TWI777196B - 新穎肽類,細胞及其用於治療多種腫瘤的用途,其製造方法及包含其等之醫藥組成物(五) - Google Patents

新穎肽類,細胞及其用於治療多種腫瘤的用途,其製造方法及包含其等之醫藥組成物(五) Download PDF

Info

Publication number
TWI777196B
TWI777196B TW109124799A TW109124799A TWI777196B TW I777196 B TWI777196 B TW I777196B TW 109124799 A TW109124799 A TW 109124799A TW 109124799 A TW109124799 A TW 109124799A TW I777196 B TWI777196 B TW I777196B
Authority
TW
Taiwan
Prior art keywords
cell
cells
peptide
peptides
tumor
Prior art date
Application number
TW109124799A
Other languages
English (en)
Other versions
TW202041518A (zh
Inventor
托尼 維克
史蒂分 瓦特
延斯 弗里屈
柯萊特 桑
漢彼特 辛格
Original Assignee
德商伊瑪提克斯生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52460698&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TWI777196(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from GBGB1313987.8A external-priority patent/GB201313987D0/en
Priority claimed from GBGB1403297.3A external-priority patent/GB201403297D0/en
Application filed by 德商伊瑪提克斯生物科技有限公司 filed Critical 德商伊瑪提克斯生物科技有限公司
Publication of TW202041518A publication Critical patent/TW202041518A/zh
Application granted granted Critical
Publication of TWI777196B publication Critical patent/TWI777196B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/10Peptides having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • C12N5/0638Cytotoxic T lymphocytes [CTL] or lymphokine activated killer cells [LAK]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6489Metalloendopeptidases (3.4.24)
    • C12N9/6491Matrix metalloproteases [MMP's], e.g. interstitial collagenase (3.4.24.7); Stromelysins (3.4.24.17; 3.2.1.22); Matrilysin (3.4.24.23)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/24Metalloendopeptidases (3.4.24)
    • C12Y304/24065Macrophage elastase (3.4.24.65), i.e. metalloelastase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5158Antigen-pulsed cells, e.g. T-cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/572Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/11Coculture with; Conditioned medium produced by blood or immune system cells

Abstract

本發明涉及免疫療法所使用的肽、核酸和細胞。特別是,本發明涉及癌症的免疫療法。本發明還涉及腫瘤相關性細胞毒性T淋巴細胞(CTL)的肽表位(單用或與其它腫瘤相關性肽聯合使用),以作為疫苗組合物中的活性藥物成分激發抗腫瘤免疫反應。本發明涉及67個新型肽序列,及其人腫瘤細胞HLA I類與HLA II類分子的衍生序列,以用於在疫苗組合物中引發抗腫瘤免疫反應。

Description

新穎肽類,細胞及其用於治療多種腫瘤的用途,其製造方法及包含其等之醫藥組成物(五)
本發明涉及免疫療法所使用的肽、核酸和細胞。特別是,本發明涉及癌症的免疫療法。本發明還涉及腫瘤相關性細胞毒性T淋巴細胞(CTL)的肽表位(單用或與其它腫瘤相關性肽聯合使用),以作為疫苗組合物中的活性藥物成分激發抗腫瘤免疫反應。本發明涉及67個新型肽序列,及其人腫瘤細胞HLA I類與HLA II類分子的衍生序列,以用於在疫苗組合物中引發抗腫瘤免疫反應。
無論男女,肺癌均為癌症相關死亡的第一誘因。無論就發病率還是死亡率而言,肺癌均是全球最常見的癌症。2008年新增161萬肺癌病例以及138萬肺癌死亡病例,其中歐洲與北美的比率最高。
自1987年以來,每年死於肺癌的女性人數均高於死於乳腺癌的人數。1991年至2003年,男性死亡率持續顯著下降,每年下降約1.9%。女性肺癌死亡率在連續增長數十年後正趨於平穩。以上肺癌死亡率的趨勢反映了過去30年中吸煙率的降低。
據美國國立癌症研究所(NCI)資料,預計美國2013年將有約23萬新增肺癌病例以及16萬肺癌死亡病例。
為便於治療,肺癌可臨床分類為小細胞癌(13%,SCLC)或非小細胞癌(87%,NSCLC),其預後通常不良。在所有肺癌患者中,15%可在確診後存活5年。確診時通常已為晚期。出現病情時30-40%的NSCLC病例為IV期,60%的SCLC病例為IV期。
根據腫瘤的類型(小細胞或非小細胞)和期別選擇治療方案,包括手術、放療、化療以及靶向生物療法,例如貝伐單抗(阿瓦斯丁®)和厄洛替尼(特羅凱®)。對於局限性癌灶,通常選擇外科手術治療。最近的研究表明,手術後化療改善了早期非小細胞肺癌的生存。由於該腫瘤發現時通常已擴散,因此常使用放療與化療,有時與手術聯合使用。單一化療或與放療聯合使用是小細胞肺癌的首選療法;採用此治療方案的患者有很大一部分出現緩解,某些患者甚至達到長期緩解。
肺癌的1年生存率略有升高,從1975-1979年的37%升至2002年的42%,這主要歸因於手術技術與聯合療法的進步。但所有期別的肺癌一起5年生存率僅為16%。發現時為局限性腫瘤的患者,其生存率為49%;但僅有16%的肺癌可在此早期得到確診。
儘管如此,仍亟需安全有效的新療法治療肺癌,特別是不同表型的非小細胞肺癌(NSCLC)、胃癌和腦癌,以在改善患者的健康狀況的同時不過度使用化療藥物或其它可導致嚴重副作用的藥物。
本發明使用可刺激患者免疫系統且以非侵入性方式作為抗腫瘤藥物的肽。
首先,本發明涉及由從SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQ ID No.84和SEQ ID No.92或其變異序列組(與SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQ ID No.84和SEQ ID No.92至少80%同源,較佳為90%同源(較佳為至少80%或至少90%同一))中所選擇的胺基酸序列所組成的肽,且上述變異序列可引發T細胞與上述肽(或其醫藥上可接受鹽類)的交叉反應,其中上述肽為非全長多肽。
此外,本發明還涉及由從SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQ ID No.84和SEQ ID No.92或其變異序列組(與SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQ ID No.84和SEQ ID No.92至少80%同源,較佳為90%同源(較佳為至少80%或至少90%相同))中所選擇的序列所組成的本發明的肽。其中,上述肽或其變異體的SEQ ID No.1至SEQ ID No.65、SEQ ID No.78至SEQ ID No.84和SEQ ID No.92的總長度為8至100個胺基酸(較佳為8至30個,最佳為8至14個),而SEQ ID No.76和77的總長度為12至100個胺基酸(較佳為12至30個,最佳為12至18個)。
下表為本發明所涉肽及其相應SEQ ID NO,以及此類肽的預期源蛋白。表1a、1b和1c中的所有肽均可與HLAA*02等位基因結合,表1d中的肽可與HLA-DR等位基因結合。表1c中的肽還可用於胃癌和/或成膠質細胞瘤的診斷和/或治療。
表1d中的II類肽還可用於胃癌和其它過量表現或過量呈現MMP12或POSTN的癌症的診斷和/或治療。
因此,本發明涉及由SEQ ID No.76序列或其變異序列(與SEQ ID No.76至少80%同源,較佳為90%同源(較佳為至少80%同源或至少90%相同))所組成的本發明的一種肽。其中上述肽或其變異體的總長度為12至100個胺基酸(較佳為12至30個,最佳為12至18個)。本發明涉及由SEQ ID No.76序列所組成的本發明的一種肽。
此外,本發明涉及由SEQ ID No.77序列或其變異序列(與SEQ ID No.77至少80%同源,較佳為90%同源(較佳為至少80%同源或至少90%相同))所組成的本發明的一種肽。其中,上述肽或其變異體的總長度為12至100個胺基酸(較佳為12至30個,最佳為12至18個)。本發明涉及由SEQ ID No.77序列所組成的本發明的一種肽。
Figure 109124799-A0101-12-0004-148
Figure 109124799-A0101-12-0005-149
Figure 109124799-A0101-12-0006-150
Figure 109124799-A0101-12-0007-151
Figure 109124799-A0101-12-0007-152
Figure 109124799-A0101-12-0008-153
Figure 109124799-A0101-12-0008-154
表1e:在其它腫瘤中過度表現的其它本發明的較佳肽
Figure 109124799-A0101-12-0009-155
Figure 109124799-A0101-12-0009-156
本發明還涉及根據本發明所述的、可與人主要組織相容性複複合物(MHC)I類或II類分子相結合的肽。
本發明還涉及根據本發明所述的肽,此類肽由或基本由SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQ ID No.84和SEQ ID No.92胺基酸序列所組成。
本發明還涉及根據本發明所述的肽,此類肽經過修飾且/或包含非肽鍵。
本發明還涉及根據本發明所述的肽,此類肽為融合蛋白的一部分,特別是與HLA-DR抗原相關性不變鏈(Ii)的N末端胺基酸相融合的蛋白,或與某種抗體(或其序列)(例如樹突細胞特異性抗體)相融合的蛋白。
本發明還涉及一種核酸,該核酸可編碼根據本發明所述的肽。
本發明還涉及根據本發明所述的核酸,該核酸為DNA、cDNA、PNA、RNA或DNA、cDNA、PNA、RNA的複合物。
本發明還涉及一種表現載體,該載體可表現根據本發明所述的核酸。
本發明還涉及一種根據本發明所述的肽、根據本發明所述的核酸或根據本發明所述的醫藥上可接受表現載體。
本發明還涉及根據本發明所述的抗體及其製備方法。
本發明還涉及根據本發明所述的T細胞受體(TCR),特別是可溶性TCR(sTCR),及其製備方法。
本發明還涉及根據本發明所述的、由核酸組成的一種宿主細胞,或上文所述的表現載體。
本發明還涉及根據本發明所述的一種宿主細胞,須為抗原呈現細胞。
本發明還涉及根據本發明所述的一種宿主細胞,其中的抗原呈現細胞為樹突細胞。
本發明還涉及根據本發明所述的一種肽的製備方法,該方法包括根據本發明所述的宿主細胞培養,以及將肽從宿主細胞或其培養基中分離。
本發明還涉及活化細胞毒性T淋巴細胞(CTL)的體外製備方法,該方法包括將體外CTL與抗原負載人MHC I類或II類分子(在適當的抗原呈現細胞表面表現該分子足夠時間從而以抗原特異性方式活化上述CTL)相接觸,其中所述抗原為根據本發明所述的任何肽。
本發明還涉及一種根據本發明所述的方法,該方法將抗原載入表現於適當的抗原呈現細胞表面的MHC I類或II類分子(通過將足量的抗原與抗原呈現細胞相接觸)。
本發明還涉及一種根據本發明所述的方法,其中所述抗原呈現細胞含有可表現上述包含SEQ ID No.1至SEQ ID No.92(較佳為SEQ ID No.1至SEQ ID No.65和SEQ ID No.76至SEQ ID No.84,以及SEQ ID No.92)或其上述變異胺基酸序列的肽的表現載體。
本發明還涉及根據本發明所述的方法所製備的活化細胞毒性T淋巴細胞(CTL),它們可選擇性地識別異常表現含有根據本發明所述胺基酸序列的多肽的細胞。
本發明還涉及在患者中殺死異常表現含有任何根據本發明所述的胺基酸序列的多肽的目標細胞的方法,包括根據本發明所述的方法給予患者有效數量的細胞毒性T淋巴細胞(CTL)。
本發明還涉及一種藥劑的或藥劑生產所使用的任何上述肽、根據本發明所述的核酸、根據本發明所述的表現載體、根據本發明所述的細胞或根據本發明所述的活化細胞毒性T淋巴細胞。
本發明還涉及根據本發明所述的用途,其中所述藥劑為疫苗。
本發明還涉及根據本發明所述的用途,其中所述藥劑具有抗腫瘤活性。
本發明還涉及根據本發明所述的用途,其中癌細胞為肺癌、胃癌、胃腸癌、結直腸癌、胰腺癌或腎癌細胞,以及神經膠母細胞瘤。
本發明還涉及基於根據本發明所述的肽的特定標記蛋白和生物標記物,可用於肺癌、胃癌、胃腸癌、結直腸癌、胰腺癌或腎癌,以及成膠質細胞瘤的診斷和/或預後。
本發明還涉及上述癌症治療新型靶點的用途。
免疫反應的激發取決於於被宿主免疫系統識別為外源性的抗原。腫瘤相關性抗原的發現提高了用宿主免疫系統阻礙腫瘤生長的可能性。對於癌症免疫療法,目前正在探索各種利用免疫系統的體液和細胞免疫作用的機制。
細胞性免疫反應的特異性元素可特異性地識別和破壞腫瘤細胞。將細胞毒性T淋巴細胞(CTL)與腫瘤浸潤細胞群或外周血相分離後發現,該細胞對於癌症的天然免疫防禦起到重要作用。CD8陽性T細胞在該反應中的作用尤為重要,原因是其可識別攜帶主要組織相容性複複合物(MCH)的肽分子(通常由8至10個由蛋白或細胞溶質中的缺陷核糖體產物(DRIPS)所衍生的胺基酸殘基所組成)。人體中的MHC分子亦稱為人白細胞抗原(HLA)。
MHC分子分為兩類:MHC I類分子存在於多數帶核細胞中。MHC分子包含一條α重鏈和一個β-2微球蛋白(MHC I類受體)或α和β重鏈各一條(MHC II類受體)。其三維構象形成一個結合槽,供與肽進行非共價相互作用。I類MHC所呈現的肽多源於主要內源蛋白、DRIP和較大肽的溶蛋白性裂解。MHC II類分子多見於專業性抗原呈現細胞(APC),其所呈現的肽多源於由APC在細胞內吞中所攝取的外源性或跨膜蛋白。肽與MHC I類分子的複合物可由負載適當的TCR(T細胞受體)的CD8陽性細胞毒性T細胞所識別,而肽與MHC II類分子的複合物可由負載適當的TCR的CD4陽性輔助T細胞所識別。本領域已熟知,TCR、肽與MHC由此按1:1:1的化學計算量比存在。
CD4陽性輔助T細胞對於引發和維持CD8陽性細胞毒性T細胞的有效反應起到重要作用。鑒別源於腫瘤相關性抗原(TAA)的CD4陽性T細胞表型對激發抗腫瘤免疫反應的藥品之開發有重要意義(Kobayashi et al.,2002;Qin et al.,2003;Gnjatic et al.,2003)。在腫瘤部位,輔助T細胞可提供親CTL的細胞介素環境(Mortara et al.,2006)並吸引效應細胞,例如CTL、自然殺死細胞、巨噬細胞、粒細胞(Hwang et al.,2007)。
在炎症環境中,MHC II類分子的表現主要限於免疫系統細胞,特別是專業性抗原呈現細胞(APC),例如單核細胞、單核細胞衍生的細胞、巨噬細胞和樹突細胞。在癌症患者中,意外發現腫瘤細胞可表現MHC II類分子(Dengjel et al.,2006)。
哺乳動物模型(如小鼠)試驗顯示,即使不存在CTL效應細胞(例如CD8陽性T淋巴細胞),CD4陽性T細胞仍足以透過抑制干擾素γ(IFNγ)分泌所導致的血管生成來抑制腫瘤表現。
此外,研究顯示,可識別源自腫瘤相關性抗原(由HLA II類分子呈現)的肽的CD4陽性T細胞可透過引發抗體(Ab)反應來阻止腫瘤進展。
不同於與HLA I類分子相結合的腫瘤相關性肽,迄今僅報告了少數腫瘤相關性抗原(TAA)的II類配體。
由於HLA II類分子的組成型表現通常限於免疫系統細胞,因此認為無法直接從原發腫瘤中分離II類肽。但Dengjel等人成功地從腫瘤中直接識別出若 干MHC II類表型(WO 2007/028574,EP 1 760 088 B1;(Dengjel et al.,2006))。
由腫瘤特異性細胞毒性T淋巴細胞所識別的抗原(即其表型)可以是源自各類蛋白(例如酶、受體、轉錄因子等)的分子,此類分子在相應的腫瘤細胞中存在表現和上調(相比於同源的未變化細胞)。
由於兩種類型的反應(分別為CD8和CD4依賴型)可共同產生協同抗腫瘤作用,因此腫瘤相關性抗原(透過CD8+CTL(配體:MHC I類分子+多肽表型)或CD4陽性輔助T細胞(配體MHC II類分子+多肽表型)來識別)的鑒別和表徵對於抗腫瘤疫苗的開發有重要意義。
本發明另涉及兩種非常有用的新型MHC II類肽(對應於SEQ ID NO 76和77)。這兩種肽對於胃癌、NSCLC和其它分別過量表現和/或過量呈現MMP12和POSTN的癌症之診斷和/治療尤為有用。
本發明另涉及新型MHC II類肽的所謂長度變異體(對應於SEQ ID NO 76或77)。如上文所述,對應於SEQ ID NO 76的肽含有胺基酸序列INNYTPDMNREDVDYAIR(MMP12-肽),對應於SEQ ID NO 77的肽含有胺基酸序列TNGVIHVVDKLLYPADT(POSTN-002-肽)。變異體的長度通常為N和/或C末端延伸(1至5個胺基酸,較佳為1至10個胺基酸)或N和/或C末端縮短(1至5個胺基酸),這些變異體仍可與MHC相結合併引發本文所述的細胞性免疫反應。目前已知肽與II類蛋白的結合不受限於大小,長度為11至30個胺基酸不等。MHC II類分子中的肽結合槽在兩端均敞開,由此可結合相對較長的肽。雖然“核心“的9個殘基長的一段對識別 肽最重要,而側翼區對肽的II類等位基因的特異性有重要作用(參見Meydan C,et al.,Prediction of peptides binding to MHC class I and II alleles by temporal motif mining.BMC Bioinformatics.2013;14 Suppl 2:S13.Epub 2013 Jan 21)。使用現有的諸多軟件工具(如上文所述工具),具備當前技術水準的人員可確定結合基序,並由此確定MHC II類肽是否能夠出現相對於SEQ ID NO 76或77的延伸和/或缺失,以此產生長度變異體。
肽須與一種MHC分子相結合方可觸發(引發)細胞系免疫反應。該過程取決於該MHC分子的等位基因以及該肽胺基酸序列的特定多態性。MHC I類結合肽的長度通常為8-12個胺基酸殘基,其序列中通常包含2個保守殘基(「錨位點」),可與相應MHC分子的結合槽相反應。由此每個MHC等位基因均包含一個「結合基序」,此基序可決定何種肽可與結合槽特異性結合。
在MHC I類依賴型免疫反應中,肽不僅須與特定的由腫瘤細胞表現的MHC I類分子相結合,而且須被負載特異性T細胞受體(TCR)的T細胞所識別。
由腫瘤特異性細胞毒性T淋巴細胞所識別的抗原(即其表型)可以是源自各類蛋白(例如酶、受體、轉錄因子等)的分子,此類分子在相應的腫瘤細胞中存在表現,並且與同源未變的細胞相比,其表現上調。
目前的腫瘤相關性抗原主要分為以下幾組:
a)腫瘤-睪丸抗原:第一個發現可被T細胞識別的TAA即屬於此類別。最初稱其為腫瘤-睪丸(CT)抗原是因為該組成員在具有組織學差異的人體腫瘤中存在表現,而在正常組織中的表現僅限於睪丸精母細胞/精原細胞以及(少 數情況下)胎盤。由於睪丸細胞不表現I類和II類HLA分子,此類抗原無法在正常組織中被T細胞識別,因此可認為具有免疫學腫瘤特異性。較為知名的CT抗體包括MAGE家族成員和NY-ESO-1。
b)分化抗原:此類抗原在腫瘤以及產生腫瘤的正常組織中均存在,最常見於黑素瘤和正常黑素細胞。有許多此類黑素細胞譜系相關性蛋白參與黑色素的生物合成,因此不具腫瘤特異性,但廣泛用於腫瘤免疫治療。實例包括但不限於絡胺酸酶、Melan-A/MART-1(針對黑素瘤)和PSA(針對攝護腺癌)。
c)過量表現的TAA:已在具有組織學差異的多種腫瘤以及許多正常組織中發現了編碼廣泛表現的TAA之基因,通常為低表現水準。有可能許多由正常組織加工並可能由正常組織呈現的表型低於T細胞識別閾水準,但這些表型在腫瘤細胞中的過量表現可透過打破之前建立的耐受性而觸發抗腫瘤反應。該TAA類別中的知名抗原包括Her-2/neu、生存素、端區酶和WT1。
d)腫瘤特異性抗原:此類獨特的TAA產生於正常基因(例如β-連環蛋白、CDK4等)的突變。此類分子變化中有一部分與瘤性轉化和/進展相關。腫瘤特異性抗原通常可引發較強的免疫反應,且沒有對正常組織的自免疫反應這一風險。從另一方面講,此類TAA在多數情況下僅與發現此類TAA的特定腫瘤有關,且不同時存在於多種腫瘤。
e)異常翻譯後修飾所產生的TAA:此類TAA可產生於在腫瘤中非特異性亦非過量表現的蛋白,但可透過主要活躍於腫瘤的翻譯後加工過程而成為腫瘤相關性抗原。實例有:該類抗原產生於糖基化方式的改變,由此引發腫瘤中的新表型(例如MUCI)或降解過程中的蛋白質剪接等事件,可能具有腫瘤特異性,也可能不具有。
f)腫瘤病毒蛋白:此類TAA為病毒蛋白,可在腫瘤發生過程中起到關鍵作用,且由於其為外源性(非人源)蛋白,因此可引起T細胞反應。此類蛋白包括人乳頭瘤16型病毒蛋白、E6和E7(表現於宮頸癌中)。
蛋白被細胞毒性T淋巴細胞識別為腫瘤特異性或相關性抗原並用於治療需滿足特定的前提條件。該抗原需主要由腫瘤細胞表現,且在正常健康組織中無表現或表現量相當小,或該肽在另一較佳的實施方案中需由腫瘤細胞過量呈現(相比於正常健康組織)。若相關抗原不僅存在於某一腫瘤類型,而且含量較高,則更為理想。腫瘤特異性和腫瘤相關性抗原通常源自直接參與正常細胞轉化為腫瘤細胞這一過程(透過細胞週期控制、凋亡抑制等功能)的蛋白。此外,直接引發轉化的蛋白之下游目標可能因上調而間接具有腫瘤相關性。此類間接腫瘤相關性抗原也可作為接種免疫的目標(Singh-Jasuja et al.,2004)。兩種情況下均須有表型存在於抗原的胺基酸序列,原因是此類源自腫瘤相關性抗原的肽(「免疫原性肽」)應能引發體外或體內T細胞反應。
基本上所有可與MHC分子結合的肽均可作為T細胞表型。引發體外或體內T細胞反應的前提條件是具有相應TCR的T細胞以及不存在對這一特定表型的免疫耐受。
綜上所述,TAA是腫瘤疫苗開發的起始點。TAA的鑒別與表徵方法基於(從患者或健康受試者分離的)CTL的使用,或基於腫瘤與正常組織間的分化轉錄譜或分化肽表現譜。
然而僅鑒別在腫瘤組織或人腫瘤細胞系中過量表現(或在此組織或細胞系中選擇性表現)的基因不能為從此類基因轉錄的抗原用作免疫療法提供準確的資訊。其原因是:須存在具有相應TCR的T細胞,且對於此特定表型的免疫耐受須不存在或極小,導致此類基因僅有個別表型亞群適用於此用途。因此,在本發明的實施方案中,所選用的過量呈現或選擇性呈現的肽須存在相應的功能性和/或增生性T細胞。該功能性T細胞定義為經特異性抗原刺激,可選殖性地擴張並產生效應功能的T細胞(「效應T細胞」)。
若為根據本發明所述的TCR和抗體,則基本肽的免疫原性為繼發性。就根據本發明所述的TCR和抗體而言,其呈現為決定因素。
輔助T細胞對於CTL在抗腫瘤免疫中發揮效應功能有重要作用。可觸發TH1型輔助T細胞反應的輔助T細胞表型可支援CD8陽性殺死T細胞的效應功能。CD8陽性殺死T細胞的細胞毒性功能直接作用於呈現腫瘤相關性肽/MHC複合物的腫瘤細胞。由此,腫瘤相關性輔助T細胞肽表型(單用或與其它腫瘤相關性肽聯合使用)可作為疫苗組合物中的活性藥物成分刺激抗腫瘤免疫反應。
下文披露了根據本發明所述的肽的蛋白在其它癌症中的應用。
ATP結合盒亞族A(ABC1)成員13(ABCA13)
在人體中,跨膜運載體的ATP結合盒(ABC)家族至少包含48個基因和7個基因亞族。預測的ABCA13蛋白由5,058個胺基酸殘基組成,使其成為目前為止最大的ABC蛋白(Prades et al.,2002)。Knight等人測定,ABCA13蛋白在小鼠和人海馬體和皮質中存在表現,這兩個區域均與精神分裂症和 雙相性精神障礙相關(Knight et al.,2009)。ABAC13的基因定位於7p12.3染色體,該區域涉及一種胰腺遺傳病(Shwachman-Diamond症候群),並包含一個參與T細胞腫瘤浸潤和轉移的位點,因此可作為此類病症的定位候選之一(Prades et al.,2002)。
基質金屬蛋白酶12(巨噬細胞彈性蛋白酶)(MMP12)
MMP12亦稱人金屬蛋白酶(HME)或巨噬細胞彈性蛋白酶(MME),是一種可降解彈性蛋白的鋅內肽酶。除此之外,其底物範圍較廣,亦覆蓋其它基質蛋白(例如膠原蛋白、纖維結合蛋白、層粘連蛋白、蛋白聚糖)和非基質蛋白(例如α-1-抗胰蛋白酶)。在哮喘、肺氣腫和慢性阻塞性肺病(COPD)情況下,MMP12可參與肺泡破壞與氣道重塑(Cataldo et al.,2003;Wallace et al.,2008)。MMP12參與巨噬細胞遊走,並且由於其能從纖溶酶原中產生血管抑素,MMP12還參與抑制血管生成(Chakraborti et al.,2003;Chandler et al.,1996;Sang,1998)。和其它金屬蛋白酶一樣,MMP12參與胚胎髮生、傷口癒合和經期等生理過程(Chakraborti et al.,2003;Labied et al.,2009),但也參與組織破壞的病理過程。
儘管資料是基於數量有限的病例,但有充分的文獻資料表明癌症中常存在MMP12過量表現(Denys et al.,2004;Hagemann et al.,2001;Ma et al.,2009;Vazquez-Ortiz et al.,2005;Ye et al.,2008)。但是資料中對於MMP12過量表現對臨床參數和預後的影響存有爭議。MMP12一方面可能因參與基質溶解而參與轉移,另一方面可透過產生血管抑素而抑制腫瘤生長,從而對血管生成產生抑製作用(Gorrin-Rivas et al.,2000;Gorrin Rivas et al.,1998;Kim et al.,2004)。
MMP12表現在肺癌中的影響存有爭議。曾在炎症觸發的肺重塑中報告上皮細胞中的MMP12過量表現。MMP12上調可能對肺氣腫-肺癌的轉化起到一定作用(Qu et al.,2009)。動物試驗表明,MMP12在間質或巨噬細胞中的表現可抑制肺部腫瘤生長(Acuff et al.,2006;Houghton et al.,2006)。但也有報告稱MMP12在肺部腫瘤中的過量表現與腫瘤復發、轉移以及較短的無復發生存期相關(Cho et al.,2004;Hofmann et al.,2005)。
肌動蛋白結合蛋白(DST)
DST(BPAG1-e)可編碼一種屬於橋粒斑蛋白家族的粘著斑蛋白。BPAG1-e在上皮組織中表現,將含角蛋白的中間絲錨定於半橋粒(HD)。HD是一種多蛋白粘著複合物,可促進複層上皮和複雜上皮中的上皮間質著絲(Litjens et al.,2006)。對其功能的調節對於一系列生物過程(例如傷口癒合與腫瘤浸潤中的角質化細胞分化和遊走)有極為重要的意義,其中的細胞從底物上脫離並獲得活動表型(Litjens et al.,2006)。
惡性黑素瘤是侵襲性最強的腫瘤類型之一。BPAG1表現於人黑素瘤細胞系(A375和G361)以及正常人黑素細胞中。黑素瘤患者血清中的抗BPAG1自體抗體水準顯著高於健康志願者血清中的水準(p<0.01)。抗BPAG1自體抗體有希望成為黑素瘤診斷標記物(Shimbo et al.,2010)。DST也與乳腺癌浸潤相關(Schuetz et al.,2006)。BPAG1基因很可能參與鼻咽癌(NPC)的增殖、凋亡、浸潤和轉移(Fang et al.,2005)。
基質重塑相關蛋白5(MXRA5)
MXRA5可編碼一種蛋白粘多糖,屬於參與ECM重塑和細胞-細胞粘附的基因組(Rodningen et al.,2008)。儘管MXRA5在癌症中的功能尚不清楚, 但已從多種組織(例如皮膚、腦、肺和卵巢)的腫瘤中發現了MXRA5的體細胞突變。對MXRA5所作的RT-PCR微陣列分析發現其在結腸癌(相比於正常結腸組織)中存在過量表現(13例結直腸癌,13例正常組織)(Zou et al.,2002)。在一項近期研究中,MXRRA5是NSCLC中第二常見的突變基因(第一為TP53)(Xiong et al.,2012)。
週期素依賴性激酶4(CDK4)/週期素依賴性激酶6(CDK6)
CDK4是Ser/Thr蛋白激酶家族成員之一。作為蛋白激酶複合物的催化亞單位,CDK4對於細胞週期G1相的進行具有重要意義。該激酶的活性限於細胞週期中的G1-S相轉換,其表現主要受控於轉錄水準(Xiao et al.,2007)。CDK4和CDK6酶及其調節因子(例如週期素)在胚胎髮生、內環境穩定以及癌發生中起到關鍵作用(Graf et al.,2010)。
相比於正常組織,CDK4蛋白在肺癌組織中的表現水準顯著升高(P<0.001)。CDK4表現水準較高的患者的總生存期顯著短於CDK4水準較低的患者。多變量分析表明,CDK4表現水準是肺癌患者生存期的獨立預後指標(P<0.001)。此外,抑制CDK4的表現還顯著提高了細胞週期調節因子p21的表現水準(Wu et al.,2011a)。在表現一種內源性K-Ras腫瘤基因的肺細胞中,切除CDK4(而不是CDK2或CDK6)即刻引發了衰老反應。在表現單一CDK4等位基因的肺組織或其它表現K-Ras的組織中未發現此類反應。在可透過計算機斷層掃描發現的晚期腫瘤中,以CDK4等位基因作為靶標同樣引發了衰老並延緩了腫瘤進展(Puyol et al.,2010)。
異質核核糖核蛋白H1(H)(HNRNPH1)/異質核核糖核蛋白H2(H')(HNRNPH2)
上述基因屬於普遍表現的異質核核糖核蛋白(hnRNP)的亞族。hnRNP為RNA結合蛋白,可與異質核RNA(hnRNA)形成複合物。此類蛋白與胞核中的pre-mRNA相關,並影響pre-mRNA加工以及mRNA代謝和轉運的其它方面。
作為剪接致癌開關的中心,hnRNPH活性參與神經膠質瘤的發生與進展,可反映幹細胞格局的再啟動並介導侵襲性腫瘤行為中的多個關鍵環節(包括逃脫凋亡和侵襲力)(Lefave et al.,2011)。小干擾RNA介導的hnRNP H或A-Raf敲除誘導了MST2依賴性凋亡。相比之下,hnRNP H或A-Raf表現的上調阻礙了依託泊苷誘導的凋亡。在少數通常表現低胞質水準hnRNP H/H'的組織中觀測到hnRNP H/H'的上調,例如胰腺癌、肝細胞癌和胃癌(Honore et al.,2004)。
含三角形四肽重複序列、錨蛋白重複序列和捲曲螺旋2(tetratricopeptide repeat,ankyrin repeat and coiled-coil containing 2,TANC2)
TANC家族包含TANC1和TANC2,於2005年發現(Han et al.,2010)。TANC家族的蛋白參與樹突棘、空間學習以及胚胎髮育的調控,其依據是小鼠中的TANC1缺乏降低了海馬體中的樹突棘密度並損傷了空間學習能力,而TANC2缺乏導致了胚胎死亡。相比之下,TANC1和TANC2在培養的神經元中的過量表現提高了樹突棘以及興奮性突觸的密度。TANC1和2蛋白主要在大腦中表現,其中相當一部分蛋白位於囊泡膜中(Han et al.,2010)。
環指蛋白213(RNF213)
RNF213可編碼一種包含一個C3HC4型環指狀結構域的蛋白。該域為一種專門的鋅指類型,與2個鋅原子結合,被認為參與介導蛋白-蛋白相互反應。
有研究組首次提供的證據表明RNF213與對煙霧病的遺傳易感性相關(Liu et al.,2011b)。另一項研究表明,RNF213基因與漢族人對煙霧病的遺傳易感性相關(Wu et al.,2012)。
溶質攜帶物家族34(磷酸鈉),成員2(SLC34A2)
SLC34A2是一種pH敏感性、鈉依賴性磷酸鹽運載體。高度分化腫瘤中的SLC34A2基因上調可反映卵巢癌發生中的細胞分化過程,可作卵巢癌診斷和預後的潛在標記物之一(Shyian et al.,2011)。RT-PCR證實SLC34A2的表現在乳頭狀甲狀腺癌中有所增加(Kim et al.,2010b)。相比於正常組織,乳腺癌組織中的SLC34A2基因表現也顯著增加(Chen et al.,2010a)。
含蛋白3的SET和MYND域(SMYD3)
之前有報告稱SMYD3(一種組蛋白H3賴胺酸4特異性甲基轉移酶)對結直腸癌(CRC)和肝細胞癌(HCC)的增生起到關鍵作用。在另一項研究中也發現大部分乳腺癌組織中存在SMYD3表現的升高。與CRC和HCC的情況相似,透過對應於該基因的小干擾RNA使SMYD3沉默,引起乳腺癌細胞生長抑制,表明SMYD3表現的增多對於乳腺癌細胞增生也有關鍵作用(Hamamoto et al.,2006)。透過RNA干擾敲除SMYD3使c-Met的表現下調並抑制了HGF誘導的細胞遷移和浸潤(Zou et al.,2009)。SMYD3在HeLa細胞增殖和遷移/浸潤中起到關鍵作用,有可能作為人宮頸癌的有效治療靶標(Wang et al.,2008b)。
醛固酮類還原酶家族1成員C1(AKR1C1)/醛固酮類還原酶家族1成員C2(AKR1C2)
AKR1C1和AKR1C2的差別僅在於7個胺基酸殘基(Le et al.,2010)。AKR1C1和AKR1C2可調節雄激素、雌激素和孕酮的活性,及其相應受體的佔領和轉活(Penning et al.,2000;Steckelbroeck et al.,2004)。AKR1C酶類(除AKR1C4為肝特異性外)可在不同的正常和病變組織中表現,因此與多種疾病(如肺癌、乳腺癌、攝護腺癌、子宮內膜癌、髓性白血病等)相關(Brozic et al.,2011;Byms et al.,2011)。在肺癌上皮細胞系(Chen et al.,2010b)和NSCLC患者(Kuang et al.,2012;Stewart,2010)中顯示,對順鉑的敏感性與AKR1C水準相關。因此AKR1C過量表現可作為人NSCLC預後不良和化療抗性的指標之一(Wang et al.,2007)。AKR1C2的過量表現也與攝護腺癌的進展相關(Huang et al.,2010)。透過RNAi使AKR1C2缺失可抑制體內和體外的腫瘤發生,高度提示AKR1C2 siRNA可能在阻礙肝癌發生中起到關鍵作用(Dong-Dong,2007)。
網鈣蛋白1(RCN1)EF手鈣結合域/網鈣蛋白3(RCN3)EF手鈣結合域
RCN1是一種位於內質網腔的鈣結合蛋白。免疫組織化學檢測表明,RCN在胎兒與成人的多種器官中均有分佈,主要分佈於內分泌和外分泌器官。RCN的過量表現可能在腫瘤發生、腫瘤浸潤和藥物耐受中起到一定作用(Fukuda et al.,2007)。RCN1是一種細胞表面結合蛋白,在內皮(EC)和攝護腺癌(PCa)細胞系中均存在。RCN1在細胞表面的表現可透過用腫瘤壞死因子α處理骨髓內皮細胞而上調(Cooper et al.,2008)。RCN1在結直腸癌(CRC)中存在上調,位於癌細胞或癌細胞附近的間質細胞中(Watanabe et al.,2008)。RCN3是多EF手Ca2+結合蛋白的CREC(Cab45/網鈣蛋白/ERC45/鈣腔蛋白)家族成員之一,此類蛋白定位於分泌途徑中(Tsuji et al., 2006)。在少突神經膠質細胞瘤中提示RCN3可能是重要的候選基因之一,儘管對於RCN3的功能所知甚少(Drucker et al.,2009)。
白介素8(IL8)
IL8是屬於CXC家族的趨化因子,是炎性反應的主要介質之一。有數種細胞類型可分泌此趨化因子。其功能為化學引誘物,也是一種較強的血管生成因子。類似IL8的CXC(ELR+)趨化因子可誘導血管生成,對於存在血管生成表型的癌症(例如NSCLC)可能有重要意義(Arenberg et al.,1997)。近期研究發現,腫瘤源性的IL8可作為引誘劑促使循環腫瘤細胞返回原始腫瘤(乳腺癌、結腸癌、黑素瘤),從而產生侵襲性更強的腫瘤表型(Kim et al.,2009)。即便在確診前數年,IL-8水準即已與肺癌風險相關(Pine et al.,2011)。啟動KRAS或EGFR突變可下調IL-8在NSCLC中的表現;男性、吸煙、老年NSCLC患者、胸膜累及的NSCLC以及KRAS突變型腺癌中IL-8表現水準較高;在致癌性KRAS驅動型NSCLC中,IL-8對細胞生長和遷移起到一定作用(Sunaga et al.,2012)。.
G蛋白耦合嘧啶能受體P2Y6(P2RY6)
P2RY6屬於G蛋白耦合受體家族。該家族包含數種受體亞型,對多種腺苷和尿嘧啶核苷酸具有不同藥理選擇性(某些情況下有所重合)。P2Y6亞型在胎盤中的表現水準尤高,表明P2Y6對胎盤功能起到重要作用。但P2Y6在胎盤中的細胞定位尚不清楚。P2Y6可能在滋養層發育、分化和瘤形成中起到重要作用(Somers et al.,1999)。研究提示嘧啶活化的P2Y受體在肺上皮炎性反應中的重要作用(Schafer et al.,2003)。
含蛋白1的HECT、UBA和WWE域,E3泛素蛋白連接酶(HUWE1)
HUWE1可編碼一種HECT E3泛素連接酶家族成員。其中HECT域位於C末端,且含有活性位點半胱胺酸,由此形成一個居間泛素-硫酯鍵。
ARF-BP1(HUWE1)對p53非依賴性和p53依賴性的ARF腫瘤抑制功能均為關鍵介質,因此ARF-BP1有望作為腫瘤干預治療靶標(無論p53狀態如何)(Chen et al.,2005a)。ARF-BP1的失活可使p53穩定並誘導凋亡(Chen et al.,2006)。HUWE1(HectH9)在多種人腫瘤中存在過量表現,且對一腫瘤細胞亞組的增殖不可或缺(Adhikary et al.,2005;Zhang et al.,2011a)。在乳腺癌中,HUWE1與有關預後因子顯著相關(Confalonieri et al.,2009)。
多功能蛋白聚糖(VCAN)
VCAN是聚集蛋白聚糖/多功能蛋白聚糖粘蛋白家族的成員之一。已知VCAN可在細胞外基質中與數種分子(包括透明質烷、結合腕蛋白、腓骨蛋白(fibulin)-1、纖維結合素、CD44和L選擇蛋白、原纖維蛋白、整合蛋白和連接蛋白)相關聯(Zheng et al.,2004)。VCAN在多種組織中存在表現,在組織發育的早期階段高度表現,在組織成熟後表現減少。其表現在傷口癒合和腫瘤生長中亦有升高(Ghosh et al.,2010)。透過RNA干擾從腺癌(A549)細胞中敲除VCAN,在體內顯著抑制了腫瘤生長,但在體外沒有(Creighton et al.,2005)。VCAN是p53的直接靶標。在早期攝護腺癌和乳腺癌的瘤前間質組織中發現有VCAN高表現,且伴隨侵襲性腫瘤行為(Yoon et al.,2002)。
Drosha核糖核酸酶III(DROSHA)
Drosha是一種2類核糖核酸酶III,負責發起微RNA或細胞中自然表現的短RNA分子的加工。Drosha透過與RNA誘導的沉默複合體(RISC)相互作用來誘導互補信使RNA(mRNA)的裂解作為RNAi途徑的一部分,從而 調節多種其它基因。微RNA分子是長RNA的初級轉錄物,被稱為pri-miRNA。pri-miRNA透過Drosha裂解產生莖-環結構(長約70個鹼基對),被稱為pre-miRNA(Lee et al.,2003)。Drosha是被稱為微處理器複合體的蛋白復合體的一部分,該複合體還包含雙鏈RNA結合蛋白Pasha(亦稱DGCR8)(Denli et al.,2004)。Pasha對於Drosha活性不可或缺,並可與正確加工所需的pri-miRNA單鏈片段相結合(Han et al.,2006)。2000年實現了人Drosha的選殖株,當時發現其為一種核dsRNA核糖核酸酶,參與核糖體RNA前體的加工(Wu et al.,2000)。Drosha是第一種被發現並選殖的人核糖核酸酶III。另外兩種參與miRNA的加工和活性的人酶為Dicer和Argonaute蛋白。Drosha和Pasha均位於細胞核,pri-miRNA和pre-miRNA的加工均在此發生。後一種分子在細胞質中被核糖核酸酶Dicer進一步加工為成熟miRNA(Lee et al.,2003)。Drosha和其它miRNA加工酶對於癌症預後可能有重要意義(Slack and Weidhaas,2008)。
含血小板白細胞C激酶底物同源結構域(Pleckstrin homology domain),家族A(磷脂醯肌醇結合特異性)成員8(PLEKHA8)
磷脂醯肌醇-4-磷酸鹽銜接因子-2(FAPP2=PLEKHA8)的基因可編碼一種包含血小板白細胞C激酶底物同源結構域的細胞質脂質轉移酶,該域與膜泡成熟及膜泡從轉運高爾基體至胞漿膜的轉運相關(Cao et al.,2009)。在結腸癌細胞中引入以FAPP2基因為靶向核酶,在加入抗Fas抗體後誘導了腫瘤細胞凋亡。此外,經FAPP2 siRNA轉染的神經膠質瘤和乳腺瘤細胞的凋亡出現顯著減少(Tritz et al.,2009)。隨後的研究強調了FAPP2作為脂質轉移蛋白在高爾基複合體中參與糖鞘脂類類代謝(D'Angeloet al.,2012)。FAPP2在糖鞘脂類(GSL)的生成中起到關鍵作用:使用其C末端域將新 合成的GSL轉運離開高爾基體順面囊膜中面對胞質溶膠的葡萄糖神經醯胺合成酶,以便進一步的合成代謝加工(Kamlekar et al.,2013)。
乙醯輔酶A羧化酶α(ACACA)
ACACA是一種含有生物素的酶,可催化乙醯輔酶A羧化為丙二酸單醯輔酶A,此過程為脂肪酸合成中的限速步驟(Tong and Hauwood,Jr.,2006)。已在多種人體癌症中發現了ACACA上調,因此ACACA有可能作為腫瘤干預的高效靶標,且治療代謝疾病所開發的抑制劑可作為腫瘤治療的潛在治療藥物(Wang et al.,2010a)。有兩項研究表明,RNA干擾所引發的ACACA沉默導致了生長抑制,並誘導細胞死亡,其程度與FASN基因表現沉默後所觀測的程度相當(Brusselmans et al.,2005;Chajes et al.,2006)。TOFA(5-十四烷基氧-2-糠酸)是一種ACACA的變構抑制劑,對於肺癌細胞NCI-H460以及結腸癌細胞HCT-8和HCT-15具有細胞毒性,且可誘導凋亡(Wang et al.,2009a)。soraphen A是另一種ACACA的高效抑制劑,可阻礙攝護腺癌細胞中的脂肪形成並促進脂肪酸氧化(Beckers et al.,2007)。以上發現表明,除丙二酸單醯輔酶A的累積外,抑制脂肪形成本身亦可引發癌細胞死亡,且ACACA有望作為抗腫瘤治療的靶標(Brusselmans et al.,2005)。
整合蛋白α11(ITGA11)
整合蛋白在多種細胞和發育過程中起到關鍵作用,包括細胞生長、分化和存活,以及腫瘤發生、癌細胞浸潤和轉移。整合蛋白α11(ITGA11/α11)定位於間質成纖維細胞,通常在NSCLC中存在過量表現。α11 mRNA在肺腺癌和鱗狀細胞癌中均存在過量表現(Wang et al.,2002)。有報告稱α11對於成纖維細胞促進NSCLC細胞體外生長起到重要作用,此活性一部分透 過調控IGF2表現來介導(Zhu et al.,2007)。NSCLC患者的臨床病理特徵中,hMTH1、SPD、HABP 2、ITGA11、COL11A1和CK-19的過量表現與病理階段顯著相關(p<0.05)。此外,hMTH1、SPD、ITGA11和COL11A1的過量表現與淋巴結轉移和預後不良相關(Chong et al.,2006)。
XII型膠原蛋白,α1(COL12A1)
COL12A1基因可編碼XII型膠原的α鏈,該膠原屬於FACIT(斷續三股螺旋的原纖維締合膠原蛋白)膠原家族。XII型膠原是一種同型三聚體,是I型膠原的相關物質,這一關聯被認為是修飾膠原I原纖維與周圍機制之間的相互反應(Oh et al.,1992)。COL12A1可能參與了基底膜調節,在原纖維和其它基質組分中形成特定的分子橋(Thierry et al.,2004)。COL12A1在心臟、胎盤、肺、骨骼肌和胰腺中(Dharmavaram et al.,1998),以及多種結締組織(包括關節軟骨和骨骺軟骨)中(Gregory et al.,2001;Walchli et al.,1994;Watt et al.,1992)均有表現。相比於小隨體不穩定性較低或無不穩定的穩定組,COL12A1在小隨體不穩定性高的腫瘤中出現下調(Ortega et al.,2010)。
中性粒細胞表現的彈性蛋白酶(ELANE)
中性粒細胞彈性蛋白酶(或白細胞彈性蛋白酶)亦稱ELA2(中性粒細胞彈性蛋白酶2),是一種絲胺酸蛋白酶,與糜蛋白酶屬於同一家族,具有較廣的底物特異性。該酶在炎症環境中由中性粒細胞分泌,可破壞細菌和宿主組織(Belaaouaj et al.,2000)。人中性粒細胞彈力蛋白酶(ELANE)是慢性阻塞性肺病的主要發病因素之一,最近發現還參與非小細胞肺癌的進展。該酶可作用於多個部位:(i)在細胞內清掃諸如轉接分子胰島素受體底物1(IRS-1)等分子;(ii)在細胞表面水解CD40等受體;(iii)在細胞外 間隙中生成彈力蛋白片段(即形態彈力因子,morphoelastokine),此類片段可強力激發腫瘤細胞的侵襲力和血管生成(Moroy et al.,2012)。透過進入腫瘤細胞中的一個內涵體腔室,中性粒細胞彈力蛋白酶直接誘導腫瘤細胞增殖(IRS-1),其中中性粒細胞彈力蛋白酶可降解IRS-1(Houghton et al.,2010)。
絲胺酸蛋白酶抑制物,進化枝B(卵白蛋白),成員3(SERPINB3)
鱗狀細胞癌抗原(SCCA)亦稱SERPINB3,是高分子絲胺酸蛋白酶抑制物(serpin)家族成員之一(Suminami et al.,1991)。曾報告在頭頸組織和其它上皮癌中發現其水準升高(Torre,1998)。曾報告SCCA在腫瘤組織中出現相比於腫瘤前組織的過量表現(Pontisso et al.,2004)。Serpin B3/B4,特別是B4可能在上皮異常增生中起到重要作用,特別是在肺癌易感性較高的患者中(Calabrese et al.,2012)。SCCA1(SERPINB3)一方面抑制溶酶體損傷誘導的細胞死亡,另一方面獨立於死亡受體凋亡途徑而啟動半胱天冬酶8,以使細胞對內質網應激敏感(Ullman et al.,2011)。一些發現表明,SERPINB3在誘導打破表皮屏障中起到重要作用。SERPINB3可能是上皮屏障功能的關鍵決定因素(Katagiri et al.,2010)。
驅動蛋白家族成員26B(KIF26B)
驅動蛋白屬於動力蛋白類,該類蛋白存在於真核細胞中。驅動蛋白隨著微管絲移動,其能量來源為ATP水解(因此驅動蛋白也是ATP酶)。Kif26b是一種驅動蛋白家族基因,是Sall1的下游靶標(Nishinakamura et al.,2011)。Kif26b對於腎發育不可或缺,原因是其可調控與輸尿管芽相接觸的間質細胞的粘附。透過與非肌肉肌球蛋白相互反應,KiF26b的體外過量表現引發細胞粘附的增多(Terabayashi et al.,2012;Uchiyama et al.,2010)。
進行性關節強直同源物(小鼠)(ANKH)
ANKH(進行性關節強直的人同源物)調節無機焦磷酸鹽的經細胞膜轉運(Wang et al.,2008a)。有資料表明,ANKH的表現和功能可在體外和體內被低氧環境所抑制,該作用受到HIF-1的調節(Zaka et al.,2009)。人ANKH基因在特定組織中表現,其中在腦、心臟和骨骼肌中的mRNA表現水準最高(Guo et al.,2001)。ANKH基因的突變可引發常染色體顯性的顱骨骺發育異常(Kornak et al.,2010)。相比於不存在擴增的細胞系,ANKH在存在擴增的宮頸癌細胞系中顯著上調(Kloth et al.,2007)。染色體臂5p區域中的基因組擴增在SCLC中較為常見,提示該臂中包含多種腫瘤基因。Coe等人報告了傳統篩選方法無法發現的微缺失,以及作為新型推定腫瘤基因的TRIO和ANKH(Coe et al.,2005)。
核RNA輸出因子1(NXF1)
在人體細胞中,mRNA輸出因子NXF1位於核質和核孔複合體中(Zhang et al.,2011b)。mRNA從胞核中的轉錄位點至細胞質中的翻譯位點的轉運對於真核基因的表現不可或缺(Kelly and Corbett,2009)。透過同時與mRNA、mRNA銜接蛋白以及核孔複合體中的苯丙胺酸-甘胺酸(FG)重複序列相結合,NXF1(亦稱TAP)伴隨mRNA轉錄物離開胞核(Kelly and Corbett,2009)。NXF1在核轉運因子中作用獨特,因其為多域蛋白,與核轉運蛋白在結構或作用機制上無相似之處,後者透過NPC來轉運蛋白貨物、tRNA和微RNA。NXF1支持的mRNA輸出這一過程不依賴於GTPase Ran(Gruter et al.,1998)。mRNP的核輸出透過NXF1等轉運因子介導,此類因子可與mRNP結合,並透過核孔中央通道(NPC)(透過與FG-核孔蛋白的瞬時反應)介導其移位(Wickramasinghe et al.,2010)。mRNA的轉運既可透過涉及NXF1/TAP 的大量輸出途徑,也可透過涉及染色體區域維持蛋白1(CRM1)的專門途徑(Siddiqui and Borden,2012)。
G蛋白信號傳導調節因子4(RGS4)
RGS4作為GTP酶加速蛋白對μ和δ阿片類受體(分別為MOR和DOR)信號傳導的調控。阿片類激動劑誘導的RGS4還原透過泛素-蛋白酶體途徑發生,可能對嗎啡依賴狀態下的細胞穩態維持起到作用(Wang and Traynor,2011)。RGS4對於調控β細胞功能起到重要作用(Ruiz,I et al.,2010)。Xie等人表明,RGS4可作為乳腺癌遷移和浸潤(轉移階梯反應的重要步驟)的新型抑制劑(Xie et al.,2009)。RGS4在甲狀腺癌中存在過量表現、在甲狀腺癌細胞中有效下調其表現水準顯著降低了甲狀腺癌細胞的活力,提示RGS4對甲狀腺癌發生起到重要作用(Nikolova et al.,2008)。RGS4在人胰腺腫瘤細胞系中存在分化表現,且被發現可能作為胰腺癌中局部腫瘤浸潤和肝轉移的標記基因(Niedergethmann et al.,2007)。透過選擇性地抑制G蛋白介導的p38 MAPK活化,RGS4過量表現可延緩和改變非上皮細胞成管過程,並由此減少上皮增殖、遷移以及血管內皮生長因子(VEGF)的表現(Albig and Schiemann,2005)。
穀氨醯胺-果糖-6-磷酸轉氨酶2(GFPT2)
GFPT2參與神經突生長、早期神經元細胞發育、神經肽信號傳導/合成以及神經元受體(Tondreau et al.,2008)。GFPT2的遺傳變異體與2型糖尿病和糖尿病腎病相關(Zhang et al.,2004)。此外,SNP與GFPT2的關聯表明,參與氧化途徑調控的基因可能是糖尿病慢性腎功能不全的主要誘因(Prasad et al.,2010)。GFPT2基因的DNA甲基化在原發性急性成淋巴細胞白血病(ALL)樣本中得以確證(Kuang et al.,2008)。GFPT2對穀氨醯胺代謝起 到一定作用,且在間質細胞系中表現更高。穀氨醯胺代謝可能對腫瘤進展起到重要作用。對細胞代謝途徑的抑制劑有可能用作表觀遺傳療法(Simpson et al.,2012)。
腦內皮細胞粘附因子(CERCAM)
CERCAM位於上皮細胞表面(Starzyk et al.,2000),其序列位於染色體9q34.11(一個9q上的候選區域),與家族性特發性脊柱側凸相關(Miller et al.,2012)。CERCAM1基因在神經系統以及數種分泌組織(例如唾液腺、胰腺、肝臟和胎盤)中存在廣泛轉錄(Schegg et al.,2009)。CERCAM與ColGalT酶GLT25D1和GLT25D2在結構上近似。儘管其功能尚不清楚,但其功能似乎與其相關的GLT25D1蛋白有所差異,且與GLT25D1和GLT25D2蛋白不同,該蛋白不起到糖基轉移酶的作用(Perrin-Tricaud et al.,2011)。
UDP-N-乙醯-α-D-半乳糖胺:多肽N-乙醯半乳糖胺基轉移酶2(GalNAc-T2)(GALNT2)
GALNT2可催化高爾基體中肽粘蛋白型O糖基化的第一步。此類酶可將N-乙醯半乳糖胺基轉移酶(GalNAc)從UDP-GalNAc轉移至目標蛋白的絲胺酸或蘇胺酸羥基(Peng et al.,2010)。GLNT2在幾乎所有人腺癌細胞系(包括所檢查的胰腺、結腸、胃和乳腺)中均有連續的低水準表現(Sutherlin et al.,1997)。研究表明,O-葡聚糖和GALNT以及在多種生理功能和人體疾病發生中起到關鍵作用。上皮卵巢癌(Terry et al.,2010)和冠狀動脈疾病(Willer et al.,2008)的風險與GALNT2的單核苷酸多態性相關。由糖基轉移酶活性改變所引起的細胞表面糖蛋白的異常糖基化通常與癌症的浸潤和轉移相關。GALNT2參與了胃癌(Hua et al.,2012)、肝細胞癌(HCC) (Wu et al.,2011b)以及人惡性神經膠質瘤(Liu et al.,2011a)的轉移和浸潤。
異質核核糖核蛋白M(HNRNPM)
HNRNPM基因屬於普遍表現的異質核核糖核蛋白(hnRNP)的亞族。HNRNPM是人hnRNP複合體的多量組分,該複合體可透過剪切其自身pre-mRNA(Hase et al.,2006)或透過調節成纖維細胞生長因子受體2的可變剪切(Hovhannisyan and Carstens,2007)來影響pre-mRNA剪切。對體外純化剪接體作蛋白質組學分析,在前剪切體H複合體以及整個剪接體組裝過程中均發現存在HNRNPM(Rappsilber et al.,2002;Wahl et al.,2009)。HNRNPM透過與CDC5L/PLRG1剪接體的子複合體相互反應而參與剪接體機制(Lleres et al.,2010)。在人癌症細胞中,某些結果表明IMP-3和HNRNPM的細胞質滯留導致增殖的顯著減少。核IMP-3-HNRNPM複合體對於CCND1、D3和G1的高效合成以及人癌症細胞的增殖起到重要作用(Rivera et al.,2013)。
鹼性核蛋白1(BNC1)
鹼性核蛋白是一種鋅指蛋白,其組織分佈極為有限(Tseng,1998)。目前為止鹼性核蛋白主要在複層鱗狀上皮(皮膚、口腔上皮、食道、陰道和角膜)基底角質化細胞以及睪丸和卵巢配子生成細胞中發現(Tseng and Green,1994;Weiner and Green,1998)。目前已有較多證據表明鹼性核蛋白是rRNA基因的一種細胞類型特異性轉錄因子。鹼性核蛋白的鋅指與rDNA啟動子中的三個保守位點相互反應(Iuchi and Green,1999;Tseng et al.,1999)。透過CpG甲基化進行表觀遺傳調控對於腫瘤發生以及癌症治療的療效起到重要作用。BNC1在輻射耐受性H1299人NSCLC中存在低甲基化。在H1299 細胞中抑制BNC1 mRNA表現亦降低了此類細胞對離子化輻射的耐受性(Kim et al.,2010a)。在慢性淋巴細胞白血病(CLL)樣本中亦發現BNC1的異常DNA甲基化(Tong et al.,2010)。在腎細胞癌(RCC)中,BNC1甲基化與較差的預後相關(無論腫瘤大小、期別或等級)(Morris et al.,2010)。
FK506結合蛋白10,65kDa(FKBP10)
FK506結合蛋白10(FKBP10)屬於FKBP類肽醯-脯氨醯順/反異構酶家族,位於內質網中,是一種分子伴侶蛋白(Ishikawa et al.,2008;Patterson et al.,2000)。FKBP10在肺部發育中存在高表現,可在肺損傷後與細胞外基質蛋白協調而再活化(Patterson et al.,2005)。
鬈毛家族受體1(FZD1),鬈毛家族受體2(FZD2),鬈毛家族受體7(FZD7)
FZD2、FZD1和FZD7均屬於「鬈毛」基因家族。該基因家族的成員可編碼7-跨膜域蛋白作為Wnt信號蛋白的受體。
FZD2基因的表現受到發育性調控,在胚胎腎和肺以及成人結腸和卵巢中表現水準較高(Sagara et al.,1998;Zhao et al.,1995)。
FZD1蛋白包含一個信號蛋白、一個N末端細胞外區域的一個富含半胖胺酸域、7個跨膜域以及一個C末端PDZ域結合基序。FZD1轉錄物在多種組織(例如肺、心臟、腎、胰腺、攝護腺和卵巢)中均有表現(Sagara et al.,1998)。在乳腺癌中發現存在鬈毛1和2受體表現(Milovanovic et al.,2004)。
FZD7蛋白含有一個N末端信號序列、10個半胖胺酸殘基(Fz家族成員富含半胖胺酸細胞外域的典型殘基)、7個推定的跨膜域以及一個細胞內C末端尾(帶有一個PDZ域結合基序)。FZD7基因的表現可在低分化的人食道癌中下調APC功能並加強β連環蛋白介導的信號(Sagara et al.,1998;Tanaka et al.,1998)。
心肌快縮肌Ca++轉運ATP酶1(ATP2A1),心肌快縮肌Ca++轉運ATP酶2(ATP2A 2)
兩種基因(ATP2A1和ATP2A)2均可編碼SERCA Ca(2+)-ATP酶。肌質網(SR)1/ER鈣APT酶(SERCAs)是一種鈣離子泵,可將ATP水解與鈣離子經SR/ER膜的轉運相結合(MacLennan et al.,1997)。SERCAs由三種同源基因編碼:SERCA1(ATP2A1)、SERCA2(ATP2A2)和SERCA3(Wu et al.,1995)。已有一些證據表明,SERCA可能對凋亡、分化和細胞增殖過程有直接影響(Chami et al.,2000;Ma et al.,1999;Sakuntabhai et al.,1999)。
ATP2A1(可編碼SERCA1)的突變導致了某些常染色體隱性的Brody病,其特點為運動過程中的肌肉鬆弛功能損傷(Odermatt et al.,1996)。
ATP2A2是一種與Darier's病相關的ATP酶。該病為罕見的常染色體顯性遺傳皮膚病,其特點為異常角質化和皮膚棘層鬆解(Huo et al.,2010)。ATP2A2的胚系變異體可使人易患肺癌和結腸癌,ATP2A2基因損傷可能參與腫瘤發生過程(Korosec et al.,2006)。在小細胞肺癌(H1339)和肺腺癌(HCC)細胞系中,ER Ca2+的含量相比於正常人支氣管上皮有所下降。Ca2+含量的降低與SERCA 2將鈣離子泵入ER的減少呈現相關性(Bergner et al.,2009)。 ATP2A2有望成為結直腸癌CRC患者的潛在預後標記物。ATP2A2曾在循環腫瘤細胞(CTC)中發現,且術後復發與其基因過量表現顯著相關(Huang et al.,2012)。
層粘連蛋白γ2(LAMC2)
層粘連蛋白是一個細胞外基質糖蛋白家族,是基底膜的主要非膠原性組分,廣泛參與多種生理過程,包括細胞粘附、分化、遷移、信號傳導、神經突生長和轉移。LAMC2基因負責編碼層粘連蛋白-5 γ2鏈。該鏈是層粘連蛋白-5的一部分,後者是基底膜區的主要組分之一。胃癌中常存在啟動子去甲基化所介導的LAMC2上調(Kwon et al,,2011)。曾發現LAMC2在向血管性黑素瘤區(相比於無血管黑素瘤區)存在過量表現(Lugassy et al.,2009)。LAMC2是膀胱癌轉移的標記物之一,其表現水準與腫瘤等級相關(Smith et al.,2009b)。32個非SCLC細胞系中有21個(66%)存在LAMB3和LAMC2基因共表現,而13個SCLC細胞系中僅有1個(8%)。所有4例非SCLC細胞中均發現存在LAMB3和LAMC2基因共表現,但相應的非癌性肺細胞系中不存在(Manda et al.,2000)。
熱休克70kDa蛋白2(HSPA2),熱休克70kDa蛋白8(HSPA8)
已發現HSPA2有望在一個人體癌症亞組(例如乳腺癌(Mestiri et al.,2001)、宮頸癌(Garg et al.,2010a)、膀胱泌尿道上皮細胞癌(Garg et al.,2010b)、鼻咽癌(Jalbout et al.,2003)和惡性腫瘤(Chouchane et al.,1997))中作為表現水準異常的促癌蛋白。數種人體癌症細胞系中也觀察到一定水準的HSPA2基因活性(Scieglinska et al.,2008),而癌症細胞中HSPA2基因的沉默導致了生長停滯和致癌潛能的降低(Rohde et al.,2005;Xia et al.,2008)。此外,HSPA2基因的多態性與肺癌發生風險的升高相關(Wang et al.,2010b)。 在人乳腺癌、宮頸癌和膀胱泌尿道上皮癌中,HSPA2的過量表現與細胞增殖的增多、低分化和淋巴結轉移相關(Garg et al.,2010a;Garg et al.,2010b;Mestiri et al.,2001)。
HSPA8基因編碼熱休克蛋白70家族(Hsc70),該家族同時包含熱誘導的和固有性表現的成員(Beckmann et al.,1990)。Hsc70可作為分子伴侶蛋白輔助蛋白合成、折疊、組裝以及在細胞腔隙中的運輸和降解(Bukau and Horwich,1998;Hartl and Hayer-Hartl,2002)。在非惡性乳腺細胞和乳腺癌細胞中均存在Hsc70表現(Kao et al.,2003;Vargas-Roig et al.,1998),而Hsp/hsc70在化療抗性癌細胞中的過量表現(Ciocca et al.,1992;Lazaris et al.,1997)促成了對此類蛋白潛在臨床標記物的研究(Ciocca and Calderwood,2005)。此分泌型hsc70伴侶蛋白可能在細胞增殖中起到一定作用,使得過量表現組織蛋白酶D的癌細胞之腫瘤生長增多(Nirde et al.,2010)。此外,Ruisin等人報告稱此基因的多態性與肺癌風險相關(Rusin et al.,2004)。
空泡分選蛋白13同源物B(酵母)(VPS13B)
VPS13B是一種定位於高爾基複合體的外周膜蛋白,並在高爾基複合體中與高爾基體順面基質蛋白GM130重合。與其亞細胞定位一致的是,RNAi所致的VPS13B缺失導致高爾基帶斷裂為小堆疊(ministacks)(Seifert et al.,2011)。Kolehmainen等人(2003)在染色體8q22上的Cohen症候群關鍵區域發現了COH1基因(亦稱VPS13B)(Kolehmainen et al.,2003)。VPS13B基因的功能缺失突變導致染色體隱性的Cohen症候群(Seifert et al.,2011)。曾報告在具有小隨體不穩定性的胃癌和結直腸癌中發現VPS13B和其它基因的突變(An et al.,2012)。
CSE1染色體分離樣1(酵母)(CSE1L)
研究表明細胞凋亡易感性(CSE1L)基因可調控多種細胞基質,包括有絲分裂紡錘體檢查點以及增殖和凋亡。CSE1L同時存在於細胞質與細胞核中。核CSE1L調控p53蛋白(一種主要的腫瘤抑制蛋白)的轉錄活性(Rao et al.,2011;Tanaka et al.,2007)。細胞質CSE1L與微管相關,該關聯顯示可激發侵襲偽足的延伸並促進腫瘤細胞的遷徙(Tai et al.,2010)。CSE1L在多數癌症中均高度表現,例如良惡性皮膚黑素細胞變性(Boni et al.,1999)、子宮內膜癌(Peiro et al.,2001)、卵巢癌(Brustmann,2004)、乳腺癌(Behrens et al.,2001)和尿路膀胱泌尿道上皮癌(Chang et al.,2012),且研究表明其表現與癌症進展相關。CSE1L沉默有望成為結腸癌的療法之一(Zhu et al.,2013)。
二氫嘧啶酶樣4(DPYSL4)
二氫嘧啶酶相關性蛋白4(DPYSL4)是海馬神經元發育的已知調控因子之一。DPYSL4可在牙胚形態發生過程中參與牙上皮細胞的生長調控、極化和分化(Yasukawa et al.,2013)。有研究表明,DPYSL4透過抑制微管聚合來延緩神經突生長,並揭示了其在神經元死亡前的核凝結中與波形蛋白的新型關聯(Aylsworth et al.,2009)。p53腫瘤抑制劑基因(在多種腫瘤中常存在突變)對於維持基因組完整性具有重要作用。DPYSL4 mRNA和蛋白的表現均由富含p53的細胞中的抗癌抗原特異性地誘導。DPYSL4是一種凋亡誘導因子,在DNA損傷情況下由p53所調控(Kimura et al.,2011)。
Sec61γ亞單位(SEC61G)
SEC61γ是一條異源三聚體蛋白通道,由SEC61α、β和γ亞單位所組成的,是SEC61轉位子成員之一(Greenfield and High,1999)。SEC61複合物可形成一個跨膜孔,以便初生多肽轉位至ER腔中,以及跨膜蛋白進入ER雙 分子層中(Osborne et al.,2005)。SEC61γ為腫瘤細胞存活以及對內質網應激的細胞反應所必需(Lu et al.,2009)。將SEC61γ表現敲除引發了凋亡和EGFR/AKT存活信號傳導的阻斷(Lu et al.,2009),以及腫瘤細胞生長的抑制(Neidert et al.,2012)。
ORM1樣蛋白1(啤酒酵母)(ORMDL1)
該人體基因(ORMDL1、ORMDL2和ORMDL3)在成人和胚胎組織中廣泛表現,可編碼錨定於內質網中的跨膜蛋白(此類基因很可能參與ER中的蛋白折疊)。透過基因組序列分析,Hjelmqvist等人(2002)將ORMDL1基因定位於染色體2q32.2(Hjelmqvist et al.,2002)。ORMDL蛋白是哺乳動物細胞中神經醯胺生物合成的主要調節因子(Siow and Wattenberg,2012)。存在早老素1(PS1)突變時出現了ORMDL1特異性下調(Araki et al.,2008)。
山核桃素樣蛋白3(果蠅屬)(PCNXL3)
山核桃素樣蛋白3(PCNXL3)是一種多通道膜蛋白,屬於山核桃素家族。PCNXL3定位於染色體區域11q12.1-q13。在染色體11q13區域中的D11S4933和D11S546標記間存在3個新型人腫瘤相關移位斷裂點。因此PCNXL3可能為11q13相關疾病基因(van et al.,2000)。
小核核糖核蛋白200kDa(U5)(SNRNP200)
Pre-mRNA的剪接由剪接體催化(snRNP)。剪接體是一種專門的RNA與蛋白亞單位之複合物,可將內含子從已轉錄的pre-mRNA片段中移除。剪接體包含小核RNA蛋白(snRNP)U1、U2、U4、U5和U6,以及約80個保守蛋白(Maeder et al.,2009)。在心臟、腦、胎盤、肺、肝、骨骼肌、腎 和胰腺中發現存在SNRNP200表現(Zhao et al.,2009)。最近發現SNRNP200突變與常染色體色素性視網膜炎(adRP)相關(Benaglio et al.,2011;Liu et al.,2012)。
SAM結構域、SH3結構域和核定位信號1(SAMSN1)
SAMSN1是一個推定的銜接因子和支架蛋白(含有SH3和SAM(護穎α基序)域)的新型基因家族成員之一。SAMSN1在造血組織、肌肉、心臟、腦、肺、胰腺、內皮細胞和骨髓瘤中存在表現。內源性SAMSN1在經增殖和增殖誘導刺激的原代B細胞中呈現表現上調,而在轉導試驗中,SAMSN1對B細胞分化為原生質細胞起到刺激作用(Brandt et al.,2010)。從急性髓性白血病和多發性骨髓瘤患者分離的細胞系和原代細胞可表現SAMSN1(Claudio et al.,2001)。SAMSN1在大細胞肺癌細胞系Calu-6中存在下調(Yamada et al.,2008)。SAMSN1在潰瘍性結腸炎相關性癌中存在分化表現(Watanabe et al.,2011)。
信號轉導及轉錄活化子2,113kDa(STAT2)
STAT2是結直腸癌和皮膚癌發生的新型誘因之一,其作用為增加促炎介質的基因表現和分泌,而促炎介質可啟動致癌性STAT3信號途徑(Gamero et al.,2010)。STAT2是I型IFN誘導的凋亡啟動的關鍵介質。更重要的是,STAT2表現或核定位的缺陷可降低I型IFN免疫治療的療效(Romero-Weaver et al.,2010)。研究發現STAT2在低級星形細胞瘤的表現低於高級星形細胞瘤。結果表明,STAT和PPARγ信號傳導與神經膠質瘤之間存在明確關係,進一步證實STAT在此類腫瘤生長和分化中所預期的重要作用(Ehrmann et al.,2008)。
CCR4-NOT轉錄複合體亞單位1(CNOT1)
人CCR4-NOT脫腺苷酶複合體包含至少9個酶和非酶亞單位。CNOT1對抑制CCR4-NOT複合體的酶活性起到重要作用,因此對於mRN脫腺苷化和mRNA誘餌的控制至關重要。CNOT1缺失可結構性和功能性地破壞CCR4-NOT複合物並引發mRNA的穩定,使得翻譯增多,最終引發ER應激介導的凋亡。Ito等人推斷,CNOT1透過保證CCR4-NOT脫腺苷酶的活性來促進細胞活力(Ito et al.,2011)。在乳腺癌細胞中透過siRNA介導內源性CNOT1或其它Ccr4-Not亞單位的缺失,引發了ERα目的基因的脫調節(增加了ERα目的基因TTF1和c-Myc的誘導)。以上發現證實了人Ccr4-Not複合物作為核受體信號傳導的轉錄抑制物的作用,這關乎對癌症中的分子途徑的理解(Winkler et al.,2006)。
絲胺酸羥甲基轉移酶2(線粒體)(SHMT2)
SHMT2基因可編碼磷酸吡哆醛依賴性酶的線粒體形式,可催化從絲胺酸和四氫葉酸酯至甘胺酸和5,01-亞甲基四氫葉酸酯的可逆反應。其編碼產物主要對甘胺酸合成起到作用。在肺癌等多基因疾病中,基因-基因相互反應對於確定疾病的表型變異性具有重要作用。MTHFR677、MTHFR1298和SHMT多態間的相互反應可能對肺癌患者的遺傳不穩定性有顯著影響。研究顯示,在細胞遺傳學改變方面,暴露於煙草特異性致癌物4-(甲基亞硝胺)-1-(3-吡啶基)-1-丁酮[NNK]的肺癌患者,若存在MTHFR 677、MTHFR 1298和SHMT等位變異體,則其淋巴細胞可相當大幅度地增多細胞遺傳學損傷(Piskac-Collier et al.,2011)。藥物基因組研究調查了SHMT基因多態性對結直腸癌患者5-Fu和FOLFIRI治療方案療效的影響,表明存在顯著影響,並引起總生存期的改變(Timar et al.,2006)。
Jun B原癌基因(JUNB)
JunB是二聚轉錄因子AP-1(啟動蛋白-1)家族成員之一。轉錄因子AP-1參與細胞增殖、轉化和死亡(Shaulian and Karin,2002)。JunB可能透過NF-êB途徑來調節,而HGF誘導的JunB上調可能透過MMP-9表現對細胞增殖和細胞浸潤起到重要作用(Lee and Kim,2012)。JunB表現出對淋巴瘤(特別是霍奇金淋巴瘤)有致癌作用(Shaulian,2010)。JunB是p16的必需上游調控因子,參與維持細胞衰老以阻礙TAC的惡性轉化。因此JunB在控制攝護腺癌發生中有明顯作用(Konishi et al.,2008)。JunB在VHL缺陷型ccRcc中提高腫瘤侵襲力並增強血管生成(Kanno et al.,2012)。
轉化型含酸性捲曲蛋白3(TACC3)
TACC3存在於包含ch-TOG(結腸與肝腫瘤過量表現基因)和籠型蛋白的複合體中,可與著絲點纖維中的微管相交聯。TACC3在某些增生性組織中存在表現,例如睪丸、肺、脾、骨髓、甲狀腺和外周血白細胞。在某些人腫瘤類型中存在TACC3表現的改變。在細胞中,TACC3也定位於中心體和紡錘體微管,但不定位於星狀微管(Hood and Royle,2011)。TACC3的表現與p53的表現相關,高度表現TACC3和p53的腫瘤患者的預後相比於二者免疫染色表現水準低的患者顯著較差(P=0.006)。研究表明TACC3的增多可能預示NSCLC的增殖優勢,且有利於腫瘤進展,TACC3表現是NSCLC臨床轉歸的有力預後指標(Jung et al.,2006)。TACC3可能是Notch信號傳導途徑的負向調節因子(Bargo et al.,2010)。
RAD54同源物B(啤酒酵母)(RAD54B)
DNA修復與重組蛋白RAD54B是在人體中由RAD54B基因編碼的一種蛋白。RAD54與雙鏈DNA結合,在DNA的存在下可表現ATP酶活性。人RAD54B 蛋白是RAD54蛋白的旁系同源物,後者在同源染色體重組中起到重要作用。同源染色體重組(HR)對於DNA雙鏈斷裂(DSB)的準確修復不可或缺(Sarai et al.,2008)。已知RAD54B基因在癌症中存在體細胞突變,其敲除可在哺乳動物細胞中引起染色體不穩定(CIN)(McManus et al.,2009)。在GBM患者中,RAD54B基因表現的增多引起了較短的至進展時間和較差的OS(Grunda et al.,2010)。
幼紅細胞增強因子2(EEF2)
EEF2可編碼GTP結合翻譯延長因子家族的成員之一。該蛋白是蛋白合成的要素之一。EEF2促進GTP依賴性的初生蛋白鏈從核糖體的A位點移位至P位點。EEF2在肺腺癌(LADC)中存在高表現,但在鄰近的非腫瘤肺組織中不存在表現。有研究表明,eEF2是LADC的抗凋亡標記物,其原因是eEF2高表現患者的早期腫瘤發生率顯著較高,且預後顯著較差。eEF2表現的沉默增加了線粒體延長、細胞自噬和對順鉑的敏感性。此外,eEF2可在LADC細胞中SUMO化,而eEF2的SUMO化與耐藥性相關(Chen et al.,2011a)。EEF2是值得關注的癌症治療靶標,因為抑制EEF2可引發蛋白合成的迅速停止,由此誘導凋亡並最終引起細胞死亡。siRNA誘導的EEF2沉默在腫瘤細胞中產生了特異性的細胞毒性(Chen et al.,2011b;Wullner et al.,2008)。
細胞週期調節蛋白A2(CCNA2)
CCNA2屬於高度保守的細胞週期調節蛋白家族。細胞週期調節蛋白是CDK激酶的調節因子。不同的細胞週期調節蛋白的表現和降解情況截然不同,由此可對各線粒體事件進行時序調節(Deshpande et al.,2005)。人細胞週期調節蛋白A2是S相進行和進入有絲分裂的關鍵調節因子。CCNA2結合併啟動CDC2或CDK2激酶,由此加速細胞週期的G1/S和G2/M轉換(Honda et al.,2012)。該基因的突變、擴增和過量表現可改變細胞週期進程,常見於多種腫瘤中,可促進腫瘤發生(Cooper et al.,2009;Kars et al.,2011;Kim et al.,2011;Tompkins et al.,2011)。此外,有報道稱CCNA2表現在7種癌症中引發預後不良(Yasmeen et al.,2003),而細胞週期調控蛋白A與較短的生存期相關(Dobashi et al.,1998)。
神經上皮細胞轉化蛋白1(NET1)41
NET1是Rho鳥嘌呤核苷酸交換因子家族的一部分。該家族的成員可透過催化GDP與GTP的交換來活化Rho蛋白。由NET1編碼的蛋白可與細胞核中的RhoA相互反應,在離子化輻射後的DNA損傷修復中起到一定作用。
NET1基因在乳腺腺癌細胞(而不是阿片類受體)中存在表現,可能加速該細胞的遷移(Ecimovic et al.,2011)。NET1在胃癌(GC)組織中上調,並驅動該疾病的浸潤性表型(Srougi and Burridge,2011)。NET1在GC細胞遷移和浸潤(GC進展的關鍵過程)中起到重要作用(Bennett et al.,2011)。經短期內分泌治療後,RhoC和NET1可在人攝護腺癌中出現高表現,表明RhoC和NET1有望成為內分泌療法的治療靶標(Kawata et al.,2012)。
染色體11開放閱讀框24(C11orf24)
C11orf24由Tweels等人首先發現(2001)。C11orf24基因與其它基因無已知的相似性,其功能尚不清楚。Northern印跡分析在心臟、胎盤、肝、胰腺和結腸中發現了1.9-kb轉錄物的高表現,在腦、肺、骨骼肌、腎、脾、攝護腺、睪丸、卵巢和小腸中存在低表現,在甲狀腺和白細胞中存在極低表現(Twells et al.,2001)。長度為449個胺基酸的C11orf24蛋白位於染色體 區域11q13。該區域曾被描述為多癌症易感性區域(Gudmundsson et al.,2009;Purdue et al.,2011)。
染色體濃縮調控因子1(RCC1)
染色體濃縮調控因子1(RCC1)是Ran GTP酶的鳥嘌呤核苷酸交換因子。Ran-GTP透過RCC1在染色質上定位生成,這是核質轉運、有絲分裂紡錘體組裝和核被膜形成的關鍵過程(Hitakomate et al.,2010)。有資料表明,有絲分裂調節因子(如RCC1、Mad2和存活素)的染色體結合對有絲分裂進程不可或缺(Ho et al.,2008)。Wong等人發現,核RanGTP水準在凋亡的早期階段有所降低,這與染色體上RCC1的固定相關。因此他們提出,RCC可讀取半胱天冬酶啟動的Mst1所產生的組蛋白密碼,以此透過降低胞核中的RanGTP水準來啟動凋亡(Wong et al.,2009)。
黑素瘤抗原F家族蛋白,1(MAGEF1)
MAGE(黑素瘤相關性抗原)超家族中的多數已知成員在腫瘤、睪丸和胚胎組織中存在表現,該表現被描述為癌症/睪丸表現模式(MAGE亞組I)。MAGE亞組I中的肽已成功用於肽和DC接種免疫(Nestle et al.,1998;Marchand et al.,1999;Marchand et al.,1999;Marchand et al.,1995;Thurner et al.,1999)。相比之下,某些MAGE基因(MAGE亞組II,例如MAGEF1)在所檢測的所有成人和胚胎組織以及許多腫瘤類型(包括卵巢癌、乳腺癌、宮頸癌、黑素瘤和白血病)中均有普遍表現(Nestle et al.,1998;Marchand et al.,1999;Marchand et al.,1999;Marchand et al.,1995;Thurner et al.,1999)。儘管如此,在NSCLC中(Tsai et al.,2007),以及一個台灣結直腸癌患者隊列79%的患者中(Chung et al.,2010)均發現存在MAGEF1過量表現。
非SMC集縮素I複合物,亞單位D2(NCAPD2)
集縮素屬於異五聚複合物,最早發現是作為線粒體染色體的結構組分。NCAPD2是人集縮素複合物的必需組分,後者為線粒體染色體濃縮所必需。NCAPD2缺失可影響有絲分裂中期的染色體排列,延緩進入有絲分裂後期(Watrin and Legagneux,2005)。近期的連接與關聯性研究表明,染色體12p13位點可能攜帶阿爾茨海默病(AD)的易感基因變異體。單標記關聯性表明,NCAPD2中的兩種SNP(rs7311174和rs2072374)產生名義上顯著的p值(分別為p=0.0491和0.0116)。上述遺傳學分析證明,染色體12p13位點與中國人中的AD具有相關性(Li et al.,2009)。
染色體12開放閱讀框44(C12orf44)
透過在資料庫中搜索果蠅屬Atg13相互作用蛋白的直系同源基因,Mercer等人(2009)發現了人ATG101(亦稱C12orf44)(Mercer et al.,2009)。ATG101基因定位於染色體12q13.13。預測該推定的218胺基酸蛋白是一種細胞溶質親水蛋白(Hosokawa et al.,2009)。大自吞是溶酶體介導的細胞質蛋白、細胞器和大分子降解中的分解代謝過程。ATG101等ATG蛋白為自噬體形成所必需。自噬體是一種雙層膜囊泡,在與溶酶體融合前包圍並隔離細胞質貨物。ATG101(C12orf44)對於自吞作用不可或缺(Mercer et al.,2009)。
含HECT和RLD結構域E3泛素蛋白連接酶4(HERC4)
HERC4屬於泛素連接酶HERC家族,此類酶均含一個HECT結構域和至少一個類RCC1(MIM 179710)結構域(RLD)。預計350個胺基酸的HECT域可催化泛素硫酯的形成,隨後將其轉入一種底物中。預計RLD可作為小G蛋白的鳥胺酸核苷酸交換因子(Hochrainer et al.,2005)。E3泛素連接酶 雖然在所有組織中廣泛表現,但在睪丸中的表現最高(具體為精子形成期間)。Herc4連接酶是細胞質小滴的適當成熟與移除所必需的,以使精子功能完善(Rodriguez and Stewart,2007)。
胰島素樣生長因子2 mRNA結合蛋白3(IGF2BP3)
IGF2BP3是胰島素樣生長因子-II mRNA結合蛋白家族成員之一,參與mRNA的定位、翻轉和翻譯控制。該蛋白包含數個KH(K同源)結構域。這些域對於RNA的結合有重要作用,且已知參與RNA合成和代謝。其表現主要發生於胚胎髮育過程中,已在某些腫瘤中發現。因此IGF2BP3被認為是一種癌胚蛋白(Liao et al.,2005)。透過CD44 mRNA的穩定來促進IGF-II蛋白合成以及引發細胞粘附和浸潤,IGF2BP3可促進腫瘤細胞增殖(Findeis-Hosey and Xu,2012)。此外,已在許多人體腫瘤中研究了IGF2BP3表現,有越來越多的證據表明,IGF2BP3可介導遷移、浸潤、細胞存活和腫瘤轉移(Jeng et al.,2009;Kabbarah et al.,2010;Li et al.,2011;Liao et al.,2011;Lu et al.,2011;Hwang et al.,2012;Samanta et al.,2012),且可能參與血管生成(Suvasini et al.,2011;Chen et al.,2012)。在肺腺癌中,可在中度或低度分化的腺癌中發現IGF2BP3表現的增多,由此可能引起侵襲性生物行為(Findeis-Hosey et al.,2010;Beljan et al.,2012;Findeis-Hosey and Xu,2012)。
細胞分裂週期6同源物(啤酒酵母)(CDC6)
CDC6蛋白可作為DNA複製早期步驟的調控因子,在細胞週期G1中位於細胞核中,但在S相開始時移位至細胞質中。此外,有研究認為CDC6透過與高等真核細胞中的ATR相互反應來調控複製-檢查點啟動(Yoshida et al.,2010)。CDC6對於DNA複製不可或缺,其脫調節參與腫瘤發生。研究 發現,透過RNA干擾(RNAi)引發CDC6下調可抑制細胞增殖並促進凋亡(Lau et al.,2006)。在數種癌症中均發現存在CDC6過量表現。過量表現CDC6的癌症類型包括胃癌(Tsukamoto et al.,2008)、腦部腫瘤(Ohta et al.,2001)、口腔鱗狀細胞癌(Feng et al.,2008)、宮頸癌(Wang et al.,2009b)和惡性內皮瘤(Romagnoli et al.,2009)。
成纖維細胞啟動蛋白α(FAP)
成纖維細胞啟動蛋白(FAP)是一種II型膜內在糖蛋白,屬於絲胺酸蛋白酶家族。推定的FAPα絲胺酸蛋白酶活性及其體內誘導特徵提示該分子可能對發育、組織修復和上皮細胞癌發生過程中的成纖維細胞生長或上皮-間質相互反應起到一定作用(Scanlan et al.,1994)。多數正常成人組織和良性上皮細胞腫瘤中僅存在極少的或不存在FAP表現。但在超過90%的惡性乳腺、結直腸、肺、皮膚和胰腺腫瘤、癒合傷口中的成纖維細胞、軟組織肉瘤以及某些胚胎間質細胞的間質中存在表現。FAP可能透過參與細胞粘附和遷移過程以及ECM組分的快速降解來對癌症生長和轉移產生一定作用。因此FAP存在於浸潤ECM的腫瘤細胞以及參與血管生成的內皮細胞中,但不存在於同類的非活性細胞中(Dolznig et al.,2005;Kennedy et al.,2009;Rettig et al.,1993;Rettig et al.,1994;Scanlan et al.,1994;Zhang et al.,2010a)。
無翅型MMTV整合位點家族成員5A(WNT5A)
Wnt5a通常可調控多種細胞功能,例如增殖、分化、遷移、粘附和極化(Kikuchi et al.,2012),在未分化的人胚胎幹細胞中存在表現(Katoh,2008)。WNT5A被歸類為非轉化性WNT家族成員,其在腫瘤發生中的作用尚存爭議。WNT5A可在某些癌症(甲狀腺癌、腦癌、結直腸癌)中表型出腫瘤抑制活性,但在肺癌、胃癌和攝護腺癌中存在異常上調(Li et al.,2010)。致 癌性WNT5A在癌症幹細胞中啟動經典WNT信號途徑以實現自我更新,並在腫瘤-間質交界區啟動非經典WNT信號途徑以實現浸潤和轉移(Katoh and Katoh,2007)。已在多種腫瘤中報告了WNT5A的表現,例如在28%的攝護腺癌中觀察到Wnt5a的異常蛋白表現,起到增強進侵襲力的作用(Yamamoto et al.,2010)。此外報告WNT5A過量表現與在卵巢癌(Badiglian et al.,2009)、黑素瘤(Da Forno et al.,2008;Weeraratna et al.,2002)、GBM(Yu et al.,2007)、肺癌(Huang et al.,2005)和胰腺癌(Ripka et al.,2007)中與預後不良和/或腫瘤分級升高相關。在HCC中,經典Wnt信號傳導通路參與腫瘤發生,而非經典Wnt信號傳導通路參與腫瘤進展(Yuzugullu et al.,2009)。
TPX2微管相關蛋白同源物(非洲爪蟾)(TPX2)
TPX2是一種紡錘體組裝因子,為有絲分裂紡錘體和凋亡中微管的正常組裝所必需,也為染色質和/或著絲點依賴性微管成核過程所必需(Bird and Hyman,2008;Moss et al.,2009)。幾乎所有的Aurora A啟動以及卵母細胞成熟過程中的完整p53體內合成和磷酸化均需要新合成的TPX2(Pascreau et al.,2009)。TPX2是一種細胞週期相關蛋白,在許多腫瘤類型中均存在過量表現,例如腦膜瘤(Stuart et al.,2010)、喉鱗狀細胞癌(SCCL)(Cordes et al.,2010)、口腔鱗狀細胞癌(SCC)(Shigeishi et al.,2009)、肝細胞癌(HCC)(Satow et al.,2010)、胰腺癌(Warner et al.,2009)、卵巢癌(Ramakrishna et al.,2010)和肺鱗狀細胞癌(Lin et al.,2006;Ma et al.,2006)。TPX2常與Aurora-A同時過量表現,由此產生一個帶有致癌性質的新型功能單元(Asteriti et al.,2010)。TPX表現是肺癌的預後指標之一(Kadara et al.,2009)。
透明質酸所致細胞運動受體(RHAMM)(HMMR)
透明質酸所致細胞運動受體RHAMM(HMMR)對細胞以及細胞膜具有多種不同功能。RHAMM可被輸出至細胞表面,在此與透明質酸結合併與HA受體CD44相互反應。細胞運動、傷口癒合和浸潤等過程均受RHAMM調控(Sohr and Engeland,2008)。RHAMM是透明質烷(HYA)受體之一(Gares and Pilarski,2000)。此外,癌症細胞中存在HYA的結合位點(CD44、RHAMM等),HYA可保護癌症細胞不受免疫細胞攻擊。轉移性患者中常存在血清HYA的升高(Delpech et al.,1997)。此外,有學者提出HYA在癌症細胞中與RHAMM(HMMR)和CD44的相互反應是腫瘤進展與傳播的重要促進因子(Li et al.,2000b)。並且RHAMM在數種腫瘤組織中存在過量表現((Tzankov et al.,2011);(Kramer et al.,2010);(Twarock et al.,2010);(Shigeishi et al.,2009);(Zlobec et al.,2008);(Li et al.,2000a))。
ADAM金屬肽酶結構域8(ADAM8)
ADAM8是ADAM(一種解聚素與金屬蛋白酶結構域)家族成員之一。許多ADAM類型(包括ADAM8)均在人惡性腫瘤中存在表現,在腫瘤中參與生長因子活性和整合蛋白功能的調節,由此促進細胞生長與浸潤(Mochizuki and Okada,2007)。ADAM8的表現與EGFR正相關。二者均主要在細胞質和細胞膜中表現(Wu et al.,2008)。ADAM8在所研究的大多數肺癌中均大量表現。ADAM8的外源性表現提高了哺乳動物細胞的遷移活性,提示ADAM8可能對肺癌進展起到重要作用(Ishikawa et al.,2004)。ADAM8與肺癌預後不良相關(Hernandez et al.,2010)。ADAM8過量表現與患者較短的生存期相關,且是RCC遠處轉移的良好預測因子(Roemer et al.,2004b;Roemer et al.,2004a)。ADAM8的表現水準和蛋白酶活性與神 經膠質瘤細胞的浸潤活性相關,提示ADAM8可能在腦部癌症浸潤中起到顯著作用(Wildeboer et al.,2006)。
膠原蛋白α-3(VI)鏈蛋白(COL6A3)
COL6A3可編碼α-3(VI)鏈,即VI型膠原的三個α鏈之一。研究顯示其蛋白結構域可與細胞外基質蛋白相結合,該相互反應可解釋該膠原在基質組分的組織中所起的重要作用。
膠原VI過量表現引起的細胞外基質重塑增加了卵巢癌細胞對順鉑的耐藥性。膠原VI的存在與腫瘤等級相關,後者為卵巢癌預後因子之一(Sherman-Baust et al.,2003)。COL6A3在結直腸癌(Smith et al.,2009a)、唾液腺癌(Leivo et al.,2005)中存在過量表現,在胃癌中存在分化表現(Yang et al.,2007)。COL6A3是已發現的7種腫瘤特異性剪接變體之一。已證實的腫瘤特異性剪接變化高度一致,由此可以明確區分正常和癌變樣本,在某些情況下甚至可以區分不同的腫瘤期別(Thorsen et al.,2008)。
Thy-1細胞表面抗原(THY1)
Thy-1(CD90)是一種25-37kDa糖基磷脂醯肌醇(GPI)錨定的糖蛋白,在多種細胞類型中存在表現,包括T細胞、胸腺細胞、神經元、內皮細胞和成纖維細胞。Thy-1的活化可促進T細胞活化。Thy-1也影響眾多非免疫生物過程,包括細胞粘附、神經突生長、腫瘤生長、腫瘤抑制、遷移、傷口癒合和細胞死亡。Thy-1是細胞-細胞以及細胞-基質相互反應的重要調節因子,在神經再生、轉移、炎症和纖維化中起到重要作用(Rege and Hagood,2006b;Rege and Hagood,2006a)。此外,Thy-1在成人中表現為血管生成標記物,但非胚胎血管生成標記物。透過細胞介素上調Thy-1而不是生長 因子表明了炎症對成人血管生成的病因的重要作用(Lee et al.,1998)。相比於正常組織或良性腫瘤組織,肺癌細胞核中的Thy-1存在過量表現,該過量表現是NSCLC患者的預後相關因子之一。因此Thy-1可能是肺癌發病中的新型隱形惡性標記物之一(Chen et al.,2005b)。Thy-1可考慮作為多種幹細胞(例如腦膜幹細胞、肝幹細胞(「橢圓形細胞」)(Masson et al.,2006)、角質化細胞幹細胞(Nakamura et al.,2006)和造血幹細胞(Yamazaki et al.,2009)的替代標記物。
II型碘化鉀腺胺酸脫碘酶(DIO2)
DIO2基因所編碼的蛋白屬於碘化鉀腺胺酸脫碘酶家族,在甲狀腺中高度表現,可能對Grave病和甲狀腺腺瘤患者中甲狀腺性T3生成的相對增多有顯著作用(Meyer et al.,2008);(de Souza Meyer et al.,2005)。其基因表現模式與向上和向下進展型鼻咽癌(NPC)顯著不同。向下進展型(向下=遠處轉移)中的DIO2基因表現高於向上進展型(局部生長和顱底浸潤),這可能與NPC的轉移潛能密切相關(Liang et al.,2008)。在腦部腫瘤中存在DIO2 mRNA以及DIO2活性(Murakami et al,,2000)。肺組織中存在D2活性,且該活性與在周圍肺組織和肺癌組織中相近(Wawrzynska et al.,2003)。
骨膜蛋白(成骨細胞特異性因子)(POSTN)
POSTN基因可編碼一種與成束蛋白家族具有相似性的蛋白,參與細胞存活與血管生成,有望成為多種人體癌症類型的腫瘤進展標記物(Ruan et al.,2009)。
在多數實體瘤中均發現存在骨膜蛋白或其mRNA的高表現,包括乳腺癌(Zhang et al.,2010b)、結腸癌(Kikuchi et al.,2008)、頭頸癌(Kudo et al.,2006)、胰腺癌(Kanno et al.,2008)、乳頭狀甲狀腺癌(Puppin et al.,2008)、攝護腺癌(Tischler et al.,2010)、卵巢癌(Choi et al.,2010)、肺癌(Takanami et al.,2008)和肝癌(Utispan et al.,2010),以及食道鱗狀細胞癌(Kwon et al.,2009)。骨膜蛋白在肺癌中異常高表現,且與血管生成、浸潤和轉移相關(Takanami et al.,2008)。在A549 NSCLC細胞中沉默骨膜蛋白抑制了腫瘤細胞生長,減少了細胞浸潤(Wu et al.,2013)。
SLIT1(slit同源物1(果蠅屬)),SLIT2(slit同源物1(果蠅屬))
SLITs(SLIT1、SLIT2和SLIT3)是一個分泌蛋白家族,可透過ROBO受體信號傳導來介導發育過程中細胞與其環境的位置相互反應(Hinck,2004),但SLIT/ROBO信號傳導不限於發育過程,而上述信號的缺失很可能對腫瘤進展起到重要作用(Narayan et al.,2006;Schmid et al.,2007;Latil et al.,2003)。約50%的人乳腺腫瘤樣本中存在SLIT2或SLIT3基因表現的沉默(Sharmaet al.,2007)。SLIT2的超甲基化常在NSCLC中發現,且與多種臨床特徵相關(Suzuki et al.,2013)。
TLX3(T細胞白血病同源盒蛋白3)
TLX3(亦稱RNX或HOX11L2)屬於一個孤兒同源盒基因家族,該家族基因可編碼DNA結合核轉錄因子。HOX11基因家族成員特徵為高度保守的同源結構與中蘇胺酸-47取代胞嘧啶(Dear et al.,1993)。TLX3在發育中的延髓中獨特表現。第一級內臟感覺神經元以及腦幹中多數腎上腺素能(特別參與心血管和呼吸系統的生理調控)的正常形成均需要TLX3(Qian et al.,2001)。在T細胞急性淋巴細胞白血病患者中,有20%的兒童和13%的成人 的白血病樣本中檢測到TLXZ3表現(Cave et al.,2004),儘管該基因從不參與正常T細胞分化(Ferrando et al.,2004)。
CEP192(中心體蛋白192kDa)
中心體在多種細胞過程中起到重要作用,包括紡錘體形成和染色體分離。CEP192是一種中心體蛋白,在哺乳動物、果蠅屬和秀麗隱桿線蟲中心體的生物發生和功能中起到關鍵作用(Gomez-Ferreria et al.,2012)。CEP192可刺激有絲分裂中腳手架的形成,而γ微管蛋白環複合物和其它參與微管成核過程的蛋白以及紡錘體組裝均依賴於該腳手架而起作用(Gomez-Ferreria et al.,2007)。
ANKS1A(含錨定蛋白重複序列和不育α基序結構域1A)
含錨定蛋白重複序列和SAM結構域蛋白是一種由ANKS1A基因編碼的人體蛋白(Nagase et al.,1996)。ANKS1A首先被報告為EGFR和PDGFR等受體酪胺酸激酶的靶標和信號遞質(Pandey et al.,2002),近期被報告為受體酪胺酸激酶EphA8的相互反應伴侶(Shin et al.,2007)。近期一項研究中對348名晚期NSCLC患者的單核苷酸多態(SNPs)進行了基因分型,結果發現與預後最為相關的17個候選SNPs。SNPs位於ANKS1A基因的基因組區域(Lee et al.,2013)。
CEP250(中心體蛋白250kDa)
CEP250基因可編碼一種核心中心體蛋白,該蛋白為細胞週期分裂間期中中性粒-中心粒連接所必需(Mayor et al.,2002)。透過放射雜交分析,Fry等人(1998)將CEP250定位至染色體20的著絲粒區域,位置接近20q11.2(Fry et al.,1998)。Mayor等人(2002)發現,CEP250在人骨肉瘤細胞系中的過 量表現引起大中心體相關結構的形成。CEP250過量表現不影響中心體分離或細胞分裂,但提示細胞週期調節的活性可將CEP250從中心體中分離(Mayor et al.,2002)。
MDN1(MDN1,midasin同源物(酵母))
MDN1,midasin同源物(酵母)是一種蛋白,在人體中由MDN1基因編碼。Midastin是一種單拷貝基因,該基因在所有已有資料的真核生物中均編碼一種約600kDa的極保守蛋白。在人體中,該基因定位於6q15,可編碼一種含5596個殘基的預測蛋白(632kDa)(Garbarino and Gibbons,2002)。近期研究發現,MDN1在乳腺癌線腔A亞型中存在突變。MDN1可能對此侵襲性亞型的發生和激素耐抗起到一定作用(Cornen et al.,2014)。
OLFM1(嗅素1)
OLFM1亦稱嗅球蛋白,是一種分泌型糖蛋白,屬於含嗅素結構域蛋白家族,對神經管生成神經脊細胞起到重要的調控作用(Barembaum et al.,2000)。溴素最初發現為粘液層的主要組分之一,該層包圍嗅覺神經元的化學感覺樹突(Kulkami et al.,2000)。嗅素1蛋白在肺腺癌中的表現顯著高於其它組織化學類型的肺癌和正常肺組織(Wu et al.,2010)。此外,OLFM1在子宮內膜癌、Ewing肉瘤和成神經細胞瘤中存在脫調控(Wong et al.,2007;Allander et al.,2002;Khan et al.,2001)。
BUB1B(苯並咪唑出芽抑制解除蛋白1同源物β(酵母))
BUB1B亦稱BubR1,是一種核心有絲分裂檢查點組分,可結合併抑制Cdc20活化的有絲分裂後期促進因子(APC/CCdc20)。該因子是一種泛素E3連接 酶,透過調控分離酶介導的粘附環(此環將姐妹染色單體相結合)來啟動有絲分裂後期(Baker et al.,2004)。BubR1不僅透過活化有絲分裂檢查點而且透過調節染色體-紡錘體附著區來促進正常染色體分離(Malureanu et al.,2009;Lampson and Kapoor,2005)。已在多種腫瘤中發現了紡錘體檢查點功能損傷。已發現BubR1突變與非整倍體症候群相關聯。該症是一種特徵為非整倍體化、腫瘤易感性和多種早老症樣特徵(包括壽命較短、生長和心智發育遲緩、白內障和面部畸形)的罕見人症候群(Matsuura et al.,2006)。
PI4KA(催化性磷脂醯肌醇4-激酶α)
人體細胞中可表現4種不同的磷脂醯肌醇4-激酶(PI4K)。此類同工酶(PI4KA、PI4KB、PI4K2A和PI4K2B)可在細胞膜的細胞質面催化磷脂醯肌醇(PtdIns)的磷酸化,從而產生磷脂醯肌醇4-磷酸(PtdIns4P)(Minogue and Waugh,2012)。PI4KA主要存在於內質網(ER)中,其活性似乎可同時調節ER出口位點的形成(Blumental-Perry et al.,2006)和PtdIns4P在質膜中的濃集(Balla et al.,2008)。有研究組發現,HCC中的PI4KA mRNA在正常健康組織中含量更多。這一上調與HCC的低度分化和增值活躍率均顯著相關(Ilboudo et al.,2014)。
AURKB(aurora激酶B)
Aurora B激酶是一種蛋白,作用於有絲分裂紡錘體著絲至中心體(Kim et al.,2011)。AURKB位於著絲點附近的微管中(Kunitoku et al.,2003)。Aurora激酶在多種腫瘤細胞系中存在過量表現,表明該酶可能對腫瘤發生起到一定作用,已成為腫瘤診斷和治療的潛在靶標之一(Fu et al.,2007)。最近發現了5種基因(TOP2A、AURKB、BRRN1、CDK1和FUS)的基因標籤,與NSCLC患者的轉歸密切相關。結果表明,參與染色體濃縮的基因(例如 AURKB)很可能與幹細胞樣特性相關,有望預測肺腺癌的生存期(Perumal et al.,2012)。
SLC3A2(溶質攜帶物家族3(二元酸性與中性胺基酸轉運活化因子),成員2)
SLC3A2是較大的中性胺基酸轉運體(LAT1)的輕亞單位,亦稱CD98(分化抗原決定簇98)(Lemaitre et al.,2005)。CD98異二聚體含有一條約80-85kDa的II型單通道跨膜重鏈(CD98hc,亦稱4F2抗原重鏈或FRP-1,在人和小鼠中分別由SLC3A2和Slc3a2基因所編碼),透過二硫鍵與一條約40kDa的多通道輕鏈鍵合(Deves and Boyd,2000)。CD98hc作用於整合素信號傳導的擴增以及胺基酸轉運;這兩種功能均可促進細胞存活和增殖(Cantor and Ginsberg,2012)。許多腫瘤可表現CD98hc(SLC3A2),其表現與B細胞淋巴瘤的預後不良相關。此外,幾乎所有CD98hc或CD98輕鏈在實體瘤中的表現的研究均顯示其表現與進展性或轉移性瘤相關(Kaira et al.,2009)。
IFT81(細胞纖毛內轉運蛋白81同源物(衣滴蟲))
纖毛前體(例如微管蛋白)從細胞質至纖毛尖端的細胞纖毛內轉運(IFT)參與纖毛(一種見於多數真核細胞的毛髮樣細胞器)的構建。IFT81敲除以及點突變挽救試驗顯示,IFT81介導的微管蛋白結合為人體細胞纖毛形成所必需(Bhogaraju et al.,2013)。IFT81與IFT74/72一同形成一個核心複合物,以此構建纖毛形成所必需的IFT粒子(Lucker et al.,2005)。
COG4(低聚高爾基複合體組分4)
COG複合體包含8個亞單位,分別為COG1-8(Ungar et al.,2002;Whyte and Munro,2001),可分為2種子複合體:COG1-4(Lobe A)和COG5-8(Lobe B)(Ungar et al.,2005)。COG複合體參與囊泡回收高爾基體駐留蛋白(例如糖基化酶)的系鏈(Pokrovskaya et al.,2011)。COG4基因定位於染色體16q22.1(Reynders etal.,2009)。Ungar等人(2002)推斷,COG4對於Golgi體的結構和功能至關重要,可影響細胞內膜運輸(Ungar et al.,2002)。
NCBP1(核冠結合蛋白亞單位1,80kDa)
核冠結合蛋白複合物是一種RNA結合蛋白,與RNA聚合酶II的5'冠相結合。Kataoka等人(1994)報告了一種可編碼HeLa細胞核提取物中的80kD核冠結合蛋白(NCBP1)的基因的選殖株,該提取物可能參與mRNA剪接和RNA輸出(Kataoka et al.,1994)。透過與一個體細胞雜交板中的基因組DNA雜交,Chadwick等人(1996)將NCBP1基因定位於9q34.1(Chadwick et al.,1996)。
NEFH(神經絲重鏈多肽)
編碼神經絲重鏈的NEFH是神經元細胞骨架神經絲的主要組分之一。神經絲重鏈多肽(NEFH,200kD)基因位於染色體帶22q12.2,被認為是2型多發性神經纖維瘤(NF2)家族症狀發生前的DNA標記物之一。NEFH的缺失或下調多報告於人自主神經瘤或中樞神經細胞瘤中(Mena et al.,2001;Segal et al.,1994)。此外,在人攝護腺癌(Schleicher et al.,1997)、透明細胞上皮樣瘤(Tanaka et al.,2000)和小細胞肺癌(Bobos et al.,2006)中觀察到NEFH表現的缺失或減少。值得注意的是,NEFH的過量表現可破壞正常細胞結構和功能,並引發細胞死亡(Szebenvi et al.,2002)。
本發明的詳細說明
除非另有說明外,本文所使用的所有術語定義如下:
本文所用的「肽」這一術語系指一系列的胺基酸殘基,彼此之間通常透過鄰近胺基酸的α胺基酸與羰基間的肽鍵相連接。肽的長度較佳為9個胺基酸,但也可以短至8個胺基酸,長至10、11、12、13或14個胺基酸,而MHC II類肽可長至15、16、17、18、19或20個胺基酸。
此外,「肽」這一術語應包括一系列胺基酸殘基的鹽類,彼此之間通常透過鄰近胺基酸的α胺基酸與羰基間的肽鍵相連接。此鹽類較佳為醫藥上可接受鹽類。
「肽」這一術語應包括「寡肽」。本文所用的「寡肽」這一術語系指一系列的胺基酸殘基,彼此之間通常透過鄰近胺基酸的α胺基酸與羰基間的肽鍵相連接。只要寡肽能維持正確的表型,其長度對於本發明並非關鍵。寡肽通常少於約30個胺基酸殘基,多餘約15個胺基酸。
「本發明的肽」這一術語應由上文所述的對應於SEQ ID No.1至SEQ ID No.92的肽所組成。
「多肽」這一術語系指一系列的胺基酸殘基,彼此之間通常透過鄰近胺基酸的α胺基酸與羰基間的肽鍵相連接。只要多肽能維持正確的表型,其長度對於本發明並非關鍵。與「肽」或「寡肽」相對,多肽這一術語系指包含多餘約30個胺基酸殘基的分子。
若一種肽、寡肽、蛋白或多聚核苷酸所編碼的分子可引發免疫反應,則此肽、寡肽、蛋白或多聚核苷酸具有「免疫原性」(由此是本發明範圍內的「免疫原」)。在本發明的情況下,免疫原性更具體定義為可誘導T細胞反應。因此「免疫原」是可誘導免疫反應的分子(具體到本發明則為可誘導T細胞反應的分子)。另一方面,免疫原可為一種肽、肽與MHC的複合物、寡肽和/或蛋白,用於產生其特異性抗體或TCR。
I類T細胞「表型」系指與I類MHC受體相結合的短肽,由此形成一個三元絡合物(MHC I類α鏈、β-2-微球蛋白和肽),可由T細胞(攜帶與具有適當親合力的MHC/肽複合物結合的相應T細胞受體)所識別。與MHC I類分子相結合的肽長度通常為8-14個胺基酸,以9個胺基酸最為常見。
人體中有3個不同的基因位點可編碼MHC I類分子(人MHC-分子亦稱人真核細胞抗原(HLA):HLA-A、HLA-B和HLA-C。HLA-A*01、HLA-A*02和HLA-B*07代表可從此位點表現的不同MHC I類等位基因。
Figure 109124799-A0101-12-0062-157
Figure 109124799-A0101-12-0063-158
因此,出於治療和診斷目的,能以適當的親合力與多種不同的HLA II類受體相結合的肽是非常理想的。與數種不同的HLA II類分子結合的肽被稱為混雜結合劑。
本文中對DNA序列的引用同時包括單鏈和多鏈DNA。因此除文中特別說明外,特定的序列均指該序列的單鏈DNA、此序列與其互補序列的雙鏈體(雙鏈DNA)以及此序列的互補序列。「編碼區」這一術語系指可在自然基因組環境中自然或正常編碼某基因表現產物的該基因組分,例如可在體外編碼該基因天然表現產物的區域。
編碼區域可來自非突變(「正常」)、突變或改變的基因,甚至可來自使用當前DNA合成方法在實驗室全合成的DNA序列或基因。
「核苷酸序列」這一術語系指脫氧核糖核酸的異源多聚體。
編碼特定肽、寡肽或多肽的核苷酸序列可為天然存在,也可為人工合成。通常而言,編碼本發明的肽、多肽和蛋白的DNA片段組裝自cDNA片段和短寡核苷酸連接器,或組裝自一系列的寡肽,由此產生一個合成基因,該基因可在重組轉錄單元(由源自微生物或病毒操縱子的調控元素所組成)中表現。
本文所用的「編碼肽的核苷酸」這一術語系指可編碼肽的核苷酸序列(該肽含有適用於表現該序列的生物系統的人工起始和終止密碼子)。
「表現產物」這一術語系指作為基因自然翻譯產物的多肽或蛋白,或由遺傳密碼並性所產生的(因此可編碼同種胺基酸的)任何胺基酸序列的同等編碼產物。
「片段」這一術語用於編碼序列時系指小於完整編碼區的DNA的一部分,其表現產物所攜帶的生物功能或活性與完整編碼區的表現產物本質上相同。
「DNA片段」這一術語系指作為單獨片段或較大DNA構造組分的DNA聚合物。該片段源自至少分裂過一次、基本為初凝形式(即不含污染性內源物質,且其含量或濃度允許透過選殖用載體等標準生物化學方法對該片段或其胺基酸序列組分進行識別、操作和恢復)的DNA。此類片段表現為不被內部非翻譯序列或內含子(通常存在於真核基因中)所打斷的連續開放閱讀框。非翻譯DNA序列可能存在於該開放閱讀框的下游,且該非翻譯DNA序列不干擾編碼區的操作或表現。
「引物」這一術語系指一種短核苷酸序列,可與一條DNA鏈配對形成一個遊離3'-OH端,DNA聚合酶在此遊離端開始合成脫氧核糖核酸鏈。
「啟動子」這一術語系指一個參與RNA聚合酶結合(以此啟動轉錄)的DNA區域。
「分離的」這一術語系指從原始環境(例如其天然環境(若為天然存在物質))中轉移的物質。舉例來說,天然存在的多聚核苷酸或存在於活體動物中的多肽為非分離物質,而從天然系統中某些或全部共存物質中分離的同種多聚核苷酸或多肽則為分離物質。此類多聚核苷酸可為載體的一部分,且/或此類多聚核苷酸或多肽可為某組分的一部分,但若此載體或組分不是其天然環境的一部分,此多聚核苷酸或多肽仍為分離物質。
根據本發明公開的多聚核苷酸以及重組或免疫原性多肽也可為「純化」型。「純化」這一術語並不要求絕對純淨,而是一個相對定義,可包含高度純化的製劑或僅部分純化的製劑。此類術語由具備相應的當前技術水準的人員所各自理解。例如,從cDNA庫中分離的個體選殖物通常純化至電泳勻質性即可。明確規定起始物料和自然物料應純化至至少一個數量級(較佳為2或3個數量級,更較佳為4或5個數量級)。此外,明確規定多肽的純度較佳為99.999%,或至少99.99%或99.9%;甚至適宜以重量計為99%以上。
根據本發明公開的核苷酸和多肽表現產物以及含有此胺基酸和/或多肽的表現載體可能為「濃縮型」。本文所用「濃縮」這一術語系指物質的濃度至少為其(例如)天然濃度的2、5、10、100或1000倍,宜為0.01%(按重量), 較佳為至少0.1%(按重量)。也可考慮約0.5%、1%、5%、10%和20%(按重量)的濃縮製劑。本發明所涉序列、構造、載體、選殖物和其他物質宜為濃縮或分離型。
「活性片段」這一術語系指可單獨使用或與適當輔劑聯合使用,在動物(例如家兔或小鼠也包括人等哺乳動物)中產生免疫反應(即具有免疫原活性)的片段,此免疫反應的形式為在受體動物(例如人)中激發T細胞反應。「活性片段」也可用於引發體外T細胞反應。
本文中「部分」(portion)、「片段」(segment)和「片段」(fragment)等術語用於多肽時系指殘基(例如胺基酸殘基)的連續序列,該序列組成較大序列的一個亞組。例如,用常見的內肽酶(例如胰蛋白酶或糜蛋白酶)處理多肽後,由此處理所產生的寡肽即為起始多肽的部分、片段或片段。當用於多聚核苷酸時,以上術語系指用任何核酸內切酶處理相關多聚核苷酸後的產物。
本發明所涉「百分同一性」這一術語,用於序列時系指將需要比較的某一序列(「比較序列」)進行排列後與已明確的或已報告的序列(「參考序列」)相比較,然後用以下公式計算百分同一性:
百分同一性=100[1-(C/R)]
其中C為參考序列與比較序列在參考序列與比較序列之間排列長度中的差異數,其中
(i)在比較序列中不存在相應排列鹼基或胺基酸的參考序列中的各鹼基或胺基酸
、(ii)參考序列中的各空隙以及(iii)與比較序列中的排列鹼基或胺基酸不同的參考序列中的各鹼基或胺基酸均構成差異,並且
(iiii)該排列必須起始於所排列序列的位置1;
R為位於比較序列排列長度中的參考序列的鹼基或胺基酸數量(將參考序列中的空隙也記為鹼基或胺基酸)。
若比較序列與參考序列間存在排列,且二者按上述方法計算的百分同一性等於或大於特定的最低百分同一性限度,則可認為該比較序列與參考序列具有特定的最低百分同一性,即使也有可能存在按上述方法計算的排列百分同一性低於特定的百分同一性的情況。
如非另作說明,本文所涉的原始(非修飾)肽可均透過取代肽鏈中不同位點(有可能是選擇性位點)上的一個或多個殘基來進行修飾。
上述取代宜發生於胺基酸鏈的末端。此類取代可為保守性的,例如用一個結構或特性相似的胺基酸取代另一胺基酸(例如用一個疏水性胺基酸取代另一疏水性胺基酸)。相同或近似大小和化學性質的胺基酸間的取代則更為保守,例如用異亮胺酸取代白胺酸。在對天然存在的同源蛋白家族的序列變異體的研究中,某些胺基酸取代較之其它取代更易耐受,此類取代通常與相似大小、電荷、極性以及原胺基酸和其取代胺基酸間的疏水性相關。此類性質是定義「保守性取代」的基礎。
本文定義保守性取代為以下任意五組殘基間的交換:第1組-脂肪族、非極性或微極性小殘基(Ala,Ser,Thr,Pro,Gly);第2組-極性、帶負電荷殘基及其醯胺(Asp,Asn,Glu,Gln);第3組-極性、帶正電荷殘基(His,Arg,Lys);第4組-脂肪族、非極性大殘基(Met,Leu,Ile,Val,Cys);第5組-芳香族大殘基(Phe,Tyr,Trp)。
較不保守的取代方式可能涉及用特性相近但大小有所不同的胺基酸取代另一胺基酸,例如用異亮胺酸殘基取代丙胺酸。高度非保守取代可能涉及用酸性胺基酸取代具有極性或甚至鹼性性質的胺基酸。但上述「激進」的取代不能因為有可能無效而被忽略,原因是化學作用並不是完全可預測的,激進的取代也有可能產生單一化學原則所無法預測的偶然效應。
當然,上述取代可能涉及與常見L-胺基酸不同的結構。因此,即使D-胺基酸有可能被本發明中的常見抗原性肽的L-胺基酸所替代,但是本發明仍然涵蓋D-胺基酸。此外,可加工非標準R基團(即,除了天然蛋白的20個常見胺基酸之外的R基團)的胺基酸也有可能用於取代,以此產生根據本發明所述的免疫原和免疫原性多肽。
若發現存在多個位置的取代,產生了具有本質上同等或更強的抗原活性(定義見下文)的肽,則應檢測此類取代組合以明確此組合取代是否對肽的抗原性產生了疊加或協同效應。同一個肽中最多可有不超過4個位置被同時取代。
本發明的肽可延長最多4個胺基酸,即:1、2、3或4個胺基酸可以4:0至0:4的任何組合形式加入任一末端。
Figure 109124799-A0101-12-0069-159
用於延長的胺基酸可為蛋白原始序列的肽或任何其它胺基酸。延長的目的是提高肽的穩定性或溶解性。
「T細胞反應」這一術語系指肽在體外或體內引起的效應功能的特異性增殖和活化。對於MHC I類限制性CLT,其效應子功能可為肽衝擊的、肽前體衝擊的或天然肽呈現的目標細胞的溶解、細胞介素(較佳為肽誘導的干擾素γ、TNFα或IL-2)分泌、效應分子(較佳為肽誘導的粒酶或穿孔蛋白)分泌或脫粒。
理想情況下,當檢測對SEQ ID No.1至SEQ ID No.92肽(相比於取代肽)特異性的CTL時,取代肽達到相對於背景值的最大溶解增值時的肽濃度不應超過約1mM,最好不超過約1μM,更較佳為不超過約1nM,再更較佳為不超過約100pM,最佳為不超過約10pM。取代肽宜在至少一個個體(最少為2個,更較佳為3個)中被CTL識別。
因此本發明的表型可能與天然存在的腫瘤相關或腫瘤特異性表型一致,也可能包含與參考肽差異不超過4個殘基的表型,只要該表型的抗原活性基本一致。
免疫反應的激發取決於被宿主免疫系統識別為外源性的抗原。腫瘤相關性抗原的發現提高了用宿主免疫系統阻礙腫瘤生長的可能性。對於癌症免疫療法,目前正在探索各種利用免疫系統的體液和細胞免疫作用的機制。
細胞性免疫反應的特異性元素可特異性地識別和破壞腫瘤細胞。將細胞毒性T淋巴細胞(CTL)與腫瘤浸潤細胞群或外周血相分離後發現,該細胞對於癌症的天然免疫防禦起到重要作用。CD8陽性T細胞在該反應中的作用尤為重要,原因是其可識別攜帶主要組織相容性複複合物(MCH)I類分子(通常由8至10個由蛋白或細胞溶質中的缺陷核糖體產物(DRIPS)所衍生的胺基酸殘基所組成)。人體中的MHC分子亦稱為人白細胞抗原(HLA)。
MHC I類分子存在於多數帶核細胞中,其所呈現的肽多源於內源蛋白、DRIPs和較大肽的溶蛋白性裂解。但也經常在MHC I類分子上發現源於內涵體腔室的或外源性肽。文獻中將該非經典I類呈現稱為交叉呈現。
由於兩種類型的反應(分別為CD8和CD4依賴型)可共同產生協同抗腫瘤作用,因此腫瘤相關性抗原(透過CD8+CTL(配體:MHC I類分子+多肽表型)或CD4陽性輔助T細胞(配體MHC II類分子+多肽表型)來識別)的鑒別和表徵對於抗腫瘤疫苗的開發有重要意義。因此本發明的目的之一是提出可與各類型MHC複合物相結合的肽組分。
考慮到癌症治療的嚴重副作用和高昂費用,亟需更好的預後和診斷方法。因此有必要發現其它可作為癌症生物標記物的因子,特別是肺癌。此外,有必要發現腫瘤治療所使用的因子,特別是肺癌。
本發明提出可用於治療癌症/腫瘤(較佳為肺癌,最佳為可過量表現或獨特表現本發明的肽的非小細胞肺癌(NSCLC))的肽。質譜分析表明,此類肽可在原發性人肺癌樣本中由HLA分子天然呈現(參見示例1和圖1)。
肽的源基因/蛋白(亦稱「全長蛋白」或「基本蛋白」)在非小細胞肺癌以及SEQ IDs No.66至75的胃癌和成膠質細胞瘤中相比於正常組織存在高度過量表現(參見示例2,NSCLC參見圖2),表明源基因與腫瘤的高度關聯。此外,肽自身在腫瘤組織中也大量過量呈現,在正常組織中則沒有(參見示例3和圖3)。
HLA結合肽可被免疫系統特別是T淋巴細胞所識別。T細胞可破壞呈現所識別的HLA/肽複合物的細胞,例如呈現衍生肽的肺癌細胞。
研究顯示本發明的肽可激發T細胞反應並/或存在過量呈現,因此可用於產生本發明所涉的抗體和/或TCR,特別是TCR(參見示例4和圖4)。此外, 與相應MHC絡合的肽可用於產生本發明所涉的抗體和/或TCR,特別是TCR。相應的方法為技術熟練的人員所熟知,也可在相應的文獻中找到。因此本發明的肽有助於產生免疫反應,該反應可在患者中破壞腫瘤細胞。可透過直接給予患者文中所述的肽或合適的前體物質(例如延長肽、蛋白或編碼此類肽的核苷酸)可在患者中引發免疫反應,最好與促免疫原性藥物(例如輔劑)聯合使用。透過此治療性接種免疫產生的免疫反應預計可對腫瘤細胞具有高度特異性,其原因是本發明的目的肽在正常組織中不存在一定的拷貝數,由此可防範對正常細胞的不良自免疫反應這一風險。
藥品組合物包括遊離形式或以一種醫藥上可接受鹽類形式存在的肽。本文中「醫藥上可接受鹽類」系指本發明所公開的肽的一種衍生物,其中的肽透過形成相應藥物的酸或鹼鹽來進行修飾。例如酸鹽可由遊離鹼(特別是含中性-NH2基團的藥物的中性形式)與合適的酸反應而製得。用於製備酸鹽的合適的酸包括有機酸(例如乙酸、丙酸、羥基乙酸、丙酮酸、草酸、蘋果酸、丙二酸、琥珀酸、馬來酸、富馬酸、酒石酸、枸櫞酸、苯甲酸、肉桂酸、扁桃酸、甲磺酸、乙磺酸、p-甲苯磺酸、乙醯水楊酸等)和無機酸(例如鹽酸、氫溴酸、硫酸、磷酸等)。相反地,可能存在於肽中的酸基團的鹼鹽的製備需使用醫藥上可接受鹼,例如氫氧化鈉、氫氧化鉀、氫氧化銨、氫氧化鈣、三甲胺等。
在較佳的實施方案中,藥學組分可包括乙酸鹽、三氟乙酸鹽或鹽酸鹽形式的肽。
除可用於癌症治療外,本發明的肽還可能用於診斷。由於此類肽產生於肺癌細胞而在正常細胞中不存在或水準較低,此類肽可用於癌症的診斷。
存在於活檢組織中的相關肽類可協助病理醫師診斷癌症。透過抗體、質譜或其他目前所用方法檢測特定的肽可提示病理醫師該組織為惡性、炎性還是一般疾病。特定組別的肽可用於病變組織的分類或次級分類。
檢測病變組織標本中的肽可預測從免疫系統療法的獲益情況,特別是在已知或預期T淋巴細胞參與其作用機制的情況下。MHC表現缺失這一機制已得以充分報告,惡性細胞可透過該機制逃脫免疫監視。因此肽的存在顯示所分析的細胞並未利用該機制。
本發明的肽有望用於分析淋巴細胞對此類肽的反應,例如對肽或肽-MHC分子複合物的T細胞反應或抗體反應。上述淋巴細胞反應可用作決定後續治療步驟的預後標記物。此類反應亦可在旨在用多種方法(例如蛋白、核苷酸、自體物質的免疫接種和淋巴細胞的過繼性轉移)引發淋巴細胞反應的免疫療法中用作替代標記物。在基因治療中,副作用評估可考慮淋巴細胞對肽的反應。對淋巴細胞反應的監測有可能作為移植治療中隨訪檢查(例如發現移植物抗宿主或宿主抗移植物疾病)的有效工具。
本發明的肽可用於產生MHC/肽複合物的特異性抗體。此類抗體可用於治療,使毒素或放射性物質靶向作用於病變組織。此類抗體的另一用途是使放射性核素靶向作用於病變組織,以便進行PET等影像療法。這一用途有助於發現小轉移或確定病變組織的大小和準確位置。
因此本發明的另一方面是提出產生一種可與人重要組織相容性複合物(MHC)I或II(與HLA限制性抗原相絡合)特異性結合的重組抗體的方法, 該方法包括:用絡合了上述HLA限制性抗原的MHC I類或II類分子的可溶型對基因工程製備的非人哺乳動物細胞(可表現上述人MHC I類或II類)進行免疫;將mRNA分子從上述產生抗體的非人哺乳動物細胞中分離;產生一個噬菌體呈現文庫以呈現由上述mRNA分子編碼的蛋白分子;並從上述噬菌體呈現文庫中分離至少一種噬菌體,該噬菌體可呈現上述可與MHC I類或I類(與上述HLA限制性抗原相絡合)特異性結合的抗體。
本發明的另一方面是提出一種可與人重要組織相容性複合物(MHC)I或II(與HLA限制性抗原相絡合)特異性結合的抗體,該抗體較佳為多株抗體、單株抗體、雙特異性抗體和/或嵌合抗體。
此外,本發明的另一方面涉及產生一種可與人重要組織相容性複合物(MHC)I或II(與HLA限制性抗原相絡合)特異性結合的上述抗體的方法,該方法包括:用絡合了上述HLA限制性抗原的MHC I類或II類分子可溶型對基因工程製備的非人哺乳動物細胞(可表現上述人MHC I類或II類)進行免疫;將mRNA分子從上述產生抗體的非人哺乳動物細胞中分離;產生一個噬菌體呈現文庫以呈現由上述mRNA分子編碼的蛋白分子;並從上述噬菌體呈現文庫中分離至少一種噬菌體,該噬菌體可呈現上述可與MHC I類或I類(與上述HLA限制性抗原相絡合)特異性結合的抗體。產生上述抗體、單鏈I類MHC以及產生上述抗體所用的其它工具的相應方法參見WO 03/068201、WO 2004/084798、WO 01/72768、WO 03/070752以及Cohen CJ,Denkberg G,Lev A,Epel M,Reiter Y.Recombinant antibodies with MHC-restricted,peptide-specific,T-cell receptor-like specificity:new tools to study antigen presentation and TCR-peptide-MHC interactions.J Mol Recognit.2003 Sep-Oct;16(5):324-32.;Denkberg G,Lev A,Eisenbach L,Benhar I,Reiter Y.Selective targeting of melanoma and APCs using a recombinant antibody with TCR-like specificity directed toward a melanoma differentiation antigen.J Im-munol.2003 Sep 1;171(5):2197-207;以及Cohen CJ,Sarig O,Yamano Y,Tomaru U,Jacobson S,Reiter Y.Direct phenotypic analysis of human MHC class I antigen presentation:visualization,quantitation,and in situ detection of human viral epitopes using peptide-specific,MHC-restricted human recombinant anti-bodies.J Immunol.2003 Apr 15;170(8):4349-61,上述文獻用於本發明時均透過完整引用而明確成為本文的一部分。
抗體對複合物的結合親合力宜低於20納摩爾,最好低於10納摩爾,由此在本發明中即可認為具有「特異性」。
本發明的另一方面是提出可識別特異性肽-MHC複合物的一種可溶性T細胞受體的產生方法。此類T細胞受體可由特異性T細胞選殖產生,其親合力可因作用於互補性決定區域的突變發生而增強。T細胞受體的選擇可使用噬菌體呈現(US 2010/0113300,Liddy N,Bossi G,Adams KJ,Lissina A,Mahon TM,Hassan NJ,et al.Monoclonal TCR-redirected tumor cell killing.Nat Med 2012 Jun;18(6):980-987)。出於使噬菌體呈現中的T細胞受體穩定的目的,以及在藥物的實際應用中,α和β鏈可由非天然二硫鍵、其它共價鍵(單鏈T細胞受體)或二聚作用域等所連接(參見Boulter JM,Glick M,Todorov PT,Baston E,Sami M,Rizkallah P,et al.Stable,soluble T-cell receptor molecules for crystallization and therapeutics.Protein Eng 2003 Sep;16(9):707-711.;Card KF,Price-Schiavi SA,Liu B,Thomson E,Nieves E,Belmont H,et al.A soluble single-chain T-cell receptor IL-2 fusion protein retains MHC-restricted peptide specificity and IL-2 bioactivity.Cancer Immunol Immunother 2004 Apr;53(4):345-357;and Willcox BE,Gao GF,Wyer JR,O'Callaghan CA, Boulter JM,Jones EY,et al.Production of soluble alphabeta T-cell receptor heterodimers suitable for biophysical analysis of ligand binding.Protein Sci 1999 Nov;8(11):2418-2423)。T細胞受體可與毒素、藥物、細胞介素(參見US 2013/0115191)、抗CD3域等效應細胞募集域等相連接,以對目標細胞產生特定功能。此外,T細胞受體可表現於過繼性轉移所用的T細胞中。
更詳細資訊參見WO 2004/033685A1和WO 2004/074322A1。sTCR的組合物使用報告於WO 2012/056407A1。受體產生的更詳細資訊包含於WO 2013/057586A1。
此外,此類受體可用於病理醫師對活檢標本所作的癌症診斷。
對呈現譜進行了測算以選擇過量呈現肽,表明存在中度樣本呈現和複製變異性。該圖譜將相關腫瘤樣本與正常組織樣本(基線)相並列。由此可透過計算線性混合效應模型的p值將上述各譜用於過量呈現評分中(J.Pin-heiro,D.Bates,S.DebRoy,Sarkar D.,R Core team.Nlme:Linear and Nonlinear Mixed Effects Models.2008)從而透過假髮現率調整多項檢驗(Y.Benjamini and Y.Hochberg.Controlling the False Discovery Rate:A Practical and Powerful Approach to Multiple Testing.Journal of the Royal Statistical Society.Series B (Methodological),Vol.57(No.1):289-300,1995)。
使用質譜法進行HLA配體的鑒別和相對定量分析,對來自急速冷凍組織樣本的HLA分子進行純化,且分離HLA相關性肽。所分離的肽互相分開,用在線納米電噴射離子化(nanoESI)液相色譜-質譜(LC-MS)試驗對其序列進行鑒別。透過將NSCLC樣本所記錄的天然TUMAP的斷裂譜與相應的 合成參考肽同一序列的斷裂譜相比較,對所產生的肽序列進行了驗證。由於將肽直接鑒別為原發腫瘤HLA分子的配體,因此上述結果為所鑒別的肽在NSCLC患者原發腫瘤組織中的自然加工和呈現提供了直接證據。
專利發現平臺XPRESIDENT® v2.1(參見US 2013-0096016等,以完整引用形式併入本文))可實現相關過量呈現肽候選疫苗的鑒別和選擇(透過將癌症組織中的HLA限制性肽水準進行直接相對定量,與數種不同的肺癌組織器官相比較)。這一功能依賴於無標記型鑒別定量分析(使用經專利資料分析平臺處理的LC-MS資料)的開發,結合了序列鑒別演算法、譜聚類、離子計數、保留時間校正、電荷狀態去卷積(deconvolution)和正態化。
確立了各個肽和樣本的呈現水準(包括誤差預估)。發現了僅呈現於腫瘤組織和在腫瘤組織(相比如非癌組織器官)中過量呈現的肽。
對從50份急速冷凍NSCLC腫瘤組織樣本中獲取的HLA-肽複合物進行了純化,並用LC-MS對HLA相關性肽進行了分離和分析。
本項申請所含的所有TUMAPs均使用上述方法在原發NSCLC腫瘤樣本中發現,證實其在原發NSCLC中的呈現。
透過對無標記LC-MS資料進行離子計數對多種NSCLC腫瘤和正常組織中的TUMAPs進行了定量分析。該方法假定肽的LC-MS信號面積與其在樣本中的含量相關。多種LC-MS試驗中的所有肽定量信號均按集中趨勢和每個樣本的平均值進行正態化,並繪製為條形圖,該圖即為呈現譜。呈現譜結 合了多種不同的分析方法,例如蛋白質資料庫搜索、譜聚類、電荷狀態去卷積(去電荷)、保留時間校正和正態化。
因此本發明涉及由從SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQ ID No.84和SEQ ID No.92或其變異序列組(與SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQ ID No.84和SEQ ID No.92至少90%同源(較佳為同一))中所選擇的序列所組成的肽,且上述變異序列可引發T細胞與上述肽的交叉反應,其中上述肽為非全長多肽。
本發明還涉及由從SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQ ID No.84和SEQ ID No.92或其變異序列組(與SEQ ID No.1至SEQ ID No.65和SEQ ID No.76至SEQ ID No.84至少90%同源(較佳為同一))中所選擇的序列所組成的肽。其中,上述肽或其變異體的總長度為8至100個胺基酸(較佳為8至30個,最佳為8至14個)。
T本發明還涉及根據本發明所述的、可與人主要組織相容性複合物(MHC)I類或II類相結合的肽。
本發明還涉及根據本發明所述的肽,此類肽由(或本質上由)SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQ ID No.84和SEQ ID No.92胺基酸序列所組成。
本發明還涉及根據本發明所述的肽,此類肽經過修飾且/或包含非肽鍵。
本發明還涉及根據本發明所述的肽,此類肽為融合蛋白的一部分,特別是與HLA-DR抗原相關性不變鏈(Ii)的N末端胺基酸相融合的蛋白,或與某種抗體(或其序列)(例如樹突細胞特異性抗體)相融合的蛋白。
本發明還涉及一種核酸,該核酸可編碼根據本發明所述的肽(條件是該肽並非完整人體蛋白)。
本發明還涉及根據本發明所述的核酸,該核酸為DNA、cDNA、PNA、RNA或DNA、cDNA、PNA、RNA的組合形式。
本發明還涉及一種表現載體,該載體可表現根據本發明所述的核酸。
本發明還涉及一種根據本發明所述的肽、根據本發明所述的核酸或根據本發明所述的醫藥上可接受表現載體。
本發明還涉及根據本發明所述的、由核酸組成的一種宿主細胞,或根據本發明所述的一種表現載體。
本發明還涉及根據本發明所述的一種宿主細胞,須為抗原呈現細胞。
本發明還涉及根據本發明所述的一種宿主細胞,其中的抗原呈現細胞為樹突細胞。
本發明還涉及根據本發明所述的一種肽的製備方法,該方法包括根據本發明所述的宿主細胞的培養,以及將肽從宿主細胞或其培養基中分離。
本發明還涉及活化的細胞毒性T淋巴細胞(CTL)的體外製備方法,該方法包括將體外CTL與抗原負載人MHC I類或II類分子(在適當的抗原呈現細胞表面表現該分子足夠時間從而以抗原特異性方式活化上述CTL)相接觸,其中所述抗原可為根據本發明所述的任何肽。
本發明還涉及一種根據本發明所述的方法,該方法將抗原載入表現於適當的抗原呈現細胞表面的MHC I類或II類分子中(透過將足量的抗原與抗原呈現細胞相接觸)。
本發明還涉及一種根據本發明所述的方法,其中的抗原呈現細胞含有可表現上述包含SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQ ID No.84,以及SEQ ID No.92或其上述變異胺基酸序列的肽的表現載體。
本發明還涉及根據本發明所述的方法所製備的活化細胞毒性T淋巴細胞(CTL),可選擇性地識別異常表現含有根據本發明所述的胺基酸序列的多肽的細胞。
本發明還涉及在患者中殺死異常表現含有任何根據本發明所述的胺基酸序列的多肽的目標細胞的方法,包括根據本發明所述的方法給予患者有效數量的細胞毒性T淋巴細胞(CTL)。
本發明還涉及一種藥劑或藥劑生產所使用的任何上述肽、根據本發明所述的核酸、根據本發明所述的表現載體、根據本發明所述的細胞或根據本發明所述的活化細胞毒性T淋巴細胞。
本發明還涉及根據本發明所述的用途,其中所述藥劑為疫苗。
本發明還涉及根據本發明所述的用途,其中所述藥劑具有抗腫瘤活性。
本發明還涉及根據本發明所述的用途,其中癌細胞為肺癌、胃癌、胃腸癌、結直腸癌、胰腺癌或腎癌細胞,以及神經膠母細胞瘤。
本發明還涉及基於根據本發明所述的肽的特定標記蛋白和生物標記物,可用於肺癌的預後。
此外,本發明還涉及上述新型靶標用於癌症治療的用途。
本文所用的「抗體」是一個廣義術語,包括多株與單株抗體。除了完整的或「全」免疫球蛋白分子外,「抗體」這一術語也包括此類免疫球蛋白的片段或多聚體,或免疫球蛋白分子的人源化形式,只要其能產生本發明所期望的特性(例如肺癌標記物多肽的特異性結合、將毒素傳遞至肺癌標記物基因表現水準升高的肺癌細胞以及/或抑制肺癌標記物多肽的活性)。
本發明的抗體應盡可能購自市售途徑。本發明的抗體也可透過常用的方法來製備。本領域技術人員會知曉全長肺癌標記物多肽或其片段皆可用於生成本發明的肽。生成本發明的抗體所用的多肽可透過自然途徑部分或完全純化,也可透過重組DNA技術製得。
例如,編碼ABCA13、MMP12、DST、MXRA5、CDK4、HNRNPH、TANC2、1RNF213、SMYD3和SLC34A2或SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQ ID No.84或SEQ ID No.92的任何相關多肽的cDNA(或其片段)可在原核細胞(例如細菌)或真核細胞(例如酵母、昆蟲或哺乳動物細胞)中表現,其後可對重組蛋白進行純化,用於產生單株或多株抗體製品,該抗體可與本發明中用於產生抗體的肺癌標記物多肽特異性地結合。
具備當前技術水準的人員知曉,產生至少2組單株或多株抗體可最大程度的確保所得抗體具備其預定用途所(例如ELISA免疫組織化學、體內影像分析、免疫毒素治療)要求的特異性和親合力。可依據抗體的預定用途採用已知方法(例如ELISA、免疫組織化學、免疫治療等;有關抗體生成和檢測的更為具體的指導請參見Harlow and Lane,Antibodies:A Laboratory Manual,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.,1988,new 2nd edition2013等)對抗體的期望活性進行檢測。例如,可使用ELISA分析、Western印跡或免疫組織化學染色對福爾馬林固定的肺癌或冷凍組織切片進行抗體檢測。在初次體外表徵完成後,對計劃用於治療或體內診斷的抗體,應使用已知的臨床檢測方法進行檢測。
本文所用「單株抗體」這一術語系指從本質上同源的抗體群中獲取的抗體,即:該抗體群中的各抗體除了可能的少量天然突變外是完全相同的。本文中單株抗體具體還包括「嵌合」抗體,該抗體中的一部分重鏈和/或輕鏈與從特定物種獲取的或屬於特定的抗體類別或子類別的抗體的相應序列同一或同源,而剩餘的鏈與從另一物種獲取的或屬於另一的抗體類別或子類別 的抗體(以及此抗體的片段)的相應序列同一或同源,只要該抗體可表現期望的抗腫瘤活性(美國專利編號4816567,以完整引用形式併入本文)。
本發明的單株抗體可使用雜交瘤方法製備。採用雜交瘤方法時,通常用免疫劑對小鼠或其它適當的宿主細胞進行免疫,以使淋巴細胞生成或可以生成可與該免疫劑特異性結合的抗體。或者可以對淋巴細胞進行體外免疫。
單株抗體也可透過重組DNA方法(例如美國專利編號4816567所描述的方法)製得。編碼本發明的單株抗體的DNA可用傳統的操作進行分離和測序(例如使用可與編碼鼠抗體重鏈和輕鏈的基因相結合的寡核苷酸探針)。
體外方法也適用於製備單價抗體。可使用本領域已知的常規方法將抗體分解為其片段(特別是Fab片段)。例如可用番木瓜蛋白酶進行分解。1994年12月22日發表的WO 94/29348以及美國專利編號4342566均描述了番木瓜蛋白酶分解的示例。番木瓜蛋白酶分解抗體通常產生兩個完全相同的抗原結合片段(稱為Fab片段,各含一個單抗原結合位點)以及一個殘留Fe片段。胃蛋白酶處理可產生一個包含2個抗原結合位點且可與抗原進行交聯的片段。
抗體片段(無論是否加入其它序列)也可包含特定區域或特定胺基酸殘基的插入、缺失、取代或其它選定的修飾,只要與未修飾的抗體或抗體片段相比該片段的活性未被顯著改變或損傷即可。這些修飾可產生某些附加特性,例如移除/加入可成二硫鍵的胺基酸以延長其生物壽命或改變其分泌特徵等。任何情況下該抗體片段均應具備生物活性特性,例如結合活性以及對結合域結合的調控等。可透過蛋白特定區域中的突變發生然後通過量表 現以及所表現多肽的檢測來識別抗體的功能或活性區域。此類方法為本領域技術人員所熟知,可包含編碼抗體片段的核苷酸的特定位點的突變。
本發明的抗體還可包含人源化抗體或人體抗體。非人(例如鼠類)抗體的人源化形式可為嵌合免疫球蛋白、免疫球蛋白鏈或其片段(例如Fv、Fab、Fab'或抗體的其它抗原結合序列),包含源自非人免疫球蛋白的最小序列。人源化抗體包括人免疫球蛋白(受體抗體),其中受體的互補決定區(CDR)殘基被非人物種(供體抗體)(例如小鼠、大鼠、兔)的CDR中具有期望的特異性、親合力和能力的殘基所取代。某些情況下人免疫球蛋白的Fv框架(FR)殘基可被相應的非人殘基所取代。人源化抗體還可包含受體抗體、輸入的CDR或框架序列中均不存在的殘基。一般而言,人源化抗體包含至少1個(通常為2個)可變域,其中所有或幾乎所有的CDR區域均與一種非人免疫球蛋白的CDR區域相對應,且所有或幾乎所有FR區域均為人免疫球蛋白共有序列的FR區域。人源化抗體最好還包含免疫球蛋白(通常是人免疫球蛋白)恆定區(Fc)的至少一個片段。
非人抗體的人源化方法為本領域所熟知。一般而言,一種人源化抗體含有一個或多個胺基酸殘基,該殘基來源於非人途徑。此類非人胺基酸殘基常被稱為「輸入」殘基,通常來源於「輸入」可變域。本質上人源化通常可透過用相應的人體抗體序列取代啃齒類CDR或CDR序列來實現,由此產生的「人源化」抗體為嵌合抗體(美國專利編號4816567),其中一個小於完整的人可變域的序列被來自非人物種的相應序列所取代。實際操作中,人源化抗體通常為人抗體,其中某些CDR殘基(也有可能是某些FR殘基)被源於啃齒類抗體中同類位點的殘基所取代。
可使用即使不存在在內源性免疫球蛋白也可經免疫產生全部人抗體的轉基因動物(例如小鼠)。例如,嵌合與種系突變小鼠的抗體重鏈鏈接區基因的純合缺失可引發內源性抗體生成的完全抑制。而將人種系免疫球蛋白基因陣列轉移至上述種系突變小鼠中可在抗原激發下產生人抗體。人抗體也可在噬菌體呈現文庫中產生。
本發明的抗體較佳為透過醫藥上可接受載體給予受試者。通常在製劑中使用適當劑量的醫藥上可接受鹽類,以使該製劑呈等滲性。醫藥上可接受載體包括生理鹽水、Ringer溶液和葡萄糖溶液。溶液的pH較佳為約5至約8,更較佳為約7至約7.5。其它載體包括緩釋製劑(例如含抗體的固體疏水多聚物的半滲透性基質溶液),其基質為有形物,例如膜、脂質體或微粒。本領域的技術人員熟知,某些載體可為更較佳(依據給藥途徑和所給予的抗體濃度等)。
抗體可注射(例如靜脈注射、腹膜內注射、皮下注射、肌肉注射)給予受試者、患者或細胞,也可透過其它途徑(例如輸注),只要能保證抗體可以有效形式進入血流。抗體也可透過瘤內或瘤周途徑給藥,以產生局部和全身療效反應。局部或靜脈注射給藥為較佳。
抗體給藥劑量和日程可在當前技術範圍內按經驗確定。本領域的技術人員知曉抗體的給藥劑量會依據接受抗體的受試者類型、給藥途徑、所使用的抗體和其它藥物的特定類型等而有所不同。依據上述因素,常見的抗體單用每日劑量從約每日1μg/kg至最高100mg/kg體重不等,也可能更高。肺癌治療抗體給藥後可透過技術熟練的相關人員所熟知的多種方式評估治療用抗體的療效。例如可透過標準腫瘤影像技術對接受治療的受試者的腫瘤 大小、數量和/或分佈情況進行監測。若某一治療性抗體可停止腫瘤生長、引發腫瘤縮小並/或防止腫瘤新生的治療性抗體(相比於不進行抗體治療的正常病程),則可認為該抗體可有效治療肺癌。
由於本發明的非腫瘤標記物ABCA13和MMP12在肺癌細胞中高度表現且在正常細胞中表現水準極低,因此抑制ABCA13和MMP12表現或多肽活性可作為NSCLC治療或預防策略的一部分。
反義治療原則基於下列假設:基因表現的序列特異性抑制(透過轉錄或翻譯)可透過基因組DNA或mRNA與互補反義序列的細胞內雜交而實現。此雜交核酸雙鏈體的形成可干擾編碼目標腫瘤抗原的DNA的轉錄,或干擾目標腫瘤抗原mRNA的加工/轉運/翻譯和/或穩定性。
反義核酸可透過多種途徑來傳遞。例如反義寡核苷酸或反義RNA可以腫瘤細胞可攝取的形式直接給予(例如透過靜脈注射)受試者。或者可在體外將編碼反義RNA(或RNA片段)的病毒或質粒載體導入細胞中。也可透過有義序列引發反義效應;但表型變化的大小具有高度差異性。有效的反義治療所引發的表型變化可根據變化來評估,例如透過靶mRNA水準、靶蛋白水準和/或靶蛋白活性水準。
具體舉例而言,反義基因治療抑制肺部腫瘤標記物功能可透過直接給予受試者反義肺部腫瘤標記物RNA而實現。反義腫瘤標記物RNA可透過標準技術產生和分離,但也可在高效啟動子(例如T7啟動子)的調控下透過反義腫瘤標記物cDNA在體外即刻製備。反義腫瘤標記物RNA的細胞內給藥可透過以下任一直接核酸給藥方法來進行。
抑制ABCA13和MMP12功能的另一種基因治療策略涉及抗ABCA13、MMP12抗體或抗ABCA13、MMP12抗體片段的細胞內表現。例如可使編碼某一可與ABCA13、MMP12多肽特異性結合併抑制其生物活性的單株抗體的基因在核酸表現載體中受到特異性(例如組織或腫瘤特異性)基因調控序列的轉錄調控。隨後將該載體給予受試者以便肺癌細胞或其它細胞攝取,該細胞隨後分泌抗ABCA13、MMP12抗體,以此抑制ABCA13、MMP12多肽的活性。ABCA13、MMP12多肽宜位於胃癌細胞的細胞外表面中。
在上述將外源DNA給予或攝入受試者細胞(例如透過基因轉導或轉染)的方法中,本發明的核苷酸可為裸DNA形式,或者核苷酸可透過載體傳遞至細胞中,以抑制胃部腫瘤標記物蛋白的表現。該載體可為市售製劑,例如腺病毒載體(Quantum Biotechnologies,Inc.(Laval,Quebec,Canada)。可透過多種機制將核苷酸或載體傳遞至細胞中。例如可使用LIPOFECTIN、LIPOFECTAMINE(GIBCO-25 BRL,Inc.,Gaithersburg,Md.)、SUPERFECT(Qiagen,Inc.Hilden,Germany)和TRANSFECTAM(Promega Biotec,Inc.,Madison,Wis.)等市售脂質體製劑以及其它按照當前標準操作製備的脂質體進行脂質體傳遞。此外,本發明的核苷酸或載體可透過電穿孔法在體內傳遞,這一技術可購自Genetronics,Inc.(San Diego,Calif.),也可透過SONOPORATION儀器(ImaRx Pharmaceutical Corp.,Tucson,Arizona)來開展。
舉例而言,可透過病毒系統(例如可包裝一個重組逆轉錄病毒基因組的逆轉錄病毒載體系統)進行載體傳遞。重組逆轉錄病毒隨後可感染細胞,由此將可抑制ABCA13、MMP12表現的反義核苷酸傳遞至受染細胞中。當然, 將改變的核苷酸導入哺乳動物細胞的具體方法不限於使用逆轉錄病毒載體。這一步驟所普遍採用的其它技術包括使用腺病毒載體、腺病毒伴隨病毒(AAV)載體、慢病毒載體和假型病毒載體。也可使用物理傳導技術,例如脂質體傳遞以及受體介導的和其它細胞內吞機制。本發明可與上述或任何其它常用的基因轉移方法聯合使用。
抗體也可用於體內診斷檢測。一般而言,可用放射性核苷酸(例如111In、99Tc、14C、131I、3H、32P或35S)標記抗體,以使用免疫閃爍照相術進行腫瘤定位。在一實施方案中,抗體或其片段可與至少2個ABCA13、MMP12靶標的細胞外域相結合,其親合力值(Kd)低於1 x 10μM。
診斷抗體可用適於透過多種影像方法檢測的探針來標記。探針檢測方法包括但不限於螢光、自然光、共聚焦和電子顯微鏡;磁共振成像和磁共振波譜;螢光鏡透視檢查、計算機斷層攝影和正電子發射斷層攝影。適用的探針包括但不限於螢光素、羅丹明、曙紅和其它螢光基團、放射性同位素、金、釓或其它鑭系元素、順磁離子、氟-18和其它正電子發射放射性核素。此外,上述探針可為雙功能或多功能探針,且可用上述多種方法來檢測。探針與抗體的結合方法包括探針共價結合、探針摻合入抗體、螯合物共價結合引發的探針結合以及其它常用的技術。用於免疫組織化學檢測的病變組織樣本可為新鮮或冷凍樣本,也可為石蠟包埋樣本或防腐劑(例如福爾馬林)固定樣本。固定或包埋切片樣本與標記的初級抗體或次級抗體相接觸,其中的抗體用於檢測ABCA13、MMP12蛋白的原位表現。
因此本發明提出一種從SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQ ID No.84和SEQ ID No.92或其變異序列組(與SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQ ID No.84和SEQ ID No.92為90%同源)中所選擇的序列所組成的肽,且上述序列或其變異序列可引發T細胞與上述肽的交叉反應。
本發明的肽具有與人主要組織相容性複合物(MHC)I類和/或II類分子相結合的能力。
在本發明中,「同源的」這一術語系指兩個胺基酸序列(即肽或多肽序列)之間的同一度(參見上文中的百分同一度)。上文所述「同源性」透過將兩個序列在最優條件下排列在需比較的序列之上來評定。此序列同源性可透過使用ClustalW等演算法來建立序列對比來計算。公共資料庫中提供了常用的序列分析軟件(體為Vector NTI,GENETYX)或其它分析工具。
技術熟練的人員有能力評估由特定的肽變異序列引發的T細胞是否可與肽本身交叉反應(Fong et al.,2001);(Zaremba et al.,1997;Colombetti et al.,2006;Appay et al.,2006)。
發明者所使用的特定胺基酸序列的「變異序列」是指一或兩個胺基酸殘基的側鏈發生改變(例如透過用另一天然胺基酸殘基的側鏈或其它的側鏈來取代該側鏈),但該肽仍可以與SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQ ID No.84以及SEQ ID No.92中特定胺基酸序列所組成的的肽基本相同的方式與HLA分子相結合。例如,某肽經修飾後至少可以維持(即使不能提高)與適當的MHC分子(例如HLA-A*02或-DR)的結合槽相反應和結合的能力,且至少可以維持(即使不能提高)與活化CTL的TCR相結合的能力。
上述CTL可與細胞進一步交叉反應,並可殺死表現包含本發明所定義的關聯肽的天然胺基酸序列的多肽。可從科學文獻(Rammensee et al.,1997)以及資料庫(Rammensee et al.,1999)推斷,HLA結合肽中的某些位置是典型的錨定殘基,可形成一個核心序列,該序列可裝配至HLA受體的結合基序。這一過程由組成結合槽的多肽鏈的極性、電子物理學特性、疏水性和空間特性所決定。由此本領域技術人員可透過維持已知的錨定殘基來修飾SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQ ID No.84和SEQ ID No.92所對應的胺基酸序列,並可確定此類變異序列是否可保持與MHC I或II類分子相結合的能力。本發明的變異序列可保留與活化CTL的TCR相結合的能力,後者可進一步與表現包含本發明所定義的關聯肽的天然胺基酸序列的多肽的細胞交叉反應並殺死該細胞。
基本不參與與T細胞受體相互反應的胺基酸殘可透過由另一胺基酸(其摻合基本不影響T細胞反應性且不消除與相關MHC的結合)取代來修飾。因此,處上述條件外,本發明的肽可能是任何肽(發明者使用該術語時同時包含寡肽和多肽),包含給定的胺基酸序列或其片段或變異序列。
Figure 109124799-A0101-12-0090-160
Figure 109124799-A0101-12-0091-161
Figure 109124799-A0101-12-0092-162
Figure 109124799-A0101-12-0093-163
Figure 109124799-A0101-12-0094-164
Figure 109124799-A0101-12-0095-165
較長的肽也可能適用。雖然MHC I類表型通常長度為8-11個胺基酸,但也有可能產生於包含實際表型的更長的肽或蛋白的加工。實際表型的側面殘基較佳為基本不影響實際表型暴露所需的蛋白水解裂解的殘基。
相應地,本發明也提出MHC I類表型的肽與變異序列,其中的肽或變異序列總長度為8至100個胺基酸(較佳為8至30個胺基酸,最佳為8至14個,即8、9、10、11、12、13或14個胺基酸,而II類結合肽的長度也可為15、16、17、18、19、20,21或33個胺基酸)。
當然,本發明的肽或變異序列有能力與人主要組織相容性複合物(MHC)I類分子相結合。肽或變異序列與MHC的結合可由已知的方法來檢測。
在本發明的一較佳實施方案中,此類肽由(或本質上由)SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQ ID No.84和SEQ ID No.92胺基酸序列所組成。
「本質上包含」意指本發明的肽以及SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQ ID No.84和SEQ ID No.92所對應的序列或其變異序列包含額外的N或C末端胺基酸延伸,而該延伸對形成MHC分子表型所需的肽表型並非必需。
儘管如此,此類延伸有可能對根據本發明所述的肽有效導入細胞起到重要作用。在本發明的一較佳實施方案中,肽可以是一種融合蛋白,例如含80個N末端胺基酸的HLA-DR抗原相關性不變鏈(p33,後面簡稱「Ii」)(衍生自NCBI,GenBank登記號X00497)。在其它融合中,本發明的肽可與 本文所述的抗體(或其功能基團)(具體為抗體的序列)相融合,以此特異性的針對上述抗體,例如樹突細胞特異性抗體。
此外,肽或變異序列可被進一步修飾以提高穩定性和/或與MHC分子的結合強度,以此激發更強的免疫反應。肽序列的此種優化方法為該技術領域所常用,例如導入反向肽鍵或非肽鍵。
在反向肽鍵中,胺基酸殘基不透過肽的(-CO-NH-)鍵合而連接,而是透過反向的肽鍵。此類逆向擬肽可由本領域已知的方法所製得,例如Meziere et al(1997)J.Immunol.159,3230-3237(透過引用併入本文)中所描述的方法。這一方法包括製備含有骨架(而不是側鏈方向)變化的假肽。Meziere等人(1997)表明,上述假肽有助於MHC結合與輔助T細胞反應。包含NH-CO鍵而不是CO-NH肽鍵的逆向肽對於蛋白水解更為耐抗。
非肽鍵包括-CH2-NH、-CH2S-、-CH2CH2-、-CH=CH-、-COCH2-、-CH(OH)CH2-、-CH2SO-等。美國專利4897445提出了一種多肽鏈中非肽鍵(-CH2-NH)固相合成的方法,其中涉及透過標準操作合成多肽,以及在NaCNBH3的參與下透過胺基醛與胺基酸反應來合成非肽鍵。
組成上述序列的肽可透過在其胺基和/或羧基端加入化學基團來合成,以此提高肽的穩定性、生物利用度和/或對肽的親合力。例如可在肽的胺基末端加入芐氧羰基、丹醯基或t-叔丁氧羥基等疏水基團。類似地,可在肽的胺基末端加入乙醯基或9-芴甲氧羰基。此外,可在肽的羧基末端加入疏水基團、t-叔丁氧羥基或胺基。
本發明的肽也可透過改變其空間構型來合成。例如可使用肽的一種或多種胺基酸殘基的D-異構體(而不是常見的L-異構體)。此外,本發明的肽的至少一個胺基酸殘基可被一種常見的非天然胺基酸殘基所取代。此類改變可提高本發明的肽的穩定性、生物利用度和/或結合活性。
類似地,本發明的肽或變異序列可透過與特定的胺基酸進行化學反應(在該肽的合成前後均可)來修飾。此類修飾的實施例為本領域所熟知,例如,在R.Lundblad所著的《Chemical Reagents for Protein Modification》(3rd ed.CRC Press,2005)(透過引用併入本文)對其進行了匯總。胺基酸的化學修飾包括但不限於醯化、胍基化、賴胺酸吡哆酸化、還原烷基化、用2,4,6-三硝基苯磺酸(TNBS)進行胺基的三硝基苯基化、羧基的醯胺修飾、透過半胱胺酸氧化為磺丙胺酸進行巰烴基修飾、汞衍生物的形成、與其它巰基化合物形成混合二硫化物、與馬來醯亞胺反應、碘乙酸或碘乙酸胺引起的羧甲基化以及鹼性環境下氰酸鹽所引起的胺基甲醯化。有關蛋白化學修飾的更多方法,技術人員參考了《蛋白質科學最新技術方案》第15章,Eds.Coligan et al.(John Wiley and Sons NY 1995-2000)。
簡而言之,蛋白中精氨醯殘基等的修飾一般基於鄰近的二碳化合物(例如苯乙二醛、2,3-丁二酮和1,2-環己二酮)以形成加成物。另例如甲基乙二醛與精胺酸殘基的反應。半胱胺酸不經其它親核位點(例如賴胺酸和組胺酸)的伴隨修飾也可進行修飾,因此可用於半胱胺酸修飾的試劑數量眾多。Sigma-Aldrich等公司的網站(http://www.sigma-aldrich.com)提供了特定試劑的資訊。
蛋白二硫鍵的選擇性還原也較常見。二硫鍵可在生物藥物的熱處理過程中形成和氧化。
Woodward試劑K可用於修飾特定的谷胺酸殘基。N-(3-(二甲氨)丙基)-N’-碳醯二亞胺可用於形成賴胺酸殘基和谷胺酸殘基間的分子內交聯。
例如,焦碳酸二乙酯試劑可用於修飾蛋白中的組胺酸殘基。組胺酸也可用4-羥基-2-壬烯醛來修飾。
賴胺酸殘基和其他α-胺基的反應有助於肽結合至蛋白/肽表面或與蛋白/肽的交聯等。賴胺酸是聚(乙烯)乙二醇的附著位點,且是蛋白糖基化的主要修飾位點。
蛋白中的甲硫胺酸殘基可用碘乙醯胺、溴乙胺和氯胺-T來修飾。
四硝基甲烷和N-乙醯基咪唑可用於酪胺酸殘基的修飾。二酪胺酸形成所產生的交聯可透過過氧化氫/銅離子來實現。
近期的色胺酸修飾研究使用了N-溴代琥珀醯亞胺、2-羥基-5-硝基溴化苄或3-溴基-3-甲基-2-(2-硝苯巰基)-3H-吲哚(BPNS-甲基吲哚)。
治療用蛋白和肽成功的PEG修飾常涉及循環半衰期的延長。蛋白與戊二醛、丙烯酸聚乙二醇以及甲醛的交聯用於水凝膠的製備。常透過氰酸鉀氨的甲醯化來實現變應原化學修飾用於免疫治療。
本發明實施方案中較佳採用經過肽修飾的或包含非肽鍵的肽或變異體。一般而言,肽或變異體(至少為胺基酸殘基間存在肽鏈合的肽或變異體)可透過Fmoc-聚醯胺固相肽合成法(如Lu等人(1981年)和本文的參考文獻所述)來合成。9-芴甲氧羰基(Fmoc)可為時序N胺基提供保護。使用N,N-二甲基醯胺的20%呱啶溶液來進行這一高度鹼基不穩定的保護基團的重複裂解。側鏈功能的保護形式可為其丁基醚(絲胺酸、蘇胺酸和酪胺酸的情況)、丁基酯(谷胺酸和天冬胺酸的情況)、叔丁氧羥基衍生物(賴胺酸和組胺酸的情況)、三苯甲基衍生物(半胱胺酸的情況)以及4-甲氧基-2,3,6-三甲基苯磺基衍生物(精胺酸的情況)。若谷胺酸或天冬胺酸為C末端殘基,則使用4,4'-二甲基聯苄來保護其側鏈氨功能。固相支持的基礎是由三種單體構成的聚二甲基-丙基醯胺聚合物:二甲基丙基醯胺(骨架單體)、二丙烯醯乙烯二胺(交聯劑)和丙烯醯肌胺酸甲基酯(功能化劑)。所使用的肽-樹脂可裂解連接劑為酸敏感性4-羥甲基-苯氧乙酸衍生物。加入的所有胺基酸衍生物皆為其預形成的對稱酐衍生物,天冬胺酸和谷胺酸除外(其加成使用反向N,N-二環己基-碳化二亞胺/羥基苯並三唑介導的耦合程序)。所有耦合和脫保護反應均透過茚三酮、三硝基苯磺酸或異荷素檢測程序來檢測。合成完成後,肽被從樹脂支承中裂解開,同時使用含50%清除劑混合物的95%三氟乙酸處理來移除側鏈保護基團。常用的清除劑包括乙二硫醇、苯酚、苯甲醚和水,具體的選擇取決於所合成肽的組成胺基酸。也有可能將固相和溶液相方法聯合用於肽合成(參見(Bruckdorfer et al.,2004)及其所引用的參考文獻等)。
三氟乙酸透過真空蒸發來去除,隨後用二乙醚來碾製粗肽。留存的清除劑採用單一萃取程序來去除,隨後將液相凍乾製成不含清除劑的粗肽。肽合 成所需的製劑基本可購自Calbiochem-Novabiochem(UK)Ltd,Nottingham NG7 2QJ,UK等。
可採用以下一種或多種技術組合進行純化:再結晶、分子篩析色譜、離子交換色譜、疏水作用色譜和(通常為)反相高效液相色譜(採用乙腈/水梯度分離)。
可使用薄層色譜、電泳(特別是毛細管電泳)、固體萃取(CSPE)、反相高效液相色譜、酸水解後的胺基酸分析、快原子轟擊(FAB)質譜分析,以及MALDI和ESI-Q-TOF質譜分析。
本發明的另一方面提出一種可編碼本發明肽或肽變異體的核苷酸(例如多聚核苷酸)。此多聚核苷酸可為DNA、cDNA、PNA、RNA或其組合等,單鏈或雙鏈皆可,或為多聚核苷酸的天然或穩定化形式,例如包含一個磷硫醯骨架的多聚肽。只要能編碼所對應的肽,該多聚核苷酸包不包含內含子皆可。當然,多聚核苷酸僅可編碼含由天然肽鍵結合的天然胺基酸殘基的肽。本發明的另一方面提出一種可表現根據本發明所述的多肽表現載體。
已開發了多種方法以使多聚核苷酸(特別是DNA)與載體相連接,例如透過互補性粘性末端。舉例而言,可在插入載體DNA的DNA片段中加入互補性同聚體區。該載體和DNA片段隨後透過互補性同聚體尾之間的氫鍵來連接,以形成重組DNA分子。
包含一個或多個限制位點的合成連接子是DNA片段與載體相連接的另一種方法。包含多個限制位點的合成連接子可從多個管道購得,例如International Biotechnologies Inc.New Haven,CN,USA。
編碼本發明的多肽的DNA的理想修飾方法之一使用聚合酶鏈式反應,如(Saiki et al.,1988)所述。該方法可用於將DNA導入合適的載體(例如合適限制位點的操作),也可用於在常見的技術中進行DNA修飾。若使用病毒載體,則宜使用痘病毒或腺病毒載體。
DNA(逆轉錄病毒載體則為RNA)可在合適的宿主中表現以產生含有本發明的肽或變異序列的多肽。因此可使用編碼本發明的肽或變異序列的DNA,按已知的技術(根據本文作適當改進)來構建表現載體,該載體隨後用於轉化合適的宿主細胞使其表現和產生本發明的多肽。上述技術包括美國專利號4440859、4530901、4582800、4677063、4678751、4704362、4710463、4757006、4766075和4810648所述的技術。
編碼本發明化合物的組成多肽的DNA(逆轉錄病毒載體則為RNA)可與許多其它DNA序列相結合以導入合適的宿主。伴侶DNA的選擇取決於宿主的性質、將DNA導入宿主的方式以及是否需要附加型維持或整合。
一般而言,DNA以適當的方向和按正確的表現閱讀框插入表現載體(例如質粒)。如有必要,可將DNA與適當的轉錄或翻譯調控核苷酸序列(由期望的宿主所識別)相連接,雖然此類調控通常在表現載體中已存在。隨後使用標準技術將載體導入宿主中。一般而言,並非所有宿主都會被載體所轉化。因此有必要選擇被成功轉化的宿主細胞。有一種選擇技術涉及使用 任何必要的控制元素將一個DNA序列摻入表現載體中,該DNA序列可編碼轉化細胞的可選擇特徵(例如抗生素耐抗)。
此類可選擇特徵的基因也可位於用於共轉化期望的宿主細胞的另一載體中。
經本發明的重組DNA轉化的宿主細胞隨後按本文的指導在適當的條件下(該條件為技術熟練人員所熟知)培養足夠長時間以實現多肽的表現,隨後可回收此多肽。
已知有多種表現系統,包括細菌(例如大腸桿菌、枯草桿菌)、酵母(例如啤酒酵母)、絲狀真菌(例如麯黴屬)、植物細胞、動物細胞和昆蟲細胞。該係統較佳為哺乳動物細胞,例如ATCC細胞生物學收集庫中的CHO細胞。
用於組成型表現的典型哺乳動物細胞載體質粒包含帶有一個適當的poly A尾和抗性標記的CMV或SV40啟動子,例如新黴素。例如可購自Pharmacia,Piscataway,NJ,USA的pSVL。誘導性哺乳動物表現載體包括pMSG(也可購自Pharmacia)。有用的酵母質粒載體包括pRS403-406和pRS413-416,通常可購自Stratagene Cloning Systems,La Jolla,CA 92037,USA。pRS403、pRS404、pRS405和pRS406質粒屬於酵母整合型質粒(YIP),摻入了酵母可選擇標記HIS3、TRP1、LEU2和URA3。pRS413-416質粒屬於酵母中心粒質粒(Ycp)。含CMV啟動子的載體(例如Sigma-Aldrich供應的載體)可產生順勢或穩定表現、細胞質表現或分泌,以及多種FLAG、3xFLAG、 c-myc或MAT組合形式的N末端或C末端標記。此類融合蛋白可實現重組蛋白的檢測、純化和分析。雙標記融合可使檢測具有靈活性。
強效人巨細胞病毒(CMV)啟動子調控區可使COS細胞中組成蛋白的表現水準高達1mg/L。而較弱細胞系的蛋白水準通常為約0.1mg/L。存在SV40複製起點可在SV40複製受納COS細胞中引發高水準的DNA複製。CMV載體可含有細菌細胞中的pMB1(pBR322衍生物)複製起點、細菌中氨苄西林耐抗選擇的b-內醯胺酶基因、hGH polyA以及f1起點。胰蛋白酶原前前導(PPT)序列的載體可將FLAG融合蛋白的分泌導入培養基中,以使用抗-FLAG抗體、樹脂和板進行純化。其它載體和表現系統使用該技術領域常用的多種宿主細胞。
在另一實施方案中,本發明的兩種或兩種以上的肽或肽變異體被編碼並相繼表現(類似於「線珠」(beads on a string)結構)。由此可將肽或肽變異體與連接胺基酸的延伸基團(例如LLLLLL)相連接或融合,其間沒有任何其它肽時,也可相連接。
本發明還涉及一種由本發明的一種多聚核苷酸載體結構所轉化的宿主細胞。該宿主細胞可為原核或真核細胞。某些情況下,細菌細胞是優先使用的原核宿主細胞,通常是大腸桿菌株,例如大腸桿菌DH5菌種,可購自Bethesda Research Laboratories Inc.,Bethesda,MD,USA以及RR1菌種,可供自美國典型培養物保藏中心(ATCC)(Rockville,MD,USA(No ATCC 31343)。優先選用的真核宿主細胞包括酵母、昆蟲和哺乳動物細胞,較佳為脊椎動物細胞,例如小鼠、大鼠、猴或人成纖維細胞或結腸細胞系。酵母宿主細胞包括YPH499、YPH500和YPH501,通常可購自Stratagene Cloning Systems, La Jolla,CA 92037,USA。優先選用的哺乳動物宿主細胞包括中國倉鼠卵巢(CHO)細胞(ATCC CCL61細胞系)、NIH瑞士小鼠胚胎細胞NIH/3T3(ATCC CRL 1658)、猴腎源COS-1細胞(ATCC CRL 1650細胞系)以及293細胞(人真核腎臟細胞)。優先使用的昆蟲細胞包括Sf9細胞(可透過桿狀病毒表現載體轉染)。合適的表現用宿主細胞的選擇的綜述可參見Paulina Balbás和Argelia Lorence的教科書《分子生物技術重組基因表現的方法:綜述與方案》第2版第1部分,ISBN 978-1-58829-262-9,以及為熟練人員所知的其它文獻。
透過本發明的DNA結構對宿主細胞進行適當的轉化可透過常見的方法來實現,該方法通常依賴於所使用的載體類型。原核宿主細胞轉化方面的資訊可參見Cohen et al(1972)Proc.Natl.Acad.Sci.USA 69,2110以及Sambrook et al(1989)Molecular Cloning,A Laboratory Manual,Cold Spring Harbor Labor-atory,Cold Spring Harbor,NY等。酵母細胞的轉化方法參見Sherman et al(1986)Methods In Yeast Genetics,A Laboratory Manual,Cold Spring Harbor,NY。Beggs(1978)Nature 275,104-109所提供的方法同樣有用。脊椎動物細胞方面,可用於轉染該類細胞的試劑(例如磷酸鈣和DEAE-乙基葡聚糖或脂質體製劑)可購自Stratagene Cloning Systems或Life Technologies Inc.,Gaithersburg,MD 20877,USA。電穿孔也可用於細胞的轉化和/或轉染,該方法常用於酵母細胞、細菌細胞、昆蟲細胞和脊椎動物細胞轉化技術中。
成功轉化的細胞(即包含本發明的DNA結構的細胞)可透過常見的PCR等技術來識別,或者可使用抗體來檢測上清液中的蛋白質。
有價值的是,本發明的某些宿主細胞(例如細菌、酵母和昆蟲細胞)可用於本發明的肽的製備。但其它宿主細胞也可能用於某些治療方法。例如,抗原呈現細胞(例如樹突細胞)有可能用於表現本發明的肽,此肽可能被載入適當的MHC分子中。因此本發明提出根據本發明所述的包含胺基酸的宿主細胞或表現載體。
在一個較佳的實施方案中,宿主細胞是抗原呈現細胞,特別是樹突細胞或抗原呈現細胞。載入了含攝護腺酸性磷酸酶(PAP)的重組融合蛋白的APC(Sipuleucel-T)目前正研究用於治療攝護腺癌(Small et al.,2006;Rini et al.,2006)。
本發明的另一方面還包括一種肽或其變異體的製備方法,該方法包括培養宿主細胞以及將肽從宿主細胞或其培養基中分離。
在另一實施方案中,本發明的肽、核酸或表現載體被用於藥物中。例如,可將肽或其變異體製成靜脈(i.v.)注射劑、皮下(s.c.)注射劑、皮內(i.d.)注射劑、腹膜內(i.p.)注射劑和肌肉(i.m.)注射劑。優先選用的肽注射方法包括皮下、皮內、腹膜內和靜脈注射。優先選用的DNA注射方法包括皮內、肌肉、皮下、腹膜內和靜脈注射。所給予的肽或DNA劑量可為50μg至1.5mg之間(較佳為125μg至500μg之間),具體取決於肽或DNA類型。該劑量範圍在既往試驗中曾被成功使用(Walter et al Nature Medicine 18,1254-1261(2012))。
本發明的另一方面包括一種體外製備活化T細胞的方法,該方法涉及將體外T細胞與負載抗原的人MHC分子相接觸,該分子在合適的抗原呈現細胞表面 表現足夠長的時間以抗原特異性地啟動T細胞,其中所述抗原為根據本發明所述的肽。宜採用抗原呈現細胞使用足量的抗原。
理想情況下哺乳動物應缺少或具備降低的TAP肽轉運體水準或功能。缺少TAP肽轉運體的合適細胞包括T2、RMA-S和果蠅細胞。TAP是與抗原加工相關的轉運體。
可攜帶缺失T2細胞系的人體肽參見美國典型培養物保藏中心(ATCC)(12301 Parklawn Drive,Rockville,Maryland 20852,USA)目錄號CRL 1992;Drosophila細胞系Schneider細胞系2可參見ATCC目錄號CRL 19863;小鼠RMA-S細胞系詳情參見Karre et al 1985。
理想情況下,轉染前的宿主細胞應基本不表現MHC I類分子。優先使用一種刺激細胞,該細胞可表現對於T細胞共刺激信號(例如B7.1、B7.2、ICAM-1和LFA 3)具有重要作用的分子。許多MHC I類分子和共刺激分子的核酸序列可參見公共的GenBank和EMBL資料庫。
若將MHC I類表型用作抗原,則T細胞為CD8陽性CTL。
若將抗原呈現細胞轉染用於表現上述表型,則該細胞宜包含可表現含SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQ ID No.84和SEQ ID No.92序列的肽(或其變異胺基酸序列)的表現載體。
另有數種方法可用於體外製備CTL。例如Peoples等人(1995)和Kawakami等人(1992)所描述的方法使用自體腫瘤浸潤淋巴細胞來製備CTL。Plebanski 等人(1995)使用自體外周血淋巴細胞(PLB)製備CTL。Jochmus等人(1997)描述了透過用肽或多肽衝擊樹突細胞(或透過重組病毒感染)來製備自體CTL。Hill等人(1995)和Jerome等人(1993)使用B細胞製備自體CTL。此外,經肽或多肽衝擊或經重組病毒感染的巨噬細胞也可用於製備自體CTL。S.Walter等人(2003)描述了使用人工抗原呈現細胞(aAPC)來體外激發T細胞,這種方法也適用於製備抗首選肽的T細胞。該研究中透過將預成MHC/肽複合物耦合至聚苯乙烯粒子(微珠)表面(透過生物素/抗生蛋白鏈黴素生物化學機制)來產生aAPC。該系統可實現aAPC中MHC密度的精準控制,由此可從血液樣本中選擇性地高效激發高親合力或低親合力的抗原特異性T細胞反應。除MHC/肽複合物外,aAPC還應攜帶其它具有共刺激活性的蛋白(耦合至aAPC表面),例如抗CD28抗體。此外,此類aAPC系統常需要加入適當的可溶性因子,例如白介素-12等細胞介素。
也可使用同種異體細胞來製備T細胞,其中一種方法詳述於WO 97/26328(透過引用而成為本文的一部分)。舉例而言,除Drosophila細胞和T2細胞外,其它細胞也可用於抗原呈現,例如CHO細胞、感染桿狀病毒的昆蟲細胞、細菌、酵母、感染牛痘的目標細胞等。此外還可使用植物病毒(參見Porta et al(1994)等),該文獻描述了將豇豆花葉病毒開發為外源性肽呈現的高產系統。
靶標為本發明的肽的活化T細胞可用於治療。因此本發明的另一方面提出可透過本發明上述方法獲得的活化T細胞。
透過上述方法製得的活化T細胞可選擇性地識別異常表現一種含有SEQ ID No.1至SEQ ID No.92(較佳為SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQ ID No.84和SEQ ID No.92)胺基酸序列的多肽的細胞。
較佳情況是,T細胞透過其TCR與HLA/肽複合物相互反應(例如結合)來識別細胞。T細胞可用於一種目標細胞殺死方法,其中患者的目標細胞異常表現含本發明胺基酸序列的多肽,且患者接受有效數量的活化T細胞。患者接受的T細胞可來源於患者自身並透過上述方法活化(即為自體T細胞)。該T細胞也可並非來自患者自身而是來自另一個體。當然,該個體較佳為健康個體。發明者所用「健康個體」系指個體的總體健康狀況良好,較佳為具有完備的免疫系統,更較佳為未患有易於檢測或發現的疾病。
在體內,根據本發明所述的CD8陽性T細胞的目標細胞可為腫瘤細胞(某些情況下表現MHC II類)和/或腫瘤(腫瘤細胞)周圍的間質細胞(某些情況下也可表現MHC II類;(Dengjel et al.,2006))。
本發明的T細胞可用作治療組分中的活性成分。因此本發明還提出一種目標細胞殺死方法,其中患者的目標細胞異常表現含本發明胺基酸序列的多肽,且患者接受有效數量的活化T細胞(如上文所定義)。
發明者使用「異常表現」系指多肽相比於正常表現水準過量表現,或在腫瘤中表現的基因在腫瘤組織標本中沉默。發明者使用「過量表現」系指多肽的表現水準至少為正常組織中的1.2倍,較佳為正常組織中的至少2倍,更較佳為至少5倍或10倍。
T細胞可透過本領已知的技術方法制得,例如上文所述方法。
T細胞的所謂過繼性轉移方法為常見的技術方法。其綜述可參見(Gattinoni et al.,2006)和(Morgan et al.,2006)。
本發明的任何分子(即肽、核苷酸、抗體、表現載體、細胞、活化CTL、T細胞受體或其編碼核苷酸)均可用於治療特徵為細胞逃脫免疫反應的疾病。因此本發明的任何分子均可能用作藥劑或用於藥劑生產。上述分子可單獨使用或與本發明的其它分子或已知的分子結合使用。
較佳情況是,本發明的藥劑是一種疫苗。該疫苗可直接給予患者的病變器官或透過皮內、肌肉、皮下、腹膜內和靜脈全身給藥;或離體作用於源自患者的細胞或人細胞系中,隨後將該細胞或細胞系給予患者;或在體外作用於源自患者的免疫細胞亞群,隨後將該免疫細胞再次給予患者。若在體外給予細胞核苷酸,則將細胞轉染以共表現免疫刺激細胞介素(例如白介素2)可能有所幫助。所用的肽可為基本純淨或與免疫刺激輔劑(見下文)聯合使用,或透過合適的傳遞系統(例如脂質體)來給藥。肽也可與合適的載體(例如鑰孔戚血藍素或甘露聚糖)相結合(參見WO 95/18145和Longenecker,1993)。肽也可進行標記,可為融合蛋白,也可為雜交分子。根據本發明所述的序列所編碼的肽預期可刺激CD4或CD8 T細胞,但刺激CD8 CTL在CD4輔助T細胞的協助下更為高效。因此,對於刺激CD8 CTL的MHC I類表型而言,使用融合伴侶或雜交分子剖面可適當產生刺激CD4陽性T細胞的表型。CD4和CD8刺激表型在相關技術領域常見,包括本發明所提出的表型。
一方面,疫苗包含SEQ ID No.1至SEQ ID No.92至少一個胺基酸序列所編碼的肽,以及至少一種附加肽,較佳為2至50個附加肽,更較佳為2至25個,再更較佳為2至20個,最佳為2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17或18個。肽可源自一種或多種特異性TAA,且可與MHC I類分子相結合。
另一方面,疫苗包含SEQ ID No.1至SEQ ID No.65、SEQ ID No.76至SEQ ID No.84和SEQ ID No.92至少一個胺基酸序列所編碼的肽,以及至少一種附加肽,較佳為2至50個附加肽,更較佳為2至25個,再更較佳為2至20個,最佳為2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17或18個。肽可源自一種或多種特異性TAA,且可與MHC I類分子相結合。
多肽可為基本純淨,或包含在合適的載體或傳遞系統中。核苷酸可為DNA、cDNA、PNA、RNA或DNA、cDNA、PNA、RNA的組合(Pascolo et al.,2005)。多聚核苷酸疫苗易於製備,但此類載體誘導免疫反應的作用方式尚不完全清楚。合適的載體和傳遞系統包括病毒DNA和/或RNA,例如腺病毒、牛痘病毒、逆轉錄病毒、皰疹病毒、腺相關病毒系統,或含有多種病毒原件的雜交體。非病毒傳遞系統包括陽離子脂質和陽離子多聚體,此類系統為DNA傳遞技術所常見。也可使用物理傳遞方法,例如「基因槍」。由核酸編碼的肽可為融合蛋白,例如含有刺激T細胞相應CDR的T細胞的表型的融合蛋白。
本發明的藥劑也可含有一種或多種輔劑。輔劑是指可非特異性地提高或增強對抗原的免疫反應(例如CTL和輔助T(TH)細胞所介導的免疫反應)的物質,因此可認為對本發明的藥劑有用。合適的輔劑包括但不限於1018 ISS、 鋁鹽、AMPLIVAX®、AS15、BCG、CP-870,893、CpG7909、CyaA,dSLIM、鞭毛蛋白或鞭毛蛋白的TLR5配體、FLT3配體、GM-CSF、IC30、IC31、咪喹莫特(ALDARA®)、瑞奎莫特、ImuFact IMP321、IL-2、IL-13、IL-21等白介素、干擾素-α或干擾素-β或其PEG化衍生物、IS貼劑、ISS、ISCOMATRIX、ISCOMs、JuvImmune®、LipoVac、MALP2、MF59、單磷酸類脂A、山小星蒜鹼IMS 1312、山小星蒜鹼ISA 206、山小星蒜鹼ISA 50V、山小星蒜鹼ISA-51、油包水和水包油乳劑、OK-432、OM-174、OM-197-MP-EC、ONTAK、OspA、PepTel®載體系統、聚羥基乙酸共聚物[PLG]和葡聚糖微利、乳鐵傳遞蛋白SRL172、病毒小體或其它病毒樣顆粒、YF-17D、VEGF陷阱、R848、β-葡聚糖、Pam3Cys、Aquila QS21促病毒素(衍生自皂角苷)、分支桿菌提取物和合成細菌細胞壁模擬物,以及其它專利輔劑例如Ribi's Detox、Quil或Superfos。較佳佐劑如:Freund或GM-CSF。針對樹突細胞的數種免疫輔劑(例如MF59)及其製劑曾有報告(Allison and Krummel,1995;Allison and Krummel,1995)。此外可使用細胞介素。已發現數種細胞介素可直接影響樹突細胞遷移至淋巴組織(例如TNF-),由此加速樹突細胞成熟為T淋巴細胞高效抗原呈現細胞(例如GM-CSF、IL-1和IL-4)(美國專利編號5849589,特別以完整引用形式併入本文)並起到免疫輔劑的作用(例如IL-12、IL-15、IL-23、IL-7、IFN-α、IFN-β)(Gabrilovich,1996)。
也有報告稱CpG免疫刺激性寡核苷酸可增強疫苗中輔劑的作用。不受理論約束,CpG寡核苷酸可透過Toll樣受體(TLR)(主要是TLR9)產生啟動先天(非被動性)免疫系統。CpG觸發的TLR9活化可增強對一系列抗原的抗原特異性體液性或細胞性反應,包括肽或蛋白抗原、活病毒或死病毒、樹突細胞疫苗、自體細胞疫苗以及預防性和治療性疫苗中的多糖結合物。更重 要的是,該活化可促進樹突細胞成熟和分化,引發TH1細胞活化和強細胞毒性T淋巴細胞(CTL)生成的增多(即使不存在CD4 T細胞的協助)。即使存在通常促進TH2偏倚的不完全弗氏佐劑(IFA),TLR9刺激所引發的TH1偏倚仍可以維持。CpG寡核苷酸與其它輔劑聯合給藥時或在微粒、毫微粒、脂質乳劑或類似製劑中可產生更高的輔助活性,這對於效力相對較弱的抗原引發較強的反應尤為必要。CpG寡核苷酸還可加速免疫反應並確保抗原劑量降低約2個數量級,其所產生的抗體反應與不使用CpG的某些試驗中的全劑量疫苗相當(Krieg,2006)。美國6406705 B1號專利描述了CpG寡核苷酸、非核苷酸輔劑和抗原聯合使用以引發抗原特異性免疫反應。一種CpG TLR9拮抗劑為Mologen公司(德國柏林)的dSLIM(雙幹環免疫調節劑),這是本發明醫藥組成物的較佳成分。也可使用其它TLR結合分子,例如RNA結合性TLR7、TLR8和/或TLR9。
其它有用的輔劑還包括但不限於化學修飾的CpGs(例如CpR,Idera)、dsRNA類似物(例如聚(I:C))及其衍生物(例如AmpliGen®、Hiltonol®、聚(ICLC)、聚(IC-R)、聚(I:C12U))、非CpG細菌DNA或RNA,以及免疫活性小分子和抗體,例如環磷醯胺、舒尼替尼、貝伐單抗®、西樂葆、NCX-4016、昔多芬、他達拉非、伐地那非、索拉非尼、替莫唑胺、馱瑞塞爾、XL-999、CP-547632、帕唑帕尼、VEGF陷阱、ZD2171、AZD2171、抗-CTLA4、其它針對免疫系統關鍵結構的抗體(例如抗-CD40、抗-TGFβ、抗-TNFα受體)以及SC58175(可起到治療作用並/或用作輔劑)。本領域技術人員無需過度進行不當實驗就很容易確定本發明中有用的佐劑和添加劑的數量和濃度。
優先選用的輔劑包括咪喹莫特、瑞奎莫特、GM-CSF、環磷醯胺、舒尼替尼、貝伐單抗、干擾素-α、CpG寡核苷酸及衍生物、聚(I:C)和衍生物、RNA、昔多芬以及含有PLG或病毒小體的顆粒劑型。
在一個較佳的實施方案中,本發明的藥物組成中的賦形劑選自一組集落刺激因子,例如粒細胞-巨噬細胞集落刺激因子(GM-CSF,沙漠司亭)、環磷醯胺、咪喹莫特、瑞奎莫特和干擾素-α。
在一個較佳的實施方案中,本發明的藥物組成中的賦形劑選自一組集落刺激因子,例如粒細胞-巨噬細胞集落刺激因子(GM-CSF,沙漠司亭)、環磷醯胺、咪喹莫特和瑞奎莫特。
在根據本發明的醫藥組成物的一個較佳實施方案中,輔劑為環磷醯胺、咪喹莫特或瑞奎莫特。
更為優先使用的輔劑為山小星蒜鹼MS 1312、山小星蒜鹼ISA 206、山小星蒜鹼ISA 50V、山小星蒜鹼ISA-51、聚-ICLC(Hiltonol®)以及抗-CD40 mAB或上述輔劑的組合物。
這一組成用於經腸給藥,例如皮下、皮內、肌肉或口服給藥。為方便給藥,肽或其它分子溶解或混懸於醫藥上可接受、較佳為液體的載體中。此外,醫藥組成物可包含賦形劑(例如緩衝劑、黏合劑、爆炸劑、稀釋劑、增味劑、潤滑劑等)。肽也可與免疫刺激物質(例如細胞介素)聯合給藥。此醫藥組成物可用賦形劑的更廣泛的列表可參見A.Kibbe,Handbook of Pharmaceutical Excipients,3rd Ed.,2000,American Pharmaceutical Association and pharmaceutical press等。此組合物可用於腺瘤樣或癌性疾病的預防和/或治療。典型的製劑可參見EP2113253等。
儘管如此,根據本發明的肽的數量和物理化學性質,需進行進一步研究以產生肽的特定組合製劑,特別是含超過20個肽、穩定期超過12至18個月的組合製劑。
本發明提出一種可用於治療癌症的藥劑,特別是非小細胞肺癌、胃癌、腎細胞癌、結腸癌、腺癌、攝護腺癌、良性腫瘤和惡性黑素瘤。
本發明還涉及下列藥盒:
(a)包含上述醫藥組成物的包裝,可為溶液或凍乾劑型;
(b)(非必需)包含凍乾製劑的稀釋劑或復溶溶液的次級包裝;
(c)(非必需)(i)溶液使用或(ii)凍乾製劑復溶和/或使用說明書。
該藥盒還可包含(iii)緩衝劑、(iv)稀釋劑、(v)過濾器、(vi)針頭或(v)注射器中的一種或多種。包裝較佳為藥瓶、西林瓶、注射器或是試管,可為多用途包裝。醫藥組成物較佳為凍乾製劑。
本發明的藥物包裝宜包含本發明的凍乾製劑(帶有合適的包裝及其復溶和/使用說明書)。合適的包裝包括藥瓶、西林瓶(例如雙腔西林瓶)、注射器(例如雙腔注射器)和試管。理想情況下藥盒和/或包裝應在包裝上或包裝中加入復溶和/或使用說明。例如,可在標籤中註明應將凍乾製劑復溶至上述肽濃度。可在標籤中進一步註明該製劑可用於或預定用於皮下給藥。
存放製劑的包裝可為多用途西林瓶,以便進行復溶製劑的重複給藥(例如2-6次給藥)。藥盒中可包含另一裝有適當稀釋劑(例如碳酸氫鈉溶液)的包裝。
將稀釋劑和復溶製劑混合後所得的最終復溶製劑中的肽濃度較佳為至少0.15mg/mL/肽(=75μg)且不超過3mg/mL/肽(=1500μg)。藥盒中還可包含其它銷售和使用者方面的材料,包括其它緩衝劑、稀釋劑、過濾器、針頭、注射器和包含使用說明的說明書。
本發明的藥盒可為根據本發明所述醫藥組成物製劑的單一包裝,含有或不含有其它成分(例如其它化合物或這些化合物的醫藥組成物)皆可,也可為每一成分提供獨立的包裝。
理想情況下,本發明的藥盒包含本發明的一種製劑,用於與另一化合物(例如輔劑(GM-CSF等)、化療藥物、天然製品、激素或拮抗劑、抗血管生成劑或血管生成抑制劑、凋亡誘導劑或螯合劑)或其醫藥組成物聯合給藥。在患者給藥前,藥盒的成分可為預混合,也可為每一成分提供獨立包裝。藥盒的成分可為一種或多種液體溶液,較佳為水性溶液,更較佳為無菌水性溶液。藥盒成分也可為固體,可透過加入適當的溶劑來轉換為液體,該溶劑宜保存在另一獨立包裝中。
治療藥盒的包裝可為西林瓶、試管、細頸瓶、藥瓶、注射器或包封固體或液體的任何其它裝置。通常情況下,若存在不止一種成分,則藥盒會包含另一西林瓶或其它包裝,以便於分開給藥。藥盒也可包含另一包裝用於存放醫藥上可接受液體。理想情況下,治療藥盒應包含一種裝置(例如一個 或多個針頭、注射器、滴眼管、移液管等),用於該藥盒組分中本發明藥物的給藥。
本製劑允許用任何可接受的途徑(例如口服(腸內)、鼻內、眼內、皮下、皮內、肌肉、靜脈或經皮給藥)進行肽的給藥。優先使用皮下給藥,皮內給藥最宜使用輸注泵。
由於本發明的肽分離自NSCLC,因此本發明的藥劑較佳用於治療NSCLC。在一個較佳實施方案中,由於源自ABCA13和MMP12的本發明的肽分離自NSCLC,因此本發明的藥劑宜用於治療NSCLC。
序列為SEQ ID Nos.78至92的肽分離自Merkel細胞癌,因此可用於治療Merkel細胞癌。
現將在以下示例(描述其優先使用的實施方案)仲介紹本發明,但不限於這些示例。出於本發明的目的,所有參考文獻均以完整引用形式併入本文。
圖1:原發腫瘤樣本NSCLC898中ABCA13-001的呈現情況:ABC13-001典型質譜圖。對從NSCLC樣本898洗脫的肽池進行NanoESI-LCMS。m/z 543.8318±0.001 Da,z=2的質譜圖呈現保留時間為86.36min的肽峰。B)質譜圖中86.36min處的檢測峰代表MS譜中的m/z 543.8318信號。C)nanoESI-LCMS試驗中特定保留時間處所記錄的m/z 543.8318選定前體的碰撞衰變質譜證實NSCLC898腫瘤樣本中存在ABCA13-001。D)記錄了合成 型ABCA13-001參考肽的裂解譜並與C中所生成的天然TUMP裂解譜相比較,以進行序列驗證。
圖2:選定蛋白在正常組織和21份肺癌樣本中的表現譜
a)ABCA13(Probeset ID:1553605_a_at)
b)MMP12(Probeset ID:204580_at)
圖3:選定HLA I類分子的呈現譜。測算了每種肽的表現譜,給出樣本平均表現量以及重複檢測方差。譜中將相關的腫瘤樣本與正常組織樣本(基線)相並列。
a)ABCA13-001
b)DST-001
c)MXRA5-001
圖4:I類TUMAPs肽特異性體外免疫原性的典型結果。特異性CD8+T細胞用連接兩種不同螢光色素的HLA多聚體來染色。點狀圖代表刺激肽的MHC多聚體雙陽性肽群(左圖)以及相應的陰性對照刺激(右圖)。
圖5:POSTN-002和MMP12-002對所研究的HLA單倍型的結合特性。圖示為POSTN-002和MMP12-002對7種接受分析的HLA-DR單倍型中的5種的結合評分。
圖6:HLA-POSTN-002和MMP12-002複合物在37℃下放置24h的穩定性:圖示為帶有相應HLA分子的完整HLA-POSTN-002和HLA-MMP12-002複合物在37℃下放置24h後的結合評分百分比。
圖7:II類ICS分析中疫苗誘導的對CEA-006的典型CD4 T細胞反應。體外致敏後,對36-031號患者的PBMCs進行分析以檢測時間點池V8/EOS處CD4 T細胞對CEA-006(上圖)與模擬物(下圖)的反應。細胞用相應的肽刺激,並分別用細胞活力、抗CD3、抗CD-8、抗CD4和效應標記物(從右至左:CD154,TNF-α,IFN-γ,IL-2,IL-10)來染色。
圖8:多種II類肽的免疫原性。圖示為使用ICS檢測的對5種II類肽的免疫反應率(16名患者為IMA950肽,71名患者為IMA910肽)。
實施例 實施例1: 細胞表面呈現的腫瘤相關性肽的鑒定與定量分析 組織樣本
患者腫瘤樣本由University of Heidelberg,Heidelberg,Germany提供。術前所有患者均給予了書面知情同意。手術結束後立即將組織在液氮中急速冷凍並保存於-80℃下,直至TUMAPs的分離。
從組織樣本中分離HLA肽
按照一種略有改動的方案(Falk,K.,1991;Seeger,F.H.T.,1999),透過固態組織的免疫沉澱從急速冷凍樣本獲取HLA肽池,該方案使用HLA-A*02特異性抗體BB7.2、HLA-A、-B、C-特異性抗體W6/32、CNBr活化的瓊脂糖、酸處理以及超濾。
方法
採用反相色譜(Acquity UPLC system,Waters)依據其疏水性對獲取的HLA肽池進行分離,並用LTQ-軌道阱雜交質譜儀(ThermoElectron)(帶有ESI源)對洗脫肽進行分析。肽池直接載入燒結二氧化矽微毛細管分析柱(75μm i.d. x 250mm),填充劑為1.7μm C18反相材料(Waters),流速為400nL/min。隨後以300nL/min的流速進行從10%至33% B的二步二元梯度洗脫180min以分離肽。該梯度包括溶劑A(0.1%甲酸水溶液)和溶劑B(0.1%甲酸乙腈溶液)。採用包金玻璃柱(PicoTip,New Objective)來導入nanoESi源。LTQ-軌道阱質譜儀的操作採用資料依賴模式中的TOP5策略。簡言之,在軌道阱中進行高質量準確度的全掃描以啟動掃描週期(R=30 000),隨後依然在軌道阱中對含量最高的5種前體離子進行MS/MS掃描(R=7500)。採用SEQUEST和其它人工對照物進行串聯質譜解析。透過將所生成的天然肽斷裂譜與合成型同一序列參考肽的斷裂譜相對比來確認所識別的肽序列。圖1為腫瘤組織中MHC I類相關肽ABCA13-001在UPLC系統中的典型圖譜及其洗脫圖譜。
使用離子計數進行了無標記相對LC-MS定量分析(即LC-MS特徵的提取和分析)(Mueller et al.2007a)。該方法假定肽的LC-MS信號面積與其在樣本中的含量相關。隨後透過電荷狀態去卷積和保留時間校正對所提取的特徵進行了進一步處理(Mueller et al.2007b;Sturm et al.2008)。最後將所有LC-MS特徵與序列鑒定結果交叉參考,以將不同樣本和組織的定量資料與肽呈現譜相結合。考慮到重複檢測中的技術和生物變異性,根據中心趨勢對定量資料作雙層正態化。因此識別的每種肽均可與定量資料相關聯,以實現樣本和組織間的相對定量分析。此外,從候選肽獲取的所有定量資料均作人工檢查以確保資料一致性,並核實自動分析的準確性。測算了每 種肽的表現譜,給出了樣本平均表現量以及重複檢測方差。該圖譜將相關腫瘤樣本與正常組織樣本(基線)相並列。
典型過表呈現肽的呈現譜見圖3。
實施例2 本發明肽編碼基因的表現譜測定
不是所有可透過MHC分子識別為在腫瘤細胞表面呈現的肽都適用於免疫治療,其原因是此類肽中的大部分源自由眾多細胞類型所表現的正常細胞蛋白。此類肽中僅有極少數與腫瘤相關並有可能誘發對其源腫瘤具有高度識別特異性的T細胞。為明確此類的肽並盡量降低疫苗引起的自體免疫風險,發明者重點關注源自在腫瘤細胞中過量表現(相比於多數正常組織)的蛋白的肽。
理想的肽應源自相關腫瘤中所獨有的且不存在於其它任何組織中的蛋白。為明確表現譜與理想表現譜相近的基因所衍生的肽,將所識別的肽分別與其來源蛋白和基因相並列,並生成此類基因的表現譜。
RNA來源和製備
手術切除組織標本由University of Heidelberg,Heidelberg,Germany(參見實施例1)提供。術前所有患者均給予了書面知情同意。手術結束後立即將腫瘤組織標本在液氮中急速冷凍,隨後使用研缽和研棒在液氮環境中進行勻化。使用TRI試劑(Ambion,Darmstadt,Germany)從上述樣本中製備總RNA, 隨後用RNeasy(QIAGEN,Hilden,Germany)進行RNA純化;上述方法均按照製造商的說明來進行。
健康人體組織總RNA購自Ambion,Huntingdon,UK;Clontech,Heidelberg,Germany;Stratagene,Amsterdam,Netherlands;BioChain,Hayward,CA,USA。將來自多個個體(2到123個個體)的RNA進行混合以使來自各個體的RNA比重相同。
採用RNA 6000 Pico LabChip試劑盒(Agilent),用Agilent 2100生物分析儀(Agilent,Waldbronn,Germany)對所有RNA樣本進行定性和定量分析。
微陣列試驗
所有腫瘤和正常組織RNA樣本的基因表現分析均使用Affymetrix人基因組(HG)U133A或HG-U133 Plus 2.0寡核苷酸微陣列(Affymetrix,Santa Clara,CA,USA)。所有步驟均按照Affymetrix的說明書開展。簡言之,按照說明書所述,使用SuperScript RTII(Invitrogen)和寡-dT-T7引物(MWG Biotech,Ebersberg,Germany)從5-8μg總RNA合成雙鏈cDNA。使用生物陣列高產RNA轉錄標記試劑盒(ENZO Diagnostics,Inc.,Farmingdale,NY,USA)(針對U133A陣列)或GeneChip IVT標記試劑盒(Affymetrix)(針對U133 Plus 2.0陣列)進行體外轉錄,隨後使用抗生蛋白鏈黴素-藻紅蛋白以及生物素化抗-抗生蛋白鏈黴素抗體(Molecular Probes,Leiden,Netherlands)進行cRNA鏈斷裂、雜交和染色。隨後用Agilent 2500A基因陣列掃描儀(U133A)或Affymetrix基因晶片掃描儀3000(U133 Plus 2.0)進行圖像掃描,並用GCOS軟件(Affymetrix)(所有參數均為默認設定)進行資料分析。使用了 Affymetrix提供的100個管家基因。使用軟件所提供的信號對數比計算相對表現值,並將正常腎臟樣本值任意設定為1.0。
在非小細胞肺癌中高度過量表現或獨特表現的本發明的源基因的典型表現譜見圖2。
實施例4 MHC I類呈現肽對NSCLC的體外免疫原性
為獲得本發明TUMAP的免疫原性資訊,我們使用體外T細胞啟動分析進行研究,採用負載肽/MHC複合物的人工抗原呈現細胞(aAPCs)對CD8+ T細胞進行反復刺激。透過此方法我們明確了本發明迄今為止對9種HLA-A*0201限制性TUMAPs的免疫原性,表明此類肽為T細胞表型,且在人體中存在其CD8+前體T細胞(表4)。
CD8+ T細胞的體外啟動
為使用負載肽-MHC複合物(pMHC)和抗-CD28抗體的人工抗原呈現細胞進行體外刺激,我們首先使用CD8微珠(Miltenyi Biotec,Bergisch-Gladbach,Germany)進行正向選擇以從新鮮HLA-A*02白細胞分離產物(來自Transfusion Medicine Tuebingen,Germany的給予知情同意的健康供者)中分離CD8+ T細胞。
分離的CD8+淋巴細胞或PBMCs持續培養直至用於含RPMI-GutaMax的T細胞培養基(TCM)(Invitrogen,Karlsruhe,Germany)中,該培養基加入了10%熱失活人AB血清(PAN-Biotech,Aidenbach,Germany)、100U/ml 青黴素/100μg/ml鏈黴素(Cambrex,Cologne,Germany)、1mM丙酮酸鈉(CC Pro,Oberdorla,Germany)、20μg/ml慶大黴素(Cambrex)。另在此步驟中向TCM中加入2.5ng/ml IL-7(PromoCell,Heidelberg,Germany)和10U/ml IL-2(Novartis Pharma,Nürnberg,Germany)。
採用明確定義的體外系統(每種刺激條件使用4種不同的pMHC分子,每種讀出條件使用8種pMHC分子)進行pMHC/抗-CD28塗珠的生成、T細胞刺激和讀出。
aAPC載入和細胞讀數所用的所有pMHC複合物均由UV誘導的MHC配體交換來產生(Rodenko et al.,2006,有微小的改動)。為測定透過交換所得的pMHC單體數量,我們依據(Rodenko et al.,2006)的方法進行了抗生蛋白鏈黴素夾心ELISA。
純化共刺激鼠IgG2a抗人CD28抗體9.3(Jung et al.,1987)使用生產商(Perbio,Bonn,Germany)推薦的硫代-N-羥基琥珀醯亞胺基生物素進行化學生物素化。所使用的微珠為5.6μm直徑抗生蛋白鏈黴素,塗有聚苯乙烯顆粒(Bangs Laboratories,Illinois,USA)。
陽性和陰性對照刺激所使用的pMHC分別為A*0201/MLA-001(從修飾的Melan-A/MART得到的肽ELAGIGILTV)和A*0201/DDX5-001(從DDX5得到的DDX5YLLPAIVHI)。
將800.000微珠/200μl塗佈於96孔板中(加入了4 x 12.5ng不同的生物素-pMHC),洗板後加入200μl的600ng生物素抗-CD28。在96孔板中,將 1x106 CD8+ T細胞與2x105沖洗所得塗佈微珠在37℃下共孵育於200μl TCM(加入了5ng/ml IL-12(PromoCell))中3-4天,以此啟動刺激。隨後用加入了80U/ml IL-2的新鮮TCM取代一半的上述培養基,繼續在37℃下孵育3-4天。這一刺激循環共重複三次。對於pMHC多聚體讀數(每種條件使用8種不同的pMHC)採用二維組合編碼法(如既往文獻所述,僅作微小改動)(Andersen et al.,2012)使與5種不同的螢光色素相耦合。最後使用活/死近紅外染料(Invitrogen,Karlsruhe,Germany)、CD8-FITC單抗體克隆SK1(BD,Heidelberg,Germany)以及螢光pMHC多聚體進行多聚體分析。分析中使用帶有合適的鐳射與濾器的BD LSRII SORP細胞儀。肽特異性細胞數記為在總CD8+細胞中的百分比。使用FlowJo軟件(Tree Star,Oregon,USA)進行多聚體分析的評估。透過與陰性對照刺激相比較來檢測特異性多聚體+CD8+淋巴細胞的體外啟動。若體外刺激後至少一名健康供著的可評估體外刺激孔中存在特異性CD8+T細胞系(即該孔CD8+T細胞中至少1%為特異性多聚體+且特異性多聚體+細胞是陰性對照刺激中位值的至少10倍)。
NSCLC肽的體外免疫原性
受試HLA I類肽的體外免疫原性可透過肽特異性T細胞系的產生來表現。圖4為本發明的2種肽經TUMAP特異性多聚體染色後典型的流式細胞計量結果(另附相應的陰性對照結果)。本發明的25個肽的結果匯總於表5。
表5:本發明HLA I類肽的體外免疫原性本發明的肽的申請者開展的體外免疫原性試驗的典型結果。<20%=+;20%-49%=++;50%-70%=+++;以及>70%=++++
Figure 109124799-A0101-12-0126-19
Figure 109124799-A0101-12-0127-20
Figure 109124799-A0101-12-0128-21
實施例5 肽的合成
所有肽的合成均使用標準、公認的固相肽合成方法(使用Fmoc-策略)。透過預備的RP-HPLC進行純化後,透過離子交換程序結合生理相容性抗衡離子(例如三氟乙酸酯、乙酸酯、銨或氯化物)。
透過質譜法和RP-HPLC分析對各肽進行了鑒別和純度測定。離子交換程序後所得的肽為白色或類白色凍乾產物,純度為90%至99.7%。
所有TUMAPs的給藥形式均較佳為三氟乙酸鹽或乙酸鹽,也可能是其它鹽類。示例4中的測定使用肽的三氟乙酸鹽形式。
實施例6 UV-配體交換
採用體外啟動(priming)分析進一步檢測根據本發明所述疫苗的候選肽的免疫原性。該分析所需的各種肽-MHC複合物透過UV-配體交換產生,其中UV敏感肽透過UV輻射來解離,並與所分析的候選肽相交換。只有能有效結合併穩定肽-感受MHC分子的候選肽方可防止MHC複合物的解離。透過ELISA檢測穩定後的MHC複合物的輕鏈(β2m)來測定交換反應的產率。該分析方法基本依據Rodenko等人所述(Rodenko B,Toebes M,Hadrup SR,van Esch WJ,Molenaar AM,Schumacher TN,Ovaa H.Generation of pep-tide-MHC class I complexes through UV-mediated ligand exchange.Nat Protoc.2006;1(3):1120-32.)。
96孔MAXISorp板(NUNC)用2ug/ml抗生蛋白鏈黴素的PBS溶液在室溫下塗佈整夜,在37℃下沖洗30min,重複4次,並用含封閉液的2% BSA封閉 30min。以復性HLA-A*0201/MLA-001單體為標準品(涵蓋8-500ng/ml)。UV交換反應中的肽-MHC單體用封閉液稀釋100倍。樣本在37℃下孵育1h,沖洗4次,用結合了抗-β2m的2ug/ml HRP在37℃下孵育1h,再次沖洗,最後用TMB溶液進行檢測(用NH2SO4停流)。測定了450nm處的吸光度。
Figure 109124799-A0101-12-0130-22
Figure 109124799-A0101-12-0131-23
Figure 109124799-A0101-12-0132-24
Figure 109124799-A0101-12-0133-25
表現出高交換產率(即高於40%,較佳為高於50%,更較佳為高於70%,最佳為高於80%)的候選肽通常優先用於抗體或其片段以及/或T細胞受體 或其片段的生成和生產,原因是其對MHC分子具有足夠的親合力並可防止MHC複合物的解離。
實施例7 選定的MHC II類肽的結合與免疫活性
HLA II類蛋白可分為3個主要同種型,即HLA-DR、-DP和DQ,可由多種單倍型所編碼。多種α-和β-鏈的組合增加了任意人群中HLA II類蛋白的多樣性。因此選定的HLA II類TUMAP須可與多種不同的HLA-DR分子相結合(即表現出廣泛的結合能力),以此在相當大百分比的患者中引發有效的T細胞反應。
透過外部服務提供商的體外結合試驗評估了POSTN-002和MMP12-002與多種HLA-DR單倍型的廣泛結合以及所形成的的複合物的穩定性,如下文所述。
材料和方法 肽列表
Figure 109124799-A0101-12-0134-26
受試HLA-DR單倍型列表
根據在HLA-A*02和HLA-A*24陽性北美人群中的發生頻率選擇受試的7種HLA-DR單倍型(表7.1和7.2)
資料來源於對國家骨髓供著計劃中登記的135萬名經HLA分型的志願者的分析(Mori et al.,1997)。分析人群進一步分為以下人種組:白種美國人(N=997,193)、非裔美國人(N=110,057)、亞裔美國人(N=81,139)、拉丁裔美國人(N=100,128)和美洲印第安人(N=19,203)。
Figure 109124799-A0101-12-0135-27
Figure 109124799-A0101-12-0136-28
Figure 109124799-A0101-12-0136-29
Figure 109124799-A0101-12-0137-30
檢測原理
ProImmune REVEAL® MHC-肽結合分析可測定各候選肽與選定的HLA II類單倍型相結合併穩定HLA-肽複合物的能力。透過此方法將候選肽與特定的HLA II類蛋白在體外裝配。肽併入HLA分子的程度透過(復性程序完成後的)時間0點時裝配後的HLA-肽複合物中天然構象的存在或缺失來評定(所謂「裝配率」)。
候選肽與特定HLA分子的結合能力與一種已知的極強結合力肽(陽性對照)相比較,以計算相應的REVEAL® MHC-肽結合評分。陽性對照肽由ProImmune選擇並提供(依據此類肽對各HLA單倍型的使用經驗)。
除肽對特定HLA分子的親合力外,所形成的的HLA-肽複合物的長期穩定性也對產生免疫反應至關重要。為此將所形成的HLA-肽複合物在37℃下孵育24h以檢測其存在。隨後計算所形成的MHC-肽複合物在24h時的結合評分與復性後(即時間0點)的即刻結合評分的百分比,以此評估所形成的的MHC-肽複合物的穩定性。
結果
對POSTN-002和MMP12-002所作的REVEAL® MHC-肽結合分析表明,兩種肽均可與多種HLA單倍型相結合。在所研究的7種HLA單倍型中, POSTN-002可與其中的5種形成複合物,MMP12-002可與其中的4種形成複合物(圖5)。兩種肽均不與HLA-DR3和HLA-DR6結合。所測得的結合評分為陽性對照的0.02%至2.5%不等,且明顯高於非結合肽的評分。
對所形成的HLA-POSTN-002和HLA-MMP12-002複合物的穩定性分析表明,在所研究的7種HLA-肽複合物中,分別有3種和2種可在37℃下穩定24h(圖6)。
透過將肽的結合評分與已知具有免疫原性的肽的結合評分相比較,可推斷該肽的免疫原性(依據與HLA分子的結合能力)。因此本項比較選用了5種經充分研究確認具有免疫原性的肽。離體測定了免疫接種患者(使用胞內細胞介素染色(ICS)CD4體細胞)血液樣本中上述肽的免疫原性。
ICS檢測原則上透過效應功能來評估特異性T細胞的質量。因此體外培養外周血單核細胞(PBMC),隨後用待測肽、參考肽和陰性對照(此例為MOCK)進行再刺激。隨後將再刺激細胞染色產生FN-γ、TNF-α、IL-2和IL-10,並表現共刺激分子CD154。用流式細胞儀對相關細胞進行計數(圖7)。
免疫原性分析表明,16名患者透過IMA950肽(BIR-002和MET-005)免疫接種後產生了100%的免疫反應,而71名患者透過IMA910肽(CEA-006、TGFBI-004、MMP-001)免疫接種後產生了44%至86%的免疫反應。
為了將POSTN-002和MMP12-002結合評分與IMA910和IMA950肽的結合評分相比較,將所有肽按對所研究的各HLA-DR單倍型的結合評分結果列於表格中(表8.1、表8.2、表8.3、表8.4和表8.5)。
Figure 109124799-A0101-12-0139-31
Figure 109124799-A0101-12-0139-32
Figure 109124799-A0101-12-0140-33
Figure 109124799-A0101-12-0140-34
Figure 109124799-A0101-12-0140-35
Figure 109124799-A0101-12-0141-36
Figure 109124799-A0101-12-0141-37
POSTN-002和MMP12-002相比於其它已知具有免疫原性的II類肽的結合評分表明,兩種肽的結合能力多位於表的中下部(HLA-DR2除外)。兩種肽對HLA-DR2的結合能力位於表的上半部分,其中MMP12-002為結合能力最 強的候選肽。基於此分析,預期POSTN-002和MMP12-002這兩種肽定可誘導免疫反應。
引用的文獻 Reference List
Acuff HB, Sinnamon M, Fingleton B, Boone B, Levy SE, Chen X, Pozzi A, Carbone DP, Schwartz DR, Moin K, Sloane BF, Matrisian LM (2006). Analysis of host- and tumor-derived proteinases using a custom dual species microarray reveals a protective role for stromal matrix metalloproteinase-12 in non-small cell lung cancer. Cancer Res 66, 7968-7975.
Adhikary S, Marinoni F, Hock A, Hulleman E, Popov N, Beier R, Bernard S, Quarto M, Capra M, Goettig S, Kogel U, Scheffner M, Helin K, Eilers M (2005). The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation. Cell 123, 409-421.
Albig AR, Schiemarn WP (2005). Identification and characterization of regulator of G protein signaling 4 (RGS4) as a novel inhibitor of tubulogenesis: RGS4 inhibits mitogen-activated protein kinases and vascular endothelial growth factor signaling. Mol. Biol. Cell 16, 609-625.
Allison JP, Krummel MF (1995). The Yin and Yang of T cell costimulation. Science 270, 932-933.
An CH, Kim YR, Kim HS, Kim SS, Yoo NJ, Lee SH (2012). Frameshift mutations of vacuolar protein sorting genes in gastric and colorectal cancers with microsatellite instability. Hum. Pathol. 43, 40-47.
Appay V, Speiser DE, Rufer N, Reynard S, Barbey C, Cerottini JC, Leyvraz S, Pinilla C, Romero P (2006). Decreased specific CD8+ T cell cross-reactivity of antigen recognition following vaccination with Melan-A peptide. Eur. J Immunol. 36, 1805-1814.
Araki W, Takahashi-Sasaki N, Chui DH, Saito S, Takeda K, Shirotani K, Takahashi K, Murayama KS, Kametani F, Shiraishi H, Komano H, Tabira T (2008). A family of membrane proteins associated with presenilin expression and gamma-secretase function. FASEB J 22, 819-827.
Arenberg DA, Polverini PJ, Kunkel SL, Shanafelt A, Hesselgesser J, Horuk R, Strieter RM (1997). The role of CXC chemokines in the regulation of angiogenesis in non-small cell lung cancer. J Leukoc. Biol. 62, 554-562.
Asteriti IA, Rensen WM, Lindon C, Lavia P, Guarguaglini G (2010). The Aurora-A/TPX2 complex: a novel oncogenic holoenzyme? Biochim. Biophys. Acta 1806, 230-239.
Aylsworth A, Jiang SX, Desbois A, Hou ST (2009). Characterization of the role of full-length CRMP3 and its calpain-cleaved product in inhibiting microtubule polymerization and neurite outgrowth. Exp. Cell Res. 315, 2856-2868.
Badiglian FL, Oshima CT, De Oliveira LF, De Oliveira CH, De Sousa DR, Gomes TS, Goncalves WJ (2009). Canonical and noncanonical Wnt pathway: a comparison among normal ovary, benign ovarian tumor and ovarian cancer. Oncol Rep. 21, 313-320.
Bargo S, Raafat A, McCurdy D, Amirjazil I, Shu Y, Traicoff J, Plant J, Vonderhaar BK, Callahan R (2010). Transforming acidic coiled-coil protein-3 (Tacc3) acts as a negative regulator of Notch signaling through binding to CDC10/Ankyrin repeats. Biochem. Biophys. Res Commun. 400, 606-612.
Beckers A, Organe S, Timmermans L, Scheys K, Peeters A, Brusselmans K, Verhoeven G, Swinnen JV (2007). Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Cancer Res. 67, 8180-8187.
Beckmann RP, Mizzen LE, Welch WJ (1990). Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science 248, 850-854.
Behrens P, Brinkmann U, Fogt F, Wernert N, Wellmann A (2001). Implication of the proliferation and apoptosis associated CSE1L/CAS gene for breast cancer development. Anticancer Res. 21, 2413-2417.
Belaaouaj A, Kim KS, Shapiro SD (2000). Degradation of outer membrane protein A in Escherichia coli killing by neutrophil elastase. Science 289, 1185-1188.
Beljan PR, Durdov MG, Capkun V, Ivcevic V, Pavlovic A, Soljic V, Peric M (2012). IMP3 can predict aggressive behaviour of lung adenocarcinoma. Diagn. Pathol. 7, 165.
Benaglio P, McGee TL, Capelli LP, Harper S, Berson EL, Rivolta C (2011). Next generation sequencing of pooled samples reveals new SNRNP200 mutations associated with retinitis pigmentosa. Hum. Mutat. 32, E2246-E2258.
Bennett G, Sadlier D, Doran PP, Macmathuna P, Murray DW (2011). A functional and transcriptomic analysis of NET1 bioactivity in gastric cancer. BMC. Cancer 11, 50.
Bergner A, Kellner J, Tufman A, Huber RM (2009). Endoplasmic reticulum Ca2+-homeostasis is altered in Small and non-small Cell Lung Cancer cell lines. J Exp. Clin Cancer Res. 28, 25.
Bird AW, Hyman AA (2008). Building a spindle of the correct length in human cells requires the interaction between TPX2 and Aurora A. J Cell Biol. 182, 289-300.
Boni R, Wellmann A, Man YG, Hofbauer G, Brinkmann U (1999). Expression of the proliferation and apoptosis-associated CAS protein in benign and malignant cutaneous melanocytic lesions. Am. J Dermatopathol. 21, 125-128.
Brandt S, Ellwanger K, Beuter-Gunia C, Schuster M, Hausser A, Schmitz I, Beer-Hammer S (2010). SLy2 targets the nuclear SAP30/HDAC1 complex. Int. J Biochem. Cell Biol. 42, 1472-1481.
Brozic P, Turk S, Rizner TL, Gobec S (2011). Inhibitors of aldo-keto reductases AKR1C1-AKR1C4. Curr. Med. Chem. 18, 2554-2565.
Bruckdorfer T, Marder O, Albericio F (2004). From production of peptides in milligram amounts for research to multi-tons quantities for drugs of the future. Curr. Pharm. Biotechnol. 5, 29-43.
Brunsvig PF, Aamdal S, Gjertsen MK, Kvalheim G, Markowski-Grimsrud CJ, Sve I, Dyrhaug M, Trachsel S, Moller M, Eriksen JA, Gaudernack G (2006). Telomerase peptide vaccination: a phase I/II study in patients with non-small cell lung cancer. Cancer Immunol. Immunother. 55, 1553-1564.
Brusselmans K, De SE, Verhoeven G, Swinnen JV (2005). RNA interference-mediated silencing of the acetyl-CoA-carboxylase-alpha gene induces growth inhibition and apoptosis of prostate cancer cells. Cancer Res. 65, 6719-6725.
Brustmann H (2004). Expression of cellular apoptosis susceptibility protein in serous ovarian carcinoma: a clinicopathologic and immunohistochemical study. Gynecol. Oncol 92, 268-276.
Bukau B, Horwich AL (1998). The Hsp70 and Hsp60 chaperone machines. Cell 92, 351-366.
Byrns MC, Jin Y, Penning TM (2011). Inhibitors of type 5 17beta-hydroxysteroid dehydrogenase (AKR1C3): overview and structural insights. J Steroid Biochem. Mol. Biol. 125, 95-104.
Calabrese F, Lunardi F, Balestro E, Marulli G, Perissinotto E, Loy M, Nannini N, Valente M, Saetta M, Agostini C, Rea F (2012). Serpin B4 isoform overexpression is associated with aberrant epithelial proliferation and lung cancer in idiopathic pulmonary fibrosis. Pathology 44, 192-198.
Cao X, Coskun U, Rossle M, Buschhorn SB, Grzybek M, Dafforn TR, Lenoir M, Overduin M, Simons K (2009). Golgi protein FAPP2 tubulates membranes. Proc. Natl. Acad. Sci. U. S. A 106, 21121-21125.
Cataldo DD, Gueders MM, Rocks N, Sounni NE, Evrard B, Bartsch P, Louis R, Noel A, Foidart JM (2003). Pathogenic role of matrix metalloproteases and their inhibitors in asthma and chronic obstructive pulmonary disease and therapeutic relevance of matrix metalloproteases inhibitors. Cell Mol. Biol. (Noisy. -le-grand) 49, 875-884.
Chajes V, Cambot M, Moreau K, Lenoir GM, Joulin V (2006). Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival. Cancer Res. 66, 5287-5294.
Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T (2003). Regulation of matrix metalloproteinases: an overview. Mol. Cell Biochem. 253, 269-285.
Chami M, Gozuacik D, Saigo K, Capiod T, Falson P, Lecoeur H, Urashima T, Beckmann J, Gougeon ML, Claret M, le MM, Brechot C, Paterlini-Brechot P (2000). Hepatitis B virus-related insertional mutagenesis implicates SERCA1 gene in the control of apoptosis. Oncogene 19, 2877-2886.
Chandler S, Cossins J, Lury J, Wells G (1996). Macrophage metalloelastase degrades matrix and myelin proteins and processes a tumour necrosis factor-alpha fusion protein. Biochem. Biophys. Res Commun. 228, 421-429.
Chang CC, Tai CJ, Su TC, Shen KH, Lin SH, Yeh CM, Yeh KT, Lin YM, Jiang MC (2012). The prognostic significance of nuclear CSE1L in urinary bladder urothelial carcinomas. Ann. Diagn. Pathol. 16, 362-368.
Chanock SJ, Foster CB, Miller FW, O'Hanlon TP (2004). HLA-A, -B, -Cw, -DQA1 and -DRB1 Alleles in a Caucasian Population from Bethesda, USA. Hum. Immunol. 65, 1211-1223.
Chen CY, Fang HY, Chiou SH, Yi SE, Huang CY, Chiang SF, Chang HW, Lin TY, Chiang IP, Chow KC (2011a). Sumoylation of eukaryotic elongation factor 2 is vital for protein stability and anti-apoptotic activity in lung adenocarcinoma cells. Cancer Sci. 102, 1582-1589.
Chen CY, Fang HY, Chiou SH, Yi SE, Huang CY, Chiang SF, Chang HW, Lin TY, Chiang IP, Chow KC (201 1b). Sumoylation of eukaryotic elongation factor 2 is vital for protein stability and anti-apoptotic activity in lung adenocarcinoma cells. Cancer Sci. 102, 1582-1589.
Chen D, Brooks CL, Gu W (2006). ARF-BP1 as a potential therapeutic target. Br. J Cancer 94, 1555-1558.
Chen D, Kon N, Li M, Zhang W, Qin J, Gu W (2005a). ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 121, 1071-1083.
Chen DR, Chien SY, Kuo SJ, Teng YH, Tsai HT, Kuo JH, Chung JG (2010a). SLC34A2 as a novel marker for diagnosis and targeted therapy of breast cancer. Anticancer Res. 30, 4135-4140.
Chen J, Emara N, Solomides C, Parekh H, Simpkins H (2010b). Resistance to platinum-based chemotherapy in lung cancer cell lines. Cancer Chemother. Pharmacol. 66, 1103-1111.
Chen JF, Zhang LJ, Zhao AL, Wang Y, Wu N, Xiong HC, Liang Z, Li JY, Huang XF, Yang Y (2005b). [Abnormal expression of Thy-1 as a novel tumor marker in lung cancer and its prognostic significance]. Zhonghua Yi. Xue. Za Zhi. 85, 1921-1925.
Chen P, Wang SJ, Wang HB, Ren P, Wang XQ, Liu WG, Gu WL, Li DQ, Zhang TG, Zhou CJ (2012). The distribution of IGF2 and IMP3 in osteosarcoma and its relationship with angiogenesis. J Mol. Histol. 43, 63-70.
Cho NH, Hong KP, Hong SH, Kang S, Chung KY, Cho SH (2004). MMP expression profiling in recurred stage IB lung cancer. Oncogene 23, 845-851.
Choi KU, Yun JS, Lee IH, Heo SC, Shin SH, Jeon ES, Choi YJ, Suh DS, Yoon MS, Kim JH (2010). Lysophosphatidic acid-induced expression of periostin in stromal cells: Prognoistic relevance of periostin expression in epithelial ovarian cancer. Int J Cancer.
Chong IW, Chang MY, Chang HC, Yu YP, Sheu CC, Tsai JR, Hung JY, Chou SH, Tsai MS, Hwang JJ, Lin SR (2006). Great potential of a panel of multiple hMTH1, SPD, ITGA11 and COL11A1 markers for diagnosis of patients with non-small cell lung cancer. Oncol Rep. 16, 981-988.
Chouchane L, Ahmed SB, Baccouche S, Remadi S (1997). Polymorphism in the tumor necrosis factor-alpha promotor region and in the heat shock protein 70 genes associated with malignant tumors. Cancer 80, 1489-1496.
Chung FY, Cheng TL, Chang HJ, Chiu HH, Huang MY, Chang MS, Chen CC, Yang MJ, Wang JY, Lin SR (2010). Differential gene expression profile of MAGE family in taiwanese patients with colorectal cancer. J Surg. Oncol 102, 148-153.
Ciocca DR, Calderwood SK (2005). Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress. Chaperones. 10, 86-103.
Ciocca DR, Fuqua SA, Lock-Lim S, Toft DO, Welch WJ, McGuire WL (1992). Response of human breast cancer cells to heat shock and chemotherapeutic drugs. Cancer Res. 52, 3648-3654.
Claudio JO, Zhu YX, Benn SJ, Shukla AH, McGlade CJ, Fa lcioni N, Stewart AK (2001). HACS1 encodes a novel SH3-SAM adaptor protein differentially expressed in normal and malignant hematopoietic cells. Oncogene 20, 5373-5377.
Coe BP, Henderson LJ, Garnis C, Tsao MS, Gazdar AF, Minna J, Lam S, MacAulay C, Lam WL (2005). High-resolution chromosome arm 5p array CGH analysis of small cell lung carcinoma cell lines. Genes Chromosomes. Cancer 42, 308-313.
Colombetti S, Basso V, Mueller DL, Mondino A (2006). Prolonged TCR/CD28 engagement drives IL-2-independent T cell clonal expansion through signaling mediated by the mammalian target of rapamycin. J Immunol. 176, 2730-2738.
Confalonieri S, Quarto M, Goisis G, Nuciforo P, Donzelli M, Jodice G, Pelosi G, Viale G, Pece S, Di Fiore PP (2009). Alterations of ubiquitin ligases in human cancer and their association with the natural history of the tumor. Oncogene 28, 2959-2968.
Cooper CR, Graves B, Pruitt F, Chaib H, Lynch JE, Cox AK, Sequeria L, van Golen KL, Evans A, Czymmek K, Bullard RS, Donald CD, Sol-Church K, Gendernalik JD, Weksler B, Farach-Carson MC, Macoska JA, Sikes RA, Pienta KJ (2008). Novel surface expression of reticulocalbin 1 on bone endothelial cells and human prostate cancer cells is regulated by TNF-alpha. J Cell Biochem. 104, 2298-2309.
Cooper WA, Kohonen-Corish MR, McCaughan B, Kennedy C, Sutherland RL, Lee CS (2009). Expression and prognostic significance of cyclin B1 and cyclin A in non-small cell lung cancer. Histopathology 55, 28-36.
Cordes C, Munzel AK, Gorogh T, Leuschner I, Ambrosch P, Gottschlich S, Hoffmann M (2010). Prognostic relevance of the proliferation marker REPP86 for laryngeal cancer. Anticancer Res 30, 3541-3547.
Creighton CJ, Bromberg-White JL, Misek DE, Monsma DJ, Brichory F, Kuick R, Giordano TJ, Gao W, Omenn GS, Webb CP, Hanash SM (2005). Analysis of tumor-host interactions by gene expression profiling of lung adenocarcinoma xenografts identifies genes involved in tumor formation. Mol. Cancer Res 3, 119-129.
D'Angelo G, Rega LR, De Matteis MA (2012). Connecting vesicular transport with lipid synthesis: FAPP2. Biochim. Biophys. Acta 1821, 1089-1095.
Da Forno PD, Pringle JH, Hutchinson P, Osborn J, Huang Q, Potter L, Hancox RA, Fletcher A, Saldanha GS (2008). WNT5A expression increases during melanoma progression and correlates with outcome. Clin Cancer Res 14, 5825-5832.
de Souza Meyer EL, Dora JM, Wagner MS, Maia AL (2005). Decreased type 1 iodothyronine deiodinase expression might be an early and discrete event in thyroid cell dedifferentation towards papillary carcinoma. Clin Endocrinol. (Oxf) 62, 672-678.
Delpech B, Girard N, Bertrand P, Courel MN, Chauzy C, Delpech A (1997). Hyaluronan: fundamental principles and applications in cancer. J Intern. Med 242, 41-48.
Dengjel J, Nastke MD, Gouttefangeas C, Gitsioudis G, Schoor O, Altenberend F, Muller M, Kramer B, Missiou A, Sauter M, Hennenlotter J, Wernet D, Stenzl A, Rammensee HG, Klingel K, Stevanovic S (2006). Unexpected Abundance of HLA Class II Presented Peptides in Primary Renal Cell Carcinomas. Clin Cancer Res. 12, 4163-4170.
Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004). Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231-235.
Denys H, De WO, Nusgens B, Kong Y, Sciot R, Le AT, Van DK, Jadidizadeh A, Tejpar S, Mareel M, Alman B, Cassiman JJ (2004). Invasion and MMP expression profile in desmoid tumours. Br. J Cancer 90, 1443-1449.
Deshpande A, Sicinski P, Hinds PW (2005). Cyclins and cdks in development and cancer: a perspective. Oncogene 24, 2909-2915.
Dharmavaram RM, Huynh AI, Jimenez SA (1998). Characterization of human chondrocyte and fibroblast type XII collagen cDNAs. Matrix Biol. 16, 343-348.
Dobashi Y, Shoji M, Jiang SX, Kobayashi M, Kawakubo Y, Kameya T (1998). Active cyclin A-CDK2 complex, a possible critical factor for cell proliferation in human primary lung carcinomas. Am J Pathol. 153, 963-972.
Dolznig H, Schweifer N, Puri C, Kraut N, Rettig WJ, Kerjaschki D, Garin-Chesa P (2005). Characterization of cancer stroma markers: in silico analysis of an mRNA expression database for fibroblast activation protein and endosialin. Cancer Immun. 5, 10.
Dong-Dong L (2007). Small interfering RNA (siRNA) inhibited human liver cancer cell line SMMC7721 proliferation and tumorigenesis. Hepatogastroenterology 54, 1731-1735.
Drucker KL, Kitange GJ, Kollmeyer TM, Law ME, Passe S, Rynearson AL, Blair H, Soderberg CL, Morlan BW, Ballman KV, Giannini C, Jenkins RB (2009). Characterization and gene expression profiling in glioma cell lines with deletion of chromosome 19 before and after microcell-mediated restoration of normal human chromosome 19. Genes Chromosomes. Cancer 48, 854-864.
Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA (2002). Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298, 850-854.
Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Royal RE, Kammula U, White DE, Mavroukakis SA, Rogers LJ, Gracia GJ, Jones SA, Mangiameli DP, Pelletier MM, Gea-Banacloche J, Robinson MR, Berman DM, Filie AC, Abati A, Rosenberg SA (2005). Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol. 23, 2346-2357.
Ecimovic P, Murray D, Doran P, McDonald J, Lambert DG, Buggy DJ (2011). Direct effect of morphine on breast cancer cell ftnction in vitro: role of the NET1 gene. Br. J Anaesth. 107, 916-923.
Ehrmann J, Strakova N, Vrzalikova K, Hezova R, Kolar Z (2008). Expression of STATs and their inhibitors SOCS and PIAS in brain tumors. In vitro and in vivo study. Neoplasma 55, 482-487.
Fang WY, Liu TF, Xie WB, Yang XY, Wang S, Ren CP, Deng X, Liu QZ, Huang ZX, Li X, Ding YQ, Yao KT (2005). Reexploring the possible roles of some genes associated with nasopharyngeal carcinoma using microarray-based detection. Acta Biochim. Biophys. Sin. (Shanghai) 37, 541-546.
Feng CJ, Li HJ, Li JN, Lu YJ, Liao GQ (2008). Expression of Mcm7 and Cdc6 in oral squamous cell carcinoma and precancerous lesions. Anticancer Res 28, 3763-3769.
Findeis-Hosey JJ, Xu H (2012). Insulin-like growth factor II-messenger RNA-binding protein-3 and lung cancer. Biotech. Histochem. 87, 24-29.
Findeis-Hosey JJ, Yang Q, Spaulding BO, Wang HL, Xu H (2010). IMP3 expression is correlated with histologic grade of lung adenocarcinoma. Hum. Pathol. 41, 477-484.
Fong L, Hou Y, Rivas A, Benike C, Yuen A, Fisher GA, Davis MM, Engleman EG (2001). Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc. Natl. Acad. Sci. U. S. A 98, 8809-8814.
Fukuda T, Oyamada H, Isshiki T, Maeda M, Kusakabe T, Hozumi A, Yamaguchi T, Igarashi T, Hasegawa H, Seidoh T, Suzuki T (2007). Distribution and variable expression of secretory pathway protein reticulocalbin in normal human organs and non-neoplastic pathological conditions. J Histochem. Cytochem. 55, 335-345.
Gamero AM, Young MR, Mentor-Marcel R, Bobe G, Scarzello AJ, Wise J, Colburn NH (2010). STAT2 contributes to promotion of colorectal and skin carcinogenesis. Cancer Prev. Res. (Phila) 3, 495-504.
Gares SL, Pilarski LM (2000). Balancing thymocyte adhesion and motility: a functional linkage between beta1 integrins and the motility receptor RHAMM. Dev. Immunol 7, 209-225.
Garg M, Kanojia D, Saini S, Suri S, Gupta A, Surolia A, Suri A (2010a). Germ cell-specific heat shock protein 70-2 is expressed in cervical carcinoma and is involved in the growth, migration, and invasion of cervical cells. Cancer 116, 3785-3796.
Garg M, Kanojia D, Seth A, Kumar R, Gupta A, Surolia A, Suri A (2010b). Heat-shock protein 70-2 (HSP70-2) expression in bladder urothelial carcinoma is associated with tumour progression and promotes migration and invasion. Eur. J Cancer 46, 207-215.
Gattinoni L, Powell DJ, Jr., Rosenberg SA, Restifo NP (2006). Adoptive immunotherapy for cancer: building on success. Nat. Rev. Immunol. 6, 383-393.
Ghosh S, Albitar L, LeBaron R, Welch WR, Samimi G, Birrer MJ, Berkowitz RS, Mok SC (2010). Up-regulation of stromal versican expression in advanced stage serous ovarian cancer. Gynecol. Oncol 119, 114-120.
Gorrin Rivas MJ, Arii S, Furutani M, Harada T, Mizumoto M, Nishiyama H, Fujita J, Imamura M (1998). Expression of human macrophage metalloelastase gene in hepatocellular carcinoma: correlation with angiostatin generation and its clinical significance. Hepatology 28, 986-993.
Gorrin-Rivas MJ, Arii S, Mori A, Takeda Y, Mizumoto M, Furutani M, Irmamura M (2000). Implications of human macrophage metalloelastase and vascular endothelial growth factor gene expression in angiogenesis of hepatocellular carcinoma. Ann Surg 231, 67-73.
Graf F, Mosch B, Koehler L, Bergmann R, Wuest F, Pietzsch J (2010). Cyclin-dependent kinase 4/6 (cdk4/6) inhibitors: perspectives in cancer therapy and imaging. Mini. Rev. Med. Chem. 10, 527-539.
Greenfield JJ, High S (1999). The Sec61 complex is located in both the ER and the ER-Golgi intermediate compartment. J Cell Sci. 112 (Pt 10), 1477-1486.
Gregory KE, Keene DR, Tufa SF, Lunstrum GP, Morris NP (2001). Developmental distribution of collagen type XII in cartilage: association with articular cartilage and the growth plate. J Bone Miner. Res. 16, 2005-2016.
Grunda JM, Fiveash J, Palmer CA, Cantor A, Fathallah-Shaykh HM, Nabors LB, Johnson MR (2010). Rationally designed pharmacogenomic treatment using concurrent capecitabine and radiotherapy for glioblastoma; gene expression profiles associated with outcome. Clin Cancer Res. 16, 2890-2898.
Gruter P, Tabernero C, von KC, Schmitt C, Saavedra C, Bachi A, Wilm M, Felber BK, Izaurralde E (1998). TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol. Cell 1, 649-659.
Gudmundsson J, Sulem P, Gudbjartsson DF, Blondal T, Gylfason A, Agnarsson BA, Benediktsdottir KR, Magnusdottir DN, Orlygsdottir G, Ja kobsdottir M, Stacey SN, Sigurdsson A, Wahlfors T, Tammela T, Breyer JP, McReynolds KM, Bradley KM, Saez B, Godino J, Navarrete S, Fuertes F, Murillo L, Polo E, Aben KK, van Oort IM, Suarez BK, Helfand BT, Kan D, Zanon C, Frigge ML, Kristjansson K, Gulcher JR, Einarsson GV, Jonsson E, Catalona WJ, Mayordomo JI, Kiemeney LA, Smith JR, Schleutker J, Barkardottir RB, Kong A, Thorsteinsdottir U, Rafnar T, Stefansson K (2009). Genome-wide association and replication studies identify four variants associated with prostate cancer susceptibility. Nat Genet. 41, 1122-1126.
Guo Y, Hsu DK, Feng SL, Richards CM, Winkles JA (2001). Polypeptide growth factors and phorbol ester induce progressive ankylosis (ank) gene expression in murine and human fibroblasts. J Cell Biochem. 84, 27-38.
Hagemann T, Gunawan B, Schulz M, Fuzesi L, Binder C (2001). mRNA expression of matrix metalloproteases and their inhibitors differs in subtypes of renal cell carcinomas. Eur. J Cancer 37, 1839-1846.
Hamamoto R, Silva FP, Tsuge M, Nishidate T, Katagiri T, Nakamura Y, Furukawa Y (2006). Enhanced SMYD3 expression is essential for the growth of breast cancer cells. Cancer Sci. 97, 113-118.
Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN (2006). Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125, 887-901.
Han S, Nam J, Li Y, Kim S, Cho SH, Cho YS, Choi SY, Choi J, Han K, Kim Y, Na M, Kim H, Bae YC, Choi SY, Kim E (2010). Regulation of dendritic spines, spatial memory, and embryonic development by the TANC family of PSD-95-interacting proteins. J Neurosci. 30, 15102-15112.
Hartl FU, Hayer-Hartl M (2002). Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852-1858.
Hase ME, Yalamanchili P, Visa N (2006). The Drosophila heterogeneous nuclear ribonucleoprotein M protein, HRP59, regulates alternative splicing and controls the production of its own mRNA. J Biol. Chem. 281, 39135-39141.
Hernandez I, Moreno JL, Zandueta C, Montuenga L, Lecanda F (2010). Novel alternatively spliced ADAM8 isoforms contribute to the aggressive bone metastatic phenotype of lung cancer. Oncogene 29, 3758-3769.
Hitakomate E, Hood FE, Sanderson HS, Clarke PR (2010). The methylated N-terminal tail of RCC1 is required for stabilisation of its interaction with chromatin by Ran in live cells. BMC. Cell Biol. 11, 43.
Hjelmqvist L, Tuson M, Marfany G, Herrero E, Balcells S, Gonzalez-Duarte R (2002). ORMDL proteins are a conserved new family of endoplasmic reticulum membrane proteins. Genome Biol. 3, RESEARCH0027.
Ho CY, Wong CH, Li HY (2008). Perturbation of the chromosomal binding of RCC1, Mad2 and survivin causes spindle assembly defects and mitotic catastrophe. J Cell Biochem. 105, 835-846.
Hochrainer K, Mayer H, Baranyi U, Binder B, Lipp J, Kroismayr R (2005). The human HERC family of ubiquitin ligases: novel members, genomic organization, expression profiling, and evolutionary aspects. Genomics 85, 153-164.
Hofmann HS, Hansen G, Richter G, Taege C, Simm A, Silber RE, Burdach S (2005). Matrix metalloproteinase-12 expression correlates with local recurrence and metastatic disease in non-small cell lung cancer patients. Clin Cancer Res 11, 1086-1092.
Honda A, Valogne Y, Bou NM, Brechot C, Faivre J (2012). An intron-retaining splice variant of human cyclin A2, expressed in adult differentiated tissues, induces a G1/S cell cycle arrest in vitro. PLoS. ONE. 7, e39249.
Honore B, Baandrup U, Vorum H (2004). Heterogeneous nuclear ribonucleoproteins F and H/H' show differential expression in normal and selected cancer tissues. Exp. Cell Res. 294, 199-209.
Hood FE, Royle SJ (2011). Pulling it together: The mitotic function of TACC3. Bioarchitecture. 1, 105-109.
Hosokawa N, Sasaki T, Iemura S, Natsume T, Hara T, Mizushima N (2009). Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy. 5, 973-979.
Houghton AM, Grisolano JL, Baumann ML, Kobayashi DK, Hautamaki RD, Nehring LC, Cornelius LA, Shapiro SD (2006). Macrophage elastase (matrix metalloproteinase-12) suppresses growth of lung metastases. Cancer Res 66, 6149-6155.
Houghton AM, Rzymkiewicz DM, Ji H, Gregory AD, Egea EE, Metz HE, Stolz DB, Land SR, Marconcini LA, Kliment CR, Jenkins KM, Beaulieu KA, Mouded M, Frank SJ, Wong KK, Shapiro SD (2010). Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat Med. 16, 219-223.
Hovhannisyan RH, Carstens RP (2007). Heterogeneous ribonucleoprotein m is a splicing regulatory protein that can enhance or silence splicing of alternatively spliced exons. J Biol. Chem. 282, 36265-36274.
Hua D, Shen L, Xu L, Jiang Z, Zhou Y, Yue A, Zou S, Cheng Z, Wu S (2012). Polypeptide N-acetylgalactosaminyltransferase 2 regulates cellular metastasis-associated behavior in gastric cancer. Int. J Mol. Med. 30, 1267-1274.
Huang CL, Liu D, Nakano J, Ishikawa S, Kontani K, Yokomise H, Ueno M (2005). Wnt5a expression is associated with the tumor proliferation and the stromal vascular endothelial growth factor--an expression in non-small-cell lung cancer. J Clin Oncol 23, 8765-8773.
Huang KH, Chiou SH, Chow KC, Lin TY, Chang HW, Chiang IP, Lee MC (2010). Overexpression of aldo-keto reductase 1C2 is associated with disease progression in patients with prostatic cancer. Histopathology 57, 384-3 94.
Huang MY, Wang HM, Tok TS, Chang HJ, Chang MS, Cheng TL, Wang JY, Lin SR (2012). EVI2B, ATP2A2, S100B, TM4SF3, and OLFM4 as potential prognostic markers for postoperative Taiwanese colorectal cancer patients. DNA Cell Biol. 31, 625-635.
Huo J, Liu Y, Ma J, Xiao S (2010). A novel splice-site mutation of ATP2A2 gene in a Chinese family with Darier disease. Arch. Dermatol. Res. 302, 769-772.
Hwang YS, Park KK, Cha IH, Kim J, Chung WY (2012). Role of insulin-like growth factor-II mRNA-binding protein-3 in invadopodia formation and the growth of oral squamous cell carcinoma in athymic nude mice. Head Neck 34, 1329-1339.
Ishikawa N, Daigo Y, Yasui W, Inai K, Nishimura H, Tsuchiya E, Kohno N, Nakamura Y (2004). ADAM8 as a novel serological and histochemical marker for lung cancer. Clin Cancer Res. 10, 8363-8370.
Ishikawa Y, Vranka J, Wirz J, Nagata K, Bachinger HP (2008). The rough endoplasmic reticulum-resident FK506-binding protein FKBP65 is a molecular chaperone that interacts with collagens. J Biol. Chem. 283, 31584-31590.
Ito K, Takahashi A, Morita M, Suzuki T, Yamamoto T (2011). The role of the CNOT1 subunit of the CCR4-NOT complex in mRNA deadenylation and cell viability. Protein Cell 2, 755-763.
Iuchi S, Green H (1999). Basonuclin, a zinc finger protein of keratinocytes and reproductive germ cells, binds to the rRNA gene promoter. Proc. Natl. Acad. Sci. U. S. A 96, 9628-9632.
Jalbout M, Bouaouina N, Gargouri J, Corbex M, Ben AS, Chouchane L (2003). Polymorphism of the stress protein HSP70-2 gene is associated with the susceptibility to the nasopharyngeal carcinoma. Cancer Lett. 193, 75-81.
Jeng YM, Wang TH, Lu SH, Yuan RH, Hsu HC (2009). Prognostic significance of insulin-like growth factor II mRNA-binding protein 3 expression in gastric adenocarcinoma. Br. J Surg 96, 66-73.
Jung CK, Jung JH, Park GS, Lee A, Kang CS, Lee KY (2006). Expression of transforming acidic coiled-coil containing protein 3 is a novel independent prognostic marker in non-small cell lung cancer. Pathol. Int 56, 503-509.
Jung G, Ledbetter JA, Muller-Eberhard HJ (1987). Induction of cytotoxicity in resting human T lymphocytes bound to tumor cells by antibody heteroconjugates. Proc Natl Acad Sci U S A 84, 4611-4615.
Kabbarah O, Nogueira C, Feng B, Nazarian RM, Bosenberg M, Wu M, Scott KL, Kwong LN, Xiao Y, Cordon-Cardo C, Granter SR, Ramaswamy S, Golub T, Duncan LM, Wagner SN, Brennan C, Chin L (2010). Integrative genome comparison of primary and metastatic melanomas. PLoS. ONE. 5, e10770.
Kadara H, Lacroix L, Behrens C, Solis L, Gu X, Lee JJ, Tahara E, Lotan D, Hong WK, Wistuba II, Lotan R (2009). Identification of gene signatures and molecular markers for human lung cancer prognosis using an in vitro lung carcinogenesis system. Cancer Prev. Res (Phila) 2, 702-711.
Kamlekar RK, Simanshu DK, Gao YG, Kenoth R, Pike HM, Prendergast FG, Malinina L, Molotkovsky JG, Venyaminov SY, Patel DJ, Brown RE (2013). The glycolipid transfer protein (GLTP) domain of phosphoinositol 4-phosphate adaptor protein-2 (FAPP2): structure drives preference for simple neutral glycosphingolipids. Biochim. Biophys. Acta 1831, 417-427.
Kanno A, Satoh K, Masamune A, Hirota M, Kimura K, Umino J, Hamada S, Satoh A, Egawa S, Motoi F, Unno M, Shimosegawa T (2008). Periostin, secreted from stromal cells, has biphasic effect on cell migration and correlates with the epithelial to mesenchymal transition of human pancreatic cancer cells. Int J Cancer 122, 2707-2718.
Kanno T, Kamba T, Yamasaki T, Shibasaki N, Saito R, Terada N, Toda Y, Mikami Y, Inoue T, Kanematsu A, Nishiyama H, Ogawa O, Nakamura E (2012). JunB promotes cell invasion and angiogenesis in VHL-defective renal cell carcinoma. Oncogene 31, 3098-3110.
Kao RH, Francia G, Poulsom R, Hanby AM, Hart IR (2003). Application of differential display, with in situ hybridization verification, to microscopic samples of breast cancer tissue. Int. J Exp. Pathol. 84, 207-212.
Kars MD, Iseri OD, Gunduz U (2011). A microarray based expression profiling of paclitaxel and vincristine resistant MCF-7 cells. Eur. J Pharmacol. 657, 4-9.
Katagiri C, Iida T, Nakanishi J, Ozawa M, Aiba S, Hibino T (2010). Up-regulation of serpin SCCA1 is associated with epidermal barrier disruption. J Dermatol. Sci. 57, 95-101.
Katoh M (2008). WNT signaling in stem cell biology and regenerative medicine. Curr. Drug Targets. 9, 565-570.
Katoh M, Katoh M (2007). STAT3-induced WNT5A signaling loop in embryonic stem cells, adult normal tissues, chronic persistent inflammation, rheumatoid arthritis and cancer (Review). Int J Mol. Med 19, 273-278.
Kawata H, Shimada N, Kamiakito T, Komatsu K, Morita T, Ota T, Obayashi M, Shitara K, Tanaka A (2012). RhoC and guanine nucleotide exchange factor Net1 in androgen-unresponsive mouse mammary carcinoma SC-4 cells and human prostate cancer after short-term endocrine therapy. Prostate 72, 1071-1079.
Kelly SM, Corbett AH (2009). Messenger RNA export from the nucleus: a series of molecular wardrobe changes. Traffic. 10, 1 199-1208.
Kennedy A, Dong H, Chen D, Chen WT (2009). Elevation of seprase expression and promotion of an invasive phenotype by collagenous matrices in ovarian tumor cells. Int J Cancer 124, 27-35.
Kikuchi A, Yamamoto H, Sato A, Matsumoto S (2012). Wnt5a: its signalling, functions and implication in diseases. Acta Physiol (Oxf) 204, 17-33.
Kikuchi Y, Kashima TG, Nishiyama T, Shimazu K, Morishita Y, Shimazaki M, Kii I, Horie H, Nagai H, Kudo A, Fukayama M (2008). Periostin is expressed in pericryptal fibroblasts and cancer-associated fibroblasts in the colon. J Histochem. Cytochem. 56, 753-764.
Kim DH, Park SE, Kim M, Ji YI, Kang MY, Jung EH, Ko E, Kim Y, Kim S, Shim YM, Park J (2011). A functional single nucleotide polymorphism at the promoter region of cyclin A2 is associated with increased risk of colon, liver, and lung cancers. Cancer 117, 4080-4091.
Kim EH, Park AK, Dong SM, Ahn JH, Park WY (2010a). Global analysis of CpG methylation reveals epigenetic control of the radiosensitivity in lung cancer cell lines. Oncogene 29, 4725-4731.
Kim HS, Kim dH, Kim JY, Jeoung NH, Lee IK, Bong JG, Jung ED (2010b). Microarray analysis of papillary thyroid cancers in Korean. Korean J Intern. Med. 25, 399-407.
Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L, Massague J (2009). Tumor self-seeding by circulating cancer cells. Cell 139, 1315-1326.
Kim S, Park HS, Son HJ, Moon WS (2004). [The role of angiostatin, vascular endothelial growth factor, matrix metalloproteinase 9 and 12 in the angiogenesis of hepatocellular carcinoma]. Korean J Hepatol. 10, 62-72.
Kimura J, Kudoh T, Miki Y, Yoshida K (2011). Identification of dihydropyrimidinase-related protein 4 as a novel target of the p53 tumor suppressor in the apoptotic response to DNA damage. Int. J Cancer 128, 1524-1531.
Kloth JN, Oosting J, van WT, Szuhai K, Knijnenburg J, Gorter A, Kenter GG, Fleuren GJ, Jordanova ES (2007). Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex genetic alterations in cervical cancer. BMC. Genomics 8, 53.
Knight HM, Pickard BS, Maclean A, Malloy MP, Soares DC, McRae AF, Condie A, White A, Hawkins W, McGhee K, van BM, MacIntyre DJ, Starr JM, Deary IJ, Visscher PM, Porteous DJ, Carnon RE, St CD, Muir WJ, Blackwood DH (2009). A cytogenetic abnormality and rare coding variants identify ABCA13 as a candidate gene in schizophrenia, bipolar disorder, and depression. Am J Hum. Genet. 85, 833-846.
Kolehmainen J, Black GC, Saarinen A, Chandler K, Clayton-Smith J, Traskelin AL, Perveen R, Kivitie-Kallio S, Norio R, Warburg M, Fryns JP, de la Chapelle A, Lehesjoki AE (2003). Cohen syndrome is caused by mutations in a novel gene, COH1, encoding a transmembrane protein with a presumed role in vesicle-mediated sorting and intracellular protein transport. Am. J Hum. Genet. 72, 1359-1369.
Konishi N, Shimada K, Nakamura M, Ishida E, Ota I, Tanaka N, Fujimoto K (2008). Function of JunB in transient amplifying cell senescence and progression of human prostate cancer. Clin Cancer Res. 14, 4408-4416.
Kornak U, Brancati F, Le MM, Lichtenbelt K, Hohne W, Tinschert S, Garaci FG, Dallapiccola B, Nurnberg P (2010). Three novel mutations in the ANK membrane protein cause craniometaphyseal dysplasia with variable conductive hearing loss. Am. J Med. Genet. A 152A, 870-874.
Korosec B, Glavac D, Rott T, Ravnik-Glavac M (2006). Alterations in the ATP2A2 gene in correlation with colon and lung cancer. Cancer Genet. Cytogenet. 171, 105-111.
Kramer MW, Escudero DO, Lokeshwar SD, Golshani R, Ekwenna OO, Acosta K, Merseburger AS, Soloway M, Lokeshwar VB (2010). Association of hyaluronic acid family members (HAS1, HAS2, and HYAL-1) with bladder cancer diagnosis and prognosis. Cancer.
Krieg AM (2006). Therapeutic potential of Toll-like receptor 9 activation. Nat. Rev. Drug Discov. 5, 471-484.
Kuang P, Zhou C, Li X, Ren S, Li B, Wang Y, Li J, Tang L, Zhang J, Zhao Y (2012). Proteomics-based identification of secreted protein dihydrodiol dehydrogenase 2 as a potential biomarker for predicting cisplatin efficacy in advanced NSCLC patients. Lung Cancer 77, 427-432.
Kuang SQ, Tong WG, Yang H, Lin W, Lee MK, Fang ZH, Wei Y, Jelinek J, Issa JP, Garcia-Manero G (2008). Genome-wide identification of aberrantly methylated promoter associated CpG islands in acute lymphocytic leukemia. Leukemia 22, 1529-1538.
Kudo Y, Ogawa I, Kitajima S, Kitagawa M, Kawai H, Gaffney PM, Miyauchi M, Takata T (2006). Periostin promotes invasion and anchorage-independent growth in the metastatic process of head and neck cancer. Cancer Res 66, 6928-6935.
Kwon OH, Park JL, Kim M, Kim JH, Lee HC, Kim HJ, Noh SM, Song KS, Yoo HS, Paik SG, Kim SY, Kim YS (2011). Aberrant up-regulation of LAMB3 and LAMC2 by promoter demethylation in gastric cancer. Biochem. Biophys. Res. Commun. 406, 539-545.
Kwon YJ, Lee SJ, Koh JS, Kim SH, Kim YJ, Park JH (2009). Expression patterns of aurora kinase B, heat shock protein 47, and periostin in esophageal squamous cell carcinoma. Oncol Res 18, 141-151.
Labied S, Galant C, Nisolle M, Ravet S, Munaut C, Marbaix E, Foidart JM, Frankenne F (2009). Differential elevation of matrix metalloproteinase expression in women exposed to levonorgestrel-releasing intrauterine system for a short or prolonged period of time. Hum. Reprod. 24, 113-121.
Lau E, Zhu C, Abraham RT, Jiang W (2006). The ftnctional role of Cdc6 in S-G2/M in mammalian cells. EMBO Rep. 7, 425-430.
Lazaris AC, Chatzigianni EB, Panoussopoulos D, Tzimas GN, Davaris PS, Golematis BC (1997). Proliferating cell nuclear antigen and heat shock protein 70 immunolocalization in invasive ductal breast cancer not otherwise specified. Breast Cancer Res. Treat. 43, 43-51.
Le CB, Rynkowski M, Le MM, Bruyere C, Lonez C, Gras T, Haibe-Kains B, Bontempi G, Decaestecker C, Ruysschaert JM, Kiss R, Lefranc F (2010). Long-term in vitro treatment of human glioblastoma cells with temozolomide increases resistance in vivo through up-regulation of GLUT transporter and aldo-keto reductase enzyme AKR1C expression. Neoplasia. 12, 727-739.
Lee KH, Kim JR (2012). Regulation of HGF-mediated cell proliferation and invasion through NF-kappaB, JunB, and MMP-9 cascades in stomach cancer cells. Clin Exp. Metastasis 29, 263-272.
Lee WS, Jain MK, Arkonac BM, Zhang D, Shaw SY, Kashiki S, Maemura K, Lee SL, Hollenberg NK, Lee ME, Haber E (1998). Thy-1, a novel marker for angiogenesis upregulated by inflammatory cytokines. Circ. Res 82, 845-851.
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-419.
Lefave CV, Squatrito M, Vorlova S, Rocco GL, Brennan CW, Holland EC, Pan YX, Cartegni L (2011). Splicing factor hnRNPH drives an oncogenic splicing switch in gliomas. EMBO J 30, 4084-4097.
Leivo I, Jee KJ, Heikinheimo K, Laine M, Ollila J, Nagy B, Knuutila S (2005). Characterization of gene expression in major types of salivary gland carcinomas with epithelial differentiation. Cancer Genet. Cytogenet. 156, 104-113.
Lemmel C, Weik S, Eberle U, Dengjel J, Kratt T, Becker HD, Rammensee HG, Stevanovic S (2004). Differential quantitative analysis of MHC ligands by mass spectrometry using stable isotope labeling. Nat. Biotechnol. 22, 450-454.
Li H, Guo L, Li J, Liu N, Liu J (2000a). Alternative splicing of RHAMM gene in chinese gastric cancers and its in vitro regulation. Zhonghua Yi. Xue. Yi. Chuan Xue. Za Zhi. 17, 343-347.
Li H, Guo L, Li JW, Liu N, Qi R, Liu J (2000b). Expression of hyaluronan receptors CD44 and RHAMM in stomach cancers: relevance with tumor progression. Int J Oncol 17, 927-932.
Li HG, Han JJ, Huang ZQ, Wang L, Chen WL, Shen XM (2011). IMP3 is a novel biomarker to predict metastasis and prognosis of tongue squamous cell carcinoma. J Craniofac. Surg. 22, 2022-2025.
Li J, Ying J, Fan Y, Wu L, Ying Y, Chan AT, Srivastava G, Tao Q (2010). WNT5A antagonizes WNT/beta-catenin signaling and is frequently silenced by promoter CpG methylation in esophageal squamous cell carcinoma. Cancer Biol. Ther. 10, 617-624.
Li Y, Chu LW, LIZ, Yik PY, Song YQ (2009). A study on the association of the chromosome 12p13 locus with sporadic late-onset Alzheimer's disease in Chinese. Dement. Geriatr. Cogn Disord. 27, 508-512.
Liang WJ, Qiu F, Hong MH, Guo L, Qin HD, Liu QC, Zhang XS, Mai HQ, Xiang YQ, Min HQ, Zeng YX (2008). [Differentially expressed genes between upward and downward progressing types of nasopharyngeal carcinoma]. Ai. Zheng. 27, 460-465.
Liao B, Hu Y, Brewer G (2011). RNA-binding protein insulin-like growth factor mRNA-binding protein 3 (IMP-3) promotes cell survival via insulin-like growth factor II signaling after ionizing radiation. J Biol. Chem. 286, 31145-31152.
Liao B, Hu Y, Herrick DJ, Brewer G (2005). The RNA-binding protein IMP-3 is a translational activator of insulin-like growth factor II leader-3 mRNA during proliferation of human K562 leukemia cells. J Biol. Chem. 280, 18517-18524.
Lin DM, Ma Y, Xiao T, Guo SP, Han NJ, Su K, Yi SZ, Fang J, Cheng SJ, Gao YN (2006). [TPX2 expression and its significance in squamous cell carcinoma of lung]. Zhonghua Bing. Li Xue. Za Zhi. 35, 540-544.
Litjens SH, de Pereda JM, Sonnenberg A (2006). Current insights into the formation and breakdown of hemidesmosomes. Trends Cell Biol. 16, 376-383.
Liu J, Yang L, Jin M, Xu L, Wu S (2011a). regulation of the invasion and metastasis of human glioma cells by polypeptide N-acetylgalactosaminyltransferase 2. Mol. Med. Rep. 4, 1299-1305.
Liu T, Jin X, Zhang X, Yuan H, Cheng J, Lee J, Zhang B, Zhang M, Wu J, Wang L, Tian G, Wang W (2012). A novel missense SNRNP200 mutation associated with autosomal dominant retinitis pigmentosa in a Chinese family. PLoS. ONE. 7, e45464.
Liu W, Morito D, Takashima S, Mineharu Y, Kobayashi H, Hitomi T, Hashikata H, Matsuura N, Yamazaki S, Toyoda A, Kikuta K, Takagi Y, Harada KH, Fujiyama A, Herzig R, Krischek B, Zou L, Kim JE, Kitakaze M, Miyamoto S, Nagata K, Hashimoto N, Koizumi A (2011b). Identification of RNF213 as a susceptibility gene for moyamoya disease and its possible role in vascular development. PLoS. ONE. 6, e22542.
Lleres D, Denegri M, Biggiogera M, Ajuh P, Lamond AI (2010). Direct interaction between hnRNP-M and CDC5L/PLRG1 proteins affects alternative splice site choice. EMBO Rep. 11, 445-451.
Lu D, Yang X, Jiang NY, Woda BA, Liu Q, Dresser K, Mercurio AM, Rock KL, Jiang Z (2011). IMP3, a new biomarker to predict progression of cervical intraepithelial neoplasia into invasive cancer. Am. J Surg. Pathol. 35, 1638-1645.
Lu Z, Zhou L, Killela P, Rasheed AB, Di C, Poe WE, McLendon RE, Bigner DD, Nicchitta C, Yan H (2009). Glioblastoma proto-oncogene SEC61gamma is required for tumor cell survival and response to endoplasmic reticulum stress. Cancer Res. 69, 9105-9111.
Lugassy C, Torres-Munoz JE, Kleinman HK, Ghanem G, Vernon S, Barnhill RL (2009). Overexpression of malignancy-associated laminins and laminin receptors by angiotropic human melanoma cells in a chick chorioallantoic membrane model. J Cutan. Pathol. 36, 1237-1243.
Ma LJ, Li W, Zhang X, Huang DH, Zhang H, Xiao JY, Tian YQ (2009). Differential gene expression profiling of laryngeal squamous cell carcinoma by laser capture microdissection and complementary DNA microarrays. Arch. Med Res 40, 114-123.
Ma TS, Mann DL, Lee JH, Gallinghouse GJ (1999). SR compartment calcium and cell apoptosis in SERCA overexpression. Cell Calcium 26, 25-36.
Ma Y, Lin D, Sun W, Xiao T, Yuan J, Han N, Guo S, Feng X, Su K, Mao Y, Cheng S, Gao Y (2006). Expression of targeting protein for xklp2 associated with both malignant transformation of respiratory epithelium and progression of squamous cell lung cancer. Clin Cancer Res 12, 1121-1127.
MacLennan DH, Rice WJ, Green NM (1997). The mechanism of Ca2+ transport by sarco(endo)plasmic reticulum Ca2+-ATPases. J Biol. Chem. 272, 28815-28818.
Maeder C, Kutach AK, Guthrie C (2009). ATP-dependent unwinding of U4/U6 snRNAs by the Brr2 helicase requires the C terminus of Prp8. Nat Struct. Mol. Biol. 16, 42-48.
Manda R, Kohno T, Niki T, Yamada T, Takenoshita S, Kuwano H, Yokota J (2000). Differential expression of the LAMB3 and LAMC2 genes between small cell and non-small cell lung carcinomas. Biochem. Biophys. Res. Commun. 275, 440-445.
Marchand M, Van BN, Weynants P, Brichard V, Dreno B, Tessier MH, Rankin E, Parrmiani G, Arienti F, Humblet Y, Bourlond A, Vanwijck R, Lienard D, Beauduin M, Dietrich PY, Russo V, Kerger J, Masucci G, Jager E, De GJ, Atzpodien J, Brasseur F, Coulie PG, van der BP, Boon T (1999). Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. Int. J. Cancer 80, 219-230.
Marchand M, Weynants P, Rankin E, Arienti F, Belli F, Parmiani G, Cascinelli N, Bourlond A, Vanwijck R, Humblet Y,. (1995). Tumor regression responses in melanoma patients treated with a peptide encoded by gene MAGE-3. Int. J Cancer 63, 883-885.
Masson NM, Currie IS, Terrace JD, Garden OJ, Parks RW, Ross JA (2006). Hepatic progenitor cells in human fetal liver express the oval cell marker Thy-1. Am J Physiol Gastrointest. Liver Physiol 291, G45-G54.
McManus KJ, Barrett IJ, Nouhi Y, Hieter P (2009). Specific synthetic lethal killing of RAD54B-deficient human colorectal cancer cells by FEN1 silencing. Proc. Natl. Acad. Sci. U. S. A 106, 3276-3281.
Mercer CA, Kaliappan A, Dennis PB (2009). A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy. 5, 649-662.
Mestiri S, Bouaouina N, Ahmed SB, Khedhaier A, Jrad BB, Remadi S, Chouchane L (2001). Genetic variation in the tumor necrosis factor-alpha promoter region and in the stress protein hsp70-2: susceptibility and prognostic implications in breast carcinoma. Cancer 91, 672-678.
Meyer EL, Goemann IM, Dora JM, Wagner MS, Maia AL (2008). Type 2 iodothyronine deiodinase is highly expressed in medullary thyroid carcinoma. Mol. Cell Endocrinol. 289, 16-22.
Miller NH, Justice CM, Marosy B, Swindle K, Kim Y, Roy-Gagnon MH, Sung H, Behneman D, Doheny KF, Pugh E, Wilson AF (2012). Intra-familial tests of association between familial idiopathic scoliosis and linked regions on 9q31.3-q34.3 and 16p12.3-q22.2. Hum. Hered. 74, 36-44.
Milovanovic T, Planutis K, Nguyen A, Marsh JL, Lin F, Hope C, Holcombe RF (2004). Expression of Wnt genes and frizzled 1 and 2 receptors in normal breast epithelium and infiltrating breast carcinoma. Int. J Oncol 25, 1337-1342.
Mochizuki S, Okada Y (2007). ADAMs in cancer cell proliferation and progression. Cancer Sci. 98, 621-628.
Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, Zheng Z, Nahvi A, de Vries CR, Rogers-Freezer LJ, Mavroukakis SA, Rosenberg SA (2006). Cancer Regression in Patients After Transfer of Genetically Engineered Lymphocytes. Science.
Mori M, Beatty PG, Graves M, Boucher KM, Milford EL (1997). HLA gene and haplotype frequencies in the North American population: the National Marrow Donor Program Donor Registry. Transplantation 64, 1017-1027.
Moroy G, Alix AJ, Sapi J, Hornebeck W, Bourguet E (2012). Neutrophil elastase as a target in lung cancer. Anticancer Agents Med. Chem. 12, 565-579.
Morris MR, Ricketts C, Gentle D, Abdulrahman M, Clarke N, Brown M, Kishida T, Yao M, Latif F, Maher ER (2010). Identification of candidate tumour suppressor genes frequently methylated in renal cell carcinoma. Oncogene 29, 2104-2117.
Moss DK, Wilde A, Lane JD (2009). Dynamic release of nuclear RanGTP triggers TPX2-dependent microtubule assembly during the apoptotic execution phase. J Cell Sci. 122, 644-655.
Murakami M, Araki O, Morimura T, Hosoi Y, Mizuma H, Yamada M, Kurihara H, Ishiuchi S, Tamura M, Sasaki T, Mori M (2000). Expression of type II iodothyronine deiodinase in brain tumors. J Clin Endocrinol. Metab 85, 4403-4406.
Nakamura Y, Muguruma Y, Yahata T, Miyatake H, Sakai D, Mochida J, Hotta T, Ando K (2006). Expression of CD90 on keratinocyte stem/progenitor cells. Br. J Dermatol. 154, 1062-1070.
Neidert MC, Schoor O, Trautwein C, Trautwein N, Christ L, Melms A, Honegger J, Rammensee HG, Herold-Mende C, Dietrich PY, Stevanovic S (2012). Natural HLA class I ligands from glioblastoma: extending the options for immunotherapy. J Neurooncol.
Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D (1998). Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med. 4, 328-332.
Niedergethmann M, Alves F, Neff JK, Heidrich B, Aramin N, Li L, Pilarsky C, Grutzmann R, Allgayer H, Post S, Gretz N (2007). Gene expression profiling of liver metastases and tumour invasion in pancreatic cancer using an orthotopic SCID mouse model. Br. J Cancer 97, 1432-1440.
Nikolova DN, Zembutsu H, Sechanov T, Vidinov K, Kee LS, Ivanova R, Becheva E, Kocova M, Toncheva D, Nakamura Y (2008). Genome-wide gene expression profiles of thyroid carcinoma: Identification of molecular targets for treatment of thyroid carcinoma. Oncol Rep. 20, 105-121.
Nirde P, Derocq D, Maynadier M, Chambon M, Basile I, Gary-Bobo M, Garcia M (2010). Heat shock cognate 70 protein secretion as a new growth arrest signal for cancer cells. Oncogene 29, 117-127.
Nishinakamura R, Uchiyama Y, Sakaguchi M, Fujimura S (2011). Nephron progenitors in the metanephric mesenchyme. Pediatr. Nephrol. 26, 1463-1467.
Odermatt A, Taschner PE, Khanna VK, Busch HF, Karpati G, Ja blecki CK, Breuning MH, MacLennan DH (1996). Mutations in the gene-encoding SERCA1, the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+ ATPase, are associated with Brody disease. Nat Genet. 14, 191-194.
Oh SP, Taylor RW, Gerecke DR, Rochelle JM, Seldin MF, Olsen BR (1992). The mouse alpha 1 (XII) and human alpha 1 (XII)-like collagen genes are localized on mouse chromosome 9 and human chromosome 6. Genomics 14, 225-231.
Ohta S, Koide M, Tokuyama T, Yokota N, Nishizawa S, Namba H (2001). Cdc6 expression as a marker of proliferative activity in brain tumors. Oncol Rep. 8, 1063-1066.
Ortega P, Moran A, Fernandez-Marcelo T, De JC, Frias C, Lopez-Asenjo JA, Sanchez-Pernaute A, Torres A, Diaz-Rubio E, Iniesta P, Benito M (2010). MMP-7 and SGCE as distinctive molecular factors in sporadic colorectal cancers from the mutator phenotype pathway. Int. J Oncol 36, 1209-1215.
Osborne AR, Rapoport TA, van den Berg B (2005). Protein translocation by the Sec61/SecY channel. Annu. Rev. Cell Dev. Biol. 21, 529-550.
Pascolo S, Ginhoux F, Laham N, Walter S, Schoor O, Probst J, Rohrlich P, Obermayr F, Fisch P, Danos O, Ehrlich R, Lemonnier FA, Ramrmensee HG (2005). The non-classical HLA class I molecule HFE does not influence the NK-like activity contained in fresh human PBMCs and does not interact with NK cells. Int. Immunol. 17, 117-122.
Pascreau G, Eckerdt F, Lewellyn AL, Prigent C, Maller JL (2009). Phosphorylation of p53 is regulated by TPX2-Aurora A in xenopus oocytes. J Biol. Chem. 284, 5497-5505.
Patterson CE, Abrams WR, Wolter NE, Rosenbloom J, Davis EC (2005). Developmental regulation and coordinate reexpression of FKBP65 with extracellular matrix proteins after lung injury suggest a specialized function for this endoplasmic reticulum immunophilin. Cell Stress. Chaperones. 10, 285-295.
Patterson CE, Schaub T, Coleman EJ, Davis EC (2000). Developmental regulation of FKBP65. An ER-localized extracellular matrix binding-protein. Mol. Biol. Cell 11, 3925-3935.
Peiro G, Diebold J, Baretton GB, Kimmig R, Lohrs U (2001). Cellular apoptosis susceptibility gene expression in endometrial carcinoma: correlation with Bcl-2, Bax, and caspase-3 expression and outcome. Int. J Gynecol. Pathol. 20, 359-367.
Peng C, Togayachi A, Kwon YD, Xie C, Wu G, Zou X, Sato T, Ito H, Tachibana K, Kubota T, Noce T, Narimatsu H, Zhang Y (2010). Identification of a novel human UDP-GalNAc transferase with unique catalytic activity and expression profile. Biochem. Biophys. Res. Commun. 402, 680-686.
Penning TM, Burczynski ME, Jez JM, Hung CF, Lin HK, Ma H, Moore M, Palackal N, Ratnam K (2000). Human 3alpha-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo-keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. Biochem. J 351, 67-77.
Perrin-Tricaud C, Rutschman C, Hennet T (2011). Identification of domains and amino acids essential to the collagen galactosyltransferase activity of GLT25D1. PLoS. ONE. 6, e29390.
Pine SR, Mechanic LE, Enewold L, Chaturvedi AK, Katki HA, Zheng YL, Bowman ED, Engels EA, Caporaso NE, Harris CC (2011). Increased levels of circulating interleukin 6, interleukin 8, C-reactive protein, and risk of lung cancer. J Natl. Cancer Inst. 103, 1112-1122.
Piskac-Collier AL, Monroy C, Lopez MS, Cortes A, Etzel CJ, Greisinger AJ, Spitz MR, El-Zein RA (2011). Variants in folate pathway genes as modulators of genetic instability and lung cancer risk. Genes Chromosomes. Cancer 50, 1-12.
Pontisso P, Calabrese F, Benvegnu L, Lise M, Belluco C, Ruvoletto MG, Marino M, Valente M, Nitti D, Gatta A, Fassina G (2004). Overexpression of squamous cell carcinoma antigen variants in hepatocellular carcinoma. Br. J Cancer 90, 833-837.
Prades C, Arnould I, Annilo T, Shulenin S, Chen ZQ, Orosco L, Triunfol M, Devaud C, Maintoux-Larois C, Lafargue C, Lemoine C, Denefle P, Rosier M, Dean M (2002). The human ATP binding cassette gene ABCA13, located on chromosome 7p12.3, encodes a 5058 amino acid protein with an extracellular domain encoded in part by a 4.8-kb conserved exon. Cytogenet. Genome Res 98, 160-168.
Prasad P, Tiwari AK, Kumar KM, Ammini AC, Gupta A, Gupta R, Thelma BK (2010). Association analysis of ADPRT1, AKR1B1, RAGE, GFPT2 and PAI-1 gene polymorphisms with chronic renal insufficiency among Asian Indians with type-2 diabetes. BMC. Med. Genet. 11, 52.
Puppin C, Fabbro D, Dima M, Di LC, Puxeddu E, Filetti S, Russo D, Damante G (2008). High periostin expression correlates with aggressiveness in papillary thyroid carcinomas. J Endocrinol. 197, 401-408.
Purdue MP, Johansson M, Zelenika D, Toro JR, Scelo G, Moore LE, Prokhortchouk E, Wu X, Kiemeney LA, Gaborieau V, Jacobs KB, Chow WH, Zaridze D, Matveev V, Lubinski J, Trubicka J, Szeszenia-Dabrowska N, Lissowska J, Rudnai P, Fabianova E, Bucur A, Bencko V, Foretova L, Ja nout V, Boffetta P, Colt JS, Davis FG, Schwartz KL, Banks RE, Selby PJ, Harnden P, Berg CD, Hsing AW, Grubb RL, III, Boeing H, Vineis P, Clavel-Chapelon F, Palli D, Tumino R, Krogh V, Panico S, Duell EJ, Quiros JR, Sanchez MJ, Navarro C, Ardanaz E, Dorronsoro M, Khaw KT, Allen NE, Bueno-de-Mesquita HB, Peeters PH, Trichopoulos D, Linseisen J, Ljungberg B, Overvad K, Tjonneland A, Romieu I, Riboli E, Mukeria A, Shangina O, Stevens VL, Thun MJ, Diver WR, Gapstur SM, Pharoah PD, Easton DF, Albanes D, Weinstein SJ, Virtamo J, Vatten L, Hveem K, Njolstad I, Tell GS, Stoltenberg C, Kumar R, Koppova K, Cussenot O, Benhamou S, Oosterwijk E, Vermeulen SH, Aben KK, van der Mare1 SL, Ye Y, Wood CG, Pu X, Mazur AM, Boulygina ES, Chekanov NN, Foglio M, Lechner D, Gut I, Heath S, Blanche H, Hutchinson A, Thomas G, Wang Z, Yeager M, Fraumeni JF, Jr., Skryabin KG, McKay JD, Rothman N, Chanock SJ, Lathrop M, Brennan P (2011). Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nat Genet. 43, 60-65.
Puyol M, Martin A, Dubus P, Mulero F, Pizcueta P, Khan G, Guerra C, Santamaria D, Barbacid M (2010). A synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma. Cancer Cell 18, 63-73.
Qu P, Du H, Wang X, Yan C (2009). Matrix metalloproteinase 12 overexpression in lung epithelial cells plays a key role in emphysema to lung bronchioalveolar adenocarcinoma transition. Cancer Res 69, 7252-7261.
Ramakrishna M, Williams LH, Boyle SE, Bearfoot JL, Sridhar A, Speed TP, Gorringe KL, Campbell IG (2010). Identification of candidate growth promoting genes in ovarian cancer through integrated copy number and expression analysis. PLoS. ONE. 5, e9983.
Rammensee HG, Bachmarn J, Emmerich NP, Bachor OA, Stevanovic S (1999). SYFPEITHI: database for MHC ligands and peptide motifs. Irmmunogenetics 50, 213-219.
Rammensee HG, Bachmann J, Stevanovic S (1997). MHC Ligands and Peptide Motifs. (Heidelberg, Germany: Springer-Verlag).
Rao B, Gao Y, Huang J, Gao X, Fu X, Huang M, Yao J, Wang J, Li W, Zhang J, Liu H, Wang L, Wang J (2011). Mutations of p53 and K-ras correlate TF expression in human colorectal carcinomas: TF downregulation as a marker of poor prognosis. Int. J Colorectal Dis. 26, 593-601.
Rappsilber J, Ryder U, Lamond AI, Mann M (2002). Large-scale proteomic analysis of the human spliceosome. Genome Res. 12, 1231-1245.
Rauch J, O'Neill E, Mack B, Matthias C, Munz M, Kolch W, Gires O (2010). Heterogeneous nuclear ribonucleoprotein H blocks MST2-mediated apoptosis in cancer cells by regulating A-Raf transcription. Cancer Res. 70, 1679-1688.
Rege TA, Hagood JS (2006a). Thy-1 as a regulator of cell-cell and cell-matrix interactions in axon regeneration, apoptosis, adhesion, migration, cancer, and fibrosis. FASEB J 20, 1045-1054.
Rege TA, Hagood JS (2006b). Thy-1, a versatile modulator of signaling affecting cellular adhesion, proliferation, survival, and cytokine/growth factor responses. Biochim. Biophys. Acta 1763, 991-999.
Rettig WJ, Garin-Chesa P, Healey JH, Su SL, Ozer HL, Schwab M, Albino AP, Old LJ (1993). Regulation and heteromeric structure of the fibroblast activation protein in normal and transformed cells of mesenchymal and neuroectodermal origin. Cancer Res 53, 3327-3335.
Rettig WJ, Su SL, Fo rtunato SR, Scanlan MJ, Raj BK, Garin-Chesa P, Healey JH, Old LJ (1994). Fibroblast activation protein: purification, epitope mapping and induction by growth factors. Int J Cancer 58, 385-392.
Rini BI, Weinberg V, Fong L, Conry S, Hershberg RM, Small EJ (2006). Combination immunotherapy with prostatic acid phosphatase pulsed antigen-presenting cells (provenge) plus bevacizumab in patients with serologic progression of prostate cancer after defnitive local therapy. Cancer 107, 67-74.
Ripka S, Konig A, Buchholz M, Wagner M, Sipos B, Kloppel G, Downward J, Gress T, Michl P (2007). WNT5A--target of CUTL1 and potent modulator of tumor cell migration and invasion in pancreatic cancer. Carcinogenesis 28, 1178-1187.
Rivera VT, Boudoukha S, Simon A, Souidi M, Cuvellier S, Pinna G, Polesskaya A (2013). Post-transcriptional regulation of cyclins D1, D3 and G1 and proliferation of human cancer cells depend on IMP-3 nuclear localization. Oncogene.
Rodningen OK, Borresen-Dale AL, Alsner J, Hastie T, Overgaard J (2008). Radiation-induced gene expression in human subcutaneous fibroblasts is predictive of radiation-induced fibrosis. Radiother. Oncol 86, 314-320.
Rodriguez CI, Stewart CL (2007). Disruption of the ubiquitin ligase HERC4 causes defects in spermatozoon maturation and impaired fertility. Dev. Biol. 312, 501-508.
Roemer A, Schwettmann L, Jung M, Roigas J, Kristiansen G, Schnorr D, Loening SA, Jung K, Lichtinghagen R (2004a). Increased mRNA expression of ADAMs in renal cell carcinoma and their association with clinical outcome. Oncol Rep. 11, 529-536.
Roemer A, Schwettmann L, Jung M, Stephan C, Roigas J, Kristiansen G, Loening SA, Lichtinghagen R, Jung K (2004b). The membrane proteases adams and hepsin are differentially expressed in renal cell carcinoma. Are they potential tumor markers? J Urol. 172, 2162-2166.
Rohde M, Daugaard M, Jensen MH, Helin K, Nylandsted J, Jaattela M (2005). Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes Dev. 19, 570-582.
Romagnoli S, Fasoli E, Vaira V, Falleni M, Pellegrini C, Catania A, Roncalli M, Marchetti A, Santambrogio L, Coggi G, Bosari S (2009). Identification of potential therapeutic targets in malignant mesothelioma using cell-cycle gene expression analysis. Am J Pathol. 174, 762-770.
Romero-Weaver AL, Wang HW, Steen HC, Scarzello AJ, Hall VL, Sheikh F, Dornelly RP, Gamero AM (2010). Resistance to IFN-alpha-induced apoptosis is linked to a loss of STAT2. Mol. Cancer Res. 8, 80-92.
Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, Linehan WM, Robertson CN, Lee RE, Rubin JT,. (1987). A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N. Engl. J. Med. 316, 889-897.
Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, Simon P, Lotze MT, Yang JC, Seipp CA,. (1988). Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N. Engl. J Med 319, 1676-1680.
Ruan K, Bao S, Ouyang G (2009). The multifaceted role of periostin in tumorigenesis. Cell Mol. Life Sci. 66, 2219-2230.
Ruiz dA, I, Scarselli M, Rosemond E, Gautam D, Jou W, Gavrilova O, Ebert PJ, Levitt P, Wess J (2010). RGS4 is a negative regulator of insulin release from pancreatic beta-cells in vitro and in vivo. Proc Natl. Acad. Sci. U. S. A 107, 7999-8004.
Rusin M, Zientek H, Krzesniak M, Malusecka E, Zborek A, Krzyzowska-Gruca S, Butkiewicz D, Vaitiekunaite R, Lisowska K, Grzybowska E, Krawczyk Z (2004). Intronic polymorphism (1541-1542delGT) of the constitutive heat shock protein 70 gene has functional significance and shows evidence of association with lung cancer risk. Mol. Carcinog. 39, 155-163.
Sagara N, Toda G, Hirai M, Terada M, Katoh M (1998). Molecular cloning, differential expression, and chromosomal localization of human frizzled-1, frizzled-2, and frizzled-7. Biochem. Biophys. Res. Commun. 252, 117-122.
Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487-491.
Sakuntabhai A, Ruiz-Perez V, Carter S, Jacobsen N, Burge S, Monk S, Smith M, Munro CS, O'Donovan M, Craddock N, Kucherlapati R, Rees JL, Owen M, Lathrop GM, Monaco AP, Strachan T, Hovnanian A (1999). Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease. Nat Genet. 21, 271-277.
Samanta S, Sharma VM, Khan A, Mercurio AM (2012). Regulation of IMP3 by EGFR signaling and repression by ERbeta: implications for triple-negative breast cancer. Oncogene 31, 4689-4697.
Sang QX (1998). Complex role of matrix metalloproteinases in angiogenesis. Cell Res 8,171-177.
Sarai N, Kagawa W, Fujikawa N, Saito K, Hikiba J, Tanaka K, Miyagawa K, Kurumizaka H, Yokoyama S (2008). Biochemical analysis of the N-terminal domain of human RAD54B. Nucleic Acids Res. 36, 5441-5450.
Satow R, Shitashige M, Kanai Y, Takeshita F, Ojima H, Jigami T, Honda K, Kosuge T, Ochiya T, Hirohashi S, Yamada T (2010). Combined functional genome survey of therapeutic targets for hepatocellular carcinoma. Clin Cancer Res 16, 2518-2528.
Scanlan MJ, Raj BK, Calvo B, Garin-Chesa P, Sanz-Moncasi MP, Healey JH, Old LJ, Rettig WJ (1994). Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc Natl. Acad. Sci. U. S. A 91, 5657-5661.
Schafer R, Sedehizade F, Welte T, Reiser G (2003). ATP- and UTP-activated P2Y receptors differently regulate proliferation of human lung epithelial tumor cells. Am. J Physiol Lung Cell Mol. Physiol 285, L376-L385.
Schegg B, Hulsmeier AJ, Rutschmann C, Maag C, Hennet T (2009). Core glycosylation of collagen is initiated by two beta(1-O)galactosyltransferases. Mol. Cell Biol. 29, 943-952.
Schuetz CS, Bonin M, Clare SE, Nieselt K, Sotlar K, Walter M, Fehm T, Solomayer E, Riess O, Wallwiener D, Kurek R, Neubauer HJ (2006). Progression-specific genes identified by expression profiling of matched ductal carcinomas in situ and invasive breast tumors, combining laser capture microdissection and oligonucleotide microarray analysis. Cancer Res 66, 5278-5286.
Scieglinska D, Piglowski W, Mazurek A, Malusecka E, Zebracka J, Filipczak P, Krawczyk Z (2008). The HspA2 protein localizes in nucleoli and centrosomes of heat shocked cancer cells. J Cell Biochem. 104, 2193-2206.
Seifert W, Kuhnisch J, Maritzen T, Horn D, Haucke V, Hennies HC (2011). Cohen syndrome-associated protein, COH1, is a novel, giant Golgi matrix protein required for Golgi integrity. J Biol. Chem. 286, 37665-37675.
Shaulian E (2010). AP-1--The Jun proteins: Oncogenes or tumor suppressors in disguise? Cell Signal. 22, 894-899.
Shaulian E, Karin M (2002). AP-1 as a regulator of cell life and death. Nat Cell Biol. 4, E131-E136.
Sherman-Baust CA, Weeraratna AT, Rangel LB, Pizer ES, Cho KR, Schwartz DR, Shock T, Morin PJ (2003). Remodeling of the extracellular matrix through overexpression of collagen VI contributes to cisplatin resistance in ovarian cancer cells. Cancer Cell 3, 377-386.
Shigeishi H, Fujimoto S, Hiraoka M, Ono S, Taki M, Ohta K, Higashikawa K, Kamata N (2009). Overexpression of the receptor for hyaluronan-mediated motility, correlates with expression of microtubule-associated protein in huunan oral squamous cell carcinomas. Int J Oncol 34, 1565-1571.
Shimbo T, Tanemura A, Yamazaki T, Tamai K, Katayama I, Kaneda Y (2010). Serum anti-BPAG1 auto-antibody is a novel marker for human melanoma. PLoS. ONE. 5, e10566.
Shyian M, Gryshkova V, Kostianets O, Gorshkov V, Gogolev Y, Goncharuk I, Nespryadko S, Vorobjova L, Filonenko V, Kiyamova R (2011). Quantitative analysis of SLC34A2 expression in different types of ovarian tumors. Exp. Oncol 33, 94-98.
Siddiqui N, Borden KL (2012). mRNA export and cancer. Wiley. Interdiscip. Rev. RNA. 3, 13-25.
Simpson NE, Tryndyak VP, Beland FA, Pogribny IP (2012). An in vitro investigation of metabolically sensitive biomarkers in breast cancer progression. Breast Cancer Res. Treat. 133, 959-968.
Singh-Jasuja H, Emmerich NP, Rammensee HG (2004). The Tubingen approach: identification, selection, and validation of tumor-associated HLA peptides for cancer therapy. Cancer Immunol. Immunother. 53, 187-195.
Siow DL, Wattenberg BW (2012). Mammalian ORMDL proteins mediate the feedback response in ceramide biosynthesis. J Biol. Chem. 287, 40198-40204.
Slack FJ, Weidhaas JB (2008). MicroRNA in cancer prognosis. N. Engl. J Med. 359, 2720-2722.
Small EJ, Schellhammer PF, Higano CS, Redfern CH, Nemunaitis JJ, Valone FH, Verjee SS, Jones LA, Hershberg RM (2006). Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol. 24, 3089-3094.
Smith MJ, Culhane AC, Donovan M, Coffey JC, Barry BD, Kelly MA, Higgins DG, Wang JH, Kirwan WO, Cotter TG, Redmond HP (2009a). Analysis of differential gene expression in colorectal cancer and stroma using fluorescence-activated cell sorting purification. Br. J Cancer 100, 1452-1464.
Smith SC, Nicholson B, Nitz M, Frierson HF, Jr., Smolkin M, Hampton G, El-Rifai W, Theodorescu D (2009b). Profiling bladder cancer organ site-specific metastasis identifies LAMC2 as a novel biomarker of hematogenous dissemination. Am J Pathol. 174, 371-379.
Sohr S, Engeland K (2008). RHAMM is differentially expressed in the cell cycle and downregulated by the tumor suppressor p53. Cell Cycle 7, 3448-3460.
Somers GR, Bradbury R, Trute L, Conigrave A, Venter DJ (1999). Expression of the human P2Y6 nucleotide receptor in normal placenta and gestational trophoblastic disease. Lab Invest 79, 131-139.
Srougi MC, Burridge K (2011). The nuclear guanine nucleotide exchange factors Ect2 and Netl regulate RhoB-mediated cell death after DNA damage. PLoS. ONE. 6, e17108.
Staehler M, Stenzl A, Dietrich PY, Eisen T, Haferkamp A, Beck J, Mayer A, Walter S, Singh-Jasuja H, Stief C (2007). A phase I study to evaluate safety, immunogenicity and anti-tumor activity of the multi-peptide vaccine IMA901 in renal cell carcinoma patients (RCC). Journal of Clinical Oncology, 2007 ASCO Annual Meeting Proceedings Part I, Vol 25, No. 18S (June 20 Supplement), 2007: 5098 (Abstract).
Starzyk RM, Rosenow C, Frye J, Leismann M, Rodzinski E, Putney S, Tuomanen EI (2000). Cerebral cell adhesion molecule: a novel leukocyte adhesion determinant on blood-brain barrier capillary endothelium. J Infect. Dis. 181, 181-187.
Steckelbroeck S, Jin Y, Gopishetty S, Oyesanrmi B, Perning TM (2004). Human cytosolic 3alpha-hydroxysteroid dehydrogenases of the aldo-keto reductase superfamily display significant 3beta-hydroxysteroid dehydrogenase activity: implications for steroid hormone metabolism and action. J Biol. Chem. 279, 10784-10795.
Stewart DJ (2010). Tumor and host factors that may limit efficacy of chemotherapy in non-small cell and small cell lung cancer. Crit Rev. Oncol Hematol. 75, 173-234.
Stuart JE, Lusis EA, Scheck AC, Coons SW, Lal A, Perry A, Gutmann DH (2010). Identification of Gene Markers Associated With Aggressive Meningioma by Filtering Across Multiple Sets of Gene Expression Arrays. J Neuropathol. Exp. Neurol.
Suminami Y, Kishi F, Sekiguchi K, Kato H (1991). Squamous cell carcinoma antigen is a new member of the serine protease inhibitors. Biochem. Biophys. Res. Commun. 181, 51-58.
Sunaga N, Imai H, Shimizu K, Shames DS, Kakegawa S, Girard L, Sato M, Kaira K, Ishizuka T, Gazdar AF, Minna JD, Mori M (2012). Oncogenic KRAS-induced interleukin-8 overexpression promotes cell growth and migration and contributes to aggressive phenotypes of non-small cell lung cancer. Int. J Cancer 130, 1733-1744.
Sutherlin ME, Nishimori I, Caffrey T, Bennett EP, Hassan H, Mandel U, Mack D, Iwamura T, Clausen H, Hollingsworth MA (1997). Expression of three UDP-N-acetyl-alpha-D-galactosamine:polypeptide GalNAc N-acetylgalactosaminyltransferases in adenocarcinoma cell lines. Cancer Res. 57, 4744-4748.
Suvasini R, Shruti B, Thota B, Shinde SV, Friedmann-Morvinski D, Nawaz Z, Prasarna KV, Thennarasu K, Hegde AS, Arivazhagan A, Chandramouli BA, Santosh V, Somasundaram K (2011). Insulin growth factor-2 binding protein 3 (IGF2BP3) is a glioblastoma-specific marker that activates phosphatidylinositol 3-kinase/mitogen-activated protein kinase (PI3K/MAPK) pathways by modulating IGF-2. J Biol. Chem. 286, 25882-25890.
Tai CJ, Shen SC, Lee WR, Liao CF, Deng WP, Chiou HY, Hsieh CI, Tung JN, Chen CS, Chiou JF, Li LT, Lin CY, Hsu CH, Jiang MC (2010). Increased cellular apoptosis susceptibility (CSE1L/CAS) protein expression promotes protrusion extension and enhances migration of MCF-7 breast cancer cells. Exp. Cell Res. 316, 2969-2981.
Takanami I, Abiko T, Koizumi S (2008). Expression of periostin in patients with non-small cell lung cancer: correlation with angiogenesis and lymphangiogenesis. Int J Biol. Markers 23, 182-186.
Tanaka S, Akiyoshi T, Mori M, Wands JR, Sugimachi K (1998). A novel frizzled gene identified in human esophageal carcinoma mediates APC/beta-catenin signals. Proc. Natl. Acad. Sci. U. S. A 95, 10164-10169.
Tanaka T, Ohkubo S, Tatsuno I, Prives C (2007). hCAS/CSE1L associates with chromatin and regulates expression of select p53 target genes. Cell 130, 638-650.
Terabayashi T, Sakaguchi M, Shinmyozu K, Ohshima T, Johjima A, Ogura T, Miki H, Nishinakamura R (2012). Phosphorylation of Kif26b promotes its polyubiquitination and subsequent proteasomal degradation during kidney development. PLoS. ONE. 7, e39714.
Terry KL, Vitonis AF, Hernandez D, Lurie G, Song H, Ramus SJ, Titus-Ernstoff L, Carney ME, Wilkens LR, Gentry-Maharaj A, Menon U, Gayther SA, Pharaoh PD, Goodman MT, Cramer DW, Birrer MJ (2010). A polymorphism in the GALNT2 gene and ovarian cancer risk in four population based case-control studies. Int. J Mol. Epidemiol. Genet. 1, 272-277.
Thierry L, Geiser AS, Hansen A, Tesche F, Herken R, Miosge N (2004). Collagen types XII and XIV are present in basement membrane zones during human embryonic development. J Mol. Histol. 35, 803-810.
Thorsen K, Sorensen KD, Brems-Eskildsen AS, Modin C, Gaustadnes M, Hein AM, Kruhoffer M, Laurberg S, Borre M, Wang K, Brunak S, Krainer AR, Torring N, Dyrskjot L, Andersen CL, ORntoft TF (2008). Alternative splicing in colon, bladder, and prostate cancer identified by exon array analysis. Mol. Cell Proteomics. 7, 1214-1224.
Thurner B, Haendle I, Roder C, Dieckmann D, Keikavoussi P, Jo nuleit H, Bender A, Maczek C, Schreiner D, von den DP, Brocker EB, Steinman RM, Enk A, Kampgen E, Schuler G (1999). Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp. Med 190, 1669-1678.
Timar J, Kasler M, Katai J, Soos M, Mathiasz D, Romany A, Patthy L, Kovacs G, Jozsa A, Szilak L, Forrai T (2006). [Developments in cancer management by innovative genomics. 2006 report of the National Cancer Consortium]. Magy. Onkol. 50, 349-359.
Tischler V, Fritzsche FR, Wild PJ, Stefan C, Seifert HH, Riener MO, Hermanns T, Mortezavi A, Gerhardt J, Schraml P, Jung K, Moch H, Soltermann A, Kristiansen G (2010). Periostin is up-regulated in high grade and high stage prostate cancer. BMC. Cancer 10, 273.
Tompkins DH, Besnard V, Lange AW, Keiser AR, Wert SE, Bruno MD, Whitsett JA (2011). Sox2 activates cell proliferation and differentiation in the respiratory epithelium. Am J Respir. Cell Mol. Biol. 45, 101-110.
Tondreau T, Dejeneffe M, Meuleman N, Stamatopoulos B, Delforge A, Martiat P, Bron D, Lagneaux L (2008). Gene expression pattern of functional neuronal cells derived from human bone marrow mesenchymal stromal cells. BMC. Genomics 9, 166.
Tong L, Harwood HJ, Jr. (2006). Acetyl-coenzyme A carboxylases: versatile targets for drug discovery. J Cell Biochem. 99, 1476-1488.
Tong WG, Wierda WG, Lin E, Kuang SQ, Bekele BN, Estrov Z, Wei Y, Yang H, Keating MJ, Garcia-Manero G (2010). Genome-wide DNA methylation profiling of chronic lymphocytic leukemia allows identification of epigenetically repressed molecular pathways with clinical impact. Epigenetics. 5, 499-508.
Torre GC (1998). SCC antigen in malignant and nonmalignant squamous lesions. Tumour. Biol. 19, 517-526.
Tritz R, Hickey MJ, Lin AH, Hadwiger P, Sah DW, Neuwelt EA, Mueller BM, Kruse CA (2009). FAPP2 gene downregulation increases tumor cell sensitivity to F as-induced apoptosis. Biochem. Biophys. Res. Commun. 383, 167-171.
Tsai JR, Chong IW, Chen YH, Yang MJ, Sheu CC, Chang HC, Hwang JJ, Hung JY, Lin SR (2007). Differential expression profile of MAGE family in non-small-cell lung cancer. Lung Cancer 56, 185-192.
Tseng H (1998). Basonuclin, a zinc finger protein associated with epithelial expansion and proliferation. Front Biosci. 3, D985-D988.
Tseng H, Biegel JA, Brown RS (1999). Basonuclin is associated with the ribosomal RNA genes on human keratinocyte mitotic chromosomes. J Cell Sci. 112 Pt 18, 3039-3047.
Tseng H, Green H (1994). Association of basonuclin with ability of keratinocytes to multiply and with absence of terminal differentiation. J Cell Biol. 126, 495-506.
Tsuji A, Kikuchi Y, Sato Y, Koide S, Yuasa K, Nagahama M, Matsuda Y (2006). A proteomic approach reveals transient association of reticulocalbin-3, a novel member of the CREC family, with the precursor of subtilisin-like proprotein convertase, PACE4. Biochem. J 396, 51-59.
Tsukamoto Y, Uchida T, Karnan S, Noguchi T, Nguyen LT, Tanigawa M, Takeuchi I, Matsuura K, Hijiya N, Nakada C, Kishida T, Kawahara K, Ito H, Murakami K, Fujioka T, Seto M, Moriyama M (2008). Genome-wide analysis of DNA copy number alterations and gene expression in gastric cancer. J Pathol. 216, 471-482.
Twarock S, Tammi MI, Savani RC, Fischer JW (2010). Hyaluronan stabilizes focal adhesions, filopodia, and the proliferative phenotype in esophageal squamous carcinoma cells. J Biol. Chem. 285, 23276-23284.
Twells RC, Metzker ML, Brown SD, Cox R, Garey C, Hammond H, Hey PJ, Levy E, Nakagawa Y, Philips MS, Todd JA, Hess JF (2001). The sequence and gene characterization of a 400-kb candidate region for IDDM4 on chromosome 11q13. Genomics 72, 231-242.
Tzankov A, Strasser U, Dirnhofer S, Menter T, Arber C, Jo tterand M, Rovo A, Tichelli A, Stauder R, Gunthert U (2011). In situ RHAMM protein expression in acute myeloid leukemia blasts suggests poor overall survival. Ann Hematol.
Uchiyama Y, Sakaguchi M, Terabayashi T, Inenaga T, Inoue S, Kobayashi C, Oshima N, Kiyonari H, Nakagata N, Sato Y, Sekiguchi K, Miki H, Araki E, Fujimura S, Tanaka SS, Nishinakamura R (2010). Kif26b, a kinesin family gene, regulates adhesion of the embryonic kidney mesenchyme. Proc. Natl. Acad. Sci. U. S. A 107, 9240-9245.
Ullman E, Pan JA, Zong WX (2011). Squamous cell carcinoma antigen 1 promotes caspase-8-mediated apoptosis in response to endoplasmic reticulum stress while inhibiting necrosis induced by lysosomal injury. Mol. Cell Biol. 31, 2902-2919.
Utispan K, Thuwajit P, Abiko Y, Charngkaew K, Paupairoj A, Chau-in S, Thuwajit C (2010). Gene expression profiling of cholangiocarcinoma-derived fibroblast reveals alterations related to tumor progression and indicates periostin as a poor prognostic marker. Mol. Cancer 9, 13.
van AM, Schepens M, de BD, Janssen B, Merkx G, Geurts van KA (2000). Construction of a 350-kb sequence-ready 11q13 cosmid contig encompassing the markers D11S4933 and D11S546: mapping of 11 genes and 3 tumor-associated translocation breakpoints. Genomics 66, 35-42.
Vargas-Roig LM, Gago FE, Tello O, Aznar JC, Ciocca DR (1998). Heat shock protein expression and drug resistance in breast cancer patients treated with induction chemotherapy. Int. J Cancer 79, 468-475.
Vazquez-Ortiz G, Pina-Sanchez P, Vazquez K, Duenas A, Taja L, Mendoza P, Garcia JA, Salcedo M (2005). Overexpression of cathepsin F, matrix metalloproteinases 11 and 12 in cervical cancer. BMC. Cancer 5, 68.
Wahl MC, Will CL, Luhrmann R (2009). The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701-718.
Walchli C, Koch M, Chiquet M, Odermatt BF, Trueb B (1994). Tissue-specific expression of the fibril-associated collagens XII and XIV. J Cell Sci. 107 (Pt 2), 669-681.
Wallace AM, Sandford AJ, English JC, Burkett KM, Li H, Finley RJ, Muller NL, Coxson HO, Pare PD, Abboud RT (2008). Matrix metalloproteinase expression by human alveolar macrophages in relation to emphysema. COPD. 5, 13-23.
Walter S, Herrgen L, Schoor O, Jung G, Wernet D, Buhring HJ, Rammensee HG, Stevanovic S (2003). Cutting edge: predetermined avidity of human CD8 T cells expanded on calibrated MHC/anti-CD28-coated microspheres. J. Immunol. 171, 4974-4978.
Wang C, Rajput S, Watabe K, Liao DF, Cao D (2010a). Acetyl-CoA carboxylase-a as a novel target for cancer therapy. Front Biosci. (Schol. Ed) 2, 515-526.
Wang C, Xu C, Sun M, Luo D, Liao DF, Cao D (2009a). Acetyl-CoA carboxylase-alpha inhibitor TOFA induces human cancer cell apoptosis. Biochem. Biophys. Res. Commun. 385, 302-306.
Wang HW, Lin CP, Chiu JH, Chow KC, Kuo KT, Lin CS, Wang LS (2007). Reversal of inflammation-associated dihydrodiol dehydrogenases (AKR1C1 and AKR1C2) overexpression and drug resistance in nonsmall cell lung cancer cells by wogonin and chrysin. Int. J Cancer 120, 2019-2027.
Wang J, Tsui HW, Beier F, Pritzker KP, Inman RD, Tsui FW (2008a). The ANKH DeltaE490Mutation in Calcium Pyrophosphate Dihydrate Crystal Deposition Disease (CPPDD) affects tissue non-specific Alkaline Phosphatase (TNAP) activities. Open Rheumatol. J 2, 23-30.
Wang KK, Liu N, Radulovich N, Wigle DA, Johnston MR, Shepherd FA, Minden MD, Tsao MS (2002). Novel candidate tumor marker genes for lung adenocarcinoma. Oncogene 21, 7598-7604.
Wang Q, Traynor JR (2011). Opioid-induced down-regulation of RGS4: role of ubiquitination and implications for receptor cross-talk. J Biol. Chem. 286, 7854-7864.
Wang SZ, Luo XG, Shen J, Zou JN, Lu YH, Xi T (2008b). Knockdown of SMYD3 by RNA interference inhibits cervical carcinoma cell growth and invasion in vitro. BMB. Rep. 41, 294-299.
Wang WX, Zhang WJ, Peng ZL, Yang KX (2009b). [Expression and clinical significance of CDC6 and hMSH2 in cervical carcinoma]. Sichuan. Da. Xue. Xue. Bao. Yi. Xue. Ban. 40, 857-860.
Wang Y, Zhou F, Wu Y, Xu D, Li W, Liang S (2010b). The relationship between three heat shock protein 70 gene polymorphisms and susceptibility to lung cancer. Clin Chem. Lab Med. 48, 1657-1663.
Warner SL, Stephens BJ, Nwokenkwo S, Hostetter G, Sugeng A, Hidalgo M, Trent JM, Han H, Von Hoff DD (2009). Validation of TPX2 as a potential therapeutic target in pancreatic cancer cells. Clin Cancer Res 15, 6519-6528.
Watanabe M, Takemasa I, Kawaguchi N, Miyake M, Nishimura N, Matsubara T, Matsuo E, Sekimoto M, Nagai K, Matsuura N, Monden M, Nishimura O (2008). An application of the 2-nitrobenzenesulfenyl method to proteomic profiling of human colorectal carcinoma: A novel approach for biomarker discovery. Proteomics. Clin Appl. 2, 925-935.
Watanabe T, Kobunai T, Yamamoto Y, Ikeuchi H, Matsuda K, Ishihara S, Nozawa K, Iinuma H, Kanazawa T, Tanaka T, Yokoyama T, Konishi T, Eshirma K, Ajioka Y, Hibi T, Watanabe M, Muto T, Nagawa H (2011). Predicting ulcerative colitis-associated colorectal cancer using reverse-transcription polymerase chain reaction analysis. Clin Colorectal Cancer 10, 134-141.
Watrin E, Legagneux V (2005). Contribution of hCAP-D2, a non- SMC subunit of condensin I, to chromosome and chromosomal protein dynamics during mitosis. Mol. Cell Biol. 25, 740-750.
Watt SL, Lunstrum GP, McDonough AM, Keene DR, Burgeson RE, Morris NP (1992). Characterization of collagen types XII and XIV from fetal bovine cartilage. J Biol. Chem. 267, 20093-20099.
Wawrzynska L, Sakowicz A, Rudzinski P, Langfort R, Kurzyna M (2003). The conversion of thyroxine to triiodothyronine in the lung: comparison of activity of type I iodothyronine 5' deiodinase in lung cancer with peripheral lung tissues. Monaldi Arch. Chest Dis. 59, 140-145.
Weeraratna AT, Jiang Y, Hostetter G, Rosenblatt K, Duray P, Bittner M, Trent JM (2002). Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1, 279-288.
Weiner L, Green H (1998). Basonuclin as a cell marker in the formation and cycling of the murine hair follicle. Differentiation 63, 263-272.
Weinschenk T, Gouttefangeas C, Schirle M, Obermayr F, Walter S, Schoor O, Kurek R, Loeser W, Bichler KH, Wernet D, Stevanovic S, Rammensee HG (2002). Integrated functional genomics approach for the design of patient-individual antitumor vaccines. Cancer Res. 62, 5818-5827.
Wickramasinghe VO, Stewart M, Laskey RA (2010). GANP enhances the efficiency of mRNA nuclear export in mammalian cells. Nucleus. 1, 393-396.
Wildeboer D, Naus S, my Sang QX, Bartsch JW, Pagenstecher A (2006). Metalloproteinase disintegrins ADAM8 and ADAM19 are highly regulated in huuman primary brain tumors and their expression levels and activities are associated with invasiveness. J Neuropathol. Exp. Neurol. 65, 516-527.
Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, Clarke R, Heath SC, Timpson NJ, Najjar SS, Stringham HM, Strait J, Duren WL, Maschio A, BusoneroF, Mulas A, Albai G, Swift AJ, Morken MA, Narisu N, Bennett D, Parish S, Shen H, Galan P, Meneton P, Hercberg S, Zelenika D, Chen WM, Li Y, Scott LJ, Scheet PA, Sundvall J, Watanabe RM, Nagaraja R, Ebrahim S, Lawlor DA, Ben-Shlomo Y, Davey-Smith G, Shuldiner AR, Collins R, Bergman RN, Uda M, Tuomilehto J, Cao A, Collins FS, Lakatta E, Lathrop GM, Boehnke M, Schlessinger D, Mohlke KL, Abecasis GR (2008). Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet. 40, 161-169.
Winkler GS, Mulder KW, Bardwell VJ, Kalkhoven E, Timmers HT (2006). Human Ccr4-Not complex is a ligand-dependent repressor of nuclear receptor-mediated transcription. EMBO J 25, 3089-3099.
Wong CH, Chan H, Ho CY, Lai SK, Chan KS, Koh CG, Li HY (2009). Apoptotic histone modification inhibits nuclear transport by regulating RCC1. Nat Cell Biol. 11, 36-45.
Wu A, Wu B, Guo J, Luo W, Wu D, Yang H, Zhen Y, Yu X, Wang H, Zhou Y, Liu Z, Fang W, Yang Z (2011a). Elevated expression of CDK4 in lung cancer. J Transl. Med. 9, 38.
Wu GC, Hu HC, Shi MH (2008). [Expression and clinical significance of a disintegrin and metalloprotease 8 (ADAM8) and epidermal growth factor receptor (EGFR) in non-small cell lung cancer]. Ai. Zheng. 27, 874-878.
Wu H, Xu H, Miraglia LJ, Crooke ST (2000). Human RNase III is a 160-kDa protein involved in preribosomal RNA processing. J Biol. Chem. 275, 36957-36965.
Wu KD, Lee WS, Wey J, Bungard D, Lytton J (1995). Localization and quantification of endoplasmic reticulum Ca(2+)-ATPase isoform transcripts. Am. J Physiol 269, C775-C784.
Wu SQ, Lv YE, Lin BH, Luo LM, Lv SL, Bi AH, Jia YS (2013). Silencing of periostin inhibits nicotine-mediated tumor cell growth and epithelial-mesenchymal transition in lung cancer cells. Mol. Med. Rep. 7, 875-880.
Wu YM, Liu CH, Hu RH, Huang MJ, Lee JJ, Chen CH, Huang J, Lai HS, Lee PH, Hsu WM, Huang HC, Huang MC (2011b). Mucin glycosylating enzyme GALNT2 regulates the malignant character of hepatocellular carcinoma by modifying the EGF receptor. Cancer Res. 71, 7270-7279.
Wu Z, Jiang H, Zhang L, Xu X, Zhang X, Kang Z, Song D, Zhang J, Guan M, Gu Y (2012). Molecular analysis of RNF213 gene for moyamoya disease in the Chinese Han population. PLoS. ONE. 7, e48179.
Wullner U, Neef I, Eller A, Kleines M, Tur MK, Barth S (2008). Cell-specific induction of apoptosis by rationally designed bivalent aptamer-siRNA transcripts silencing eukaryotic elongation factor 2. Curr. Cancer Drug Targets. 8, 554-565.
Xia LM, Tian DA, Zhang Q, Yan W, Wang B, Liu M, Li PY, Chen B (2008). [Inhibition of HSP70-2 expression by RNA interference induces apoptosis of human hepatocellular carcinoma cells]. Zhonghua Gan Zang. Bing. Za Zhi. 16, 678-682.
Xiao L, Rao JN, Zou T, Liu L, Marasa BS, Chen J, Turner DJ, Passaniti A, Wang JY (2007). Induced JunD in intestinal epithelial cells represses CDK4 transcription through its proximal promoter region following polyamine depletion. Biochem. J 403, 573-581.
Xie Y, Wolff DW, Wei T, Wang B, Deng C, Kirui JK, Jiang H, Qin J, Abel PW, Tu Y (2009). Breast cancer migration and invasion depend on proteasome degradation of regulator of G-protein signaling 4. Cancer Res 69, 5743-5751.
Xiong D, Li G, Li K, Xu Q, Pan Z, Ding F, Vedell P, Liu P, Cui P, Hua X, Jiang H, Yin Y, Zhu Z, Li X, Zhang B, Ma D, Wang Y, You M (2012). Exome sequencing identifies MXRA5 as a novel cancer gene frequently mutated in non-small cell lung carcinoma from Chinese patients. Carcinogenesis 33, 1797-1805.
Yamada H, Yanagisawa K, Tokumaru S, Taguchi A, Nimura Y, Osada H, Nagino M, Takahashi T (2008). Detailed characterization of a homozygously deleted region corresponding to a candidate tumor suppressor locus at 21q11-21 in human lung cancer. Genes Chromosomes. Cancer 47, 810-818.
Yamamoto H, Oue N, Sato A, Hasegawa Y, Yamamoto H, Matsubara A, Yasui W, Kikuchi A (2010). Wnt5a signaling is involved in the aggressiveness of prostate cancer and expression of metalloproteinase. Oncogene 29, 2036-2046.
Yamazaki H, Nishida H, Iwata S, Dang NH, Morimoto C (2009). CD90 and CD110 correlate with cancer stem cell potentials in human T-acute lymphoblastic leukemia cells. Biochem. Biophys. Res Commun. 383, 172-177.
Yang S, Shin J, Park KH, Jeung HC, Rha SY, Noh SH, Yang WI, Chung HC (2007). Molecular basis of the differences between normal and tumor tissues of gastric cancer. Biochim. Biophys. Acta 1772, 1033-1040.
Yasmeen A, Berdel WE, Serve H, Muller-Tidow C (2003). E- and A-type cyclins as markers for cancer diagnosis and prognosis. Expert. Rev. Mol. Diagn. 3, 617-633.
Yasukawa M, Ishida K, Yuge Y, Hanaoka M, Minami Y, Ogawa M, Sasaki T, Saito M, Tsuji T (2013). Dpysl4 is involved in tooth germ morphogenesis through growth regulation, polarization and differentiation of dental epithelial cells. Int. J Biol. Sci. 9, 382-390.
Ye H, Yu T, Temam S, Ziober BL, Wang J, Schwartz JL, Mao L, Wong DT, Zhou X (2008). Transcriptomic dissection of tongue squamous cell carcinoma. BMC. Genomics 9, 69.
Yee C, Thompson JA, Byrd D, Riddell SR, Roche P, Celis E, Greenberg PD (2002). Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc. Natl. Acad. Sci. U. S. A 99, 16168-16173.
Yoon H, Liyanarachchi S, Wright FA, Davuluri R, Lockman JC, de la CA, Pellegata NS (2002). Gene expression profiling of isogenic cells with different TP53 gene dosage reveals numerous genes that are affected by TP53 dosage and identifies CSPG2 as a direct target of p53. Proc Natl. Acad. Sci. U. S. A 99, 15632-15637.
Yoshida K, Sugimoto N, Iwahori S, Yugawa T, Narisawa-Saito M, Kiyono T, Fujita M (2010). CDC6 interaction with ATR regulates activation of a replication checkpoint in higher eukaryotic cells. J Cell Sci. 123, 225-235.
Yu JM, Jun ES, Jung JS, Suh SY, Han JY, Kim JY, Kim KW, Jung JS (2007). Role of Wnt5a in the proliferation of human glioblastoma cells. Cancer Lett. 257, 172-181.
Yuzugullu H, Benhaj K, Ozturk N, Senturk S, Celik E, Toylu A, Tasdemir N, Yilmaz M, Erdal E, Akcali KC, Atabey N, Ozturk M (2009). Canonical Wnt signaling is antagonized by noncanonical Wnt5a in hepatocellular carcinoma cells. Mol. Cancer 8, 90.
Zaka R, Dion AS, Kusnierz A, Bohensky J, Srinivas V, Freeman T, Williams CJ (2009). Oxygen tension regulates the expression of ANK (progressive ankylosis) in an HIF-1-dependent manner in growth plate chondrocytes. J Bone Miner. Res. 24, 1869-1878.
Zaremba S, Barzaga E, Zhu M, Soares N, Tsang KY, Schlom J (1997). Identification of an enhancer agonist cytotoxic T lymphocyte peptide from human carcinoembryonic antigen. Cancer Res. 57, 4570-4577.
Zhang H, Jia Y, Cooper JJ, Hale T, Zhang Z, Elbein SC (2004). Common variants in glutamine:fructose-6-phosphate amidotransferase 2 (GFPT2) gene are associated with type 2 diabetes, diabetic nephropathy, and increased GFPT2 mRNA levels. J Clin Endocrinol. Metab 89, 748-755.
Zhang J, Valianou M, Cheng JD (2010a). Identification and characterization of the promoter of fibroblast activation protein. Front Biosci. (Elite. Ed) 2, 1154-1163.
Zhang X, Berger FG, Yang J, Lu X (2011a). USP4 inhibits p53 through deubiquitinating and stabilizing ARF-BP1. EMBO J 30, 2177-2189.
Zhang Y, Zhang G, Li J, Tao Q, Tang W (2010b). The expression analysis of periostin in human breast cancer. J Surg Res 160, 102-106.
Zhang ZC, Satterly N, Fontoura BM, Chook YM (2011b). Evolutionary development of redundant nuclear localization signals in the mRNA export factor NXF 1. Mol. Biol. Cell 22, 4657-4668.
Zhao C, Bellur DL, Lu S, Zhao F, Grassi MA, Bowne SJ, Sullivan LS, Daiger SP, Chen LJ, Pang CP, Zhao K, Staley JP, Larsson C (2009). Autosomal-dominant retinitis pigmentosa caused by a mutation in SNRNP200, a gene required for unwinding of U4/U6 snRNAs. Am. J Hum. Genet. 85, 617-627.
Zhao Z, Lee CC, Baldini A, Caskey CT (1995). A human homologue of the Drosophila polarity gene frizzled has been identified and mapped to 17q21.1. Genomics 27, 370-373.
Zheng PS, Wen J, Ang LC, Sheng W, Viloria-Petit A, Wang Y, Wu Y, Kerbel RS, Yang BB (2004). Versican/PG-M G3 domain promotes tumor growth and angiogenesis. FASEB J 18, 754-756.
Zhu CQ, Popova SN, Brown ER, Barsyte-Lovejoy D, Navab R, Shih W, Li M, Lu M, Jurisica I, Penn LZ, Gullberg D, Tsao MS (2007). Integrin alpha 11 regulates IGF2 expression in fibroblasts to enhance tumorigenicity of human non-small-cell lung cancer cells. Proc. Natl. Acad. Sci. U. S. A 104, 11754-11759.
Zhu JH, Hong DF, Song YM, Sun LF, Wang ZF, Wang JW (2013). Suppression of Cellular Apoptosis Susceptibility (CSE1L) Inhibits Proliferation and Induces Apoptosis in Colorectal Cancer Cells. Asian Pac. J Cancer Prev. 14, 1017-1021.
Zlobec I, Terracciano L, Tornillo L, Gunthert U, Vuong T, Jass JR, Lugli A (2008). Role of RHAMM within the hierarchy of well-established prognostic factors in colorectal cancer. Gut 57, 1413-1419.
Zou JN, Wang SZ, Yang JS, Luo XG, Xie JH, Xi T (2009). Knockdown of SMYD3 by RNA interference down-regulates c-Met expression and inhibits cells migration and invasion induced by HGF. Cancer Lett. 280, 78-85.
Zou TT, Selaru FM, Xu Y, Shustova V, Yin J, Mori Y, Shibata D, Sato F, Wang S, Olaru A, Deacu E, Liu TC, Abraham JM, Meltzer SJ (2002). Application of cDNA microarrays to generate a molecular taxonomy capable of distinguishing between colon cancer and normal colon. Oncogene 21, 4855-4862.
Allander SV, Illei PB, Chen Y, Antonescu CR, Bittner M, Ladanyi M, Meltzer PS (2002). Expression profiling of synovial sarcoma by cDNA microarrays: association of ERBB2, IGFBP2, and ELF3 with epithelial differentiation. Am. J Pathol. 161, 1587-1595.
Baker DJ, Jeganathan KB, Cameron JD, Thompson M, Juneja S, Kopecka A, Kumar R, Jenkins RB, de Groen PC, Roche P, van Deursen JM (2004). BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat Genet. 36, 744-749.
Balla A, Kim YJ, Varnai P, Szentpetery Z, Knight Z, Shokat KM, Balla T (2008). Maintenance of hormone-sensitive phosphoinositide pools in the plasma membrane requires phosphatidylinositol 4-kinase IIIalpha. Mol. Biol. Cell 19, 711-721.
Barembaum M, Moreno TA, LaBonne C, Sechrist J, Bronner-Fraser M (2000). Noelin-1 is a secreted glycoprotein involved in generation of the neural crest. Nat Cell Biol. 2, 219-225.
Bhogaraju S, Cajanek L, Fort C, Blisnick T, Weber K, Taschner M, Mizuno N, Lamla S, Bastin P, Nigg EA, Lorentzen E (2013). Molecular basis of tubulin transport within the cilium by IFT 74 and IFT81. Science 341, 1009-1012.
Blumental-Perry A, Haney CJ, Weixel KM, Watkins SC, Weisz OA, Aridor M (2006). Phosphatidylinositol 4-phosphate formation at ER exit sites regulates ER export. Dev. Cell 11, 671-682.
Cantor JM, Ginsberg MH (2012). CD98 at the crossroads of adaptive immunity and cancer. J Cell Sci. 125, 1373-1382.
Cave H, Suciu S, Preudhomme C, Poppe B, Robert A, Uyttebroeck A, Malet M, Boutard P, Benoit Y, Mauvieux L, Lutz P, Mechinaud F, Grardel N, Mazingue F, Dupont M, Margueritte G, Pages MP, Bertrand Y, Plouvier E, Brunie G, Bastard C, Plantaz D, Vande V, I, Hagemeijer A, Speleman F, Lessard M, Otten J, Vilmer E, Dastugue N (2004). Clinical significance of HOX11L2 expression linked to t(5;14)(q35;q32), of HOX11 expression, and of SIL-TAL fusion in childhood T-cell malignancies: results of EORTC studies 58881 and 58951. Blood 103, 442-450.
Chadwick BP, Obermayr F, Frischauf AM (1996). Nuclear cap binding protein maps close to the xeroderma pigmentosum complementation group A (XPA) locus in human and mouse. Genomics 35, 632-633.
Cornen S, Guille A, Adelaide J, Addou-Klouche L, Finetti P, Saade MR, Manai M, Carbuccia N, Bekhouche I, Letessier A, Raynaud S, Charafe-Jauffret E, Ja cquemier J, Spicuglia S, de TH, Viens P, Bertucci F, Birnbaum D, Chaffanet M (2014). Candidate luminal B breast cancer genes identified by genome, gene expression and DNA methylation profiling. PLoS. ONE. 9, e81843.
Dear TN, Sanchez-Garcia I, Rabbitts TH (1993). The HOX11 gene encodes a DNA-binding nuclear transcription factor belonging to a distinct family of homeobox genes. Proc. Natl. Acad. Sci. U. S. A 90, 4431-4435.
Deves R, Boyd CA (2000). Surface antigen CD98(4F2): not a single membrane protein, but a family of proteins with multiple functions. J Membr. Biol. 173, 165-177.
Ferrando AA, Herblot S, Palomero T, Hansen M, Hoang T, Fox EA, Look AT (2004). Biallelic transcriptional activation of oncogenic transcription factors in T-cell acute lymphoblastic leukemia. Blood 103, 1909-1911.
Fry AM, Mayor T, Meraldi P, Stierhof YD, Tanaka K, Nigg EA (1998). C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle-regulated protein kinase Nek2. J Cell Biol. 141, 1563-1574.
Fu J, Bian M, Jiang Q, Zhang C (2007). Roles of Aurora kinases in mitosis and tumorigenesis. Mol. Cancer Res. 5, 1-10.
Garbarino JE, Gibbons IR (2002). Expression and genomic analysis of midasin, a novel and highly conserved AAA protein distantly related to dynein. BMC. Genomics 3, 18.
Gomez-Ferreria MA, Bashkurov M, Mullin M, Gingras AC, Pelletier L (2012). CEP192 interacts physically and functionally with the K63-deubiquitinase CYLD to promote mitotic spindle assembly. Cell Cycle 11, 3555-3558.
Gomez-Ferreria MA, Rath U, Buster DW, Chanda SK, Caldwell JS, Rines DR, Sharp DJ (2007). Human Cep192 is required for mitotic centrosome and spindle assembly. Curr. Biol. 17, 1960-1966.
Hinck L (2004). The versatile roles of "axon guidance" cues in tissue morphogenesis. Dev. Cell 7, 783-793.
Ilboudo A, Nault JC, Dubois-Pot-Schneider H, Corlu A, Zucman-Rossi J, Samson M, Le SJ (2014). Overexpression ofp hosphatidylinositol 4-kinase type IIIalpha is associated with undifferentiated status and poor prognosis of human hepatocellular carcinoma. BMC. Cancer 14, 7.
Kaira K, Oriuchi N, Imai H, Shimizu K, Yanagitani N, Sunaga N, Hisada T, Ishizuka T, Kanai Y, Nakajima T, Mori M (2009). Prognostic significance of L-type amino acid transporter 1 (LAT1) and 4F2 heavy chain (CD98) expression in stage I pulmonary adenocarcinoma. Lung Cancer 66, 120-126.
Kataoka N, Ohno M, Kangawa K, Tokoro Y, Shimura Y (1994). Cloning of a complementary DNA encoding an 80 kilodalton nuclear cap binding protein. Nucleic Acids Res. 22, 3861-3865.
Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermarn F, Berthold F, Schwab M, Antonescu CR, Peterson C, Meltzer PS (2001). Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med. 7, 673-679.
Kim HJ, Cho JH, Quan H, Kim JR (2011). Down-regulation of Aurora B kinase induces cellular senescence in human fibroblasts and endothelial cells through a p53-dependent pathway. FEBS Lett. 585, 3569-3576.
Kulkarni NH, Karavanich CA, Atchley WR, Anholt RR (2000). Characterization and differential expression of a human gene family of olfactomedin-related proteins. Genet. Res. 76, 41-50.
Kunitoku N, Sasayama T, Marumoto T, Zhang D, Honda S, Kobayashi O, Hatakeyama K, Ushio Y, Saya H, Hirota T (2003). CENP-A phosphorylation by Aurora-A in prophase is required for enrichment of Aurora-B at inner centromeres and for kinetochore function. Dev. Cell 5, 853-864.
Lampson MA, Kapoor TM (2005). The human mitotic checkpoint protein BubR1 regulates chromosome-spindle attachments. Nat Cell Biol. 7, 93-98.
Latil A, Chene L, Cochant-Priollet B, Mangin P, Fournier G, Berthon P, Cussenot O (2003). Quantification of expression of netrins, slits and their receptors in human prostate tumors. Int. J Cancer 103, 306-315.
Lee Y, Yoon KA, Joo J, Lee D, Bae K, Han JY, Lee JS (2013). Prognostic implications of genetic variants in advanced non-small cell lung cancer: a genome-wide association study. Carcinogenesis 34, 307-313.
Lemaitre G, Gonnet F, Vaigot P, Gidrol X, Martin MT, Tortajada J, Waksman G (2005). CD98, a novel marker of transient amplifying human keratinocytes. Proteomics. 5, 3637-3645.
Lucker BF, Behal RH, Qin H, Siron LC, Taggart WD, Rosenbaum JL, Cole DG (2005). Characterization of the intraflagellar transport complex B core: direct interaction of the IFT81 and IFT74/72 subunits. J Biol. Chem. 280, 27688-27696.
Malureanu LA, Je ganathan KB, Hamada M, Wasilewski L, Davenport J, van Deursen JM (2009). BubR1 N terminus acts as a soluble inhibitor of cyclin B degradation by APC/C(Cdc20) in interphase. Dev. Cell 16, 118-131.
Matsuura S, Matsumoto Y, Morishima K, Izumi H, Matsumoto H, Ito E, Tsutsui K, Kobayashi J, Tauchi H, Kajiwara Y, Hama S, Kurisu K, Tahara H, Oshimura M, Komatsu K, Ikeuchi T, Kajii T (2006). Monoallelic BUB1B mutations and defective mitotic-spindle checkpoint in seven families with premature chromatid separation (PCS) syndrome. Am. J Med. Genet. A 140, 358-367.
Mayor T, Hacker U, Stierhof YD, Nigg EA (2002). The mechanism regulating the dissociation of the centrosomal protein C-Nap1 from mitotic spindle poles. J Cell Sci. 115, 3275-3284.
Minogue S, Waugh MG (2012). The Phosphatidylinositol 4-Kinases: Don't Call it a Comeback. Subcell. Biochem. 58, 1-24.
Nagase T, Seki N, Ishikawa K, Ohira M, Kawarabayasi Y, Ohara O, Tanaka A, Kotani H, Miyajima N, Nomura N (1996). Prediction of the coding sequences of unidentified human genes. VI. The coding sequences of 80 new genes (KIAA0201-KIAA0280) deduced by analysis of cDNA clones from cell line KG-1 and brain. DNA Res. 3, 321-354.
Narayan G, Goparaju C, Arias-Pu1ido H, Kaufmann AM, Schneider A, Durst M, Mansukhani M, Pothuri B, Murty VV (2006). Promoter hypermethylation-mediated inactivation of multiple Slit-Robo pathway genes in cervical cancer progression. Mol. Cancer 5, 16.
Pandey A, Blagoev B, Kratchrmarova I, Fernandez M, Nielsen M, Kristiansen TZ, Ohara O, Podtelejnikov AV, Roche S, Lodish HF, Mann M (2002). Cloning of a novel phosphotyrosine binding domain containing molecule, Odin, involved in signaling by receptor tyrosine kinases. Oncogene 21, 8029-8036.
Perumal D, Singh S, Yoder SJ, Bloom GC, Chellappan SP (2012). A novel five gene signature derived from stem-like side population cells predicts overall and recurrence-free survival in NSCLC. PLoS. ONE. 7, e43589.
Pokrovskaya ID, Willett R, Smith RD, Morelle W, Kudlyk T, Lupashin VV (2011). Conserved oligomeric Golgi complex specifically regulates the maintenance of Golgi glycosylation machinery. Glycobiology 21, 1554-1569.
Qian Y, Fritzsch B, Shirasawa S, Chen CL, Choi Y, Ma Q (2001). Formation of brainstem (nor)adrenergic centers and first-order relay visceral sensory neurons is dependent on homeodomain protein Rnx/Tlx3. Genes Dev. 15, 2533-2545.
Reynders E, Foulquier F, Leao TE, Quelhas D, Morelle W, Rabouille C, Annaert W, Matthijs G (2009). Golgi function and dysfunction in the first COG4-deficient CDG type II patient. Hum. Mol. Genet. 18, 3244-3256.
Schmid BC, Rezniczek GA, Fabjani G, Yoneda T, Leodolter S, Zeillinger R (2007). The neuronal guidance cue Slit2 induces targeted migration and may play a role in brain metastasis of breast cancer cells. Breast Cancer Res. Treat. 106, 333-342.
Sharma G, Mirza S, Prasad CP, Srivastava A, Gupta SD, Ralhan R (2007). Promoter hypermethylation of p16INK4A, p14ARF, CyclinD2 and Slit2 in serum and tumor DNA from breast cancer patients. Life Sci. 80, 1873-1881.
Shin J, Gu C, Park E, Park S (2007). Identification of phosphotyrosine binding domain-containing proteins as novel downstream targets of the EphA8 signaling function. Mol. Cell Biol. 27, 8113-8126.
Suzuki M, Shiraishi K, Eguchi A, Ikeda K, Mori T, Yoshimoto K, Ohba Y, Yamada T, Ito T, Baba Y, Baba H (2013). Aberrant methylation of LINE-1, SLIT2, MAL and IGFBP7 in non-small cell lung cancer. Oncol Rep. 29, 1308-1314.
Ungar D, Oka T, Brittle EE, Vasile E, Lupashin VV, Chatterton JE, Heuser JE, Krieger M, Waters MG (2002). Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. J Cell Biol. 157, 405-415.
Ungar D, Oka T, Vasile E, Krieger M, Hughson FM (2005). Subunit architecture of the conserved oligomeric Golgi complex. J Biol. Chem. 280, 32729-32735.
Whyte JR, Munro S (2001). The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev. Cell 1, 527-537.
Wong YF, Cheung TH, Lo KW, Yim SF, Siu NS, Chan SC, Ho TW, Wong KW, Yu MY, Wang VW, Li C, Gardner GJ, Bonome T, Johnson WB, Smith DI, Chung TK, Birrer MJ (2007). Identification of molecular markers and signaling pathway in endometrial cancer in Hong Kong Chinese women by genome-wide gene expression profiling. Oncogene 26, 1971-1982.
Wu L, Chang W, Zhao J, Yu Y, Tan X, Su T, Zhao L, Huang S, Liu S, Cao G (2010). Development of autoantibody signatures as novel diagnostic biomarkers of non-small cell lung cancer. Clin Cancer Res. 16, 3760-3768.
Bobos M, Hytiroglou P, Kostopoulos I, Karkavelas G, Papadimitriou CS (2006). Immunohistochemical distinction between merkel cell carcinoma and small cell carcinoma of the lung. Am. J Derrmatopathol. 28, 99-104.
Mena H, Morrison AL, Jones RV, Gyure KA (2001). Central neurocytomas express photoreceptor differentiation. Cancer 91, 136-143.
Schleicher RL, Hunter SB, Zhang M, Zheng M, Tan W, Bandea CI, Fallon MT, Bostwick DG, Varma VA (1997). Neurofilament heavy chain-like messenger RNA and protein are present in benign prostate and down-regulated in prostatic carcinoma. Cancer Res. 57, 3532-3536.
Segal A, Carello S, Caterina P, Papadimitriou JM, Spagnolo DV (1994). Gastrointestinal autonomic nerve tumors: a clinicopathological, immunohistochemical and ultrastructural study of 10 cases. Pathology 26, 439-447.
Szebenyi G, Smith GM, Li P, Brady ST (2002). Overexpression of neurofilament H disrupts normal cell structure and function. J Neurosci. Res. 68, 185-198.
Tanaka Y, Ijiri R, Kato K, Kato Y, Misugi K, Nakatani Y, Hara M (2000). HMB-45/melan-A and smooth muscle actin-positive clear-cell epithelioid tumor arising in the ligamentum teres hepatis: additional example of clear cell 'sugar' tumors. Am. J Surg. Pathol. 24, 1295-1299.
<110> 德商伊瑪提克斯生物科技有限公司(immatics biotechnologies GmbH)
<120> 新穎肽類,細胞及其用於治療多種腫瘤的用途,其製造方法及包含其等之醫藥組成物
<130> 103126327
<150> GB1313987.8
<151> 2013-08-05
<150> US61/862,213
<151> 2013-08-05
<150> GB1403297.3
<151> 2014-02-25
<160> 92
<170> PatentIn version 3.5
<210> 1
<211> 9
<212> PRT
<213> 智人
<400> 1
Figure 109124799-A0101-12-0209-39
<210> 2
<211> 9
<212> PRT
<213> 智人
<400> 2
Figure 109124799-A0101-12-0209-40
<210> 3
<211> 9
<212> PRT
<213> 智人
<400> 3
Figure 109124799-A0101-12-0209-41
<210> 4
<211> 9
<212> PRT
<213> 智人
<400> 4
Figure 109124799-A0101-12-0210-42
<210> 5
<211> 9
<212> PRT
<213> 智人
<400> 5
Figure 109124799-A0101-12-0210-43
<210> 6
<211> 9
<212> PRT
<213> 智人
<400> 6
Figure 109124799-A0101-12-0210-44
<210> 7
<211> 9
<212> PRT
<213> 智人
<400> 7
Figure 109124799-A0101-12-0210-45
<210> 8
<211> 9
<212> PRT
<213> 智人
<400> 8
Figure 109124799-A0101-12-0210-46
<210> 9
<211> 11
<212> PRT
<213> 智人
<400> 9
Figure 109124799-A0101-12-0210-47
<210> 10
<211> 9
<212> PRT
<213> 智人
<400> 10
Figure 109124799-A0101-12-0211-48
<210> 11
<211> 12
<212> PRT
<213> 智人
<400> 11
Figure 109124799-A0101-12-0211-49
<210> 12
<211> 9
<212> PRT
<213> 智人
<400> 12
Figure 109124799-A0101-12-0211-50
<210> 13
<211> 9
<212> PRT
<213> 智人
<400> 13
Figure 109124799-A0101-12-0211-51
<210> 14
<211> 9
<212> PRT
<213> 智人
<400> 14
Figure 109124799-A0101-12-0211-52
<210> 15
<211> 9
<212> PRT
<213> 智人
<400> 15
Figure 109124799-A0101-12-0211-53
<210> 16
<211> 10
<212> PRT
<213> 智人
<400> 16
Figure 109124799-A0101-12-0212-54
<210> 17
<211> 14
<212> PRT
<213> 智人
<400> 17
Figure 109124799-A0101-12-0212-55
<210> 18
<211> 9
<212> PRT
<213> 智人
<400> 18
Figure 109124799-A0101-12-0212-56
<210> 19
<211> 9
<212> PRT
<213> 智人
<400> 19
Figure 109124799-A0101-12-0212-57
<210> 20
<211> 9
<212> PRT
<213> 智人
<400> 20
Figure 109124799-A0101-12-0212-58
<210> 21
<211> 9
<212> PRT
<213> 智人
<400> 21
Figure 109124799-A0101-12-0213-59
<210> 22
<211> 9
<212> PRT
<213> 智人
<400> 22
Figure 109124799-A0101-12-0213-60
<210> 23
<211> 9
<212> PRT
<213> 智人
<400> 23
Figure 109124799-A0101-12-0213-61
<210> 24
<211> 9
<212> PRT
<213> 智人
<400> 24
Figure 109124799-A0101-12-0213-62
<210> 25
<211> 10
<212> PRT
<213> 智人
<400> 25
Figure 109124799-A0101-12-0213-63
<210> 26
<211> 9
<212> PRT
<213> 智人
<400> 26
Figure 109124799-A0101-12-0213-64
<210> 27
<211> 9
<212> PRT
<213> 智人
<400> 27
Figure 109124799-A0101-12-0214-65
<210> 28
<211> 9
<212> PRT
<213> 智人
<400> 28
Figure 109124799-A0101-12-0214-66
<210> 29
<211> 11
<212> PRT
<213> 智人
<400> 29
Figure 109124799-A0101-12-0214-67
<210> 30
<211> 9
<212> PRT
<213> 智人
<400> 30
Figure 109124799-A0101-12-0214-68
<210> 31
<211> 9
<212> PRT
<213> 智人
<400> 31
Figure 109124799-A0101-12-0214-69
<210> 32
<211> 9
<212> PRT
<213> 智人
<400> 32
Figure 109124799-A0101-12-0214-70
Figure 109124799-A0101-12-0215-71
<210> 33
<211> 9
<212> PRT
<213> 智人
<400> 33
Figure 109124799-A0101-12-0215-72
<210> 34
<211> 9
<212> PRT
<213> 智人
<400> 34
Figure 109124799-A0101-12-0215-73
<210> 35
<211> 9
<212> PRT
<213> 智人
<400> 35
Figure 109124799-A0101-12-0215-74
<210> 36
<211> 9
<212> PRT
<213> 智人
<400> 36
Figure 109124799-A0101-12-0215-76
<210> 37
<211> 9
<212> PRT
<213> 智人
<400> 37
Figure 109124799-A0101-12-0215-77
<210> 38
<211> 9
<212> PRT
<213> 智人
<400> 38
Figure 109124799-A0101-12-0216-78
<210> 39
<211> 9
<212> PRT
<213> 智人
<400> 39
Figure 109124799-A0101-12-0216-79
<210> 40
<211> 9
<212> PRT
<213> 智人
<400> 40
Figure 109124799-A0101-12-0216-80
<210> 41
<211> 12
<212> PRT
<213> 智人
<400> 41
Figure 109124799-A0101-12-0216-82
<210> 42
<211> 9
<212> PRT
<213> 智人
<400> 42
Figure 109124799-A0101-12-0216-83
<210> 43
<211> 10
<212> PRT
<213> 智人
<400> 43
Figure 109124799-A0101-12-0216-84
<210> 44
<211> 9
<212> PRT
<213> 智人
<400> 44
Figure 109124799-A0101-12-0217-85
<210> 45
<211> 10
<212> PRT
<213> 智人
<400> 45
Figure 109124799-A0101-12-0217-86
<210> 46
<211> 9
<212> PRT
<213> 智人
<400> 46
Figure 109124799-A0101-12-0217-87
<210> 47
<211> 9
<212> PRT
<213> 智人
<400> 47
Figure 109124799-A0101-12-0217-88
<210> 48
<211> 9
<212> PRT
<213> 智人
<400> 48
Figure 109124799-A0101-12-0217-89
<210> 49
<211> 9
<212> PRT
<213> 智人
<400> 49
Figure 109124799-A0101-12-0218-90
<210> 50
<211> 11
<212> PRT
<213> 智人
<400> 50
Figure 109124799-A0101-12-0218-91
<210> 51
<211> 9
<212> PRT
<213> 智人
<400> 51
Figure 109124799-A0101-12-0218-92
<210> 52
<211> 9
<212> PRT
<213> 智人
<400> 52
Figure 109124799-A0101-12-0218-93
<210> 53
<211> 9
<212> PRT
<213> 智人
<400> 53
Figure 109124799-A0101-12-0218-94
<210> 54
<211> 10
<212> PRT
<213> 智人
<400> 54
Figure 109124799-A0101-12-0218-95
<210> 55
<211> 9
<212> PRT
<213> 智人
<400> 55
Figure 109124799-A0101-12-0219-96
<210> 56
<211> 9
<212> PRT
<213> 智人
<400> 56
Figure 109124799-A0101-12-0219-97
<210> 57
<211> 11
<212> PRT
<213> 智人
<400> 57
Figure 109124799-A0101-12-0219-98
<210> 58
<211> 9
<212> PRT
<213> 智人
<400> 58
Figure 109124799-A0101-12-0219-99
<210> 59
<211> 9
<212> PRT
<213> 智人
<400> 59
Figure 109124799-A0101-12-0219-100
<210> 60
<211> 9
<212> PRT
<213> 智人
<400> 60
Figure 109124799-A0101-12-0219-101
<210> 61
<211> 9
<212> PRT
<213> 智人
<400> 61
Figure 109124799-A0101-12-0220-102
<210> 62
<211> 10
<212> PRT
<213> 智人
<400> 62
Figure 109124799-A0101-12-0220-103
<210> 63
<211> 11
<212> PRT
<213> 智人
<400> 63
Figure 109124799-A0101-12-0220-104
<210> 64
<211> 9
<212> PRT
<213> 智人
<400> 64
Figure 109124799-A0101-12-0220-105
<210> 65
<211> 9
<212> PRT
<213> 智人
<400> 65
Figure 109124799-A0101-12-0220-106
<210> 66
<211> 9
<212> PRT
<213> 智人
<400> 66
Figure 109124799-A0101-12-0221-107
<210> 67
<211> 9
<212> PRT
<213> 智人
<400> 67
Figure 109124799-A0101-12-0221-108
<210> 68
<211> 9
<212> PRT
<213> 智人
<400> 68
Figure 109124799-A0101-12-0221-109
<210> 69
<211> 9
<212> PRT
<213> 智人
<400> 69
Figure 109124799-A0101-12-0221-110
<210> 70
<211> 9
<212> PRT
<213> 智人
<400> 70
Figure 109124799-A0101-12-0221-112
<210> 71
<211> 9
<212> PRT
<213> 智人
<400> 71
Figure 109124799-A0101-12-0221-111
<210> 72
<211> 9
<212> PRT
<213> 智人
<400> 72
Figure 109124799-A0101-12-0222-113
<210> 73
<211> 9
<212> PRT
<213> 智人
<400> 73
Figure 109124799-A0101-12-0222-114
<210> 74
<211> 11
<212> PRT
<213> 智人
<400> 74
Figure 109124799-A0101-12-0222-115
<210> 75
<211> 9
<212> PRT
<213> 智人
<400> 75
Figure 109124799-A0101-12-0222-116
<210> 76
<211> 18
<212> PRT
<213> 智人
<400> 76
Figure 109124799-A0101-12-0222-117
<210> 77
<211> 17
<212> PRT
<213> 智人
<400> 77
Figure 109124799-A0101-12-0223-118
<210> 78
<211> 10
<212> PRT
<213> 智人
<400> 78
Figure 109124799-A0101-12-0223-119
<210> 79
<211> 10
<212> PRT
<213> 智人
<400> 79
Figure 109124799-A0101-12-0223-120
<210> 80
<211> 12
<212> PRT
<213> 智人
<400> 80
Figure 109124799-A0101-12-0223-121
<210> 81
<211> 9
<212> PRT
<213> 智人
<400> 81
Figure 109124799-A0101-12-0223-122
<210> 82
<211> 9
<212> PRT
<213> 智人
<400> 82
Figure 109124799-A0101-12-0223-123
<210> 83
<211> 10
<212> PRT
<213> 智人
<400> 83
Figure 109124799-A0101-12-0224-124
<210> 84
<211> 10
<212> PRT
<213> 智人
<400> 84
Figure 109124799-A0101-12-0224-125
<210> 85
<211> 9
<212> PRT
<213> 智人
<400> 85
Figure 109124799-A0101-12-0224-126
<210> 86
<211> 11
<212> PRT
<213> 智人
<400> 86
Figure 109124799-A0101-12-0224-127
<210> 87
<211> 11
<212> PRT
<213> 智人
<400> 87
Figure 109124799-A0101-12-0224-128
<210> 88
<211> 11
<212> PRT
<213> 智人
<400> 88
Figure 109124799-A0101-12-0225-129
<210> 89
<211> 9
<212> PRT
<213> 智人
<400> 89
Figure 109124799-A0101-12-0225-130
<210> 90
<211> 10
<212> PRT
<213> 智人
<400> 90
Figure 109124799-A0101-12-0225-131
<210> 91
<211> 9
<212> PRT
<213> 智人
<400> 91
Figure 109124799-A0101-12-0225-132
<210> 92
<211> 9
<212> PRT
<213> 智人
<400> 92
Figure 109124799-A0101-12-0225-133

Claims (21)

  1. 一種肽,其係由SEQ ID No.56胺基酸序列組成,其中該肽具有結合至人主要組織相容性複合物(MHC)I類分子的能力,或其醫藥上可接受鹽類。
  2. 根據請求項1項的肽,其中該肽含有非肽鍵。
  3. 一種編碼根據請求項1或2的肽之核酸,其為DNA、cDNA、PNA、RNA或其組合。
  4. 一種能夠表現根據請求項3的核酸之表現載體。
  5. 根據請求項1或2的肽、根據請求項3的核酸、或根據請求項4的表現載體,係作為醫藥使用。
  6. 一種宿主細胞,其包含根據請求項3的核酸或根據請求項4的表現載體,其中該宿主細胞並非人類胚胎幹細胞。
  7. 根據請求項6的宿主細胞,其中該細胞為抗原呈現細胞。
  8. 根據請求項7的宿主細胞,其中該細胞為樹突細胞。
  9. 一種分離型結合劑,其與根據請求項1至2中任一項的肽結合,或與根據請求項1或2的肽與MHC分子之複合物結合。
  10. 如請求項9所述的分離型結合劑,其中該結合劑為抗體或其片段、蛋白、核酸、肽、T細胞受體(TCR)或可溶性T細胞受體(sTCR)或其片段。
  11. 一種與HLA配體反應的T細胞受體,其中該配體係具有由SEQ ID No.56組成之胺基酸序列。
  12. 一種醫藥組成物,其包含根據請求項1至2中任一項的肽或其醫藥上可接受鹽類,根據請求項3的核酸或根據請求項4的表現載體,或根據請求項9或10的分離型結合劑,根據請求項11的T細胞受體,以及至少一種選自醫藥上可接受的載體和/或賦形劑之群組的其他成分。
  13. 一種於體外(in vitro)製備活化的細胞毒性T淋巴細胞(CTL)或輔助T細胞(Th細胞)的方法,該方法包括在體外將CTL或Th細胞與抗原負載的人I類MHC分子相接觸一段足夠以抗原特異性方式活化該CTL之時間,該MHC分子係在適當之抗原呈現細胞表面表現,其中該抗原為根據請求項1至2中任一項的肽。
  14. 根據請求項13的方法,其中藉由將足量的抗原與該抗原呈現細胞相接觸,將該抗原載入表現於適當的抗原呈現細胞表面的I類MHC分子。
  15. 一種活化的細胞毒性T淋巴細胞(CTL)或輔助T細胞(Th細胞),其係根據請求項13或14的方法所製備,其中該CTL或Th細胞選擇性地識別呈現由根據請求項1或2的胺基酸序列組成之多肽的細胞。
  16. 一種自體或同種異體人細胞毒性T細胞(CTL)或輔助T細胞(Th細胞),其係經根據請求項9或10的分離型結合劑重組地轉染。
  17. 一種根據請求項1或2之肽、根據請求項3之核酸或根據請求項4之表現載體、根據請求項6至8中任一項之宿主細胞、根據請求項9或10之分離型結合劑、或根據請求項15之活化的細胞毒性T淋巴細胞之用途,其係用於製備抗癌症活性之藥劑。
  18. 如請求項17的用途,其中該藥劑係對選自肺癌、胃癌及/或神經膠母細胞瘤的癌症有活性。
  19. 如請求項17的用途,其中該藥劑係對非小細胞肺癌(NSCLC)有活性。
  20. 如請求項17、18、或19的用途,其中該藥劑為疫苗。
  21. 一種特異性辨識根據請求項1或2之肽之抗體。
TW109124799A 2013-08-05 2014-08-01 新穎肽類,細胞及其用於治療多種腫瘤的用途,其製造方法及包含其等之醫藥組成物(五) TWI777196B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201361862213P 2013-08-05 2013-08-05
US61/862,213 2013-08-05
GBGB1313987.8A GB201313987D0 (en) 2013-08-05 2013-08-05 Novel immunotherapy against several tumors, such as lung cancer including NSCLC
GB1313987.8 2013-08-05
GBGB1403297.3A GB201403297D0 (en) 2014-02-25 2014-02-25 Novel immunotherapy against several tumors, such as lung cancer, including NSCLC
GB1403297.3 2014-02-25

Publications (2)

Publication Number Publication Date
TW202041518A TW202041518A (zh) 2020-11-16
TWI777196B true TWI777196B (zh) 2022-09-11

Family

ID=52460698

Family Applications (10)

Application Number Title Priority Date Filing Date
TW109124803A TWI819228B (zh) 2013-08-05 2014-08-01 新穎肽類,細胞及其用於治療多種腫瘤的用途,其製造方法及包含其等之醫藥組成物(八)
TW109124797A TWI777195B (zh) 2013-08-05 2014-08-01 新穎肽類,細胞及其用於治療多種腫瘤的用途,其製造方法及包含其等之醫藥組成物(三)
TW107123070A TWI714869B (zh) 2013-08-05 2014-08-01 新穎肽類,細胞及其用於治療多種腫瘤的用途,其製造方法及包含其等之醫藥組成物
TW103126327A TWI636065B (zh) 2013-08-05 2014-08-01 新穎肽類,細胞及其用於治療多種腫瘤的用途,其製造方法及包含其等之醫藥組成物
TW109124798A TWI776192B (zh) 2013-08-05 2014-08-01 新穎肽類,細胞及其用於治療多種腫瘤的用途,其製造方法及包含其等之醫藥組成物(四)
TW109124796A TWI775117B (zh) 2013-08-05 2014-08-01 新穎肽類,細胞及其用於治療多種腫瘤的用途,其製造方法及包含其等之醫藥組成物(二)
TW109124795A TWI777194B (zh) 2013-08-05 2014-08-01 新穎肽類,細胞及其用於治療多種腫瘤的用途,其製造方法及包含其等之醫藥組成物(一)
TW109124801A TWI777197B (zh) 2013-08-05 2014-08-01 新穎肽類,細胞及其用於治療多種腫瘤的用途,其製造方法及包含其等之醫藥組成物(六)
TW109124802A TWI777198B (zh) 2013-08-05 2014-08-01 新穎肽類,細胞及其用於治療多種腫瘤的用途,其製造方法及包含其等之醫藥組成物(七)
TW109124799A TWI777196B (zh) 2013-08-05 2014-08-01 新穎肽類,細胞及其用於治療多種腫瘤的用途,其製造方法及包含其等之醫藥組成物(五)

Family Applications Before (9)

Application Number Title Priority Date Filing Date
TW109124803A TWI819228B (zh) 2013-08-05 2014-08-01 新穎肽類,細胞及其用於治療多種腫瘤的用途,其製造方法及包含其等之醫藥組成物(八)
TW109124797A TWI777195B (zh) 2013-08-05 2014-08-01 新穎肽類,細胞及其用於治療多種腫瘤的用途,其製造方法及包含其等之醫藥組成物(三)
TW107123070A TWI714869B (zh) 2013-08-05 2014-08-01 新穎肽類,細胞及其用於治療多種腫瘤的用途,其製造方法及包含其等之醫藥組成物
TW103126327A TWI636065B (zh) 2013-08-05 2014-08-01 新穎肽類,細胞及其用於治療多種腫瘤的用途,其製造方法及包含其等之醫藥組成物
TW109124798A TWI776192B (zh) 2013-08-05 2014-08-01 新穎肽類,細胞及其用於治療多種腫瘤的用途,其製造方法及包含其等之醫藥組成物(四)
TW109124796A TWI775117B (zh) 2013-08-05 2014-08-01 新穎肽類,細胞及其用於治療多種腫瘤的用途,其製造方法及包含其等之醫藥組成物(二)
TW109124795A TWI777194B (zh) 2013-08-05 2014-08-01 新穎肽類,細胞及其用於治療多種腫瘤的用途,其製造方法及包含其等之醫藥組成物(一)
TW109124801A TWI777197B (zh) 2013-08-05 2014-08-01 新穎肽類,細胞及其用於治療多種腫瘤的用途,其製造方法及包含其等之醫藥組成物(六)
TW109124802A TWI777198B (zh) 2013-08-05 2014-08-01 新穎肽類,細胞及其用於治療多種腫瘤的用途,其製造方法及包含其等之醫藥組成物(七)

Country Status (29)

Country Link
US (3) US20160168200A1 (zh)
EP (10) EP3616708A1 (zh)
JP (1) JP2016527293A (zh)
KR (9) KR102098329B1 (zh)
CN (1) CN105377290B (zh)
AU (10) AU2014304544B2 (zh)
BR (1) BR112016000810A2 (zh)
CA (4) CA3073256A1 (zh)
CL (1) CL2016000227A1 (zh)
CR (4) CR20210464A (zh)
DK (2) DK3030255T3 (zh)
EA (1) EA035362B1 (zh)
ES (1) ES2764406T3 (zh)
HK (1) HK1222121A1 (zh)
HU (1) HUE047079T2 (zh)
IL (1) IL243788B (zh)
LT (1) LT3030255T (zh)
MX (1) MX2016001426A (zh)
NZ (2) NZ733168A (zh)
PE (3) PE20201284A1 (zh)
PH (1) PH12015502638A1 (zh)
PL (1) PL3030255T3 (zh)
PT (1) PT3030255T (zh)
RS (1) RS59861B1 (zh)
SG (4) SG10202002608WA (zh)
SI (1) SI3030255T1 (zh)
TW (10) TWI819228B (zh)
UA (1) UA122661C2 (zh)
WO (1) WO2015018805A1 (zh)

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10704021B2 (en) 2012-03-15 2020-07-07 Flodesign Sonics, Inc. Acoustic perfusion devices
RS62602B1 (sr) 2013-08-05 2021-12-31 Immatics Biotechnologies Gmbh Nova imunoterapija za lečenje nekoliko tumora, kao što je rak pluća, uključujući nsclc
CA2935960C (en) 2014-01-08 2023-01-10 Bart Lipkens Acoustophoresis device with dual acoustophoretic chamber
GB201504502D0 (en) * 2015-03-17 2015-04-29 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against pancreatic cancer and other cancers
MY190083A (en) 2015-03-17 2022-03-25 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against pancreatic cancer and other cancers
FI3388075T3 (fi) 2015-03-27 2023-08-18 Immatics Biotechnologies Gmbh Uusia peptidejä ja peptidien yhdistelmiä käytettäviksi immunoterapiaan erilaisia syöpiä vastaan
GB201505305D0 (en) 2015-03-27 2015-05-13 Immatics Biotechnologies Gmbh Novel Peptides and combination of peptides for use in immunotherapy against various tumors
GB201505585D0 (en) * 2015-03-31 2015-05-13 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides and scaffolds for use in immunotherapy against renal cell carinoma (RCC) and other cancers
TWI772927B (zh) * 2015-03-31 2022-08-01 德商英麥提克生物技術股份有限公司 用於腎細胞癌(rcc)免疫治療的新型肽和肽組合物和支架
GB201507030D0 (en) * 2015-04-24 2015-06-10 Immatics Biotechnologies Gmbh Immunotherapy against lung cancers, in particular NSCLC
US11708572B2 (en) 2015-04-29 2023-07-25 Flodesign Sonics, Inc. Acoustic cell separation techniques and processes
US11377651B2 (en) 2016-10-19 2022-07-05 Flodesign Sonics, Inc. Cell therapy processes utilizing acoustophoresis
GB201507719D0 (en) * 2015-05-06 2015-06-17 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides and scaffolds thereof for use in immunotherapy against colorectal carcinoma (CRC) and other cancers
JP6985153B2 (ja) * 2015-05-06 2021-12-22 イマティクス バイオテクノロジーズ ゲーエムベーハー 結腸直腸がん(crc)およびその他のがんに対する免疫療法で使用するための新規ペプチドおよびペプチドとそのスキャフォールドとの組み合わせ
TWI751557B (zh) * 2015-06-19 2022-01-01 德商英麥提克生物技術股份有限公司 用於免疫治療的新穎胜肽及胜肽組合物與產生用於抗胰臟癌及其他癌症的支架的方法
EP3919507A3 (en) * 2015-07-01 2022-01-12 Immatics Biotechnologies GmbH Novel peptides and combination of peptides for use in immunotherapy against ovarian cancer and other cancers
GB201511546D0 (en) 2015-07-01 2015-08-12 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against ovarian cancer and other cancers
EP4321172A2 (en) * 2015-07-06 2024-02-14 immatics biotechnologies GmbH Novel peptides and combination of peptides for use in immunotherapy against esophageal cancer and other cancers
MY189596A (en) * 2015-07-15 2022-02-18 Immatics Biotechnologies Gmbh A novel peptides for use in immunotherapy against epithelial ovarian cancer and other cancers
GB201513921D0 (en) 2015-08-05 2015-09-23 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against prostate cancer and other cancers
US10130693B2 (en) 2015-08-28 2018-11-20 Immatics Biotechnologies Gmbh Peptides, combination of peptides and scaffolds for use in immunotherapeutic treatment of various cancers
GB201515321D0 (en) * 2015-08-28 2015-10-14 Immatics Biotechnologies Gmbh Novel peptides, combination of peptides and scaffolds for use in immunotherapeutic treatment of various cancers
UA125817C2 (uk) 2015-08-28 2022-06-15 Імматікс Біотекнолоджіс Гмбх Пептид, придатний для лікування та/або діагностики раку
MY198087A (en) 2015-10-05 2023-07-31 Immatics Biotechnologies Gmbh Peptides and combination of peptides for use in immunotherapy against small cell lung cancer and other cancers
GB201517538D0 (en) 2015-10-05 2015-11-18 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against small cell lung cancer and other cancers
KR20170049024A (ko) * 2015-10-28 2017-05-10 숙명여자대학교산학협력단 ANKs1a 단백질 발현 또는 활성 억제제를 유효성분으로 포함하는 암 예방 또는 치료용 조성물 및 이의 스크리닝 방법
GB201521746D0 (en) 2015-12-10 2016-01-27 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against CLL and other cancers
GB201521894D0 (en) 2015-12-11 2016-01-27 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against various cancers
US10383896B2 (en) 2015-12-11 2019-08-20 Immatics Biotechnologies Gmbh Peptides and combination of peptides for use in immunotherapy against various cancers
IL298653A (en) 2015-12-11 2023-01-01 Immatics Biotechnologies Gmbh New peptides and a combination of peptides for use in immunotherapy against several types of cancer
BR112018012374A2 (pt) 2015-12-16 2018-12-04 Gritstone Oncology, Inc. identificação, fabricação e uso de neoantígeno
SG10202111399YA (en) 2015-12-22 2021-11-29 Immatics Biotechnologies Gmbh Peptides and combination of peptides for use in immunotherapy against breast cancer and other cancers
GB201522667D0 (en) * 2015-12-22 2016-02-03 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against breast cancer and other cancers
GB201602918D0 (en) * 2016-02-19 2016-04-06 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against NHL and other cancers
GB201603987D0 (en) * 2016-03-08 2016-04-20 Immatics Biotechnologies Gmbh Uterine cancer treatments
GB201604458D0 (en) * 2016-03-16 2016-04-27 Immatics Biotechnologies Gmbh Peptides and combination of peptides for use in immunotherapy against cancers
JP6989136B2 (ja) * 2016-04-06 2022-01-05 イマティクス バイオテクノロジーズ ゲーエムベーハー Amlおよびその他のがんに対する免疫療法において使用するための新規ペプチドおよびペプチドの組み合わせ
BR112018070873A2 (pt) * 2016-04-21 2019-02-05 Immatics Biotechnologies Gmbh imunoterapia contra melanoma e outros cânceres
US11214789B2 (en) 2016-05-03 2022-01-04 Flodesign Sonics, Inc. Concentration and washing of particles with acoustics
JP7075125B2 (ja) 2016-05-25 2022-05-25 イマティクス バイオテクノロジーズ ゲーエムベーハー 標的としてのおよび胆嚢がんおよび胆管がんおよびその他のがんに対する免疫療法で使用するための新規ペプチド、ペプチド組み合わせ
GB201609193D0 (en) 2016-05-25 2016-07-06 Immatics Biotechnologies Gmbh Novel peptides, combination of peptides as targets for use in immunotherapy against gallbladder cancer and cholangiocarcinoma and other cancers
US10868749B2 (en) * 2016-07-26 2020-12-15 Motorola Mobility Llc Method and apparatus for discovering neighborhood awareness networking devices based on presence
HRP20211677T1 (hr) * 2016-08-17 2022-02-18 Immatics Biotechnologies Gmbh T-stanični receptori i imunološka terapija koja koristi iste
TW202304970A (zh) * 2016-08-26 2023-02-01 德商英麥提克生物技術股份有限公司 用於頭頸鱗狀細胞癌和其他癌症免疫治療的新型肽和支架
EP3516081A4 (en) * 2016-09-23 2020-07-29 Memorial Sloan Kettering Cancer Center DETERMINANTS OF CANCER REACTION TO IMMUNOTHERAPY
CN110139875B (zh) * 2016-09-30 2023-03-03 武汉华大吉诺因生物科技有限公司 Col14a1衍生的肿瘤抗原多肽及其应用
US11276479B2 (en) * 2016-12-01 2022-03-15 Nantomics, Llc Tumor antigenicity processing and presentation
NZ754222A (en) 2016-12-08 2022-02-25 Immatics Biotechnologies Gmbh T cell receptors with improved pairing
DE102016123893A1 (de) 2016-12-08 2018-06-14 Immatics Biotechnologies Gmbh T-Zellrezeptoren mit verbesserter Bindung
WO2018170313A1 (en) * 2017-03-16 2018-09-20 Advaxis, Inc. Methods and compositions for increasing efficacy of vaccines
MY197772A (en) * 2017-04-10 2023-07-13 Immatics Biotechnologies Gmbh Peptides and combination of peptides for use in immunotherapy against leukemias and other cancers
CN111032679B (zh) * 2017-04-28 2024-04-12 中山医学大学 治疗癌症的肽
KR20200026898A (ko) 2017-07-07 2020-03-11 이매틱스 바이오테크놀로지스 게엠베하 Nsclc, sclc 등 폐암 및 기타 암에 대한 면역요법에서의 사용을 위한 신규 펩티드 및 펩티드의 조합
US10800823B2 (en) 2017-07-07 2020-10-13 Immatics Biotechnologies Gmbh Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers
CA3078744A1 (en) 2017-10-10 2019-04-18 Gritstone Oncology, Inc. Neoantigen identification using hotspots
GB201717578D0 (en) * 2017-10-26 2017-12-13 Univ College Cardiff Consultants Ltd Novel T-cell receptor
AU2018373154A1 (en) 2017-11-22 2020-07-02 Gritstone Bio, Inc. Reducing junction epitope presentation for neoantigens
SG11202003907WA (en) 2017-12-14 2020-05-28 Flodesign Sonics Inc Acoustic transducer drive and controller
DE102018107224A1 (de) 2018-02-21 2019-08-22 Immatics Biotechnologies Gmbh Peptide und Kombinationen von Peptiden nicht-kanonischen Ursprungs zur Verwendung in der Immuntherapie gegen verschiedene Krebsarten
TW202016131A (zh) * 2018-05-16 2020-05-01 德商英麥提克生物技術股份有限公司 用於抗癌免疫治療的肽
TW202000907A (zh) * 2018-05-23 2020-01-01 美商葛利史東腫瘤科技公司 共有抗原
CN110627895B (zh) * 2018-06-25 2021-03-23 北京大学 肺癌特异性tcr及其分析技术和应用
US10925947B2 (en) * 2018-06-29 2021-02-23 Immatics Biotechnologies Gmbh A*03 restricted peptides for use in immunotherapy against cancers and related methods
EP3946440A4 (en) * 2019-04-02 2023-04-19 The General Hospital Corporation METHOD OF INCREASING T-CELL REGENERATION
WO2021016109A1 (en) * 2019-07-19 2021-01-28 The Regents Of The University Of California T-cell receptors and methods of use thereof
CN111020024A (zh) * 2019-12-05 2020-04-17 复旦大学附属眼耳鼻喉科医院 Tlr9的应用
CN111808908A (zh) * 2020-06-18 2020-10-23 华中科技大学同济医学院附属协和医院 一种促脑胶质瘤耐药的gaMSCs亚群的检测方法
JP2023552440A (ja) * 2020-12-07 2023-12-15 ザ・トラスティーズ・オブ・インディアナ・ユニバーシティー アトラクチレノリドiを用いて癌細胞を免疫攻撃に対して感受性にする方法
CN113881707B (zh) * 2021-10-25 2023-07-14 中国人民解放军军事科学院军事医学研究院 调控脐带间充质干细胞免疫抑制作用的产品、方法及用途
CN113969264B (zh) * 2021-11-29 2023-12-08 中南大学 Cog5基因敲除的人胚胎干细胞系、构建方法及应用
CN115125203B (zh) * 2022-07-08 2023-10-27 珠海贝索细胞科学技术有限公司 一种Th2细胞体外培养方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080107668A1 (en) * 2006-08-30 2008-05-08 Immunotope, Inc. Cytotoxic t-lymphocyte-inducing immunogens for prevention, treatment, and diagnosis of cancer
US20090153992A1 (en) * 2007-12-18 2009-06-18 Teradyne, Inc. Disk Drive Testing
US20110229504A1 (en) * 2010-03-19 2011-09-22 Immatics Biotechnologies Gmbh Novel immunotherapy against several tumors including gastrointestinal and gastric cancer

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8212000B2 (en) * 1970-02-11 2012-07-03 Immatics Biotechnologies Gmbh Tumor-associated peptides binding promiscuously to human leukocyte antigen (HLA) class II molecules
US4440859A (en) 1977-05-27 1984-04-03 The Regents Of The University Of California Method for producing recombinant bacterial plasmids containing the coding sequences of higher organisms
US4704362A (en) 1977-11-08 1987-11-03 Genentech, Inc. Recombinant cloning vehicle microbial polypeptide expression
JP2530801B2 (ja) 1978-12-22 1996-09-04 バイオゲン インコーポレイテッド 組換えdna分子
US4530901A (en) 1980-01-08 1985-07-23 Biogen N.V. Recombinant DNA molecules and their use in producing human interferon-like polypeptides
US4342566A (en) 1980-02-22 1982-08-03 Scripps Clinic & Research Foundation Solid phase anti-C3 assay for detection of immune complexes
US4678751A (en) 1981-09-25 1987-07-07 Genentech, Inc. Hybrid human leukocyte interferons
US4766075A (en) 1982-07-14 1988-08-23 Genentech, Inc. Human tissue plasminogen activator
US4582800A (en) 1982-07-12 1986-04-15 Hoffmann-La Roche Inc. Novel vectors and method for controlling interferon expression
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4757006A (en) 1983-10-28 1988-07-12 Genetics Institute, Inc. Human factor VIII:C gene and recombinant methods for production
US4677063A (en) 1985-05-02 1987-06-30 Cetus Corporation Human tumor necrosis factor
US4810648A (en) 1986-01-08 1989-03-07 Rhone Poulenc Agrochimie Haloarylnitrile degrading gene, its use, and cells containing the gene
US4897445A (en) 1986-06-27 1990-01-30 The Administrators Of The Tulane Educational Fund Method for synthesizing a peptide containing a non-peptide bond
WO1994029347A1 (en) 1993-06-03 1994-12-22 Therapeutic Antibodies Inc. Antibody fragments in therapy
AUPM322393A0 (en) 1993-12-24 1994-01-27 Austin Research Institute, The Mucin carbohydrate compounds and their use in immunotherapy
EP0879282B1 (en) 1996-01-17 2003-07-02 Imperial College Innovations Limited Immunotherapy using cytotoxic t lymphocytes (ctl)
US5849589A (en) 1996-03-11 1998-12-15 Duke University Culturing monocytes with IL-4, TNF-α and GM-CSF TO induce differentiation to dendric cells
US6406705B1 (en) 1997-03-10 2002-06-18 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
EP2316950A1 (en) 2000-03-27 2011-05-04 Technion Research and Development Foundation, Ltd. Single chain class I major histo-compatibility complexes, constructs encoding same and methods of generating same
US20040191260A1 (en) 2003-03-26 2004-09-30 Technion Research & Development Foundation Ltd. Compositions capable of specifically binding particular human antigen presenting molecule/pathogen-derived antigen complexes and uses thereof
AU2001275246B2 (en) 2000-06-05 2006-06-29 Altor Bioscience Corporation T cell receptor fusions and conjugates and methods of use thereof
US7919467B2 (en) * 2000-12-04 2011-04-05 Immunotope, Inc. Cytotoxic T-lymphocyte-inducing immunogens for prevention, treatment, and diagnosis of cancer
JP2005500059A (ja) * 2001-08-13 2005-01-06 ダナ−ファーバー キャンサー インスティテュート インク. ペリオスチンに基づく診断アッセイ法
US6992176B2 (en) 2002-02-13 2006-01-31 Technion Research & Development Foundation Ltd. Antibody having a T-cell receptor-like specificity, yet higher affinity, and the use of same in the detection and treatment of cancer, viral infection and autoimmune disease
EP1485075A4 (en) 2002-02-20 2006-04-26 Dyax Corp MHC-PEPTIDE COMPLEX BINDING LIGANDS
AU2003262789A1 (en) * 2002-08-20 2004-03-11 Aventis Pharma Sa Abca13 nucleic acids and proteins, and uses thereof
JP4436319B2 (ja) 2002-10-09 2010-03-24 メディジーン リミテッド 単鎖組換えt細胞レセプター
NZ570811A (en) 2002-11-09 2009-11-27 Immunocore Ltd T cell receptor display
GB0304068D0 (en) 2003-02-22 2003-03-26 Avidex Ltd Substances
KR100535326B1 (ko) * 2004-01-20 2005-12-09 한국생명공학연구원 줄기 세포로부터 자연살해 세포로의 분화 조절용 유전자를유효성분으로 포함하는 분화 조절제
CN102875681A (zh) * 2005-07-08 2013-01-16 拜奥根Idec马萨诸塞公司 抗-αvβ6抗体及其用途
SI1760088T1 (sl) * 2005-09-05 2008-06-30 Immatics Biotechnologies Gmbh S tumorjem povezani peptidi, ki se veže z različnimi molekulami humanega levkocitnega antigena (HLA) razreda II
PT1760089E (pt) * 2005-09-05 2009-10-19 Immatics Biotechnologies Gmbh Peptídeos associados a tumores que se ligam a moléculas de classe i ou ii do antigénio leucocitário humano (hla) e correspondente vacina anti-cancerígena
EA200801865A1 (ru) * 2006-02-22 2009-02-27 Филоджен Спа Опухолевые маркеры сосудов
CN101765434B (zh) * 2007-07-27 2014-12-17 伊玛提克斯生物技术有限公司 抗肿瘤相关肽及相关抗癌疫苗组合物
WO2009036246A2 (en) * 2007-09-14 2009-03-19 Immunotope, Inc. Immunogens that induce cytotoxic t-lymphocytes and their use in prevention, treatment, and diagnosis of cancer
UA104132C2 (en) * 2007-11-13 2014-01-10 Тева Биофармасьютикалз Юесей, Инк. Humanized antibodies against tl1a
AU2009221915A1 (en) * 2008-03-03 2009-09-11 Dyax Corp. Metalloproteinase 12 binding proteins
CA2720563A1 (en) * 2008-04-11 2009-10-15 China Synthetic Rubber Corporation Methods, agents and kits for the detection of cancer
PL2113253T3 (pl) 2008-04-30 2010-09-30 Immatics Biotechnologies Gmbh Nowa postać leku - preparat zawierający peptydy nowotworowe wiążące się z antygenami ludzkich leukocytów klasy I i II, zastosowany w szczepionce
TWI526219B (zh) * 2008-06-19 2016-03-21 腫瘤療法 科學股份有限公司 Cdca1抗原決定位胜肽及含此胜肽的疫苗
US8663640B2 (en) * 2008-08-29 2014-03-04 Symphogen A/S Methods using recombinant anti-epidermal growth factor receptor antibody compositions
EP2172211B1 (en) * 2008-10-01 2014-12-03 Immatics Biotechnologies GmbH Composition of tumor-associated peptides and related anti-cancer vaccine for the treatment of glioblastoma (GBM) and other cancers
WO2010045388A2 (en) * 2008-10-14 2010-04-22 Dyax Corp. Use of mmp-9 and mmp-12 binding proteins for the treatment and prevention of systemic sclerosis
EP2221063A1 (en) * 2009-02-20 2010-08-25 Ganymed Pharmaceuticals AG Methods and compositions for diagnosis and treatment of cancer
JP5892701B2 (ja) * 2009-05-15 2016-03-23 パシフィック エッジ バイオテクノロジー リミティド 胃ガンの検出用マーカー
US20110033516A1 (en) * 2009-08-06 2011-02-10 Medical University Of South Carolina Methods and compositions for bone healing by periostin
US8281223B2 (en) 2009-08-07 2012-10-02 Via Technologies, Inc. Detection of fuse re-growth in a microprocessor
WO2011050276A1 (en) * 2009-10-23 2011-04-28 Tranzyme Pharma, Inc. Methods of using macrocyclic inhibitors of serine protease enzymes
TWI485245B (zh) * 2010-01-25 2015-05-21 Oncotherapy Science Inc 經修飾之melk胜肽及含此胜肽之疫苗
KR101378919B1 (ko) * 2010-01-28 2014-04-14 포항공과대학교 산학협력단 혈액으로부터 직접 폐암 진단 및 폐암의 서브타입 진단이 가능한 마커를 선별하는 시스템 생물학적 방법 및 이로부터 선별된 혈액으로부터 직접 폐암 진단 및 폐암 서브타입 진단이 가능한 마커
GB201004575D0 (en) * 2010-03-19 2010-05-05 Immatics Biotechnologies Gmbh Composition of tumor associated peptides and related anti cancer vaccine for the treatment of gastric cancer and other cancers
GB201006360D0 (en) * 2010-04-16 2010-06-02 Immatics Biotechnologies Gmbh Method for differentially quantifying naturally processed HLA-restricted peptides for cancer, autoimmune and infectious diseases immunotherapy development
GB201009222D0 (en) * 2010-06-02 2010-07-21 Immatics Biotechnologies Gmbh Improved cancer therapy based on tumour associated antigens derived from cyclin D1
EP2632955A1 (en) 2010-10-26 2013-09-04 Technion Research & Development Foundation Ltd. Antibodies which bind soluble t-cell receptor ligands
US9028810B2 (en) * 2010-12-20 2015-05-12 Ajou University Industry—Academic Cooperations Foundatin Composition for inducing migration of neural stem cells containing periostin as effective ingredient
WO2013057586A1 (en) 2011-10-19 2013-04-25 Oslo Universitetssykehus Hf Compositions and methods for producing soluble t - cell receptors
GB201319446D0 (en) * 2013-11-04 2013-12-18 Immatics Biotechnologies Gmbh Personalized immunotherapy against several neuronal and brain tumors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080107668A1 (en) * 2006-08-30 2008-05-08 Immunotope, Inc. Cytotoxic t-lymphocyte-inducing immunogens for prevention, treatment, and diagnosis of cancer
US20090153992A1 (en) * 2007-12-18 2009-06-18 Teradyne, Inc. Disk Drive Testing
US20110229504A1 (en) * 2010-03-19 2011-09-22 Immatics Biotechnologies Gmbh Novel immunotherapy against several tumors including gastrointestinal and gastric cancer

Also Published As

Publication number Publication date
TW201900669A (zh) 2019-01-01
TWI714869B (zh) 2021-01-01
KR102213551B1 (ko) 2021-02-05
EP3616707A1 (en) 2020-03-04
AU2020220045A1 (en) 2020-09-03
TW202041516A (zh) 2020-11-16
AU2018200389B2 (en) 2020-07-16
CA2912500C (en) 2021-08-24
TW202041519A (zh) 2020-11-16
UA122661C2 (uk) 2020-12-28
US20170202937A1 (en) 2017-07-20
EA035362B1 (ru) 2020-06-02
AU2020220041B2 (en) 2021-11-25
AU2020220039A1 (en) 2020-09-03
CA3020939A1 (en) 2015-02-12
TW202041515A (zh) 2020-11-16
AU2014304544A1 (en) 2015-12-03
CA2912500A1 (en) 2015-02-12
EA201690016A1 (ru) 2016-05-31
IL243788B (en) 2019-10-31
KR102217680B1 (ko) 2021-02-18
KR102317816B1 (ko) 2021-10-26
AU2020220043A1 (en) 2020-09-03
TWI776192B (zh) 2022-09-01
NZ714163A (en) 2017-07-28
PE20181538A1 (es) 2018-09-26
PT3030255T (pt) 2020-01-15
KR20200078681A (ko) 2020-07-01
SG10201802399WA (en) 2018-04-27
AU2020220044B2 (en) 2021-11-25
AU2020220045B2 (en) 2021-11-25
AU2018200389A1 (en) 2018-02-08
LT3030255T (lt) 2020-01-27
KR20200123266A (ko) 2020-10-28
HUE047079T2 (hu) 2020-04-28
PL3030255T3 (pl) 2020-05-18
KR20200122419A (ko) 2020-10-27
CR20160018A (es) 2016-06-08
CR20180508A (es) 2019-02-27
AU2020220038B2 (en) 2021-11-25
EP3616709A1 (en) 2020-03-04
KR102098327B1 (ko) 2020-04-08
AU2020220043B2 (en) 2021-11-25
EP3616708A1 (en) 2020-03-04
EP3616710A1 (en) 2020-03-04
TW202041521A (zh) 2020-11-16
KR102213556B1 (ko) 2021-02-05
PE20160717A1 (es) 2016-07-21
CR20210464A (es) 2021-10-26
HK1222121A1 (zh) 2017-06-23
KR20200122418A (ko) 2020-10-27
NZ733168A (en) 2020-04-24
TW202041517A (zh) 2020-11-16
AU2020220040B2 (en) 2021-11-25
CA3073256A1 (en) 2015-02-12
EP3613427A1 (en) 2020-02-26
TW201506043A (zh) 2015-02-16
US20160168200A1 (en) 2016-06-16
AU2020220044A1 (en) 2020-09-03
KR102213554B1 (ko) 2021-02-05
AU2020220042A1 (en) 2020-09-03
EP3030255A1 (en) 2016-06-15
KR102213552B1 (ko) 2021-02-05
KR20210008169A (ko) 2021-01-20
SG10202002608WA (en) 2020-04-29
AU2014304544B2 (en) 2017-10-26
TWI775117B (zh) 2022-08-21
BR112016000810A2 (pt) 2017-12-12
SG11201510580UA (en) 2016-02-26
CA3073394A1 (en) 2015-02-12
KR20160038889A (ko) 2016-04-07
SG10202002612PA (en) 2020-05-28
TWI777197B (zh) 2022-09-11
CN105377290A (zh) 2016-03-02
TWI636065B (zh) 2018-09-21
TWI777194B (zh) 2022-09-11
IL243788A0 (en) 2016-04-21
PH12015502638A1 (en) 2016-03-07
CR20200139A (es) 2020-09-02
EP3616712A1 (en) 2020-03-04
TW202041522A (zh) 2020-11-16
KR20180105754A (ko) 2018-09-28
JP2016527293A (ja) 2016-09-08
KR102098329B1 (ko) 2020-04-09
TWI777195B (zh) 2022-09-11
WO2015018805A1 (en) 2015-02-12
EP3456339A2 (en) 2019-03-20
AU2020220042B2 (en) 2021-11-25
KR20180107295A (ko) 2018-10-01
EP3578196A1 (en) 2019-12-11
SI3030255T1 (sl) 2020-02-28
EP3030255B1 (en) 2019-10-09
CL2016000227A1 (es) 2016-08-05
TWI777198B (zh) 2022-09-11
CN105377290B (zh) 2019-09-03
PE20201284A1 (es) 2020-11-24
RS59861B1 (sr) 2020-03-31
AU2020220041A1 (en) 2020-09-03
KR20200122417A (ko) 2020-10-27
AU2020220038A1 (en) 2020-09-03
AU2020220039B2 (en) 2021-05-20
KR102211542B1 (ko) 2021-02-02
DK3456339T3 (da) 2021-12-06
DK3030255T3 (da) 2020-01-20
US9943579B2 (en) 2018-04-17
EP3616711A1 (en) 2020-03-04
TWI819228B (zh) 2023-10-21
TW202041520A (zh) 2020-11-16
US20170319675A1 (en) 2017-11-09
TW202041518A (zh) 2020-11-16
US10071148B2 (en) 2018-09-11
CA3020939C (en) 2023-01-03
EP3456339A3 (en) 2019-03-27
EP3456339B1 (en) 2021-10-20
AU2020220040A1 (en) 2020-09-03
MX2016001426A (es) 2016-05-05
ES2764406T3 (es) 2020-06-03

Similar Documents

Publication Publication Date Title
TWI777196B (zh) 新穎肽類,細胞及其用於治療多種腫瘤的用途,其製造方法及包含其等之醫藥組成物(五)
JP6646017B2 (ja) Nsclcをはじめとする肺がんなどの数種の腫瘍に対する新規免疫療法

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent