TWI768180B - 光電陰極系統、晶圓檢驗方法及晶圓檢驗工具 - Google Patents

光電陰極系統、晶圓檢驗方法及晶圓檢驗工具 Download PDF

Info

Publication number
TWI768180B
TWI768180B TW108104590A TW108104590A TWI768180B TW I768180 B TWI768180 B TW I768180B TW 108104590 A TW108104590 A TW 108104590A TW 108104590 A TW108104590 A TW 108104590A TW I768180 B TWI768180 B TW I768180B
Authority
TW
Taiwan
Prior art keywords
beamlets
photocathode
electron beams
electron
wafer inspection
Prior art date
Application number
TW108104590A
Other languages
English (en)
Other versions
TW201937522A (zh
Inventor
吉爾達多 R 德爾加多
卡特里納 艾歐凱密迪
盧蒂 葛爾夏
西法姆 馬克思
蓋瑞 V 洛佩茲
法蘭斯 A 希爾
麥克 E 羅密洛
Original Assignee
美商克萊譚克公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商克萊譚克公司 filed Critical 美商克萊譚克公司
Publication of TW201937522A publication Critical patent/TW201937522A/zh
Application granted granted Critical
Publication of TWI768180B publication Critical patent/TWI768180B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/065Construction of guns or parts thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20058Measuring diffraction of electrons, e.g. low energy electron diffraction [LEED] method or reflection high energy electron diffraction [RHEED] method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/063Geometrical arrangement of electrodes for beam-forming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/073Electron guns using field emission, photo emission, or secondary emission electron sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical, image processing or photographic arrangements associated with the tube
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/611Specific applications or type of materials patterned objects; electronic devices
    • G01N2223/6116Specific applications or type of materials patterned objects; electronic devices semiconductor wafer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1866Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/061Construction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06325Cold-cathode sources
    • H01J2237/06333Photo emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

該系統包含一光電陰極電子源、繞射光學元件及用以聚焦小光束之一微透鏡陣列。一源將一輻射光束引導至該繞射光學元件,該繞射光學元件產生一小光束陣列以與一光電陰極表面結合使用以自該等小光束產生一電子束陣列。

Description

光電陰極系統、晶圓檢驗方法及晶圓檢驗工具
本發明係關於電子束發射器。
半導體製造業之發展對良率管理提出更高要求,且特定言之,對度量及檢驗系統提出更高要求。臨界尺寸繼續縮小,然行業需要縮短達成高良率、高價值生產之時間。最小化自偵測一良率問題至解決問題之總時間決定一半導體製造商之投資報酬。
製造半導體器件(諸如邏輯及記憶體器件)通常包含使用大量製造製程處理一半導體晶圓以形成半導體器件之各種特徵及多個層級。例如,微影係一半導體製造製程,其涉及將一圖案自一光罩轉移至經配置於一半導體晶圓上之一光阻劑。半導體製造製程之額外實例包含(但不限於)化學機械拋光(CMP)、蝕刻、沉積及離子植入。可以在一單個半導體晶圓上以一種配置製造多個半導體器件,且接著將其等分成個別半導體器件。
在半導體製造製程期間之各個步驟中使用檢驗程序來偵測晶圓上之缺陷,以促進製造程序中之更高良率,且因此獲得更高利潤。檢驗一直係製造半導體器件(諸如積體電路(IC))之一重要部分。然而,隨著 半導體器件之尺寸減小,對於成功製造可接受半導體器件,檢驗變得更加重要,因為較小缺陷會致使器件失效。例如,隨著半導體器件尺寸之減小,對減小尺寸之缺陷之檢測變得必要,因為即使相對小缺陷亦可在半導體器件中引起非所要像差。
隨著半導體器件變得越來越小,開發經增強檢驗及檢視工具及程序以提高晶圓及光遮罩/光罩檢驗程序之解析度、速度及處理量變得更加重要。一種檢驗技術包含基於電子束之檢驗,諸如使用一掃描電子顯微鏡(SEM)。一SEM使用一電子源。電子源可分為兩大類:熱電子源及場發射源。熱電子源通常由鎢或六硼化鑭(LaB6)製成。在熱電子發射中,當電子熱能足夠高以克服表面電位障時,電子自材料表面沸騰離開。即使熱電子發射器被廣泛使用,然其等通常需要高溫(例如,>1300K)來進行操作,且可能具有若干缺點,諸如低效功率消耗、寬能量展佈、短壽命、低電流密度及有限亮度。對更高效電子源之需求推動了肖特基(Schottky)發射器及冷電子源(諸如電子場發射器)之研究及開發。
在肖特基發射器中,藉由歸因於在一經施加外部電場下之影像電荷效應之有效電位障降低而增強熱電子發射。肖特基發射器通常由一鎢絲製成,該鎢絲具有塗覆有一氧化鋯(ZrOx)層之一尖端,其展現一低功函數(例如,約2.9eV)。肖特基發射器目前用於一些電子束系統中。儘管非常成功,然熱輔助肖特基發射器仍需在高溫(例如,>1000K)及高真空(例如,約10-9mbar)下操作,且歸因於高操作溫度而具有比期望之電子發射能量更寬之電子發射能量。
冷電子源,特定言之電子場發射器,已經用於場發射顯示器、氣體電離器、x射線源、電子束微影及電子顯微鏡以及其他應用中。 當所施加之電場足夠高以減小尖端-真空介面上之電位障時發生場發射,使得電子可在接近室溫之一溫度下穿隨通過此電位障(例如,量子力學穿隧)。一典型場發射器包括具一圓形閘孔之一錐形發射器尖端。在一所施加外部場下在發射器陰極、閘極及陽極之間建立一電位差,從而導致尖端表面處之高電場。電子穿隧通過窄表面電位障且朝一陽極行進,陽極經偏壓於比閘極更高之一電位處。可由Fowler-Nordheim理論之一修改版本估計發射電流密度,其考慮了歸因於場發射器之場增強因子。
場發射器,因為其等可在室溫附近操作,具有比肖特基及熱電子發射器更低之能量展佈,且可具有比熱電子發射器更高之亮度及電子電流。然而,在實際使用中,一場發射器之輸出電流不太穩定,因為污染物很容易黏附至發射器之尖端且提高其功函數,且因此降低了亮度及電流。需要定期閃光(即,暫時升高尖端溫度)以移除彼等污染物。當尖端被閃光時,儀器無法操作。半導體工業中之儀器需要在不中斷的情況下連續且穩定地操作,因此肖特基發射器通常優先於冷場發射器而使用。
先前場發射器陣列(FEA)具有以一二維周期陣列配置之多個錐形電子發射器。此等場發射器陣列可由用於製造之材料大致分為兩大類:金屬場發射器及半導體場發射器。
先前使用熱場發射器(TFE)以產生電子束。使用一個別電子源以形成一陣列。各電子源需要昂貴XYZ級。各個別電子源系統之成本係昂貴的且對於一大型陣列而言成本過高。另外,電子電流密度較低。
光電陰極亦已用於產生電子束。入射於一光電陰極系統上之一單一光束可產生具高亮度之一單一電子束,其能夠傳遞高電子電流密度。然而,單電子束系統之一問題在於即使使用高亮度系統,單電子束系 統仍然具有相對低之檢驗處理量。低處理量係電子束檢驗之缺點。利用當前可用之電子束源,將需要數千個光束。
針對一多光束SEM系統將單一電子束分成多個光束需要一孔徑透鏡及/或微透鏡陣列。孔徑透鏡及/或微透鏡陣列經設置於小、帶電孔中,該等孔實質上係圓形設計以產生透鏡場。若孔為非圓,則在透鏡場中引入像散,其導致一失真影像平面。
因此,需要一種產生電子束之經改良系統。
在第一實施例中提供一種系統。該系統包括:一繞射光學元件,其經組態以接收一入射輻射光束;一提取器板;一微透鏡陣列,其提供小光束之準直及聚焦;一聚光透鏡,其沿該等小光束之路徑經安置於該繞射光學元件與該微透鏡陣列之間;及一光電陰極表面,其沿該等小光束之路徑經安置於該微透鏡陣列與該提取器板之間。該繞射光學元件自該入射輻射光束形成該等小光束。該微透鏡陣列沿該等小光束之一路徑經安置於該繞射光學元件與該提取器板之間。該光電陰極表面自該等小光束產生複數個電子束。
該系統可進一步包含產生該入射輻射光束之一雷射光源。
該等小光束可在一陣列中。
該等電子束可具有自2nA至5nA之一密度。
該等電子束可具有自50μm至10mm之一空間離距。
可包含100至1000個電子束。
該系統可進一步包含一電子束柱。在一例項中,該等電子束自該提取器板指向該電子束柱。
該系統可包含複數個該等電子束柱。在一例項中,該等電子束之各者指向該等電子束柱之一者。
該等小光束各可具有自10μm至100μm之一光點大小。由該光電陰極表面產生之該等電子束各可具有自10μm至100μm之一光點大小。
該入射輻射光束可為紫外光輻射。
該系統可進一步包含與該提取器板電子通信之一電壓源。
一晶圓檢驗工具可包含該第一實施例之該系統。
在一第二實施例中提供一種方法。產生一輻射光束並在一繞射光學元件處接收該輻射光束。使用該繞射光學元件自該輻射光束形成複數個小光束。將該等小光束引導通過一聚光透鏡。在該聚光透鏡下游使用一微透鏡陣列相對於投射該等小光束之一方向聚焦且準直該等小光束。將來自該微透鏡陣列之該等小光束引導至一光電陰極表面。使用該光電陰極表面自該等小光束產生複數個電子束。自該光電陰極表面提取該等電子束。
該等小光束可在範圍自4x6至48x48之一陣列中。
該等電子束可具有自2nA至5nA之一密度。
可包含100至1000個電子束。
該等電子束可具有自50μm至10mm之一空間離距。
該等小光束各可具有自10μm至100μm之一光點大小。由該光電陰極表面產生之該等電子束各可具有自10μm至100μm之一光點大小。
該輻射光束可為紫外光輻射。
該等小光束之一圖案可經傳輸至該等電子束。
100:繞射光學元件光電陰極陣列系統
101:輻射光束
102:繞射光學元件(DOE)
103:聚光透鏡
104:微透鏡陣列
106:提取器板
107:小光束
108:並行化小光束
109:並行化小光束
110:電子束
111:光電陰極表面
112:電壓源
113:箭頭
114:提取孔
200:方法
201:步驟
202:步驟
203:步驟
204:步驟
205:步驟
206:步驟
207:步驟
208:步驟
300:系統
301:電子柱
302:電腦子系統
303:電子束源
304:晶圓
305:元件
306:元件
307:偵測器
308:處理器
309:電子資料儲存單元
為更全面地理解本發明之本質及目的,應參考以下結合附圖之詳細描述,其中:圖1係用以產生多個電子束之一繞射光學元件光電陰極陣列系統之一視圖;圖2繪示藉由向一提取器板提供電壓而產生一提取場而自光電陰極表面提取之電子束;圖3係根據本發明之一方法之一實施例;及圖4係根據本發明之一系統之一實施例之一方塊圖。
本申請案主張於2018年2月14日申請且讓與美國申請案第62/630,429號之臨時專利申請案之優先權,該案之全文以引用之方式併入本文中。
儘管將根據某些實施例描述所主張之標的物,然包含不提供本文所闡述之所有益處及特徵之實施例之其他實施例亦在本發明之範疇內。在不脫離本發明之範疇的情況下,可以進行各種結構、邏輯、程序步驟及電子改變。據此,僅藉由參考隨附申請專利範圍來界定本發明之範疇。
該系統經設計用於以高處理量對半導體晶圓進行電子束檢驗。該系統包含一光電陰極電子源、一繞射光學元件(DOE)、用於使該等小光束並行化之一透鏡系統及用於聚焦該等小光束之一微透鏡陣列。使用一DOE與微透鏡陣列在一光電陰極表面上產生準直平行小光束可產生一經 圖案化電子束。
一光電陰極系統可提供每光束之高電子密度,其減少所需之光束數目。一多電子束系統可以增加之處理量達成高解析度。可使用一DOE透鏡系統來提供高速及高解析度電子束,該DOE透鏡系統經耦合至一光電陰極元件以產生一多電子束系統。使用並行資料獲取之一多電子束檢驗系統可增加處理量且縮短檢驗一晶圓或光罩之時間。
圖1係用以產生一多電子束之一繞射光學元件光電陰極陣列系統100之一視圖。一源將一輻射光束101引導於DOE 102上,其將產生與一光電陰極111表面結合使用以產生電子束110之一陣列之一小光束陣列。特定言之,照射於DOE 102上之輻射光束101形成照射一微透鏡陣列104之小光束107之一陣列。微透鏡陣列104將所聚焦之並行化小光束109聚焦至一光電陰極表面111。光電陰極表面111產生一多電子束圖案。
產生該入射輻射光束之光源可為(例如)雷射、二極體、燈或寬頻(BB)光源。BB源可自(例如)雷射產生電漿、雷射維持電漿、雷射產生超連續光源、白色雷射或很大程度上可調諧光學參數源獲得。此等源可為連續波(CW)或脈衝,且可具有範圍自真空紫外光(VUV)至紅外光(IR)之波長。可使用一合適光譜儀選擇一單一波長,或可藉由濾光器或其他方法選擇窄或寬之波長帶。
在一實施例中,該光源係一雷射光源或一二極體。該入射輻射光束可為紫外光輻射。在一例項中,輻射光束101係一波長為266nm之光。可產生該輻射光束使得其具有低雜訊。
在另一實施例中,該光源係一CW光源。
系統100包含一DOE 102、一聚光透鏡103、一微透鏡陣列 104,具一光電陰極表面111之一光電陰極元件105及一提取器板106。來自該源之輻射在投射於光電陰極表面111上之前穿過DOE 102、聚光透鏡103及微透鏡陣列104。可使用提取器板106自光電陰極表面111提取該電子束。
微透鏡陣列104之光學對準可影響電子束110之輸出。整個光電陰極表面111上之均勻性及/或所聚焦之並行化小光束109中之等效光點大小可影響效能。一光束可大於該電子發射孔。一光束於可小於該電子束限制孔。若該光束小於該電子束限制孔,則可執行一度量對準。
DOE 102接收一入射輻射光束101。DOE 102自入射輻射光束101形成複數個小光束107。由DOE 102產生之小光束107之數目可與離開聚光透鏡103之小光束之數目或所產生之電子束110之數目相同。為簡單起見,繪示四個小光束107離開聚光透鏡103。因此,小光束107之數目可不同於圖1中所繪示之數目。該數目之小光束107(及電子束110)可形成一陣列。該陣列可包含(例如)4×6、6×6、1×10、10×10、10×100、30×100,或其他組態之小光束107及電子束110。
聚光透鏡103經安置於DOE 102與微透鏡陣列104之間。聚光透鏡103可調整小光束107之軌跡,且可經組態以提供並行化小光束108之一輸出。並行化小光束108之數目等於小光束107之數目。
微透鏡陣列104可提供並行化小光束108之準直及聚焦。微透鏡陣列104經安置於DOE 102與提取器板106之間。離開微透鏡陣列104之並行化小光束108係經聚焦之並行化小光束109,其聚焦於陰極表面111處。
光電陰極元件105中之光電陰極表面111經安置於微透鏡陣 列104與提取器板106之間。光電陰極表面111自經聚焦之並行化小光束109產生複數個電子束110。光電陰極表面111可為或可包含一光敏化合物。當由一光子撞擊時,光電陰極表面111可歸因於光電效應而引起電子發射。
在一實施例中,光電陰極元件105可包含裸露金屬、經塗敷金屬、銫金屬或其合金、負電子親合性(NEA)材料、一Zintl鹽光陰極材料或鹼金屬光電陰極材料。
雖然繪示十二個電子束110,然光電陰極表面111可產生自100到1000或100到2500個電子束110。電子束110之數目可取決於系統設計或應用來縮放。
提取器板106相對於小光束107之一行進方向與DOE 102相對。在一例項中,提取器板106包含20μm直徑之孔,然其他尺寸之孔亦可行。提取器板106可與一電壓源112電子通信。該電壓範圍可自0.1KV至50KV。針對高解析度檢驗,該電壓範圍可自0.1KV至5KV。其他電壓亦可行的,且此等範圍僅為實例。
DOE 102可經設計以產生具有一期望空間分隔及圖案之一期望數目之小光束。光學透鏡可用以形成並行化小光束,但亦可用以形成及成形光束。該等小光束可與一微透鏡陣列104光學器件對準。DOE 102、光學元件及微透鏡陣列104之組合可提供具有一期望空間離距、光點大小及圖案之多個電子束。
在一實例中,一準直光束中之輻射(諸如紫外光輻射)被經引導至DOE 102上。一聚焦透鏡可用以準直個別小光束,且一微透鏡陣列104可將該等小光束聚焦於光電陰極表面111上。
DOE 102之設計可界定該等小光束之數目、該陣列之一尺寸及一期望空間分隔及圖案。當此等電子束110由光電陰極表面111產生時,經施加至該等小光束上之圖案經傳輸至多個電子束110。先前設計難以產生具有與電子束110相同之尺寸、配置或其他性質之一電子束陣列。
該等小光束(諸如,並行化小光束108或經聚焦並行化小光束109)可在一陣列中。該等小光束之圖案可經傳輸至電子束110。因此,一小光束陣列可經傳輸至一電子束陣列110。
小光束(諸如,並行化小光束108或聚焦並行化小光束109)各可具有自10μm至100μm之一光點大小。由光電陰極表面111產生之電子束110各可具有自10μm至100μm之一光點大小。
電子束110可具有自2nA至5nA之一密度。
電子束110可具有自50μm至10mm或更大之一空間離距。電子束110在10毫米之空間分離係可行的。
系統100可包含一電子束柱,其可相對於電子束110之行進方向位於提取器板106之下游。該電子束柱可包含組件,諸如(例如)孔、偏轉器、掃描線圈、電磁透鏡、磁透鏡或偵測器。該電子束柱之組態可隨該系統之特定應用而變化。
電子束110可指向該電子束柱。在一例項中,存在多個電子束柱。電子束110之各者可指向該等電子束柱之一者。各電子束柱可個別控制該等電子束之一者。同時使用多個個別控制之電子束允許各光束之校正。
本文所揭示之實施例允許藉由將一小光點大小(例如,10至100μm)輻射(例如,紫外光)引導至一合適光電陰極表面111上而形成多 個電子束。光電陰極表面111可產生一小電子光點大小(例如,10至100μm)。自光電陰極表面111產生之該等電子可由經施加至到提取器板106之電壓加速。各電子束110之最終光點可由該等電子光學器件控制。
使用DOE與一微透鏡陣列而來自之光電陰極之多電子束可在幾個小時內檢驗一遮罩或晶圓。習知方法可能需要數月才能執行相同檢驗。
光電陰極表面111可針對輻射光束101之波長經組態。例如,取決於輻射光束101之波長,光電陰極表面111可具有不同塗層或基板材料。針對低至248nm之UV波長,可使用熔融石英或藍寶石作為基底材料。針對低於193nm之波長,可使用MgF2或CaF2。光電陰極表面111之材料可經選擇用於最佳量子效率(QE)及在一給定波長下之能量展佈。
DOE 102之設計可根據輻射光束101之波長或小光束107之節距而變化。可基於繞射光學元件光電陰極陣列系統100中使用之波長來選擇DOE 102中之材料。針對低至248nm之UV波長,熔融石英或藍寶石可用作DOE 102中之一材料。針對低於193nm之波長,可使用MgF2或CaF2
聚光透鏡103或微透鏡陣列104之設計可根據輻射光束101之波長或小光束107或並行化小光束108之光點大小而變化。可基於繞射光學元件光電陰極陣列系統100中使用之波長來選擇聚光透鏡103或微透鏡陣列104中之材料。針對低至248nm之UV波長,熔融石英或藍寶石可用作聚光透鏡103或微透鏡陣列104中之一材料。針對低於193nm之波長,可使用MgF2或CaF2
系統100可增加處理量。一較大電子束陣列110及/或一較 大電子束110之光點大小可增加處理量。
圖2繪示藉由向一提取器板106提供電壓從而產生一提取場(由箭頭113展示)而自光電陰極表面111提取之電子束110。提取器板106界定複數個提取孔114。如圖1中所見,電子束110由經聚焦之並行化小光束109形成。
圖3係一方法200之一實施例。在201處,產生一輻射光束。該輻射光束可為紫外光輻射或另一波長之輻射。在202處,在DOE處接收該輻射光束。在203處,使用該DOE自該輻射光束形成複數個小光束。在204處,將該等小光束引導通過一聚光透鏡。在205處,在該聚光透鏡之下游使用一微透鏡陣列準直且聚焦該等小光束。該下游位置可相對於投射該等小光束之一方向。在206處,將該等小光束自該微透鏡陣列經引導至一光電陰極表面。在207處,使用該光電陰極表面自該等小光束產生複數個電子束。在208處,自該光電陰極表面提取該等電子束。
該等小光束可在自(例如)4×6至48×48之一陣列中。其他陣列組態亦可行。該陣列可取決於該等小光束之該節距。
該等電子束可具有自2nA至5nA之一密度。可存在100至1000或100至2500個電子束。該等電子束可具有自50μm至10mm或更大之一空間離距。電子束110在10毫米之空間分離係可行的。
在一例項中,該等小光束各具有自10μm至100μm之一光點大小,且由該光電陰極產生之該等電子束各具有自10μm至100μm之一光點大小。
該等小光束之一圖案可經傳輸至該等電子束。因此,該等電子束可具有與撞擊該光電陰極表面之該等小光束相同之圖案。
本文所揭示之實施例使得能夠設計多個電子束及使用多個電子束圖案化目標。可取決於該光電陰極材料而使用任何類型之光。為了檢驗,可使用一CW雷射或來自燈、二極體或雷射產生之電漿之輻射作為光源。針對大多數具有高QE之光電陰極材料,可使用紫外光光源。
本文所揭示之實施例可用於光罩或晶圓檢驗、檢視或度量系統中,諸如使用一單一電子源或多個電子源之系統。本文所揭示之實施例可用於使用電子源來使用單一或多個電子源產生x射線以用於晶圓或光罩、度量、檢視或檢驗之系統中。
圖4係一系統300之一實施例之一方塊圖。系統300包含一晶圓檢驗工具(其包含電子柱301),其經組態以產生一晶圓304之影像。
該晶圓檢驗工具包含一輸出獲取子系統,其至少包含一能量源及一偵測器。該輸出獲取子系統可為一基於電子束之輸出獲取子系統。例如,在一個實施例中,經引導至晶圓304之能量包含電子,且自晶圓304偵測之能量包含電子。依此方式,該能量源可為一電子束源。在圖4中所展示之此一實施例中,該輸出獲取子系統包含電子柱301,其經耦合至電腦子系統302。一卡盤(未經繪示)可固持晶圓304。
亦如圖4中所展示,電子柱301包含一電子束源303,其經組態以產生由一或多個元件305聚焦至晶圓304之電子。電子束源303可包含(例如)圖1之繞射光學元件光電陰極陣列系統100之一實施例。一或多個元件305可包含(例如)一槍式透鏡、一陽極、一光束限制孔、一閘閥、一束電流選擇孔、一物鏡及一掃描子系統,其等之所有均可包含本技術中已知之任何此等合適元件。該電子束柱之組件亦可為元件305之部分。
自晶圓304返回之電子(例如,二次電子)可由一或多個元件 306聚焦至偵測器307。一或多個元件306可包含(例如)一掃描子系統,其可為包含於元件305中之相同掃描子系統。
該電子柱亦可包含本技術中已知之任何其他合適元件。
儘管在圖4中將電子柱301展示為經組態使得該等電子以一傾斜入射角而經引導至晶圓304且以另一傾斜角度自晶圓304散射,然該電子束可以任何合適角度而經引導至晶圓304且自晶圓304散射。另外,該基於電子束之輸出獲取子系統可經組態以使用多種模式來產生晶圓304之影像(例如,以不同照射角度、收集角度等)。該基於電子束之輸出獲取子系統之多種模式在該輸出獲取子系統之任何影像產生參數中可為不同。
電腦子系統302可經耦合至偵測器307,使得電腦子系統302與偵測器307或該晶圓檢驗工具之其他組件電子通信。偵測器307可偵測自晶圓304之表面返回之電子,藉此利用電腦子系統302形成晶圓304之電子束影像。該等電子束影像可包含任何合適電子束影像。電腦子系統302包含一處理器308及一電子資料儲存單元309。處理器308可包含一微處理器、一微控制器或其他器件。
應注意,本文提供圖4以大體上繪示可在本文中所描述之實施例中使用之一基於電子束之輸出獲取子系統之一組態。可改變本文中所描述之該基於電子束之輸出獲取子系統組態以優化該輸出獲取子系統之效能,此通常在設計一商業輸出獲取系統時執行。另外,本文中所描述之該等系統可使用一現有系統來實施(例如,藉由將本文中所描述之功能添加至一現有系統)。針對一些此等系統,本文中所描述之該等方法可作為該系統之可選功能提供(例如,除該系統之其他功能外)。替代地,本文中所描述之該系統可經設計為一全新系統。
電腦子系統302可依任何合適方式經耦合至系統300之組件(例如,經由一或多個傳輸媒體,其等可包含有線及/或無線傳輸媒體),使得處理器308可接收輸出。處理器308可經組態以使用該輸出執行數個功能。該晶圓檢驗工具可自處理器308接收指令或其他資訊。處理器308及/或電子資料儲存單元309可選地與另一晶圓檢驗工具、一晶圓度量工具或一晶圓檢測工具(未繪示)電子通信以接收額外資訊或發送指令。
本文中所描述之電腦子系統302、其他系統或其他子系統可為各種系統之部分,包含一個人電腦系統、一影像電腦、一大型電腦系統、一工作站、一網路設備、一乙太網設備或其他器件。該(等)子系統或系統亦可包含本技術中已知之任何合適處理器,諸如一平行處理器。另外,該(等)子系統或系統可包含具有高速處理及軟件之一平台,作為一獨立工具或一網路工具。
處理器308及電子資料儲存單元309可經安置於系統300或另一設備中或以其他方式為系統300或另一設備之部分。在一實例中,處理器308及電子資料儲存單元309可為一獨立控制單元之部分或在一集中品質控制單元中。可使用多個處理器308或電子資料儲存單元309。
處理器308可在實踐中由硬體、軟體及韌體之任何組合實施。並且,其在本文中所描述之功能可由一個單元執行,或在不同組件之間劃分,該等組件之各者可依次由硬體、軟體及韌體之任何組合來實施。用於處理器308實施各種方法及功能之程式碼或指令可經儲存於可讀儲存媒體中,諸如電子資料儲存單元309中之一儲存器或其他記憶體。
圖4之系統300僅僅為可使用圖1之繞射光學元件光電陰極陣列系統100之一系統之一個實例。圖1之繞射光學元件光電陰極陣列系 統100之實施例可為一缺陷檢驗系統、一檢驗系統、一度量系統或某種其他類型之系統之部分。因此,本文所揭示之實施例描述一些組態,其等可以多種方式定制用於具有或多或少適於不同應用之不同能力之系統。
可如本文中所描述來執行該方法之該等步驟之各者。該等方法亦可包含可由本文所描述之處理器及/或電腦子系統或系統執行之任何其他步驟。該等步驟可由一或多個電腦系統執行,該等電腦系統可根據本文中所描述之該等實施例之任一者組態。另外,上述方法可由本文中所描述之該等系統實施例之任一者執行。
儘管已關於一或多個特定實施例描述本發明,然應理解,在不脫離本發明之範疇的情況下,可做出本發明之其他實施例。因此,本發明視作僅由隨附申請專利範圍及其合理解釋限制。
100:繞射光學元件光電陰極陣列系統
101:輻射光束
102:繞射光學元件(DOE)
103:聚光透鏡
104:微透鏡陣列
106:提取器板
107:小光束
108:並行化小光束
109:並行化小光束
110:電子束
111:光電陰極表面
112:電壓源

Claims (18)

  1. 一種光電陰極系統,其包括:一繞射光學元件,其經組態以接收一入射輻射光束,其中該繞射光學元件自該入射輻射光束形成複數個小光束(beamlet),且其中該等小光束各具有自10μm至100μm之一光點大小;一提取器板(extractor plate);一微透鏡陣列,其提供該等小光束之準直(collimation)及聚焦,其中該微透鏡陣列沿該等小光束之一路徑經安置於該繞射光學元件與該提取器板之間;一聚光透鏡,其沿該等小光束之該路徑經安置於該繞射光學元件與該微透鏡陣列之間;及一光電陰極表面,其沿該等小光束之該路徑經安置於該微透鏡陣列與該提取器板之間,其中該光電陰極表面自該等小光束產生複數個電子束,且其中由該光電陰極表面產生之該等電子束各具有自10μm至100μm之一光點大小。
  2. 如請求項1之光電陰極系統,其進一步包括產生該入射輻射光束之一雷射光源。
  3. 如請求項1之光電陰極系統,其中該等小光束在一陣列中。
  4. 如請求項1之光電陰極系統,其中該等電子束範圍(range)自2nA至5 nA。
  5. 如請求項1之光電陰極系統,其中該複數個電子束包含100至1000個電子束。
  6. 如請求項1之光電陰極系統,其進一步包括一電子束柱,其中該等電子束自該提取器板指向該電子束柱。
  7. 如請求項6之光電陰極系統,其包括複數個該等電子束柱,且其中該等電子束之各者指向該等電子束柱之一者。
  8. 如請求項1之光電陰極系統,其中該等電子束具有自50μm至10mm之一空間離距。
  9. 如請求項1之光電陰極系統,其中該入射輻射光束為紫外光輻射。
  10. 如請求項1之光電陰極系統,其進一步包括與該提取器板電子通信之一電壓源。
  11. 一種晶圓檢驗工具,其包括請求項1之該光電陰極系統。
  12. 一種晶圓檢驗方法,其包括:產生一輻射光束; 在一繞射光學元件處接收該輻射光束;使用該繞射光學元件自該輻射光束形成複數個小光束,其中該等小光束各具有自10μm至100μm之一光點大小;引導該等小光束通過一聚光透鏡;在該聚光透鏡之下游使用一微透鏡陣列相對於投射該等小光束之一方向準直且聚焦該等小光束;引導來自該微透鏡陣列之該等小光束至一光電陰極表面;使用該光電陰極表面自該等小光束產生複數個電子束,其中由該光電陰極表面產生之該等電子束各具有自10μm至100μm之一光點大小;及自該光電陰極表面提取該等電子束。
  13. 如請求項12之晶圓檢驗方法,其中該等小光束在範圍自4x6至48x48之一陣列中。
  14. 如請求項12之晶圓檢驗方法,其中該等電子束範圍自2nA至5nA。
  15. 如請求項12之晶圓檢驗方法,其中該複數個電子束包含100至1000個電子束。
  16. 如請求項12之晶圓檢驗方法,其中該等電子束具有自50μm至10mm之一空間離距。
  17. 如請求項12之晶圓檢驗方法,其中該輻射光束為紫外光輻射。
  18. 如請求項12之晶圓檢驗方法,其中該等小光束之一圖案經傳輸至該等電子束。
TW108104590A 2018-02-14 2019-02-12 光電陰極系統、晶圓檢驗方法及晶圓檢驗工具 TWI768180B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862630429P 2018-02-14 2018-02-14
US62/630,429 2018-02-14
US16/106,272 2018-08-21
US16/106,272 US10741354B1 (en) 2018-02-14 2018-08-21 Photocathode emitter system that generates multiple electron beams

Publications (2)

Publication Number Publication Date
TW201937522A TW201937522A (zh) 2019-09-16
TWI768180B true TWI768180B (zh) 2022-06-21

Family

ID=67620023

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108104590A TWI768180B (zh) 2018-02-14 2019-02-12 光電陰極系統、晶圓檢驗方法及晶圓檢驗工具

Country Status (7)

Country Link
US (1) US10741354B1 (zh)
EP (1) EP3724910A4 (zh)
JP (1) JP7082674B2 (zh)
KR (1) KR102466578B1 (zh)
CN (1) CN111684563B (zh)
TW (1) TWI768180B (zh)
WO (1) WO2019160782A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11217416B2 (en) * 2019-09-27 2022-01-04 Kla Corporation Plasmonic photocathode emitters
US11615938B2 (en) * 2019-12-20 2023-03-28 Nuflare Technology, Inc. High-resolution multiple beam source
JP2023119902A (ja) * 2022-02-17 2023-08-29 株式会社ニューフレアテクノロジー マルチ電子ビーム描画装置及びマルチ電子ビーム描画方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030122091A1 (en) * 2001-11-07 2003-07-03 Gilad Almogy Maskless photon-electron spot-grid array printer
US20050264148A1 (en) * 2004-05-28 2005-12-01 Applied Materials, Inc. Multiple electron beam systems
US20100096560A1 (en) * 2008-10-16 2010-04-22 Sony Corporation Optical measuring device
TW201200972A (en) * 2010-05-18 2012-01-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
TW201243512A (en) * 2011-03-11 2012-11-01 Asml Netherlands Bv Lithographic apparatus, method for measuring radiation beam spot focus and device manufacturing method
US20140155873A1 (en) * 2012-11-30 2014-06-05 Amo Development, Llc. Automatic centration of a surgical pattern on the apex of a curved patient interface
CN107112183A (zh) * 2014-09-04 2017-08-29 代尔夫特工业大学 多电子束检查装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684360A (en) * 1995-07-10 1997-11-04 Intevac, Inc. Electron sources utilizing negative electron affinity photocathodes with ultra-small emission areas
US6465783B1 (en) 1999-06-24 2002-10-15 Nikon Corporation High-throughput specimen-inspection apparatus and methods utilizing multiple parallel charged particle beams and an array of multiple secondary-electron-detectors
US6448568B1 (en) 1999-07-30 2002-09-10 Applied Materials, Inc. Electron beam column using high numerical aperture photocathode source illumination
US6828574B1 (en) * 2000-08-08 2004-12-07 Applied Materials, Inc. Modulator driven photocathode electron beam generator
US6538256B1 (en) 2000-08-17 2003-03-25 Applied Materials, Inc. Electron beam lithography system using a photocathode with a pattern of apertures for creating a transmission resonance
US20030178583A1 (en) 2000-09-18 2003-09-25 Kampherbeek Bert Jan Field emission photo-cathode array for lithography system and lithography system provided with such an array
US6847164B2 (en) 2002-12-10 2005-01-25 Applied Matrials, Inc. Current-stabilizing illumination of photocathode electron beam source
EP1434092A1 (en) 2002-12-23 2004-06-30 ASML Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby
US8134135B2 (en) 2006-07-25 2012-03-13 Mapper Lithography Ip B.V. Multiple beam charged particle optical system
US7696498B2 (en) 2007-01-11 2010-04-13 Kla-Tencor Technologies Corporation Electron beam lithography method and apparatus using a dynamically controlled photocathode
US9153413B2 (en) 2007-02-22 2015-10-06 Applied Materials Israel, Ltd. Multi-beam scanning electron beam device and methods of using the same
US9129780B2 (en) 2009-09-22 2015-09-08 Pfg Ip Llc Stacked micro-channel plate assembly comprising a micro-lens
US8362425B2 (en) 2011-03-23 2013-01-29 Kla-Tencor Corporation Multiple-beam system for high-speed electron-beam inspection
KR101331518B1 (ko) * 2011-11-14 2013-11-20 한국기계연구원 회절광학소자와 마이크로 렌즈 어레이를 이용한 레이저 가공 장치 및 이를 구비하는 웨이퍼 다이싱용 레이저 개질 시스템
EP2879155B1 (en) * 2013-12-02 2018-04-25 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Multi-beam system for high throughput EBI
WO2015164844A1 (en) 2014-04-24 2015-10-29 Vutara, Inc. Super resolution microscopy
KR20240042242A (ko) 2015-07-22 2024-04-01 에이에스엠엘 네델란즈 비.브이. 복수의 하전 입자 빔을 이용하는 장치
JP6550478B2 (ja) 2016-04-13 2019-07-24 エーエスエムエル ネザーランズ ビー.ブイ. マルチビーム装置、荷電粒子ビーム装置、ソース変換ユニット、ソース変換ユニットを構成する方法、仮想的マルチソースアレイを形成するための方法
US10859517B2 (en) 2016-04-18 2020-12-08 The Board Of Trustees Of The Leland Stanford Junior University Single X-ray grating X-ray differential phase contrast imaging system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030122091A1 (en) * 2001-11-07 2003-07-03 Gilad Almogy Maskless photon-electron spot-grid array printer
US20050264148A1 (en) * 2004-05-28 2005-12-01 Applied Materials, Inc. Multiple electron beam systems
US20100096560A1 (en) * 2008-10-16 2010-04-22 Sony Corporation Optical measuring device
TW201200972A (en) * 2010-05-18 2012-01-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
TW201243512A (en) * 2011-03-11 2012-11-01 Asml Netherlands Bv Lithographic apparatus, method for measuring radiation beam spot focus and device manufacturing method
US20140155873A1 (en) * 2012-11-30 2014-06-05 Amo Development, Llc. Automatic centration of a surgical pattern on the apex of a curved patient interface
CN107112183A (zh) * 2014-09-04 2017-08-29 代尔夫特工业大学 多电子束检查装置

Also Published As

Publication number Publication date
KR102466578B1 (ko) 2022-11-11
KR20200110458A (ko) 2020-09-23
JP2021513204A (ja) 2021-05-20
EP3724910A4 (en) 2021-09-15
TW201937522A (zh) 2019-09-16
CN111684563B (zh) 2022-07-29
EP3724910A1 (en) 2020-10-21
WO2019160782A1 (en) 2019-08-22
US20200279713A1 (en) 2020-09-03
CN111684563A (zh) 2020-09-18
JP7082674B2 (ja) 2022-06-08
US10741354B1 (en) 2020-08-11

Similar Documents

Publication Publication Date Title
TWI768180B (zh) 光電陰極系統、晶圓檢驗方法及晶圓檢驗工具
US7256405B2 (en) Sample repairing apparatus, a sample repairing method and a device manufacturing method using the same method
US8895922B2 (en) Electron beam apparatus
JP2019175761A (ja) 荷電粒子ビーム照射装置
US11495428B2 (en) Plasmonic photocathode emitters at ultraviolet and visible wavelengths
JP2002184692A (ja) 荷電粒子投射リソグラフィ・システムにおける空間電荷に起因する収差を抑制する装置および方法
TW202301403A (zh) 高流通量多電子束系統
JP2000285840A (ja) 電子銃および電子銃を用いた描画装置および電子線応用装置
JP7241746B2 (ja) 電子ビーム生成および測定
CN111051985B (zh) 具有高分辨率的电子束设备
TW202349435A (zh) 藉由光電陰極薄膜以產生多個電子束
US11217416B2 (en) Plasmonic photocathode emitters
US20070001574A1 (en) Continuously cleaning of the emission surface of a cold field emission gun using uv or laser beams
US20070018562A1 (en) Field emitter arrangement and method of cleansing an emitting surface of a field emitter
TW202307901A (zh) 帶電粒子設備及方法
TW202309965A (zh) 帶電粒子光學裝置、帶電粒子設備及方法
JP2007141689A (ja) 荷電粒子ビーム照射装置
JP2007073529A (ja) イメージインテンシファイア装置および方法