TWI782061B - Ink composition and method for producing the same, light conversion layer and color filter - Google Patents

Ink composition and method for producing the same, light conversion layer and color filter Download PDF

Info

Publication number
TWI782061B
TWI782061B TW107125217A TW107125217A TWI782061B TW I782061 B TWI782061 B TW I782061B TW 107125217 A TW107125217 A TW 107125217A TW 107125217 A TW107125217 A TW 107125217A TW I782061 B TWI782061 B TW I782061B
Authority
TW
Taiwan
Prior art keywords
ink composition
light
mass
conversion layer
less
Prior art date
Application number
TW107125217A
Other languages
Chinese (zh)
Other versions
TW201908425A (en
Inventor
佐佐木友
義原直
三木崇之
清都育郎
田淵穣
石亜弥
Original Assignee
日商迪愛生股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商迪愛生股份有限公司 filed Critical 日商迪愛生股份有限公司
Publication of TW201908425A publication Critical patent/TW201908425A/en
Application granted granted Critical
Publication of TWI782061B publication Critical patent/TWI782061B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Abstract

本發明提供一種對水分之穩定性得到提昇之墨水組成物及其製造方法、以及使用該墨水組成物之光轉換層及濾色器。 The present invention provides an ink composition with improved moisture stability, a manufacturing method thereof, and a light conversion layer and a color filter using the ink composition.

本發明係一種墨水組成物、光轉換層及具備該光轉換層之濾色器,上述墨水組成物之特徵在於含有發光性奈米晶粒、熱硬化性樹脂及有機溶劑,且上述有機溶劑之LogP值為-1.0以上~6.5以下;上述光轉換層具備多個像素部,且上述多個像素部具有:包含墨水組成物之硬化物之像素部。 The present invention is an ink composition, a light conversion layer and a color filter with the light conversion layer. The above ink composition is characterized in that it contains luminescent nano crystal grains, a thermosetting resin and an organic solvent, and the organic solvent is The LogP value is not less than -1.0 and not more than 6.5; the light conversion layer has a plurality of pixel parts, and the plurality of pixel parts have a pixel part including a cured product of the ink composition.

Description

墨水組成物及其製造方法、光轉換層及濾色器 Ink composition and its manufacturing method, light conversion layer and color filter

本發明係關於一種墨水組成物及其製造方法、光轉換層及濾色器。 The invention relates to an ink composition and its manufacturing method, a light conversion layer and a color filter.

習知液晶顯示裝置等之顯示器之濾色器像素部,例如係使用含有紅色有機顏料粒子或綠色有機顏料粒子、鹼可溶性樹脂及/或丙烯酸系單體的硬化性抗蝕劑材料並藉由光蝕刻法而製造。 The color filter pixel portion of a display such as a conventional liquid crystal display device, for example, uses a curable resist material containing red organic pigment particles or green organic pigment particles, an alkali-soluble resin and/or an acrylic monomer, and is exposed to light by light. Manufactured by etching.

近年來,強烈要求顯示器之低耗電化,正在積極地研究例如使用量子點、量子棒、其他無機螢光體粒子等發光性奈米晶粒代替上述紅色有機顏料粒子或綠色有機顏料粒子而形成紅色像素、綠色像素等濾色器像素部的方法。 In recent years, there is a strong demand for low power consumption of displays, and active research is being carried out on the formation of luminous nanocrystals such as quantum dots, quantum rods, and other inorganic phosphor particles instead of the above-mentioned red organic pigment particles or green organic pigment particles. Method of color filter pixel parts such as red pixel, green pixel, etc.

然而,就上述利用光蝕刻法之濾色器之製造方法而言,根據該製造方法之特徵,存在如下缺點:除包含相對高價之發光性奈米晶粒之像素部以外之抗蝕劑材料成為浪費。此種情況下,為了消除如上所述之抗蝕劑材料之浪費,正開始研究藉由噴墨法形成光轉換基板像素部。 However, in the method of manufacturing a color filter using the photolithography method described above, according to the characteristics of the manufacturing method, there is a disadvantage that the resist material other than the pixel portion including the relatively expensive light-emitting nanocrystal particles becomes waste. Under such circumstances, in order to eliminate the above-mentioned waste of resist material, research has been started on forming a photoconverting substrate pixel portion by an inkjet method.

於此種墨水組成物中,已知使用各種熱硬化性樹脂作為熱硬化性樹脂,作為此種熱硬化性樹脂,高黏度之液狀或者固體狀者較多,為了使操作變得容易,使其溶解或分散於有機溶劑中之形態者較多。並無具體選擇滿足何種特性之有機溶劑而使用能夠減少由其硬化物所構成之光轉換層之不良情況等見解,實際情況是:分別使用任意之熱硬化性樹脂及有機溶劑並使之硬化而形 成光轉換層,對該光轉換層針對各種特性項目進行測定,於試誤之基礎上確認有無不良情況。 In such an ink composition, it is known to use various thermosetting resins as the thermosetting resins. As such thermosetting resins, there are many high-viscosity liquid or solid ones. In order to facilitate handling, use Most of them are dissolved or dispersed in organic solvents. There is no specific opinion on choosing an organic solvent that satisfies which characteristics and using it can reduce the defects of the light conversion layer composed of its cured product. The actual situation is: use any thermosetting resin and organic solvent separately and make them harden Then, a light conversion layer is formed, and various characteristic items of the light conversion layer are measured, and the presence or absence of defects is checked on the basis of trial and error.

例如,存在由發光性奈米晶粒所構成之量子點墨水中溶入空氣中之水分而導致劣化之問題。 For example, there is a problem that the quantum dot ink composed of luminescent nano crystal grains is degraded by the water in the air.

於專利文獻1中揭示有一種包含藉由不活性氣體而飽和或過飽和之溶劑、及功能性有機材料之調製物,並且揭示有一種將氧及水分之總量設為一定程度以下之調製物。 Patent Document 1 discloses a preparation containing a solvent saturated or supersaturated with an inert gas and a functional organic material, and discloses a preparation in which the total amount of oxygen and water is kept below a certain level.

然而,於該專利文獻1中並未記載有使用熱硬化性樹脂。 However, this Patent Document 1 does not describe the use of a thermosetting resin.

且並未示出水分量之實測資料,何種程度之水分量產生何種程度影響並不明確。 And it does not show the actual measurement data of the water content, and it is not clear which degree of water content will have the degree of influence.

又,關於OLED用有機發光材料,於實施例中顯示出有大氣之影響,但關於由發光性奈米晶粒所構成之量子點,並未揭示是否會表現出具體之技術效果,關於量子點,並不明確具體有何種程度之技術效果。又,實施例所示之OLED用發光材料無波長轉換功能,無法轉用於藉由量子點而得之光轉換層。 In addition, regarding the organic light-emitting materials for OLEDs, it is shown in the examples that there is an effect of the atmosphere, but regarding the quantum dots composed of luminescent nanocrystal grains, it is not revealed whether they will show specific technical effects. Regarding the quantum dots , it is not clear to what extent the technical effect will be. Moreover, the luminescent material for OLED shown in the embodiment has no wavelength conversion function, and cannot be transferred to a light conversion layer obtained by quantum dots.

又,於使用使不活性氣體飽和或過飽和之溶劑之情形時,產生如下問題:於使用泵將塗佈液輸送至用於塗佈之塗佈機頭或噴嘴時,於塗佈液之流路內產生氣泡、氣泡混入至塗佈液中導致塗佈物變得不良等。又,若用作噴墨墨水,則存在如下重大問題:於噴墨印表機之印刷用頭內產生氣泡,產生噴出不良。 Also, in the case of using a solvent that saturates or supersaturates the inert gas, the following problem arises: when using a pump to transport the coating liquid to the coating head or nozzle for coating, the flow path of the coating liquid Air bubbles are generated inside, air bubbles are mixed into the coating liquid, and the coated product becomes defective. Also, when used as an inkjet ink, there is a serious problem that air bubbles are generated in the printing head of an inkjet printer, resulting in ejection failure.

於專利文獻2中揭示有一種實質上不含水分之包含量子點之組成物。然而並未示出水分量之實測資料,何種程度之水分量有效並不明確。 Patent Document 2 discloses a composition containing quantum dots that does not substantially contain water. However, the actual measurement data of the moisture content is not shown, and it is not clear what level of moisture content is effective.

又,並未針對IJ法進行敘述,亦未針對光轉換層於LCD用之濾色器(CF)中之應用進行敘述。 Also, it does not describe the IJ method, nor does it describe the application of the light conversion layer to the color filter (CF) for LCD.

IJ法中,墨水自印刷用頭之噴嘴噴出至大氣中,暴露於空氣中之水分中,於印刷後亦暴露於大氣中。由於CF基板為大面積,因此將頭部附近或印刷基材上 之印刷面設為無水分之不活性氣體環境存在裝置價格及運轉成本大幅增大之問題。因此期望即便墨水暴露於大氣中之濕氣中量子點之性能劣化亦較少之墨水。 In the IJ method, ink is ejected from the nozzle of the printing head into the atmosphere, exposed to moisture in the air, and exposed to the atmosphere after printing. Since the CF substrate has a large area, setting the printing surface near the head or on the printing substrate as an inert gas environment without moisture has the problem of greatly increasing the equipment price and running cost. It is therefore desirable to have an ink that exhibits less performance degradation of the quantum dots even when the ink is exposed to atmospheric moisture.

因此,謀求量子點之劣化較少、且於送液時或於IJ頭內氣泡產生較少之墨水。 Therefore, an ink with less degradation of quantum dots and less generation of air bubbles during liquid delivery or in the IJ head is sought.

再者,於專利文獻3中揭示有:導入不活性氣體將溶存氧清除而使氧氣脫氣、藉由減壓進行脫氣。並且揭示有:不含氧之量子點(QD)組成物之發光不易劣化。 Furthermore, Patent Document 3 discloses that oxygen is degassed by introducing an inert gas to remove dissolved oxygen, and that degassing is performed by reducing pressure. And it is disclosed that the luminescence of the oxygen-free quantum dot (QD) composition is not easily deteriorated.

然而,於IJ印刷用墨水或墨水硬化膜暴露於大氣中之情形時,QD暴露於大氣中之水分中。於此種情形時,利用公知之方法無法抑制劣化,而期望對於IJ印刷有利之QD組成物或其硬化物。 However, when the IJ printing ink or ink cured film is exposed to the atmosphere, the QDs are exposed to moisture in the atmosphere. In such a case, deterioration cannot be suppressed by known methods, and a QD composition or a cured product thereof which is advantageous for IJ printing is desired.

專利文獻2~3中雖然記載可使用丙烯酸酯單體或低聚物作為光硬化性化合物,但實際上於實驗中所使用的單體僅為十二烷二醇二(甲基)丙烯酸酯之類之含有長鏈伸烷基原子團之類的二(甲基)丙烯酸酯。該等並非熱硬化性樹脂。 Although Patent Documents 2 to 3 describe that acrylate monomers or oligomers can be used as photocurable compounds, the monomers used in the experiments are only dodecanediol di(meth)acrylate. Such as di(meth)acrylates containing long-chain alkylene radicals. These are not thermosetting resins.

[先前技術文獻] [Prior Art Literature]

[專利文獻] [Patent Document]

[專利文獻1]日本特表2016-501430公報 [Patent Document 1] Japanese Patent Application Publication No. 2016-501430

[專利文獻2]美國公開專利2014/0027673說明書 [Patent Document 2] US Laid-Open Patent 2014/0027673 specification

[專利文獻3]WO2013/122820公報 [Patent Document 3] WO2013/122820 Publication

使用發光性奈米晶粒之墨水組成物、或使用該墨水組成物之光轉換層由於對大氣中之水分不穩定,因此必須改善穩定性。 An ink composition using luminescent nanocrystal particles, or a light conversion layer using the ink composition is unstable to moisture in the atmosphere, so stability must be improved.

本發明之目的在於提供一種對水分之穩定性得到提昇之墨水組 成物及其製造方法、以及使用該墨水組成物之光轉換層及濾色器。 The object of the present invention is to provide an ink composition with improved moisture stability, a method for producing the same, and a light conversion layer and a color filter using the ink composition.

本發明分別提供以下實施態樣之發明。 The present invention provides inventions of the following embodiments respectively.

根據下述1之墨水組成物,由於使用有特定LogP值範圍之有機溶劑作為有機溶劑,因此於其硬化物不會產生不良情況,例如可使於大氣中之穩定性提昇。 According to the ink composition of the following 1, since an organic solvent having a specific LogP value range is used as the organic solvent, no adverse events will occur in its cured product, for example, the stability in the atmosphere can be improved.

1.一種墨水組成物,其含有發光性奈米晶粒、熱硬化性樹脂及有機溶劑,且上述有機溶劑之LogP值為-1.0以上~6.5以下。 1. An ink composition, which contains luminescent nanocrystal grains, a thermosetting resin, and an organic solvent, and the LogP value of the organic solvent is -1.0 to 6.5.

2.一種墨水組成物,其含有發光性奈米晶粒、熱硬化性樹脂及有機溶劑,且上述有機溶劑之LogP值為-1.0以上~6.5以下,基於卡-費(Karl-Fischer)水分計測得之水分(H2O)含有率為90ppm以下。 2. An ink composition, which contains luminous nanocrystal grains, a thermosetting resin, and an organic solvent, and the LogP value of the organic solvent is -1.0 or more to 6.5 or less, based on Karl-Fischer moisture measurement The obtained moisture (H 2 O) content rate is 90ppm or less.

3.一種噴墨用墨水組成物,其含有發光性奈米晶粒、熱硬化性樹脂及有機溶劑,且上述有機溶劑之LogP值為-1.0以上~6.5以下,基於卡-費水分計測得之水分(H2O)含有率為90ppm以下。 3. An ink composition for inkjet, which contains luminescent nanocrystal grains, a thermosetting resin, and an organic solvent, and the LogP value of the above organic solvent is -1.0 or more to 6.5 or less, which is measured based on the card-fee moisture meter The moisture (H 2 O) content is 90 ppm or less.

4.一種上述3記載之噴墨用墨水組成物之製造方法,其係上述墨水組成物之製造方法,且對上述墨水組成物進行減壓而將溶存氣體去除。 4. A method for producing the inkjet ink composition described in 3 above, which is a method for producing the above-mentioned ink composition, wherein the above-mentioned ink composition is depressurized to remove dissolved gas.

5.如上述3記載之噴墨用墨水組成物,其中,上述水分(H2O)含有率為20ppm以下。 5. The inkjet ink composition according to the above 3, wherein the water (H 2 O) content is 20 ppm or less.

6.如上述3或5記載之噴墨用墨水組成物,其中,上述熱硬化性樹脂為鹼不溶性。 6. The inkjet ink composition according to 3 or 5 above, wherein the thermosetting resin is alkali-insoluble.

7.如上述3、5或6中任一項記載之噴墨用墨水組成物,其能夠形成鹼不溶性之塗佈膜。 7. The inkjet ink composition according to any one of 3, 5 or 6 above, which is capable of forming an alkali-insoluble coating film.

8.如上述3、5、6或7中任一項記載之噴墨用墨水組成物,其表面張力為20 ~40mN/m。 8. The inkjet ink composition as described in any one of 3, 5, 6 or 7 above, which has a surface tension of 20 to 40 mN/m.

9.如上述3、5、6、7或8中任一項記載之噴墨用墨水組成物,其黏度為2~20mPa‧s。 9. The inkjet ink composition described in any one of 3, 5, 6, 7 or 8 above, which has a viscosity of 2~20mPa‧s.

10.如上述3、5、6、7、8或9中任一項記載之噴墨用墨水組成物,其進而含有沸點為180℃以上之溶劑。 10. The inkjet ink composition according to any one of 3, 5, 6, 7, 8 or 9 above, which further contains a solvent having a boiling point of 180°C or higher.

11.如上述3、5、6、7、8、9或10中任一項記載之噴墨用墨水組成物,其為濾色器用。 11. The inkjet ink composition according to any one of 3, 5, 6, 7, 8, 9 or 10 above, which is used for a color filter.

12.一種光轉換層,其係由上述1至3中任一項記載之墨水組成物之硬化物所構成。 12. A light conversion layer comprising a cured product of the ink composition described in any one of 1 to 3 above.

13.一種光轉換層,其中,由上述1至3中任一項記載之墨水組成物之硬化物所構成之光轉換層為鹼不溶性。 13. A light conversion layer, wherein the light conversion layer composed of a cured product of the ink composition described in any one of 1 to 3 above is insoluble in alkali.

14.一種光轉換層,其具備多個像素部,且上述多個像素部具有:包含上述3、5、6、7、8、9或10中任一項記載之噴墨用墨水組成物之硬化物的像素部。 14. A light conversion layer comprising a plurality of pixel portions, and the plurality of pixel portions have: an inkjet ink composition comprising any one of the above-mentioned 3, 5, 6, 7, 8, 9 or 10. The pixel part of the hardened product.

15.如上述12至14中任一項記載之光轉換層,其進而具備設置於上述多個像素部間之遮光部,且上述多個像素部具有:第1像素部,其包含上述硬化物且含有吸收420~480nm之範圍之波長的光並發出於605~665nm之範圍具有發光峰波長的光的發光性奈米晶粒作為上述發光性奈米晶粒;及第2像素部,其包含上述硬化物且含有吸收420~480nm之範圍之波長的光並發出於500~560nm之範圍具有發光值波長的光的發光性奈米晶粒作為上述發光性奈米晶粒。 15. The light conversion layer according to any one of the above 12 to 14, further comprising a light-shielding portion provided between the plurality of pixel portions, and the plurality of pixel portions have: a first pixel portion comprising the cured product and containing, as the above-mentioned luminescent nanocrystals, luminescent nanocrystals that absorb light of a wavelength in the range of 420 to 480 nm and emit light having a luminescence peak wavelength in the range of 605 to 665 nm; and the second pixel portion, which includes The cured product contains, as the above-mentioned luminescent nanocrystals, absorbing light having a wavelength in the range of 420 to 480 nm and emitting light having a wavelength of luminescence value in the range of 500 to 560 nm.

16.如上述12至15中任一項記載之光轉換層,其中,上述多個像素部進而具 有第3像素部,該第3像素部對420~480nm之範圍之波長的光之穿透率為30%以上。 16. The light conversion layer according to any one of the above 12 to 15, wherein the plurality of pixel portions further have a third pixel portion, and the transmittance of the third pixel portion to light having a wavelength in the range of 420 to 480 nm more than 30%.

17.一種濾色器,其具備上述12至16中任一項記載之光轉換層。 17. A color filter comprising the light conversion layer according to any one of 12 to 16 above.

本發明提供一種使於大氣中之穩定性得到提昇之墨水組成物及其製造方法、以及使用該墨水組成物之光轉換層及濾色器。 The present invention provides an ink composition with improved stability in the atmosphere, a manufacturing method thereof, and a light conversion layer and a color filter using the ink composition.

10‧‧‧像素部 10‧‧‧pixel part

10a‧‧‧第1像素部 10a‧‧‧1st pixel part

10b‧‧‧第2像素部 10b‧‧‧The second pixel part

10c‧‧‧第3像素部 10c‧‧‧The third pixel part

11a‧‧‧第1發光性奈米晶粒 11a‧‧‧The first luminescent nanocrystal grain

11b‧‧‧第2發光性奈米晶粒 11b‧‧‧The second luminous nanocrystal grain

12a‧‧‧第1光散射性粒子 12a‧‧‧First light-scattering particle

12b‧‧‧第2光散射性粒子 12b‧‧‧Second light scattering particles

13a‧‧‧第1硬化成分 13a‧‧‧The first hardening component

13b‧‧‧第2硬化成分 13b‧‧‧The second hardening component

13c‧‧‧第3硬化成分 13c‧‧‧The third hardening component

20‧‧‧遮光部 20‧‧‧shading part

30‧‧‧光轉換層 30‧‧‧light conversion layer

40‧‧‧基材 40‧‧‧Substrate

100‧‧‧濾色器 100‧‧‧color filter

圖1係本發明之一實施形態之濾色器之模式剖面圖。 Fig. 1 is a schematic sectional view of a color filter according to an embodiment of the present invention.

以下,針對本發明之實施形態詳細地進行說明。 Hereinafter, embodiments of the present invention will be described in detail.

<墨水組成物> <Ink Composition>

實施形態之墨水組成物之特徵在於含有發光性奈米晶粒、熱硬化性樹脂及有機溶劑,且上述有機溶劑之LogP值為-1.0以上~6.5以下。 The ink composition of the embodiment is characterized in that it contains luminous nanocrystal particles, a thermosetting resin, and an organic solvent, and the LogP value of the organic solvent is -1.0 or more and 6.5 or less.

一實施形態之墨水組成物例如為用於藉由光蝕刻方式、噴墨方式等方法形成濾色器之像素部的濾色器用墨水組成物。 The ink composition of one embodiment is, for example, an ink composition for a color filter used for forming a pixel portion of a color filter by a method such as a photolithography method or an inkjet method.

一實施形態之墨水組成物可較佳地用於利用噴墨方式形成濾色器像素部之用途。 The ink composition of one embodiment can be suitably used for forming color filter pixel portions by an inkjet method.

於使用習知墨水組成物而利用例如噴墨方式形成濾色器像素部之情形時,若暴露於大氣中之水分中,則存在光轉換層劣化之問題。 When using a conventional ink composition to form color filter pixel portions by, for example, an inkjet method, there is a problem of deterioration of the light conversion layer if exposed to moisture in the atmosphere.

另一方面,根據本實施形態之墨水組成物,可改善此種問題。 On the other hand, according to the ink composition of this embodiment, such problems can be improved.

以下,列舉噴墨方式所使用之濾色器用墨水組成物(濾色器用噴墨墨水)為例進行說明。 Hereinafter, an ink composition for a color filter (inkjet ink for a color filter) used in an inkjet method is taken as an example and described.

[發光性奈米晶粒] [Luminescent Nanoparticles]

發光性奈米晶粒係吸收激發光並發出螢光或磷光的奈米尺寸之結晶體,例如為藉由穿透式電子顯微鏡或掃描式電子顯微鏡所測得之最大粒徑為100nm以下之結晶體。 Luminescent nanocrystals are nanometer-sized crystals that absorb excitation light and emit fluorescence or phosphorescence, for example, crystals with a maximum particle size of 100 nm or less measured by a transmission electron microscope or a scanning electron microscope.

發光性奈米晶粒例如可藉由吸收特定波長的光而發出與所吸收之波長不同之波長的光(螢光或磷光)。發光性奈米晶粒可為發出於605~665nm之範圍具有發光峰波長的光(紅色光)的紅色發光性奈米晶粒,亦可為發出於500~560nm之範圍具有發光峰波長的光(綠色光)的綠色發光性奈米晶粒,亦可為發出於420~480nm之範圍具有發光峰波長的光(藍色光)的藍色發光性奈米晶粒。一實施形態中,較佳為墨水組成物包含該等發光性奈米晶粒中之至少一種。又,發光性奈米晶粒所吸收之光例如可為400nm以上且未達500nm之範圍之波長的光(藍色光)、或200nm~400nm之範圍之波長的光(紫外光)。再者,發光性奈米晶粒之發光峰波長例如可於使用紫外線可見光分光光度計所測得之螢光光譜或磷光光譜中確認。 Luminescent nanoparticles, for example, can emit light of a different wavelength (fluorescence or phosphorescence) from the absorbed wavelength by absorbing light of a specific wavelength. The luminescent nanocrystals can be red luminescent nanocrystals that emit light (red light) with a luminescence peak wavelength in the range of 605~665nm, or can emit light with a luminescence peak wavelength in the range of 500~560nm (Green light) green luminescent nanocrystal grains may also be blue luminescent nanocrystal grains emitting light (blue light) with a luminescence peak wavelength in the range of 420-480nm. In one embodiment, preferably, the ink composition includes at least one of the luminescent nanocrystals. In addition, the light absorbed by the luminescent nanocrystal grains can be, for example, light with a wavelength in the range of 400 nm to less than 500 nm (blue light), or light with a wavelength in the range of 200 nm to 400 nm (ultraviolet light). Furthermore, the luminescence peak wavelength of the luminescent nanocrystals can be confirmed, for example, in the fluorescence spectrum or phosphorescence spectrum measured by using an ultraviolet-visible spectrophotometer.

紅色發光性奈米晶粒較佳為於665nm以下、663nm以下、660nm以下、658nm以下、655nm以下、653nm以下、651nm以下、650nm以下、647nm以下、645nm以下、643nm以下、640nm以下、637nm以下、635nm以下、632nm以下或630nm以下具有發光峰波長,且較佳為於628nm以上、625nm以上、623nm以上、620nm以上、615nm以上、610nm以上、607nm以上或605nm以上具有發光峰波長。該等上限值及下限值可任意地組合。再者,於以下相同之記載中,個別地記載之上限值及下限值亦可任意地組合。 Red luminous nanocrystal grains are preferably below 665nm, below 663nm, below 660nm, below 658nm, below 655nm, below 653nm, below 651nm, below 650nm, below 647nm, below 645nm, below 643nm, below 640nm, below 637nm, It has a luminescence peak wavelength below 635nm, below 632nm, or below 630nm, and preferably has a luminescence peak wavelength above 628nm, above 625nm, above 623nm, above 620nm, above 615nm, above 610nm, above 607nm, or above 605nm. These upper limit values and lower limit values can be combined arbitrarily. In addition, in the following same description, the upper limit value and the lower limit value described individually can also be combined arbitrarily.

綠色發光性奈米晶粒較佳為於560nm以下、557nm以下、555nm以下、550nm以下、547nm以下、545nm以下、543nm以下、540nm以下、537nm以下、535nm以下、532nm以下或530nm以下具有發光峰波長,且較佳為於528 nm以上、525nm以上、523nm以上、520nm以上、515nm以上、510nm以上、507nm以上、505nm以上、503nm以上或500nm以上具有發光峰波長。 The green luminous nanocrystals preferably have a luminescence peak wavelength below 560nm, below 557nm, below 555nm, below 550nm, below 547nm, below 545nm, below 543nm, below 540nm, below 537nm, below 535nm, below 532nm or below 530nm , and preferably have a luminescence peak wavelength above 528 nm, above 525 nm, above 523 nm, above 520 nm, above 515 nm, above 510 nm, above 507 nm, above 505 nm, above 503 nm or above 500 nm.

藍色發光性奈米晶粒較佳為於480nm以下、477nm以下、475nm以下、470nm以下、467nm以下、465nm以下、463nm以下、460nm以下、457nm以下、455nm以下、452nm以下或450nm以下具有發光峰波長,且較佳為於450nm以上、445nm以上、440nm以上、435nm以上、430nm以上、428nm以上、425nm以上、422nm以上或420nm以上具有發光峰波長。 The blue luminescent nanocrystal grains preferably have a luminescence peak below 480nm, below 477nm, below 475nm, below 470nm, below 467nm, below 465nm, below 463nm, below 460nm, below 457nm, below 455nm, below 452nm or below 450nm wavelength, and preferably has a luminescence peak wavelength above 450nm, above 445nm, above 440nm, above 435nm, above 430nm, above 428nm, above 425nm, above 422nm or above 420nm.

根據井型勢模型(Well-type potential model)之薛丁格波動方程之解,發光性奈米晶粒所發出之光之波長(發光色)取決於發光性奈米晶粒之尺寸(例如粒徑),亦取決於發光性奈米晶粒所具有之能隙。因此,可藉由變更所使用之發光性奈米晶粒之構成材料及尺寸而選擇發光色。 According to the solution of the Schrödinger wave equation of the Well-type potential model, the wavelength (luminous color) of the light emitted by the luminescent nanocrystal grains depends on the size of the luminescent nanocrystal grains (such as particle Diameter), also depends on the energy gap possessed by the luminescent nanocrystal grains. Therefore, the luminescent color can be selected by changing the constituent material and size of the luminescent nanocrystal grains used.

發光性奈米晶粒可為包含半導體材料之發光性奈米晶粒(發光性半導體奈米晶粒)。作為發光性半導體奈米晶粒,可列舉量子點(以下亦稱為「QD」)、量子棒等。該等之中,就容易控制發光光譜、確保可靠性之基礎上能夠降低生產成本、使量產性提昇之觀點而言,較佳為量子點。 The luminescent nanocrystals may be luminescent nanoparticles comprising semiconductor materials (luminescent semiconductor nanoparticles). Examples of light-emitting semiconductor nanocrystal grains include quantum dots (hereinafter also referred to as "QD"), quantum rods, and the like. Among these, quantum dots are preferable from the viewpoint of being easy to control the emission spectrum, reducing production costs and improving mass productivity while ensuring reliability.

發光性半導體奈米晶粒可僅由包含第一半導體材料之核所構成,亦可具有包含第一半導體材料之核、及包含與第一半導體材料不同之第二半導體材料且被覆上述核之至少一部分之殼。換言之,發光性半導體奈米晶粒之結構可為僅由核所構成之結構(核結構),亦可為由核及殼所構成之結構(核/殼結構)。又,發光性半導體奈米晶粒除包含第二半導體材料之殼(第一殼)以外,亦可進而具有包含與第一及第二半導體材料不同之第三半導體材料且被覆上述核之至少一部分之殼(第二殼)。換言之,發光性半導體奈米晶粒之結構可為由核、第一殼、及第二殼所構成之結構(核/殼/殼結構)。核及殼之各者可為包含2種以上半導體材料之混晶(例如,CdSe+CdS、CIS+ZnS等)。 The luminescent semiconductor nanocrystal grains may only be composed of a core comprising the first semiconductor material, or may have a core comprising the first semiconductor material and at least one core comprising a second semiconductor material different from the first semiconductor material and covering the core. Part of the shell. In other words, the structure of the light-emitting semiconductor nanocrystal grains may be a structure consisting only of a core (core structure), or a structure consisting of a core and a shell (core/shell structure). In addition, in addition to the shell (first shell) comprising the second semiconductor material, the light-emitting semiconductor nanocrystal grain may further include a third semiconductor material different from the first and second semiconductor materials and cover at least a part of the core. shell (second shell). In other words, the structure of the light-emitting semiconductor nanocrystals may be a structure composed of a core, a first shell, and a second shell (core/shell/shell structure). Each of the core and the shell may be a mixed crystal including two or more semiconductor materials (for example, CdSe+CdS, CIS+ZnS, etc.).

發光性奈米晶粒較佳為包含選自由II-VI族半導體、III-V族半導體、I-III-VI族半導體、IV族半導體及I-II-IV-VI族半導體所構成之群之至少一種半導體材料作為半導體材料。 The luminescent nanocrystal grain preferably comprises a compound selected from the group consisting of II-VI semiconductors, III-V semiconductors, I-III-VI semiconductors, IV semiconductors, and I-II-IV-VI semiconductors. At least one semiconductor material is used as the semiconductor material.

作為具體之半導體材料,可列舉CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、CdHgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe;GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb;SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe;Si、Ge、SiC、SiGe、AgInSe2、CuGaSe2、CuInS2、CuGaS2、CuInSe2、AgInS2、AgGaSe2、AgGaS2、C、Si及Ge。關於發光性半導體奈米晶粒,就容易控制發光光譜、確保可靠性之基礎上能夠降低生產成本、使量產性提昇之觀點而言,較佳為包含選自由CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、InP、InAs、InSb、GaP、GaAs、GaSb、AgInS2、AgInSe2、AgInTe2、AgGaS2、AgGaSe2、AgGaTe2、CuInS2、CuInSe2、CuInTe2、CuGaS2、CuGaSe2、CuGaTe2、Si、C、Ge及Cu2ZnSnS4所構成之群中之至少1種。 Specific semiconductor materials include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, CdHgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe; GaN, GaP, GaAs, AlGaSb, AlN, AlP, AlP InP, InAs, InSb, GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, SnS, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, SnPbSSe, SnPbSeTe, SnPbSTe; Si, Ge, SiC, SiGe, AgInSe 2 , CuGaSe 2 , CuInS 2 , CuGaS 2 , CuInSe 2 , AgInS 2 , AgGaSe 2 , AgGaS 2 , C, Si, and Ge. Regarding the luminescent semiconductor nanocrystal grains, it is preferable to contain a compound selected from CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, InP, InAs, InSb, GaP, GaAs, GaSb, AgInS 2 , AgInSe 2 , AgInTe 2 , AgGaS 2 , AgGaSe 2 , AgGaTe 2 , CuInS 2 , CuInSe 2 , CuInTe 2 , CuGaS 2 , CuGaSe 2 , CuGaTe 2 , Si, C, Ge, and Cu 2 ZnSnS 4 constitute at least one species.

作為紅色發光性之半導體奈米晶粒,例如可列舉:CdSe之奈米晶粒、CdSe之棒狀之奈米晶粒、為具備核殼結構之棒狀之奈米晶粒且該殼部分為CdS且內側之核部為CdSe之奈米晶粒、為具備核殼結構之棒狀之奈米晶粒且該 殼部分為CdS且內側之核部為ZnSe之奈米晶粒、為具備核殼結構之奈米晶粒且該殼部分為CdS且內側之核部為CdSe之奈米晶粒、為具備核殼結構之奈米晶粒且該殼部分為CdS且內側之核部為ZnSe之奈米晶粒、CdSe與ZnS之混晶之奈米晶粒、CdSe與ZnS之混晶之棒狀之奈米晶粒、InP之奈米晶粒、InP之奈米晶粒、InP之棒狀之奈米晶粒、CdSe與CdS之混晶之奈米晶粒、CdSe與CdS之混晶之棒狀之奈米晶粒、ZnSe與CdS之混晶之奈米晶粒、ZnSe與CdS之混晶之棒狀之奈米晶粒等。 As red luminescent semiconductor nanocrystal grains, for example, CdSe nanocrystal grains, CdSe rod-shaped nanocrystal grains, rod-shaped nanocrystal grains having a core-shell structure and the shell portion is Nanocrystalline grains of CdS with inner core of CdSe, rod-shaped nanocrystalline grains with core-shell structure and the shell of CdS with inner core of ZnSe nanocrystalline grains, with core-shell structure Nanocrystalline grains with the shell part being CdS and the inner core part being CdSe nanocrystalline grains, nanocrystalline grains having a core-shell structure and the shell part being CdS and the inner core part being ZnSe Rice crystal grains, CdSe and ZnS mixed crystal nano crystal grains, CdSe and ZnS mixed crystal rod shaped nano crystal grains, InP nano crystal grains, InP nano crystal grains, InP rod shaped Nanocrystalline grains, nanocrystalline grains of mixed crystals of CdSe and CdS, rod-like nanocrystalline grains of mixed crystals of CdSe and CdS, nanocrystalline grains of mixed crystals of ZnSe and CdS, mixed crystals of ZnSe and CdS Rod-shaped nanocrystal grains, etc.

作為綠色發光性之半導體奈米晶粒,例如可列舉:CdSe之奈米晶粒、CdSe之棒狀之奈米晶粒、CdSe與ZnS之混晶之奈米晶粒、CdSe與ZnS之混晶之棒狀之奈米晶粒等。 Examples of green luminescent semiconductor nanocrystals include CdSe nanocrystals, CdSe rod-shaped nanocrystals, CdSe and ZnS mixed crystal nanocrystals, and CdSe and ZnS mixed crystals. Rod-shaped nanocrystal grains, etc.

作為藍色發光性之半導體奈米晶粒,例如可列舉:ZnSe之奈米晶粒、ZnSe之棒狀之奈米晶粒、ZnS之奈米晶粒、ZnS之棒狀之奈米晶粒、為具備核殼結構之奈米晶粒且該殼部分為ZnSe且內側之核部為ZnS之奈米晶粒、為具備核殼結構之棒狀之奈米結晶且該殼部分為ZnSe且內側之核部為ZnS之奈米晶粒、CdS之奈米晶粒、CdS之棒狀之奈米晶粒等。關於半導體奈米晶粒,藉由以相同之化學組成並改變其本身之平均粒徑,可使應自該粒子發光之顏色變為紅色或者綠色。又,關於半導體奈米晶粒,作為其本身,較佳為使用對人體等之不良影響盡可能低者。於使用含有鎘、硒等之半導體奈米晶粒作為發光性奈米晶粒之情形時,較佳為選擇盡可能不含上述元素(鎘、硒等)之半導體奈米晶粒單獨使用、或以上述元素盡可能變少之方式與其他發光性奈米晶粒組合使用。 Examples of blue luminescent semiconductor nanocrystal grains include: ZnSe nanocrystal grains, ZnSe rod-shaped nanocrystal grains, ZnS nanocrystal grains, ZnS rod-shaped nanocrystal grains, It is a nanocrystal grain with a core-shell structure and the shell part is ZnSe and the inner core is a nanocrystal grain of ZnS, and it is a rod-shaped nanocrystal with a core-shell structure and the shell part is ZnSe and the inner core is ZnS. The core part is ZnS nano-grains, CdS nano-grains, CdS rod-shaped nano-grains, etc. With respect to semiconductor nanocrystal grains, by changing the average grain diameter of the same chemical composition, the color that should be emitted from the grains can be changed to red or green. Also, as for the semiconductor nanocrystal grain itself, it is preferable to use one that has as little adverse effect on the human body as possible. When using semiconductor nanocrystal grains containing cadmium, selenium, etc. as luminescent nanocrystal grains, it is preferable to select semiconductor nanocrystal grains that do not contain the above-mentioned elements (cadmium, selenium, etc.) as much as possible to use alone, or It is used in combination with other luminous nanocrystal grains in such a way that the above elements are reduced as much as possible.

發光性奈米晶粒之形狀並無特別限定,可為任意之幾何形狀,亦可為任意之不規則之形狀。發光性奈米晶粒之形狀例如可為球狀、橢圓體狀、角錐形狀、碟片狀、枝狀、網狀、棒狀等。然而,作為發光性奈米晶粒,就可進一步提高墨水組成物之均勻性及流動性之方面而言,較佳為使用作為粒子形狀而言方向性較少之粒子(例如,球狀、正四面體狀等之粒子)。 The shape of the luminescent nanocrystal grains is not particularly limited, and can be any geometric shape or any irregular shape. The shape of the luminescent nanocrystals can be, for example, spherical, ellipsoidal, pyramidal, disk-like, branch-like, net-like, rod-like, etc. However, as the luminescent nanocrystal grains, it is preferable to use particles with less directionality as a particle shape (for example, spherical, regular, etc.) in terms of further improving the uniformity and fluidity of the ink composition. Tetrahedral particles, etc.).

關於發光性奈米晶粒之平均粒徑(體積平均徑),就容易獲得所需波長之發光之觀點、以及分散性及保存穩定性優異之觀點而言,可為1nm以上,可為1.5nm以上,亦可為2nm以上。就容易獲得所需發光波長之觀點而言,可為40nm以下,可為30nm以下,亦可為20nm以下。發光性奈米晶粒之平均粒徑(體積平均徑)可藉由如下方式而獲得:藉由穿透式電子顯微鏡或掃描式電子顯微鏡進行測定,算出體積平均徑。 The average particle diameter (volume average diameter) of the luminescent nanocrystal grains may be 1nm or more and may be 1.5nm from the viewpoint of easily obtaining light emission at a desired wavelength, and from the viewpoint of excellent dispersibility and storage stability. or more, may be 2 nm or more. From the viewpoint of easily obtaining a desired emission wavelength, it may be 40 nm or less, 30 nm or less, or 20 nm or less. The average particle diameter (volume average diameter) of the luminescent nanocrystal grains can be obtained by measuring with a transmission electron microscope or a scanning electron microscope, and calculating the volume average diameter.

關於發光性奈米晶粒,就分散穩定性之觀點而言,較佳為於其表面具有有機配體。有機配體例如可配位鍵結於發光性奈米晶粒之表面。換言之,發光性奈米晶粒之表面可藉由有機配體進行鈍化。又,發光性奈米晶粒亦可於其表面具有高分子分散劑。一實施形態中,例如可自上述具有有機配體之發光性奈米晶粒去除有機配體,將有機配體與高分子分散劑進行交換,藉此使高分子分散劑鍵結於發光性奈米晶粒之表面。但就製成噴墨墨水時之分散穩定性之觀點而言,較佳為對配位有有機配體之發光性奈米晶粒摻合高分子分散劑。 The luminescent nanocrystals preferably have organic ligands on their surfaces from the viewpoint of dispersion stability. The organic ligands, for example, can coordinately bond to the surface of the luminescent nanocrystals. In other words, the surface of luminescent nanocrystals can be passivated by organic ligands. In addition, the luminous nanocrystal particles may also have a polymer dispersant on the surface. In one embodiment, for example, the organic ligands can be removed from the above-mentioned luminescent nanocrystals with organic ligands, and the organic ligands can be exchanged with the polymer dispersant, so that the polymer dispersant can be bonded to the luminescent nanoparticles. The surface of rice grains. However, from the viewpoint of dispersion stability when used as an inkjet ink, it is preferable to add a polymer dispersant to the luminescent nanocrystal particles coordinated with an organic ligand.

作為有機配體,例如可列舉:TOP(三辛基膦)、TOPO(三辛基氧化膦)、油酸、油胺、辛基胺、三辛基胺、十六烷基胺、辛烷硫醇、十二烷硫醇、己基膦酸(HPA)、十四烷基膦酸(TDPA)、及辛基膦酸(OPA)。 Examples of organic ligands include: TOP (trioctylphosphine), TOPO (trioctylphosphine oxide), oleic acid, oleylamine, octylamine, trioctylamine, hexadecylamine, octanesulfur alcohol, dodecanethiol, hexylphosphonic acid (HPA), tetradecylphosphonic acid (TDPA), and octylphosphonic acid (OPA).

作為發光性奈米晶粒,可使用以膠體形態分散於有機溶劑之中者。於有機溶劑中處於分散狀態之發光性奈米晶粒之表面較佳為藉由上述有機配體進行鈍化。作為有機溶劑,例如可列舉:環己烷、己烷、庚烷、氯仿、甲苯、辛烷、氯苯、四氫萘、二苯醚、丙二醇單甲醚乙酸酯、丁基卡必醇乙酸酯、或該等之混合物。 As the luminescent nanocrystal particles, those dispersed in an organic solvent in a colloidal state can be used. The surfaces of the luminescent nanocrystals dispersed in the organic solvent are preferably passivated by the above-mentioned organic ligands. Examples of organic solvents include cyclohexane, hexane, heptane, chloroform, toluene, octane, chlorobenzene, tetralin, diphenyl ether, propylene glycol monomethyl ether acetate, butyl carbitol ethyl alcohol, and acid esters, or mixtures thereof.

作為發光性奈米晶粒,可使用市售品。作為發光性奈米晶粒之市售品,例如可列舉NN-Labs公司之磷化銦統化鋅、D-dots、CuInS/ZnS、Aldrich公司之InP/ZnS等。 As the luminescent nanocrystal grains, commercially available ones can be used. Examples of commercially available luminescent nanocrystal grains include indium phosphide system zinc, D-dots, CuInS/ZnS from NN-Labs, InP/ZnS from Aldrich, and the like.

關於發光性奈米晶粒之含量,就漏光之減少效果更優異之觀點而言,以墨水組成物之不揮發成分之質量為基準,可為5質量%以上,亦可為10質量%以上,亦可為15質量%以上,亦可為20質量%以上,亦可為30質量%以上,亦可為40質量%以上。關於發光性奈米晶粒之含量,就噴出穩定性優異之觀點而言,以墨水組成物之不揮發成分之質量為基準,可為70質量%以下,亦可為60質量%以下,亦可為55質量%以下,亦可為50質量%以下。再者,本說明書中,所謂「墨水組成物之不揮發成分之質量」,係指自墨水組成物之總質量除去有機溶劑之質量而得的質量。 Regarding the content of the luminescent nanocrystal grains, from the point of view of a better light leakage reduction effect, based on the mass of the non-volatile components of the ink composition, it may be 5% by mass or more, or 10% by mass or more, It may be 15 mass % or more, 20 mass % or more, 30 mass % or more, or 40 mass % or more. Regarding the content of luminescent nanocrystal grains, from the viewpoint of excellent ejection stability, based on the mass of the non-volatile components of the ink composition, it may be 70% by mass or less, or 60% by mass or less. It is 55 mass % or less, and may be 50 mass % or less. In addition, in this specification, "the mass of the non-volatile component of an ink composition" means the mass obtained by subtracting the mass of an organic solvent from the total mass of an ink composition.

然而,發光性奈米晶粒由於具有可成為配位部位之表面原子,因此具有較高之反應性。發光性奈米晶粒由於具有此種較高之反應性、及具有較一般之顏料而言大之表面積,因此容易引起粒子之凝集。發光性奈米晶粒由於為根據量子尺寸效果而產生發光者,因此於產生粒子之凝集之情形時會產生消光現象,引起螢光量子產率之降低,亮度及色再現性降低。相對於此,本實施形態中由於墨水組成物包含高分子分散劑,故發光性奈米晶粒不易凝集。因此,本實施形態中可將發光性奈米晶粒之含量設為上述範圍。 However, luminescent nanoparticles have higher reactivity due to surface atoms that can become coordination sites. Due to the higher reactivity and larger surface area than ordinary pigments, the luminous nanocrystalline particles are prone to agglomeration of particles. Since the luminescent nanocrystal grains emit light according to the effect of quantum size, the extinction phenomenon will occur when the particles are agglomerated, resulting in a decrease in fluorescence quantum yield, and a decrease in brightness and color reproducibility. On the other hand, in this embodiment, since the ink composition contains a polymer dispersant, the luminous nanocrystal particles are less likely to aggregate. Therefore, in this embodiment, the content of the luminescent nanocrystal grains can be set within the above-mentioned range.

[光散射性粒子] [Light Scattering Particles]

一實施形態之墨水組成物可含有光散射性粒子。於藉由使用有發光性奈米晶粒之墨水組成物形成濾色器像素部(以下,亦簡稱為「像素部」)之情形時,存在自光源之光不被發光性奈米晶粒吸收而自像素部漏出之情況。由於此種漏光會使像素部之色再現性降低,因此於使用上述像素部作為光轉換層之情形時,較佳為盡可能地減少該漏光。上述光散射性粒子可較佳地用於防止像素部之漏光。光散射性粒子例如為光學上為不活性之無機微粒子。光散射性粒子可使照射至濾色器像素部之來自光源之光散射。 The ink composition of one embodiment may contain light-scattering particles. In the case of forming a color filter pixel portion (hereinafter also simply referred to as a “pixel portion”) by using an ink composition having luminescent nanocrystals, there is a case where light from a light source is not absorbed by the luminescent nanocrystals And the case of leakage from the pixel part. Since such light leakage reduces the color reproducibility of the pixel portion, it is preferable to reduce the light leakage as much as possible when using the above-mentioned pixel portion as a light conversion layer. The above-mentioned light-scattering particles can be preferably used to prevent light leakage in the pixel portion. The light-scattering particles are, for example, optically inactive inorganic fine particles. The light-scattering particles can scatter the light from the light source irradiated onto the pixel portion of the color filter.

作為構成光散射性粒子之材料,例如可列舉:鎢、鋯、鈦、鉑、 鉍、銠、鈀、銀、錫、鉑、金等單體金屬;二氧化矽(silica)、硫酸鋇、碳酸鋇、碳酸鈣、滑石、氧化鈦、黏土、高嶺土、硫酸鋇、碳酸鋇、碳酸鈣、鋁白、氧化鈦、氧化鎂、氧化鋇、氧化鋁、氧化鉍、氧化鋯、氧化鋅等金屬氧化物;碳酸鎂、碳酸鋇、次碳酸鉍、碳酸鈣等金屬碳酸鹽;氫氧化鋁等金屬氫氧化物;鋯酸鋇、鋯酸鈣、鈦酸鈣、鈦酸鋇、鈦酸鍶等複合氧化物、次硝酸鉍等金屬鹽等。關於光散射性粒子,就漏光之減少效果更優異之觀點而言,較佳為包含選自由氧化鈦、氧化鋁、氧化鋯、氧化鋅、碳酸鈣、硫酸鋇及二氧化矽所構成之群中之至少1種,更佳為包含選自由氧化鈦、硫酸鋇及碳酸鈣所構成之群中之至少一種。 As the material constituting the light-scattering particles, for example, simple metals such as tungsten, zirconium, titanium, platinum, bismuth, rhodium, palladium, silver, tin, platinum, gold; silicon dioxide (silica), barium sulfate, carbonate Barium, calcium carbonate, talc, titanium oxide, clay, kaolin, barium sulfate, barium carbonate, calcium carbonate, aluminum white, titanium oxide, magnesium oxide, barium oxide, aluminum oxide, bismuth oxide, zirconium oxide, zinc oxide and other metal oxides ; Metal carbonates such as magnesium carbonate, barium carbonate, bismuth subcarbonate, calcium carbonate, etc.; Metal hydroxides such as aluminum hydroxide; Composite oxides such as barium zirconate, calcium zirconate, calcium titanate, barium titanate, strontium titanate, etc. , bismuth subnitrate and other metal salts. The light-scattering particles are preferably contained in the group consisting of titanium oxide, aluminum oxide, zirconium oxide, zinc oxide, calcium carbonate, barium sulfate, and silicon dioxide from the viewpoint of excellent light leakage reduction effect. At least one of them is more preferably at least one selected from the group consisting of titanium oxide, barium sulfate, and calcium carbonate.

光散射性粒子之形狀可為球狀、絲狀、不定形狀等。然而,作為光散射性粒子,就可進一步提高墨水組成物之均勻性、流動性及光散射性之方面而言,較佳為使用作為粒子形狀而言方向性較少之粒子(例如,球狀、正四面體狀等之粒子)。 The shape of the light-scattering particles may be spherical, filamentous, or indeterminate. However, as the light-scattering particles, in terms of further improving the uniformity, fluidity, and light-scattering properties of the ink composition, it is preferable to use particles with less directionality as a particle shape (for example, spherical , regular tetrahedral particles, etc.).

於墨水組成物中之光散射性粒子之平均粒徑(體積平均徑)就漏光之減少效果更優異之觀點而言可為0.05μm以上,亦可為0.2μm以上,亦可為0.3μm以上。於墨水組成物中之光散射性粒子之平均粒徑(體積平均徑)就噴出穩定性優異之觀點而言可為1.0μm以下,亦可為0.6μm以下,亦可為0.4μm以下。於墨水組成物中之光散射性粒子之平均粒徑(體積平均徑)可為0.05~1.0μm、0.05~0.6μm、0.05~0.4μm、0.2~1.0μm、0.2~0.6μm、0.2~0.4μm、0.3~1.0μm、0.3~0.6μm、或0.3~0.4μm。就容易獲得此種平均粒徑(體積平均徑)之觀點而言,使用之光散射性粒子之平均粒徑(體積平均徑)可為50nm以上,且可為1000nm以下。光散射性粒子之平均粒徑(體積平均徑)可藉由如下方式而獲得:藉由動態光散射式Nanotrac粒度分佈計進行測定,算出體積平均徑。又,使用之光散射性粒子之平均粒徑(體積平均徑)例如可藉由如下方式而獲得: 藉由穿透式電子顯微鏡或掃描式電子顯微鏡對各粒子之粒徑進行測定,算出體積平均徑。 The average particle diameter (volume average diameter) of the light-scattering particles in the ink composition may be 0.05 μm or more, 0.2 μm or more, or 0.3 μm or more from the viewpoint of a better light leakage reduction effect. The average particle diameter (volume average diameter) of the light-scattering particles in the ink composition may be 1.0 μm or less, 0.6 μm or less, or 0.4 μm or less from the viewpoint of excellent discharge stability. The average particle size (volume average diameter) of the light scattering particles in the ink composition can be 0.05~1.0μm, 0.05~0.6μm, 0.05~0.4μm, 0.2~1.0μm, 0.2~0.6μm, 0.2~0.4μm , 0.3~1.0μm, 0.3~0.6μm, or 0.3~0.4μm. From the viewpoint of obtaining such an average particle diameter (volume average diameter) easily, the average particle diameter (volume average diameter) of the light-scattering particles used may be 50 nm or more and 1000 nm or less. The average particle diameter (volume average diameter) of the light-scattering particles can be obtained by measuring with a dynamic light scattering Nanotrac particle size distribution meter and calculating the volume average diameter. In addition, the average particle diameter (volume average diameter) of the light-scattering particles used can be obtained, for example, by measuring the particle diameter of each particle with a transmission electron microscope or a scanning electron microscope, and calculating the volume average path.

關於光散射性粒子之含量,就漏光之減少效果更優異之觀點而言,以墨水組成物之不揮發成分之質量為基準,可為0.1質量%以上,亦可為1質量%以上,亦可為5質量%以上,亦可為7質量%以上,亦可為10質量%以上,亦可為12質量%以上。關於光散射性粒子之含量,就漏光之減少效果更優異之觀點及噴出穩定性優異之觀點而言,以墨水組成物之不揮發成分之質量為基準,可為60質量%以下,亦可為50質量%以下,亦可為40質量%以下,亦可為30質量%以下,亦可為25質量%以下,亦可為20質量%以下,亦可為15質量%以下。本實施形態中,由於墨水組成物包含高分子分散劑,因此即便於將光散射性粒子之含量設為上述範圍之情形時,亦可使光散射性粒子良好地分散。 The content of the light-scattering particles may be 0.1% by mass or more, 1% by mass or more, or 1% by mass or more based on the mass of the non-volatile components of the ink composition from the viewpoint of better light leakage reduction effect. It may be 5 mass % or more, may be 7 mass % or more, may be 10 mass % or more, and may be 12 mass % or more. The content of the light-scattering particles may be 60% by mass or less based on the mass of the non-volatile components of the ink composition from the viewpoint of a better light leakage reduction effect and excellent ejection stability. 50% by mass or less, 40% by mass or less, 30% by mass or less, 25% by mass or less, 20% by mass or less, or 15% by mass or less. In this embodiment, since the ink composition contains a polymer dispersant, even when the content of the light-scattering particles is within the above range, the light-scattering particles can be well dispersed.

光散射性粒子之含量相對於發光性奈米晶粒之含量之質量比(光散射性粒子/發光性奈米晶粒)為0.1~5.0。質量比(光散射性粒子/發光性奈米晶粒)就漏光之減少效果更優異之觀點而言,可為0.2以上,亦可為0.5以上。質量比(光散射性粒子/發光性奈米晶粒)就漏光之減少效果更優異、噴墨印刷時之連續噴出性優異之觀點而言,可為2.0以下,亦可為1.5以下。質量比(光散射性粒子/發光性奈米晶粒)亦可為0.1~2.0、0.1~1.5、0.2~5.0、0.2~2.0、0.2~1.5、0.5~5.0、0.5~2.0、或0.5~1.5。再者,關於藉由光散射性粒子所帶來之漏光減少,認為係由如下機制所致者。即,認為:於不存在光散射性粒子之情形時,背光源光係於像素部內僅大致直進地通過,被發光性奈米晶粒吸收之機會較少。另一方面,認為:若使光散射性粒子與發光性奈米晶粒存在於相同之像素部內,則背光源光於該像素部內全方位地散射,發光性奈米晶粒可對其進行受光,因此即便使用相同之背光源,像素部中之光吸收量亦會增大。結果認為:利用此種機制能夠防止漏光。 The mass ratio of the content of the light-scattering particles to the content of the luminescent nanocrystals (light-scattering particles/luminescent nanocrystals) is 0.1-5.0. The mass ratio (light-scattering particles/luminescent nanocrystal particles) may be 0.2 or more, or may be 0.5 or more from the viewpoint of a more excellent light leakage reduction effect. The mass ratio (light-scattering particles/luminescent nanocrystals) may be 2.0 or less or 1.5 or less from the standpoint of a better light leakage reduction effect and excellent continuous discharge performance during inkjet printing. The mass ratio (light-scattering particles/luminescent nanocrystals) can also be 0.1~2.0, 0.1~1.5, 0.2~5.0, 0.2~2.0, 0.2~1.5, 0.5~5.0, 0.5~2.0, or 0.5~1.5 . Furthermore, the reduction of light leakage by the light-scattering particles is considered to be due to the following mechanism. That is, it is considered that when there are no light-scattering particles, the backlight light passes through the pixel portion almost straight, and there is less chance of being absorbed by the luminescent nanocrystal particles. On the other hand, it is considered that if the light-scattering particles and the luminescent nanocrystal particles are present in the same pixel portion, the backlight light will be scattered omnidirectionally in the pixel portion, and the luminescent nanocrystal particles can receive the light. , so even if the same backlight is used, the amount of light absorbed in the pixel portion will increase. As a result, it is considered that light leakage can be prevented by using such a mechanism.

[高分子分散劑] [Polymer dispersant]

關於一實施形態之墨水組成物,較佳為使其含有高分子分散劑。高分子分散劑可使光散射性粒子均勻地分散於墨水中。 The ink composition of one embodiment preferably contains a polymer dispersant. The polymer dispersant can uniformly disperse light-scattering particles in the ink.

於本發明中,高分子分散劑為具有750以上之重量平均分子量、且具有對光散射性粒子具有親和性之官能基之高分子化合物,且具有使光散射性粒子分散之功能。高分子分散劑係經由對光散射性粒子具有親和性之官能基使高分子分散劑吸附於光散射性粒子,藉由高分子分散劑彼此之靜電排斥及/或立體排斥而使光散射性粒子分散於墨水組成物中。高分子分散劑較佳為與光散射性粒子之表面鍵結而吸附於光散射性粒子,亦可鍵結於發光性奈米晶粒之表面而吸附於發光性奈米粒子,亦可於墨水組成物中游離。 In the present invention, the polymer dispersant is a polymer compound having a weight-average molecular weight of 750 or more and having a functional group having an affinity for light-scattering particles, and has a function of dispersing the light-scattering particles. The polymer dispersant is made to adsorb the polymer dispersant to the light-scattering particles through the functional group having affinity for the light-scattering particles, and the light-scattering particles are absorbed by the electrostatic repulsion and/or steric repulsion between the polymer dispersants Dispersed in the ink composition. The polymer dispersant is preferably bonded to the surface of the light-scattering particles and adsorbed on the light-scattering particles. Free in the composition.

作為對光散射性粒子具有親和性之官能基,可列舉酸性官能基、鹼性官能基及非離子性官能基。酸性官能基具有解離性之質子,可藉由胺、氫氧根離子等鹼基進行中和,鹼性官能基可藉由有機酸、無機酸等酸進行中和。 Examples of the functional group having affinity for light-scattering particles include an acidic functional group, a basic functional group, and a nonionic functional group. Acidic functional groups have dissociative protons, which can be neutralized by bases such as amines and hydroxide ions, and basic functional groups can be neutralized by acids such as organic acids and inorganic acids.

作為酸性官能基,可列舉羧基(-COOH)、磺基(-SO3H)、硫酸基(-OSO3H)、膦酸(phosphonic acid)基(-PO(OH)3)、磷酸基(-OPO(OH)3)、次膦酸(phosphinic acid)基(-PO(OH)-)、巰基(-SH)。 As the acidic functional group, carboxyl group (-COOH), sulfo group (-SO 3 H), sulfate group (-OSO 3 H), phosphonic acid (phosphonic acid) group (-PO(OH) 3 ), phosphoric acid group ( -OPO(OH) 3 ), phosphinic acid group (-PO(OH)-), mercapto group (-SH).

作為鹼性官能基,可列舉一級、二級及三級胺基、銨基、亞胺基、以及吡啶、嘧啶、吡

Figure 107125217-A0202-12-0015-4
、咪唑、三唑等含氮雜環基等。 As basic functional groups, primary, secondary and tertiary amine groups, ammonium groups, imine groups, and pyridine, pyrimidine, pyridine,
Figure 107125217-A0202-12-0015-4
, imidazole, triazole and other nitrogen-containing heterocyclic groups, etc.

作為非離子性官能基,可列舉:羥基、醚基、硫醚基、亞磺醯基(-SO-)、磺醯基(-SO2-)、羰基、甲醯基、酯基、碳酸酯基、醯胺基、胺甲醯基、脲基、硫醯胺基、硫脲基、胺磺醯基、氰基、烯基、炔基、氧化膦基、膦硫醚基。 Examples of nonionic functional groups include: hydroxyl group, ether group, thioether group, sulfinyl group (-SO-), sulfonyl group (-SO 2 -), carbonyl group, formyl group, ester group, carbonate group, amido group, carbamoyl group, urea group, thioamide group, thiourea group, sulfamoyl group, cyano group, alkenyl group, alkynyl group, phosphine oxide group, phosphine sulfide group.

就光散射性粒子之分散穩定性之觀點、不易引起發光性奈米晶粒沈澱之副作用之觀點、高分子分散劑之合成之容易性之觀點、及官能基之穩定 性之觀點而言,作為酸性官能基,可較佳地使用羧基、磺基、膦酸基及磷酸基,作為鹼性官能基,可較佳地使用胺基。該等之中,可更佳地使用羧基、膦酸基及胺基,最佳為使用胺基。 From the point of view of the dispersion stability of light-scattering particles, the point of view that it is difficult to cause side effects of precipitation of luminescent nanocrystals, the point of view of the ease of synthesis of polymer dispersants, and the point of view of the stability of functional groups, as As the acidic functional group, carboxyl group, sulfo group, phosphonic acid group and phosphoric acid group can be preferably used, and as the basic functional group, amine group can be preferably used. Among them, a carboxyl group, a phosphonic acid group, and an amine group can be used more preferably, and an amine group is most preferably used.

具有酸性官能基之高分子分散劑具有酸值。具有酸性官能基之高分子分散劑之酸值較佳為以固形物成分換算計為1~150mgKOH/g。若酸值為1以上,則容易獲得光散射性粒子之充分分散性,若酸值為150以下,則不易降低像素部(墨水組成物之硬化物)之保存穩定性。 Polymer dispersants with acidic functional groups have an acid value. The acid value of the polymer dispersant having an acidic functional group is preferably 1-150 mgKOH/g in terms of solid content. When the acid value is 1 or more, sufficient dispersibility of the light-scattering particles is easily obtained, and when the acid value is 150 or less, the storage stability of the pixel portion (cured product of the ink composition) is less likely to be lowered.

又,具有鹼性官能基之高分子分散劑具有胺值。具有鹼性官能基之高分子分散劑之胺值較佳為以固形物成分換算計為1~200mgKOH/g。若胺值為1以上,則容易獲得光散射性粒子之充分之分散性,若胺值為200以下,則不易降低像素部(墨水組成物之硬化物)之保存穩定性。 In addition, the polymer dispersant having a basic functional group has an amine value. The amine value of the polymer dispersant having a basic functional group is preferably 1 to 200 mgKOH/g in terms of solid content. When the amine value is 1 or more, sufficient dispersibility of the light-scattering particles is easily obtained, and when the amine value is 200 or less, the storage stability of the pixel portion (cured product of the ink composition) is less likely to be lowered.

高分子分散劑可為單一之單體之聚合物(均聚物),亦可為多種單體之共聚物(共聚合物)。又,高分子分散劑為無規共聚物、嵌段共聚物或接枝共聚物之任一者均可。又,於高分子分散劑為接枝共聚物之情形時,可為梳形之接枝共聚物,亦可為星形之接枝共聚物。高分子分散劑例如可為丙烯酸樹脂、聚酯樹脂、聚胺酯(polyurethane)樹脂、聚醯胺樹脂、聚醚、酚樹脂、聚矽氧樹脂、聚脲樹脂、胺基樹脂、聚乙烯亞胺及聚烯丙胺等之聚胺、環氧樹脂、聚醯亞胺等。 The polymer dispersant can be a polymer (homopolymer) of a single monomer, or a copolymer (copolymer) of multiple monomers. Moreover, any one of a random copolymer, a block copolymer, or a graft copolymer may be sufficient as a polymer dispersing agent. Also, when the polymer dispersant is a graft copolymer, it may be a comb-shaped graft copolymer or a star-shaped graft copolymer. The polymer dispersant can be, for example, acrylic resin, polyester resin, polyurethane (polyurethane) resin, polyamide resin, polyether, phenol resin, polysiloxane resin, polyurea resin, amino resin, polyethyleneimine and poly Polyamine such as allylamine, epoxy resin, polyimide, etc.

作為上述高分子分散劑,亦可使用市售品,作為市售品,可使用Ajinomoto Fine-Techno股份有限公司之Ajisper PB series、BYK公司製造之DISPERBYK series以及BYK-series、BASF公司製造之Efka series等。 Commercially available products can also be used as the above-mentioned polymer dispersant. As commercially available products, Ajisper PB series manufactured by Ajinomoto Fine-Techno Co., Ltd., DISPERBYK series manufactured by BYK Corporation, BYK-series, and Efka series manufactured by BASF Corporation can be used. Wait.

作為市售品,例如可使用BYK-Chemie公司製造之「DISPERBYK-130」、「DISPERBYK-161」、「DISPERBYK-162」、「DISPERBYK-163」、「DISPERBYK-164」、「DISPERBYK-166」、 「DISPERBYK-167」、「DISPERBYK-168」、「DISPERBYK-170」、「DISPERBYK-171」、「DISPERBYK-174」、「DISPERBYK-180」、「DISPERBYK-182」、「DISPERBYK-183」、「DISPERBYK-184」、「DISPERBYK-185」、「DISPERBYK-2000」、「DISPERBYK-2001」、「DISPERBYK-2008」、「DISPERBYK-2009」、「DISPERBYK-2020」、「DISPERBYK-2022」、「DISPERBYK-2025」、「DISPERBYK-2050」、「DISPERBYK-2070」、「DISPERBYK-2096」、「DISPERBYK-2150」、「DISPERBYK-2155」、「DISPERBYK-2163」、「DISPERBYK-2164」、「BYK-LPN21116」及「BYK-LPN6919」;BASF公司製造之「EFKA4010」、「EFKA4015」、「EFKA4046」、「EFKA4047」、「EFKA4061」、「EFKA4080」、「EFKA4300」、「EFKA4310」、「EFKA4320」、「EFKA4330」、「EFKA4340」、「EFKA4560」、「EFKA4585」、「EFKA5207」、「EFKA1501」、「EFKA1502」、「EFKA1503」及「EFKAPX-4701」;Lubrizol公司製造之「Solsperse 3000」、「Solsperse 9000」、「Solsperse 13240」、「Solsperse 13650」、「Solsperse 13940」、「Solsperse 11200」、「Solsperse 13940」、「Solsperse 16000」、「Solsperse 17000」、「Solsperse 18000」、「Solsperse 20000」、「Solsperse 21000」、「Solsperse 24000」、「Solsperse 26000」、「Solsperse 27000」、「Solsperse 28000」、「Solsperse 32000」、「Solsperse 32500」、「Solsperse 32550」、「Solsperse 32600」、「Solsperse 33000」、「Solsperse 34750」、「Solsperse 35100」、「Solsperse 35200」、「Solsperse 36000」、「Solsperse 37500」、「Solsperse 38500」、「Solsperse 39000」、「Solsperse 41000」、「Solsperse 54000」、「Solsperse 71000」及「Solsperse 76500」;Ajinomoto Fine-Techno股份有限公司製造之「Ajisper PB821」、「Ajisper PB822」、「Ajisper PB881」、「PN411」及「PA111」;Evonik公司製造之「TEGO Dispers650」、「TEGO Dispers660C」、「TEGO Dispers662C」、「TEGO Dispers670」、「TEGO Dispers685」、「TEGO Dispers700」、「TEGO Dispers710」及「TEGO Dispers760W」;楠本化成製造之「Disparlon DA-703-50」、「DA-705」及「DA-725」等。 As commercially available products, for example, "DISPERBYK-130", "DISPERBYK-161", "DISPERBYK-162", "DISPERBYK-163", "DISPERBYK-164", "DISPERBYK-166" manufactured by BYK-Chemie, Inc. can be used. "DISPERBYK-167", "DISPERBYK-168", "DISPERBYK-170", "DISPERBYK-171", "DISPERBYK-174", "DISPERBYK-180", "DISPERBYK-182", "DISPERBYK-183", "DISPERBYK -184", "DISPERBYK-185", "DISPERBYK-2000", "DISPERBYK-2001", "DISPERBYK-2008", "DISPERBYK-2009", "DISPERBYK-2020", "DISPERBYK-2022", "DISPERBYK-2025 ”, “DISPERBYK-2050”, “DISPERBYK-2070”, “DISPERBYK-2096”, “DISPERBYK-2150”, “DISPERBYK-2155”, “DISPERBYK-2163”, “DISPERBYK-2164”, “BYK-LPN21116” and "BYK-LPN6919"; "EFKA4010", "EFKA4015", "EFKA4046", "EFKA4047", "EFKA4061", "EFKA4080", "EFKA4300", "EFKA4310", "EFKA4320", "EFKA4330" manufactured by BASF "EFKA4340", "EFKA4560", "EFKA4585", "EFKA5207", "EFKA1501", "EFKA1502", "EFKA1503" and "EFKAPX-4701"; "Solsperse 3000", "Solsperse 9000", "Solsperse 13240", "Solsperse 13650", "Solsperse 13940", "Solsperse 11200", "Solsperse 13940", "Solsperse 16000", "Solsperse 17000", "Solsperse 18000", "Solsperse 20000", "Solsperse 21000", "Solsperse twenty four 000", "Solsperse 26000", "Solsperse 27000", "Solsperse 28000", "Solsperse 32000", "Solsperse 32500", "Solsperse 32550", "Solsperse 32600", "Solsperse 33000", "Solsperse 34750", "Solsperse 35100”, “Solsperse 35200”, “Solsperse 36000”, “Solsperse 37500”, “Solsperse 38500”, “Solsperse 39000”, “Solsperse 41000”, “Solsperse 54000”, “Solsperse 71000” and “Solsperse 76500 to Fine”; - "Ajisper PB821", "Ajisper PB822", "Ajisper PB881", "PN411" and "PA111" manufactured by Techno Co., Ltd.; "TEGO Dispers650", "TEGO Dispers660C", "TEGO Dispers662C", " TEGO Dispers670", "TEGO Dispers685", "TEGO Dispers700", "TEGO Dispers710" and "TEGO Dispers760W"; "Disparlon DA-703-50", "DA-705" and "DA-725" manufactured by Kusumoto Chemicals, etc.

作為高分子分散劑,除如上述市售品以外,亦可使用使含有鹼性基之陽離子性單體及/或具有酸性基之陰離子性單體、具有疏水基之單體、及視需要之其他單體(非離子性單體、具有親水基之單體等)共聚進行合成而得者。關於陽離子性單體、陰離子性單體、具有疏水基之單體及其他單體之詳細情況,可列舉日本特開2004-250502號公報之段落0034~0036所記載之單體。 As a polymer dispersant, in addition to the above-mentioned commercial products, cationic monomers containing basic groups and/or anionic monomers with acidic groups, monomers with hydrophobic groups, and optionally It is obtained by copolymerizing other monomers (non-ionic monomers, monomers with hydrophilic groups, etc.). Details of cationic monomers, anionic monomers, monomers having a hydrophobic group, and other monomers include monomers described in paragraphs 0034 to 0036 of JP-A-2004-250502.

又,例如可較佳地列舉於日本特開昭54-37082號公報、日本特開昭61-174939號公報等中記載之使聚伸烷基亞胺與聚酯化合物反應而得之化合物、於日本特開平9-169821號公報中記載之利用聚酯對聚烯丙胺之側鏈之胺基進行改質所得之化合物、於日本特開平9-171253號公報中記載之以聚酯型巨單體為共聚成分之接枝聚合物、於日本特開昭60-166318號公報中記載之聚酯聚醇加成聚胺酯等。 Also, for example, compounds obtained by reacting polyalkylene imines with polyester compounds described in JP-A-54-37082, JP-A-61-174939, etc., and The compound obtained by modifying the amino group of the side chain of polyallylamine by using polyester described in Japanese Patent Application Publication No. 9-169821, and the polyester macromonomer described in Japanese Patent Application Publication No. 9-171253 Graft polymers that are copolymerization components, polyester polyalcohol addition polyurethanes described in JP-A-60-166318, and the like.

關於高分子分散劑之重量平均分子量,就可使光散射性粒子良好地分散、可使漏光之減少效果進一步提昇之觀點而言,可為750以上,可為1000以上,可為2000以上,亦可為3000以上。關於高分子分散劑之重量平均分子量,就可使光散射性粒子良好地分散、可使漏光之減少效果進一步提昇、並且將噴墨墨水之黏度設為適於能夠噴出且穩定地噴出之黏度之觀點而言,可為100000以下,亦可為50000以下,亦可為30000以下。本說明書中,所謂重量平均分子量,係藉由GPC(凝膠滲透層析法,Gel Permeation Chromatography)所測定得之聚苯乙烯換算之重量平均分子量。 The weight average molecular weight of the polymer dispersant may be 750 or more, 1000 or more, 2000 or more, or 2000 or more from the viewpoint of enabling good dispersion of light-scattering particles and further improving the effect of reducing light leakage. It can be more than 3000. With regard to the weight average molecular weight of the polymer dispersant, it is possible to disperse the light-scattering particles well, further enhance the effect of reducing light leakage, and set the viscosity of the inkjet ink to a viscosity suitable for ejection and stable ejection. From a viewpoint, it may be 100,000 or less, 50,000 or less, or 30,000 or less. In this specification, the weight average molecular weight is the weight average molecular weight in terms of polystyrene measured by GPC (Gel Permeation Chromatography, Gel Permeation Chromatography).

關於高分子分散劑之含量,就光散射性粒子之分散性之觀點而言,相對於光散射性粒子100質量份,可為0.5質量份以上,亦可為2質量份以上,亦可為5質量份以上。關於高分子分散之含量,就像素部(墨水組成物之硬化物) 之濕熱穩定性之觀點而言,相對於光散射性粒子100質量份,可為50質量份以下,亦可為30質量份以下,亦可為10質量份以下。 From the viewpoint of the dispersibility of the light-scattering particles, the content of the polymer dispersant may be 0.5 parts by mass or more, 2 parts by mass or more, or 5 parts by mass relative to 100 parts by mass of the light-scattering particles. parts by mass or more. The content of polymer dispersion may be 50 parts by mass or less or 30 parts by mass with respect to 100 parts by mass of light-scattering particles from the viewpoint of the moisture-heat stability of the pixel portion (cured product of the ink composition). It may be less than or equal to 10 parts by mass or less.

[熱硬化性樹脂] [thermosetting resin]

於本實施形態中,所謂熱硬化性樹脂,係於硬化物中作為黏合劑發揮功能之藉由熱進行交聯並進行硬化之樹脂。熱硬化性樹脂具有硬化性基。作為硬化性基,可列舉環氧基、氧環丁烷基、異氰酸酯基、胺基、羧基、羥甲基等,就墨水組成物之硬化物之耐熱性及保存穩定性優異之觀點、及對遮光部(例如黑矩陣)及基材之密接性優異之觀點而言,較佳為環氧基。熱硬化性樹脂可具有1種硬化性基,亦可具有兩種以上硬化性基。 In this embodiment, a thermosetting resin is a resin that is crosslinked and cured by heat and functions as a binder in a cured product. A thermosetting resin has a curable group. Examples of curable groups include epoxy groups, oxetanyl groups, isocyanate groups, amine groups, carboxyl groups, and methylol groups. From the viewpoint of excellent heat resistance and storage stability of the cured product of the ink composition, and to From the viewpoint of excellent adhesion between a light-shielding part (such as a black matrix) and a base material, an epoxy group is preferable. The thermosetting resin may have one kind of curable group, or may have two or more kinds of curable groups.

再者,於熱硬化性樹脂之中,包含具有光自由基聚合性之(於與光自由基聚合起始劑共同使用之情形時藉由光之照射進行聚合)樹脂、及具有光陽離子聚合性之(於與光陽離子聚合起始劑共同使用之情形時藉由光之照射進行聚合)樹脂。 Furthermore, in thermosetting resins, resins having photoradical polymerizability (polymerized by irradiation of light when used together with a photoradical polymerization initiator) and photocationically polymerizable resins are included. The (polymerization by light irradiation when used together with a photocationic polymerization initiator) resin.

熱硬化性樹脂可為單一單體之聚合物(均聚物),亦可為多種單體之共聚物(共聚合物)。又,熱硬化性樹脂亦可為無規共聚體、嵌段共聚物或接枝共聚物之任一者。 Thermosetting resins can be polymers of a single monomer (homopolymers), or copolymers of multiple monomers (copolymers). Moreover, any one of a random copolymer, a block copolymer, or a graft copolymer may be sufficient as a thermosetting resin.

作為熱硬化性樹脂,可使用1分子中具有2個以上熱硬化性官能基之化合物,通常與硬化劑組合使用。於使用熱硬化性樹脂之情形時,可進而添加可促進熱硬化反應之觸媒(硬化促進劑)。換言之,墨水組成物可含有包含熱硬化性樹脂(以及視需要而使用之硬化劑及硬化促進劑)之熱硬化性成分。又,除該等以外,其本身亦可進而使用無聚合反應性之聚合物。 As the thermosetting resin, a compound having two or more thermosetting functional groups in one molecule can be used, and it is usually used in combination with a curing agent. In the case of using a thermosetting resin, a catalyst (hardening accelerator) capable of accelerating the thermosetting reaction may be further added. In other words, the ink composition may contain a thermosetting component including a thermosetting resin (and, if necessary, a curing agent and a curing accelerator). Moreover, in addition to these, it is also possible to further use a non-polymerizable polymer itself.

作為於1分子中具有2個以上熱硬化性官能基之化合物,例如可使用1分子中具有2個以上環氧基之環氧樹脂(以下,亦稱為「多官能環氧樹脂」)。於「環氧樹脂」中包含單體性環氧樹脂及聚合物性環氧樹脂之兩者。多官能性 環氧樹脂於1分子中具有之環氧基之數較佳為2~50個,更佳為2~20個。環氧基只要為具有環氧乙烷環結構之結構即可,例如可為縮水甘油基、氧化乙烯基、環氧環己基等。作為環氧樹脂,可列舉可藉由羧酸硬化之公知之多元環氧樹脂。此種環氧樹脂例如廣泛地揭示於新保正樹編「環氧樹脂手冊」日刊工業報社刊(1987年)等,可使用該等。 As a compound having two or more thermosetting functional groups in one molecule, for example, an epoxy resin having two or more epoxy groups in one molecule (hereinafter also referred to as "polyfunctional epoxy resin") can be used. "Epoxy resin" includes both monomeric epoxy resin and polymeric epoxy resin. Multifunctionality The number of epoxy groups in one molecule of the epoxy resin is preferably 2-50, more preferably 2-20. The epoxy group should just be a structure which has an oxirane ring structure, for example, a glycidyl group, an oxyethylene group, an epoxycyclohexyl group etc. are mentioned. As an epoxy resin, the well-known polyvalent epoxy resin hardenable with a carboxylic acid is mentioned. Such epoxy resins are widely disclosed, for example, in "Epoxy Resin Handbook" edited by Masaki Shinho, Nikkan Kogyo Shimbun (1987), and the like can be used.

作為具有環氧基之熱硬化性樹脂(包含多官能環氧樹脂),可列舉具有環氧乙烷環結構之單體之聚合物、具有環氧乙烷環結構之單體與其他單體(例如丙烯酸單體)之共聚物。作為該單體,例如有(甲基)丙烯酸縮水甘油酯、(甲基)丙烯酸β-甲基縮水甘油酯、縮水甘油基乙烯醚、烯丙基縮水甘油醚之類之各種含環氧基單體類;(甲基)丙烯酸(2-側氧基-1,3-氧戊環)甲酯之類之含(2-側氧基-1,3-氧戊環)基之乙烯基單體類;(甲基)丙烯酸3,4-環氧環己酯、(甲基)丙烯酸3,4-環氧環己基甲酯、(甲基)丙烯酸3,4-環氧環己基乙酯之類之各種含脂環式環氧基之乙烯基單體等。 Examples of thermosetting resins (including polyfunctional epoxy resins) having an epoxy group include polymers of monomers having an oxirane ring structure, monomers having an oxirane ring structure, and other monomers ( For example, copolymers of acrylic acid monomers). Examples of such monomers include various epoxy group-containing monomers such as glycidyl (meth)acrylate, β-methylglycidyl (meth)acrylate, glycidyl vinyl ether, and allyl glycidyl ether. Monomers; vinyl monomers containing (2-oxo-1,3-oxolane) groups such as (2-oxo-1,3-oxolane) methyl (meth)acrylate Class; 3,4-epoxycyclohexyl (meth)acrylate, 3,4-epoxycyclohexylmethyl (meth)acrylate, 3,4-epoxycyclohexylethyl (meth)acrylate, etc. Various vinyl monomers containing alicyclic epoxy groups, etc.

另一方面,作為含乙烯性不飽和雙鍵之單體,例如可列舉:苯乙烯、α-甲基苯乙烯、乙烯基甲苯之類之各種芳香族乙烯基化合物;丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、丙烯酸環己酯之類之各種丙烯酸酯類;甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸正丁酯、甲基丙烯酸異丁酯、甲基丙烯酸三級丁酯、甲基丙烯酸環己酯、甲基丙烯酸苄酯之類之各種甲基丙烯酸酯類;乙烯、丙烯、丁烯-1之類之各種α-烯烴類;氯乙烯、二氯亞乙烯之類之除氟烯烴以外之各種鹵化烯烴類(鹵代烯烴類);反丁烯二酸二甲酯、反丁烯二酸二乙酯、反丁烯二酸二丁酯、反丁烯二酸二辛酯、順丁烯二酸二甲酯、順丁烯二酸二乙酯、順丁烯二酸二丁酯、順丁烯二酸二辛酯、伊康酸二甲酯、伊康酸二乙酯、伊康酸二丁酯、伊康酸二辛酯之類之各種不飽和二羧酸與碳數為1~18之一元醇之二酯類;乙酸乙烯酯、丙酸乙烯酯、丁酸乙烯酯、異丁酸乙烯酯、己酸 乙烯酯、辛酸乙烯酯、癸酸乙烯酯、月桂酸乙烯酯、碳原子數為9之支鏈狀(分枝狀)脂肪族羧酸乙烯酯、碳原子數為10之支鏈狀脂肪族羧酸乙烯酯、碳原子數為11之支鏈脂肪族羧酸乙烯酯、硬脂酸乙烯酯之類之各種脂肪族羧酸乙烯酯類等。 On the other hand, examples of ethylenically unsaturated double bond-containing monomers include various aromatic vinyl compounds such as styrene, α-methylstyrene, and vinyltoluene; methyl acrylate, ethyl acrylate, and the like; , butyl acrylate, cyclohexyl acrylate and other acrylates; methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, tertiary butyl methacrylate Various methacrylates such as cyclohexyl methacrylate and benzyl methacrylate; various α-olefins such as ethylene, propylene, butene-1; vinyl chloride, vinylidene chloride and the like Various halogenated olefins (halogenated olefins) other than fluoroolefins; dimethyl fumarate, diethyl fumarate, dibutyl fumarate, dioctyl fumarate ester, dimethyl maleate, diethyl maleate, dibutyl maleate, dioctyl maleate, dimethyl itaconate, diethyl itaconate Diesters of various unsaturated dicarboxylic acids such as dibutyl itaconate and dioctyl itaconate and monohydric alcohols with 1 to 18 carbon atoms; vinyl acetate, vinyl propionate, butyric acid Vinyl ester, vinyl isobutyrate, vinyl caproate, vinyl caprylate, vinyl caprate, vinyl laurate, branched (branched) aliphatic vinyl carboxylate with 9 carbon atoms, carbon Various aliphatic carboxylic acid vinyl esters such as branched-chain aliphatic carboxylic acid vinyl esters having 10 atoms, branched-chain aliphatic carboxylic acid vinyl esters having 11 carbon atoms, and vinyl stearate.

作為具體之多官能環氧樹脂,可列舉:聚甲基丙烯酸縮水甘油酯、甲基丙烯酸甲酯-甲基丙烯酸縮水甘油酯共聚物、甲基丙烯酸苄酯-甲基丙烯酸縮水甘油酯共聚物、甲基丙烯酸正丁酯-甲基丙烯酸縮水甘油酯共聚物、甲基丙烯酸2-羥基乙酯-甲基丙烯酸縮水甘油酯共聚物、甲基丙烯酸(3-乙基-3-氧環丁基)甲酯-甲基丙烯酸縮水甘油酯共聚物、苯乙烯-甲基丙烯酸縮水甘油酯共聚物等。又,作為本實施形態之熱硬化性樹脂,亦可使用日本特開2014-56248號公報之第0044~0066段所記載之化合物。 As specific multifunctional epoxy resins, polyglycidyl methacrylate, methyl methacrylate-glycidyl methacrylate copolymer, benzyl methacrylate-glycidyl methacrylate copolymer, n-butyl methacrylate-glycidyl methacrylate copolymer, 2-hydroxyethyl methacrylate-glycidyl methacrylate copolymer, methacrylic acid (3-ethyl-3-oxocyclobutyl) Methyl ester-glycidyl methacrylate copolymer, styrene-glycidyl methacrylate copolymer, etc. In addition, as the thermosetting resin of the present embodiment, compounds described in paragraphs 0044 to 0066 of JP-A-2014-56248 can also be used.

關於此種具有環氧乙烷環結構之單體之均聚物或共聚物,就操作或製造之容易性之觀點而言,較佳為二維狀(線型)之共聚物,例如可藉由如下方式而獲得:無溶劑或於有機溶劑中,以(甲基)丙烯酸縮水甘油酯為必需成分,與作為公知慣用之能夠進行共聚之乙烯性不飽和單體之芳香族乙烯基化合物或(甲基)丙烯酸酯等含有一個乙烯性不飽和雙鍵之單體、及視需要之含有兩個以上乙烯性不飽和雙鍵之單體共同進行聚合。藉由對(甲基)丙烯酸縮水甘油酯與其他乙烯性不飽和單體之併用比例進行調整亦可獲得所需環氧基含量之共聚物,選擇何種單體用作能夠進行共聚之乙烯性不飽和單體可根據將整體之平均分子量設為何種程度而對共聚物之折射率、玻璃轉移溫度、柔軟性、透明性、於有機溶劑中之溶解性等進行調整。芳香族乙烯基化合物之類之含有芳香環之單體之共聚比例例如會對生成共聚物之折射率產生影響,(甲基)丙烯酸酯之烷基鏈長會對生成共聚物之柔軟性或對支持體等之接著性產生影響。此種共聚物例如藉由如下方式等亦可容易地獲得:於下述之本發明之特定LogP值範圍之有機 溶劑中,以上述(甲基)丙烯酸縮水甘油酯作為必需成分,與公知慣用之能夠進行共聚之乙烯性不飽和單體以縮水甘油基不開環之方式進行聚合直至成為所需之所欲的分子量。當然,亦可於下述之特定LogP值範圍外之有機溶劑中進行,而製備上述共聚物,將下述有機溶劑與處於下述之特定LogP值範圍內之有機溶劑置換。 Regarding the homopolymer or copolymer of monomers having an oxirane ring structure, it is preferably a two-dimensional (linear) copolymer from the viewpoint of ease of handling or manufacture. Obtained in the following manner: without solvent or in an organic solvent, with glycidyl (meth)acrylate as an essential component, and an aromatic vinyl compound or (meth)acrylic acid as a well-known and customary ethylenically unsaturated monomer that can be copolymerized (base) acrylate and other monomers containing one ethylenically unsaturated double bond, and optionally monomers containing two or more ethylenically unsaturated double bonds are polymerized together. By adjusting the combination ratio of glycidyl (meth)acrylate and other ethylenically unsaturated monomers, a copolymer with the required epoxy group content can also be obtained. Which monomer to choose for the ethylenic unsaturated monomer that can be copolymerized The unsaturated monomer can adjust the refractive index, glass transition temperature, flexibility, transparency, solubility in organic solvents, etc. of the copolymer depending on how much the average molecular weight of the whole is. The copolymerization ratio of monomers containing aromatic rings such as aromatic vinyl compounds will affect the refractive index of the resulting copolymer, and the alkyl chain length of (meth)acrylate will affect the flexibility of the resulting copolymer or the Adhesion of supports etc. is affected. Such a copolymer can also be easily obtained, for example, by using the above-mentioned glycidyl (meth)acrylate as an essential component in an organic solvent within the specific LogP value range of the present invention described below, and using known and commonly used Ethylenically unsaturated monomers that can be copolymerized are polymerized in such a way that the glycidyl group is not ring-opened until the desired molecular weight is achieved. Certainly, it can also be carried out in an organic solvent outside the specific LogP value range described below to prepare the above-mentioned copolymer by replacing the organic solvent described below with an organic solvent within the specific LogP value range described below.

又,作為多官能環氧樹脂,例如可使用:雙酚A型環氧樹脂、雙酚F型環氧樹脂、溴化雙酚A型環氧樹脂、雙酚S型環氧樹脂、二苯醚型環氧樹脂、對苯二酚型環氧樹脂、萘型環氧樹脂、聯苯型環氧樹脂、茀型環氧樹脂、苯酚酚醛清漆型環氧樹脂、鄰甲酚酚醛清漆型環氧樹脂、三羥基苯基甲烷型環氧樹脂、3官能型環氧樹脂、四酚基乙烷型環氧樹脂、二環戊二烯苯酚型環氧樹脂、氫化雙酚A型環氧樹脂、雙酚A含核多元醇型環氧樹脂、聚丙二醇型環氧樹脂、縮水甘油酯型環氧樹脂、縮水甘油胺型環氧樹脂、乙二醛型環氧樹脂、脂環型環氧樹脂、雜環型環氧樹脂等。 Moreover, as a polyfunctional epoxy resin, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, brominated bisphenol A type epoxy resin, bisphenol S type epoxy resin, diphenyl ether Type epoxy resin, hydroquinone type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, fennel type epoxy resin, phenol novolak type epoxy resin, o-cresol novolak type epoxy resin , trihydroxyphenylmethane type epoxy resin, trifunctional epoxy resin, tetraphenol ethane type epoxy resin, dicyclopentadiene phenol type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol A nuclear polyol type epoxy resin, polypropylene glycol type epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, glyoxal type epoxy resin, alicyclic epoxy resin, heterocyclic Type epoxy resin, etc.

更具體而言,可例示:商品名「Epikote 828」(Japan Epoxy Resins公司製造)等雙酚A型環氧樹脂、商品名「YDF-175S」(東都化成公司製造)等雙酚F型環氧樹脂、商品名「YDB-715」(東都化成公司製造)等溴化雙酚A型環氧樹脂、商品名「EPICLON EXA1514」(DIC(股)製造)等雙酚S型環氧樹脂、商品名「YDC-1312」(東都化成公司製造)等對苯二酚型環氧樹脂、商品名「EPICLON EXA4032」、「HP-4770」、「HP-4700」、「HP-5000」(DIC(股)製造)等萘型環氧樹脂、商品名「Epikote YX4000H」(Japan Epoxy Resins公司製造)等聯苯型環氧樹脂、商品名「Epikote 157S70」(Japan Epoxy Resins公司製造)等雙酚A型酚醛清漆系環氧樹脂、商品名「Epikote 154」(Japan Epoxy Resins公司製造)、商品名「YDPN-638」(東都化成公司製造)等苯酚酚醛清漆型環氧樹脂、商品名「YDCN-701」(東都化成公司製造)等甲酚酚醛清漆型環氧樹 脂、商品名「EPICLON HP-7200」、「HP-7200H」(DIC(股)製造)等二環戊二烯苯酚型環氧樹脂、商品名「Epikote 1032H60」(Japan Epoxy Resins公司製造)等三羥基苯基甲烷型環氧樹脂、商品名「VG3101M80」(三井化學公司製造)等3官能型環氧樹脂、商品名「Epikote 1031S」(Japan Epoxy Resins公司製造)等四酚基乙烷型環氧樹脂、商品名「DENACOL EX-411」(Nagase Chemical Industry公司製造)等4官能型環氧樹脂、商品名「ST-3000」(東都化成公司製造)等氫化雙酚A型環氧樹脂、商品名「Epikote 190P」(Japan Epoxy Resins公司製造)等縮水甘油酯型環氧樹脂、商品名「YH-434」(東都化成公司製造)等縮水甘油胺型環氧樹脂、商品名「YDG-414」(東都化成公司製造)等乙二醛型環氧樹脂、商品名「Epolead GT-401」(Daicel化學公司製造)等脂環式多官能環氧化合物、異氰酸三縮水甘油酯(TGIC)等雜環型環氧樹脂等。又,若有需要,可混合商品名「Neotohto E」(東都化成公司製造)等作為環氧反應性稀釋劑。 More specifically, bisphenol A type epoxy resins such as trade name "Epikote 828" (manufactured by Japan Epoxy Resins Co., Ltd.), and bisphenol F type epoxy resins such as trade name "YDF-175S" (manufactured by Tohto Kasei Co., Ltd.) can be exemplified. Resin, product name "YDB-715" (manufactured by Tohto Kasei Co., Ltd.), etc. Brominated bisphenol A type epoxy resin, product name "EPICLON EXA1514" (manufactured by DIC Co., Ltd.) or other bisphenol S type epoxy resin, product name Hydroquinone-type epoxy resins such as "YDC-1312" (manufactured by Tohto Chemical Co., Ltd.), trade names "EPICLON EXA4032", "HP-4770", "HP-4700", "HP-5000" (DIC Co., Ltd. naphthalene-type epoxy resins such as "Epikote YX4000H" (manufactured by Japan Epoxy Resins Co., Ltd.), biphenyl-type epoxy resins such as "Epikote 157S70" (manufactured by Japan Epoxy Resins Co., Ltd.) Phenol novolak type epoxy resins such as epoxy resins, trade name "Epikote 154" (manufactured by Japan Epoxy Resins Co., Ltd.), trade name "YDPN-638" (manufactured by Tohto Kasei Co., Ltd.), trade name "YDCN-701" (manufactured by Tohto Chemical Co., Ltd.) Dicyclopentadiene phenol-type epoxy resins such as cresol novolak-type epoxy resins such as "EPICLON HP-7200" and "HP-7200H" (manufactured by DIC Co., Ltd.), trade names " Trifunctional epoxy resins such as Epikote 1032H60” (manufactured by Japan Epoxy Resins Co., Ltd.); trifunctional epoxy resins such as “Epikote 1031S” (manufactured by Japan Epoxy Resins Co., Ltd.) tetrafunctional epoxy resin such as tetraphenol ethane type epoxy resin (manufactured by Nagase Chemical Industry Co., Ltd.), trade name "DENACOL EX-411" (manufactured by Nagase Chemical Industry Co., Ltd.), trade name "ST-3000" (manufactured by Tohto Chemical Industry Co., Ltd.) Isohydrogenated bisphenol A type epoxy resin, glycidyl ester type epoxy resin such as trade name "Epikote 190P" (manufactured by Japan Epoxy Resins Co., Ltd.), glycidyl amine type such as trade name "YH-434" (manufactured by Tohto Kasei Co., Ltd.) Epoxy resins, glyoxal type epoxy resins such as trade name "YDG-414" (manufactured by Tohto Chemical Co., Ltd.), alicyclic polyfunctional epoxy compounds such as trade name "Epolead GT-401" (manufactured by Daicel Chemical Co., Ltd.), Heterocyclic epoxy resins such as triglycidyl isocyanate (TGIC), etc. Also, if necessary, a trade name "Neotohto E" (manufactured by Tohto Chemical Co., Ltd.) or the like may be mixed as an epoxy-reactive diluent.

又,作為多官能環氧樹脂,可使用DIC(股)製造之「FINEDIC A-247S」、「FINEDIC A-254」、「FINEDIC A-253」、「FINEDIC A-229-30A」、「FINEDIC A-261」、「FINEDIC A249」、「FINEDIC A-266」、「FINEDIC A-241」「FINEDIC M-8020」、「EPICLON N-740」、「EPICLON N-770」、「EPICLON N-865」(商品名)等。 In addition, as the polyfunctional epoxy resin, "FINEDIC A-247S", "FINEDIC A-254", "FINEDIC A-253", "FINEDIC A-229-30A", "FINEDIC A -261", "FINEDIC A249", "FINEDIC A-266", "FINEDIC A-241", "FINEDIC M-8020", "EPICLON N-740", "EPICLON N-770", "EPICLON N-865" ( product name), etc.

若使用分子量相對小之多官能環氧樹脂作為熱硬化性樹脂,則於墨水組成物(噴墨墨水)中,環氧基得到補充,環氧樹脂之反應點濃度變為高濃度,能夠提高交聯密度。 If a multifunctional epoxy resin with a relatively small molecular weight is used as a thermosetting resin, the epoxy group will be supplemented in the ink composition (inkjet ink), and the concentration of the reaction sites of the epoxy resin will become high, which can improve the exchange rate. joint density.

多官能環氧樹脂之中,就提高交聯密度之觀點而言,較佳為使用一分子中具有4個以上環氧基之環氧樹脂(4官能以上之多官能環氧樹脂)。尤其是於為了使噴墨方式中之自噴出頭之噴出穩定性提昇而使用重量平均分子量 為10000以下之熱硬化性樹脂之情形時,像素部(墨水組成物之硬化物)之強度及硬度容易降低,因此就充分地提高交聯密度之觀點而言,較佳為將4官能以上之多官能環氧樹脂摻合於墨水組成物(噴墨墨水)中。 Among the polyfunctional epoxy resins, it is preferable to use an epoxy resin having four or more epoxy groups in one molecule (polyfunctional epoxy resin with four or more functions) from the viewpoint of increasing the crosslink density. In particular, when a thermosetting resin with a weight average molecular weight of 10,000 or less is used to improve the stability of ejection from the ejection head in the inkjet method, the strength and hardness of the pixel portion (cured product of the ink composition) tends to decrease Therefore, from the viewpoint of sufficiently increasing the crosslink density, it is preferable to blend a tetrafunctional or higher multifunctional epoxy resin into the ink composition (inkjet ink).

作為具有環氧基之熱硬化性樹脂,就容易獲得兼具著色較少、透明性更優異、且可提高交聯密度、耐化學品性或柔軟性更優異等優點的硬化物之觀點而言,具有環氧乙烷環結構之單體與其他單體之多元共聚物較其他多官能環氧樹脂而言較佳。作為此般硬化物之優異之光學特性或膜物性例如適合於光學材料用途、尤其是於期待長期可靠性之光轉換層中之應用。 As a thermosetting resin with an epoxy group, it is easy to obtain a cured product that has the advantages of less coloring, better transparency, increased crosslink density, chemical resistance, and better flexibility. , The multiple copolymers of monomers with oxirane ring structure and other monomers are better than other multifunctional epoxy resins. The excellent optical characteristics and film physical properties of such a cured product are suitable, for example, for use in optical materials, especially in light conversion layers where long-term reliability is expected.

作為為了使熱硬化性樹脂硬化而使用之硬化劑及硬化促進劑,可使用可溶解或分散於上述有機溶劑中之公知慣用者之任一者,例如可列舉:4-甲基六氫鄰苯二甲酸酐、三伸乙基四胺、二胺基二苯甲烷、苯酚酚醛清漆樹脂、三(二甲基胺基甲基)苯酚、N,N-二甲基苄胺、2-乙基-4-甲基咪唑、三苯基膦、3-苯基-1,1-二甲基脲等。 As the hardener and hardening accelerator used to harden the thermosetting resin, any of known and conventional ones that can be dissolved or dispersed in the above-mentioned organic solvents can be used, for example, 4-methylhexahydrophthalate Diformic anhydride, triethylenetetramine, diaminodiphenylmethane, phenol novolac resin, tris(dimethylaminomethyl)phenol, N,N-dimethylbenzylamine, 2-ethyl- 4-methylimidazole, triphenylphosphine, 3-phenyl-1,1-dimethylurea, etc.

其中,較佳為使用較苯酚酚醛清漆樹脂之類之高分子而言為常溫液狀或於上述有機溶劑中之溶解性優異可設為低黏度、於更低溫且更短時間下容易硬化、硬化物之著色更少的低分子之硬化劑及硬化促進劑。 Among them, it is preferable to use polymers such as phenol novolak resins that are liquid at room temperature or have excellent solubility in the above-mentioned organic solvents. It can be set to low viscosity, easy to harden and harden at a lower temperature and in a shorter time. Low-molecular hardener and hardening accelerator with less coloring.

熱硬化性樹脂就容易獲得可靠性優異之濾色器像素部之觀點而言可為鹼不溶性。所謂熱硬化性樹脂為鹼不溶性,意指於25℃之熱硬化性樹脂相對於1質量%之氫氧化鉀水溶液之溶解量,以熱硬化性樹脂之總質量為基準為30質量%以下。熱硬化性樹脂之上述溶解量較佳為10質量%以下,更佳為3質量%以下。 The thermosetting resin may be alkali-insoluble from a viewpoint of being easy to obtain the color filter pixel part excellent in reliability. The thermosetting resin is alkali-insoluble, which means that the amount of the thermosetting resin dissolved in a 1 mass % potassium hydroxide aqueous solution at 25° C. is 30 mass % or less based on the total mass of the thermosetting resin. The above-mentioned dissolved amount of the thermosetting resin is preferably at most 10% by mass, more preferably at most 3% by mass.

關於熱硬化性樹脂之重量平均分子量,就容易獲得作為噴墨墨水而言適當之黏度之觀點、墨水組成物之硬化性變得良好之觀點、以及像素部(墨水組成物之硬化物)之耐溶劑性及磨耗性提昇之觀點而言,可為750以上,亦可 為1000以上,可為2000以上。就設為作為噴墨墨水之適當之黏度之觀點而言,可為500000以下,亦可為300000以下,亦可為200000以下。但關於交聯後之分子量並不限定於此。 Regarding the weight average molecular weight of the thermosetting resin, it is easy to obtain an appropriate viscosity as an inkjet ink, the curability of the ink composition becomes good, and the durability of the pixel portion (cured product of the ink composition) From the viewpoint of improvement of solvent property and abrasion resistance, it may be 750 or higher, 1000 or higher, or 2000 or higher. It may be 500,000 or less, 300,000 or less, or 200,000 or less from the viewpoint of setting it as an appropriate viscosity for inkjet ink. However, the molecular weight after crosslinking is not limited to this.

關於熱硬化性樹脂之含量,就容易獲得作為噴墨墨水而言適當之黏度之觀點、墨水組成物之硬化性變得良好之觀點、以及像素部(墨水組成物之硬化物)之耐溶劑性及磨耗性提昇之觀點而言,以墨水組成物之不揮發成分之質量為基準,可為10質量%以上,亦可為15質量%以上,亦可為20質量%以上。關於熱硬化性樹脂之含量,就噴墨墨水之黏度不變得過高、像素部之厚度對於光轉換功能而言不變得過厚之觀點而言,以墨水組成物之不揮發成分之質量為基準,可為90質量%以下,亦可為80質量%以下,亦可為70質量%以下,亦可為60質量%以下,亦可為50質量%以下。 Regarding the content of the thermosetting resin, it is easy to obtain an appropriate viscosity as an inkjet ink, the curability of the ink composition becomes good, and the solvent resistance of the pixel portion (cured product of the ink composition) From the viewpoint of improving abrasion resistance, based on the mass of the non-volatile components of the ink composition, it may be 10% by mass or more, 15% by mass or more, or 20% by mass or more. Regarding the content of the thermosetting resin, from the point of view that the viscosity of the inkjet ink does not become too high and the thickness of the pixel portion does not become too thick for the light conversion function, the mass of the non-volatile components of the ink composition Based on this, it may be 90% by mass or less, 80% by mass or less, 70% by mass or less, 60% by mass or less, or 50% by mass or less.

[有機溶劑] [Organic solvents]

本發明之有機溶劑為下述之特定LogP值範圍之有機溶劑。 The organic solvent of the present invention is an organic solvent within the following specific LogP value range.

於本發明中,作為墨水組成物中所含有之有機溶劑,例如可列舉:乙二醇單丁醚乙酸酯、二乙二醇單丁醚乙酸酯、二乙二醇單乙醚乙酸酯、二乙二醇二丁醚、己二酸二乙酯、草酸二丁酯、丙二酸二甲酯、丙二酸二乙酯、琥珀酸二甲酯、琥珀酸二乙酯、1,4-丁二醇二乙酸酯、甘油三乙酸酯等。 In the present invention, as the organic solvent contained in the ink composition, for example, ethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate , diethylene glycol dibutyl ether, diethyl adipate, dibutyl oxalate, dimethyl malonate, diethyl malonate, dimethyl succinate, diethyl succinate, 1,4 -Butanediol diacetate, glycerin triacetate, etc.

關於有機溶劑之沸點,就噴墨墨水之連續噴出穩定性之觀點而言,較佳為180℃以上。又,由於在像素部之形成時必須於墨水組成物之硬化前自墨水組成物中去除溶劑,因此就容易去除溶劑之觀點而言,溶劑之沸點較佳為300℃以下。 The boiling point of the organic solvent is preferably 180° C. or higher from the viewpoint of the continuous discharge stability of the inkjet ink. In addition, since the solvent must be removed from the ink composition before the ink composition is cured during the formation of the pixel portion, the boiling point of the solvent is preferably 300° C. or lower from the viewpoint of easy removal of the solvent.

於本發明中,就以變得均勻之方式製備墨水組成物之觀點、及提高墨水組成物之流動性等而形成不均較少之濾色器像素部(光轉換層)之觀點而言,較佳為使用有機溶劑。 In the present invention, from the viewpoint of preparing the ink composition in a uniform manner, and from the viewpoint of improving the fluidity of the ink composition to form a color filter pixel portion (light conversion layer) with less unevenness, Preferably, an organic solvent is used.

[LogP值] [LogP value]

本發明中,墨水組成物之最大之特徵在於使用特定之LogP值範圍之有機溶劑,例如,可自上述所例示之有機溶劑之中選擇處於該特定之LogP值範圍之有機溶劑作為必需成分而使用。藉由使用此種特定之LogP值範圍之有機溶劑,於本發明中,可使墨水組成物之硬化物成為不易產生不良情況者。於本發明中,所謂LogP值,表示有機溶劑於1-辛醇/水中之分配係數之對數值,利用「Journal of Pharmaceutical Sciences,83頁,84卷,No.1,1995年刊」(WILLIAM M.MEYLAN、PHILIP H.HOWARD著)中記載之方法而算出。LogP值一般為有機化合物之親疏水性之相對性評價中所使用之數值。 In the present invention, the biggest feature of the ink composition is the use of an organic solvent within a specific LogP value range. For example, an organic solvent within the specific LogP value range can be selected from the organic solvents exemplified above and used as an essential component. . By using the organic solvent in such a specific range of LogP value, in the present invention, the cured product of the ink composition can be made less likely to cause problems. In the present invention, the so-called LogP value represents the logarithmic value of the partition coefficient of the organic solvent in 1-octanol/water, using "Journal of Pharmaceutical Sciences, page 83, volume 84, No.1, 1995" (WILLIAM M. MEYLAN, PHILIP H.HOWARD) and calculated by the method described in. The LogP value is generally the value used in the relative evaluation of the hydrophilicity and hydrophobicity of organic compounds.

例如,如以下般而求出。 For example, it can be calculated|required as follows.

Figure 107125217-A0202-12-0026-1
Figure 107125217-A0202-12-0026-1

再者,於上述文獻中示出:於1-辛醇/水中之分配係數之對數值亦可基於JIS Z 7260-117進行實測,利用上述計算方法所求出之值對多數之實測結果顯示出非常密切之關聯。 Furthermore, it is shown in the above-mentioned literature that the logarithmic value of the partition coefficient in 1-octanol/water can also be measured based on JIS Z 7260-117, and the value obtained by the above-mentioned calculation method shows the majority of the actual measurement results. very closely related.

於本發明之墨水組成物中,尤其是於噴墨用墨水組成物中,有機溶劑之LogP值為-1.0以上~6.5以下,若有必要,亦可於無損本發明之技術效果之範圍內含有LogP值為該範圍外之有機溶劑。 In the ink composition of the present invention, especially in the inkjet ink composition, the LogP value of the organic solvent is not less than -1.0 and not more than 6.5. If necessary, it can also contain The LogP value is an organic solvent outside this range.

關於有機溶劑之LogP值,就抑制發光性奈米結晶因水分而引起之劣化之方面而言,可為5.0以下,可為4.0以下,可為3.0以下,可為2.0以下。又,就抑制 含有發光性奈米結晶之墨水組成物之吸水性之觀點而言,可為-0.5以上,可為0.0以上,可為1.0以上。 The LogP value of the organic solvent may be 5.0 or less, 4.0 or less, 3.0 or less, or 2.0 or less in order to suppress deterioration of the luminescent nanocrystal due to moisture. Also, from the viewpoint of suppressing the water absorption of the ink composition containing luminescent nanocrystals, it may be -0.5 or more, 0.0 or more, or 1.0 or more.

於含有LogP值為上述範圍之-1.0以上~6.5以下之範圍外之有機溶劑之情形時,該有機溶劑就抑制發光性奈米結晶因大氣中之氧氣或水分而引起之劣化之方面而言,於墨水中可為30質量%以下,可為20質量%以下,可為10質量%,可為5質量%以下,可為2質量%以下。 In the case of containing an organic solvent whose LogP value is outside the range of -1.0 or more to 6.5 or less of the above-mentioned range, the organic solvent suppresses deterioration of the luminescent nanocrystals due to oxygen or moisture in the atmosphere. It may be 30 mass % or less, 20 mass % or less, 10 mass % or less, 5 mass % or less, or 2 mass % or less in ink.

本發明之墨水組成物由於為使用熱硬化性樹脂之熱硬化性墨水組成物,因此例如可抑制因進行光硬化而引起之發光性奈米晶粒之劣化。 Since the ink composition of the present invention is a thermosetting ink composition using a thermosetting resin, for example, it is possible to suppress deterioration of luminous nanocrystal grains caused by photocuring.

本實施形態之墨水組成物可應用作公知慣用之濾色器之製造方法所使用之墨水,就不浪費地消耗相對高價之發光性奈米晶粒、溶劑等材料、僅於必要之位置使用必要之量便可形成濾色器像素部(光轉換層)之方面而言,較佳為以較光蝕刻方式用而言更適合於噴墨方式用之方式適當地製備而使用。 The ink composition of this embodiment can be applied as the ink used in the manufacturing method of the known customary color filter, without wasteful consumption of materials such as relatively expensive luminescent nanocrystal grains, solvents, etc., and only used in necessary positions. It is preferable to prepare and use it suitably for the inkjet method rather than the photolithography method at the point which can form the color filter pixel part (light conversion layer).

關於墨水組成物之黏度,例如就噴墨印刷時之噴出穩定性之觀點而言,可為2mPa‧s以上,亦可為5mPa‧s以上,亦可為7mPa‧s以上。墨水組成物之黏度可為20mPa‧s以下,亦可為15mPa‧s以下,亦可為12mPa‧s以下。於墨水組成物之黏度為2mPa‧s以上之情形時,噴出頭之墨水噴出孔之前端的墨水組成物之彎液面形狀穩定,因此墨水組成物之噴出控制(例如,噴出量及噴出之時點之控制)變得容易。另一方面,於黏度為20mPa‧s以下之情形時,可使墨水組成物自墨水噴出孔順利地噴出。墨水組成物之黏度亦可為2~20mPa‧s、2~15mPa‧s、2~12mPa‧s、5~20mPa‧s、5~15mPa‧s、2~20mPa‧s、7~15mPa‧s、7~12mPa‧s、或7~12mPa‧s。墨水組成物之黏度例如藉由E型黏度計進行測定。 The viscosity of the ink composition may be 2 mPa‧s or more, 5 mPa‧s or more, or 7 mPa‧s or more from the viewpoint of ejection stability during inkjet printing, for example. The viscosity of the ink composition may be less than 20mPa‧s, or less than 15mPa‧s, or less than 12mPa‧s. When the viscosity of the ink composition is above 2mPa‧s, the shape of the meniscus of the ink composition at the front end of the ink ejection hole of the ejection head is stable, so the ejection control of the ink composition (for example, the amount of ejection and the timing of ejection) control) made easy. On the other hand, when the viscosity is 20 mPa‧s or less, the ink composition can be smoothly ejected from the ink ejection holes. The viscosity of the ink composition can also be 2~20mPa‧s, 2~15mPa‧s, 2~12mPa‧s, 5~20mPa‧s, 5~15mPa‧s, 2~20mPa‧s, 7~15mPa‧s, 7~12mPa‧s, or 7~12mPa‧s. The viscosity of the ink composition is measured by, for example, an E-type viscometer.

墨水組成物之表面張力較佳為適合於噴墨方式之表面張力,具體而言,較佳為20~40mN/m之範圍,更佳為25~35mN/m。藉由將表面張力設為 該範圍,可抑制飛行彎曲之產生。再者,所謂飛行彎曲,係指於使墨水組成物自墨水噴出孔噴出時,墨水組成物之著落位置相對於目標位置產生30μm以上之偏差。於表面張力為40mN/m以下之情形時,墨水噴出孔之前端之彎液面形狀穩定,因此墨水組成物之噴出控制(例如,噴出量及噴出之時點之控制)變得容易。另一方面,於表面張力為20mN/m以下之情形時,可抑制飛行彎曲之產生。即,不會於應著落之像素部形成區域未準確地著落而產生墨水組成物之填充不充分之像素部、也不會讓墨水組成物著落至與應著落之像素部形成區域鄰接之像素部形成區域(或像素部)使色再現性降低。 The surface tension of the ink composition is preferably a surface tension suitable for an inkjet method, specifically, it is preferably in the range of 20-40 mN/m, more preferably 25-35 mN/m. By setting the surface tension within this range, the occurrence of flight bending can be suppressed. Furthermore, the so-called flight deflection means that when the ink composition is ejected from the ink ejection hole, the landing position of the ink composition deviates by more than 30 μm from the target position. When the surface tension is 40 mN/m or less, the shape of the meniscus at the front end of the ink discharge hole is stable, so the discharge control of the ink composition (for example, the control of the discharge amount and the discharge timing) becomes easy. On the other hand, when the surface tension is 20 mN/m or less, the occurrence of flight bending can be suppressed. That is, there is no possibility of insufficiently filling the pixel portion with the ink composition due to inaccurate landing on the formation area of the pixel portion to be landed, and the ink composition is not allowed to land on the pixel portion adjacent to the formation area of the pixel portion to be landed. Formation of regions (or pixel portions) degrades color reproducibility.

墨水組成物亦可於不阻礙本發明之效果之範圍內進而含有除發光性奈米晶粒、光散射性粒子、熱硬化性樹脂、高分子分散劑、及有機配體以外之其他成分。作為其他成分,例如可列舉光聚合性化合物、聚合起始劑、敏化劑等。 The ink composition may further contain components other than luminescent nanocrystal particles, light-scattering particles, thermosetting resin, polymer dispersant, and organic ligands within the range that does not hinder the effect of the present invention. As other components, a photopolymerizable compound, a polymerization initiator, a sensitizer, etc. are mentioned, for example.

[水分含有率] [moisture content rate]

於本發明之墨水組成物中,墨水組成物之水分之含有率可藉由卡-費水分計(例如,三菱化學(股)製造,型號CA-06,汽化單元為三菱化學(股)公司製造之VA-06)進行測定。關於墨水組成物中之水分,就抑制發光性奈米結晶之劣化之觀點而言,可為90ppm以下,可為50ppm以下,可為20ppm以下,可為9ppm以下,可為4ppm以下,可為2ppm以下,可為1ppm以下。 In the ink composition of the present invention, the moisture content of the ink composition can be measured by a card-fee moisture meter (for example, manufactured by Mitsubishi Chemical Co., Ltd., model CA-06, and the vaporization unit is manufactured by Mitsubishi Chemical Co., Ltd. VA-06) for determination. The moisture in the ink composition may be 90ppm or less, 50ppm or less, 20ppm or less, 9ppm or less, 4ppm or less, or 2ppm from the viewpoint of suppressing the deterioration of the luminous nanocrystals Below, it may be 1 ppm or less.

於本發明之墨水組成物中,就不易由於硬化物而產生不良情況、可更有效地抑制發光性奈米結晶之劣化之觀點而言,更佳為於使用特定LogP值範圍之有機溶劑之基礎上,設為上述水分含有率範圍。於噴墨用墨水組成物之情形時,亦與其噴出方式相結合,從而可期待最佳技術效果。 In the ink composition of the present invention, it is more preferable to use an organic solvent in a specific LogP value range from the viewpoint of being less likely to cause problems due to hardening and more effectively suppressing the deterioration of luminescent nanocrystals. Above, set it as the above-mentioned moisture content range. In the case of the ink composition for inkjet, the best technical effect can be expected by combining it with the ejection method.

於本發明中,墨水組成物或有機溶劑等墨水組成物原料之水分含有率可利用以下方法控制至上述特定含有率值範圍。例如,使用加入分子篩進 行過脫水之有機溶劑製備墨水組成物、或於熱硬化性樹脂與有機溶劑之混合物中加入分子篩之於墨水組成物中加入分子篩並於脫水後進行過濾之方法。若有必要,亦可不進行如下過濾。 In the present invention, the water content of ink composition raw materials such as ink composition or organic solvent can be controlled to the above-mentioned specific content value range by the following method. For example, the method of preparing an ink composition by adding molecular sieves to an organic solvent that has been dehydrated, or adding molecular sieves to a mixture of a thermosetting resin and an organic solvent, adding molecular sieves to an ink composition and filtering after dehydration. If necessary, the following filtering may not be performed.

脫水處理時間並無特別限制,由於分子篩吸附墨水組成物或有機溶劑等墨水組成物原料中所含有之水分子需要時間,因此可自加入分子篩12小時以上進行脫水處理,可自加入分子篩24小時以上進行脫水,可自加入分子篩48小時以上進行脫水。此時,較佳為於實質上不存在水分之不活性氣體環境下進行脫水處理,亦可於大氣環境下進行。再者,使用之分子篩較佳為於使用前藉由加熱處理等將所吸附之水分去除而使用,加熱溫度可為200℃以上,可為250℃以上,可為300℃以上,可為350℃以上。就去除吸附水分子之觀點而言,亦較佳為於加熱時進行減壓,可為0.1mmHg以下,可為0.01mmHg,可為0.001mmHg以下。 The dehydration treatment time is not particularly limited. Since it takes time for molecular sieves to absorb water molecules contained in ink composition materials such as ink compositions or organic solvents, dehydration treatment can be carried out for more than 12 hours after adding molecular sieves, and for more than 24 hours after adding molecular sieves. Dehydration can be carried out after adding molecular sieves for more than 48 hours. At this time, it is preferable to perform the dehydration treatment under an inert gas environment in which moisture does not substantially exist, but it may be performed under an air environment. Furthermore, the molecular sieve used is preferably used to remove the adsorbed moisture by heating treatment before use, and the heating temperature can be above 200°C, above 250°C, above 300°C, or above 350°C above. From the viewpoint of removing adsorbed water molecules, it is also preferable to depressurize during heating, and it may be 0.1 mmHg or less, 0.01 mmHg or less, or 0.001 mmHg or less.

光散射性粒子等固體原料由於可吸附水分子,因此可於使用前進行脫水,可於大氣中、或不活性氣體環境下、或減壓下進行加熱而將水分去除。 Solid materials such as light-scattering particles can absorb water molecules, so they can be dehydrated before use, and can be heated in the air, in an inert gas environment, or under reduced pressure to remove water.

由於水分於大氣下會溶解於液體,因此可將墨水組成物原料分別進行脫水之後而製備墨水組成物,亦可於不將墨水組成物原料進行脫水之情況下製備墨水組成物而將該墨水組成物進行脫水。亦可將墨水組成物原料分別進行脫水之後而製備墨水組成物,再將該墨水組成物進而進行脫水。藉由更嚴格地進行脫水操作,不易由於硬化物而產生不良情況,可更確實地抑制發光性奈米結晶之劣化。 Since water will dissolve in the liquid under the atmosphere, the ink composition can be prepared by dehydrating the ink composition raw materials separately, or the ink composition can be prepared without dehydrating the ink composition raw materials to form the ink composition to dehydrate. Alternatively, the ink composition may be prepared by dehydrating the ink composition raw materials, and the ink composition may be further dehydrated. By carrying out the dehydration operation more strictly, it is difficult to cause problems due to hardened products, and the deterioration of the luminous nanocrystals can be more reliably suppressed.

[溶存氧濃度] [Dissolved oxygen concentration]

於一實施態樣中,墨水組成物或有機溶劑等墨水組成物原料之溶存氧濃度可藉由使墨水或有機溶劑暴露於氮氣或氬氣等不活性氣體氣流中、或吹入不活性氣體而降低。關於光散射性粒子等固體原料,亦可藉由於容器內利用氮氣氣 流充滿並於氮氣環境下保存而抑制氧氣混入至墨水組成物。 In one embodiment, the dissolved oxygen concentration of the ink composition or organic solvent and other ink composition raw materials can be adjusted by exposing the ink or organic solvent to an inert gas flow such as nitrogen or argon, or blowing in an inert gas. reduce. For solid materials such as light-scattering particles, the incorporation of oxygen into the ink composition can also be suppressed by filling the container with a nitrogen gas flow and storing it under a nitrogen atmosphere.

溶存氧濃度係使用光學式且具有耐溶劑性之溶存氧濃度計對墨水組成物之溶存氧進行測定所得之值,具體而言,例如可使用Hamilton公司之Visiferm測定墨水組成物之溶存氧濃度。再者,可使溶存氧濃度降至低於測定溶存氧濃度之裝置之可測定下限,此種情形亦為本發明之一實施形態。 The dissolved oxygen concentration is the value obtained by measuring the dissolved oxygen of the ink composition using an optical and solvent-resistant dissolved oxygen concentration meter. Specifically, for example, the dissolved oxygen concentration of the ink composition can be measured using the Visiferm of Hamilton. Furthermore, the concentration of dissolved oxygen can be reduced to be lower than the measurable lower limit of the device for measuring the concentration of dissolved oxygen, which is also an embodiment of the present invention.

[脫氧劑] [deoxidizer]

一實施形態之墨水組成物只要為含有脫氧劑且脫氧劑與溶存氧反應使氧濃度降低者即可,例如可列舉L-抗壞血酸、異抗壞血酸、沒食子酸、及該等之鹽、鄰苯三酚、五倍子乙酮等。 The ink composition of one embodiment only needs to contain a deoxidizer and the deoxidizer reacts with dissolved oxygen to reduce the oxygen concentration, for example, L-ascorbic acid, isoascorbic acid, gallic acid, and their salts, Triphenols, Galla ethyl ketone, etc.

又,於本發明中,關於脫氧劑於墨水組成物中之含量,就可抑制發光性奈米結晶之劣化之方面而言,可為0.01質量%以上,可為0.1質量%以上,可為0.5質量%以上,可為1質量%以上,就避免墨水硬化膜之著色之方面而言,可為30質量%以下,可為20質量%以下,可為10質量%以下,可為5質量%以下。 Also, in the present invention, the content of the deoxidizer in the ink composition may be 0.01 mass % or more, 0.1 mass % or more, or 0.5 mass % in terms of suppressing the deterioration of the luminescent nanocrystals. Mass % or more, may be more than 1 mass %, may be 30 mass % or less, may be 20 mass % or less, may be 10 mass % or less, may be 5 mass % or less in order to avoid coloring of ink cured film .

作為自墨水組成物去除溶存氣體之方法,較佳為採用向墨水組成物中導入氮氣等不活性氣體而將包含溶存氧之溶存氣體去除之方法、或者對墨水組成物進行減壓之方法,其原因在於更簡便。 As a method of removing dissolved gas from the ink composition, a method of removing dissolved gas including dissolved oxygen by introducing an inert gas such as nitrogen gas into the ink composition, or a method of depressurizing the ink composition is preferred. The reason is that it is easier.

再者,藉由組合進行上述去除墨水組成物中之包含溶存氧之溶存氣體之方法、及上述對該墨水組成物進行脫水之方法,可製備溶存氣體濃度、水分濃度均較低之墨水組成物,就可更有效地抑制硬化物之不良情況或發光性奈米結晶之劣化之觀點而言更佳。 Furthermore, by combining the above-mentioned method of removing dissolved gas including dissolved oxygen in the ink composition and the above-mentioned method of dehydrating the ink composition, an ink composition with a low concentration of dissolved gas and low water concentration can be prepared , it is more preferable from the viewpoint of more effectively suppressing defects of cured products or deterioration of luminous nanocrystals.

以上,針對濾色器用墨水組成物之一實施形態進行了說明,上述實施形態之墨水組成物除以噴墨方式而使用以外,亦可例如以光蝕刻方式而使用。於此情形時,墨水組成物以黏合劑聚合物之形式含有鹼可溶性樹脂。 An embodiment of the ink composition for a color filter has been described above, but the ink composition of the above-mentioned embodiment may be used by, for example, a photolithography method in addition to the inkjet method. In this case, the ink composition contains an alkali-soluble resin in the form of a binder polymer.

於以攝影術方式使用墨水組成物之情形時,首先,將墨水組成物 塗佈於基材上,於墨水組成物含有溶劑之情形時,進而使墨水組成物乾燥而形成塗佈膜。以此方式所獲得之塗佈膜對鹼性顯影液為可溶性,藉由利用鹼性顯影液進行處理得以圖案化。此時,鹼性顯影液就顯影液之廢液處理之容易度等觀點而言,由於為水溶液之情況占大半,因此墨水組成物之塗佈膜利用水溶液進行處理。另一方面,於使用有發光性奈米晶粒(量子點等)之墨水組成物之情形時,發光性奈米晶粒對水不穩定,發光性(例如螢光性)因水分而受損。因此,於本實施形態中,較佳為無需利用鹼性顯影液(水溶液)進行處理之噴墨方式。 When the ink composition is used in photography, first, the ink composition is coated on the substrate, and when the ink composition contains a solvent, the ink composition is dried to form a coating film. The coating film obtained in this manner is soluble in an alkaline developing solution, and can be patterned by treating with an alkaline developing solution. At this time, the alkaline developer is mostly an aqueous solution from the standpoint of ease of disposal of the developer waste. Therefore, the coating film of the ink composition is treated with an aqueous solution. On the other hand, when using an ink composition with luminescent nanocrystals (quantum dots, etc.), the luminescent nanocrystals are unstable to water, and luminescence (such as fluorescence) is impaired by moisture . Therefore, in this embodiment, an inkjet method that does not require treatment with an alkaline developer (aqueous solution) is preferable.

又,即便於不對墨水組成物之塗佈膜進行藉由鹼性顯影液之處理之情形時,於墨水組成物為鹼可溶性之情形時,墨水組成物之塗佈膜容易吸收大氣中之水分,隨著時間流逝,發光性奈米晶粒(量子點等)之發光性(例如螢光性)亦會受損。就該觀點而言,於本實施形態中,較佳為墨水組成物之塗佈膜為鹼不溶性。即,本實施形態之墨水組成物較佳為可形成鹼不溶性之塗佈膜之墨水組成物。此種墨水組成物可藉由使用鹼不溶性之熱硬化性樹脂作為熱硬化性樹脂而獲得。所謂墨水組成物之塗佈膜為鹼不溶性,意指於25℃之墨水組成物之塗佈膜,相對於1質量%之氫氧化鉀水溶液之溶解量,以墨水組成物之塗佈膜之總質量為基準為30質量%以下。墨水組成物之塗佈膜之上述溶解量較佳為10質量%以下,更佳為3質量%以下。再者,墨水組成物為可形成鹼不溶性之塗佈膜之墨水組成物可藉由如下方式進行確認:將墨水組成物塗佈於基材上之後,於包含溶劑之情形時,以80℃、3分鐘之條件進行乾燥,對所獲得之厚度1μm之塗佈膜之上述溶解量進行測定。 Also, even when the coating film of the ink composition is not treated with an alkaline developer, when the ink composition is alkali-soluble, the coating film of the ink composition easily absorbs moisture in the atmosphere, As time goes by, the luminescence (such as fluorescence) of luminescent nanoparticles (quantum dots, etc.) will also be damaged. From this point of view, in this embodiment, it is preferable that the coating film of the ink composition is alkali-insoluble. That is, the ink composition of this embodiment is preferably an ink composition capable of forming an alkali-insoluble coating film. Such an ink composition can be obtained by using an alkali-insoluble thermosetting resin as the thermosetting resin. The so-called coating film of the ink composition is alkali-insoluble, which means that the coating film of the ink composition at 25°C is based on the total amount of the coating film of the ink composition relative to the dissolved amount of 1% by mass of potassium hydroxide aqueous solution. The mass is based on 30% by mass or less. The above-mentioned dissolved amount of the coating film of the ink composition is preferably at most 10% by mass, more preferably at most 3% by mass. Furthermore, it can be confirmed that the ink composition is an ink composition capable of forming an alkali-insoluble coating film by applying the ink composition on the base material, in the case of including a solvent, at 80°C, Drying was carried out under the condition of 3 minutes, and the above-mentioned dissolved amount of the obtained coating film with a thickness of 1 μm was measured.

<墨水組成物之製造方法> <Manufacturing method of ink composition>

繼而,針對上述實施形態之墨水組成物之製造方法進行說明。墨水組成物之製造方法例如具備:第1步驟,準備含有光散射性粒子及高分子分散劑之光散 射性粒子之分散體;及第2步驟,將光散射性粒子之分散體及發光性奈米晶粒進行混合。該方法中,光散射性粒子之分散體可進而含有熱硬化性樹脂、及如上述般之成為特定LogP值範圍之有機溶劑作為必需成分,亦可於第2步驟中進而混合熱硬化性樹脂。根據該方法,可使光散射性粒子充分地分散。因此,可容易地獲得能夠減少像素部之漏光之墨水組成物。 Next, a method for manufacturing the ink composition of the above-mentioned embodiment will be described. A method for producing an ink composition includes, for example: a first step of preparing a dispersion of light-scattering particles containing light-scattering particles and a polymer dispersant; Rice grains are mixed. In this method, the dispersion of light-scattering particles may further contain a thermosetting resin and an organic solvent within a specific LogP value range as described above as essential components, and a thermosetting resin may be further mixed in the second step. According to this method, the light-scattering particles can be sufficiently dispersed. Therefore, an ink composition capable of reducing light leakage in the pixel portion can be easily obtained.

於準備光散射性粒子之分散體之步驟中,可將光散射性粒子、高分子分散劑、及視情況之熱硬化性樹脂進行混合並進行分散處理而製備光散射性粒子之分散體。混合及分散處理可使用珠磨機、塗料調節器、行星式攪拌機等分散裝置而進行。就光散射性粒子之分散性變得良好、容易將光散射性粒子之平均粒徑調整至所需範圍之觀點而言,較佳為使用珠磨機或塗料調節器。 In the step of preparing the dispersion of light-scattering particles, the dispersion of light-scattering particles can be prepared by mixing the light-scattering particles, a polymer dispersant, and optionally a thermosetting resin and performing dispersion treatment. The mixing and dispersing treatment can be performed using a dispersing device such as a bead mill, a paint conditioner, or a planetary mixer. From the viewpoint of improving the dispersibility of the light-scattering particles and making it easy to adjust the average particle diameter of the light-scattering particles to a desired range, it is preferable to use a bead mill or a paint conditioner.

墨水組成物之製造方法亦可於第2步驟之前進而具備:準備含有發光性奈米晶粒、及熱硬化性樹脂之發光性奈米晶粒之分散體的步驟。於此情形時,於第2步驟中將光散射性粒子之分散體與發光性奈米晶粒之分散體進行混合。根據該方法,可使發光性奈米晶粒充分地分散。因此,可容易地獲得能夠減少像素部之漏光之墨水組成物。於準備發光性奈米晶粒之分散體之步驟中,可使用與準備光散射性粒子之分散體之步驟相同之分散裝置,進行發光性奈米晶粒與熱硬化性樹脂之混合及分散處理。 The manufacturing method of the ink composition may further include a step of preparing a dispersion of luminescent nanocrystals containing luminescent nanocrystals and a thermosetting resin before the second step. In this case, the dispersion of light-scattering particles and the dispersion of luminescent nanoparticles are mixed in the second step. According to this method, the luminescent nanocrystal particles can be sufficiently dispersed. Therefore, an ink composition capable of reducing light leakage in the pixel portion can be easily obtained. In the step of preparing the dispersion of luminescent nanocrystals, the same dispersion device as that of preparing the dispersion of light-scattering particles can be used for mixing and dispersing of the luminescent nanocrystals and the thermosetting resin .

以此方式所獲得之墨水組成物可如上所述般以成為特定水分含有率之方式進行製備。 The ink composition obtained in this manner can be prepared so as to have a specific water content as described above.

於將本實施形態之墨水組成物用作噴墨方式用墨水組成物之情形時,較佳為應用於由使用了壓電元件之機械噴出機構所致之壓電噴墨方式之噴墨記錄裝置。關於壓電噴墨方式,於噴出時,墨水組成物不會瞬時地暴露於高溫,不易引起發光性奈米晶粒之變質,更容易地獲得濾色器像素部(光轉換層)所亦期待般之發光特性。 When the ink composition of this embodiment is used as an ink composition for an inkjet method, it is preferably applied to an inkjet recording device of a piezoelectric inkjet method by a mechanical ejection mechanism using a piezoelectric element. . Regarding the piezoelectric inkjet method, it is expected that the ink composition will not be exposed to high temperature instantaneously during ejection, and it will not easily cause deterioration of the luminescent nanocrystal grains, and it will be easier to obtain the pixel portion of the color filter (light conversion layer). General luminous properties.

<光轉換層及濾色器> <Light conversion layer and color filter>

繼而,針對使用上述實施形態之墨水組成物之光轉換層及濾色器之詳細情況,同時參照圖式並進行說明。再者,於以下說明中,對相同或相等要素使用相同符號,並省略重複之說明。 Next, details of the light conversion layer and the color filter using the ink composition of the above embodiment will be described with reference to the drawings. In addition, in the following description, the same code|symbol is used for the same or equivalent element, and repeated description is abbreviate|omitted.

圖1係一實施形態之濾色器之模式剖面圖。如圖1所示,濾色器100具備基材40、及設置於基材40上之光轉換層30。光轉換層30具備多個像素部10、及遮光部20。 Fig. 1 is a schematic sectional view of a color filter according to an embodiment. As shown in FIG. 1 , the color filter 100 includes a substrate 40 and a light conversion layer 30 disposed on the substrate 40 . The light conversion layer 30 includes a plurality of pixel units 10 and a light shielding unit 20 .

光轉換層30具有第1像素部10a、第2像素部10b、及第3像素部10c作為像素部10。第1像素部10a、第2像素部10b、及第3像素部10c以依序重複之方式晶格狀地排列。遮光部20設置於相鄰像素部之間,即第1像素部10a與第2像素部10b之間、第2像素部10b與第3像素部10c之間、第3像素部10c與第1像素部10a之間。換言之,該等相鄰像素部彼此由遮光部20隔開。 The light conversion layer 30 has a first pixel portion 10 a , a second pixel portion 10 b , and a third pixel portion 10 c as pixel portions 10 . The first pixel portion 10a, the second pixel portion 10b, and the third pixel portion 10c are arranged in a lattice pattern so as to repeat in sequence. The light shielding portion 20 is disposed between adjacent pixel portions, that is, between the first pixel portion 10a and the second pixel portion 10b, between the second pixel portion 10b and the third pixel portion 10c, and between the third pixel portion 10c and the first pixel portion. between parts 10a. In other words, the adjacent pixel portions are separated from each other by the light shielding portion 20 .

第1像素部10a及第2像素部10b分別包含上述實施形態之墨水組成物之硬化物。硬化物含有發光性奈米晶粒、光散射性粒子、及硬化成分。硬化成分為熱硬化性樹脂之硬化物,具體而言,為藉由熱硬化性樹脂之交聯而獲得之硬化物。即,第1像素部10a包含第1硬化成分13a、及分別分散於第1硬化成分13a中之第1發光性奈米晶粒11a及第1光散射性粒子12a。同樣地,第2像素部10b包含第2硬化成分13b、及分別分散於第2硬化成分13b中之第2發光性奈米晶粒11b及第2光散射性粒子12b。於第1像素部10a及第2像素部10b中,第1硬化成分13a與第2硬化成分13b可相同亦可不同,第1光散射性粒子12a與第2光散射性粒子12b可相同亦可不同。 The first pixel portion 10a and the second pixel portion 10b each include a cured product of the ink composition of the above-mentioned embodiment. The hardened product contains luminescent nanocrystal grains, light scattering particles, and hardened components. The curable component is a cured product of a thermosetting resin, specifically, a cured product obtained by crosslinking a thermosetting resin. That is, the first pixel portion 10a includes the first hardening component 13a, and the first light-emitting nanocrystal grains 11a and the first light-scattering particles 12a respectively dispersed in the first hardening component 13a. Similarly, the second pixel portion 10b includes a second hardening component 13b, and second light-emitting nanocrystal grains 11b and second light-scattering particles 12b respectively dispersed in the second hardening component 13b. In the first pixel portion 10a and the second pixel portion 10b, the first hardening component 13a and the second hardening component 13b may be the same or different, and the first light-scattering particle 12a and the second light-scattering particle 12b may be the same or different. different.

第1發光性奈米晶粒11a為吸收420~480nm之範圍之波長的光並發出於605~665nm之範圍具有發光峰波長的光的紅色發光性奈米晶粒。即,第1像素部10a可換稱為用以將藍色光轉換成紅色光之紅色像素部。又,第2發光性 奈米晶粒11b為吸收420~480nm之範圍之波長的光並發出於500~560nm之範圍具有發光峰波長的光的綠色發光性奈米晶粒。即,第2像素部10b可換稱為用以將藍色光轉換成綠色光之綠色像素部。 The first luminescent nanocrystal grains 11a are red luminescent nanocrystal grains that absorb light with a wavelength in the range of 420 to 480 nm and emit light with a peak wavelength in the range of 605 to 665 nm. That is, the first pixel portion 10a can be replaced with a red pixel portion for converting blue light into red light. Also, the second luminescent nanocrystal grains 11b are green luminescent nanocrystal grains that absorb light with a wavelength in the range of 420 to 480 nm and emit light with a peak wavelength in the range of 500 to 560 nm. That is, the second pixel portion 10b can be replaced with a green pixel portion for converting blue light into green light.

關於包含墨水組成物之硬化物之像素部中的發光性奈米晶粒之含量,就漏光之減少效果更優異之觀點而言,以墨水組成物之硬化物之總質量為基準,可為5質量%以上,亦可為10質量%以上,亦可為15質量%以上,亦可為20質量%以上,亦可為30質量%以上,亦可為40質量%以上。發光性奈米晶粒之含量,就像素部之可靠性優異之觀點而言,以墨水組成物之硬化物之總質量為基準,可為70質量%以下,亦可為60質量%以下,亦可為55質量%以下,亦可為50質量%以下。 With regard to the content of the luminescent nanocrystal grains in the pixel portion including the cured product of the ink composition, from the viewpoint of a better light leakage reduction effect, based on the total mass of the cured product of the ink composition, it can be 5 Mass % or more may be 10 mass % or more, 15 mass % or more, 20 mass % or more, 30 mass % or more, or 40 mass % or more. The content of the luminescent nanocrystal grains may be 70% by mass or less, 60% by mass or less, or less than 60% by mass based on the total mass of the hardened ink composition from the viewpoint of excellent reliability of the pixel portion. It may be 55 mass % or less, and may be 50 mass % or less.

關於包含墨水組成物之硬化物之像素部中的光散射性粒子之含量,就漏光之減少效果更優異之觀點而言,以墨水組成物之硬化物之總質量為基準,可為0.1質量%以上,亦可為1質量%以上,亦可為5質量%以上,亦可為7質量%以上,亦可為10質量%以上,亦可為12質量%以上。光散射性粒子之含量,就漏光之減少效果更優異之觀點及像素部之可靠性優異之觀點而言,以墨水組成物之硬化物之總質量為基準,可為60質量%以下,亦可為50質量%以下,亦可為40質量%以下,亦可為30質量%以下,亦可為25質量%以下,亦可為20質量%以下,亦可為15質量%以下。光散射性粒子之含量,以墨水組成物之硬化物之總質量為基準,亦可為0.1~60質量%、0.1~50質量%、0.1~40質量%、0.1~30質量%、0.1~25質量%、0.1~20質量%、0.1~15質量%、1~60質量%、1~50質量%、1~40質量%、1~30質量%、1~25質量%、1~20質量%、1~15質量%、5~60質量%、5~50質量%、5~40質量%、5~30質量%、5~25質量%、5~20質量%、5~15質量%、7~60質量%、7~50質量%、7~40質量%、7~30質量%、7~25質量%、7~20質量%、7~15質量%、10~60質量%、10~50質量%、10~ 40質量%、10~30質量%、10~25質量%、10~20質量%、10~15質量%、12~60質量%、12~50質量%、12~40質量%、12~30質量%、12~25質量%、12~20質量%、或12~15質量%。 The content of the light-scattering particles in the pixel portion including the cured product of the ink composition may be 0.1% by mass based on the total mass of the cured product of the ink composition from the viewpoint of a better effect of reducing light leakage. Above, may be 1% by mass or more, may be 5% by mass or more, may be 7% by mass or more, may be 10% by mass or more, may be 12% by mass or more. The content of the light-scattering particles may be 60% by mass or less based on the total mass of the hardened ink composition from the viewpoint of a better light leakage reduction effect and excellent reliability of the pixel portion. 50% by mass or less, 40% by mass or less, 30% by mass or less, 25% by mass or less, 20% by mass or less, or 15% by mass or less. The content of light-scattering particles, based on the total mass of the hardened ink composition, can also be 0.1-60 mass%, 0.1-50 mass%, 0.1-40 mass%, 0.1-30 mass%, 0.1-25 Mass %, 0.1-20 mass %, 0.1-15 mass %, 1-60 mass %, 1-50 mass %, 1-40 mass %, 1-30 mass %, 1-25 mass %, 1-20 mass % , 1~15 mass%, 5~60 mass%, 5~50 mass%, 5~40 mass%, 5~30 mass%, 5~25 mass%, 5~20 mass%, 5~15 mass%, 7 ~60 mass%, 7~50 mass%, 7~40 mass%, 7~30 mass%, 7~25 mass%, 7~20 mass%, 7~15 mass%, 10~60 mass%, 10~50 mass% Mass%, 10~40mass%, 10~30mass%, 10~25mass%, 10~20mass%, 10~15mass%, 12~60mass%, 12~50mass%, 12~40mass% , 12~30 mass%, 12~25 mass%, 12~20 mass%, or 12~15 mass%.

第3像素部10c對420~480nm之範圍之波長的光具有30%以上之穿透率。因此,第3像素部10c於使用發出420~480nm之範圍之波長的光之光源之情形時,作為藍色像素部發揮功能。第3像素部10c例如包含含有上述熱硬化性樹脂之組成物的硬化物。硬化物含有第3硬化成分13c。第3硬化成分13c為熱硬化性樹脂之硬化物,具體而言,為藉由熱硬化性樹脂之交聯而獲得之硬化物。即,第3像素部10c包含第3硬化成分13c。於第3像素部10c包含上述硬化物之情形時,含有熱硬化性樹脂之組成物只要對420~480nm範圍之波長之光之穿透率成為30%以上,則亦可進而含有上述墨水組成物所含有之成分之中除熱硬化性樹脂以外之成分。再者,第3像素部10c之穿透率可藉由顯微分光裝置進行測定。 The third pixel portion 10c has a transmittance of 30% or more for light having a wavelength in the range of 420 to 480 nm. Therefore, the third pixel unit 10 c functions as a blue pixel unit when a light source emitting light having a wavelength in the range of 420 to 480 nm is used. The third pixel portion 10c includes, for example, a cured product of a composition containing the above-mentioned thermosetting resin. The hardened product contains the third hardening component 13c. The third curable component 13c is a cured product of a thermosetting resin, specifically, a cured product obtained by crosslinking a thermosetting resin. That is, the third pixel portion 10c includes the third hardening component 13c. In the case where the third pixel portion 10c includes the above-mentioned cured product, the composition containing the thermosetting resin may further contain the above-mentioned ink composition as long as the transmittance of light with a wavelength in the range of 420 to 480 nm is 30% or more. Components other than thermosetting resins. Furthermore, the transmittance of the third pixel portion 10c can be measured by a microscopic spectroscopic device.

像素部(第1像素部10a、第2像素部10b及第3像素部10c)之厚度例如可為1μm以上,亦可為2μm以上,亦可為3μm以上。像素部(第1像素部10a、第2像素部10b及第3像素部10c)之厚度例如可為30μm以下,亦可為20μm以下,亦可為15μm以下。 The thickness of the pixel portion (the first pixel portion 10a, the second pixel portion 10b, and the third pixel portion 10c) may be, for example, 1 μm or more, 2 μm or more, or 3 μm or more. The thickness of the pixel portion (the first pixel portion 10a, the second pixel portion 10b, and the third pixel portion 10c) may be, for example, 30 μm or less, 20 μm or less, or 15 μm or less.

遮光部20係為了將相鄰之像素部隔開而防止混色及防止來自光源之漏光而設置之所謂之黑矩陣。構成遮光部20之材料並無特別限定,除鉻等金屬以外,還可使用使黏合劑聚合物含有碳微粒子、金屬氧化物、無機顏料、有機顏料等遮光性粒子而成之樹脂組成物之硬化物等。作為此處所使用之黏合劑聚合物,可使用混合有1種或2種以上聚醯亞胺樹脂、丙烯酸樹脂、環氧樹脂、聚丙烯醯胺、聚乙烯醇、明膠、酪蛋白、纖維素等樹脂者、感光性樹脂、O/W乳膠型之樹脂組成物(例如,將反應性聚矽氧乳膠化而成者)等。遮光部20之厚度例如可為0.5μm以上,且可為10μm以下。 The light shielding portion 20 is a so-called black matrix provided to separate adjacent pixel portions to prevent color mixing and light leakage from the light source. The material constituting the light-shielding portion 20 is not particularly limited. In addition to metals such as chromium, hardened resin compositions made of binder polymers containing light-shielding particles such as carbon particles, metal oxides, inorganic pigments, and organic pigments can also be used. things etc. As the binder polymer used here, polyimide resins, acrylic resins, epoxy resins, polyacrylamides, polyvinyl alcohols, gelatin, casein, cellulose, etc. may be used in combination. Resin, photosensitive resin, O/W latex type resin composition (for example, one formed by emulsifying reactive polysiloxane), etc. The thickness of the light shielding portion 20 may be, for example, not less than 0.5 μm and not more than 10 μm.

基材40為具有透光性之透明基材,例如可使用石英玻璃、Pyrex(註冊商標)玻璃、合成石英板等透明之玻璃基板、透明樹脂膜、光學用樹脂膜等透明之可撓性基材等。該等之中,較佳為使用由玻璃中不含鹼性成分之無鹼玻璃所構成之玻璃基板。具體而言,較佳為Corning公司製造之「7059玻璃」、「1737玻璃」、「Eagle 200」及「Eagle XG」、Asahi Glass公司製造之「AN100」、Nippon Electric Glass公司製造之「OA-10G」及「OA-11」。該等為熱膨脹率較小之素材,且尺寸穩定性及於高溫加熱處理之作業性優異。 The substrate 40 is a transparent substrate with light transmission, for example, transparent glass substrates such as quartz glass, Pyrex (registered trademark) glass, and synthetic quartz plate, transparent flexible substrates such as transparent resin films, and optical resin films can be used. material etc. Among them, it is preferable to use a glass substrate composed of an alkali-free glass that does not contain an alkali component in the glass. Specifically, "7059 glass", "1737 glass", "Eagle 200" and "Eagle XG" manufactured by Corning, "AN100" manufactured by Asahi Glass, and "OA-10G" manufactured by Nippon Electric Glass are preferable. " and "OA-11". These are materials with a small thermal expansion rate, and are excellent in dimensional stability and workability in high-temperature heat treatment.

具備以上光轉換層30之濾色器100較佳地用於使用發出420~480nm之範圍之波長的光之光源的情況。 The color filter 100 provided with the above light conversion layer 30 is preferably used in the case of using a light source that emits light having a wavelength in the range of 420 to 480 nm.

濾色器100例如可藉由如下方法而製造:於基材40上圖案狀地形成遮光部20,其後,藉由噴墨方式使上述實施形態之墨水組成物(噴墨墨水)選擇性地附著於基材40上之藉由遮光部20所劃分之像素部形成區域,並藉由活性能量射線之照射或加熱使墨水組成物硬化。 The color filter 100 can be manufactured, for example, by forming the light-shielding portion 20 in a pattern on the base material 40, and then selectively disabling the ink composition (ink-jet ink) of the above-mentioned embodiment by an ink-jet method. The ink composition is adhered to the pixel portion formation area partitioned by the light-shielding portion 20 on the substrate 40, and the ink composition is cured by irradiation or heating of active energy rays.

形成遮光部20之方法可列舉於基材40之一面側之多個成為像素部間邊界之區域形成鉻等金屬薄膜、或含有遮光性粒子之樹脂組成物之薄膜,並將該薄膜圖案化之方法等。金屬薄膜例如可藉由濺鍍法、真空蒸鍍法等形成,含有遮光性粒子之樹脂組成物之薄膜例如可藉由塗佈、印刷等方法形成。作為進行圖案化之方法,可列舉光蝕刻法等。 The method of forming the light-shielding portion 20 includes forming a metal thin film such as chromium or a thin film of a resin composition containing light-shielding particles on one side of the substrate 40 in a plurality of regions that become boundaries between pixel portions, and patterning the thin film. method etc. The metal thin film can be formed, for example, by sputtering, vacuum evaporation, etc., and the thin film of the resin composition containing light-shielding particles can be formed, for example, by coating, printing, and the like. A photolithography method etc. are mentioned as a method of patterning.

作為噴墨方式,可列舉使用電熱轉換體作為能量產生元件之Bubble Jet(註冊商標)方式、或者使用壓電元件之壓電噴墨方式等。 Examples of the inkjet method include a Bubble Jet (registered trademark) method using an electrothermal transducer as an energy generating element, a piezoelectric inkjet method using a piezoelectric element, and the like.

於藉由活性能量射線(例如紫外線)之照射進行墨水組成物之硬化之情形時,例如可使用水銀燈、金屬鹵化物燈、氙氣燈、LED等。照射之光之波長例如可為200nm以上,可為440nm以下。曝光量例如可為10mJ/cm2以上,可為4000mJ/cm2以下。 When curing the ink composition by irradiation of active energy rays (such as ultraviolet rays), for example, mercury lamps, metal halide lamps, xenon lamps, LEDs, etc. can be used. The wavelength of the irradiated light may be, for example, not less than 200 nm and not more than 440 nm. The amount of exposure may be, for example, not less than 10 mJ/cm 2 and not more than 4000 mJ/cm 2 .

於藉由加熱進行墨水組成物之硬化之情形時,加熱溫度例如可為110℃以上,可為250℃以下。加熱時間例如可為10分以上,可為120分以下。 When curing the ink composition by heating, the heating temperature may be, for example, 110° C. or higher and 250° C. or lower. The heating time may be, for example, not less than 10 minutes and not more than 120 minutes.

以上,針對濾色器及光轉換層、以及該等之製造方法之一實施形態進行了說明,但本發明並不限定於上述實施形態。 As mentioned above, although one embodiment of a color filter, a light conversion layer, and the manufacturing method of these was demonstrated, this invention is not limited to the said embodiment.

例如,光轉換層亦可具備含有藍色發光性奈米晶粒之包含墨水組成物之硬化物之像素部(藍色像素部)來代替第3像素部10c、或具備該像素部(藍色像素部)以及第3像素部10c。又,光轉換層亦可具備:包含含有發出除紅、綠、藍以外之其他顏色之光之奈米晶粒的墨水組成物之硬化物的像素部(例如黃色像素部)。於該等情形時,光轉換層之各像素部所含有之發光性奈米晶粒之各者較佳為於相同之波長區域具有極大吸收波長。 For example, instead of the third pixel portion 10c, the light conversion layer may include a pixel portion (blue pixel portion) of a hardened product containing an ink composition containing blue light-emitting nanocrystal grains, or may include the pixel portion (blue pixel portion). pixel portion) and the third pixel portion 10c. In addition, the light conversion layer may include a pixel portion (for example, a yellow pixel portion) including a cured product of an ink composition containing nanocrystal grains emitting light of colors other than red, green, and blue. In these cases, each of the light-emitting nanocrystal grains contained in each pixel portion of the light conversion layer preferably has a maximum absorption wavelength in the same wavelength region.

又,亦可光轉換層之像素部之至少一部分為包含含有除發光性奈米晶粒以外之顏料之組成物之硬化物者。 In addition, at least a part of the pixel portion of the light conversion layer may be a cured product containing a composition containing a pigment other than luminescent nanocrystal particles.

又,濾色器亦可於遮光部之圖案上具備寬度窄於遮光部之由具有撥墨性之材料所構成之撥墨層。又,亦可不設置撥墨層,於包含像素部形成區域之區域滿塗佈狀地形成作為潤濕性可變層之含光觸媒之層,其後,隔著光罩對該含光觸媒之層照射光進行曝光,使像素部形成區域之親墨性選擇性地增大。作為光觸媒,可列舉氧化鈦等。 In addition, the color filter may have an ink-repelling layer made of a material having ink-repelling properties and having a width narrower than that of the light-shielding portion on the pattern of the light-shielding portion. In addition, the ink-repelling layer may not be provided, and a layer containing a photocatalyst as a wettability variable layer may be formed in a full coating state in the region including the pixel portion formation region, and thereafter, the layer containing the photocatalyst may be irradiated through a photomask. Exposure to light selectively increases the ink affinity of the region where the pixel portion is formed. Titanium oxide etc. are mentioned as a photocatalyst.

又,濾色器亦可於基材與像素部之間具備包含羥丙基纖維素等之油墨收容層。 Moreover, the color filter may be equipped with the ink receiving layer containing hydroxypropyl cellulose etc. between a base material and a pixel part.

又,濾色器亦可於像素部上具備保護層。該保護層係為了使濾色器平坦化並且防止像素部所含有之成分、或像素部所含有之成分及含光觸媒之層所含有之成分向液晶層溶出而設置。構成保護層之材料可使用公知之用作濾色器用保護層者。 Moreover, the color filter may be equipped with the protective layer on a pixel part. The protective layer is provided to flatten the color filter and prevent components contained in the pixel portion, or components contained in the pixel portion and the photocatalyst-containing layer from elution into the liquid crystal layer. As a material constituting the protective layer, known ones used as protective layers for color filters can be used.

又,濾色器及光轉換層之製造可利用光蝕刻方式而非噴墨方式而 形成像素部。於此情形時,首先,將墨水組成物層狀地塗佈於基材,形成墨水組成物層。繼而,對墨水組成物層圖案狀地進行曝光,其後,使用顯影液進行顯影。以此方式而形成由墨水組成物之硬化物所構成之像素部。由於顯影液通常為鹼性,因此,作為黏合劑聚合物,使用鹼可溶性之聚合物。但就材料之使用效率之觀點而言,噴墨方式較光蝕刻方式優異。其原因在於:光蝕刻方式中,其原理上要去除材料之大致2/3以上,而浪費材料。因此,本實施形態中,較佳為使用噴墨墨水,並藉由噴墨方式形成像素部。 In addition, the color filter and the light conversion layer can be manufactured by photolithography instead of inkjet to form the pixel portion. In this case, first, the ink composition is applied to the substrate in layers to form an ink composition layer. Next, the ink composition layer is patterned and exposed, and then developed using a developer. In this manner, a pixel portion composed of a hardened ink composition is formed. Since the developer is generally alkaline, an alkali-soluble polymer is used as the binder polymer. However, the inkjet method is superior to the photoetching method from the viewpoint of material usage efficiency. The reason is that in the photoetching method, more than 2/3 of the material should be removed in principle, and the material is wasted. Therefore, in this embodiment, it is preferable to use an inkjet ink and form the pixel portion by an inkjet method.

又,可使本實施形態之光轉換層之像素部除上述發光性奈米晶粒以外進而含有與發光性奈米晶粒之發光色大致同色之顏料。例如,於採用含有吸收藍色光而發光之發光性奈米晶粒之像素部作為液晶顯示元件之像素部的情形時,使用藍色光或於450nm具有波峰之準白色光作為來自光源之光,於像素部中之發光性奈米晶粒之濃度不充分之情形時,於驅動液晶顯示元件時,來自光源之光會穿透光轉換層。該來自光源之穿透光(藍色光、漏光)與發光性奈米晶粒發出之光會混色。就防止因此種混色之產生而引起之色再現性之降低之觀點而言,可使光轉換層之像素部含有顏料。為了使像素部含有顏料,可使墨水組成物含有顏料。 In addition, the pixel portion of the light conversion layer according to the present embodiment may further contain a pigment having substantially the same color as the light emission color of the luminescent nanocrystal particles in addition to the above-mentioned luminescent nanocrystal grains. For example, when using a pixel portion containing luminescent nanocrystal grains that absorb blue light and emit light as a pixel portion of a liquid crystal display element, blue light or quasi-white light with a peak at 450nm is used as the light from the light source. When the concentration of the luminescent nanocrystal grains in the pixel portion is insufficient, the light from the light source will pass through the light conversion layer when the liquid crystal display element is driven. The penetrating light (blue light, leakage light) from the light source and the light emitted by the luminescent nano crystal grains will mix colors. From the viewpoint of preventing the reduction in color reproducibility caused by such color mixing, a pigment may be contained in the pixel portion of the light conversion layer. In order to contain the pigment in the pixel portion, the ink composition may contain the pigment.

又,亦可將本實施形態之光轉換層中之紅色像素部(R)、綠色像素部(G)、及藍色像素部(B)中一種或兩種設為含有色料而不含有發光性奈米晶粒之像素部。作為此處可使用之色料,可使用公知之色料,例如作為用於紅色像素部(R)之色料,可列舉吡咯并吡咯二酮(diketopyrrolopyrrole)顏料及/或陰離子性紅色有機染料。作為用於綠色像素部(G)之色料,可列舉選自由鹵化銅酞青素顏料、酞青素系綠色染料、酞青素系藍色染料與偶氮系黃色有機染料之混合物所構成之群中之至少一種。作為用於藍色像素部(B)之色料,可列舉ε型銅酞青素顏料及/或陽離子性藍色有機染料。關於該等色料之使用量, 於使其含有於光轉換層之情形時,就可防止穿透率之降低之觀點而言,較佳為以像素部(墨水組成物之硬化物)之總質量為基準為1~5質量%。 Also, one or both of the red pixel portion (R), green pixel portion (G), and blue pixel portion (B) in the light conversion layer of this embodiment may be set to contain a coloring material and not contain a light-emitting pixel. The pixel part of the nanocrystalline grain. As the coloring material usable here, a known coloring material can be used, for example, as a coloring material used for the red pixel part (R), a diketopyrrolopyrrole (diketopyrrolopyrrole) pigment and/or an anionic red organic dye can be mentioned. As the coloring material used in the green pixel portion (G), there may be selected from a mixture of a copper halide phthalocyanine pigment, a phthalocyanine green dye, a phthalocyanine blue dye, and an azo yellow organic dye. At least one of the group. Examples of the coloring material used in the blue pixel portion (B) include an ε-type copper phthalocyanine pigment and/or a cationic blue organic dye. Regarding the usage amount of these coloring materials, in the case of making it contained in the light conversion layer, it is preferable to use the total amount of the pixel portion (cured product of the ink composition) from the viewpoint of preventing the decrease of the transmittance. The mass is based on 1 to 5% by mass.

[實施例] [Example]

以下,藉由實施例具體地說明本發明。但是,本發明並不僅限定於下述實施例。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to the following examples.

下述製造發光性奈米結晶之操作、及製造墨水之操作係於充滿氮氣之手套箱內、或將大氣阻斷且於氮氣氣流下之燒瓶內而進行。 The following operations of producing luminous nanocrystals and producing ink were carried out in a glove box filled with nitrogen, or in a flask with the atmosphere blocked and under nitrogen flow.

又,以下所例示之所有原料係預先於容器內導入氮氣將該容器內之大氣置換成氮氣而使用。再者,關於液體材料,係將氮氣導入至液體中將溶存氧置換成氮氣而使用。 In addition, all the raw materials exemplified below were used by introducing nitrogen gas into the container beforehand to replace the atmosphere in the container with nitrogen gas. In addition, regarding the liquid material, nitrogen gas is introduced into the liquid to replace dissolved oxygen with nitrogen gas.

又,以下所使用之氯仿、乙醇、己烷、甲苯、1,4-丁二醇二乙酸酯係使用預先利用分子篩(基本上使用3A,己烷、甲苯、丁二醇二乙酸酯使用4A)進行48小時以上脫水使其乾燥者。 In addition, the following chloroform, ethanol, hexane, toluene, and 1,4-butanediol diacetate are used in advance using molecular sieves (basically use 3A, hexane, toluene, butanediol diacetate 4A) Those who have been dehydrated for more than 48 hours to make them dry.

關於氧化鈦,於使用前,於1mmHg之減壓下、2小時、以120℃進行加熱,並於氮氣環境下冷卻。 Titanium oxide was heated at 120° C. under a reduced pressure of 1 mmHg for 2 hours and cooled in a nitrogen atmosphere before use.

[紅色發光性奈米結晶之製造] [Manufacture of red luminous nanocrystals]

於1000mL之燒瓶中加入乙酸銦17.48g、三辛基氧化膦25.0g、月桂酸35.98g,同時通入氮氣並於160℃攪拌40分鐘。進而於250℃攪拌20分鐘,其後加熱至300℃並繼續攪拌。於手套箱內使三(三甲基矽基)膦4.0g溶解於三辛基膦15.0g中,其後填充至玻璃注射器中。將其注入至保持於300℃之燒瓶中,並使之於250℃反應10分鐘。進而,於手套箱內使三(三甲基矽基)膦7.5g溶解於三辛基膦30.0g中,將所得之混合液5ml以12分鐘滴加至上述反應溶液中,其後,以15分鐘間隔每5mL加入至反應溶液中直至用罄。 17.48 g of indium acetate, 25.0 g of trioctylphosphine oxide, and 35.98 g of lauric acid were added to a 1000 mL flask, while nitrogen gas was introduced and stirred at 160° C. for 40 minutes. Furthermore, it stirred at 250 degreeC for 20 minutes, and heated to 300 degreeC after that, and continued stirring. In a glove box, 4.0 g of tris(trimethylsilyl)phosphine was dissolved in 15.0 g of trioctylphosphine, and then filled into a glass syringe. This was poured into a flask kept at 300°C, and reacted at 250°C for 10 minutes. Furthermore, 7.5 g of tris(trimethylsilyl)phosphine was dissolved in 30.0 g of trioctylphosphine in a glove box, and 5 ml of the resulting mixture was added dropwise to the above reaction solution over 12 minutes, and then, 15 Every 5 mL was added to the reaction solution at minute intervals until used up.

於另一三口燒瓶中加入乙酸銦5.595g、三辛基氧化膦10.0g、月 桂酸11.515g,同時通入氮氣並於160℃攪拌40分鐘。進而於250℃攪拌20分鐘並加熱至300℃,其後,將冷卻至70℃之混合溶液加入至上述反應溶液中。於手套箱內使三(三甲基矽基)膦4.0g溶解於三辛基膦15.0g中,將所得之混合液5mL再次以12分鐘滴加至上述反應溶液中,其後,以15分間隔每5mL加入至反應溶液中直至用完。維持1小時攪拌並冷卻至室溫,其後,加入甲苯100mL及乙醇400mL使微粒子凝集。使用離心分離機使微粒子沈澱,其後,將上清液廢棄,並使沈澱之微粒子溶解於三辛基膦中,藉此獲得磷化銦(InP)紅色發光性奈米結晶之三辛基膦溶液。 In another three-necked flask, 5.595 g of indium acetate, 10.0 g of trioctylphosphine oxide, and 11.515 g of lauric acid were added, while nitrogen gas was introduced and stirred at 160°C for 40 minutes. Furthermore, it stirred at 250 degreeC for 20 minutes and heated to 300 degreeC, after that, the mixed solution cooled to 70 degreeC was added to the said reaction solution. In a glove box, 4.0 g of tris(trimethylsilyl)phosphine was dissolved in 15.0 g of trioctylphosphine, and 5 mL of the resulting mixture was added dropwise to the above reaction solution over 12 minutes, and then, over 15 minutes, Add to the reaction solution at intervals of 5 mL until used up. After maintaining stirring for 1 hour and cooling to room temperature, 100 mL of toluene and 400 mL of ethanol were added to aggregate the fine particles. Use a centrifuge to precipitate the microparticles, then discard the supernatant, and dissolve the precipitated microparticles in trioctylphosphine to obtain indium phosphide (InP) red luminous nanocrystal trioctylphosphine solution.

[綠色發光性奈米結晶之製造] [Manufacture of green luminescent nanocrystals]

於1000mL之燒瓶中加入乙酸銦23.3g、三辛基氧化膦40.0g、月桂酸48.0g,同時通入氮氣並於160℃攪拌40分鐘。進而於250℃攪拌20分鐘,其後加熱至300℃繼續攪拌。於手套箱內使三(三甲基矽基)膦10.0g溶解於三辛基膦30.0g中,其後,填充至玻璃注射器中。將其注入至保持於300℃之燒瓶中,並使之於250℃反應5分鐘。將燒瓶冷卻至室溫,加入甲苯100mL及乙醇400mL使微粒子凝集。使用離心分離機使微粒子沈澱,其後,將上清液廢棄,並使沈澱之微粒子溶解於三辛基膦中,藉此獲得磷化銦(InP)綠色發光性奈米結晶之三辛基膦溶液。 23.3 g of indium acetate, 40.0 g of trioctylphosphine oxide, and 48.0 g of lauric acid were added to a 1000 mL flask, while nitrogen gas was introduced and stirred at 160° C. for 40 minutes. Furthermore, it stirred at 250 degreeC for 20 minutes, and heated to 300 degreeC after that, and continued stirring. In a glove box, 10.0 g of tris(trimethylsilyl)phosphine was dissolved in 30.0 g of trioctylphosphine, and then filled into a glass syringe. This was poured into a flask kept at 300°C, and reacted at 250°C for 5 minutes. The flask was cooled to room temperature, and 100 mL of toluene and 400 mL of ethanol were added to aggregate the fine particles. Use a centrifuge to precipitate the microparticles, then discard the supernatant, and dissolve the precipitated microparticles in trioctylphosphine, thereby obtaining indium phosphide (InP) green luminous nanocrystal trioctylphosphine solution.

[InP/ZnS核殼奈米結晶之製造] [Manufacturing of InP/ZnS core-shell nanocrystals]

於上述所合成之InP奈米結晶之三辛基膦溶液中調整為3.6g之InP、及三辛基膦90g,其後,投入至1000mL之燒瓶中,並進而加入三辛基氧化膦90g、及月桂酸30g。另一方面,於手套箱內將二乙基鋅之1M己烷溶液42.9mL、雙(三甲基矽基)硫醚之三辛基膦9.09重量%溶液92.49g與三辛基膦162g進行混合,藉此製作儲備溶液。使燒瓶內置換成氮氣環境,其後,將燒瓶之溫度設定為180℃,於到達80℃之時點添加上述儲備溶液15mL,其後每10分鐘繼續添加15mL。(燒瓶溫度維持於180℃)。最後之添加結束後,進而將溫度維持10分鐘,藉此使反 應結束。反應結束後,使溶液冷卻至常溫,並加入甲苯500mL及乙醇2000mL使奈米結晶凝集。使用離心分離機使奈米結晶沈澱,其後,將上清液廢棄,以溶液體中之奈米結晶濃度成為20質量%之方式使沈澱物再次溶解於氯仿中,藉此獲得InP/ZnS核殼奈米結晶之氯仿溶液。 In the trioctylphosphine solution of InP nanocrystals synthesized above, adjust to 3.6g of InP and 90g of trioctylphosphine, then put them into a 1000mL flask, and then add 90g of trioctylphosphine oxide, And lauric acid 30g. On the other hand, 42.9 mL of a 1 M hexane solution of diethylzinc, 92.49 g of a 9.09% by weight solution of trioctylphosphine of bis(trimethylsilyl)sulfide, and 162 g of trioctylphosphine were mixed in a glove box. , to make a stock solution. Replace the inside of the flask with a nitrogen atmosphere, then set the temperature of the flask to 180°C, and add 15mL of the above-mentioned stock solution when it reaches 80°C, and then continue to add 15mL every 10 minutes. (Flask temperature maintained at 180°C). After the last addition, the temperature was maintained for 10 minutes to complete the reaction. After the reaction, the solution was cooled to room temperature, and 500 mL of toluene and 2000 mL of ethanol were added to agglomerate the nanocrystals. The nanocrystals were precipitated using a centrifuge, and then the supernatant was discarded, and the precipitate was redissolved in chloroform so that the concentration of the nanocrystals in the solution became 20% by mass, thereby obtaining InP/ZnS cores Chloroform solution of shell nanocrystals.

[QD之配體交換] [QD Ligand Exchange]

參考日本特開2002-121549號公報,合成3-巰基丙酸之三乙二醇單甲醚酯(三乙二醇單甲醚巰基丙酸酯)(TEGMEMP)。 Referring to Japanese Patent Application Laid-Open No. 2002-121549, triethylene glycol monomethyl ether ester of 3-mercaptopropionic acid (triethylene glycol monomethyl ether mercaptopropionate) (TEGMEMP) was synthesized.

於充滿氮氣之容器內將QD分散液1(上述之InP/ZnS核殼奈米結晶(紅色發光性))與溶解有8g上述所合成之TEGMEMP之氯仿溶液80g進行混合,並於80℃攪拌2小時,藉此進行配體交換,並冷卻至室溫。 In a container filled with nitrogen, mix QD dispersion 1 (the above-mentioned InP/ZnS core-shell nanocrystals (red luminescence)) with 80 g of chloroform solution in which 8 g of the above-synthesized TEGMEMP is dissolved, and stir at 80°C for 2 hours to allow ligand exchange and cool to room temperature.

其後,於減壓下於40℃同時攪拌並使甲苯/氯仿蒸發,濃縮至液量成為100mL為止。向該分散液中加入4倍重量之正己烷使QD凝集,藉由離心分離及傾析去除上清液。向沈澱物中加入50g之甲苯並利用超音波使之再分散。進行合計3次該洗淨操作,將殘存於液體中之游離之配體成分去除。將傾析後之沈澱物於室溫真空乾燥2小時,獲得經TEGMEMP改質之QD(QD-TEGMEMP)之粉體2g。 Thereafter, toluene/chloroform was evaporated while stirring at 40° C. under reduced pressure, and concentrated until the liquid volume became 100 mL. 4 times the weight of n-hexane was added to the dispersion to agglomerate the QDs, and the supernatant was removed by centrifugation and decantation. Add 50 g of toluene to the precipitate and redisperse it by ultrasonic wave. This washing operation was performed a total of 3 times to remove free ligand components remaining in the liquid. The decanted precipitate was vacuum-dried at room temperature for 2 hours to obtain 2 g of TEGMEMP-modified QD (QD-TEGMEMP) powder.

[氧化鈦分散液之製備] [Preparation of Titanium Oxide Dispersion]

於充滿氮氣之容器內將氧化鈦6g、高分子分散劑1.01g、及1,4-丁二醇二乙酸酯以不揮發成分成為40%之方式進行混合。向充滿氮氣之容器內之摻合物中加入氧化鋯顆粒(直徑:1.25mm),其後,使用塗料調節器使充滿氮氣之密閉容器振動2小時,藉此進行摻合物之分散處理。藉此獲得光散射性粒子分散體1。 In a container filled with nitrogen, 6 g of titanium oxide, 1.01 g of a polymer dispersant, and 1,4-butanediol diacetate were mixed so that the non-volatile content became 40%. Zirconia particles (diameter: 1.25 mm) were added to the blend in a nitrogen-filled container, and then the blend was dispersed by vibrating the nitrogen-filled closed container for 2 hours using a paint conditioner. Light-scattering particle dispersion 1 was thus obtained.

上述材料全部係使用導入氮氣將溶存氧置換成氮氣者。 All the above-mentioned materials use nitrogen to replace dissolved oxygen with nitrogen.

[實施例1] [Example 1]

[墨水組成物之製備] [Preparation of ink composition]

於充滿氮氣之容器內將以下之(1)、(2)及(3)均勻地混合,其後,於 手套箱內將混合物利用孔徑5μm之過濾器進行過濾,並進而將氮氣導入至墨水內使氮氣飽和。 Mix the following (1), (2) and (3) evenly in a container filled with nitrogen, and then filter the mixture with a filter with a pore size of 5 μm in a glove box, and then introduce nitrogen into the ink Saturation with nitrogen.

繼而,進行減壓將氮氣去除,藉此獲得墨水組成物。再者,使用之材料如下。 Next, nitrogen gas was removed by reducing pressure, thereby obtaining an ink composition. Furthermore, the materials used are as follows.

[光散射性粒子] [Light Scattering Particles]

‧氧化鈦:MPT141(石原產業(股)製造) ‧Titanium oxide: MPT141 (manufactured by Ishihara Sangyo Co., Ltd.)

[熱硬化系樹脂] [Thermosetting resin]

‧含縮水甘油基之固形丙烯酸樹脂:「FINEDIC A-254」 ‧Glycidyl-containing solid acrylic resin: "FINEDIC A-254"

(DIC(股)製造,環氧當量500) (Manufactured by DIC Co., Ltd., epoxy equivalent 500)

[高分子分散劑] [Polymer dispersant]

‧高分子分散劑:BYK-2164 ‧Polymer dispersant: BYK-2164

(BYK公司製造之商品名,「DISPERBYK」為註冊商標) (Brand name manufactured by BYK, "DISPERBYK" is a registered trademark)

[有機溶劑] [Organic solvents]

‧1,4-丁二醇二乙酸酯(Daicel(股)製造) ‧1,4-Butanediol diacetate (manufactured by Daicel Co., Ltd.)

(1)於上述所製備之QD-TEGMEMP中混合有機溶劑1,4-丁二醇二乙酸酯,製成不揮發成分30%之QD分散液22.5g (1) Mix the organic solvent 1,4-butanediol diacetate in the QD-TEGMEMP prepared above to make 22.5g of QD dispersion with 30% non-volatile content

(2)將熱硬化系樹脂:DIC(股)製造之「FINEDIC A-254」(6.28g)、硬化劑:1-甲基環己烷-4,5-二羧酸酐(1.05g)、及硬化促進劑:二甲基苄胺(0.08g)以不揮發成分成為30%之方式溶解於有機溶劑:1,4-丁二醇二乙酸酯中而成的熱硬化性樹脂溶液12.5g (2) Thermosetting resin: "FINEDIC A-254" (6.28g) manufactured by DIC Co., Ltd., hardener: 1-methylcyclohexane-4,5-dicarboxylic anhydride (1.05g), and Hardening accelerator: Dimethylbenzylamine (0.08g) dissolved in an organic solvent: 1,4-butanediol diacetate so that the non-volatile content becomes 30% Thermosetting resin solution 12.5g

(3)上述光散射性粒子分散體1 7.5g (3) The above-mentioned light-scattering particle dispersion 1 7.5g

[實施例2] [Example 2]

[墨水組成物之製備] [Preparation of ink composition]

使用QD分散液2(上述InP/ZnS核殼奈米結晶(綠色發光性))代替QD分散 液1,以與實施例1相同之方式獲得墨水組成物。 Using QD dispersion 2 (the aforementioned InP/ZnS core-shell nanocrystals (green luminescence)) instead of QD dispersion 1, an ink composition was obtained in the same manner as in Example 1.

[比較例1] [Comparative example 1]

將使用癸基苯作為有機溶劑並以與實施例1相同之方式所製作之密閉於氮氣中之墨水組成物於大氣中進行攪拌而獲得墨水組成物。確認到溶存氧濃度上升。 The ink composition sealed in nitrogen gas prepared in the same manner as in Example 1 using decylbenzene as an organic solvent was stirred in the air to obtain an ink composition. A rise in the dissolved oxygen concentration was confirmed.

[光轉換過濾器之製作] [Production of light conversion filter]

將上述所獲得之墨水組成物以乾燥後之膜厚成為3.5μm之方式利用旋轉塗佈機於大氣中塗佈於玻璃基板上。將塗佈膜於氮氣中加熱至180℃使其硬化,於玻璃基板上形成由墨水組成物之硬化物所構成之層(光轉換層)。藉由以上操作而獲得光轉換過濾器。 The ink composition obtained above was coated on a glass substrate in the air with a spin coater so that the film thickness after drying became 3.5 μm. The coating film was heated to 180° C. in nitrogen gas to be cured, and a layer (light conversion layer) composed of a hardened ink composition was formed on a glass substrate. A light conversion filter was obtained through the above operations.

(3)評價 (3) Evaluation

使用上述所獲得之墨水組成物及上述所獲得之光轉換過濾器,按照以下順序進行評價。將結果示於表1。 Using the above-obtained ink composition and the above-obtained light conversion filter, evaluation was performed in the following procedure. The results are shown in Table 1.

[外部量子效率(EQE)] [External Quantum Efficiency (EQE)]

使用上述藍色LED(波峰發光波長:450nm),並將積分球連接於上述之大塚電子(股)製造之放射分光光度計(商品名「MCPD-9800」),於藍色LED之上側設置積分球。於藍色LED與積分球之間插入具有光轉換層之基材,點亮藍色LED,對所觀測到之光譜、各波長時之照度進行測定。 Use the above-mentioned blue LED (peak emission wavelength: 450nm), connect the integrating sphere to the above-mentioned radiation spectrophotometer (trade name "MCPD-9800") manufactured by Otsuka Electronics Co., Ltd., and set the integrating sphere on the upper side of the blue LED. ball. Insert a substrate with a light conversion layer between the blue LED and the integrating sphere, turn on the blue LED, and measure the observed spectrum and the illuminance at each wavelength.

根據上述測定裝置所測得之光譜、及照度,如以下般求出外部量子效率。該值為表示入射至光轉換層之光(光子)中以何種程度之比例以螢光之形式放射至觀測者側的值。因此,若該值較大則表示光轉換層優異,與S(PL)一併為重要之評價指標。 From the spectrum and illuminance measured by the above measuring device, the external quantum efficiency was calculated as follows. This value is a value indicating what percentage of light (photons) incident on the light conversion layer is radiated to the observer side as fluorescence. Therefore, if this value is large, it means that the light conversion layer is excellent, and it becomes an important evaluation index together with S(PL).

紅色發光光轉換層之外部量子效率=P(Red)/E(Blue)×100(%) External quantum efficiency of red light-emitting light conversion layer = P(Red)/E(Blue)×100(%)

綠色發光光轉換層之外部量子效率=P(Green)/E(Blue)×100(%) External quantum efficiency of green light-emitting light conversion layer=P(Green)/E(Blue)×100(%)

此處,E(Blue)、P(Red)、P(Green)分別表示如下。 Here, E(Blue), P(Red), and P(Green) are represented as follows, respectively.

E(Blue):表示380~490nm之波長時之「照度×波長÷hc」於該波長區域之合計值。再者,h表示普朗克常數,c表示光速。(其為相當於所觀測到之光子數之值) E(Blue): Indicates the total value of "illuminance x wavelength ÷ hc" in the wavelength range at the wavelength of 380~490nm. Furthermore, h represents Planck's constant, and c represents the speed of light. (which is a value equivalent to the number of photons observed)

P(Red):表示490~590nm之測定波長時之「照度×波長÷hc」於該波長區域之合計值。(相當於所觀到之光子數) P(Red): Indicates the total value of "illuminance × wavelength ÷ hc" in the wavelength range at the measurement wavelength of 490~590nm. (equivalent to the number of photons observed)

P(Green):表示590~780nm之測定波長時之「照度×波長÷hc」於該波長區域之合計值。(相當於所觀到之光子數) P(Green): Indicates the total value of "illuminance × wavelength ÷ hc" in the wavelength range at the measurement wavelength of 590~780nm. (equivalent to the number of photons observed)

基於上述情況,算出EQE,將實施例2之EQE設為10,對所測得之樣品之EQE以相對值如以下般進行評價: Based on the above situation, calculate EQE, the EQE of embodiment 2 is set as 10, the EQE of the measured sample is evaluated as follows with relative value:

<評價基準> <Evaluation criteria>

未達10:D Not up to 10 :D

10:C 10: C

超過10且為100以下:B More than 10 and less than 100: B

超過100者:A Over 100: A

[氣泡評價] [bubble evaluation]

使用送液泵輸送上述墨水,目視觀察配管管體內之氣泡之產生。 Use the liquid delivery pump to transport the above ink, and visually observe the generation of air bubbles in the piping body.

[水分含有率評價] [Moisture content evaluation]

水分含有率係藉由卡-費水分計(三菱化學(股)製造,型號CA-06,汽化單元為三菱化學(股)公司製造之VA-06)進行測定。 The moisture content was measured with a Cal-Ferre moisture meter (manufactured by Mitsubishi Chemical Co., Ltd., model CA-06, and the vaporization unit was VA-06 produced by Mitsubishi Chemical Co., Ltd.).

Figure 107125217-A0202-12-0045-2
Figure 107125217-A0202-12-0045-2

[實施例3] [Example 3]

首先,按照以下順序製作具有稱為黑矩陣(BM)之遮光部之基板(BM基板)。即,於由無鹼玻璃所構成之玻璃基板(Nippon Electric Glass公司製造之「OA-10G」)上塗佈黑色抗蝕劑(TOKYO OHKA KOGYO公司製造之「CFPR BK」),其後,進行預烘烤、圖案曝光、顯影及後烘烤,藉此形成圖案狀之遮光部。曝光係藉由對黑色抗蝕劑以250mJ/cm2之曝光量照射紫外線而進行。遮光部之圖案為相當於200μm×600μm之子像素之具有開口部分之圖案,且線寬為20μm,厚度為2.6μm。 First, a substrate (BM substrate) having a light-shielding portion called a black matrix (BM) is produced in the following procedure. That is, a black resist ("CFPR BK" manufactured by TOKYO OHKA KOGYO Co., Ltd.) was applied on a glass substrate made of alkali-free glass ("OA-10G" manufactured by Nippon Electric Glass Co., Ltd.), and then a preliminary Baking, pattern exposure, development and post-baking, thereby forming a patterned light-shielding portion. Exposure was performed by irradiating the black resist with ultraviolet rays at an exposure dose of 250 mJ/cm 2 . The pattern of the light-shielding portion is a pattern having an opening corresponding to a sub-pixel of 200 μm×600 μm, and has a line width of 20 μm and a thickness of 2.6 μm.

繼而,將實施例1所獲得之紅色發光墨水組成物以噴墨方式印刷於BM基板上之開口部分,其後,照射紫外線,繼而,於氮氣環境下於150℃加熱30分鐘。藉此,使墨水組成物硬化,而形成由墨水組成物之硬化物所構成之像素部。所獲得之像素部為將藍色光轉換成紅色光之像素部。像素部之厚度為2.1μm。藉由以上操作,獲得附圖案之光轉換過濾器。 Then, the red luminescent ink composition obtained in Example 1 was inkjet printed on the opening on the BM substrate, and then irradiated with ultraviolet rays, and then heated at 150° C. for 30 minutes in a nitrogen atmosphere. Thereby, the ink composition is cured, and a pixel portion composed of a cured product of the ink composition is formed. The obtained pixel portion is a pixel portion that converts blue light into red light. The thickness of the pixel portion was 2.1 μm. Through the above operations, a patterned light conversion filter was obtained.

[實施例4] [Example 4]

以與實施例3相同之方式準備BM基板。繼而,將實施例1所獲得之紅色發光墨水組成物及實施例2所獲得之綠色發光墨水組成物以噴墨方式印刷於BM基板 上之開口部分,其後,照射紫外線,與實施例3相同地使墨水組成物硬化。藉此,於BM基板上形成將藍色光轉換成紅色光之像素部、及將藍色光轉換成綠色光之像素部。藉由以上操作,獲得具備多種像素部之附圖案之光轉換過濾器。 A BM substrate was prepared in the same manner as in Example 3. Next, the red luminescent ink composition obtained in Example 1 and the green luminescent ink composition obtained in Example 2 were inkjet printed on the opening on the BM substrate, and then irradiated with ultraviolet rays, the same as in Example 3. to harden the ink composition. Thereby, the pixel part which converts blue light into red light, and the pixel part which converts blue light into green light are formed on a BM substrate. Through the above operations, a patterned light conversion filter having various types of pixel portions was obtained.

10‧‧‧像素部 10‧‧‧pixel part

10a‧‧‧第1像素部 10a‧‧‧1st pixel part

10b‧‧‧第2像素部 10b‧‧‧The second pixel part

10c‧‧‧第3像素部 10c‧‧‧The third pixel part

11a‧‧‧第1發光性奈米晶粒 11a‧‧‧The first luminescent nanocrystal grain

11b‧‧‧第2發光性奈米晶粒 11b‧‧‧The second luminous nanocrystal grain

12a‧‧‧第1光散射性粒子 12a‧‧‧First light-scattering particle

12b‧‧‧第2光散射性粒子 12b‧‧‧Second light scattering particles

13a‧‧‧第1硬化成分 13a‧‧‧The first hardening component

13b‧‧‧第2硬化成分 13b‧‧‧The second hardening component

13c‧‧‧第3硬化成分 13c‧‧‧The third hardening component

20‧‧‧遮光部 20‧‧‧shading part

30‧‧‧光轉換層 30‧‧‧light conversion layer

40‧‧‧基材 40‧‧‧Substrate

100‧‧‧濾色器 100‧‧‧color filter

Claims (16)

一種墨水組成物,其含有發光性奈米晶粒、熱硬化性樹脂、有機溶劑及光散射性粒子,且上述有機溶劑之LogP值為-1.0以上~6.5以下,上述光散射性粒子之體積平均徑為0.2μm以上且1μm以下。 An ink composition, which contains luminescent nano crystal grains, a thermosetting resin, an organic solvent, and light-scattering particles, and the LogP value of the above-mentioned organic solvent is -1.0 to 6.5, and the volume average of the above-mentioned light-scattering particles The diameter is not less than 0.2 μm and not more than 1 μm. 一種墨水組成物,其含有發光性奈米晶粒、熱硬化性樹脂、有機溶劑及光散射性粒子,且上述有機溶劑之LogP值為-1.0以上~6.5以下,基於卡-費(Karl-Fischer)水分計測得之水分(H2O)含有率為90ppm以下,上述光散射性粒子之體積平均徑為0.2μm以上且1μm以下。 An ink composition, which contains luminescent nano crystal grains, a thermosetting resin, an organic solvent, and light-scattering particles, and the LogP value of the above-mentioned organic solvent is -1.0 to 6.5, based on Karl-Fischer (Karl-Fischer ) The moisture (H 2 O) content rate measured by a moisture meter is 90 ppm or less, and the volume average diameter of the light-scattering particles is 0.2 μm or more and 1 μm or less. 如請求項2所述之墨水組成物,其中,上述水分(H2O)含有率為20ppm以下。 The ink composition according to claim 2, wherein the water (H 2 O) content is 20 ppm or less. 如請求項2或3所述之墨水組成物,其中,上述熱硬化性樹脂為鹼不溶性。 The ink composition according to claim 2 or 3, wherein the thermosetting resin is alkali-insoluble. 如請求項2或3所述之墨水組成物,其能夠形成鹼不溶性之塗佈膜。 The ink composition according to claim 2 or 3, which can form an alkali-insoluble coating film. 如請求項2或3所述之墨水組成物,其表面張力為20~40mN/m。 The ink composition as described in Claim 2 or 3 has a surface tension of 20-40mN/m. 如請求項2或3所述之墨水組成物,其黏度為2~20mPa‧s。 The ink composition as described in Claim 2 or 3 has a viscosity of 2~20mPa‧s. 如請求項2或3所述之墨水組成物,其進而含有沸點為180℃以上之溶劑。 The ink composition according to claim 2 or 3, further comprising a solvent having a boiling point of 180° C. or higher. 如請求項2或3所述之墨水組成物,其為濾色器用。 The ink composition as described in claim 2 or 3, which is used for color filters. 一種請求項2所述之墨水組成物之製造方法,其係對上述墨水組成物進行減壓而將溶存氣體去除。 A method of manufacturing the ink composition described in claim 2, comprising depressurizing the ink composition to remove dissolved gas. 一種光轉換層,其係由請求項1或2所述之墨水組成物之硬化物所構成。 A light conversion layer made of hardened ink composition as described in claim 1 or 2. 一種光轉換層,其中,由請求項1或2所述之墨水組成物之硬化物所構成之光轉換層為鹼不溶性。 A light conversion layer, wherein the light conversion layer made of the hardened ink composition according to claim 1 or 2 is alkali-insoluble. 一種光轉換層,其具備多個像素部,且上述多個像素部具有:包含請求項2、4、5、6、7、8或9中任一項所述之墨水組成物之硬化物的像素部。 A light conversion layer comprising a plurality of pixel portions, and the plurality of pixel portions include: a cured product comprising the ink composition described in any one of claims 2, 4, 5, 6, 7, 8, or 9 pixel department. 如請求項13所述之光轉換層,其進而具備設置於上述多個像素部間之遮光部,且上述多個像素部具有:第1像素部,其包含上述硬化物且含有吸收420~480nm之範圍之波長的光並發出於605~665nm之範圍具有發光峰波長的光的發光性奈米晶粒作為上述發光性奈米晶粒;及第2像素部,其包含上述硬化物且含有吸收420~480nm之範圍之波長的光並發出於500~560nm之範圍具有發光峰波長的光的發光性奈米晶粒作為上述發光性奈米晶粒。 The light conversion layer according to claim 13, further comprising a light-shielding portion provided between the plurality of pixel portions, and the plurality of pixel portions include: a first pixel portion comprising the hardened material and absorbing 420-480nm The luminescent nanocrystal particles that emit light with a wavelength of light in the range of 605-665nm and have a peak wavelength of light in the range of 605-665nm are used as the above-mentioned luminescent nanocrystal particles; and the second pixel part, which includes the above-mentioned cured product and contains Luminescent nanocrystal grains that emit light with a wavelength in the range of 420 to 480 nm and have a peak wavelength of light in the range of 500 to 560 nm are used as the above-mentioned luminescent nanocrystal grains. 如請求項13或14所述之光轉換層,其中,上述多個像素部進而具有第3像素部,該第3像素部對420~480nm之範圍之波長的光之穿透率為30%以上。 The light conversion layer according to claim 13 or 14, wherein the plurality of pixel portions further have a third pixel portion, and the transmittance of the third pixel portion to light having a wavelength in the range of 420 to 480 nm is 30% or more . 一種濾色器,其具備請求項11至15中任一項所述之光轉換層。 A color filter comprising the light conversion layer described in any one of Claims 11 to 15.
TW107125217A 2017-07-21 2018-07-20 Ink composition and method for producing the same, light conversion layer and color filter TWI782061B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP2017-142153 2017-07-21
JP2017142153 2017-07-21

Publications (2)

Publication Number Publication Date
TW201908425A TW201908425A (en) 2019-03-01
TWI782061B true TWI782061B (en) 2022-11-01

Family

ID=65015504

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107125217A TWI782061B (en) 2017-07-21 2018-07-20 Ink composition and method for producing the same, light conversion layer and color filter

Country Status (3)

Country Link
JP (1) JP7124827B2 (en)
TW (1) TWI782061B (en)
WO (1) WO2019017423A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102392706B1 (en) * 2017-07-25 2022-04-29 엘지디스플레이 주식회사 Display device having a color filter
GB2594036A (en) * 2020-02-19 2021-10-20 Merck Patent Gmbh A Process for surface planarization
CN113671614B (en) * 2021-08-17 2022-08-02 深圳市华星光电半导体显示技术有限公司 Color filter manufacturing method and color filter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200830932A (en) * 2006-09-15 2008-07-16 Idemitsu Kosan Co Composition for color converting member and production method of color conversion substrate using the same
CN105785718A (en) * 2015-01-09 2016-07-20 三星显示有限公司 Photosensitive Resin Composition, Color Conversion Panel Using The Same And Display Device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060090686A (en) * 2003-10-01 2006-08-14 이데미쓰 고산 가부시키가이샤 Color conversion layer and light-emitting device
EP1850405A1 (en) * 2004-12-28 2007-10-31 Idemitsu Kosan Co., Ltd. Ink for forming organic el coating film and method for production thereof
JP5286969B2 (en) * 2007-06-22 2013-09-11 三菱化学株式会社 Member forming liquid for semiconductor light emitting device, member for semiconductor light emitting device, member for aerospace industry, semiconductor light emitting device, and phosphor composition
JP2009280766A (en) * 2008-05-26 2009-12-03 Sharp Corp Ink composition
US20130248766A2 (en) * 2008-06-30 2013-09-26 Keio University Ink Composition
CN104756273B (en) * 2012-11-20 2017-10-24 默克专利有限公司 The preparation in high-purity solvent for manufacturing electronic device
KR101866224B1 (en) * 2013-04-25 2018-06-11 동우 화인켐 주식회사 Optical laminate
JP2016000803A (en) * 2014-05-19 2016-01-07 富士フイルム株式会社 Quantum dot-containing polymerizable composition, wavelength conversion member, backlight unit, liquid crystal display device, and production method of wavelength conversion member
JP6264218B2 (en) * 2014-06-06 2018-01-24 日本電気硝子株式会社 Light emitting device, wavelength conversion member, and method of manufacturing wavelength conversion member
CN104479680B (en) * 2014-12-19 2016-09-28 京东方科技集团股份有限公司 Modified quantum dot and preparation method thereof, coloring agent, photosensitive polymer combination, colored filter and display device
KR102353095B1 (en) * 2014-12-26 2022-01-19 엔에스 마테리얼스 아이엔씨. Wavelength conversion member and method for manufacturing same
JP6506037B2 (en) * 2015-02-02 2019-04-24 富士フイルム株式会社 Phosphor-Dispersed Composition, Fluorescent Molded Product Obtained Using the Same, Wavelength Conversion Film, Wavelength Conversion Member, Backlight Unit, Liquid Crystal Display Device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200830932A (en) * 2006-09-15 2008-07-16 Idemitsu Kosan Co Composition for color converting member and production method of color conversion substrate using the same
CN105785718A (en) * 2015-01-09 2016-07-20 三星显示有限公司 Photosensitive Resin Composition, Color Conversion Panel Using The Same And Display Device

Also Published As

Publication number Publication date
TW201908425A (en) 2019-03-01
WO2019017423A1 (en) 2019-01-24
JP7124827B2 (en) 2022-08-24
JPWO2019017423A1 (en) 2020-07-09

Similar Documents

Publication Publication Date Title
TWI808953B (en) Ink composition, light conversion layer and color filter
TWI817951B (en) Ink composition and manufacturing method thereof, light conversion layer and color filter
JP7318225B2 (en) Inkjet ink for color filter, light conversion layer and color filter
JP7040072B2 (en) Ink composition, light conversion layer and color filter
TWI782061B (en) Ink composition and method for producing the same, light conversion layer and color filter
JP7087775B2 (en) Ink composition, light conversion layer and color filter
JP7087797B2 (en) Ink composition, light conversion layer and color filter
JP7020015B2 (en) Ink composition, light conversion layer and color filter
JP6972656B2 (en) Ink composition and its manufacturing method, light conversion layer and color filter
JP6933311B2 (en) Inkjet ink for color filters, light conversion layer and color filter
JP7035400B2 (en) Ink composition, light conversion layer and color filter
JP7013705B2 (en) Ink composition and its manufacturing method, light conversion layer and color filter
JP6981083B2 (en) Ink composition and its manufacturing method, light conversion layer and color filter
JP2021096323A (en) Color filter ink composition, light conversion layer, and color filter
JP2019218422A (en) Ink composition set, photoconversion layer and color filter
JP7020014B2 (en) Ink composition, light conversion layer and color filter
JP6981082B2 (en) Ink composition and its manufacturing method, light conversion layer and color filter
JP2021152652A (en) Semiconductor nanoparticle-containing composition, color filter, and image display device
JP2021017481A (en) Ink composition and method for producing the same, photoconversion layer, and color filter