11i係汲極連接於節點N7,源極連接於接地電位,且對閘極施加參照電壓IREFN。上述NMOS電晶體11i係作為恆定電流源而發揮功能。 The drain of the NMOS transistor 11i is connected to the node N7, the source is connected to the ground potential, and the reference voltage IREFN is applied to the gate. The above-mentioned NMOS transistor 11i functions as a constant current source.

即,第2接收器101w係於信號ENBn為“低”位準且輸入信號為“低”位準之情形時,自輸出端子輸出“高”位準之信號,於信號ENBn為“低”位準且輸入信號為“高”位準之情形時,自輸出端子輸出“低”位準之信號。 That is, the second receiver 101w outputs a signal of a "high" level from the output terminal when the signal ENBn is at a "low" level and the input signal is at a "low" level, and when the signal ENBn is at a "low" level When it is accurate and the input signal is "high" level, a "low" level signal is output from the output terminal.

<8>補充說明 <8>Supplementary instructions

再者,於圖53表示上述之各實施形態之信號EN之上升(為將所有LUN100設為啟動)之條件。 Furthermore, FIG. 53 shows the conditions for the signal EN to rise (to activate all the LUNs 100 ) in each of the above-mentioned embodiments.

又,於上述之各實施形態中,雖對信號EN之下降時序進行各種說明,但並不限於上述之時序,能夠適當進行變更。具體而言,只要按開始資料之輸入輸出前後之時序信號EN下降即可。藉此,可抑制對非選擇LUN、或讀出動作時之LUN之無用之電流之消耗。 In addition, in each of the above-mentioned embodiments, various descriptions have been given for the falling timing of the signal EN, but it is not limited to the above-mentioned timing and can be changed as appropriate. Specifically, it is only necessary that the timing signal EN falls before and after the start of data input and output. Thereby, it is possible to suppress consumption of useless current to non-selected LUNs or LUNs during a read operation.

又,於關於本發明之各實施形態中: Also, in each embodiment of the present invention:

(1)於讀出動作中,對A位準之讀出動作對選擇之字元線施加之電壓例如為0V~0.55V之間。並不限定於此,亦可設為0.1V~0.24V、0.21V~0.31V、0.31V~0.4V、0.4V~0.5V、0.5V~0.55V任一者之間。 (1) In the read operation, the voltage applied to the selected word line for the A level read operation is, for example, between 0V~0.55V. It is not limited thereto, and may be any one of 0.1V-0.24V, 0.21V-0.31V, 0.31V-0.4V, 0.4V-0.5V, and 0.5V-0.55V.

對B位準之讀出動作對選擇之字元線施加之電壓例如為1.5V~2.3V 之間。並不限定於此,亦可設為1.65V~1.8V、1.8V~1.95V、1.95V~2.1V、2.1V~2.3V任一者之間。 The voltage applied to the selected word line for the read operation of the B level is, for example, 1.5V~2.3V between. It is not limited thereto, and may be any one of 1.65V-1.8V, 1.8V-1.95V, 1.95V-2.1V, or 2.1V-2.3V.

對C位準之讀出動作對選擇之字元線施加之電壓例如為3.0V~4.0V之間。並不限定於此,亦可設為3.0V~3.2V、3.2V~3.4V、3.4V~3.5V、3.5V~3.6V、3.6V~4.0V任一者之間。 The voltage applied to the selected word line for the read operation of the C level is, for example, between 3.0V~4.0V. It is not limited thereto, and may be any one of 3.0V-3.2V, 3.2V-3.4V, 3.4V-3.5V, 3.5V-3.6V, or 3.6V-4.0V.

作為讀出動作之時間(tR),亦可設為例如25μs~38μs、38μs~70μs、70μs~80μs之間。 The time (tR) of the readout operation can also be set between, for example, 25 μs to 38 μs, 38 μs to 70 μs, or 70 μs to 80 μs.

(2)寫入動作係如上述般包含編程動作與驗證動作。於寫入動作中,於編程動作時對選擇之字元線最初施加之電壓例如為13.7V~14.3V之間。並不限定於此,亦可設為例如13.7V~14.0V、14.0V~14.6V任一者之間。 (2) The write operation includes a program operation and a verify operation as described above. In the writing operation, the voltage initially applied to the selected word line in the programming operation is, for example, between 13.7V~14.3V. It is not limited thereto, and may be set, for example, between any one of 13.7V to 14.0V and 14.0V to 14.6V.

亦可改變對奇數序號之字元線進行寫入時之對選擇之字元線最初施加之電壓、與對偶數序號之字元線進行寫入時之對選擇之字元線最初施加之電壓。 It is also possible to change the initial voltage applied to the selected word line when writing to the odd-numbered word line and the initial voltage applied to the selected word line when writing to the even-numbered word line.

於將編程動作設為ISPP方式(Incremental Step Pulse Program:增量階躍脈衝編程)時,作為升壓之電壓,例舉例如0.5V左右。 When the programming operation is set to the ISPP method (Incremental Step Pulse Program: Incremental Step Pulse Program), the boosted voltage is, for example, about 0.5V.

作為對非選擇之字元線施加之電壓,亦可為例如6.0V~7.3V之間。並不限定於此,既可設為例如7.3V~8.4V之間,亦可設為6.0V以下。 The voltage applied to the non-selected word lines may be, for example, between 6.0V and 7.3V. It is not limited thereto, and may be set, for example, between 7.3V to 8.4V, or may be set below 6.0V.

亦可按照非選擇之字元線為奇數序號之字元線、還是偶數序號之字元線,而改變施加之通路電壓。 It is also possible to change the applied pass voltage according to whether the unselected word line is an odd-numbered word line or an even-numbered word line.

作為寫入動作之時間(tProg),亦可設為例如1700μs~1800μs、1800μs~1900μs、1900μs~2000μs之間。 The writing operation time (tProg) may be, for example, set between 1700 μs to 1800 μs, 1800 μs to 1900 μs, and 1900 μs to 2000 μs.

(3)於抹除動作中, 對於形成於半導體基板上部、且於上方配置有上述記憶胞之晶圓最初施加之電壓例如為12V~13.6V之間。並不限定於上述情形,亦可設為例如13.6V~14.8V、14.8V~19.0V、19.0~19.08V、19.8V~21V之間。 (3) During the erasing action, The voltage initially applied to the wafer formed on the upper part of the semiconductor substrate and on which the above-mentioned memory cells are arranged is, for example, between 12V and 13.6V. It is not limited to the above-mentioned cases, and may be set between, for example, 13.6V-14.8V, 14.8V-19.0V, 19.0-19.08V, or 19.8V-21V.

作為抹除動作之時間(tErase),亦可設為例如3000μs~4000μs、4000μs~5000μs、4000μs~9000μs之間。 The erasing operation time (tErase) can also be set, for example, between 3000 μs˜4000 μs, 4000 μs˜5000 μs, and 4000 μs˜9000 μs.

(4)記憶胞之構造具有於半導體基板(矽基板)上介隔膜厚為4~10nm之穿隧絕緣膜而配置之電荷儲存層。上述電荷儲存層可設為膜厚為2~3nm之SiN、或SiON等絕緣膜、與膜厚為3~8nm之多晶矽之積層構造。又,於多晶矽中,亦可添加Ru等金屬。於電荷儲存層之上具有絕緣膜。上述絕緣膜具有例如膜厚為3~10nm之下層High-k(高介電常數)膜、與膜厚為3~10nm之上層High-k膜所夾持之膜厚為4~10nm之氧化矽膜。High-k膜可列舉HfO等。又,氧化矽膜之膜厚可設為較High-k膜之膜厚更厚。於絕緣膜上,介隔膜厚為3~10nm之材料而形成有膜厚為30nm~70nm之控制電極。此處,功函數調整用之材料例如為TaO等金屬氧化膜、TaN等金屬氮化膜。控制電極可使用W等。 (4) The structure of the memory cell has a charge storage layer arranged on a semiconductor substrate (silicon substrate) through a tunnel insulating film with a thickness of 4~10nm. The above-mentioned charge storage layer may be a multilayer structure of an insulating film such as SiN or SiON with a film thickness of 2-3 nm, and polysilicon with a film thickness of 3-8 nm. In addition, metals such as Ru may be added to polysilicon. There is an insulating film on the charge storage layer. The above-mentioned insulating film has, for example, a lower layer High-k (high dielectric constant) film with a film thickness of 3-10 nm, and silicon oxide with a film thickness of 4-10 nm sandwiched between the upper layer High-k film with a film thickness of 3-10 nm. membrane. Examples of the High-k film include HfO and the like. Also, the film thickness of the silicon oxide film can be made thicker than the film thickness of the High-k film. On the insulating film, a control electrode with a film thickness of 30nm~70nm is formed by a material with a film thickness of 3~10nm. Here, the material for adjusting the work function is, for example, a metal oxide film such as TaO or a metal nitride film such as TaN. As the control electrode, W or the like can be used.

又,於記憶胞間可形成氣隙。 Also, an air gap can be formed between the memory cells.

以上,雖然已說明本發明之實施形態,但本發明並非限定於上述實施形態,可在不脫離其主旨之範圍內進行各種變化而實施。進而,上述實施形態中包含各種階段之發明,藉由適當組合所揭示之構成要件,可擷取各種發明。例如,若為自所揭示之構成要件中削除若干構成要件,仍可獲得特定效果者,則亦可擷取為發明。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, Various changes can be implemented in the range which does not deviate from the summary. Furthermore, the above-mentioned embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining the disclosed constituent elements. For example, if some constituent elements are removed from the disclosed constituent elements and a specific effect can still be obtained, it can also be extracted as an invention.

101:輸入輸出介面 101: Input and output interface

101c:NAND運算電路 101c: NAND operation circuit

101d:反相器 101d: Inverter

101g:NAND運算電路 101g: NAND operation circuit

101h:NAND運算電路 101h: NAND operation circuit

101i:NAND運算電路 101i: NAND operation circuit

101j:OR運算電路 101j: OR operation circuit

104:指令暫存器 104: instruction register

105:位址暫存器 105: Address register

105a:記憶部 105a: memory department

120:接收器 120: Receiver

ADD:位址 ADD: address

ALE:位址閂鎖賦能信號 ALE: address latch enable signal

BWE:寫入賦能信號 BWE: write enable signal

CLE:指令閂鎖賦能信號 CLE: command latch enable signal

DQ:輸入輸出信號 DQ: Input and output signals

EN:信號 EN:Signal

Claims (16)

一種記憶裝置,其包含:記憶胞陣列,其構成為儲存資料;資料輸入輸出介面,其中指令、位址及要寫入至上述記憶胞陣列之資料係自外部控制器輸入至上述資料輸入輸出介面,且自上述記憶胞陣列讀出之資料係自上述資料輸入輸出介面輸出至上述外部控制器;發送器,其連接至上述資料輸入輸出介面,且構成為以致能信號驅動;及控制電路,其構成為:回應於第1控制信號為確立(asserted)時讀出指令之接收及第2控制信號為確立時隨著上述讀出指令之後的讀出位址之接收,而使上述記憶胞陣列執行讀出動作;其中在上述讀出指令之接收前,於上述第1信號及上述第2信號之同時確立(concurrent assertion)時,使上述致能信號成為第1位準,且至少於接收到上述讀出指令之後,維持在上述第1位準。 A memory device comprising: a memory cell array, which is configured to store data; a data input and output interface, wherein instructions, addresses, and data to be written to the memory cell array are input from an external controller to the data input and output interface , and the data read from the above-mentioned memory cell array is output from the above-mentioned data input-output interface to the above-mentioned external controller; a transmitter, which is connected to the above-mentioned data input-output interface, and is configured to be driven by an enabling signal; and a control circuit, which It is composed of: in response to the reception of a read command when the first control signal is asserted and the reception of a read address following the read command when the second control signal is asserted, the memory cell array is executed. Read operation; wherein before receiving the read command, when the first signal and the second signal are simultaneously asserted (concurrent assertion), the enable signal is set to the first level, and at least after receiving the above After reading the command, it maintains the above-mentioned 1st level. 如請求項1之記憶裝置,其進一步包含:指令暫存器(command register),其構成為儲存指令;及位址暫存器(address register),其構成為儲存位址,其中上述第1信號包含用以使上述指令暫存器儲存上述指令之信號,且上述第2信號包含用以使上述位址暫存器儲存上述位址之信號。 The memory device according to claim 1, which further includes: a command register (command register), which is configured to store instructions; and an address register (address register), which is configured to store addresses, wherein the first signal A signal for causing the command register to store the command is included, and the second signal includes a signal for making the address register to store the address. 如請求項2之記憶裝置,其中基於第1邏輯運算結果而使上述致能信號成為上述第一位準,上述第1邏輯運算係指令與第2邏輯運算結果之間的邏輯運算,且上述第2邏輯運算結果係上述第1信號與上述第2信號之間的邏輯運算。 The memory device according to claim 2, wherein the enabling signal is set to the first level based on the result of a first logical operation, the first logical operation is a logical operation between an instruction and the result of a second logical operation, and the first logical operation 2. The logical operation result is a logical operation between the first signal and the second signal. 如請求項3之記憶裝置,其中上述第1邏輯運算結果之邏輯運算為RS正反器(Reset and Set flip flop),且上述第2邏輯運算結果之邏輯運算為NAND閘極(NAND gate)。 The memory device according to claim 3, wherein the logic operation of the result of the first logic operation is an RS flip-flop (Reset and Set flip flop), and the logic operation of the result of the second logic operation is a NAND gate (NAND gate). 如請求項1之記憶裝置,其中上述發送器係經由上述資料輸入輸出介面而輸出自上述記憶胞陣列讀出之上述資料。 The memory device according to claim 1, wherein the above-mentioned transmitter outputs the above-mentioned data read from the above-mentioned memory cell array through the above-mentioned data input-output interface. 如請求項5之記憶裝置,其中自上述記憶胞陣列讀出之上述資料係經由上述資料輸入輸出介面而與資料選通信號一起發送。 The memory device according to claim 5, wherein the data read from the memory cell array is sent together with a data strobe signal through the data input and output interface. 如請求項6之記憶裝置,其中當上述第1信號及上述第2信號為同時確立,於第3信號之切換時(upon toggle),使上述致能信號成為上述第1位準。 The memory device according to claim 6, wherein when the first signal and the second signal are simultaneously asserted, upon toggle of the third signal, the enabling signal is set to the first level. 如請求項7之記憶裝置,其進一步包含:指令暫存器,其構成為儲存指令;及位址暫存器,其構成為儲存位址;其中上述第1信號包含用以使上述指令暫存器儲存指令之信號,上述第2信號包含用以使上述位址暫存器儲存位址之信號,且上述第3信號包含用以使上述記憶裝置接受(take)指令或資料的信號。 The memory device according to claim 7, further comprising: an instruction register, which is configured to store instructions; and an address register, which is configured to store addresses; wherein the above-mentioned first signal is used to temporarily store the above-mentioned instructions The second signal includes a signal for storing an address in the address register, and the third signal includes a signal for making the memory device take an instruction or data. 一種記憶裝置,其包含:記憶胞陣列,其構成為儲存資料;資料輸入輸出介面,其中指令、位址及要寫入至上述記憶胞陣列之資料係自外部控制器輸入至上述資料輸入輸出介面,且自上述記憶胞陣列讀出之資料係自上述資料輸入輸出介面輸出至上述外部控制器;接收器,其連接至上述資料輸入輸出介面,且構成為以致能信號驅動;及控制電路,其構成為:回應於第1控制信號為確立時寫入指令之接收、第2控制信號為確立時隨著上述寫入指令之後的寫入位址之接收、及上述第1控制信號與上述第2控制信號均未確立時隨著上述寫入位址之後的要寫入至上述記憶胞陣列之上述資料之接收,而使上述記憶胞陣列執行寫入動作;其中在上述寫入指令之接收前,於上述第1信號及上述第2信號之同時確立時,使上述致能信號成為第1位準,且至少在接收到上述寫 入指令之後,維持在上述第1位準。 A memory device comprising: a memory cell array, which is configured to store data; a data input and output interface, wherein instructions, addresses, and data to be written to the memory cell array are input from an external controller to the data input and output interface , and the data read from the above-mentioned memory cell array is output from the above-mentioned data input-output interface to the above-mentioned external controller; the receiver, which is connected to the above-mentioned data input-output interface, and is configured to be driven by an enabling signal; and the control circuit, which It is composed of: in response to the reception of the write command when the first control signal is asserted, the reception of the write address following the write command when the second control signal is asserted, and the above-mentioned first control signal and the above-mentioned second When the control signals are not established, following the reception of the above-mentioned data to be written into the above-mentioned memory cell array after the above-mentioned write-in address, the above-mentioned memory cell array is executed to write; wherein before the above-mentioned write command is received, When the above-mentioned first signal and the above-mentioned second signal are asserted at the same time, the above-mentioned enable signal is set to the first level, and at least when the above-mentioned write After the command is entered, it remains at the first level above. 如請求項9之記憶裝置,其進一步包含:指令暫存器,其構成為儲存指令;及位址暫存器,其構成為儲存位址;其中上述第1信號包含用以使上述指令暫存器儲存上述指令之信號,且上述第2信號包含使上述位址暫存器儲存上述位址之信號。 The memory device according to claim 9, which further includes: an instruction register configured to store instructions; and an address register configured to store addresses; wherein the first signal includes a register for temporarily storing the above-mentioned instructions The second signal includes a signal for storing the address in the address register. 如請求項10之記憶裝置,其中基於第1邏輯運算結果而使上述致能信號成為上述第一位準,上述第1邏輯運算係指令與第2邏輯運算結果之間的邏輯運算,且上述第2邏輯運算結果係上述第1信號與上述第2信號之間的邏輯運算。 The memory device according to claim 10, wherein the enable signal is set to the first level based on a result of a first logical operation, the first logical operation is a logical operation between an instruction and a result of a second logical operation, and the first logical operation 2. The logical operation result is a logical operation between the first signal and the second signal. 如請求項11之記憶裝置,其中上述第1邏輯運算結果之上述邏輯運算為RS正反器,且上述第2邏輯運算結果之上述邏輯運算為NAND閘極。 The memory device according to claim 11, wherein the logic operation of the result of the first logic operation is an RS flip-flop, and the logic operation of the result of the second logic operation is a NAND gate. 如請求項9之記憶裝置,其中上述接收器係經由上述資料輸入輸出介面而接收要寫入至上述記憶胞陣列之上述資料。 The memory device according to claim 9, wherein the receiver receives the data to be written into the memory cell array through the data input and output interface. 如請求項13之記憶裝置,其中要寫入至上述記憶胞陣列之上述資料係經由上述資料輸入輸出介 面而與資料選通信號一起接收。 Such as the memory device of claim 13, wherein the above-mentioned data to be written into the above-mentioned memory cell array is through the above-mentioned data input and output interface Received together with the data strobe signal. 如請求項14之記憶裝置,其中當上述第1信號及上述第2信號為同時確立,於第3信號之切換時,使上述致能信號成為上述第1位準。 The memory device according to claim 14, wherein when the first signal and the second signal are asserted at the same time, when the third signal is switched, the enabling signal is set to the first level. 如請求項15之記憶裝置,其進一步包含:指令暫存器,其構成為儲存指令;及位址暫存器,其構成為儲存位址;其中上述第1信號包含用以使上述指令暫存器儲存指令之信號,上述第2信號包含用以使上述位址暫存器儲存位址之信號,且上述第3信號包含用以使上述記憶裝置接受指令或資料的信號。The memory device according to claim 15, further comprising: a command register configured to store instructions; and an address register configured to store addresses; wherein the first signal includes a command register for temporarily storing the command The second signal includes a signal for making the address register store an address, and the third signal includes a signal for making the memory device accept instructions or data.
TW109146328A 2016-07-13 2016-07-13 memory device TWI782378B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109146328A TWI782378B (en) 2016-07-13 2016-07-13 memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109146328A TWI782378B (en) 2016-07-13 2016-07-13 memory device

Publications (2)

Publication Number Publication Date
TW202137003A TW202137003A (en) 2021-10-01
TWI782378B true TWI782378B (en) 2022-11-01

Family

ID=79601291

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109146328A TWI782378B (en) 2016-07-13 2016-07-13 memory device

Country Status (1)

Country Link
TW (1) TWI782378B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080123410A1 (en) * 2006-07-05 2008-05-29 Kabushiki Kaisha Toshiba Semiconductor memory device
TW201437812A (en) * 2013-03-20 2014-10-01 Mediatek Inc Methods for accessing memory and controlling access of memory, memory device and memory controller
TW201616274A (en) * 2014-10-31 2016-05-01 瑞薩電子股份有限公司 Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080123410A1 (en) * 2006-07-05 2008-05-29 Kabushiki Kaisha Toshiba Semiconductor memory device
TW201437812A (en) * 2013-03-20 2014-10-01 Mediatek Inc Methods for accessing memory and controlling access of memory, memory device and memory controller
TW201616274A (en) * 2014-10-31 2016-05-01 瑞薩電子股份有限公司 Semiconductor device

Also Published As

Publication number Publication date
TW202137003A (en) 2021-10-01

Similar Documents

Publication Publication Date Title
CN109416924B (en) Storage device
US11114170B2 (en) Memory system
TWI685849B (en) Semiconductor memory device and operating method thereof
KR102121951B1 (en) Semiconductor device and operating method thereof
US8982638B2 (en) Semiconductor memory device and method of operating the same
TWI720522B (en) Semiconductor memory device
TWI676174B (en) Semiconductor memory device
CN105097026B (en) Semiconductor memory device with a plurality of memory cells
TWI616879B (en) Voltage generating circuit and semiconductor memory device
JP5734492B1 (en) Semiconductor memory device
US9484108B2 (en) Integrated circuit, semiconductor memory device, and operating method thereof
JP5744118B2 (en) Semiconductor memory device
TWI654519B (en) Memory device
TWI782378B (en) memory device
US9922687B2 (en) Memory system, semiconductor device and methods of operating the same
TWI608349B (en) Memory device
TWI715928B (en) Memory device
TW202331722A (en) Memory device including a memory cell array, a control circuit and a receiver
TWI791403B (en) semiconductor memory device
TW201523252A (en) Semiconductor memory device, system starting-up method and computer program product