TWI608349B - Memory device - Google Patents

Memory device Download PDF

Info

Publication number
TWI608349B
TWI608349B TW105122160A TW105122160A TWI608349B TW I608349 B TWI608349 B TW I608349B TW 105122160 A TW105122160 A TW 105122160A TW 105122160 A TW105122160 A TW 105122160A TW I608349 B TWI608349 B TW I608349B
Authority
TW
Taiwan
Prior art keywords
signal
level
memory
input
address
Prior art date
Application number
TW105122160A
Other languages
Chinese (zh)
Other versions
TW201810041A (en
Inventor
Akio Sugahara
Yuji Nagai
Original Assignee
Toshiba Memory Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Memory Corp filed Critical Toshiba Memory Corp
Priority to TW105122160A priority Critical patent/TWI608349B/en
Application granted granted Critical
Publication of TWI608349B publication Critical patent/TWI608349B/en
Publication of TW201810041A publication Critical patent/TW201810041A/en

Links

Description

記憶裝置 Memory device

實施形態係關於一種記憶裝置。 The embodiment relates to a memory device.

作為記憶裝置,已知有NAND(Not-AND:反及)型快閃記憶體。 As a memory device, a NAND (Not-AND) type flash memory is known.

實施形態之記憶裝置包含:記憶胞陣列,其記憶資料;控制電路,其應答指令而控制記憶胞陣列;及接收器,其係基於第1信號、第2信號、或位址及指令之運算結果而變成啟動狀態,而可接收指令或資料。 The memory device of the embodiment includes: a memory cell array, the memory data; a control circuit that controls the memory cell array in response to the command; and a receiver based on the operation result of the first signal, the second signal, or the address and the instruction It becomes the startup state and can receive instructions or data.

01h‧‧‧寫入指令 01h‧‧‧Write instruction

05h‧‧‧讀出指令 05h‧‧‧Read instructions

1‧‧‧記憶體系統 1‧‧‧ memory system

10‧‧‧NAND快閃記憶體 10‧‧‧NAND flash memory

11a‧‧‧PMOS電晶體 11a‧‧‧ PMOS transistor

11b‧‧‧NMOS電晶體 11b‧‧‧NMOS transistor

11c~11f‧‧‧PMOS電晶體 11c~11f‧‧‧ PMOS transistor

11g~11i‧‧‧NMOS電晶體 11g~11i‧‧‧NMOS transistor

20‧‧‧記憶體控制器 20‧‧‧ memory controller

30‧‧‧主機機器 30‧‧‧Host machine

80h‧‧‧寫入指令 80h‧‧‧write instructions

100‧‧‧LUN 100‧‧‧LUN

101‧‧‧輸入輸出介面 101‧‧‧Input and output interface

101a‧‧‧AND運算電路 101a‧‧‧AND operation circuit

101b‧‧‧OR運算電路 101b‧‧‧OR operation circuit

101c‧‧‧NAND運算電路 101c‧‧‧NAND computing circuit

101d‧‧‧反相器 101d‧‧‧Inverter

101g‧‧‧NAND運算電路 101g‧‧‧NAND computing circuit

101g1‧‧‧NAND運算電路 101g1‧‧‧NAND computing circuit

101h‧‧‧NAND運算電路 101h‧‧‧NAND computing circuit

101i‧‧‧NAND運算電路 101i‧‧‧NAND computing circuit

101j‧‧‧OR運算電路 101j‧‧‧OR operation circuit

101k‧‧‧NAND運算電路 101k‧‧‧NAND computing circuit

101l‧‧‧NAND運算電路 101l‧‧‧NAND computing circuit

101m‧‧‧NAND運算電路 101m‧‧‧NAND computing circuit

101n‧‧‧反相器 101n‧‧‧Inverter

101o‧‧‧AND運算電路 101o‧‧‧AND operation circuit

101p‧‧‧OR運算電路 101p‧‧‧OR operation circuit

101q‧‧‧開關電路 101q‧‧‧Switch circuit

101r‧‧‧開關電路 101r‧‧‧Switch circuit

101s‧‧‧OR運算電路 101s‧‧‧OR operation circuit

101t‧‧‧開關電路 101t‧‧‧Switch circuit

101u‧‧‧開關電路 101u‧‧‧Switch circuit

101v‧‧‧第1接收器 101v‧‧‧1st receiver

101w‧‧‧第2接收器 101w‧‧‧2nd Receiver

102‧‧‧控制信號輸入介面 102‧‧‧Control signal input interface

103‧‧‧控制電路 103‧‧‧Control circuit

104‧‧‧指令暫存器 104‧‧‧ instruction register

104a‧‧‧記憶部 104a‧‧‧Memory Department

105‧‧‧位址暫存器 105‧‧‧ address register

105a‧‧‧記憶部 105a‧‧‧Memory Department

106‧‧‧狀態暫存器 106‧‧‧Status register

110‧‧‧記憶胞陣列 110‧‧‧ memory cell array

111‧‧‧感測放大器 111‧‧‧Sense Amplifier

112‧‧‧資料暫存器 112‧‧‧data register

113‧‧‧行解碼器 113‧‧‧ line decoder

114‧‧‧行緩衝器 114‧‧‧ line buffer

115‧‧‧列位址解碼器 115‧‧‧ column address decoder

116‧‧‧列位址緩衝解碼器 116‧‧‧ column address buffer decoder

120‧‧‧接收器 120‧‧‧ Receiver

130‧‧‧發送器 130‧‧‧transmitter

210‧‧‧主機介面(主機I/F) 210‧‧‧Host Interface (Host I/F)

220‧‧‧內置記憶體(RAM) 220‧‧‧Internal memory (RAM)

230‧‧‧處理器(CPU) 230‧‧‧Processor (CPU)

240‧‧‧緩衝記憶體 240‧‧‧Buffered memory

250‧‧‧NAND介面(NAND I/F) 250‧‧‧NAND interface (NAND I/F)

ADD‧‧‧位址 ADD‧‧‧ address

ALE‧‧‧位址閂鎖賦能信號 ALE‧‧‧ address latching enable signal

BCE‧‧‧晶片賦能信號 BCE‧‧‧ wafer enabling signal

BDQS‧‧‧資料選通信號 BDQS‧‧‧ data strobe signal

BRE‧‧‧讀取賦能信號 BRE‧‧‧ reading enable signal

BWE‧‧‧寫入賦能信號 BWE‧‧‧Write enable signal

BWP‧‧‧寫入保護信號 BWP‧‧‧ write protection signal

C1‧‧‧行位址 C1‧‧‧ address

C2‧‧‧行位址 C2‧‧‧ address

CLE‧‧‧指令閂鎖賦能信號 CLE‧‧‧ instruction latching enable signal

CMD‧‧‧指令 CMD‧‧ directive

D0~Dn‧‧‧寫入資料 D0~Dn‧‧‧Write data

DQ‧‧‧輸入輸出信號 DQ‧‧‧ input and output signals

DQ0~DQ7‧‧‧輸入輸出信號 DQ0~DQ7‧‧‧ input and output signals

DQS‧‧‧資料選通信號 DQS‧‧‧ data strobe signal

E0h‧‧‧指令 E0h‧‧‧ Directive

EFh‧‧‧指令 EFh‧‧ directive

ENBn‧‧‧信號 ENBn‧‧‧ signal

EN‧‧‧信號 EN‧‧‧ signal

FFh‧‧‧初始化指令 FFh‧‧‧ initialization instructions

GP0‧‧‧記憶體組 GP0‧‧‧ memory group

GP1‧‧‧記憶體組 GP1‧‧‧ memory group

IREFN‧‧‧參照電壓 IREFN‧‧‧reference voltage

MS‧‧‧信號 MS‧‧‧ signal

N1~N7‧‧‧節點 N1~N7‧‧‧ nodes

NP‧‧‧信號 NP‧‧ signal

R1~R3‧‧‧列位址 R1~R3‧‧‧ column address

RE‧‧‧讀取賦能信號 RE‧‧‧Reading enable signal

RY/BBY‧‧‧就緒.忙碌信號 RY/BBY‧‧‧ is ready. Busy signal

T0~T29‧‧‧時刻 T0~T29‧‧‧ moment

tCALS‧‧‧期間 t CALS ‧‧‧

VDD‧‧‧電源電壓 VDD‧‧‧Power supply voltage

VREF‧‧‧參照電壓 VREF‧‧‧reference voltage

W-B0~W-B3‧‧‧資訊 W-B0~W-B3‧‧‧Information

XXh‧‧‧指令 XXh‧‧ directive

YYh‧‧‧指令 YYh‧‧ directive

~ALE‧‧‧反轉信號 ~ ALE‧‧‧Reverse signal

~BCE‧‧‧反轉信號 ~ BCE‧‧‧Reverse signal

~BWE‧‧‧反轉信號 ~ BWE‧‧‧Reverse signal

~BWP‧‧‧反轉信號 ~ BWP‧‧‧Reverse signal

~CLE‧‧‧反轉信號 ~ CLE‧‧‧Reverse signal

圖1係第1實施形態之記憶體系統之方塊圖。 Fig. 1 is a block diagram of a memory system of the first embodiment.

圖2係第1實施形態之記憶體系統之LUN之方塊圖。 Fig. 2 is a block diagram showing a LUN of the memory system of the first embodiment.

圖3係第1實施形態之記憶體系統之輸入輸出介面之電路圖。 Fig. 3 is a circuit diagram showing an input/output interface of the memory system of the first embodiment.

圖4係第1實施形態之記憶體系統之動作之概要圖。 Fig. 4 is a schematic view showing the operation of the memory system of the first embodiment.

圖5係表示第1實施形態之記憶體系統之寫入動作例之時序圖。 Fig. 5 is a timing chart showing an example of a write operation of the memory system of the first embodiment.

圖6係表示第1實施形態之記憶體系統之讀出動作例之時序圖。 Fig. 6 is a timing chart showing an example of the reading operation of the memory system of the first embodiment.

圖7係第2實施形態之記憶體系統之輸入輸出介面之電路圖。 Fig. 7 is a circuit diagram showing an input/output interface of the memory system of the second embodiment.

圖8係表示第2實施形態之記憶體系統之寫入動作例之時序圖。 Fig. 8 is a timing chart showing an example of a write operation of the memory system of the second embodiment.

圖9係表示第2實施形態之記憶體系統之寫入動作例之時序圖。 Fig. 9 is a timing chart showing an example of a write operation of the memory system of the second embodiment.

圖10係表示第2實施形態之記憶體系統之寫入動作例之時序圖。 Fig. 10 is a timing chart showing an example of a write operation of the memory system of the second embodiment.

圖11係表示第2實施形態之記憶體系統之讀出動作例之時序圖。 Fig. 11 is a timing chart showing an example of the reading operation of the memory system of the second embodiment.

圖12係表示第2實施形態之記憶體系統之讀出動作例之時序圖。 Fig. 12 is a timing chart showing an example of the reading operation of the memory system of the second embodiment.

圖13係表示第2實施形態之記憶體系統之讀出動作例之時序圖。 Fig. 13 is a timing chart showing an example of the reading operation of the memory system of the second embodiment.

圖14係表示第2實施形態之記憶體系統之讀出動作例之時序圖。 Fig. 14 is a timing chart showing an example of the reading operation of the memory system of the second embodiment.

圖15係表示第2實施形態之變化例1之記憶體系統之寫入動作例之時序圖。 Fig. 15 is a timing chart showing an example of a write operation of the memory system according to the first modification of the second embodiment.

圖16係表示第2實施形態之變化例1之記憶體系統之讀出動作例之時序圖。 Fig. 16 is a timing chart showing an example of the reading operation of the memory system according to the first modification of the second embodiment.

圖17係第2實施形態之變化例2之記憶體系統之輸入輸出介面之電路圖。 Fig. 17 is a circuit diagram showing an input/output interface of a memory system according to a second modification of the second embodiment.

圖18係第3實施形態之記憶體系統之輸入輸出介面之電路圖。 Fig. 18 is a circuit diagram showing an input/output interface of the memory system of the third embodiment.

圖19係表示第3實施形態之記憶體系統之寫入動作例之時序圖。 Fig. 19 is a timing chart showing an example of a write operation of the memory system of the third embodiment.

圖20係表示第3實施形態之記憶體系統之寫入動作例之時序圖。 Fig. 20 is a timing chart showing an example of a write operation of the memory system of the third embodiment.

圖21係表示第3實施形態之記憶體系統之寫入動作例之時序圖。 Fig. 21 is a timing chart showing an example of a write operation of the memory system of the third embodiment.

圖22係表示第3實施形態之記憶體系統之讀出動作例之時序圖。 Fig. 22 is a timing chart showing an example of the reading operation of the memory system of the third embodiment.

圖23係表示第3實施形態之記憶體系統之讀出動作例之時序圖。 Fig. 23 is a timing chart showing an example of the read operation of the memory system of the third embodiment.

圖24係表示第3實施形態之記憶體系統之讀出動作例之時序圖。 Fig. 24 is a timing chart showing an example of the reading operation of the memory system of the third embodiment.

圖25係表示第3實施形態之記憶體系統之讀出動作例之時序圖。 Fig. 25 is a timing chart showing an example of the reading operation of the memory system of the third embodiment.

圖26係表示第3實施形態之記憶體系統之寫入動作例之時序圖。 Fig. 26 is a timing chart showing an example of a write operation of the memory system of the third embodiment.

圖27係表示第3實施形態之記憶體系統之讀出動作例之時序圖。 Fig. 27 is a timing chart showing an example of the read operation of the memory system of the third embodiment.

圖28係第3實施形態之變化例之記憶體系統之輸入輸出介面之電路圖。 Fig. 28 is a circuit diagram showing an input/output interface of a memory system according to a variation of the third embodiment.

圖29係第4實施形態之記憶體系統之輸入輸出介面之電路圖。 Fig. 29 is a circuit diagram showing an input/output interface of the memory system of the fourth embodiment.

圖30係表示第4實施形態之記憶體系統之模式選擇動作之圖。 Fig. 30 is a view showing a mode selection operation of the memory system of the fourth embodiment.

圖31係第4實施形態之變化例1之記憶體系統之輸入輸出介面之電路圖。 Figure 31 is a circuit diagram showing an input/output interface of a memory system according to a first modification of the fourth embodiment.

圖32係第4實施形態之變化例2之記憶體系統之輸入輸出介面之電路圖。 Figure 32 is a circuit diagram showing an input/output interface of a memory system according to a second modification of the fourth embodiment.

圖33係第4實施形態之變化例3之記憶體系統之輸入輸出介面之電路圖。 Figure 33 is a circuit diagram showing an input/output interface of a memory system according to a third modification of the fourth embodiment.

圖34係第5實施形態之記憶體系統之輸入輸出介面之電路圖。 Fig. 34 is a circuit diagram showing an input/output interface of the memory system of the fifth embodiment.

圖35係表示第5實施形態之記憶體系統之寫入動作例之時序圖。 Fig. 35 is a timing chart showing an example of a write operation of the memory system of the fifth embodiment.

圖36係表示第5實施形態之記憶體系統之寫入動作例之時序圖。 Fig. 36 is a timing chart showing an example of a write operation of the memory system of the fifth embodiment.

圖37係表示第5實施形態之記憶體系統之寫入動作例之時序圖。 Fig. 37 is a timing chart showing an example of a write operation of the memory system of the fifth embodiment.

圖38係表示第5實施形態之記憶體系統之讀出動作例之時序圖。 38 is a timing chart showing an example of the read operation of the memory system of the fifth embodiment.

圖39係表示第5實施形態之記憶體系統之讀出動作例之時序圖。 Fig. 39 is a timing chart showing an example of the reading operation of the memory system of the fifth embodiment.

圖40係表示第5實施形態之記憶體系統之讀出動作例之時序圖。 Fig. 40 is a timing chart showing an example of the reading operation of the memory system of the fifth embodiment.

圖41係表示第5實施形態之記憶體系統之讀出動作例之時序圖。 Fig. 41 is a timing chart showing an example of the reading operation of the memory system of the fifth embodiment.

圖42係表示第5實施形態之變化例之記憶體系統之寫入動作例之時序圖。 Fig. 42 is a timing chart showing an example of a write operation of the memory system according to a modification of the fifth embodiment.

圖43係表示第5實施形態之變化例之記憶體系統之寫入動作例之時序圖。 Fig. 43 is a timing chart showing an example of a write operation of the memory system in a variation of the fifth embodiment.

圖44係表示第5實施形態之變化例之記憶體系統之寫入動作例之時序圖。 Fig. 44 is a timing chart showing an example of a write operation of the memory system in a variation of the fifth embodiment.

圖45係表示第5實施形態之變化例之記憶體系統之讀出動作例之時序圖。 Fig. 45 is a timing chart showing an example of the read operation of the memory system in the variation of the fifth embodiment.

圖46係表示第5實施形態之變化例之記憶體系統之讀出動作例之時序圖。 Fig. 46 is a timing chart showing an example of the read operation of the memory system in the variation of the fifth embodiment.

圖47係表示第5實施形態之變化例之記憶體系統之讀出動作例之時序圖。 Fig. 47 is a timing chart showing an example of the reading operation of the memory system in the variation of the fifth embodiment.

圖48係表示第5實施形態之變化例之記憶體系統之讀出動作例之時序圖。 Fig. 48 is a timing chart showing an example of the reading operation of the memory system in the variation of the fifth embodiment.

圖49係第6實施形態之記憶體系統之輸入輸出介面之電路圖。 Fig. 49 is a circuit diagram showing an input/output interface of the memory system of the sixth embodiment.

圖50係表示第7實施形態之記憶體系統之接收器之電路圖。 Fig. 50 is a circuit diagram showing a receiver of the memory system of the seventh embodiment.

圖51係表示第7實施形態之記憶體系統之第1接收器之電路圖。 Fig. 51 is a circuit diagram showing a first receiver of the memory system of the seventh embodiment.

圖52係表示第7實施形態之記憶體系統之第2接收器之電路圖。 Fig. 52 is a circuit diagram showing a second receiver of the memory system of the seventh embodiment.

圖53係表示第1~5實施形態之記憶體系統之動作條件之圖。 Fig. 53 is a view showing the operating conditions of the memory system of the first to fifth embodiments.

以下,參照圖式對實施形態進行說明。於該說明時,遍及全部圖,對共通之部分標註共通之參照符號。 Hereinafter, embodiments will be described with reference to the drawings. In the description, the common reference numerals are attached to the common parts throughout the drawings.

<1>第1實施形態 <1> First Embodiment

對第1實施形態之半導體記憶裝置進行說明。於以下,作為半導體記憶裝置,列舉NAND型快閃記憶體為例進行說明。 The semiconductor memory device of the first embodiment will be described. Hereinafter, a NAND flash memory will be described as an example of a semiconductor memory device.

<1-1>構成 <1-1> Composition

<1-1-1>記憶體系統之整體構成 <1-1-1> The overall composition of the memory system

首先,使用圖1對本實施形態之包含半導體記憶裝置之記憶體系統之大致整體構成進行說明。圖1係本實施形態之記憶體系統之方塊圖。 First, a substantially overall configuration of a memory system including a semiconductor memory device of the present embodiment will be described with reference to Fig. 1 . Fig. 1 is a block diagram of a memory system of the embodiment.

如圖1所示,記憶體系統1具備NAND型快閃記憶體10及記憶體控制器20。NAND型快閃記憶體10與記憶體控制器20係例如可藉由該等之組合構成一個半導體裝置,作為其例可列舉如SD卡(Secure Digital Card:安全數位卡)般之記憶卡、或SSD(solid state drive:固態驅動器)等。 As shown in FIG. 1, the memory system 1 includes a NAND flash memory 10 and a memory controller 20. For example, the NAND flash memory 10 and the memory controller 20 can constitute one semiconductor device by a combination of the above, and examples thereof include a memory card such as an SD card (Secure Digital Card), or SSD (solid state drive), etc.

NAND型快閃記憶體10具備複數個記憶胞電晶體,而非揮發性地記憶資料。記憶體控制器20藉由NAND匯流排而連接於NAND型快閃記憶體10,且藉由主機匯流排而連接於主機機器30。而且,記憶體控制器20控制NAND型快閃記憶體10,應答自主機機器30接收之命令,而對NAND型快閃記憶體10進行存取。主機機器30係例如數位相機或 個人電腦等,主機匯流排係例如遵照SDTM(Study Data Tabulation Model:研究資料製表模型)介面之匯流排。 The NAND type flash memory 10 has a plurality of memory cell transistors instead of volatility memory data. The memory controller 20 is connected to the NAND-type flash memory 10 by a NAND bus, and is connected to the host machine 30 by a host bus. Further, the memory controller 20 controls the NAND-type flash memory 10 to access the NAND-type flash memory 10 in response to a command received from the host device 30. The host machine 30 is, for example, a digital camera or For personal computers, etc., the host bus is, for example, a bus that conforms to the SDTM (Study Data Tabulation Model) interface.

NAND匯流排進行遵照NAND介面之信號之收發。該信號之具體例為晶片賦能信號BCE、指令閂鎖賦能信號CLE、位址閂鎖賦能信號ALE、寫入賦能信號BWE、讀取賦能信號RE、BRE、寫入保護信號BWP、資料選通信號DQS、BDQS、輸入輸出信號DQ、及就緒.忙碌信號RY/BBY。於無需區分上述各信號之情形時,亦可僅記載為信號。 The NAND bus bar transmits and receives signals in accordance with the NAND interface. Specific examples of the signal are a wafer enable signal BCE, an instruction latch enable signal CLE, an address latch enable signal ALE, a write enable signal BWE, a read enable signal RE, a BRE, and a write protection signal BWP. , data strobe signal DQS, BDQS, input and output signal DQ, and ready. Busy signal RY/BBY. When it is not necessary to distinguish the above signals, it may be described only as a signal.

晶片賦能信號BCE係用於選擇NAND型快閃記憶體10所包含之LUN(Logical unit number:邏輯單元號碼)100之信號。晶片賦能信號BCE於選擇LUN100時確立(“低(Low)”位準)。 The wafer enable signal BCE is used to select a signal of a LUN (Logical Unit Number) 100 included in the NAND flash memory 10. The wafer enable signal BCE is asserted when the LUN 100 is selected ("Low" level).

指令閂鎖賦能信號CLE係用於將對NAND型快閃記憶體10之輸入輸出信號DQ為指令通知給NAND型快閃記憶體10之信號。指令閂鎖賦能信號CLE於將指令擷取至NAND型快閃記憶體10時確立(“高(High)”位準(低<高))。 The command latch enable signal CLE is used to notify the signal of the NAND type flash memory 10 that the input/output signal DQ of the NAND flash memory 10 is an instruction. The instruction latch enable signal CLE is asserted ("High" level (low <high)) when the instruction is captured to the NAND type flash memory 10.

位址閂鎖賦能信號ALE係用於將對NAND型快閃記憶體10之輸入輸出信號DQ為位址通知給NAND型快閃記憶體10之信號。位址閂鎖賦能信號ALE於將位址擷取至NAND型快閃記憶體10時確立(“高”位準)。 The address latch enable signal ALE is used to notify the signal of the NAND type flash memory 10 that the input/output signal DQ of the NAND flash memory 10 is the address. The address latch enable signal ALE is asserted ("high" level) when the address is captured to the NAND type flash memory 10.

寫入賦能信號BWE係用於將輸入輸出信號DQ擷取至NAND型快閃記憶體10之信號。寫入賦能信號BWE於將輸入輸出信號DQ擷取至NAND型快閃記憶體10時確立(“低”位準)。 The write enable signal BWE is used to extract the input/output signal DQ to the signal of the NAND type flash memory 10. The write enable signal BWE is asserted when the input/output signal DQ is drawn to the NAND type flash memory 10 ("low" level).

讀取賦能信號RE係用於自NAND型快閃記憶體10讀出輸入輸出信號DQ之信號。讀取賦能信號BRE係RE之互補信號。讀取賦能信號RE及BRE於自NAND型快閃記憶體10讀出輸入輸出信號DQ時確立(RE=“高”位準,BRE=“低”位準)。 The read enable signal RE is used to read out the signal of the input/output signal DQ from the NAND type flash memory 10. The complementary signal of the enable signal BRE is read RE. The read enable signals RE and BRE are asserted when the input/output signal DQ is read from the NAND type flash memory 10 (RE = "high" level, BRE = "low" level).

寫入保護信號BWP係用以於NAND型快閃記憶體10之接通電源時、或切斷電源時等之輸入信號不確定之情形時,保護資料不受意外之抹除或寫入之信號。寫入保護信號BWP於保護資料時確立(“低”位準)。 The write protection signal BWP is used to protect the data from accidental erasure or write signals when the input signal of the NAND flash memory 10 is turned on or when the power is turned off. . The write protection signal BWP is asserted when the data is protected ("low" level).

輸入輸出信號DQ係例如8位元之信號。而且,輸入輸出信號DQ係於NAND型快閃記憶體10與記憶體控制器20之間進行收發之指令、位址、寫入資料、及讀出資料等。 The input/output signal DQ is, for example, an 8-bit signal. Further, the input/output signal DQ is an instruction for transmitting and receiving between the NAND flash memory 10 and the memory controller 20, an address, a write data, and a read data.

資料選通信號DQS係用於將輸入輸出信號DQ(資料)於記憶體控制器20、與NAND型快閃記憶體10之間收發之信號。資料選通信號BDQS係DQS之互補信號。NAND型快閃記憶體10配合自記憶體控制器20供給之資料選通信號DQS及BDQS之時序而接收輸入輸出信號DQ(資料)。記憶體控制器20配合自NAND型快閃記憶體10供給之資料選通信號DQS及BDQS之時序而接收輸入輸出信號DQ(資料)。資料選通信號DQS及BDQS於收發輸入輸出信號DQ時確立(DQS=“低”位準,BDQS=“高”位準)。 The data strobe signal DQS is a signal for transmitting and receiving the input/output signal DQ (data) between the memory controller 20 and the NAND type flash memory 10. The data strobe signal BDQS is a complementary signal of DQS. The NAND type flash memory 10 receives the input/output signal DQ (data) in accordance with the timing of the data strobe signals DQS and BDQS supplied from the memory controller 20. The memory controller 20 receives the input/output signal DQ (data) in accordance with the timing of the data strobe signals DQS and BDQS supplied from the NAND flash memory 10. The data strobe signals DQS and BDQS are established when the input/output signal DQ is transmitted and received (DQS = "low" level, BDQS = "high" level).

就緒.忙碌信號RY/BBY係表示LUN100是處於就緒狀態(可接收來自記憶體控制器20之命令之狀態)、還是處於忙碌狀態(無法接收來自記憶體控制器20之命令之狀態)之信號。就緒.忙碌信號RY/BBY於忙碌狀態之情形時設為“低”位準。 Ready. The busy signal RY/BBY indicates a signal that the LUN 100 is in a ready state (a state in which a command from the memory controller 20 can be received) or a busy state (a state in which a command from the memory controller 20 cannot be received). Ready. The busy signal RY/BBY is set to the "low" level in the case of a busy state.

<1-1-2>記憶體控制器之構成 <1-1-2> Composition of memory controller

使用圖1,對記憶體控制器20之構成之詳細情況進行說明。如圖1所示,記憶體控制器20具備主機介面(Host I/F)210、內置記憶體(RAM:Random access memory,隨機存取記憶體)220、處理器(CPU:Central processing unit,中央處理單元)230、緩衝記憶體240、及NAND介面(NAND I/F)250。 The details of the configuration of the memory controller 20 will be described with reference to Fig. 1 . As shown in FIG. 1, the memory controller 20 includes a host interface (Host I/F) 210, a built-in memory (RAM: Random access memory) 220, and a processor (CPU: Central processing unit, central Processing unit) 230, buffer memory 240, and NAND interface (NAND I/F) 250.

主機介面210經由主機匯流排而與主機機器30連接,且將自主機 機器30接收之命令及資料分別傳送至處理器230及緩衝記憶體240。主機介面210應答處理器230之命令,而將緩衝記憶體240內之資料傳送至主機機器30。 The host interface 210 is connected to the host machine 30 via the host bus, and will be from the host The commands and data received by the machine 30 are transmitted to the processor 230 and the buffer memory 240, respectively. The host interface 210 responds to the commands of the processor 230 and transfers the data in the buffer memory 240 to the host machine 30.

處理器230控制記憶體控制器20整體之動作。例如,處理器230於自主機機器30接收寫入命令時,應答其而對NAND介面250發行寫入命令。讀出及抹除之時亦相同。處理器230執行耗損平均等、用於管理NAND型快閃記憶體10之各種處理。 The processor 230 controls the overall operation of the memory controller 20. For example, processor 230, upon receiving a write command from host machine 30, issues a write command to NAND interface 250 in response thereto. The same is true for reading and erasing. The processor 230 performs various processes for managing the NAND-type flash memory 10 such as wear leveling and the like.

NAND介面250經由NAND匯流排而與NAND型快閃記憶體10連接,負責與NAND型快閃記憶體10之通信。而且,基於自處理器230接收之命令,而將晶片賦能信號BCE、指令閂鎖賦能信號CLE、位址閂鎖賦能信號ALE、寫入賦能信號BWE、讀取賦能信號RE、BRE、寫入保護信號BWP、及資料選通信號DQS、BDQS輸出至NAND型快閃記憶體10。於寫入時,將由處理器230發行之寫入指令、及緩衝記憶體240內之寫入資料作為輸入輸出信號DQ傳送至NAND型快閃記憶體10。進而,於讀出時,將由處理器230發行之讀出指令作為輸入輸出信號DQ傳送至NAND型快閃記憶體10,進而將自NAND型快閃記憶體10讀出之資料作為輸入輸出信號DQ接收,並將其傳送至緩衝記憶體240。 The NAND interface 250 is connected to the NAND-type flash memory 10 via a NAND bus, and is responsible for communication with the NAND-type flash memory 10. Moreover, based on the command received from the processor 230, the wafer enable signal BCE, the instruction latch enable signal CLE, the address latch enable signal ALE, the write enable signal BWE, the read enable signal RE, The BRE, the write protection signal BWP, and the data strobe signals DQS, BDQS are output to the NAND type flash memory 10. At the time of writing, the write command issued by the processor 230 and the write data in the buffer memory 240 are transferred to the NAND flash memory 10 as the input/output signal DQ. Further, at the time of reading, the read command issued by the processor 230 is transmitted to the NAND flash memory 10 as the input/output signal DQ, and the data read from the NAND flash memory 10 is used as the input/output signal DQ. Receive and transfer to buffer memory 240.

緩衝記憶體240暫時保持寫入資料或讀出資料。 The buffer memory 240 temporarily keeps writing data or reading data.

內置記憶體220係例如DRAM(Dynamic random access memory:動態隨機存取記憶體)等半導體記憶體,且用作處理器230之作業區域。而且,內置記憶體220保持用以管理NAND型快閃記憶體10之韌體、或各種管理表格等。 The internal memory 220 is a semiconductor memory such as a DRAM (Dynamic Random Access Memory) and is used as a work area of the processor 230. Further, the internal memory 220 is held to manage the firmware of the NAND-type flash memory 10, various management tables, and the like.

<1-1-3>NAND型快閃記憶體 <1-1-3>NAND type flash memory

<1-1-3-1>NAND型快閃記憶體之構成 <1-1-3-1> Composition of NAND flash memory

其次,對NAND型快閃記憶體10之構成進行說明。 Next, the configuration of the NAND flash memory 10 will be described.

如圖1所示,NAND型快閃記憶體10具備複數個記憶體組(於圖1之例中,作為一例為GP0及GP1)。 As shown in FIG. 1, the NAND flash memory 10 has a plurality of memory banks (in the example of FIG. 1, as an example, GP0 and GP1).

記憶體組GP分別具備複數個LUN100(於圖1之例中作為一例為4個)。於分別區分複數個LUN100之情形時,以LUN(m:m為任意之整數)之標記表示。具體而言,記憶體組GP0具備LUN(0)~LUN(3),記憶體組GP1具備LUN(4)~LUN(7)。LUN100係能夠獨立控制之最小單位。LUN100只要具備至少一個記憶體晶片即可,亦可具備2個以上之記憶體晶片。於本實施形態中,就LUN100具備一個記憶體晶片之情形進行說明。 Each of the memory groups GP has a plurality of LUNs 100 (four in the example of FIG. 1 as an example). When distinguishing multiple LUNs 100, they are represented by the LUN (m: m is an arbitrary integer). Specifically, the memory group GP0 includes LUN(0) to LUN(3), and the memory group GP1 includes LUN(4) to LUN(7). LUN100 is the smallest unit that can be independently controlled. The LUN 100 may have at least one memory chip, and may have two or more memory chips. In the present embodiment, a case where the LUN 100 has one memory chip will be described.

於本實施形態中,設為對每一記憶體組GP輸入獨立之晶片賦能信號BCE者。換言之,即對同一記憶體組GP內之LUN100,輸入同一晶片賦能信號BCE。 In the present embodiment, it is assumed that a separate wafer enable signal BCE is input to each of the memory banks GP. In other words, the same wafer enable signal BCE is input to the LUN 100 in the same memory group GP.

於某記憶體組GP中,動作之LUN100既可為一個,亦可為複數個。 In a memory group GP, the LUN 100 of the action may be one or plural.

<1-1-3-2>LUN100之構成 <1-1-3-2>Composition of LUN100

其次,使用圖2對LUN100之構成進行說明。 Next, the configuration of the LUN 100 will be described using FIG.

記憶體控制器20與LUN100係經由輸入輸出介面(Input/output interface)101及控制信號輸入介面(Control signal input interface)102而連接。 The memory controller 20 and the LUN 100 are connected via an input/output interface 101 and a control signal input interface 102.

輸入輸出介面101具備接收器120及發送器130。而且,接收器120經由資料輸入輸出線(NAND匯流排之中,收發輸入輸出信號DQ之配線),而輸入輸入輸出信號(DQ0~DQ7)。發送器130經由資料輸入輸出線,而輸出輸入輸出信號(DQ0~DQ7)。 The input/output interface 101 includes a receiver 120 and a transmitter 130. Further, the receiver 120 inputs an input/output signal (DQ0 to DQ7) via a data input/output line (a wiring for transmitting and receiving the input/output signal DQ among the NAND bus bars). The transmitter 130 outputs input and output signals (DQ0 to DQ7) via data input and output lines.

輸入輸出介面101於自資料輸入輸出線輸出輸入輸出信號(DQ0~DQ7)時,對記憶體控制器20輸出資料選通信號DQS及BDQS。 The input/output interface 101 outputs the data strobe signals DQS and BDQS to the memory controller 20 when the input/output signals (DQ0 to DQ7) are output from the data input/output lines.

控制信號輸入介面102自記憶體控制器20接收晶片賦能信號 BCE、指令閂鎖賦能信號CLE、位址閂鎖賦能信號ALE、寫入賦能信號BWE、讀取賦能信號RE、BRE、寫入保護信號BWP、及資料選通信號DQS、BDQS。 The control signal input interface 102 receives the wafer enable signal from the memory controller 20 BCE, instruction latch enable signal CLE, address latch enable signal ALE, write enable signal BWE, read enable signal RE, BRE, write protection signal BWP, and data strobe signals DQS, BDQS.

雖於圖2中未圖示,但於LUN100亦設置電力供給用之Vcc/Vss/Vccq/Vssq端子等。 Although not shown in FIG. 2, the LUN 100 is also provided with a Vcc/Vss/Vccq/Vssq terminal for power supply.

控制電路103經由輸入輸出介面101將自記憶胞陣列(Memory cell array)110讀出之資料輸出至記憶體控制器20。控制電路103經由控制信號輸入介面102,接收寫入、讀出、抹除、及狀態.讀取等各種指令、位址、及寫入資料。 The control circuit 103 outputs the material read from the memory cell array 110 to the memory controller 20 via the input/output interface 101. The control circuit 103 receives the write, read, erase, and state via the control signal input interface 102. Read various instructions, addresses, and write data.

控制電路103控制指令暫存器(Command register)104、位址暫存器(Address register)105、狀態暫存器(Status register)106、感測放大器(Sense amp)111、資料暫存器(Data register)112、行解碼器(Column decoder)113、及列位址解碼器(Row address decoder)115。 The control circuit 103 controls an instruction register 104, an address register 105, a status register 106, a sense amplifier (Sense amp) 111, and a data register (Data). Register 112, a column decoder 113, and a row address decoder 115.

控制電路103於資料之編程、驗證、讀出、抹除時,對記憶胞陣列110、感測放大器111、及列解碼器115供給所需之電壓。 The control circuit 103 supplies the desired voltage to the memory cell array 110, the sense amplifier 111, and the column decoder 115 during data programming, verifying, reading, and erasing.

指令暫存器104記憶自控制電路103輸入之指令。 The instruction register 104 memorizes instructions input from the control circuit 103.

位址暫存器105記憶例如自記憶體控制器20供給之位址。而且,位址暫存器105將記憶之位址轉換為內部實體位址(行位址及列位址)。然後,位址暫存器105將行位址供給至行緩衝器(Column buffer)114,且將列位址供給至列位址緩衝解碼器(Row address buffer decoder)116。 The address register 105 memorizes, for example, the address supplied from the memory controller 20. Moreover, the address register 105 converts the memory address into an internal physical address (row address and column address). The address register 105 then supplies the row address to the column buffer 114 and the column address to the Row address buffer decoder 116.

狀態暫存器106係用以將LUN100內部之各種狀態通知給外部者。狀態暫存器106具有保持表示LUN100是處於就緒/忙碌狀態之哪一者之資料之就緒/忙碌暫存器(未圖示)、及保持表示寫入之通過/失敗之資料之寫入狀態暫存器(未圖示)等。 The status register 106 is used to notify various parties of various states inside the LUN 100. The status register 106 has a ready/busy register (not shown) that holds information indicating which of the LUN 100 is in the ready/busy state, and a write status that holds the data indicating the pass/fail of the write. Memory (not shown), etc.

記憶胞陣列110包含複數條位元線BL、複數條字元線WL、及源 極線SL。該記憶胞陣列110係以將能夠電性重寫之記憶胞電晶體(亦簡稱為記憶胞)MC矩陣狀地配置而成之複數個區塊BLK構成。記憶胞電晶體MC係例如具有包含控制閘極電極及電荷儲存層(例如浮動閘極電極)之積層閘極,且根據由注入於浮動閘極電極之電荷量決定之電晶體之閾值之變化而記憶二值、或多值資料。又,記憶體胞電晶體MC亦可為具有於氮化膜捕集電子之MONOS(Metal-Oxide-Nitride-Oxide-Silicon:金屬氧化氮氧化矽)構造者。 The memory cell array 110 includes a plurality of bit lines BL, a plurality of word lines WL, and a source Polar line SL. The memory cell array 110 is composed of a plurality of blocks BLK in which a memory cell (also referred to simply as a memory cell) MC that can be electrically rewritten is arranged in a matrix. The memory cell MC system has, for example, a gate electrode including a control gate electrode and a charge storage layer (for example, a floating gate electrode), and changes in a threshold value of a transistor determined by the amount of charge injected into the floating gate electrode. Memory binary, or multi-value data. Further, the memory cell MC may be a MONOS (Metal-Oxide-Nitride-Oxide-Silicon) structure having electrons trapped in a nitride film.

進而,關於記憶胞陣列110之構成亦可為其他構成。即,關於記憶胞陣列110之構成,例如記載於稱為“三維積層非揮發性半導體記憶體”之2009年3月19日申請之美國專利申請案12/407,403號。又,記載於稱為“三維積層非揮發性半導體記憶體”之2009年3月18日申請之美國專利申請案12/406,524號、稱為“非揮發性半導體記憶裝置及其製造方法”之2010年3月25日申請之美國專利申請案12/679,991號、及稱為“半導體記憶體及其製造方法”之2009年3月23日申請之美國專利申請案12/532,030號。該等專利申請案係其整體以參照之方式併入本申請案說明書中。 Further, the configuration of the memory cell array 110 may be other configurations. In other words, the configuration of the memory cell array 110 is described, for example, in U.S. Patent Application Serial No. 12/407,403, filed on March 19, 2009, which is incorporated herein by reference. Further, it is described in U.S. Patent Application Serial No. 12/406,524, filed on March 18, 2009, which is incorporated herein to U.S. Patent Application Serial No. 12/ 679, 991, filed on March 25, the entire disclosure of which is incorporated herein by reference. The patent applications are hereby incorporated by reference in their entirety in their entirety in their entireties in the the the the the the the

感測放大器111於資料之讀出動作時,感測自記憶胞電晶體MC讀取至位元線之資料。 The sense amplifier 111 senses the data read from the memory cell MC to the bit line during the read operation of the data.

資料暫存器112係以SRAM((Static Random Access Memory:靜態隨機存取記憶體)等構成。資料暫存器112記憶自記憶體控制器20供給之資料、或藉由感測放大器111偵測之驗證結果等。 The data register 112 is configured by SRAM (Static Random Access Memory), etc. The data register 112 memorizes data supplied from the memory controller 20 or is detected by the sense amplifier 111. Verification results, etc.

行解碼器113將記憶於行緩衝器114之行位址信號解碼,且將選擇位元線BL之任一者之選擇信號輸出至感測放大器111。 The row decoder 113 decodes the row address signal stored in the line buffer 114, and outputs a selection signal of any one of the selected bit lines BL to the sense amplifier 111.

行緩衝器114暫時記憶自位址暫存器105輸入之行位址信號。 The line buffer 114 temporarily memorizes the row address signal input from the address register 105.

列位址解碼器115將經由列位址緩衝解碼器116輸入之列位址信號解碼。而且,列位址解碼器115選擇驅動記憶胞陣列110之字元線WL 及選擇閘極線SGD、SGS。 The column address decoder 115 decodes the column address signals input via the column address buffer decoder 116. Moreover, column address decoder 115 selects word line WL that drives memory cell array 110. And select the gate line SGD, SGS.

列位址緩衝解碼器116暫時記憶自位址暫存器105輸入之列位址信號。 The column address buffer decoder 116 temporarily stores the column address signals input from the address register 105.

<1-1-3-3>輸入輸出介面之構成 <1-1-3-3> Composition of input and output interface

其次,使用圖3對輸入輸出介面101之構成進行具體說明。 Next, the configuration of the input/output interface 101 will be specifically described using FIG.

如圖3所示,輸入輸出介面101基於指令閂鎖賦能信號CLE、位址閂鎖賦能信號ALE、及來自指令暫存器104或位址暫存器105之信號,而進行輸入輸出信號DQ之輸入輸出。 As shown in FIG. 3, the input/output interface 101 performs input and output signals based on the instruction latch enable signal CLE, the address latch enable signal ALE, and the signal from the instruction register 104 or the address register 105. DQ input and output.

具體而言,指令暫存器104基於寫入賦能信號BWE,將記憶於記憶部104a之指令CMD輸出至輸入輸出介面101之AND(“與”)運算電路101a。指令暫存器104於輸出指令CMD時,於輸入下一指令之前維持“高”位準狀態。位址暫存器105基於寫入賦能信號BWE,將記憶於記憶部105a之位址ADD輸出至輸入輸出介面101之AND運算電路101a。位址暫存器105於選擇本身之LUN100之情形時,維持“高”位準狀態。 Specifically, the instruction register 104 outputs the command CMD stored in the memory unit 104a to the AND (AND) operation circuit 101a of the input/output interface 101 based on the write enable signal BWE. The instruction register 104 maintains a "high" level state prior to inputting the next instruction when outputting the instruction CMD. The address register 105 outputs the address ADD stored in the memory unit 105a to the AND operation circuit 101a of the input/output interface 101 based on the write enable signal BWE. The address register 105 maintains a "high" level state when it selects its own LUN 100.

AND運算電路101a基於指令CMD及位址ADD,而將運算結果輸出至OR(“或”)運算電路101b。AND運算電路101a僅於指令CMD及位址ADD均為“高”位準之情形時,輸出“高”位準之信號。 The AND operation circuit 101a outputs the operation result to the OR (OR) operation circuit 101b based on the instruction CMD and the address ADD. The AND operation circuit 101a outputs a signal of "high" level only when the command CMD and the address ADD are both "high".

OR運算電路101b基於AND運算電路101a之運算結果、指令閂鎖賦能信號CLE、或位址閂鎖賦能信號ALE,而產生信號EN。OR運算電路101b僅於AND運算電路101a之運算結果、指令閂鎖賦能信號CLE、及位址閂鎖賦能信號ALE之全部為“低”位準之情形時,輸出“低”位準之信號EN。換言之,即OR運算電路101b於AND運算電路101a之運算結果、指令閂鎖賦能信號CLE、及位址閂鎖賦能信號ALE之至少一個為“高”位準之情形時,輸出“高”位準之信號EN。於以下,有時對將信號EN自“低”位準設為“高”位準記載為「上 升」,且對將信號EN自“高”位準設為“低”位準記載為「下降」。 The OR operation circuit 101b generates a signal EN based on the operation result of the AND operation circuit 101a, the instruction latch enable signal CLE, or the address latch enable signal ALE. The OR operation circuit 101b outputs the "low" level only when the operation result of the AND operation circuit 101a, the instruction latch enable signal CLE, and the address latch enable signal ALE are all "low" levels. Signal EN. In other words, when the OR operation circuit 101b outputs "high" when at least one of the operation result of the AND operation circuit 101a, the instruction latch enable signal CLE, and the address latch enable signal ALE is "high" level. Level signal EN. In the following, sometimes the signal EN is set to "high" level from the "low" level as "upper" "L", and the signal EN is set to "low" level from the "high" level to "down".

接收器120基於信號EN、及輸入輸出信號DQ,而於LUN100之內部接收輸入輸出信號DQ。具體而言,NAND運算電路101c基於自OR運算電路101b供給之信號EN、及自記憶體控制器20供給之輸入輸出信號DQ,而產生信號。NAND運算電路101c僅於信號EN、及輸入輸出信號DQ均為“高”位準之情形時,產生“低”位準之信號。而且,反相器101d將NAND運算電路101c之運算結果反轉輸出。即,接收器120僅於信號EN、及輸入輸出信號DQ均為“高”位準之情形時,於LUN100之內部接收輸入輸出信號DQ。 The receiver 120 receives the input and output signal DQ inside the LUN 100 based on the signal EN and the input and output signal DQ. Specifically, the NAND operation circuit 101c generates a signal based on the signal EN supplied from the OR operation circuit 101b and the input/output signal DQ supplied from the memory controller 20. The NAND operation circuit 101c generates a signal of a "low" level only when the signal EN and the input/output signal DQ are both "high". Further, the inverter 101d inverts and outputs the operation result of the NAND operation circuit 101c. That is, the receiver 120 receives the input/output signal DQ inside the LUN 100 only when the signal EN and the input/output signal DQ are both "high".

於以下,有時將對接收器120輸入“高”位準之信號EN之狀態記載為「啟動狀態」,且將輸入“低”位準之信號EN之狀態記載為「待機狀態」。接收器120為啟動狀態時,處於能夠接收輸入輸出資料DQ之狀態。進而,接收器120為待機狀態時,處於無法接收輸入輸出資料DQ之狀態。 Hereinafter, the state of the signal EN to which the "high" level is input to the receiver 120 is described as "starting state", and the state of the signal EN to which the "low" level is input may be described as "standby state". When the receiver 120 is in the startup state, it is in a state capable of receiving the input/output data DQ. Further, when the receiver 120 is in the standby state, the input/output data DQ cannot be received.

<1-2>動作 <1-2> action

<1-2-1>記憶體系統之動作之概要 <1-2-1> Summary of the operation of the memory system

使用圖4,對本實施形態之記憶體系統之動作之概要進行說明。 The outline of the operation of the memory system of the present embodiment will be described with reference to Fig. 4 .

於圖4中,著眼於記憶體組GP0之動作,說明將存取(寫入動作、讀出動作等)自LUN(0)變更至LUN(1)之情形之動作之概要。如圖4所示,於對LUN(0)之存取中LUN(0)內之信號EN成為“高”位準,LUN(1)~LUN(3)內之信號EN成為“低”位準。即,於對LUN(0)之存取中,LUN(0)之接收器120被設為啟動狀態,LUN(1)~LUN(3)之接收器120被設為待機狀態。 In FIG. 4, focusing on the operation of the memory group GP0, an outline of the operation of changing the access (write operation, read operation, etc.) from LUN (0) to LUN (1) will be described. As shown in Figure 4, the signal EN in the LUN(0) in the access to the LUN(0) becomes the "high" level, and the signal EN in the LUN(1)~LUN(3) becomes the "low" level. . That is, in the access to the LUN (0), the receiver 120 of the LUN (0) is set to the startup state, and the receiver 120 of the LUN (1) to the LUN (3) is set to the standby state.

而且,於時刻T0,記憶體系統1進行LUN切換動作。此時,至少記憶體組GP0內之所有LUN(LUN(0)~LUN(3))內之信號EN變成“高”位準。即,於LUN切換動作時,至少記憶體組GP0內之所有 LUN(LUN(0)~LUN(3))內之接收器120被設為啟動狀態。 Further, at time T0, the memory system 1 performs a LUN switching operation. At this time, at least the signal EN in all the LUNs (LUN(0) to LUN(3)) in the memory group GP0 becomes the "high" level. That is, at least when all the memory groups GP0 are in the LUN switching operation The receiver 120 in the LUN (LUN(0)~LUN(3)) is set to the startup state.

於時刻T1,若將LUN(1)之位址確定為選擇LUN位址,則開始對LUN(1)之存取。於對LUN(1)之存取中LUN(1)內之信號EN成為“高”位準,LUN(0)、LUN(2)、LUN(3)內之信號EN成為“低”位準。即,於對LUN(1)之存取中,LUN(1)之接收器120被設為啟動狀態,LUN(0)、LUN(2)、LUN(3)之接收器120被設為待機狀態。 At time T1, if the address of the LUN (1) is determined to be the selected LUN address, access to the LUN (1) is started. The signal EN in the LUN (1) in the access to the LUN (1) becomes the "high" level, and the signal EN in the LUN (0), LUN (2), and LUN (3) becomes the "low" level. That is, in the access to the LUN (1), the receiver 120 of the LUN (1) is set to the startup state, and the receiver 120 of the LUN (0), LUN (2), and LUN (3) is set to the standby state. .

<1-2-2>寫入動作例1 <1-2-2> Write operation example 1

使用圖5,對本實施形態之記憶體系統1之寫入動作例1進行說明。此處,針對記憶體組GP0之指令序列進行說明。 The write operation example 1 of the memory system 1 of the present embodiment will be described with reference to Fig. 5 . Here, the instruction sequence of the memory group GP0 will be described.

於時刻T2,記憶體控制器20確立(“高”位準)指令閂鎖賦能信號CLE。於時刻T2之時間點,晶片賦能信號BCE確立(“低”位準)。若指令閂鎖賦能信號CLE確立,則如圖3所說明般信號EN變成“高”位準。 At time T2, memory controller 20 asserts ("high" level) command latch enable signal CLE. At time T2, the wafer enable signal BCE is asserted ("low" level). If the command latch enable signal CLE is asserted, the signal EN becomes "high" level as illustrated in FIG.

LUN100必須等待期間tCALS,作為自指令閂鎖賦能信號CLE確立起,用於指令輸入之設置所需之期間。 The LUN 100 must wait for the period t CALS , which is established as the self-instruction latch enable signal CLE for the period required for the setting of the command input.

於自時刻T2經過期間tCALS後之時刻T3,記憶體控制器20發行指令“01h”及“80h”。 Period from the time T2 to the time t elapsed after the CALS T3, the memory controller 20 issuing an instruction "01h" and "80h".

指令“01h”係於記憶胞電晶體MC可保持3位元資料之情形等發行之指令。更具體而言,指令“01h”係指定第1頁之指令。此處雖記載指令“01h”作為1例,但並不限於此。若記憶體控制器20指定其他頁之情形時,亦可輸入其他指令。指令“80h”係用於指定寫入動作之指令。 The command "01h" is an instruction issued in the case where the memory cell MC can hold the 3-bit data. More specifically, the instruction "01h" specifies the instruction of page 1. Here, the command "01h" is described as an example, but is not limited thereto. Other instructions may also be input if the memory controller 20 specifies other pages. The instruction "80h" is used to specify the instruction of the write action.

記憶體控制器20係每當發行指令、位址、及資料等之信號時,確立(“低”位準)寫入賦能信號BWE。而且,每當寫入賦能信號BWE觸變時,將信號擷取至LUN100。 The memory controller 20 asserts ("low" level) write enable signal BWE whenever a signal such as an instruction, address, and data is issued. Moreover, each time the write enable signal BWE is thixotropic, the signal is captured to the LUN 100.

接著,記憶體控制器20例如跨5週期發行位址(C1、C2:行位 址,R1~R3:列位址),並且確立(“高”位準)位址閂鎖賦能信號ALE。 Next, the memory controller 20 issues the address, for example, across 5 cycles (C1, C2: row position) Address, R1~R3: column address), and establish ("high" level) address latch enable signal ALE.

於發行位址時,指令閂鎖賦能信號CLE雖被否定(“低”位準),但位址閂鎖賦能信號ALE被確立。若位址閂鎖賦能信號ALE確立,則如圖3所說明般信號EN變成“高”位準。即,於接收位址時,LUN100將信號EN維持在“高”位準。 When the address is issued, the instruction latch enable signal CLE is negated ("low" level), but the address latch enable signal ALE is asserted. If the address latch enable signal ALE is asserted, the signal EN becomes a "high" level as illustrated in FIG. That is, the LUN 100 maintains the signal EN at the "high" level when receiving the address.

但是,藉由例如於列位址R3包含選擇LUN位址,且將列位址R3供給至LUN100,則選擇LUN100確定。若選擇LUN100確定,則如圖3所說明般於選擇LUN100中,位址閂鎖電路105輸出“高”位準之信號。其結果,選擇LUN100中之信號EN維持“高”位準。另一方面,於非選擇LUN100中,位址閂鎖電路105輸出“低”位準之信號。其結果,選擇LUN100中之信號EN變成“低”位準。換言之,即選擇LUN100之接收器120維持為啟動狀態,非選擇LUN100之接收器120成為待機狀態。 However, by, for example, the column address R3 includes a selection LUN address and the column address R3 is supplied to the LUN 100, the LUN 100 determination is selected. If the LUN 100 determination is selected, the address latch circuit 105 outputs a "high" level signal in the selection LUN 100 as illustrated in FIG. As a result, the signal EN in the LUN 100 is selected to maintain the "high" level. On the other hand, in the non-selected LUN 100, the address latch circuit 105 outputs a signal of a "low" level. As a result, the signal EN in the LUN 100 is selected to become a "low" level. In other words, the receiver 120 of the selected LUN 100 is maintained in the active state, and the receiver 120 of the non-selected LUN 100 is in the standby state.

其次,記憶體控制器20跨複數個週期而輸出寫入資料(D0~Dn)。該期間,信號ALE及CLE被否定(“L”位準)。由LUN100所接收之寫入資料係保持於感測放大器111內之頁緩衝器。 Next, the memory controller 20 outputs the write data (D0 to Dn) across a plurality of cycles. During this period, the signals ALE and CLE are negated ("L" level). The write data received by LUN 100 is held in a page buffer within sense amplifier 111.

雖於圖5中未圖示,但記憶體控制器20發行寫入指令“10H”,並且確立指令閂鎖賦能信號CLE。若接收指令“10h”,則控制電路103開始寫入動作,且LUN100變成忙碌狀態(RY/BBY=“低”位準)。 Although not shown in FIG. 5, the memory controller 20 issues the write command "10H" and asserts the command latch enable signal CLE. When the command "10h" is received, the control circuit 103 starts the write operation, and the LUN 100 becomes busy (RY/BBY = "low" level).

<1-2-3>讀出動作例1 <1-2-3> Read operation example 1

使用圖6,對本實施形態之記憶體系統1之讀出動作例1進行說明。此處,針對記憶體組GP0之指令序列進行說明。 The read operation example 1 of the memory system 1 of the present embodiment will be described with reference to Fig. 6 . Here, the instruction sequence of the memory group GP0 will be described.

於時刻T5,記憶體控制器20確立指令閂鎖賦能信號CLE。於時刻T5之時間點,晶片賦能信號BCE確立。若指令閂鎖賦能信號CLE確立,則信號EN變成“高”位準。 At time T5, the memory controller 20 asserts the instruction latch enable signal CLE. At time T5, the wafer enable signal BCE is asserted. If the command latch enable signal CLE is asserted, the signal EN becomes a "high" level.

於自時刻T5經過期間tCALS後之時刻T6,記憶體控制器20發行讀出指令“05h”。 At time T6 after the period t CALS elapses from time T5, the memory controller 20 issues a read command "05h".

接著,記憶體控制器20例如跨5週期發行位址(C1、C2:行位址,R1~R3:列位址),並且確立(“高”位準)位址閂鎖賦能信號ALE。 Next, the memory controller 20 issues an address (C1, C2: row address, R1 to R3: column address), for example, across 5 cycles, and asserts ("high" level) address latch enable signal ALE.

記憶體控制器20發行指令“E0h”。LUN100若接收指令“E0h”則開始讀出動作。 The memory controller 20 issues the command "E0h". When the LUN 100 receives the command "E0h", the read operation is started.

指令暫存器104辨識自記憶體控制器20請求之動作為讀出動作。然後,指令暫存器104將“低”位準之信號供給至AND運算電路101a(參照圖3)。藉此,信號EN變成“低”位準。 The instruction register 104 recognizes that the action requested from the memory controller 20 is a read operation. Then, the instruction register 104 supplies a signal of "low" level to the AND operation circuit 101a (refer to FIG. 3). Thereby, the signal EN becomes a "low" level.

即,接收器120變成待機狀態。 That is, the receiver 120 becomes a standby state.

<1-3>效果 <1-3> effect

根據上述之實施形態,使用位址ADD、指令CMD、指令閂鎖賦能信號CLE、位址閂鎖賦能信號ALE等,適當控制LUN100與資料輸入輸出線之電性連接。 According to the above embodiment, the electrical connection between the LUN 100 and the data input/output line is appropriately controlled by using the address ADD, the command CMD, the instruction latch enable signal CLE, the address latch enable signal ALE, and the like.

例如於寫入動作中,若非選擇LUN100接收到寫入資料,則於LUN100流通無用之電流。然而,藉由採用上述之實施形態,可抑制非選擇LUN100之動作電流。 For example, in the write operation, if the non-selected LUN 100 receives the write data, the useless current flows through the LUN 100. However, by adopting the above embodiment, the operating current of the non-selected LUN 100 can be suppressed.

又,於讀出動作中,LUN100無需接收資料。藉由採用上述之實施形態,可抑制LUN100之動作電流。 Moreover, in the read operation, the LUN 100 does not need to receive data. By adopting the above embodiment, the operating current of the LUN 100 can be suppressed.

<2>第2實施形態 <2> Second embodiment

對第2實施形態進行說明。於第2實施形態中,針對輸入輸出介面之另一構成進行說明。再者,第2實施形態之記憶裝置之基本構成及基本動作與上述之第1實施形態之記憶裝置相同。因此,省略對上述之第1實施形態所說明之事項及能夠自上述第1實施形態類推之事項之說明。 The second embodiment will be described. In the second embodiment, another configuration of the input/output interface will be described. The basic configuration and basic operation of the memory device of the second embodiment are the same as those of the memory device of the first embodiment described above. Therefore, the matters described in the first embodiment and the descriptions that can be analogized from the first embodiment will be omitted.

<2-1>輸入輸出介面之構成 <2-1> Composition of input and output interface

其次,使用圖7,對第2實施形態之記憶體系統之輸入輸出介面101之構成進行具體說明。 Next, the configuration of the input/output interface 101 of the memory system of the second embodiment will be specifically described with reference to Fig. 7 .

如圖7所示,輸入輸出介面101基於指令閂鎖賦能信號CLE、位址閂鎖賦能信號ALE、及來自指令暫存器104或位址暫存器105之信號,而進行輸入輸出信號DQ之輸入輸出。 As shown in FIG. 7, the input/output interface 101 performs input and output signals based on the instruction latch enable signal CLE, the address latch enable signal ALE, and the signal from the instruction register 104 or the address register 105. DQ input and output.

具體而言,NAND運算電路101g基於指令閂鎖賦能信號CLE及位址閂鎖賦能信號ALE,而將運算結果輸出至NAND運算電路101h。NAND運算電路101g僅於指令閂鎖賦能信號CLE及位址閂鎖賦能信號ALE均為“高”位準之情形時,產生“低”位準之信號。 Specifically, the NAND operation circuit 101g outputs the operation result to the NAND operation circuit 101h based on the instruction latch enable signal CLE and the address latch enable signal ALE. The NAND operation circuit 101g generates a signal of a "low" level only when the instruction latch enable signal CLE and the address latch enable signal ALE are both "high" levels.

NAND運算電路101h及NAND運算電路101i構成RS正反器電路。具體而言,NAND運算電路101h基於NAND運算電路101g及NAND運算電路101i之運算結果,而輸出運算結果。NAND運算電路101i基於NAND運算電路101h之運算結果、及來自指令暫存器104之信號(例如指令CMD),而輸出運算結果。 The NAND operation circuit 101h and the NAND operation circuit 101i constitute an RS flip-flop circuit. Specifically, the NAND operation circuit 101h outputs the calculation result based on the calculation results of the NAND operation circuit 101g and the NAND operation circuit 101i. The NAND operation circuit 101i outputs the operation result based on the operation result of the NAND operation circuit 101h and the signal (for example, the command CMD) from the instruction register 104.

對本RS正反器電路之動作進行簡單說明。於來自NAND運算電路101g之信號為“高”位準、且來自指令暫存器104之信號為“低”位準之情形時,NAND運算電路101h輸出“低”位準之信號。進而,於來自NAND運算電路101g之信號為“低”位準、且來自指令暫存器104之信號為“高”位準之情形時,NAND運算電路101h輸出“高”位準之信號。又,於NAND運算電路101h之輸出信號確定之狀態下,即使來自NAND運算電路101g之信號、或來自指令暫存器104之信號變化,亦保持NAND運算電路101h之輸出信號。 The operation of the RS flip-flop circuit will be briefly described. When the signal from the NAND operation circuit 101g is "high" and the signal from the instruction register 104 is "low", the NAND operation circuit 101h outputs a "low" level signal. Further, when the signal from the NAND operation circuit 101g is "low" and the signal from the instruction register 104 is "high", the NAND operation circuit 101h outputs a signal of "high" level. Further, in a state where the output signal of the NAND operation circuit 101h is determined, the output signal of the NAND operation circuit 101h is held even if the signal from the NAND operation circuit 101g or the signal from the instruction register 104 changes.

OR運算電路101j基於NAND運算電路101h之運算結果、及來自位址暫存器105之信號,而產生信號EN。OR運算電路101j僅於NAND運算電路101h之運算結果、來自位址暫存器105之信號均為“低”位準 之情形時,輸出“低”位準之信號EN。換言之,即OR運算電路101j於NAND運算電路101h之運算結果、來自位址暫存器105之信號之至少一個為“高”位準之情形時,輸出“高”位準之信號EN。 The OR operation circuit 101j generates a signal EN based on the operation result of the NAND operation circuit 101h and the signal from the address register 105. The OR operation circuit 101j is only the operation result of the NAND operation circuit 101h, and the signal from the address register 105 is "low" level. In the case of the case, the signal EN of the "low" level is output. In other words, when the OR operation circuit 101j outputs a result of the NAND operation circuit 101h and at least one of the signals from the address register 105 is at the "high" level, the signal EN of the "high" level is output.

接收器120僅於信號EN、及輸入輸出信號DQ均為“高”位準之情形時,於LUN100之內部接收輸入輸出信號DQ。 The receiver 120 receives the input/output signal DQ inside the LUN 100 only when the signal EN and the input/output signal DQ are both "high".

<2-2>動作 <2-2> action

第1實施形態所說明之動作與第2實施形態之動作之不同在於,LUN100內之信號EN之上升方法。 The operation described in the first embodiment differs from the operation in the second embodiment in the method of raising the signal EN in the LUN 100.

於第1實施形態之記憶體系統1中,係基於指令閂鎖賦能信號CLE之確立而將信號EN上升。於第2實施形態之記憶體系統1中,係藉由同時確立指令閂鎖賦能信號CLE及位址閂鎖賦能信號ALE,而將信號EN上升。同時確立指令閂鎖賦能信號CLE及位址閂鎖賦能信號ALE之動作成為用於將信號EN上升之動作。 In the memory system 1 of the first embodiment, the signal EN is raised based on the establishment of the command latch enable signal CLE. In the memory system 1 of the second embodiment, the signal EN is raised by simultaneously asserting the command latch enable signal CLE and the address latch enable signal ALE. At the same time, the action of asserting the instruction latch enable signal CLE and the address latch enable signal ALE becomes an action for raising the signal EN.

<2-2-1>寫入動作例2 <2-2-1> Write operation example 2

使用圖8,對本實施形態之記憶體系統1之寫入動作例2進行說明。此處,針對記憶體組GP0之指令序列進行說明。 The write operation example 2 of the memory system 1 of the present embodiment will be described with reference to Fig. 8 . Here, the instruction sequence of the memory group GP0 will be described.

於時刻T8,記憶體控制器20確立指令閂鎖賦能信號CLE及位址閂鎖賦能信號ALE。藉此,如使用圖7所說明般,信號EN變成“高”位準。然後,記憶體控制器20否定指令閂鎖賦能信號CLE及位址閂鎖賦能信號ALE。因此,由於NAND運算電路101h之輸入信號雖變化,但NAND運算電路101i之輸入信號不變化,故而NAND運算電路101h之輸出信號被保持為“高”位準。其結果,信號EN被保持為“高”位準。 At time T8, the memory controller 20 asserts the instruction latch enable signal CLE and the address latch enable signal ALE. Thereby, as explained using FIG. 7, the signal EN becomes a "high" level. Then, the memory controller 20 negates the instruction latch enable signal CLE and the address latch enable signal ALE. Therefore, since the input signal of the NAND operation circuit 101h changes, the input signal of the NAND operation circuit 101i does not change, and therefore the output signal of the NAND operation circuit 101h is maintained at the "high" level. As a result, the signal EN is maintained at the "high" level.

於自時刻T8經過期間tCALS後之時刻T9,記憶體控制器20發行寫入指令“01h”及“80h”。 After the time t CALS T9, memory controller 20 to issue write period from the time T8 after the command "01h" and "80h".

於時刻T10,若選擇LUN100確定,則如圖7所說明般於選擇 LUN100內,位址閂鎖電路105輸出“高”位準之信號。其結果,LUN100內之信號EN維持“高”位準。另一方面,於非選擇LUN100內,位址閂鎖電路105輸出“低”位準之信號。其結果,選擇LUN100內之信號EN變成“低”位準。換言之,即選擇LUN100之接收器120維持啟動狀態,非選擇LUN100被設為待機狀態。 At time T10, if LUN100 is selected for determination, it is selected as illustrated in FIG. Within LUN 100, address latch circuit 105 outputs a "high" level signal. As a result, the signal EN in the LUN 100 maintains a "high" level. On the other hand, in the non-selected LUN 100, the address latch circuit 105 outputs a "low" level signal. As a result, the signal EN in the LUN 100 is selected to become the "low" level. In other words, the receiver 120 that selects the LUN 100 maintains the startup state, and the non-selected LUN 100 is set to the standby state.

記憶體控制器20例如跨5週期發行位址(C1、C2:行位址,R1~R3:列位址),並且確立(“高”位準)位址閂鎖賦能信號ALE。 The memory controller 20 issues an address (C1, C2: row address, R1 to R3: column address), for example, across 5 cycles, and asserts ("high" level) address latch enable signal ALE.

其次,記憶體控制器20跨複數個週期輸出寫入資料(D0~Dn)。該期間,信號ALE及CLE被否定。由LUN100所接收之寫入資料係保持於感測放大器111內之頁緩衝器。 Next, the memory controller 20 outputs the write data (D0 to Dn) across a plurality of cycles. During this period, the signals ALE and CLE are negated. The write data received by LUN 100 is held in a page buffer within sense amplifier 111.

<2-2-2>寫入動作例3 <2-2-2> Write operation example 3

使用圖9、圖10,對本實施形態之記憶體系統1之寫入動作例3進行說明。此處,針對記憶體組GP0之指令序列進行說明。 The write operation example 3 of the memory system 1 of the present embodiment will be described with reference to Figs. 9 and 10 . Here, the instruction sequence of the memory group GP0 will be described.

寫入動作例3之信號EN之上升方法因與寫入動作例2相同,故而省略說明。此處,針對非選擇LUN100之信號EN之下降時序進行說明。 The method of raising the signal EN in the write operation example 3 is the same as that in the write operation example 2, and thus the description thereof is omitted. Here, the falling timing of the signal EN of the non-selected LUN 100 will be described.

例如,於列位址R3中包含選擇LUN位址。藉由將列位址R3供給至LUN100,而確定選擇LUN100。若選擇LUN100確定,則選擇LUN100內之信號EN被維持“高”位準,且非選擇LUN100內之信號EN變成“低”位準。換言之,即選擇LUN100之接收器120被維持為啟動狀態,非選擇LUN100被設為待機狀態。 For example, the selection LUN address is included in the column address R3. The selection of the LUN 100 is determined by supplying the column address R3 to the LUN 100. If LUN 100 is selected, the signal EN in the LUN 100 is selected to be maintained at the "high" level, and the signal EN in the non-selected LUN 100 is changed to the "low" level. In other words, the receiver 120 that selects the LUN 100 is maintained in the startup state, and the non-selected LUN 100 is set to the standby state.

如圖9所示,亦可於接收列位址R3之後,非選擇LUN100內之信號EN立刻變成“低”位準。如圖10所示,亦可按資料之輸入輸出前後之時序,而非選擇LUN100內之信號EN變成“低”位準。 As shown in FIG. 9, after receiving the column address R3, the signal EN in the non-selected LUN 100 immediately becomes a "low" level. As shown in FIG. 10, it is also possible to select the timing before and after the input and output of the data, instead of selecting the signal EN in the LUN 100 to become a "low" level.

<2-2-3>讀出動作例2 <2-2-3> Read operation example 2

使用圖11,對本實施形態之記憶體系統1之讀出動作例2進行說 明。此處,針對記憶體組GP0之指令序列進行說明。 The read operation example 2 of the memory system 1 of the present embodiment will be described with reference to FIG. Bright. Here, the instruction sequence of the memory group GP0 will be described.

讀出動作例2之信號EN之上升方法與寫入動作例2相同。 The rising method of the signal EN in the read operation example 2 is the same as that in the write operation example 2.

於時刻T13,記憶體控制器20確立指令閂鎖賦能信號CLE及位址閂鎖賦能信號ALE。藉此,如使用圖7所說明般,信號EN變成“高”位準。 At time T13, the memory controller 20 asserts the instruction latch enable signal CLE and the address latch enable signal ALE. Thereby, as explained using FIG. 7, the signal EN becomes a "high" level.

於自時刻T13經過期間tCALS後之時刻T14,發行讀出指令“05h”。 The read command "05h" is issued at time T14 after the elapse of the period t CALS from time T13.

指令暫存器104若接收“05h”則辨識自記憶體控制器20請求之動作為讀出動作。然後,指令暫存器104將“低”位準之信號供給至AND運算電路101a(參照圖3)。藉此,信號EN變成“低”位準。 When the command register 104 receives "05h", it recognizes that the operation requested from the memory controller 20 is a read operation. Then, the instruction register 104 supplies a signal of "low" level to the AND operation circuit 101a (refer to FIG. 3). Thereby, the signal EN becomes a "low" level.

即,接收器120變成待機狀態。 That is, the receiver 120 becomes a standby state.

<2-2-4>讀出動作例3 <2-2-4> Read operation example 3

使用圖12~圖14,對本實施形態之記憶體系統1之讀出動作例3進行說明。此處,針對記憶體組GP0之指令序列進行說明。 The read operation example 3 of the memory system 1 of the present embodiment will be described with reference to Figs. 12 to 14 . Here, the instruction sequence of the memory group GP0 will be described.

讀出動作例3之信號EN之上升方法因與讀出動作例2相同,故而省略說明。此處,針對LUN100之信號EN之下降時序進行說明。 The method of raising the signal EN in the read operation example 3 is the same as that of the read operation example 2, and thus the description thereof is omitted. Here, the timing of the falling of the signal EN of the LUN 100 will be described.

指令暫存器104辨識自記憶體控制器20請求之動作為讀出動作。然後,指令暫存器104將“低”位準之信號供給至AND運算電路101a(參照圖3)。藉此,信號EN變成“低”位準。 The instruction register 104 recognizes that the action requested from the memory controller 20 is a read operation. Then, the instruction register 104 supplies a signal of "low" level to the AND operation circuit 101a (refer to FIG. 3). Thereby, the signal EN becomes a "low" level.

即,接收器120變成待機狀態。 That is, the receiver 120 becomes a standby state.

如圖12所示,亦可於接收列位址R3之後,LUN100內之信號EN立刻變成“低”位準。又,如圖13所示,亦可於接收指令“E0h”之後,LUN100內之信號EN立刻變成“低”位準。又,如圖14所示,亦可按資料之輸入輸出前後之時序,而LUN100內之信號EN變成“低”位準。 As shown in FIG. 12, after receiving the column address R3, the signal EN in the LUN 100 immediately becomes a "low" level. Further, as shown in FIG. 13, after receiving the command "E0h", the signal EN in the LUN 100 immediately becomes a "low" level. Moreover, as shown in FIG. 14, the timing before and after the input and output of the data can be made, and the signal EN in the LUN 100 becomes the "low" level.

<2-3>效果 <2-3> effect

根據上述之實施形態,藉由同時確立指令閂鎖賦能信號CLE及位址閂鎖賦能信號ALE,而複數個LUN100之接收器120變成啟動狀態。 According to the above embodiment, the receiver 120 of the plurality of LUNs 100 is activated by simultaneously establishing the command latch enable signal CLE and the address latch enable signal ALE.

伴隨資料之輸入輸出之高速化,而必須將指令位址輸入週期高速化。例如,於第1實施形態之情形時,若將資料之輸入輸出高速化,則自指令閂鎖賦能信號CLE確立起,用於指令輸入之設置所需之期間變得不足,而有產生來不及設置之問題之可能性。換言之,即有於輸入指令之前,未能經由接收器120將LUN100電性連接於資料輸入輸出線,而產生LUN100無法適當地接收指令之問題之可能性。 As the input and output of the data is increased, the instruction address input cycle must be speeded up. For example, in the case of the first embodiment, when the input/output of the data is increased, the period required for the setting of the command input becomes insufficient from the establishment of the command latch enable signal CLE, and there is a shortage of time. The possibility of setting the problem. In other words, there is a possibility that the LUN 100 cannot be electrically connected to the data input/output line via the receiver 120 before the input of the command, and the possibility that the LUN 100 cannot properly receive the command is generated.

因此,於本實施形態中,於為了輸入指令而確立指令閂鎖賦能信號CLE之前,將接收器120設為啟動狀態。藉此,與第1實施形態相比,可緩和實質上之期間tCALS。因此,可提供一種伴隨資料之輸入輸出之高速化,能夠適當地進行輸入輸出信號DQ之收發之記憶體系統。 Therefore, in the present embodiment, the receiver 120 is set to the active state before the command latch enable signal CLE is established in order to input an instruction. Thereby, the substantial period t CALS can be alleviated as compared with the first embodiment. Therefore, it is possible to provide a memory system capable of appropriately transmitting and receiving the input/output signal DQ in accordance with the increase in the speed of input and output of data.

<2-4>第2實施形態之變化例1 <2-4> Variation 1 of the second embodiment

<2-4-1>寫入動作例4 <2-4-1> Write operation example 4

使用圖15,對本實施形態之記憶體系統1之寫入動作例4進行說明。此處,針對記憶體組GP0之指令序列進行說明。 The write operation example 4 of the memory system 1 of the present embodiment will be described with reference to Fig. 15 . Here, the instruction sequence of the memory group GP0 will be described.

寫入動作例4之信號EN之上升方法因與第2實施形態之寫入動作例2相同,故而省略說明。此處,針對非選擇LUN100之信號EN之下降時序進行說明。 The method of increasing the signal EN in the write operation example 4 is the same as the write operation example 2 in the second embodiment, and thus the description thereof is omitted. Here, the falling timing of the signal EN of the non-selected LUN 100 will be described.

例如,於列位址R3中包含選擇LUN位址。藉由將列位址R3供給至LUN100,而確定選擇LUN100。如圖7所示,若選擇LUN100確定,進而輸入指令“XXh”,則指令暫存器104之輸出信號變成“低”位準。另一方面,於選擇LUN100中,位址暫存器105維持“高”位準之信號,於非選擇LUN100中,位址暫存器105輸出“低”位準之信號。因此,選擇LUN100內之信號EN維持“高”位準,且非選擇LUN100 內之信號EN變成“低”位準。換言之,即選擇LUN100之接收器120維持啟動狀態,非選擇LUN100之接收器120被設為待機狀態。 For example, the selection LUN address is included in the column address R3. The selection of the LUN 100 is determined by supplying the column address R3 to the LUN 100. As shown in FIG. 7, if the LUN 100 is selected and the command "XXh" is input, the output signal of the instruction register 104 becomes "low" level. On the other hand, in the selection LUN 100, the address register 105 maintains a "high" level signal. In the non-selected LUN 100, the address register 105 outputs a "low" level signal. Therefore, the signal EN in the LUN 100 is selected to maintain the "high" level, and the LUN 100 is not selected. The signal EN inside becomes a "low" level. In other words, the receiver 120 that selects the LUN 100 maintains the startup state, and the receiver 120 of the non-selected LUN 100 is set to the standby state.

<2-4-2>讀出動作例4 <2-4-2> Read operation example 4

使用圖16,對本實施形態之記憶體系統1之讀出動作例4進行說明。此處,針對記憶體組GP0之指令序列進行說明。 The read operation example 4 of the memory system 1 of the present embodiment will be described with reference to Fig. 16 . Here, the instruction sequence of the memory group GP0 will be described.

讀出動作例4之信號EN之上升方法因與第2實施形態之讀出動作例2相同,故而省略說明。此處,針對LUN100之信號EN之下降時序進行說明。 The method of raising the signal EN in the read operation example 4 is the same as that of the read operation example 2 of the second embodiment, and thus the description thereof is omitted. Here, the timing of the falling of the signal EN of the LUN 100 will be described.

指令暫存器104若接收“XXh”則辨識自記憶體控制器20請求之動作為讀出動作。然後,指令暫存器104將“低”位準之信號供給至AND運算電路101a(參照圖3)。藉此,信號EN變成“低”位準。即,接收器120變成待機狀態。 When the command register 104 receives "XXh", it recognizes that the operation requested from the memory controller 20 is a read operation. Then, the instruction register 104 supplies a signal of "low" level to the AND operation circuit 101a (refer to FIG. 3). Thereby, the signal EN becomes a "low" level. That is, the receiver 120 becomes a standby state.

<2-5>第2實施形態之變化例2 <2-5> Variation 2 of the second embodiment

使用圖17,對第2實施形態之變化例2之記憶體系統之輸入輸出介面101之構成進行具體說明。 The configuration of the input/output interface 101 of the memory system according to the second modification of the second embodiment will be specifically described with reference to Fig. 17 .

圖17所示之輸入輸出介面101具備以於輸出資料時,接收器120不電性連接於LUN100與資料輸入輸出線之方式進行控制之電路。 The input/output interface 101 shown in FIG. 17 is provided with a circuit for controlling the manner in which the receiver 120 is not electrically connected to the LUN 100 and the data input/output line when the data is output.

具體而言,如圖17所示,輸入輸出介面101具備NAND運算電路101k。而且,NAND運算電路101k基於指令閂鎖賦能信號CLE之反轉信號~CLE、位址閂鎖賦能信號ALE之反轉信號~ALE、晶片賦能信號BCE之反轉信號~BCE、寫入賦能信號BWE,而將運算結果輸出至NAND運算電路101l。NAND運算電路101k僅於信號~CLE、~ALE、~BCE、及BWE全部為“高”位準之情形時,產生“低”位準之信號。 Specifically, as shown in FIG. 17, the input/output interface 101 is provided with a NAND arithmetic circuit 101k. Moreover, the NAND operation circuit 101k is based on the inverted signal of the instruction latch enable signal CLE ~ CLE, the inverted signal of the address latch enable signal ALE ~ ALE, the inverted signal of the wafer enable signal BCE ~ BCE, write The signal BWE is energized, and the operation result is output to the NAND operation circuit 101l. The NAND operation circuit 101k generates a signal of a "low" level only when the signals ~ CLE, ~ ALE, ~ BCE, and BWE are all "high" levels.

NAND運算電路101l及NAND運算電路101m構成RS正反器電路。具體而言,NAND運算電路101l基於NAND運算電路101k及NAND運算電路101m之運算結果,而輸出運算結果。NAND運算電路101m基 於NAND運算電路101l之運算結果、及讀取賦能信號BRE,而輸出運算結果。 The NAND operation circuit 101l and the NAND operation circuit 101m constitute an RS flip-flop circuit. Specifically, the NAND operation circuit 101 l outputs the calculation result based on the calculation results of the NAND operation circuit 101k and the NAND operation circuit 101m. NAND operation circuit 101m base The operation result of the NAND operation circuit 101l and the read enable signal BRE are output, and the operation result is output.

對本RS正反器電路之動作進行簡單說明。於來自NAND運算電路101k之信號為“高”位準、且讀取賦能信號BRE為“低”位準之情形時,NAND運算電路101l輸出“低”位準之信號。進而,於來自NAND運算電路101k之信號為“低”位準、且讀取賦能信號BRE為“高”位準之情形時,NAND運算電路101l輸出“高”位準之信號。又,於NAND運算電路101l之輸出信號確定之狀態下,即使來自NAND運算電路101k之信號、或讀取賦能信號BRE變化,亦保持NAND運算電路101l之輸出信號。 The operation of the RS flip-flop circuit will be briefly described. When the signal from the NAND operation circuit 101k is at the "high" level and the read enable signal BRE is at the "low" level, the NAND operation circuit 101l outputs a signal of a "low" level. Further, when the signal from the NAND operation circuit 101k is at the "low" level and the read enable signal BRE is at the "high" level, the NAND operation circuit 101l outputs a signal of the "high" level. Further, in a state where the output signal of the NAND operation circuit 101l is determined, even if the signal from the NAND operation circuit 101k or the read enable signal BRE changes, the output signal of the NAND operation circuit 101l is held.

而且,反相器101n將NAND運算電路101l之輸出信號反轉,並供給至AND運算電路101o。 Further, the inverter 101n inverts the output signal of the NAND operation circuit 101l and supplies it to the AND operation circuit 101o.

AND運算電路101o基於反相器101n之輸出信號及來自位址暫存器105之信號,將運算結果輸出至OR運算電路101p。AND運算電路101a僅於反相器101n之輸出信號及來自位址暫存器105之信號均為“高”位準之情形時,輸出“高”位準之信號。 The AND operation circuit 101o outputs the operation result to the OR operation circuit 101p based on the output signal of the inverter 101n and the signal from the address register 105. The AND operation circuit 101a outputs a signal of "high" level only when the output signal of the inverter 101n and the signal from the address register 105 are both "high".

OR運算電路101p基於AND運算電路101o及NAND運算電路101h之運算結果,而產生信號EN。OR運算電路101p僅於AND運算電路101o及NAND運算電路101h之運算結果均為“低”位準之情形時,輸出“低”位準之信號EN。換言之,即OR運算電路101p於AND運算電路101o及NAND運算電路101h之運算結果之至少一個為“高”位準之情形時,輸出“高”位準之信號EN。 The OR operation circuit 101p generates a signal EN based on the calculation results of the AND operation circuit 101o and the NAND operation circuit 101h. The OR operation circuit 101p outputs the signal "EN" of the "low" level only when the operation results of the AND operation circuit 101o and the NAND operation circuit 101h are both "low". In other words, when the OR operation circuit 101p is at the "high" level in at least one of the calculation results of the AND operation circuit 101o and the NAND operation circuit 101h, the signal EN of the "high" level is output.

於資料之輸出期間,信號~CLE、~ALE、~BCE、BWE、及BREA全部變成“高”位準。其結果,NAND運算電路101l之輸出信號係輸出“高”位準之信號。其結果,於資料之輸出期間,信號EN變成“低”位準。 During the output of the data, the signals ~ CLE, ~ ALE, ~ BCE, BWE, and BREA all become "high" levels. As a result, the output signal of the NAND operation circuit 1011 outputs a signal of "high" level. As a result, during the output of the data, the signal EN becomes a "low" level.

如此,第2實施形態之變化例2之記憶體系統之輸入輸出介面101可以於輸出資料時,接收器120不電性連接於LUN100與資料輸入輸出線之方式進行控制。 As described above, the input/output interface 101 of the memory system according to the second modification of the second embodiment can be controlled such that the receiver 120 is not electrically connected to the LUN 100 and the data input/output line when the data is output.

<3>第3實施形態 <3> Third embodiment

對第3實施形態進行說明。於第3實施形態中,針對輸入輸出介面之另一構成進行說明。再者,第3實施形態之記憶裝置之基本構成及基本動作與上述之第1、第2實施形態之記憶裝置相同。因此,省略對上述之第1、第2實施形態所說明之事項及能夠自上述第1、第2實施形態類推之事項之說明。 The third embodiment will be described. In the third embodiment, another configuration of the input/output interface will be described. The basic configuration and basic operation of the memory device of the third embodiment are the same as those of the memory devices of the first and second embodiments described above. Therefore, the matters described in the first and second embodiments described above and the matters that can be analogized from the first and second embodiments will be omitted.

<3-1>輸入輸出介面之構成 <3-1> Composition of input and output interface

其次,使用圖18,對第3實施形態之記憶體系統之輸入輸出介面101之構成進行具體說明。第3實施形態之記憶體系統之輸入輸出介面101與第2實施形態之記憶體系統之輸入輸出介面101相比,進而基於寫入賦能信號BWE之反轉信號~BWE,而進行輸入輸出信號DQ之輸入輸出。 Next, the configuration of the input/output interface 101 of the memory system of the third embodiment will be specifically described with reference to Fig. 18 . The input/output interface 101 of the memory system of the third embodiment is further input and output signals based on the inverted signal ~ BWE of the write enable signal BWE, compared with the input/output interface 101 of the memory system of the second embodiment. DQ input and output.

具體而言,NAND運算電路101g1基於信號CLE、ALE、及~BWE,而將運算結果輸出至NAND運算電路101h。NAND運算電路101g1僅於信號CLE、ALE、及~BWE全部為“高”位準之情形時,產生“低”位準之信號。 Specifically, the NAND operation circuit 101g1 outputs the operation result to the NAND operation circuit 101h based on the signals CLE, ALE, and ~ BWE. The NAND operation circuit 101g1 generates a signal of a "low" level only when the signals CLE, ALE, and ~ BWE are all "high" levels.

<3-2>動作 <3-2> action

第2實施形態所說明之動作與第3實施形態之動作之不同在於,LUN100內之信號EN之上升方法。 The operation described in the second embodiment differs from the operation of the third embodiment in the method of raising the signal EN in the LUN 100.

於第2實施形態之記憶體系統1中,係藉由同時確立指令閂鎖賦能信號CLE及位址閂鎖賦能信號ALE,而將信號EN上升。另一方面,於第3實施形態之記憶體系統1中,係藉由同時確立指令閂鎖賦能信號CLE、位址閂鎖賦能信號ALE、及寫入賦能信號BWE,而將信號EN 上升。即,同時確立號CLE、ALE、及BWE之動作成為用於將信號EN上升之動作。 In the memory system 1 of the second embodiment, the signal EN is raised by simultaneously asserting the command latch enable signal CLE and the address latch enable signal ALE. On the other hand, in the memory system 1 of the third embodiment, the signal EN is asserted by simultaneously asserting the instruction latch enable signal CLE, the address latch enable signal ALE, and the write enable signal BWE. rise. That is, the operations of simultaneously establishing the numbers CLE, ALE, and BWE become actions for raising the signal EN.

<3-2-1>寫入動作例5 <3-2-1> Write operation example 5

使用圖19,對本實施形態之記憶體系統1之寫入動作例5進行說明。此處,針對記憶體組GP0之指令序列進行說明。 The write operation example 5 of the memory system 1 of the present embodiment will be described with reference to Fig. 19 . Here, the instruction sequence of the memory group GP0 will be described.

於時刻T8,記憶體控制器20確立指令閂鎖賦能信號CLE、位址閂鎖賦能信號ALE、及寫入賦能信號BWE。藉此,如使用圖18所說明般,信號EN變成“高”位準。然後,記憶體控制器20否定指令閂鎖賦能信號CLE、位址閂鎖賦能信號ALE、及寫入賦能信號BWE。因此,由於NAND運算電路101h之輸入信號雖變化,但NAND運算電路101i之輸入信號不變化,故而NAND運算電路101h之輸出信號被保持為“高”位準。其結果,信號EN被保持為“高”位準。 At time T8, the memory controller 20 asserts the instruction latch enable signal CLE, the address latch enable signal ALE, and the write enable signal BWE. Thereby, as explained using FIG. 18, the signal EN becomes a "high" level. Then, the memory controller 20 negates the instruction latch enable signal CLE, the address latch enable signal ALE, and the write enable signal BWE. Therefore, since the input signal of the NAND operation circuit 101h changes, the input signal of the NAND operation circuit 101i does not change, and therefore the output signal of the NAND operation circuit 101h is maintained at the "high" level. As a result, the signal EN is maintained at the "high" level.

時刻T9以後之動作與使用圖8所說明之動作相同。 The operation after time T9 is the same as the operation described using FIG.

<3-2-2>其他存取動作 <3-2-2>Other access actions

如圖20所示,亦可於圖9所說明之寫入動作例3中,應用寫入動作例5之信號EN之上升方法。 As shown in FIG. 20, in the write operation example 3 described with reference to FIG. 9, the rising method of the signal EN in the write operation example 5 can be applied.

同樣地,如圖21所示,亦可於圖10所說明之寫入動作例3中,應用寫入動作例5之信號EN之上升方法。 Similarly, as shown in FIG. 21, in the write operation example 3 described with reference to FIG. 10, the rising method of the signal EN in the write operation example 5 can be applied.

如圖22所示,亦可於圖11所說明之寫入動作例2中,應用寫入動作例5之信號EN之上升方法。 As shown in FIG. 22, in the write operation example 2 described with reference to FIG. 11, the rising method of the signal EN in the write operation example 5 can be applied.

同樣地,如圖23所示,亦可於圖12所說明之寫入動作例3中,應用寫入動作例5之信號EN之上升方法。 Similarly, as shown in FIG. 23, the rising method of the signal EN in the write operation example 5 can be applied to the write operation example 3 described with reference to FIG.

同樣地,如圖24所示,亦可於圖13所說明之寫入動作例3中,應用寫入動作例5之信號EN之上升方法。 Similarly, as shown in FIG. 24, the rising method of the signal EN in the write operation example 5 can be applied to the write operation example 3 described with reference to FIG.

同樣地,如圖25所示,亦可於圖14所說明之寫入動作例3中,應用寫入動作例5之信號EN之上升方法。 Similarly, as shown in FIG. 25, the rising method of the signal EN of the write operation example 5 can be applied to the write operation example 3 described with reference to FIG.

同樣地,如圖26所示,亦可於圖15所說明之寫入動作例4中,應用寫入動作例5之信號EN之上升方法。 Similarly, as shown in FIG. 26, the rising method of the signal EN in the write operation example 5 can be applied to the write operation example 4 described with reference to FIG.

同樣地,如圖27所示,亦可於圖16所說明之寫入動作例4中,應用寫入動作例5之信號EN之上升方法。 Similarly, as shown in FIG. 27, in the write operation example 4 described with reference to FIG. 16, the rising method of the signal EN in the write operation example 5 can be applied.

<3-3>效果 <3-3> effect

根據上述之實施形態,可取得與第2實施形態相同之效果。 According to the above embodiment, the same effects as those of the second embodiment can be obtained.

<3-4>第3實施形態之變化例 <3-4> Variation of the third embodiment

其次,使用圖28,對第3實施形態之變化例之記憶體系統之輸入輸出介面101之構成進行具體說明。第3實施形態之變化例之記憶體系統之輸入輸出介面101與第2實施形態之變化例2之記憶體系統之輸入輸出介面101相比,進而基於寫入賦能信號BWE之反轉信號~BWE,而進行輸入輸出信號DQ之輸入輸出。 Next, the configuration of the input/output interface 101 of the memory system according to the modification of the third embodiment will be specifically described with reference to FIG. The input/output interface 101 of the memory system according to the variation of the third embodiment is further based on the inverted signal of the write enable signal BWE as compared with the input/output interface 101 of the memory system of the second modification of the second embodiment . BWE, and input and output of the input and output signal DQ.

具體而言,NAND運算電路101g1基於信號CLE、ALE、及~BWE,而將運算結果輸出至NAND運算電路101h。NAND運算電路101g1僅於信號CLE、ALE、及~BWE全部為“高”位準之情形時,產生“低”位準之信號。 Specifically, the NAND operation circuit 101g1 outputs the operation result to the NAND operation circuit 101h based on the signals CLE, ALE, and ~ BWE. The NAND operation circuit 101g1 generates a signal of a "low" level only when the signals CLE, ALE, and ~ BWE are all "high" levels.

<4>第4實施形態 <4> Fourth embodiment

對第4實施形態進行說明。於第4實施形態中,針對輸入輸出介面之另一構成進行說明。再者,第4實施形態之記憶裝置之基本構成及基本動作與上述之第1~第3實施形態之記憶裝置相同。因此,省略對上述之第1~第3實施形態所說明之事項及能夠自上述第1~第3實施形態類推之事項之說明。 The fourth embodiment will be described. In the fourth embodiment, another configuration of the input/output interface will be described. Further, the basic configuration and basic operation of the memory device of the fourth embodiment are the same as those of the memory devices of the first to third embodiments described above. Therefore, the matters described in the first to third embodiments described above and the items that can be analogized from the first to third embodiments will be omitted.

<4-1>輸入輸出介面之構成 <4-1> Composition of input and output interface

如圖29所示,可組合第1實施形態之記憶體系統1之輸入輸出介面101、與第2實施形態之記憶體系統1之輸入輸出介面101。 As shown in FIG. 29, the input/output interface 101 of the memory system 1 of the first embodiment and the input/output interface 101 of the memory system 1 of the second embodiment can be combined.

而且,如圖29所示,可藉由開關電路101q,選擇使用第1實施形 態之記憶體系統1之輸入輸出介面101、與第2實施形態之記憶體系統1之輸入輸出介面101之哪一者之信號EN。例如,可藉由利用“設定特徵(Set Feature)”動作等,產生信號MS,並輸入至開關電路101q,而選擇輸出信號。“設定特徵”動作係例如變更LUN100之動作模式等之動作。 Further, as shown in FIG. 29, the first embodiment can be selected by the switch circuit 101q. The signal EN of the input/output interface 101 of the memory system 1 and the input/output interface 101 of the memory system 1 of the second embodiment. For example, the signal MS can be generated by using a "Set Feature" action or the like, and input to the switch circuit 101q to select an output signal. The "set feature" operation is, for example, an operation such as changing the operation mode of the LUN 100.

<4-2>動作 <4-2> action

此處,使用圖30,對本實施形態之記憶體系統之模式選擇動作進行說明。 Here, the mode selection operation of the memory system of the present embodiment will be described with reference to FIG.

如圖30所示,於記憶體系統1之接入電源(Power on)時,將LUN100設定為第1動作模式。而且,記憶體控制器20發行初始化指令“FFh”。接著,記憶體控制器20進行“設定特徵”動作。 As shown in FIG. 30, when the memory system 1 is powered on (Power on), the LUN 100 is set to the first operation mode. Moreover, the memory controller 20 issues an initialization command "FFh". Next, the memory controller 20 performs a "set feature" operation.

具體而言,記憶體控制器20依序對LUN100發行“設定特徵”動作之指令“EFh”及“YYh”,然後,發行動作模式之變更之資訊(W-B0~W-B3)。 Specifically, the memory controller 20 sequentially issues the commands "EFh" and "YYh" of the "set feature" operation to the LUN 100, and then issues information (W-B0 to W-B3) of the change of the operation mode.

LUN100若接收指令“EFh”及“YYh”、與資訊(W-B0~W-B3),則變更動作模式。例如,於本實施例中,變更為第2動作模式。 When the LUN 100 receives the commands "EFh" and "YYh" and the information (W-B0 to W-B3), the LUN 100 changes the operation mode. For example, in the present embodiment, the second operation mode is changed.

此處,關於自第1動作模式變更為第2動作模式之情形之開關電路101q之動作進行簡單說明。如圖29所示,例如,於第1動作模式中,有時以將OR電路101b之輸出信號選擇輸出為信號EN之方式控制開關電路101q。但是,藉由切換為第2動作模式,而以將OR電路101j之輸出信號選擇輸出為信號EN之方式控制開關電路101q。 Here, the operation of the switch circuit 101q in the case where the first operation mode is changed to the second operation mode will be briefly described. As shown in FIG. 29, for example, in the first operation mode, the switch circuit 101q may be controlled such that the output signal of the OR circuit 101b is selectively output as the signal EN. However, by switching to the second operation mode, the switch circuit 101q is controlled such that the output signal of the OR circuit 101j is selectively output as the signal EN.

然後,藉由“設定特徵”動作,只要不變動動作模式,則LUN100以第2動作模式動作。 Then, by the "set feature" operation, the LUN 100 operates in the second operation mode as long as the operation mode is not changed.

於欲使LUN100以第1動作模式動作之情形時,必須再次藉由“設定特徵”動作,變更動作模式。 When the LUN 100 is to be operated in the first operation mode, the operation mode must be changed again by the "set feature" operation.

<4-3>效果 <4-3> effect

藉由如以上般使用開關電路101q,可適當地組合第1及第2實施形態而使其適當地動作。 By using the switch circuit 101q as described above, the first and second embodiments can be combined as appropriate to operate properly.

<4-4>第4實施形態之變化例1 <4-4> Variation 1 of the fourth embodiment

如圖31所示,可組合第1實施形態之記憶體系統1之輸入輸出介面101、與第2實施形態之變化例2之記憶體系統1之輸入輸出介面101。 As shown in FIG. 31, the input/output interface 101 of the memory system 1 of the first embodiment and the input/output interface 101 of the memory system 1 of the second modification of the second embodiment can be combined.

而且,如圖31所示,可藉由開關電路101r,選擇使用第1實施形態之記憶體系統1之輸入輸出介面101、與第2實施形態之變化例2之記憶體系統1之輸入輸出介面101之哪一者之信號。例如,可藉由利用“設定特徵”動作等,產生信號MS,並輸入至開關電路101r,而選擇輸出信號。關於“設定特徵”動作,係與使用圖30所說明之動作相同。 Further, as shown in FIG. 31, the input/output interface 101 of the memory system 1 of the first embodiment and the input/output interface of the memory system 1 of the second modification of the second embodiment can be selected by the switch circuit 101r. The signal of which one of 101. For example, the signal MS can be generated by using a "set feature" operation or the like, and input to the switch circuit 101r to select an output signal. The "set feature" action is the same as the operation described using FIG.

<4-5>第4實施形態之變化例2 <4-5> Variation 2 of the fourth embodiment

如圖32所示,可組合第1實施形態之記憶體系統1之輸入輸出介面101、與第3實施形態之記憶體系統1之輸入輸出介面101。 As shown in FIG. 32, the input/output interface 101 of the memory system 1 of the first embodiment and the input/output interface 101 of the memory system 1 of the third embodiment can be combined.

而且,如圖32所示,可藉由開關電路101q,選擇使用第1實施形態之記憶體系統1之輸入輸出介面101、與第3實施形態之記憶體系統1之輸入輸出介面101之哪一者之信號。例如,可藉由利用“設定特徵”動作等,產生信號MS,並輸入至開關電路101q,而選擇輸出信號。關於“設定特徵”動作,係與使用圖30所說明之動作相同。 Further, as shown in FIG. 32, which of the input/output interface 101 of the memory system 1 of the first embodiment and the input/output interface 101 of the memory system 1 of the third embodiment can be selected by the switch circuit 101q Signal of the person. For example, the signal MS can be generated by using a "set feature" operation or the like, and input to the switch circuit 101q to select an output signal. The "set feature" action is the same as the operation described using FIG.

<4-6>第4實施形態之變化例3 <4-6> Variation 3 of the fourth embodiment

如圖33所示,可組合第1實施形態之記憶體系統1之輸入輸出介面101、與第3實施形態之變化例之記憶體系統1之輸入輸出介面101。 As shown in FIG. 33, the input/output interface 101 of the memory system 1 of the first embodiment and the input/output interface 101 of the memory system 1 of the modification of the third embodiment can be combined.

而且,如圖33所示,可藉由開關電路101r,選擇使用第1實施形態之記憶體系統1之輸入輸出介面101、與第3實施形態之變化例之記憶體系統1之輸入輸出介面101之哪一者之信號。例如,可藉由利用 “設定特徵”動作等,產生信號MS,並輸入至開關電路101r,而選擇輸出信號。關於“設定特徵”動作,係與使用圖30所說明之動作相同。 Further, as shown in FIG. 33, the input/output interface 101 of the memory system 1 of the first embodiment and the input/output interface 101 of the memory system 1 according to the modification of the third embodiment can be selected by the switch circuit 101r. Which one of the signals. For example, by using The "set feature" action or the like generates a signal MS and is input to the switch circuit 101r to select an output signal. The "set feature" action is the same as the operation described using FIG.

<5>第5實施形態 <5> Fifth embodiment

對第5實施形態進行說明。於第5實施形態中,針對輸入輸出介面之另一構成進行說明。再者,第5實施形態之記憶裝置之基本構成及基本動作與上述之第1、第2實施形態之記憶裝置相同。因此,省略對上述之第1、第2實施形態所說明之事項及能夠自上述第1、第2實施形態類推之事項之說明。 The fifth embodiment will be described. In the fifth embodiment, another configuration of the input/output interface will be described. Further, the basic configuration and basic operation of the memory device of the fifth embodiment are the same as those of the memory devices of the first and second embodiments described above. Therefore, the matters described in the first and second embodiments described above and the matters that can be analogized from the first and second embodiments will be omitted.

<5-1>輸入輸出介面之構成 <5-1> Composition of input and output interface

其次,使用圖34對輸入輸出介面101之構成進行具體說明。 Next, the configuration of the input/output interface 101 will be specifically described using FIG.

如圖34所示,輸入輸出介面101基於寫入保護信號BWP之反轉信號~BWP、或來自位址暫存器105之信號,而進行輸入輸出信號DQ之輸入輸出。 As shown in FIG. 34, the input/output interface 101 performs input and output of the input/output signal DQ based on the inverted signal ~ BWP of the write protection signal BWP or the signal from the address register 105.

OR運算電路101s基於信號~BWP及來自位址暫存器105之信號,而產生信號EN。OR運算電路101s僅於信號~BWP及來自位址暫存器105之信號均為“低”位準之情形時,輸出“低”位準之信號EN。換言之,即OR運算電路101s於信號~BWP及來自位址暫存器105之信號之至少一者為“高”位準之情形時,輸出“高”位準之信號EN。 The OR operation circuit 101s generates a signal EN based on the signals ~ BWP and the signal from the address register 105. The OR operation circuit 101s outputs the signal "EN" of the "low" level only when the signal ~ BWP and the signal from the address register 105 are "low" level. In other words, the OR operation circuit 101s outputs the signal "EN" of the "high" level when at least one of the signals ~ BWP and the signal from the address register 105 is "high".

接收器120基於信號EN、及輸入輸出信號DQ,而於LUN100之內部接收輸入輸出信號DQ。接收器120僅於信號EN、及輸入輸出信號DQ均為“高”位準之情形時,於LUN100之內部接收輸入輸出信號DQ。 The receiver 120 receives the input and output signal DQ inside the LUN 100 based on the signal EN and the input and output signal DQ. The receiver 120 receives the input/output signal DQ inside the LUN 100 only when the signal EN and the input/output signal DQ are both "high".

<5-2>動作 <5-2> action

<5-2-1>寫入動作例6 <5-2-1> Write operation example 6

使用圖35,對本實施形態之記憶體系統1之寫入動作例6進行說 明。此處,針對記憶體組GP0之指令序列進行說明。 The write operation example 6 of the memory system 1 of the present embodiment will be described with reference to FIG. Bright. Here, the instruction sequence of the memory group GP0 will be described.

於時刻T20,記憶體控制器20確立(“低”位準)寫入保護信號BWP。於寫入保護信號BWP確立之期間,信號EN被保持為“高”位準。 At time T20, the memory controller 20 asserts ("low" level) write protection signal BWP. During the assertion of the write protection signal BWP, the signal EN is held at the "high" level.

於自時刻T20經過期間tCALS後之時刻T21,記憶體控制器20發行寫入指令“01h”及“80h”。 At time T21 after the period T CALS elapses from time T20, the memory controller 20 issues write commands "01h" and "80h".

於確定LUN100之位址之後,於時刻T22,記憶體控制器20否定(“高”位準)寫入保護信號BWP。若寫入保護信號BWP被否定,則非選擇LUN100內之信號EN變成“低”位準。另一方面,於選擇LUN100內,因位址暫存器105之信號被保持為“高”位準,故信號EN被保持為“高”位準。 After determining the address of the LUN 100, at time T22, the memory controller 20 writes the protection signal BWP negative ("high" level). If the write protection signal BWP is negated, the signal EN in the non-selected LUN 100 becomes a "low" level. On the other hand, in the selection LUN 100, since the signal of the address register 105 is maintained at the "high" level, the signal EN is maintained at the "high" level.

其他動作與使用圖8所說明之動作相同。 The other actions are the same as those described using FIG.

如以上,於本實施形態中,使用寫入保護信號BWP,控制信號EN。另一方面,於實現本動作之情形時,無法進行寫入保護動作。但是,若使用“設定特徵”等動作,則可適當地切換使本實施形態動作之模式、與使用寫入保護動作之模式。 As described above, in the present embodiment, the write protection signal BWP is used to control the signal EN. On the other hand, when the present operation is implemented, the write protection operation cannot be performed. However, if an operation such as "setting feature" is used, the mode in which the present embodiment operates and the mode in which the write protection operation is used can be appropriately switched.

<5-2-2>寫入動作例7 <5-2-2> Write operation example 7

使用圖36、圖37,對本實施形態之記憶體系統1之寫入動作例7進行說明。此處,針對記憶體組GP0之指令序列進行說明。 The write operation example 7 of the memory system 1 of the present embodiment will be described with reference to FIGS. 36 and 37. Here, the instruction sequence of the memory group GP0 will be described.

寫入動作例7之信號EN之上升方法因與寫入動作例6相同,故而省略說明。此處,針對非選擇LUN100之信號EN之下降時序進行說明。 The method of raising the signal EN in the write operation example 7 is the same as that in the write operation example 6, and thus the description thereof is omitted. Here, the falling timing of the signal EN of the non-selected LUN 100 will be described.

例如,於列位址R3中包含選擇LUN位址。於確定LUN100之位址之後,於時刻T23,記憶體控制器20否定(“高”位準)寫入保護信號BWP。若寫入保護信號BWP被否定,則非選擇LUN100內之信號EN變成“低”位準。另一方面,於選擇LUN100內,因位址暫存器105之信 號被保持為“高”位準,故信號EN被保持為“高”位準。 For example, the selection LUN address is included in the column address R3. After determining the address of the LUN 100, at time T23, the memory controller 20 writes the protection signal BWP negative ("high" level). If the write protection signal BWP is negated, the signal EN in the non-selected LUN 100 becomes a "low" level. On the other hand, in the selection of LUN 100, the letter due to the address register 105 The number is maintained at the "high" level, so the signal EN is held at the "high" level.

如圖36所示,亦可於接收列位址R3之後,非選擇LUN100內之信號EN立刻變成“低”位準。如圖37所示,亦可按資料之輸入輸出前後之時序,而非選擇LUN100內之信號EN變成“低”位準。 As shown in FIG. 36, after receiving the column address R3, the signal EN in the non-selected LUN 100 immediately becomes a "low" level. As shown in FIG. 37, the timing before and after the input and output of the data may be selected instead of selecting the signal EN in the LUN 100 to become a "low" level.

<5-2-3>讀出動作例5 <5-2-3> Read operation example 5

使用圖38,對本實施形態之記憶體系統1之讀出動作例5進行說明。此處,針對記憶體組GP0之指令序列進行說明。 The read operation example 5 of the memory system 1 of the present embodiment will be described with reference to Fig. 38. Here, the instruction sequence of the memory group GP0 will be described.

於時刻T25,記憶體控制器20確立寫入保護信號BWP。於寫入保護信號BWP確立之期間,信號EN被保持為“高”位準。 At time T25, the memory controller 20 asserts the write protection signal BWP. During the assertion of the write protection signal BWP, the signal EN is held at the "high" level.

於自時刻T25經過期間tCALS後之時刻T26,發行讀出指令“05h”。 From time to time t after the CALS T26, T25 elapsed during the release read instruction "05h".

於確定為讀出動作之後,於時刻T27,記憶體控制器20否定(“高”位準)寫入保護信號BWP。若寫入保護信號BWP被否定,則選擇LUN100內之信號EN變成“低”位準。 After determining that the read operation is performed, at time T27, the memory controller 20 writes the protection signal BWP negative ("high" level). If the write protection signal BWP is negated, the signal EN in the LUN 100 is selected to become a "low" level.

<5-2-4>讀出動作例6 <5-2-4> Read operation example 6

使用圖39~圖41,對本實施形態之記憶體系統1之讀出動作例6進行說明。此處,針對記憶體組GP0之指令序列進行說明。 The read operation example 6 of the memory system 1 of the present embodiment will be described with reference to FIGS. 39 to 41. Here, the instruction sequence of the memory group GP0 will be described.

讀出動作例6之信號EN之上升方法因與讀出動作例5相同,故而省略說明。此處,針對LUN100之信號EN之下降時序進行說明。 The method of raising the signal EN in the read operation example 6 is the same as that of the read operation example 5, and thus the description thereof is omitted. Here, the timing of the falling of the signal EN of the LUN 100 will be described.

於確定為讀出動作之後,於時刻T28,記憶體控制器20否定(“高”位準)寫入保護信號BWP。若寫入保護信號BWP被否定,則選擇LUN100內之信號EN變成“低”位準。 After determining that the read operation is performed, at time T28, the memory controller 20 writes the protection signal BWP negative ("high" level). If the write protection signal BWP is negated, the signal EN in the LUN 100 is selected to become a "low" level.

如圖39所示,亦可於接收列位址R3之後,LUN100內之信號EN立刻變成“低”位準。又,如圖40所示,亦可於接收指令“E0h”之後,LUN100內之信號EN立刻變成“低”位準。又,如圖41所示,亦可按資料之輸入輸出前後之時序,而LUN100內之信號EN變成“低” 位準。 As shown in FIG. 39, after receiving the column address R3, the signal EN in the LUN 100 immediately becomes a "low" level. Further, as shown in FIG. 40, after receiving the command "E0h", the signal EN in the LUN 100 immediately becomes a "low" level. Moreover, as shown in FIG. 41, the timing before and after the input and output of the data may be used, and the signal EN in the LUN 100 becomes "low". Level.

<5-3>效果 <5-3> effect

根據上述之實施形態,可取得與第2實施形態相同之效果。 According to the above embodiment, the same effects as those of the second embodiment can be obtained.

<5-4>第5實施形態之變化例 <5-4> Variation of the fifth embodiment

於第5實施形態中,使用寫入保護信號BWP,進行信號EN之控制。但是,亦可採用信號EN之控制專用之信號NP。於該情形時,如圖34所示,取代信號~BWP而將信號NP輸入至OR運算電路101s。該信號NP係設為自記憶體控制器20輸入至NAND型快閃記憶體10者。 In the fifth embodiment, the control of the signal EN is performed using the write protection signal BWP. However, a signal NP dedicated to the control of the signal EN can also be used. In this case, as shown in FIG. 34, the signal NP is input to the OR operation circuit 101s instead of the signal ~ BWP. This signal NP is set to be input from the memory controller 20 to the NAND type flash memory 10.

<5-4-1>寫入動作例8 <5-4-1> Write operation example 8

使用圖42,對本實施形態之記憶體系統1之寫入動作例8進行說明。此處,針對記憶體組GP0之指令序列進行說明。 The write operation example 8 of the memory system 1 of the present embodiment will be described with reference to FIG. Here, the instruction sequence of the memory group GP0 will be described.

於時刻T20,記憶體控制器20確立(“高”位準)信號NP。於信號NP確立之期間,信號EN被保持為“高”位準。 At time T20, the memory controller 20 asserts ("high" level) signal NP. During the assertion of signal NP, signal EN is held at the "high" level.

於自時刻T20經過期間tCALS後之時刻T21,記憶體控制器20發行寫入指令“01h”及“80h”。 At time T21 after the period T CALS elapses from time T20, the memory controller 20 issues write commands "01h" and "80h".

於確定LUN100之位址之後,於時刻T22,記憶體控制器20否定(“低”位準)信號NP。若信號NP被否定,則非選擇LUN100內之信號EN變成“低”位準。另一方面,於選擇LUN100內,因位址暫存器105之信號被保持為“高”位準,故而信號EN被保持為“高”位準。 After determining the address of LUN 100, at time T22, memory controller 20 negates ("low" level) signal NP. If the signal NP is negated, the signal EN in the non-selected LUN 100 becomes a "low" level. On the other hand, in the selection LUN 100, since the signal of the address register 105 is maintained at the "high" level, the signal EN is maintained at the "high" level.

其他動作與使用圖8所說明之動作相同。 The other actions are the same as those described using FIG.

如以上,於本實施形態中,使用信號NP,控制信號EN。 As described above, in the present embodiment, the signal NP is used to control the signal EN.

<5-4-2>寫入動作例9 <5-4-2> Write operation example 9

使用圖43、圖44,對本實施形態之記憶體系統1之寫入動作例9進行說明。此處,針對記憶體組GP0之指令序列進行說明。 The write operation example 9 of the memory system 1 of the present embodiment will be described with reference to FIGS. 43 and 44. Here, the instruction sequence of the memory group GP0 will be described.

寫入動作例9之信號EN之上升方法因與寫入動作例8相同,故而省略說明。此處,針對非選擇LUN100之信號EN之下降時序進行說 明。 The method of raising the signal EN in the write operation example 9 is the same as that in the write operation example 8, and thus the description thereof is omitted. Here, the timing of the falling of the signal EN of the non-selected LUN 100 is described. Bright.

例如,於列位址R3中包含選擇LUN位址。於確定LUN100之位址之後,於時刻T23,記憶體控制器20否定信號NP。若信號NP被否定,則非選擇LUN100內之信號EN變成“低”位準。另一方面,於選擇LUN100內,因位址暫存器105之信號被保持為“高”位準,故而信號EN被保持為“高”位準。 For example, the selection LUN address is included in the column address R3. After determining the address of the LUN 100, at time T23, the memory controller 20 negates the signal NP. If the signal NP is negated, the signal EN in the non-selected LUN 100 becomes a "low" level. On the other hand, in the selection LUN 100, since the signal of the address register 105 is maintained at the "high" level, the signal EN is maintained at the "high" level.

如圖43所示,亦可於接收列位址R3之後,非選擇LUN100內之信號EN立刻變成“低”位準。如圖44所示,亦可按資料之輸入輸出前後之時序,而非選擇LUN100內之信號EN變成“低”位準。 As shown in FIG. 43, after receiving the column address R3, the signal EN in the non-selected LUN 100 immediately becomes a "low" level. As shown in FIG. 44, it is also possible to select the timing before and after the input and output of the data, instead of selecting the signal EN in the LUN 100 to become the "low" level.

<5-4-3>讀出動作例7 <5-4-3> Read operation example 7

使用圖45,對本實施形態之記憶體系統1之讀出動作例7進行說明。此處,針對記憶體組GP0之指令序列進行說明。 The read operation example 7 of the memory system 1 of the present embodiment will be described with reference to FIG. Here, the instruction sequence of the memory group GP0 will be described.

於時刻T25,記憶體控制器20確立信號NP。於信號NP確立之期間,信號EN被保持為“高”位準。 At time T25, the memory controller 20 asserts the signal NP. During the assertion of signal NP, signal EN is held at the "high" level.

於自時刻T25經過期間tCALS後之時刻T26,發行讀出指令“05h”。 From time to time t after the CALS T26, T25 elapsed during the release read instruction "05h".

於確定為讀出動作之後,於時刻T27,記憶體控制器20否定信號NP。若信號NP被否定,則選擇LUN100內之信號EN變成“低”位準。 After determining that the read operation is performed, at time T27, the memory controller 20 rejects the signal NP. If the signal NP is negated, the signal EN in the LUN 100 is selected to become a "low" level.

<5-4-4>讀出動作例8 <5-4-4> Read operation example 8

使用圖46~圖48,對本實施形態之記憶體系統1之讀出動作例8進行說明。此處,針對記憶體組GP0之指令序列進行說明。 The read operation example 8 of the memory system 1 of the present embodiment will be described with reference to FIGS. 46 to 48. Here, the instruction sequence of the memory group GP0 will be described.

讀出動作例8之信號EN之上升方法因與讀出動作例7相同,故而省略說明。此處,針對LUN100之信號EN之下降時序進行說明。 The method of raising the signal EN in the read operation example 8 is the same as that of the read operation example 7, and thus the description thereof is omitted. Here, the timing of the falling of the signal EN of the LUN 100 will be described.

於確定為讀出動作之後,於時刻T28,記憶體控制器20否定信號NP。若信號NP被否定,則選擇LUN100內之信號EN變成“低”位 準。 After determining that the read operation is performed, at time T28, the memory controller 20 rejects the signal NP. If the signal NP is negated, the signal EN in the LUN 100 is selected to become the "low" bit. quasi.

如圖46所示,亦可於接收列位址R3之後,LUN100內之信號EN立刻變成“低”位準。又,如圖47所示,亦可於接收指令“E0h”之後,LUN100內之信號EN立刻變成“低”位準。又,如圖48所示,亦可按資料之輸入輸出前後之時序,而LUN100內之信號EN變成“低”位準。 As shown in FIG. 46, after receiving the column address R3, the signal EN in the LUN 100 immediately becomes a "low" level. Further, as shown in FIG. 47, after receiving the command "E0h", the signal EN in the LUN 100 immediately becomes a "low" level. Moreover, as shown in FIG. 48, the timing before and after the input and output of the data can be made, and the signal EN in the LUN 100 becomes the "low" level.

<6>第6實施形態 <6> Sixth Embodiment

對第6實施形態進行說明。於第6實施形態中,針對輸入輸出介面之另一構成進行說明。再者,第6實施形態之記憶裝置之基本構成及基本動作與上述之第1、第5實施形態之記憶裝置相同。因此,省略對上述之第1、第5實施形態所說明之事項及能夠自上述第1、第5實施形態類推之事項之說明。 The sixth embodiment will be described. In the sixth embodiment, another configuration of the input/output interface will be described. Further, the basic configuration and basic operation of the memory device of the sixth embodiment are the same as those of the memory devices of the first and fifth embodiments described above. Therefore, the matters described in the first and fifth embodiments described above and the items that can be analogized from the first and fifth embodiments will be omitted.

<6-1>輸入輸出介面之構成 <6-1> Composition of input and output interface

如圖49所示,可組合第1實施形態之記憶體系統1之輸入輸出介面101、與第5實施形態之記憶體系統1之輸入輸出介面101。 As shown in FIG. 49, the input/output interface 101 of the memory system 1 of the first embodiment and the input/output interface 101 of the memory system 1 of the fifth embodiment can be combined.

而且,如圖49所示,可藉由開關電路101t,選擇使用第1實施形態之記憶體系統1之輸入輸出介面101、與第5實施形態之記憶體系統1之輸入輸出介面101之哪一者之信號EN。例如,可藉由利用“設定特徵”動作等,產生信號MS,並輸入至開關電路101t,而選擇輸出信號。關於“設定特徵”動作,係與使用圖30所說明之動作相同。 Further, as shown in FIG. 49, which of the input/output interface 101 of the memory system 1 of the first embodiment and the input/output interface 101 of the memory system 1 of the fifth embodiment can be selected by the switch circuit 101t The signal of EN. For example, the signal MS can be generated by using a "set feature" operation or the like, and input to the switch circuit 101t to select an output signal. The "set feature" action is the same as the operation described using FIG.

<7>第7實施形態 <7> Seventh Embodiment

對第7實施形態進行說明。於第7實施形態中,針對接收器之另一構成進行說明。再者,第7實施形態之記憶裝置之基本構成及基本動作與上述之第1~第6實施形態之記憶裝置相同。因此,省略對上述第1~第6實施形態所說明之事項及能夠自上述第1~第6實施形態類推之事項之說明。於以下說明之接收器可應用於上述之各實施形態。 The seventh embodiment will be described. In the seventh embodiment, another configuration of the receiver will be described. Further, the basic configuration and basic operation of the memory device of the seventh embodiment are the same as those of the memory devices of the first to sixth embodiments described above. Therefore, the description of the matters described in the first to sixth embodiments and the matters that can be analogized from the first to sixth embodiments will be omitted. The receiver described below can be applied to each of the above embodiments.

<7-1>接收器之構成 <7-1> Composition of the receiver

使用圖50,對接收器120之另一例進行說明。 Another example of the receiver 120 will be described using FIG.

例如,於待機時(未進行資料之授受時),就消耗電力之削減而言,抑制消耗電流較佳。因此,於本實施形態中,接收器120具備雖於高速下無法動作但低消耗電流之第1接收器101v、雖可高速地動作但高消耗電流之第2接收器101w、及選擇第1接收器101v及第2接收器101w之連接之開關電路101u。 For example, in standby mode (when data is not being exchanged), it is preferable to suppress the consumption current in terms of reduction in power consumption. Therefore, in the present embodiment, the receiver 120 includes the first receiver 101v that is inoperable but does not operate at a high speed, and the second receiver 101w that can operate at high speed but consumes a high current, and selects the first receiver. The switch 101u connected to the device 101v and the second receiver 101w.

開關電路101u係於信號EN為“低”位準之時,將資料輸入輸出線連接於第1接收器101v,於信號EN為“高”位準之時,將資料輸入輸出線連接於第2接收器101w。 The switch circuit 101u connects the data input/output line to the first receiver 101v when the signal EN is at the "low" level, and connects the data input/output line to the second when the signal EN is at the "high" level. Receiver 101w.

<7-2>第1接收器之構成 <7-2> Composition of the first receiver

使用圖51,對第1接收器101v之電路例進行說明。 An example of the circuit of the first receiver 101v will be described with reference to Fig. 51.

如圖51所示,第1接收器101v具備包含PMOS(Positive-channel Metal Oxide Aemiconductor:正通道金屬氧化物半導體)電晶體11a與NMOS(Negative-channel Metal Mxide Memiconductor:負通道金屬氧化物半導體)電晶體11b之反相器。 As shown in FIG. 51, the first receiver 101v includes a PMOS (Positive-Channel Metal Oxide AEMI Semiconductor) transistor 11a and an NMOS (Negative-channel Metal Mxide Memiconduct). The inverter of the crystal 11b.

對PMOS電晶體11a之源極施加電源電壓VDD,汲極係連接於輸出端子(節點N2),於閘極連接輸入端子(節點N1)。於NMOS電晶體11b之汲極連接輸出端子(節點N2),源極係連接於接地電位,於閘極連接輸入端子(節點N1)。 A power supply voltage VDD is applied to the source of the PMOS transistor 11a, a drain is connected to the output terminal (node N2), and a gate is connected to the input terminal (node N1). The drain terminal of the NMOS transistor 11b is connected to the output terminal (node N2), the source is connected to the ground potential, and the gate is connected to the input terminal (node N1).

即,第1接收器101v係於輸入信號為“低”位準之情形時,自輸出端子輸出“高”位準之信號,於輸入信號為“高”位準之情形時,自輸出端子輸出“低”位準之信號。 That is, when the input signal is at the "low" level, the first receiver 101v outputs a signal of "high" level from the output terminal, and outputs the output signal from the output terminal when the input signal is at the "high" level. The signal of the "low" level.

<7-3>第2接收器之構成 <7-3> Composition of the second receiver

使用圖52,對第2接收器101w之電路例進行說明。 A circuit example of the second receiver 101w will be described with reference to Fig. 52.

如圖52所示,第2接收器101w具備包含PMOS電晶體11c、11d、 11e、11f與NMOS電晶體11g、11h、11i之鏡電路。 As shown in FIG. 52, the second receiver 101w includes PMOS transistors 11c and 11d, and 11e, 11f and mirror circuits of NMOS transistors 11g, 11h, 11i.

對PMOS電晶體11c之源極施加電源電壓VDD,對閘極輸入信號ENBn(信號EN之反轉信號)。PMOS電晶體11c於信號ENBn為“低”位準之時流通電流。 A power supply voltage VDD is applied to the source of the PMOS transistor 11c, and a gate input signal ENBn (inversion signal of the signal EN) is applied. The PMOS transistor 11c circulates a current when the signal ENBn is at a "low" level.

於PMOS電晶體11e之源極連接PMOS電晶體11c之汲極,且汲極係連接於閘極。 The drain of the PMOS transistor 11c is connected to the source of the PMOS transistor 11e, and the drain is connected to the gate.

對PMOS電晶體11d之源極施加電源電壓VDD,對閘極輸入信號ENBn。PMOS電晶體11d於信號ENBn為“低”位準之時流通電流。 A power supply voltage VDD is applied to the source of the PMOS transistor 11d, and a gate input signal ENBn is applied. The PMOS transistor 11d circulates a current when the signal ENBn is at a "low" level.

於PMOS電晶體11f之源極連接PMOS電晶體11d之汲極,且汲極係連接於輸出端子(節點N6),閘極係連接於節點N5。PMOS電晶體11f流通與PMOS電晶體11e相同之電流。 The drain of the PMOS transistor 11d is connected to the source of the PMOS transistor 11f, and the drain is connected to the output terminal (node N6), and the gate is connected to the node N5. The PMOS transistor 11f flows through the same current as the PMOS transistor 11e.

NMOS電晶體11g係汲極連接於節點N5,源極連接於節點N7,且對閘極施加參照電壓VREF。NMOS電晶體11g流通參照電流。 The NMOS transistor 11g is connected to the node N5, the source is connected to the node N7, and the reference voltage VREF is applied to the gate. The NMOS transistor 11g flows a reference current.

NMOS電晶體11h係汲極連接於輸出端子(節點N6),源極連接於節點N7,且於閘極連接輸入端子。 The NMOS transistor 11h is connected to the output terminal (node N6), the source is connected to the node N7, and the gate is connected to the input terminal.

NMOS電晶體11i係汲極連接於節點N7,源極連接於接地電位,且對閘極施加參照電壓IREFN。該NMOS電晶體11i係作為恆定電流源而發揮功能。 The NMOS transistor 11i is connected to the node N7, the source is connected to the ground potential, and the reference voltage IREFN is applied to the gate. The NMOS transistor 11i functions as a constant current source.

即,第2接收器101w係於信號ENBn為“低”位準且輸入信號為“低”位準之情形時,自輸出端子輸出“高”位準之信號,於信號ENBn為“低”位準且輸入信號為“高”位準之情形時,自輸出端子輸出“低”位準之信號。 That is, when the signal ENBn is at the "low" level and the input signal is at the "low" level, the second receiver 101w outputs a signal of "high" level from the output terminal, and the signal ENBn is "low". When the input signal is in the "high" level, the signal of the "low" level is output from the output terminal.

<8>補充說明 <8>Additional instructions

再者,於圖53表示上述之各實施形態之信號EN之上升(為將所有LUN100設為啟動)之條件。 Further, Fig. 53 shows the condition of the rise of the signal EN (which is to start all the LUNs 100) in the above-described respective embodiments.

又,於上述之各實施形態中,雖對信號EN之下降時序進行各種 說明,但並不限於上述之時序,能夠適當進行變更。具體而言,只要按開始資料之輸入輸出前後之時序信號EN下降即可。藉此,可抑制對非選擇LUN、或讀出動作時之LUN之無用之電流之消耗。 Further, in each of the above embodiments, various timings of the falling of the signal EN are performed. The description is not limited to the above-described timing, and can be appropriately changed. Specifically, it is only necessary to decrease the timing signal EN before and after the input and output of the start data. Thereby, consumption of a non-selected LUN or a useless current of the LUN at the time of the read operation can be suppressed.

又,於關於本發明之各實施形態中: Further, in each of the embodiments of the present invention:

(1)於讀出動作中, 對A位準之讀出動作對選擇之字元線施加之電壓例如為0V~0.55V之間。並不限定於此,亦可設為0.1V~0.24V、0.21V~0.31V、0.31V~0.4V、0.4V~0.5V、0.5V~0.55V任一者之間。 (1) In the readout action, The voltage applied to the selected word line for the read operation of the A level is, for example, between 0V and 0.55V. It is not limited to this, and may be set between 0.1V to 0.24V, 0.21V to 0.31V, 0.31V to 0.4V, 0.4V to 0.5V, and 0.5V to 0.55V.

對B位準之讀出動作對選擇之字元線施加之電壓例如為1.5V~2.3V之間。並不限定於此,亦可設為1.65V~1.8V、1.8V~1.95V、1.95V~2.1V、2.1V~2.3V任一者之間。 The voltage applied to the selected word line for the read operation of the B level is, for example, between 1.5V and 2.3V. It is not limited to this, and may be set between 1.65V and 1.8V, 1.8V to 1.95V, 1.95V to 2.1V, and 2.1V to 2.3V.

對C位準之讀出動作對選擇之字元線施加之電壓例如為3.0V~4.0V之間。並不限定於此,亦可設為3.0V~3.2V、3.2V~3.4V、3.4V~3.5V、3.5V~3.6V、3.6V~4.0V任一者之間。 The voltage applied to the selected word line for the read operation of the C level is, for example, between 3.0V and 4.0V. It is not limited to this, and may be set between 3.0V and 3.2V, 3.2V to 3.4V, 3.4V to 3.5V, 3.5V to 3.6V, and 3.6V to 4.0V.

作為讀出動作之時間(tR),亦可設為例如25μs~38μs、38μs~70μs、70μs~80μs之間。 The time (tR) as the read operation may be, for example, between 25 μs and 38 μs, between 38 μs and 70 μs, and between 70 μs and 80 μs.

(2)寫入動作係如上述般包含編程動作與驗證動作。於寫入動作中, 於編程動作時對選擇之字元線最初施加之電壓例如為13.7V~14.3V之間。並不限定於此,亦可設為例如13.7V~14.0V、14.0V~14.6V任一者之間。 (2) The write operation includes a program operation and a verification operation as described above. In the write action, The voltage initially applied to the selected word line during the programming operation is, for example, between 13.7V and 14.3V. The present invention is not limited thereto, and may be, for example, between 13.7V and 14.0V and between 14.0V and 14.6V.

亦可改變對奇數序號之字元線進行寫入時之對選擇之字元線最初施加之電壓、與對偶數序號之字元線進行寫入時之對選擇之字元線最初施加之電壓。 It is also possible to change the voltage initially applied to the selected word line when writing to the odd-numbered character line, and the voltage initially applied to the selected word line when writing to the even-numbered word line.

於將編程動作設為ISPP方式(Incremental Step Pulse Program:增量階躍脈衝編程)時,作為升壓之電壓,例舉例如0.5V左右。 When the programming operation is set to the ISPP method (Incremental Step Pulse Program), the voltage to be boosted is, for example, about 0.5 V.

作為對非選擇之字元線施加之電壓,亦可為例如6.0V~7.3V之間。並不限定於此,既可設為例如7.3V~8.4V之間,亦可設為6.0V以下。 The voltage applied to the unselected word line may be, for example, between 6.0V and 7.3V. The present invention is not limited thereto, and may be, for example, between 7.3 V and 8.4 V, or may be 6.0 V or less.

亦可按照非選擇之字元線為奇數序號之字元線、還是偶數序號之字元線,而改變施加之通路電壓。 The applied path voltage can also be changed according to whether the unselected word line is an odd-numbered word line or an even-numbered word line.

作為寫入動作之時間(tProg),亦可設為例如1700μs~1800μs、1800μs~1900μs、1900μs~2000μs之間。 The time (tProg) of the writing operation may be, for example, between 1700 μs and 1800 μs, between 1800 μs and 1900 μs, and between 1900 μs and 2000 μs.

(3)於抹除動作中, 對於形成於半導體基板上部、且於上方配置有上述記憶胞之晶圓最初施加之電壓例如為12V~13.6V之間。並不限定於該情形,亦可設為例如13.6V~14.8V、14.8V~19.0V、19.0~19.08V、19.8V~21V之間。 (3) in the erasing action, The voltage applied to the wafer formed on the upper portion of the semiconductor substrate and on which the memory cell is placed is, for example, between 12V and 13.6V. The present invention is not limited to this case, and may be, for example, 13.6 V to 14.8 V, 14.8 V to 19.0 V, 19.0 to 19.08 V, and 19.8 V to 21 V.

作為抹除動作之時間(tErase),亦可設為例如3000μs~4000μs、4000μs~5000μs、4000μs~9000μs之間。 The time (tErase) of the erasing operation may be, for example, between 3000 μs and 4000 μs, between 4000 μs and 5000 μs, and between 4000 μs and 9000 μs.

(4)記憶胞之構造具有 於半導體基板(矽基板)上介隔膜厚為4~10nm之穿隧絕緣膜而配置之電荷儲存層。該電荷儲存層可設為膜厚為2~3nm之SiN、或SiON等絕緣膜、與膜厚為3~8nm之多晶矽之積層構造。又,於多晶矽中,亦可添加Ru等金屬。於電荷儲存層之上具有絕緣膜。該絕緣膜具有例如膜厚為3~10nm之下層High-k(高介電常數)膜、與膜厚為3~10nm之上層High-k膜所夾持之膜厚為4~10nm之氧化矽膜。High-k膜可列舉HfO等。又,氧化矽膜之膜厚可設為較High-k膜之膜厚更厚。於絕緣膜上,介隔膜厚為3~10nm之材料而形成有膜厚為30nm~70nm之控制電極。此處,功函數調整用之材料例如為TaO等金屬氧化膜、TaN等金屬氮化膜。控制電極可使用W等。 (4) The structure of the memory cell has A charge storage layer disposed on the semiconductor substrate (tantalum substrate) with a tunneling insulating film having a thickness of 4 to 10 nm. The charge storage layer may have a laminated structure of SiN having a film thickness of 2 to 3 nm or an insulating film such as SiON and a polycrystalline silicon having a thickness of 3 to 8 nm. Further, a metal such as Ru may be added to the polycrystalline silicon. An insulating film is provided over the charge storage layer. The insulating film has, for example, a layer of High-k (high dielectric constant) film having a thickness of 3 to 10 nm, and a cerium oxide having a film thickness of 4 to 10 nm sandwiched between a layer of a high-k film having a thickness of 3 to 10 nm. membrane. Examples of the high-k film include HfO and the like. Further, the film thickness of the ruthenium oxide film can be made thicker than the film thickness of the High-k film. A control electrode having a thickness of 30 nm to 70 nm is formed on the insulating film with a thickness of 3 to 10 nm. Here, the material for adjusting the work function is, for example, a metal oxide film such as TaO or a metal nitride film such as TaN. The control electrode can use W or the like.

又,於記憶胞間可形成氣隙。 Moreover, an air gap can be formed between the memory cells.

以上,雖然已說明本發明之實施形態,但本發明並非限定於上述實施形態,可在不脫離其主旨之範圍內進行各種變化而實施。進而,上述實施形態中包含各種階段之發明,藉由適當組合所揭示之構成要件,可擷取各種發明。例如,若為自所揭示之構成要件中削除若干構成要件,仍可獲得特定效果者,則亦可擷取為發明。 The embodiments of the present invention have been described above, but the present invention is not limited to the embodiments described above, and various modifications can be made without departing from the spirit and scope of the invention. Further, the above embodiment includes various stages of the invention, and various inventions can be obtained by appropriately combining the disclosed constituent elements. For example, if a certain component is removed from the disclosed constituent elements and a specific effect is still obtained, it may be taken as an invention.

101‧‧‧輸入輸出介面 101‧‧‧Input and output interface

101c‧‧‧NAND運算電路 101c‧‧‧NAND computing circuit

101d‧‧‧反相器 101d‧‧‧Inverter

101g‧‧‧NAND運算電路 101g‧‧‧NAND computing circuit

101h‧‧‧NAND運算電路 101h‧‧‧NAND computing circuit

101i‧‧‧NAND運算電路 101i‧‧‧NAND computing circuit

101j‧‧‧OR運算電路 101j‧‧‧OR operation circuit

104‧‧‧指令暫存器 104‧‧‧ instruction register

105‧‧‧位址暫存器 105‧‧‧ address register

105a‧‧‧記憶部 105a‧‧‧Memory Department

120‧‧‧接收器 120‧‧‧ Receiver

ADD‧‧‧位址 ADD‧‧‧ address

ALE‧‧‧位址閂鎖賦能信號 ALE‧‧‧ address latching enable signal

BWE‧‧‧寫入賦能信號 BWE‧‧‧Write enable signal

CLE‧‧‧指令閂鎖賦能信號 CLE‧‧‧ instruction latching enable signal

DQ‧‧‧輸入輸出信號 DQ‧‧‧ input and output signals

EN‧‧‧信號 EN‧‧‧ signal

Claims (12)

一種記憶裝置,其包含:記憶胞陣列,其記憶資料;指令暫存器,其記憶指令;位址暫存器,其記憶位址;控制電路,其應答指令而控制上述記憶胞陣列;運算電路,其基於用以使指令被記憶於上述指令暫存器之第1信號及用以使位址被記憶於上述位址暫存器之第2信號,而輸出第3信號;及接收器,其係可基於上述第3信號,而接收資料;上述第3信號包含:使上述接收器為啟動(active)狀態之第1位準、及使上述接收器為待機狀態之第2位準;上述運算電路係:若上述第1信號或上述第2信號之至少一者被確立(assert),則輸出上述第1位準之上述第3信號,其後即使上述第1信號及上述第2信號一起被否定(negate),仍維持上述第1位準之上述第3信號之輸出。 A memory device comprising: a memory cell array, a memory data thereof; an instruction register, a memory instruction thereof; an address register, a memory address thereof; a control circuit responsive to the instruction to control the memory cell array; and an operation circuit And outputting a third signal based on a first signal for storing the instruction in the instruction register and a second signal for storing the address in the address register; and a receiver The data may be received based on the third signal; the third signal includes: a first level that causes the receiver to be in an active state, and a second level that causes the receiver to be in a standby state; In the circuit system, when at least one of the first signal or the second signal is asserted, the third signal of the first level is output, and then the first signal and the second signal are Negative (negate), still maintaining the output of the third signal of the first level. 如請求項1之記憶裝置,其中上述運算電路係:於上述第2信號確立之第1期間接收位址,在上述位址為上述記憶裝置之位址之情形時,輸出上述第1位準之上述第3信號,在上述位址並非上述記憶裝置之位址之情形時,輸出上述第2位準之上述第3信號。 The memory device of claim 1, wherein the arithmetic circuit receives the address in a first period in which the second signal is asserted, and outputs the first level when the address is an address of the memory device. The third signal outputs the third signal of the second level when the address is not the address of the memory device. 如請求項2之記憶裝置,其中上述運算電路係:可緊接於接收上述位址後輸出上述第2位準之上述第3信號。 The memory device of claim 2, wherein the arithmetic circuit is configured to output the third signal of the second level immediately after receiving the address. 如請求項2之記憶裝置,其中 上述運算電路係:可於接收上述位址後且資料之輸入前後,輸出上述第2位準之上述第3信號。 The memory device of claim 2, wherein The arithmetic circuit is configured to output the third signal of the second level after receiving the address and before and after input of the data. 如請求項1之記憶裝置,其中上述記憶裝置係於上述第1信號確立之第2期間接收指令,於上述第2期間之後且上述第2信號確立之第3期間接收位址,上述運算電路係通過上述第2期間及上述第3期間而維持上述第1位準之上述第3信號之輸出。 The memory device of claim 1, wherein the memory device receives a command in a second period in which the first signal is asserted, and receives an address in a third period after the second period and in which the second signal is asserted, wherein the arithmetic circuit is The output of the third signal of the first level is maintained by the second period and the third period. 如請求項3之記憶裝置,其中上述指令係指示對上述記憶胞陣列之資料之寫入的指令。 The memory device of claim 3, wherein the instruction is an instruction to write to the data of the memory cell array. 如請求項3之記憶裝置,其中上述指令係指示自上述記憶胞陣列之資料之讀出的指令。 The memory device of claim 3, wherein the instruction is an instruction to read data from the memory cell array. 如請求項5之記憶裝置,其中上述運算電路係:可緊接於上述第3期間之後輸出上述第2位準之上述第3信號。 The memory device of claim 5, wherein the arithmetic circuit is configured to output the third signal of the second level immediately after the third period. 如請求項5之記憶裝置,其中上述運算電路係:可於上述第3期間之後、資料之輸入輸出前後,輸出上述第2位準之上述第3信號。 The memory device of claim 5, wherein the arithmetic circuit is configured to output the third signal of the second level after the third period and before and after the input and output of the data. 如請求項5之記憶裝置,其中上述運算電路係:在上述第2期間之前,於上述第1信號及上述第2信號均被確立之第4期間輸出上述第1位準之上述第3信號,而於上述第4期間與上述第2期間之間之第5期間中,即使上述第1信號及上述第2信號被否定,仍維持上述第1位準之上述第3信號之輸出。 The memory device of claim 5, wherein the arithmetic circuit outputs the third signal of the first level in a fourth period in which the first signal and the second signal are asserted before the second period, In the fifth period between the fourth period and the second period, even if the first signal and the second signal are negative, the output of the third signal of the first level is maintained. 如請求項2之記憶裝置,其中上述運算電路係:可於接收上述位址後、經過第6期間後,輸出上述第2位準之上述第3信號。 The memory device of claim 2, wherein the arithmetic circuit is configured to output the third signal of the second level after the sixth period has elapsed after receiving the address. 如請求項2之記憶裝置,其中上述運算電路係:可於接收上述位址後、上述第1信號確立之第7期間接收第1指令,緊接於上述第7期間之後輸出上述第2位準之上述第3信號。 The memory device of claim 2, wherein the arithmetic circuit is configured to receive the first command after receiving the address and the seventh period in which the first signal is established, and output the second level immediately after the seventh period The third signal described above.
TW105122160A 2016-07-13 2016-07-13 Memory device TWI608349B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105122160A TWI608349B (en) 2016-07-13 2016-07-13 Memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105122160A TWI608349B (en) 2016-07-13 2016-07-13 Memory device

Publications (2)

Publication Number Publication Date
TWI608349B true TWI608349B (en) 2017-12-11
TW201810041A TW201810041A (en) 2018-03-16

Family

ID=61230595

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105122160A TWI608349B (en) 2016-07-13 2016-07-13 Memory device

Country Status (1)

Country Link
TW (1) TWI608349B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080123410A1 (en) * 2006-07-05 2008-05-29 Kabushiki Kaisha Toshiba Semiconductor memory device
TW201437812A (en) * 2013-03-20 2014-10-01 Mediatek Inc Methods for accessing memory and controlling access of memory, memory device and memory controller
TW201616274A (en) * 2014-10-31 2016-05-01 瑞薩電子股份有限公司 Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080123410A1 (en) * 2006-07-05 2008-05-29 Kabushiki Kaisha Toshiba Semiconductor memory device
TW201437812A (en) * 2013-03-20 2014-10-01 Mediatek Inc Methods for accessing memory and controlling access of memory, memory device and memory controller
TW201616274A (en) * 2014-10-31 2016-05-01 瑞薩電子股份有限公司 Semiconductor device

Also Published As

Publication number Publication date
TW201810041A (en) 2018-03-16

Similar Documents

Publication Publication Date Title
CN109416924B (en) Storage device
US11017859B2 (en) Sequential write and sequential write verify in memory device
TW381267B (en) Non-volatile semiconductor memory elements having single-bit and multi-bit memory cells
US11114170B2 (en) Memory system
US20150023116A1 (en) Non-volatile memory and method with peak current control
TWI578319B (en) Sensing with boost
JP2008217899A (en) Nonvolatile semiconductor memory device and nonvolatile semiconductor memory system
KR102121951B1 (en) Semiconductor device and operating method thereof
TWI720522B (en) Semiconductor memory device
CN105097026B (en) Semiconductor memory device with a plurality of memory cells
JP2019057121A (en) Memory system, method for controlling memory system, and controller circuit
TWI676174B (en) Semiconductor memory device
TWI426527B (en) Circuit and method of driving a word line of a memory device
JP5744118B2 (en) Semiconductor memory device
JP5331405B2 (en) Nonvolatile semiconductor memory device and nonvolatile semiconductor memory system
US20150019886A1 (en) Integrated circuit, semiconductor memory device, and operating method thereof
TWI654519B (en) Memory device
TW202137016A (en) Semiconductor storage device
TWI608349B (en) Memory device
TWI782378B (en) memory device
TWI715928B (en) Memory device
TW202331722A (en) Memory device including a memory cell array, a control circuit and a receiver
US20220270691A1 (en) Semiconductor storage device
US20230230639A1 (en) Method and apparatus to reduce power consumption of page buffer circuitry in a non-volatile memory device