TWI773615B - 微控制器中的類比數位轉換器電路及其操作方法 - Google Patents

微控制器中的類比數位轉換器電路及其操作方法 Download PDF

Info

Publication number
TWI773615B
TWI773615B TW110148692A TW110148692A TWI773615B TW I773615 B TWI773615 B TW I773615B TW 110148692 A TW110148692 A TW 110148692A TW 110148692 A TW110148692 A TW 110148692A TW I773615 B TWI773615 B TW I773615B
Authority
TW
Taiwan
Prior art keywords
digital signal
analog
processor
signal
synchronizer
Prior art date
Application number
TW110148692A
Other languages
English (en)
Other versions
TW202327284A (zh
Inventor
藍永吉
Original Assignee
新唐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新唐科技股份有限公司 filed Critical 新唐科技股份有限公司
Priority to TW110148692A priority Critical patent/TWI773615B/zh
Priority to CN202210154259.6A priority patent/CN116346137A/zh
Application granted granted Critical
Publication of TWI773615B publication Critical patent/TWI773615B/zh
Publication of TW202327284A publication Critical patent/TW202327284A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/322Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M3/324Continuously compensating for, or preventing, undesired influence of physical parameters characterised by means or methods for compensating or preventing more than one type of error at a time, e.g. by synchronisation or using a ratiometric arrangement
    • H03M3/344Continuously compensating for, or preventing, undesired influence of physical parameters characterised by means or methods for compensating or preventing more than one type of error at a time, e.g. by synchronisation or using a ratiometric arrangement by filtering other than the noise-shaping inherent to delta-sigma modulators, e.g. anti-aliasing

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

一種微控制器中的類比數位轉換器電路及其操作方法。類比數位轉換器電路包括調變器、濾波器、同步器以及處理器。調變器接收類比訊號,並將類比訊號轉換成第一數位訊號。濾波器耦接至調變器,濾除第一數位訊號在一頻寬外的雜訊以產生第二數位訊號。同步器耦接至濾波器,對第二數位訊號進行調頻以產生第三數位訊號。處理器耦接至同步器,依據截止頻率對第三數位訊號進行數位訊號處理以產生最終數位訊號。在同步器接收第二數位訊號後,同步器發送中斷訊號至處理器,處理器依據中斷訊號執行數位訊號處理工作。

Description

微控制器中的類比數位轉換器電路及其操作方法
本發明是有關於一種類比數位轉換器,且特別是有關於一種微控制器中的類比數位轉換器電路及其操作方法。
隨著感測器的盛行,微控制器(Micro Control Unit,MCU)將類比訊號轉換成數位訊號後做處理的應用逐年增加。在一些需要高解析度訊號轉換的方案裡,三角積分(Delta-Sigma,ΔΣ)類比數位轉換器(Analog-to-digital Converter,ADC)為高解析度ADC的首選。ΔΣ ADC的前端電路將類比訊號轉換成數位訊號,並將量化雜訊(Quantization Noise)移往高頻率,且將真正需要的訊號留在低頻率,再藉由ΔΣ ADC的後端電路(濾波器)濾除高頻率的量化雜訊而留下低頻率的訊號。
然而,ΔΣ ADC的解析度與濾波器的階數(Order)成正比,並且濾波器的階數與ΔΣ ADC的製造成本亦成正比,因此要製造一個高解析度的ΔΣ ADC會需要相當大的電路面積(成本)。據此,如何能夠設計出一種節省電路面積並具有高解析度與靈活度的ΔΣ ADC,是本領域的技術人員研究的課題之一。
本發明提供一種微控制器中的類比數位轉換器電路及其操作方法,能夠利用處理器內建的數位訊號處理(Digital Signal Process,DSP)功能取代一部份的濾波器而達到濾波效果,據此可節省電路面積,提高解析度,並提升ADC電路用於各種應用的靈活度。
本發明的微控制器中的類比數位轉換器電路,包括調變器、濾波器、同步器以及處理器。調變器接收類比訊號,並將類比訊號轉換成第一數位訊號。濾波器耦接至調變器,濾除第一數位訊號在一頻寬外的雜訊以產生第二數位訊號。同步器耦接至濾波器,對第二數位訊號進行調頻以產生第三數位訊號。處理器耦接至同步器,依據截止頻率對第三數位訊號進行數位訊號處理以產生最終數位訊號。在同步器接收第二數位訊號後,同步器發送中斷訊號至處理器,處理器依據中斷訊號執行數位訊號處理工作。
本發明的微控制器中的類比數位轉換器電路的操作方法,包括:由調變器接收類比訊號,並將類比訊號轉換成第一數位訊號。由濾波器濾除第一數位訊號在一頻寬外的雜訊以產生第二數位訊號。由同步器對第二數位訊號進行調頻以產生第三數位訊號。由處理器依據截止頻率對第三數位訊號進行數位訊號處理以產生最終數位訊號。在同步器接收第二數位訊號後,由同步器發送中斷訊號至處理器,由處理器依據中斷訊號執行數位訊號處理工作。
基於上述,本發明實施例所提供的微控制器中的類比數位轉換器電路及其操作方法,能夠在調變器將類比訊號轉換成數位訊號後,藉由濾波器濾除數位訊號中一部分的高頻雜訊。接著,同步器將濾波器濾除後的數位訊號同步到處理器。最後,處理器利用其內建的DSP功能依據截止頻率對同步到處理器的數位訊號進一步進行濾波處理。如此一來,本發明實施例利用處理器內建的DSP功能取代習知實施例的部份濾波器,此可節省ADC電路的電路面積。並且,由於DSP功能是可透過軟體被規劃的,因此可以依據類比訊號的主頻來調整截止頻率,此可提升ADC電路用於各種應用的靈活度,並且讓諧波可以更彈性地被濾除,而獲得更好的有效位元數(Effective Number of Bits,ENOB)效能評估參數以提高ADC電路的解析度。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
圖1是依照習知的一實施例所繪示的ΔΣ ADC電路的方塊示意圖。請參照圖1,ΔΣ ADC電路100包括ΔΣ調變器120及數位訊號處理模組140。數位訊號處理模組140通常是由梳型濾波器(Comb Filter)142與兩級的有限脈衝響應(Finite impulse response,FIR)濾波器144及146組合而成的數位濾波器,此組合在電路的實現上具有較高的可行性,且較經濟。
在習知的實施例中,ΔΣ調變器120具有雜訊整型(Noise Shaping)的特性,類比訊號AS藉由ΔΣ調變器120將量化雜訊推往高頻率,並且在此過程中類比訊號已經藉由量化器轉換成數位訊號。接著,ΔΣ調變器120所輸出的數位訊號DS1藉由數位訊號處理模組140將高頻率的量化雜訊濾除而留下所需的訊號(低頻率),並輸出最終數位訊號DSF。
一般來說,ΔΣ ADC電路的解析度與濾波器的階數成正比,假如希望ΔΣ ADC電路的解析度越高,則所需濾波器的階數要越高。且所需濾波器的階數越高,ΔΣ ADC電路的製造成本也將越高。因此,習知的ΔΣ ADC電路100若要將雜訊與真正需要的訊號完美地分離(具有高解析度),需使用階數非常高的FIR濾波器,此不僅會導致ΔΣ ADC電路的面積變得相當大,亦會導致ΔΣ ADC電路的製造成本變得相當高。再者,若使用此MCU的客戶無ADC電路的使用需求,不僅將導致此些濾波器的面積白白被浪費,也會產生多餘的漏電流。此外,在習知的硬體架構下,客戶無法依據不同感測器所接收的類比訊號的主頻去調整截止頻率而使得ΔΣ ADC電路對於所接收的類比訊號都具有高解析度。
本發明下述實施例可以利用處理器內建的DSP功能取代習知的FIR濾波器。如此一來,下述實施例能夠節省ΔΣ ADC電路的面積,提高ΔΣ ADC電路的解析度,以及提升ΔΣ ADC電路用於各種應用的靈活度。
圖2是依照本發明的一實施例所繪示的ΔΣ ADC電路的方塊示意圖。請參照圖2,ΔΣ ADC電路200包括調變器220及數位訊號處理模組240。數位訊號處理模組240包括濾波器242、同步器244及處理器246,且濾波器242耦接至調變器220及同步器244,同步器244耦接至處理器246。
本實施例的調變器220 可以是ΔΣ調變器,本發明的實施例並不對此限制。具體來說,調變器220由微分器及積分器所構成,調變器220的作用是將量化雜訊推往高頻率而產生雜訊整型功效。在一實施例中,積分器的數量決定了調變器220的階數,當調變器220的階數越高時,雜訊整型效果會越顯著。
本實施例的濾波器242例如是梳型濾波器、低通濾波器、中值濾波器、FIR濾波器或其組合,本發明的實施例並不對此限制。詳細而言,濾波器242的作用是為了濾除無效的訊號而保留有效訊號。
本實施例的同步器244可以是各種類型的同步器,本發明的實施例並不對此限制。詳細來說,同步器244的作用是對訊號進行調頻與轉換。
本實施例的處理器246例如是中央處理單元(Central Processing Unit,CPU)、微處理器(Microprocessor)、MCU、數位訊號處理器(Digital Signal Processor,DSP)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuits,ASIC)、可程式化邏輯裝置(Programmable Logic Device,PLD)或其他類似裝置(或這些裝置的組合)。具體而言,處理器246的作用是利用內建的DSP功能對訊號進行濾波處理。
圖3是依照本發明的一實施例所繪示的ΔΣ ADC電路的操作方法的流程示意圖。請參照圖3,本實施例的方法300適用於圖2的ΔΣ ADC電路200,以下即搭配ΔΣ ADC電路200中的各項元件說明本實施例之操作方法的詳細步驟。
請同時參照圖2與圖3。在步驟S320中,調變器220接收類比訊號AS,並將類比訊號AS轉換成數位訊號DS1。詳細而言,調變器220具有雜訊整型的特性,將類比訊號AS的量化雜訊推往高頻率,且將真正需要的訊號留在低頻率,在此過程中類比訊號已經藉由量化器轉換成數位訊號,並且輸出數位訊號DS1至濾波器242。
在步驟S340中,濾波器242自調變器220接收數位訊號DS1,濾除數位訊號DS1在一頻寬外的雜訊以產生數位訊號DS2,並且輸出數位訊號DS2至同步器244。在一實施例中,頻寬可以是1 千赫茲 (kHz)或2 kHz等,但不以此為限。在一實施例中,濾波器242是梳型濾波器,濾除數位訊號DS1中的部分雜訊。
在步驟S360中,同步器244自濾波器242接收數位訊號DS2,對數位訊號DS2進行調頻以產生數位訊號DS3,並且輸出數位訊號DS3至處理器246。特別地,在同步器244接收數位訊號DS2後,同步器244發送中斷訊號IS至處理器246。在一實施例中,同步器244依據處理器246的時脈域(Clock Domain)對數位訊號DS2進行調頻以產生數位訊號DS3。具體來說,當同步器244接收數位訊號DS2,同步器244發送中斷訊號IS至處理器246,且同時依據處理器246的時脈域對數位訊號DS2進行調頻以產生數位訊號DS3,並輸出數位訊號DS3至處理器246。在此過程中,同步器244將所接收的數位訊號DS2同步到處理器246的時脈域。
在步驟S380中,處理器246自同步器244接收中斷訊號IS及數位訊號DS3,並依據截止頻率CF對數位訊號DS3進行數位訊號處理以產生最終數位訊號DSF。具體來說,處理器依據中斷訊號IS執行數位訊號處理工作(即,依據截止頻率CF對數位訊號DS3進行數位訊號處理以產生最終數位訊號DSF)。在一實施例中,截止頻率CF例如是1 千赫茲 (kHz)或2 kHz等,但不以此為限。在一實施例中,處理器246依據類比訊號AS的主頻計算截止頻率CF。在一實施例中,截止頻率CF與類比訊號AS的主頻成倍數關係。舉例來說,類比訊號AS的主頻為20kHz,截止頻率CF可為類比訊號AS的主頻的兩倍(即為40kHz)。
值得注意的是,在一實施例中,處理器246執行儲存於記憶體中的數位訊號處理程式以對數位訊號DS3進行數位訊號處理。在一實施例中,截止頻率CF由使用者輸入至數位訊號處理程式。在另一實施例中,截止頻率CF可以預先儲存於記憶體中,並由處理器246或使用者直接選擇。在又一實施例中,截止頻率CF可透過撰寫程式設定而改變。
在一實施例中,處理器246將最終數位訊號DSF儲存至記憶體或暫存器以供其他電路進行存取。在一實施例中,處理器246依據最終數位訊號DSF校正調變器220。
在此,由於經過濾波器242(例如梳型濾波器)輸出的數位訊號已降頻至極低的頻率,此極低的頻率相對於處理器246的頻率低上百倍到千倍,因此處理器246只需要耗費一些資源來處理濾波的工作。在處理完此濾波的工作後,處理器246將最終數位訊號DSF儲存至靜態隨機存取記憶體(Static Random Access Memory,SRAM)或特定的暫存器以待需要的電路進行存取。
習知ΔΣ ADC電路是使用具有固定截止頻率的FIR濾波器對數位訊號進行濾波處理。然而,本發明的ΔΣ ADC電路是使用處理器內建的DSP功能對數位訊號進行濾波處理,藉由此方式,ΔΣ ADC電路可依據不同客戶的需求,動態調整截止頻率或修改DSP程式的設定。且值得一提的是,若使用此MCU的客戶無ΔΣ ADC電路的使用需求,只需要將DSP程式進行移除即可。
值得注意的是,在本發明實施例的方法中步驟的特定順序及/或層次僅是示例性途徑。基於設計偏好,所公開的方法或過程的步驟的特定順序或層次可在保持在本發明實施例的範圍內的同時被重新佈置。因此,所屬領域中的一般技術人員將理解,本發明實施例的方法及技術以樣本順序呈現各種步驟或動作,且本發明實施例不限於所呈現的特定順序或層次,除非另有明確說明。
綜上所述,本發明實施例所提供的微控制器中的類比數位轉換器電路及其操作方法,能夠在調變器將類比訊號轉換成數位訊號後,藉由濾波器濾除數位訊號中一部分的高頻雜訊。接著,同步器將濾波器濾除後的數位訊號同步到處理器。最後,處理器利用其內建的DSP功能依據截止頻率對同步到處理器的數位訊號進一步進行濾波處理。如此一來,本發明實施例利用處理器內建的DSP功能取代習知實施例的部份濾波器,此可節省ADC電路的電路面積。並且,由於DSP功能是可透過軟體被規劃的,因此可以依據類比訊號的主頻來調整截止頻率,此可提升ADC電路用於各種應用的靈活度,並且讓諧波可以更彈性地被濾除,而獲得更好的ENOB效能評估參數以提高ADC電路的解析度。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
100、200:ΔΣ ADC電路 120:ΔΣ調變器 140、240:數位訊號處理模組 142:梳型濾波器 144、146:有限脈衝響應(FIR)濾波器 220:調變器 242:濾波器 244:同步器 246:處理器 300:方法 AS:類比訊號 CF:截止頻率 DS1、DS2、DS3:數位訊號 DSF:最終數位訊號 IS:中斷訊號 S320、S340、S360、S380:步驟
圖1是依照習知的一實施例所繪示的ΔΣ ADC電路的方塊示意圖。 圖2是依照本發明的一實施例所繪示的ΔΣ ADC電路的方塊示意圖。 圖3是依照本發明的一實施例所繪示的ΔΣ ADC電路的操作方法的流程示意圖。
200:ΔΣ ADC電路
220:調變器
240:數位訊號處理模組
242:濾波器
244:同步器
246:處理器
AS:類比訊號
CF:截止頻率
DS1、DS2、DS3:數位訊號
DSF:最終數位訊號
IS:中斷訊號

Claims (12)

  1. 一種微控制器中的類比數位轉換器電路,包括: 一調變器,用以接收一類比訊號,並將所述類比訊號轉換成一第一數位訊號; 一濾波器,耦接至所述調變器,用以濾除所述第一數位訊號在一頻寬外的雜訊以產生一第二數位訊號; 一同步器,耦接至所述濾波器,用以對所述第二數位訊號進行調頻以產生一第三數位訊號;以及 一處理器,耦接至所述同步器,用以依據一截止頻率對所述第三數位訊號進行數位訊號處理以產生一最終數位訊號, 其中在所述同步器接收所述第二數位訊號後,所述同步器發送一中斷訊號至所述處理器,所述處理器依據所述中斷訊號執行數位訊號處理工作。
  2. 如請求項1所述的類比數位轉換器電路,其中所述處理器執行儲存於一記憶體中的一數位訊號處理程式以對所述第三數位訊號進行數位訊號處理。
  3. 如請求項1所述的類比數位轉換器電路,其中所述處理器依據所述類比訊號的一主頻計算所述截止頻率。
  4. 如請求項3所述的類比數位轉換器電路,其中所述截止頻率與所述類比訊號的所述主頻成倍數關係。
  5. 如請求項1所述的類比數位轉換器電路,其中所述處理器將所述最終數位訊號儲存至一記憶體或一暫存器以供其他電路進行存取。
  6. 如請求項1所述的類比數位轉換器電路,其中所述處理器進一步依據所述最終數位訊號校正所述調變器。
  7. 一種微控制器中的類比數位轉換器電路的操作方法,包括: 由一調變器接收一類比訊號,並將所述類比訊號轉換成一第一數位訊號; 由一濾波器濾除所述第一數位訊號在一頻寬外的雜訊以產生一第二數位訊號; 由一同步器對所述第二數位訊號進行調頻以產生一第三數位訊號;以及 由一處理器依據一截止頻率對所述第三數位訊號進行數位訊號處理以產生一最終數位訊號, 其中在所述同步器接收所述第二數位訊號後,由所述同步器發送一中斷訊號至所述處理器,由所述處理器依據所述中斷訊號執行數位訊號處理工作。
  8. 如請求項7所述的操作方法,其中由所述處理器執行儲存於一記憶體中的一數位訊號處理程式以對所述第三數位訊號進行數位訊號處理。
  9. 如請求項7所述的操作方法,更包括: 由所述處理器依據所述類比訊號的一主頻計算所述截止頻率。
  10. 如請求項9所述的操作方法,其中所述截止頻率與所述類比訊號的所述主頻成倍數關係。
  11. 如請求項7所述的操作方法,其中由所述處理器將所述最終數位訊號儲存至一記憶體或一暫存器以供其他電路進行存取。
  12. 如請求項7所述的操作方法,更包括: 由所述處理器依據所述最終數位訊號校正所述調變器。
TW110148692A 2021-12-24 2021-12-24 微控制器中的類比數位轉換器電路及其操作方法 TWI773615B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110148692A TWI773615B (zh) 2021-12-24 2021-12-24 微控制器中的類比數位轉換器電路及其操作方法
CN202210154259.6A CN116346137A (zh) 2021-12-24 2022-02-18 微控制器中的模拟数字转换器电路及其操作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110148692A TWI773615B (zh) 2021-12-24 2021-12-24 微控制器中的類比數位轉換器電路及其操作方法

Publications (2)

Publication Number Publication Date
TWI773615B true TWI773615B (zh) 2022-08-01
TW202327284A TW202327284A (zh) 2023-07-01

Family

ID=83806994

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110148692A TWI773615B (zh) 2021-12-24 2021-12-24 微控制器中的類比數位轉換器電路及其操作方法

Country Status (2)

Country Link
CN (1) CN116346137A (zh)
TW (1) TWI773615B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201114195A (en) * 2009-08-31 2011-04-16 Cirrus Logic Inc Delta-sigma analog-to-digital converter (ADC) having a serialized quantizer output
US9692446B2 (en) * 2015-11-11 2017-06-27 Texas Instruments Incorporated Delta-Sigma ADC with wait-for-sync feature

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201114195A (en) * 2009-08-31 2011-04-16 Cirrus Logic Inc Delta-sigma analog-to-digital converter (ADC) having a serialized quantizer output
US9692446B2 (en) * 2015-11-11 2017-06-27 Texas Instruments Incorporated Delta-Sigma ADC with wait-for-sync feature

Also Published As

Publication number Publication date
CN116346137A (zh) 2023-06-27
TW202327284A (zh) 2023-07-01

Similar Documents

Publication Publication Date Title
KR100993155B1 (ko) 오프셋을 이용한 시그마-델타 변조
US8633843B2 (en) System and method for chopping oversampled data converters
CA2562254C (en) A method and system for analog to digital conversion using digital pulse width modulation (pwm)
WO2008033814A2 (en) Feedback topology delta-sigma modulator having an ac-coupled feedback path
US10348326B2 (en) Digital silicon microphone with interpolation
CN104935342A (zh) 一种动态过采样模/数转换器及其设计方法
WO2018227456A1 (zh) 噪声整形电路与三角积分数模转换器
CN103944574A (zh) 连续时间输入级
CN111988037B (zh) 一种电容共享结构的Sigma-Delta调制器
TWI773615B (zh) 微控制器中的類比數位轉換器電路及其操作方法
US10033403B1 (en) Integrated circuit device with reconfigurable digital filter circuits
JP6562151B2 (ja) A/d変換器およびそれを備えるセンサ装置
JP5113285B2 (ja) オフセットを用いるシグマ−デルタ変調
JPH07170189A (ja) 被変調フィードバック・ループを有するアナログ−ディジタル・コンバータ
US11533061B2 (en) Circuitry including at least a delta-sigma modulator and a sample-and-hold element
TW202019099A (zh) 三角積分調變器及相關的訊號處理方法
CN116054835A (zh) 一种用于sigma-delta ADC的参考电压发生器的斩波时序控制方法及系统
Salgado et al. Power and area efficient comb-based decimator for sigma-delta ADCs with high decimation factors
TW200814541A (en) Range compression in oversampling analog-to-digital converters using differential input signals
US7321328B1 (en) Single bit DAC with tristate driver
TWI395413B (zh) 帶通三角積分調變器
US20080055132A1 (en) Sigma-Delta Circuit And Related Method with Time Sharing Architecture
JP2013009083A (ja) A/d変換器
TWI426716B (zh) 在超取樣類比至數位轉換器中之範圍壓縮
TW202040946A (zh) 差和式類比數位轉換器及其操作方法