TWI768054B - 用於調節流體之方法及空調裝置與該空調裝置之應用 - Google Patents

用於調節流體之方法及空調裝置與該空調裝置之應用 Download PDF

Info

Publication number
TWI768054B
TWI768054B TW107118940A TW107118940A TWI768054B TW I768054 B TWI768054 B TW I768054B TW 107118940 A TW107118940 A TW 107118940A TW 107118940 A TW107118940 A TW 107118940A TW I768054 B TWI768054 B TW I768054B
Authority
TW
Taiwan
Prior art keywords
heat exchanger
air
fluid
heat
regeneration
Prior art date
Application number
TW107118940A
Other languages
English (en)
Other versions
TW201903337A (zh
Inventor
羅夫 尼爾瑞柏格
沃爾特 歐普
路卡茲 卡爾瓦奇
馬修斯 威克爾特
奧瑞奇 慕勒
Original Assignee
德商巴地斯顏料化工廠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商巴地斯顏料化工廠 filed Critical 德商巴地斯顏料化工廠
Publication of TW201903337A publication Critical patent/TW201903337A/zh
Application granted granted Critical
Publication of TWI768054B publication Critical patent/TWI768054B/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1429Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant alternatively operating a heat exchanger in an absorbing/adsorbing mode and a heat exchanger in a regeneration mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0014Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using absorption or desorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/204Metal organic frameworks (MOF's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4508Gas separation or purification devices adapted for specific applications for cleaning air in buildings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/047Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for absorption-type refrigeration systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F2012/008Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air cyclic routing supply and exhaust air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/02System or Device comprising a heat pump as a subsystem, e.g. combined with humidification/dehumidification, heating, natural energy or with hybrid system
    • F24F2203/026Absorption - desorption cycle
    • F24F2203/028Absorption - desorption cycle using a solid absorbing medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

本發明係關於一種空調裝置、一種用於調節流體(特定而言,用於冷卻及/或乾燥一空氣流)之方法、一種吸附性空氣-空氣交叉流熱交換器,及一種包括一整合式空調裝置之一外壁元件。

Description

用於調節流體之方法及空調裝置與該空調裝置之應用
本發明係關於一種用於調節流體特定而言用於冷卻及/或乾燥一空氣流之方法、一種空調裝置、一種吸附性空氣-空氣交叉流熱交換器及一種包括一整合式空調裝置之外壁元件。
空調設備係當今建築技術之必要組成部分。該等空調設備獨立於外部條件與遮蔽及玻璃技術一起在內部中創造一健康工作環境,該健康工作環境具有一平均相對大氣濕度及介於自20℃至26℃之範圍中之中等溫度。用於操作現有建築物之能量消耗現已上升至人類總能量消耗之約40%,此(除諸如建築物之不良熱絕緣之其他原因之外)主要係由於空調設備。由於潮濕及熱帶氣候區域中日益增加之城市化及需要空調設備以供運作之高層建築物之相關聯構造,開發節能空調設備之必要性日益增加。特定而言,在此等氣候區域中乾燥空氣具有最大之能量消耗,此乃因空氣係藉助於當前佔主導地位之壓縮機技術而過度冷卻直至達到所需絕對大氣濕度。此壓縮機技術通常使用經鹵化烴(較佳地部分地經氟化烴)作為冷凍劑,且此等經鹵化烴及部分地經氟化烴因其氣候損壞可能性而面臨著壓力。在此方面,諸如二氧化碳之替代冷凍劑並沒有較佳。維護壓縮機之必要性(例如以確保可移動部件之自由運轉或使失去平衡之部件重新平衡、引入其他操作媒介及消耗品)已導致對一中心絕緣之一偏愛且到目前為止依據阻止分散式空調設備之開發,該等分散式空調設備整合至建築物中且允許一有效個性化環境。另一方面,市場上已建立了用於改裝之分離裝置,特定而言在私人獨戶住宅中。
同樣地在其中空調設備用於冷卻及除濕之移動應用(諸如火車或汽車)中,來自板上網路之電能量之使用起著一愈來愈重要作用;在電動汽車之情形中,空調設備之操作與交通工具之範圍直接競爭。
一較高效程序將係複合空調,其中單獨地執行乾燥步驟及冷卻步驟。對於乾燥空氣,存在吸收性程序,在其中利用(舉例而言)溴化鋰溶液之吸濕性質以便約束大氣濕度;再循環經由一蒸發步驟發生。由於最佳溶液(亦即溴化鋰及氯化物)之侵蝕性性質,因此對於工業實施方案有必要使用特殊抗蝕材料,但此等材料使得系統昂貴且維修複雜。作為一替代方案,可使用其中將大氣濕度約束於一通常固體材料(諸如沸石或矽膠)中之吸附系統-在研究領域中(例如Y.D. Tu等人,自然7, 40437;DOI 10.1038/Srep40437)亦闡述了由奈米多孔矽石中之鋰鹽構成之處方;再循環藉由加熱吸附劑而有效。水對乾燥劑之反應釋放大量能量,該能量加熱空氣及材料且導致一額外冷卻負荷。同時,再生吸附劑再次需要能量,使得此一空調設備之能量消耗進一步增加。使用一乾燥輪之一智慧處理程序(在此情形中吸附劑在空氣流動通過之一旋轉輪上定位為薄層,且吸附劑在運行之部分期間藉助於熱空氣而再生)允許加熱且減少再生所需之額外能量,例如在Munters之DesiCool ®設備中。然而,空氣之過度乾燥需要再增濕空氣,此歸因於蒸發冷卻減少冷卻流,但由於液體水之使用,可帶來關於衛生方面之擔憂,此乃因有可能植入且增殖損害健康之細菌。就具有若干個旋轉部件之此等空調設備之裝置而言之支出引發一大筆維護支出之風險。
EP 1 408 286闡述由兩個吸附性空氣-空氣熱交換器或一旋轉吸附性熱輪及一壓縮單元組成之一空調設備。據陳述,在吸附模式中,外部空氣在一吸附性熱交換器中經除濕且隨後在壓縮單元中經冷卻。據陳述,在吸附模式期間進一步外部空氣流動通過吸附性熱交換器且帶走潛在熱並且因此限制熱交換器及待調節之內部空氣之加熱。在壓縮單元中此經加熱外部空氣在再生模式中進一步經加熱,通過經負荷吸附性熱交換器且將經蒸發水蒸汽載運至室外。在吸附性熱交換器設計為熱輪之情況下,吸附模式及再生模式可設計為反向電流程序。沸石、矽膠及陰離子-交換樹脂揭示為吸附劑材料。
EP 2 385 318 闡述由一吸附性空氣-水熱交換器及在無一壓縮機單元之情況下操作之一空氣熱交換器組成之一空調設備。藉由被作為吸附物儲存於吸附性熱交換器中且在一後續乾燥步驟中作為大氣濕度再次釋放之大氣濕度來解決冷凝水形成之問題。藉由在藉助於一冷水導管來冷卻總量之空氣之前將相對潮濕、溫暖內部空氣混合至經乾燥空氣中來減少乾燥器之容量、歸因於吸附熱焓之熱演化及空氣之過度乾燥之問題。使用15℃之水來執行空氣熱交換器中之冷卻。為排出吸附物,內部空氣藉助於一加熱元件在再生模式中經加熱且通過乾燥輪之再生部分。沸石、矽膠、活性碳或具有一親水功能群組之有機聚合物揭示為吸附劑材料。EP 2 385 318中所揭示之程序之一缺點係在調節期間外部空氣一定會與現有內部空氣之部分混合,因此可累積有氣味材料及病原體。
US 6,199,392闡述由具有兩個流體通路之一旋轉吸附性熱輪、複數個熱交換器及一壓縮機單元組成之一空調設備。據陳述,沿調節方向,外部空氣在吸附性熱輪中經除濕且隨後在壓縮單元中經冷卻,沿再生方向,外部空氣或所使用內部室內空氣在壓縮單元中經加熱並然後部分地通過熱輪之所負荷區段之一半並且部分地經重新熱並通過熱輪之所負荷區段之另一半。可藉由此逐步再生以減少之能量消耗來達成一高程度之再生,使得可增加乾燥輪之容量。未提及到吸附劑材料。一缺點係吸附性熱輪中未利用吸附熱。另外,經乾燥空氣過於乾燥且必須加濕以供在室內使用。
為了使吸附性熱交換器在吸附期間不變熱,DE 10 2009 050 050提議使用具有一吸著側及一冷卻側之一吸著熱交換器,使得在吸附期間將出現之吸附熱轉移至一冷卻流體,例如呈一氣溶膠形式之一熱轉移媒介。一缺點係未利用吸附熱。
在一類似意義上,久保田(Kubota)等人(實用熱力工程(Appl.Thermal Eng.) 122 (2017) 618-625)闡述一實驗設置,其中潮濕外部空氣可藉助於一經吸附物塗佈空氣-空氣熱交換器來乾燥。文件中所公佈之實例展示可藉助於塗佈有吸附劑之一熱交換器來乾燥空氣。然而,公開案未闡述一完整設置,藉助於該完整設置可能做出用於乾燥及冷卻外部空氣(包含吸附劑之再生)之一連續程序。此外,未提及關於可能將吸附熱整合至裝置之熱電路中之任何內容。進給設施中用於使外部空氣進入至經塗佈熱交換器中之長導管(如公開案中所闡述)亦阻礙需要一緊湊構形之商業用途。
與基於吸附劑之空調設備相關聯之另一挑戰係吸附劑之高效再生所需之高溫度。在通常使用之沸石之情形中,該所需高溫度係自140℃至200℃。某些公開案陳述在較低溫度下可能再生吸附劑,但在此情形中必須使用大量空氣及/或預先經預乾燥之空氣(久保田等人之實用熱力工程122 (2017) 618-625,及王等人之國際熱科學雜誌(Intern. Journal of Thermal Science) 126 (2018) 13-22)。
Portia Murray等人在能量能源(Energy Procedia) 78 (2015) 3471-3476中闡述使用一旋轉乾燥輪及一旋轉熱轉移輪之一分散式空調通風設施。然而,空氣之乾燥(潛在冷卻)排他地藉助於此設置中之一冷卻水導管發生。
在先前技術中所提及之吸附劑之情形中,另一問題係「水(氣態)至約束於吸附劑中之水」之熱動乾燥均衡之吸附劑性質很大程度上取決於約束水之側,使得過度乾燥發生且然後必須在另一步驟中藉由添加水來補償此過度乾燥。此第二步驟不僅就裝置及能量密集而言較複雜,且此步驟亦引發可能植入且增殖對健康有害之細菌之風險。此外,基於吸附劑之空調設備中釋放大量吸附熱且迄今為止此吸附熱僅無效地整合至熱電路中。
WO 99/36733揭示具有化學通式為Al2 O3k (P2 O5 ) (其中k=1.0 ± 0.2)之多孔鋁磷酸鹽,稱為Sapo沸石,該等Sapo沸石可在120℃至140℃下再生且因此作為乾燥劑提供一節能空調設備之可能性。
EP 2 230 288闡述使用多孔金屬-有機框架(稱為MOF)作為冷/熱機器之吸附材料。與通常所使用之沸石相比,此等MOF具有較高容量及較低再生溫度。
此外,歐洲專利申請案第15195166.2中揭示使用多孔金屬-有機框架作為一通風系統中之吸附材料。
由於對空調設備之普遍需求及用於操作此等設備之日益增加之能量需求,人們對較節能空調設備之極有興趣,該等較節能空調設備就裝置而言有利地簡單且有利地亦可緊湊地構造。
因此,本發明之一目標係由於(在可能之情況下)既不過度乾燥亦不過度冷卻而消耗不必要能量來達成一空調裝置之熱動有利操作。較佳地應等溫地達成乾燥,使得減少隨後的冷卻需求。此外,吸附熱應整合於裝置之熱電路中。此外,應儘可能有效地實現能量密集再生。此外,應提供組合吸附性乾燥、節能再生以及一低維護支出及避免液體水之一完整系統。
本發明之另一目標係提供一空調裝置,該空調裝置允許就裝置及幾個機械元件而言具有一經減少支出之一有效操作模式。此外,應能夠實現經簡化控制。
本發明之又一目標係提供一空調裝置,其中空氣流(亦即程序空氣及內部浪費空氣)可保持彼此分離使得可確保100%引入新鮮空氣。
本發明之另一目標係提供緊湊且低維護之一空調裝置。
本發明之另一目標係提供可在不具有壓縮機之情況下操作之一空調裝置。
已能夠藉由以下用於調節一流體(特定而言用於乾燥及/或冷卻外部空氣)之程序來達成目標,該程序包括以下步驟:(a) 使程序流體(最好是外部空氣)流動通過一第一吸附性熱交換器(宜為交叉流熱交換器)之吸著通道, (b) 在第一吸附性熱交換器中,乾燥程序流體, (c) 使該經乾燥程序流體流動至一冷源之冷側, (d) 在一冷源中,冷卻該經乾燥程序流體, (e) 使該經乾燥且經冷卻程序流體流動至待調節區域中, (f) 使再生流體(最好是來自待調節區域之排氣)平行流動通過該第一吸附性熱交換器之熱交換器通道, (g) 藉由該再生流體來攝取該吸附熱, (h) 使該經加熱再生流體流動至一熱源之熱側, (i) 在該熱源中,進一步加熱該再生流體, (j) 使該經加熱再生流體流動通過一第二吸收性熱交換器(最好是交叉流熱交換器)之吸著通道, (k) 汽化位於該第二吸收性熱交換器中之吸附物,且藉由該再生流體來攝取此等吸附物, (l) 使該濕潤再生流體流動至一外部區域中。
吸著通道包括吸附材料。基於具有吸附材料之吸著通道的負荷,熱交換器通道最好包括少於5%之吸附材料。熱交換器通道最好不具有吸附材料。
吸附材料最好具有自0.2 g/cm3 至2 g/cm3 、宜為自0.3 g/cm3 至1.5 g/cm3 、特定而言自0.3 g/cm3 至1 g/cm3 之一厚度。
最好依據穿越熱交換器之區段的總流量來判定流動速度。對於分散式小空調設備,典型流動速度係自30 m3 /h至150 m3 /h、最好是自50 m3 /h至100 m3 /h。對於集中式大空調設備,典型流動速度係自1000 m3 /h至30 000 m3 /h、最好是自1500 m3 /h至20 000 m3 /h。
程序流體在流動通過熱交換器之前,最好過濾及釋放顆粒及/或液滴。
最好經由用於聲波阻尼之一裝置來輸送程序流體,以便在流動通過熱交換器之前最小化外部噪音。
作為熱源或冷源,可使用基於壓縮機設備之熱泵、視情況具有加熱器件的熱驅動或電驅動(宜係太陽能熱驅動)來吸收或吸附設備或者水導管、最好是水導管及吸附熱泵或其組合。加熱器件可最好係電操作或太陽能熱操作的。適合加熱及冷卻器件亦包含純電操作組件,諸如帕耳帖(Peltier)元件、磁致熱元件、電線及區加熱。出於本發明之目的,在汽化器側之壓縮機設備之情形中,「熱-冷源之冷側」係冷極。在冷凝器側之壓縮機設備之情形中,「熱-冷源之熱側」係熱極。
一流體(較佳地外部空氣)之調節需要至少兩個吸著熱交換器以便達成有效連續操作。吸附(亦即除濕)發生在兩個吸著熱交換器中之一者中,而另一吸著熱交換器平行再生。在每一情形中至少一個吸著熱交換器相應地處於吸附階段中且至少一個吸著熱交換器處於再生階段中。
由於吸著熱交換器可僅帶走一特定量之濕氣且吸附速度隨著負荷增加而減小,因此吸附階段及再生階段有利地循環改變。以此方式可確保有效連續操作。
考量到選定吸著材料及吸附性熱交換器面積之大小,可藉由調整循環時間來設定所要調節且因此適應於盛行氣候。在不同氣候區域中所要調節係不同的,亦即在接近於海岸之區域中除濕佔主導,而在內陸區域中冷卻佔主導。循環時間通常係自5分鐘至1小時。有利地使用可量測溫度及/或大氣濕度之感測器以便最佳化至盛行天氣之轉換時間。有利地將此等感測器安裝於導管中。
在吸附階段之前,可視情況冷卻經再生吸收性熱交換器。可藉由使一再生流體(有利地來自待調節區域之排氣)流動通過熱交換器或藉由使經乾燥且經冷卻程序流體(亦即經調節空氣)流動通過熱交換器來達成此冷卻。此外,此冷卻亦可藉由使外部空氣流動通過熱交換器來執行。有利地,流動排他性地透過待冷卻之熱交換器之熱交換器通道發生。此冷卻階段有利地花費自1分鐘至5分鐘。此冷卻階段有利地佔據一循環之自約1%至20%。在冷卻階段中,有利地將經再生吸收性熱交換器自80℃至100℃之一溫度冷卻至25℃至35℃之一溫度。
有利地在第二熱交換器之冷卻階段之前中斷程序流體通過一第一吸收性熱交換器之吸著通道之流動及再生流體通過第一吸收性熱交換器之熱交換器通道之流動。
在選用冷卻階段之後,發生以下步驟:(m) 視情況,中斷該程序流體及該再生流體在第一吸收性熱交換器中之流動,若此尚未發生的話, (n) 使該程序流體流動通過一第二吸收性熱交換器之該等吸著通道, (o) 在該第二吸收性熱交換器中乾燥該程序流體, (p) 使該經乾燥程序流體流動至一冷源之該冷側, (q) 在一冷源中冷卻該經乾燥程序流體, (r) 使該經乾燥且經冷卻程序流體流動至該待調節區域中, (s) 使該再生流體平行流動通過該第二吸收性熱交換器之該等熱交換器通道, (t) 藉由該再生流體來攝取該吸附熱, (u) 使該經加熱再生流體流動至一熱源之熱側, (v) 在該熱源中進一步加熱該再生流體, (w) 使該經加熱再生流體流動通過一第一吸收性熱交換器之該等吸著通道, (x) 汽化位於該第一吸收性熱交換器中之該等吸附物且藉由該再生流體來攝取此等吸附物, (y) 使該濕潤再生流體流動至一外部區域中。
在此等步驟(m)至(y)之後,較佳地再次中斷程序流體及再生流體之流動。此外,在再次經歷步驟(a)至(l)之前視情況冷卻第一吸收性熱交換器。
程序流體(特定而言外部空氣)有利地具有自10℃至50℃、較佳地自25℃至35℃之一溫度及自40%至100%之一相對大氣濕度。在吸收性熱交換器中之吸附之後,程序流體有利地具有自20℃至45℃、較佳地自25℃至40℃之一溫度及自25%至35%、較佳地自28%至33%之一相對大氣濕度。在藉助於熱-冷源之冷側調節之後,程序流體有利地具有自18℃至25℃、較佳地自22℃至24℃之一溫度及自40%至55%、較佳地自45%至55%之一相對大氣濕度。
再生流體(有利地來自待調節區域之排氣)有利地具有自25℃至30℃之一溫度及自50%至80%、較佳地自60%之75%之一相對大氣濕度。在吸收性熱交換器中之熱轉移之後,再生流體有利地具有自25℃至45℃、較佳地自25℃至40℃之一溫度及自30%至70%、較佳地自35%至60%之一相對大氣濕度。在藉助於熱-冷源之熱側之調節之後,再生流體有利地具有自60℃至100℃、較佳地自70℃至95℃之一溫度及自1%至10%、較佳地自3%至7%之一相對大氣濕度。在第二吸收性熱交換器之再生之後,再生流體有利地具有自30℃至50℃、較佳地自33℃至45℃之一溫度及自70%至95%、較佳地自80%至95%之一相對大氣濕度。
可視情況在經乾燥及經冷卻程序流體(亦即經調節程序流體)流動至待調節區域中之前將內部空氣混合至經乾燥及經冷卻程序流體中。在此混合之情形中,經乾燥且經冷卻程序流體與內部空氣之比率有利地係自1至60、較佳地自10至40。
然而,將100%之經乾燥且經冷卻程序流體引入至待調節區域中係有利的。
經乾燥且經冷卻程序流體在被引入至待調節區域中之前視情況通過一吸附裝置。相對大氣濕度之波動可藉助於此吸附裝置來平衡。
圖1中展示各種流體流之一可能佈線。
根據本發明之裝置除電可致動閥或空氣擋板之外不包括可移動(特定而言旋轉)部件。其中發生空氣之乾燥之吸收性熱交換器(較佳地交叉流熱交換器)及其中發生進給空氣及再生空氣之加熱/冷卻之熱-冷源排他性地經由連接件(例如剛性管或可移動軟管)彼此連接。
本發明之裝置有利地係特別緊湊件之裝備。出於本發明之目的,「緊湊」係指一特別小構造,該特別小構造具有自300 cm至60 cm、較佳地自200 cm至80 cm、較佳地自120 cm至100 cm之一長度尺寸、自200 cm至50 cm、較佳地自120 cm至60 cm、較佳地自100 cm至70 cm之一第二長度尺寸及自100 cm至25 cm、較佳地自50 cm至25 cm、較佳地自35 cm至25 cm之一第三尺寸。
當使用窄管(亦即通過其剖面發生之流動比熱交換器之流動剖面少至少30%)時,最佳化通過熱交換器之空氣之流動行為係有利的使得在類似壓力下發生之流動通過所有通道。出於此目的,有利地直接插入扇出氣流及/或使氣流層流化之元件(亦即有利地在熱交換器前自1 cm至10 cm之一距離處)。可能提及之實例係可視情況結合圓錐形連接件使用之過濾器、網狀物及/或網格,或配備有閥及/或空氣擋板且可在一循環期間系統地致動一熱交換器之不同通道系統之多路系統。以此方式可省去文獻中所闡述之長進給導管,該等長進給導管使氣流層流化且製備氣流以供通過熱交換器。
本發明亦適用於除水之外之其他吸著物。
較佳吸附劑對來自氣體之吸附極性汽化分子顯示一高選擇性。自潮濕空氣吸附水汽之能力受以下材料控制:改性碳(活性碳)、矽膠、活性氧化鋁、活性鋁礬土、分子篩及金屬-有機框架(MOF)、固定在氧化物中之鋰鹽(例如二氧化矽)。
使用具有吸水性質及/或改性碳(活性碳)之金屬-有機框架係有利的。
就以下若干個性質而言,MOF優於傳統吸附劑材料(諸如矽膠或沸石):(i)飽和容量:沸石每公升水需要10 kg吸附材料而MOF每公升水需要自1 kg至2 kg吸附材料,(ii)再生溫度:沸石需要自140℃至170℃而MOF需要自70℃至80℃,(iii)吸附熱焓:MOF少釋放平均20%至30%之吸附熱。
本發明之一重要優點係「水(氣態)至約束於吸附媒介中之水」之熱動乾燥均衡:在MOF之情形中,與沸石相比,此均衡與經約束水之側相差較小。因此,在使用MOF之情況下可避免過度乾燥。此外,藉此可完全避免具有上述問題之再增濕。此外,在使用改性碳(活性碳)之情況下同樣可避免過度加熱。
可有利地個別地或作為一混合物來使用來自以下群組之MOF作為吸水MOF:HKUST-1、MOF-804、Basolite A120、BASOLITE® A520、MIL-160、MOF-841、UIO-66、DUT-67及/或MOF-801。
吸水MOF亦有利地具有大於100 000之一循環穩定性,其中一循環由吸附模式及再生模式組成。
可有利地個別地或作為一混合物來使用來自以下群組之MOF作為吸水及循環穩定MOF:BASOLITE® A520、MIL-160、MOF-841、UIO-66、DUT-67及/或MOF-801。
鋁-富馬酸MOF (其作為BASOLITE® A520可商業獲得)及MIL160特別適合作為吸附材料。
MOF可由廉價試劑容易地生產且對水具有令人滿意之一穩定性。MOF在先前技術中係已知的且在(舉例而言) US 5,648,508、EP-A-0 790 253、M. O'Keeffe等人之固態化學雜誌(J. Sol. State Chem.),152 (2000),第3頁至第20頁、H. Li 等人之自然(Nature) 402,(1999),第276頁、M. Eddaoudi等人之催化論題(Topics in Catalysis) 9,(1999),第105頁至第111頁、B.Chen等等之科學(Science) 291,(2001),第1021頁至第1023頁、DE-A-101 11 230、DE-A 10 2005 053430、WO-A 2007/054581、WO-A 2005/049892及WO-A 2007/023134中闡述。
吸附材料(特定而言MOF)可係提供作為粉狀材料、粒狀材料、經塑形主體或整體材料,且可(舉例而言)在一殼體中被配置為矩陣、被配置為塗層,或被配置為填料(例如一填充床或一移動床)。
在本發明之一較佳實施例中,吸著材料係作為塗層而沈積於一基板、最好是吸附性熱交換器之吸著通道的壁及/或內部零件上。吸著材料可經塗佈有或未經塗佈有黏結劑。基板最好是由金屬組成。
本發明進一步提供用於調節一流體(宜係用於冷卻及/或乾燥空氣)之一空調裝置,該空調裝置包括- 一第一吸收性熱交換器(宜係交叉流熱交換器),其具有沿至少一個流動方向之吸著通道,且具有沿至少一個流動方向之熱交換器通道, - 用於移除熱之一熱-冷源,其係沿該等吸著通道之該流動方向配置於該第一吸收性熱交換器之下游, - 用於攝取熱之一熱-冷源,其係沿該等熱交換器通道之該流動方向配置於該第一吸收性熱交換器之下游,及 - 一第二吸收性熱交換器(較佳地交叉流熱交換器),其係配置於用於熱之該攝取之該熱/冷源之下游,且具有沿至少一個流動方向之吸著通道,並且具有沿至少一個流動方向之熱交換器通道,其中該第二熱交換器上之該等吸著通道係沿該第一熱交換器之該等熱交換器通道之該流動方向配置。
最好使用MOF作為吸附材料,參見上文之說明及偏好。
過濾器及淨化器件最好是安裝於吸收性熱交換器之上游。用於程序流體之聲波阻尼之器件最好是安裝於吸收性熱交換器之上游。
本發明進一步提供具有吸著通道之一吸收性空氣-空氣交叉流熱交換器,該吸著通道包括沿至少一個流動方向之吸水金屬-有機框架及沿至少一個其他流動方向之熱交換器通道,其中基於具有吸附材料之吸著通道的負荷熱交換器通道包括少於5%的吸附材料。
熱交換器通道有利地不具有吸附材料。
呈現有利地構形有複數個平行吸著通道及複數個平行熱交換器通道之空氣-空氣交叉流熱交換器。此處,平行配置意指此等流動通道各自具有一接頭入口及一接頭出口。吸著劑熱交換器之吸著通道及熱交換器通道有利地交替地配置。此一交替配置使得可能最佳化熱交換器內之熱轉移。同時,將避免流體流之混合。
通道寬度有利地係自0.5 mm至2 mm,特定而言自0.7 mm至1.5 mm。吸著通道之通道寬度與熱交換器通道之通道寬度可係不同的。吸著通道之流動阻力與熱交換器通道之流動阻力有利地係相同的。因此,吸著通道有利地比熱交換器通道寬兩倍的吸附材料之塗層厚度。
吸附材料之塗層厚度有利地係自10 µm至200 µm、較佳地自20 µm至150 µm、特定而言 自25 µm至100 µm。
本發明之空氣-空氣交叉流熱交換器有利地用於調節有利地建築物或交通工具中之新鮮空氣。
用於調節流體之程序及對應空調裝置有利地用於調節用於建築物或交通工具(特定而言火車及電動汽車)之空調之空氣。此程序及此裝置特別有利地用於其中規定100%引入新鮮空氣之醫院、實驗室及其他設施之空調。
此外,本發明提供包括根據本發明之一內建空調裝置之一外壁元件。本發明之空調裝置之緊湊性允許安裝於一外壁元件中且使得分散式靈活空調成為可能。此外,此分散允許空調之個別、有效個人化控制,例如每個外壁元件之溫度選擇。此個別控制可(舉例而言)經由使用應用程式來執行。
本發明之優點在於以下特徵之間的協同效應:(i)使用一有效吸附材料,特定而言具有一高負荷容量及低再循環溫度之一吸附材料,(ii)使用一再生流體,該再生流體與選定(再生)吸附材料具有一極大溫差及濕氣含量差及(iii)利用吸附熱以用於再生。
藉助於本發明已能夠避免過度乾燥及相關聯再增濕問題。任何點處皆不會形成冷凝水。此外,兩個流體流(亦即外部空氣及內部排氣)通過整個空調裝置殼保持分離。由於避免一壓縮機單元,因此本空調裝置係低維護的。由於使用具有一高容量之一吸附材料,因此可構建有利地以分散式形式整合至一建築物中之緊湊空調裝置。緊湊空調裝置使得可將此單元整合至一外壁元件中且以一分散式方式控制該單元。此外,已能夠藉由使用具有一高容量及一低再生溫度之一吸附材料來簡化再生。由於減少之再生需求,因此根據本發明之再生可被對換為自外部空氣至內部排氣。將內部排氣作為再生流體之此使用提供了簡化控制之機會,此乃因不同於外部排氣之情形內部排氣之溫度及濕度之波動保持在一窄範圍中。
圖1:空調裝置之抽象結構圖1中使用以下縮寫: OL外部空氣 KL經調節空氣 IL內部空氣 AL排氣 10吸收器熱交換器1 11吸收器熱交換器2 20熱泵 21熱泵之熱極 22熱泵之冷極 23用於熱泵之驅動能量
圖2:空氣-空氣交叉流熱交換器之結構圖2中使用以下縮寫: 50塗佈有吸收劑之熱交換器區 51未經塗佈熱交換器區 60待乾燥或再生之流體(有利地空氣)之流 61待冷卻之再生流體(有利地排氣)之流
圖3:本發明之空調裝置之第一佈線狀態在圖3之下部部分中,視情況經過濾之外部空氣流動至裝置中且經由左手側分支輸送至根據本發明已經塗佈之第一熱交換器之吸著通道中。經乾燥空氣沿一冷卻元件(此處以實例之方式由帕爾帖(Peltier)冷卻表示)之方向向上離開熱交換器。在圖之左上方處,空氣自內部空間流動至第一主動熱交換器之熱交換器通道中、藉由吸附熱被加熱、在右邊沿補充加熱器件(此處以實例之方式構形為電管加熱)之方向離開熱交換器通道。經加熱空氣流自上面進入至待再生之第二熱交換器之吸著通道中且以來自再生程序之水汽之形式離開裝置。
圖4:本發明之空調裝置之第二佈線狀態。在圖4之下部部分中,視情況經過濾之外部空氣流動至裝置中且經由右手側分支輸送至根據本發明已經塗佈之先前經再生熱交換器之吸著通道中。經乾燥空氣沿一冷卻元件(此處以實例之方式由帕爾帖(Peltier)冷卻表示)之方向向上離開熱交換器。在圖中之左上方處,空氣自內部空間流動至主動熱交換器之熱交換器通道中、藉由吸附熱被加熱、在左邊沿補充加熱器件(此處以實例之方式構形為電管加熱)之方向離開熱交換器通道。經加熱空氣流自上面進入至待再生之第二熱交換器之吸著通道中且以來自再生程序之水汽之形式離開裝置。
實例1: 如EP2 230 288中所闡述製備鋁富馬酸。
由1300 g鋁富馬酸及3300 g蒸餾水構成之一分散液係藉由藉助於一帶齒盤狀攪拌器(7 cm之盤直徑;海道夫(Heidolph) RZR2010控制)以570 rpm攪拌15分鐘而生產。在添加810 g聚丙烯酸酯分散液(Acronal® Edge,40%固體含量)之後,攪拌器速度增加至740 rpm,持續15分鐘。使用一螺旋槳攪拌器(直徑 10 cm,IKA EURO ST 40DS0000)將以此方式產生之五個批次混合且均質化達12小時。隨後移除泡沫且藉由低攪拌給分散液脫氣。
分散液在10 Hz下具有4 Pa之一黏度(使用安東帕(Anton Paar)之MCR102(PP50,400 µm之間隙,25℃)進行量測)。
透過由鋁製成之一反向電流熱交換器之兩個通道系統中之一者(長度397 mm;高度172 mm;寬度200 mm;未經塗佈通道寬度約1 mm;克林根堡(Klingenburg) GS18-200)引入分散液兩次且藉助於空氣自由吹製通道。在乾燥熱交換器之後,獲得346 g之總重量增加,此對應於96 µm之一平均層厚度。
實例2: 連接如在實例1中已經塗佈之一熱交換器使得處於27℃具有90%之相對大氣濕度(OL)之空氣通過經塗佈通道束(1)且處於20℃具有80%之相對大氣濕度(IL)之空氣通過其他通道束。流動速率係50 m³/h。在吸附器之操作之第一個5分鐘內,在經塗佈通道束(KL)之流出端處建立自28℃至32℃之範圍中之溫度及自35%至50%之範圍中之一相對大氣濕度。出於此目的將空氣之熱焓自80 kJ/kg等溫地減少至63 kJ/kg。
來自未經塗佈通道束(AL)之流出物顯示一溫度增加至30℃。此空氣流之熱焓自約51 kJ/m³至上升至約63 kJ/m³。
熱交換器被加熱10℃。在第一個5分鐘內,60 kJ/m³被自外部空氣流(OLà kL)轉移至內部空氣流(IL à AL),此對應於水對鋁富馬酸之約50%之吸附熱焓。
實例3: 用熱乾空氣(90℃、3%之相對大氣濕度)沖洗實例2之熱交換器達5分鐘。然後重複實例2之實驗。在第一個5分鐘內在經塗佈通道束之流出端處量測到自27℃至33℃之範圍中之溫度及自40%至50%之範圍中之一相對大氣濕度。
實例4: 與久保田等人之比較。
Figure 107118940-A0304-0001
至半最大值之吸附時間:外部空氣(ODA)在流動通過一新再生熱交換器時其乾燥地極快。此處所涉及之吸附熱焓產生一溫度增加。吸收劑中增加之水負荷將導致濕氣攝取及吸附熱焓之一減少。因此,隨著時間增加排出空氣(SUP)關於大氣濕度及溫度接近外部空氣。然後操作必須切換至其他循環。選擇自吸附之開始至溫度或大氣濕度已變得等於外部空氣條件之最大值之一半之時間點之時間作為具有兩個交替操作經塗佈熱交換器之一設置之循環時間的一特性量測。在此等條件下,可假定負荷了快速可用量之吸附劑且基本上推斷出吸附熱焓之分佈。
對所量測曲線之評估(圖5)之闡釋:針對60 m³/h評估所量測曲線。外部空氣 (ODA)之大氣濕度係20 g/kg,且進給空氣(SUP)之大氣濕度隨著吸附劑之飽和度而變化。在一經再生吸附劑之情形中,大氣濕度係5 g/kg,且在長時間之後大氣濕度接近外部空氣。曲線可藉助於至半最大值之時間而特徵化,在此處由13 g/kg及約350 s處之線指示。
圖6:鋁-富馬酸MOF之吸附及解吸附曲線。該曲線圖展示MOF中之水負荷隨著相對大氣濕度而變的均衡狀態。與沸石之典型類似量測值形成對比,MOF顯示一兩部分曲線:低於20%之相對大氣濕度,MOF並不帶走任何水汽,亦即其並不會過度乾燥空氣。在自20%至40%之相對大氣濕度範圍中,MOF自空氣吸收高達其自身重量之30%之濕氣。在甚至更高相對大氣濕度下,發生對水之一進一步連續攝取。
對莫裡爾圖(圖7)之闡釋:該曲線圖展示絕對大氣濕度與溫度之可能組合。在此繪示中,忽略了大氣濕度對空氣之密度之影響(此效應將允許等溫線(具有相同溫度之狀態)至自左向右稍微增加。)
空氣對水汽之攝取容量隨溫度增加而增加。飽和曲線指示為100%之相對大氣濕度。低於此溫度,大氣濕氣冷凝為霧。出於此原因,其亦稱為「霧曲線」。
辦公室之舒適範圍係自40%之相對大氣濕度/20℃至60%之相對大氣濕度/26℃。
一熱潮濕氣候中之外部條件之一典型實例係具有30℃及80%之相對大氣濕度(約23 g/kg之水汽)之點。為進入舒適內部空間之範圍,空氣必須(特定而言)係乾燥的。在所建立空調技術中,此係藉由冷卻至約10℃而達成,使得冷凝出空氣中之濕氣直至絕對大氣濕度為約10 g/kg至12 g/kg (霧曲線)為止。
可藉助於本發明之經塗佈熱交換器在不冷卻之情況下幾乎等溫地乾燥空氣。
不利用熱交換器之乾燥將由於水之冷凝及吸附之熱焓之釋放而導致空氣之溫度之一增加。
10‧‧‧吸收器熱交換器111‧‧‧吸收器熱交換器220‧‧‧熱泵21‧‧‧熱泵之熱極22‧‧‧熱泵之冷極23‧‧‧用於熱泵之驅動能量50‧‧‧塗佈有吸收劑之熱交換器區51‧‧‧未經塗佈熱交換器區60‧‧‧待乾燥或再生之流體(有利地空氣)之流61‧‧‧待冷卻之再生流體(有利地排氣)之流AL‧‧‧排氣/未經塗佈通道束IL‧‧‧內部空氣/相對大氣濕度KL‧‧‧經調節空氣/經塗佈通道束OL‧‧‧外部空氣/相對大氣濕度
圖1係空調裝置之一抽象結構。 圖2係空氣-空氣交叉流熱交換器之一結構。 圖3係本發明之空調裝置之一第一佈線狀態。 圖4係本發明之空調裝置之一第二佈線狀態。 圖5係所量測曲線之一評估。 圖6係鋁-富馬酸金屬-有機框架之一吸附及解吸附曲線。 圖7係一莫裡爾(Mollier)圖。
10:吸收器熱交換器1
11:吸收器熱交換器2
20:熱泵
21:熱泵之熱極
22:熱泵之冷極
23:用於熱泵之驅動能量
AL‧‧‧排氣/未經塗佈通道束
IL‧‧‧內部空氣/相對大氣濕度
KL‧‧‧經調節空氣/經塗佈通道束
OL‧‧‧外部空氣/相對大氣濕度

Claims (19)

  1. 一種用於調節一流體之程序,其包括以下步驟:(a)使該程序流體流動通過一第一吸收性熱交換器之吸著通道,(b)在該第一吸收性熱交換器中,乾燥該程序流體,(c)使經乾燥之該程序流體流動至一冷源之冷側,(d)在一冷源中,冷卻經乾燥之該程序流體,(e)使經乾燥且經冷卻之該程序流體流動至待調節區域中,(f)使再生流體平行流動通過該第一吸收性熱交換器之熱交換器通道,(g)藉由該再生流體來攝取吸附的熱,(h)使經加熱之該再生流體流動至一熱源之熱側,(i)在該熱源中,進一步加熱該再生流體,(j)使經加熱之該再生流體流動通過一第二吸收性熱交換器之吸著通道,(k)汽化位於該第二吸收性熱交換器中之吸附物,且藉由該再生流體來攝取此等吸附物,(l)使該再生流體流動至一外部區域中。
  2. 如請求項1之程序,其中將來自該待調節區域之排氣用作再生流體。
  3. 如請求項1或2之程序,隨後包括另一步驟:冷卻該第二吸收性熱交換器。
  4. 如請求項3之程序,其中藉助於用於該第二吸收性熱交換器之該再生流體、流動通過該第二吸收性熱交換器之經調節之該程序流體及/或外部空氣來達成該第二吸收性熱交換器之該冷卻。
  5. 如請求項1或2之程序,其中循環地操作該程序。
  6. 如請求項1或2之程序,其中基於壓縮機設備之熱泵係用作熱源或冷源。
  7. 如請求項3之程序,其中該等步驟(a)至(l)及該第二吸收性熱交換器之該冷卻後續接著以下步驟:(m)視情況,中斷該程序流體及該再生流體在第一吸收性熱交換器中之流動,若此尚未發生的話,(n)使該程序流體流動通過一第二吸收性熱交換器之該等吸著通道,(o)在該第二吸收性熱交換器中,乾燥該程序流體,(p)使經乾燥之該程序流體流動至一冷源之該冷側,(q)在一冷源中,冷卻經乾燥之該程序流體,(r)使經乾燥且經冷卻之該程序流體流動至該待調節區域中,(s)使該再生流體平行流動通過該第二吸收性熱交換器之該等熱交換器通道,(t)藉由該再生流體來攝取吸附的熱, (u)使經加熱之該再生流體流動至一熱源之熱側,(v)在該熱源中,進一步加熱該再生流體,(w)使經加熱之該再生流體流動通過一第一吸收性熱交換器之該等吸著通道,(x)汽化位於該第一吸收性熱交換器中之該等吸附物,且藉由該再生流體來攝取此等吸附物,(y)使該再生流體流動至一外部區域中。
  8. 一種用於調節一流體之空調裝置,其包括一第一吸收性熱交換器,其具有沿至少一個流動方向之吸著通道,且具有沿至少一個流動方向之熱交換器通道,用於移除熱之一熱-冷源,其係沿該等吸著通道之該流動方向配置於該第一吸收性熱交換器之下游,用於攝取熱之一熱-冷源,其係沿該等熱交換器通道之該流動方向配置於該第一吸收性熱交換器之下游,及一第二吸收性熱交換器,其係配置於用於熱之該攝取之該熱-冷源之下游,且具有沿至少一個流動方向之吸著通道,及具有沿至少一個流動方向之熱交換器通道,其中該第二吸收性熱交換器上之該等吸著通道係沿該第一吸收性熱交換器之該等熱交換器通道之該流動方向配置。
  9. 如請求項8之空調裝置,其中該等熱交換器係與該等熱-冷源經由剛性管及/或可移動軟管連接。
  10. 如請求項8或9之空調裝置,其中該裝置並不包括任何旋轉組件。
  11. 如請求項8或9之空調裝置,其中扇出氣流及/或使氣流層流化的元件係插入該等熱交換器的上游。
  12. 如請求項8或9之空調裝置,其中金屬-有機框架及/或改性碳係用作該等吸著通道中之吸附材料。
  13. 如請求項12之空調裝置,其中該吸附材料具有自0.2g/cm3至2g/cm3之密度。
  14. 如請求項8之空調裝置,其中BASOLITE® A520、MIL-160、MOF-841、UIO-66、DUT-67及/或MOF-801係用作該等吸著通道中之吸附材料。
  15. 如請求項8或9之空調裝置,其中使用交叉流熱交換器。
  16. 一種如請求項8至15中任一項之空調裝置用於在建築物及交通工具中調節流體之用途。
  17. 一種如請求項8至15中任一項之空調裝置用於在醫院及/或實驗室中調節流體之用途。
  18. 一種吸收性空氣-空氣交叉流熱交換器,其中該熱交換器具有吸著通道,其中通道寬度係自0.5mm至2mm,該等吸著通道包括沿至少一個流動方向之吸水金屬-有機框架及沿至少一個其他流動方向之熱交換器通道,其中基於具有吸附材料之該等吸著通道之負荷,該等熱交換器通道包括少於5%之吸附材料,且其中該吸附材料之塗層厚度係自10μm至200μm。
  19. 一種外壁元件,其包括如請求項8至15中任一項之空調裝置。
TW107118940A 2017-06-02 2018-06-01 用於調節流體之方法及空調裝置與該空調裝置之應用 TWI768054B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP17174210.9 2017-06-02
EP17174210 2017-06-02
??17174210.9 2017-06-02

Publications (2)

Publication Number Publication Date
TW201903337A TW201903337A (zh) 2019-01-16
TWI768054B true TWI768054B (zh) 2022-06-21

Family

ID=59009560

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107118940A TWI768054B (zh) 2017-06-02 2018-06-01 用於調節流體之方法及空調裝置與該空調裝置之應用

Country Status (9)

Country Link
US (1) US11609000B2 (zh)
EP (1) EP3631308A1 (zh)
JP (1) JP7076477B2 (zh)
KR (1) KR102565093B1 (zh)
CN (1) CN110678698B (zh)
BR (1) BR112019024204A2 (zh)
PH (1) PH12019502622A1 (zh)
TW (1) TWI768054B (zh)
WO (1) WO2018220027A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11592195B2 (en) 2021-02-12 2023-02-28 Trane International Inc. Dehumidifying air handling unit and desiccant wheel therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2345853A2 (de) * 2009-12-05 2011-07-20 Robert Bosch GmbH Sorptionswärmetauscher und Steuerung hierfür
US20130192281A1 (en) * 2011-10-21 2013-08-01 Massachusetts Institute Technology Adsorption System
CN103673111A (zh) * 2013-12-16 2014-03-26 内蒙古科技大学 多功能空气除湿净化固体吸附(再生)床

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4460388A (en) * 1981-07-17 1984-07-17 Nippon Soken, Inc. Total heat exchanger
JPS62261892A (ja) * 1986-05-08 1987-11-14 Toshiba Corp 熱交換器
US5170633A (en) * 1991-06-24 1992-12-15 Amsted Industries Incorporated Desiccant based air conditioning system
US5648508A (en) 1995-11-22 1997-07-15 Nalco Chemical Company Crystalline metal-organic microporous materials
JPH09318127A (ja) * 1996-05-24 1997-12-12 Ebara Corp 空調システム
US6199392B1 (en) 1997-03-25 2001-03-13 Ebara Corporation Air conditioning system
JPH11197439A (ja) 1998-01-14 1999-07-27 Ebara Corp 除湿空調装置
DE10111230A1 (de) 2001-03-08 2002-09-19 Basf Ag Metallorganische Gerüstmaterialien und Verfahren zu deren Herstellung
JP2003097825A (ja) 2001-07-18 2003-04-03 Daikin Ind Ltd 空気調和装置
DE10220631A1 (de) * 2002-05-10 2003-11-20 Loeffler Michael Verfahren zur Sorptionsklimatisierung mit Prozeßführung in einem Wärmetauscher
JP2005095883A (ja) * 2003-09-04 2005-04-14 Mitsubishi Chemicals Corp 吸着ヒートポンプ又はデシカント空調装置用吸着材
DE10355087A1 (de) 2003-11-24 2005-06-09 Basf Ag Verfahren zur elektrochemischen Herstellung eines kristallinen porösen metallorganischen Gerüstmaterials
DE102005039623A1 (de) 2005-08-22 2007-03-01 Basf Ag Verfahren zur Herstellung von metallorganischen Gerüstmaterialien Hauptgruppen Metallionen enthaltend
DE102005053430A1 (de) 2005-11-09 2007-05-16 Basf Ag Dotierte metallorganische Gerüstmaterialien
DE102005054523A1 (de) 2005-11-14 2007-05-16 Basf Ag Poröses metallorganisches Gerüstmaterial enthaltend ein weiteres Polymer
CN101004340A (zh) * 2006-12-15 2007-07-25 天津市泰来暖通设备有限公司 一种内腔防腐层真空吸附涂覆工艺及装置
CN201096388Y (zh) * 2007-06-06 2008-08-06 重庆大学 一种多功能空调装置
CN101140089B (zh) * 2007-10-26 2010-05-26 重庆大学 一种温湿度独立控制空调系统
JP4502065B1 (ja) 2009-01-30 2010-07-14 ダイキン工業株式会社 ドレンレス空気調和装置
PL2230288T3 (pl) 2009-03-20 2016-12-30 Metaloorganiczne materiały szkieletowe w urządzeniach chłodzących/grzejnych
US20120043064A1 (en) * 2009-04-28 2012-02-23 Mitsubishi Electric Corporation Total heat exchange element
JP2011075180A (ja) 2009-09-30 2011-04-14 Sanyo Electric Co Ltd 吸収式冷凍機
DE102009050050A1 (de) 2009-10-21 2011-04-28 Robert Bosch Gmbh Sorptionswärmetauscher und Verfahren hierfür
DE102010024624B4 (de) * 2010-06-22 2016-03-31 Robert Bosch Gmbh Verfahren zum Betrieb einer Sorptionswärmetauscheranlage und Sorptionswärmetauscheranlage hierfür
DE102011011688A1 (de) * 2011-02-18 2012-08-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Beschichtung einer Wärmetauscherstruktur, beschichtete Wärmetauscherstruktur und deren Verwendung
UA69450U (en) 2011-11-07 2012-04-25 Институт Технической Теплофизики Нан Украины Adsorption air drier
CN103574790B (zh) 2013-10-17 2016-01-20 陕西科技大学 一种除湿空气冷却装置及冷却方法
KR101441486B1 (ko) 2013-11-18 2014-09-17 한국과학기술연구원 흡수식 냉동기 및 제습 냉방기를 이용한 냉방 장치
FR3026163A1 (fr) * 2014-09-18 2016-03-25 Mof Applic Services Utilisations de materiau metallo-organique (mof) dans un systeme de refroidissement/chauffage par adsorption
CN106610064A (zh) 2015-10-22 2017-05-03 南通航运职业技术学院 一种节能型转轮余热回收装置及使用方法
WO2017085049A1 (en) 2015-11-18 2017-05-26 Basf Se Heat recovery adsorber as ventilation system in buildings
CN206037293U (zh) 2016-08-30 2017-03-22 天津市万丰化工设备有限公司 带有再生预处理装置与气‑气换热器的热泵驱动的溶液调湿机组

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2345853A2 (de) * 2009-12-05 2011-07-20 Robert Bosch GmbH Sorptionswärmetauscher und Steuerung hierfür
US20130192281A1 (en) * 2011-10-21 2013-08-01 Massachusetts Institute Technology Adsorption System
CN103673111A (zh) * 2013-12-16 2014-03-26 内蒙古科技大学 多功能空气除湿净化固体吸附(再生)床

Also Published As

Publication number Publication date
KR20200015694A (ko) 2020-02-12
US20210080131A1 (en) 2021-03-18
BR112019024204A2 (pt) 2020-06-02
JP2020521940A (ja) 2020-07-27
PH12019502622A1 (en) 2021-08-09
WO2018220027A1 (de) 2018-12-06
EP3631308A1 (de) 2020-04-08
JP7076477B2 (ja) 2022-05-27
TW201903337A (zh) 2019-01-16
KR102565093B1 (ko) 2023-08-10
CN110678698A (zh) 2020-01-10
CN110678698B (zh) 2022-02-25
US11609000B2 (en) 2023-03-21

Similar Documents

Publication Publication Date Title
US5791153A (en) High efficiency air conditioning system with humidity control
US20190032931A1 (en) Method and Apparatus for Conditioning Air
US6003327A (en) Method and apparatus for cooling warm moisture-laden air
US5660048A (en) Air conditioning system for cooling warm moisture-laden air
CN110709643B (zh) 换气系统
US5826434A (en) High efficiency outdoor air conditioning system
KR100991134B1 (ko) 공기를 제습하기 위한 장치, 혼성공기조화 및 제습장치, 혼성패키지 가열 환기 및 공기조화 및 습도제어장치, 및 밀폐된 공간의 온도 및 습도를 조절하는 방법
US5860284A (en) Thermally regenerated desiccant air conditioner with indirect evaporative cooler
US20230022397A1 (en) Air quality adjustment system
JP4857901B2 (ja) デシカント空調システム
JP5631415B2 (ja) 空気調和システム及び調湿装置
WO2013014708A1 (ja) 調湿装置及び空気調和システム
WO2005098320A1 (ja) 空気調和システム
JP2007327712A (ja) 湿度調節装置
TWI768054B (zh) 用於調節流體之方法及空調裝置與該空調裝置之應用
JP2007327684A (ja) デシカント空調機
JP5601795B2 (ja) 空気調和方法及び空気調和装置
JP2005140372A (ja) 空気調和装置
Shah et al. Comparative study and analysis of HVAC systems using solid and liquid desiccant dehumidification technology