TWI766512B - 用於判定腦中的治療性抗體量之方法 - Google Patents
用於判定腦中的治療性抗體量之方法 Download PDFInfo
- Publication number
- TWI766512B TWI766512B TW109146679A TW109146679A TWI766512B TW I766512 B TWI766512 B TW I766512B TW 109146679 A TW109146679 A TW 109146679A TW 109146679 A TW109146679 A TW 109146679A TW I766512 B TWI766512 B TW I766512B
- Authority
- TW
- Taiwan
- Prior art keywords
- antibody
- brain
- tissue
- human
- concentration
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5082—Supracellular entities, e.g. tissue, organisms
- G01N33/5088—Supracellular entities, e.g. tissue, organisms of vertebrates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2881—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD71
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2887—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD20
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/40—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54306—Solid-phase reaction mechanisms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6854—Immunoglobulins
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/31—Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/52—Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
Landscapes
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Cell Biology (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- General Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Microbiology (AREA)
- Food Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Toxicology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
本文中報導一種用於判定已經投予治療性抗體的實驗動物的組織中的治療性抗體之濃度的方法,其中,來自用於判定該組織中的治療性抗體之濃度的該實驗動物的組織樣本中的殘餘血液之干擾是經降低的,其中,該實驗動物的組織中的治療性抗體之濃度是用下式計算:
其中,CtmAb,tissue,det.
=藉由判定該實驗動物的組織樣本中的該治療性抗體之濃度而獲得,CtmAb,plasma,det.
=藉由判定直接在採集該組織樣本前的該實驗動物的血液樣本中的該治療性抗體之濃度而獲得,CrefmAb,tissue,det.
=藉由判定該實驗動物的組織樣本中的惰性參考抗體之濃度而獲得,CrefmAb,plasma,det.
=藉由判定直接在採集該組織樣本前的該實驗動物的血液樣本中的惰性參考抗體之濃度而獲得,Ctissue,sample
=藉由判定該組織樣本中的組織濃度而獲得,由此,該惰性參考抗體不會穿透到該組織中,由此,該惰性參考抗體是在獲得該組織及血液樣本前2至10分鐘投予。
Description
本發明處於免疫分析法的領域。更具體地,本文報導了一種用於判定腦組織中治療性抗體量的方法,更具體地,判定從血液穿過血腦屏障運輸到腦中的治療性抗體的量。
對於體外或體內來源之樣本中的治療性單株抗體(tmAb)的分析,相應的分析法是必要的。
判定治療性抗體的量通常是藉由判定樣本中該治療性抗體的量來進行。因此,可以使用例如ELISA、RIA、蛋白質印跡(Western blot)分析法等免疫分析法。
Katsinelos等人(Front. Immunol. 10 (2019) A1139)綜述了抗體及其受體在神經系統退化症中對有序蛋白組裝的保護作用。他們概述了人血清中IgG水準維持在約10 mg/ml。腦是藉由血腦屏障(BBB)從血清中分離出來,血腦屏障(BBB)對於包括IgG的大分子是不可滲透的,並浸在腦脊髓液(CSF)中,腦脊髓液是血液過濾且離子穿過脈絡膜叢運輸後產生的。因此,所產生之CSF中IgG濃度比血清中低約500至1,000倍。
Hanzatian等人(mAbs 10 (2018) 765-777)報導了由於血腦屏障(BBB)調節和控制外源性和內源性物質兩者到腦部之選擇性和特異性運輸,治療性單株抗體和內源性IgG抗體顯示進入中樞神經系統(CNS)的吸收受限。在囓齒動物和猴子中,已經有研究使用自然運輸機制(例如受體中介的胞吞轉送作用(RMT))將抗體治療劑遞送到腦中。全身性投予每種DVD-Ig後,Hanzatian等人使用兩種獨立的方法併行來觀察特異性攝入到腦部:電化學發光為基礎的敏感性定量分析法和半定量免疫組織化學技術分別用於腦濃度判定和腦中生物分佈/定位。不論選擇的CNS標的或全身投予途徑如何,觀察到顯著增強腦對所有TfR1 DVD-Ig蛋白的攝入和滯留。為了製備用於分析的腦樣本,使用的C57BL/6N小鼠經由可程式的蠕動泵以2ml/min的速率經心臟灌注(transcardially perfused)冷的含肝素之杜氏磷酸鹽緩衝生理鹽水(Dulbecco’s PBS),持續10分鐘。
Zuchero等人(Neuron 89 (2016) 70-82;野生型小鼠,其以靜脈注射標的抗體後,收集全血和PBS灌流)和Janowicz等人(Nature Sci. Rep.9 (2019) 9255;P301L τ基因轉殖的pR5小鼠,其已藉由眼眶後注射投予Alexa-647標記的IgG、Fab或scFv,在治療後灌注以從其脈管系統中去除抗體)已使用類似的方法。
在WO 2018/152359中,出自PS 19品系之過度表達人τ蛋白的小鼠被用於評估嵌合IgG抗τ抗體株1C7和1A1的標的接合。因此,將小鼠靜脈注射(35mg/kg)或腹膜內注射(50mg/kg)對照IgG、嵌合IgG株1C7或嵌合IgG株1A1。注射後2或7天,經由大池(cisterna magna)收集腦脊髓液(CSF),並目視檢查潛在的血液污染,並在用冰冷的PBS進行經心臟灌流後,取出腦組織並急速冷凍。
Ayabe, M.等人報導了以靜脈內投予抗人介白素6受體(hIL-6R)抗體或對照抗體到擔瘤hIL-6R基因轉殖的小鼠上,並以靜脈內投予牛血清白蛋白(BSA)作為組織中殘留血量的標誌物。利用抗BSA抗體和蛋白質A磁珠,用免疫沉澱作用處理溶胞產物樣本,然後進行胰蛋白酶消化。藉由LC/ESI-MS/MS同時分析每種代用胜肽。計算校正後的組織濃度。
Vedeler等人報導了關於急性Guillain-Barré症候群患者血清和腦脊髓液中的免疫球蛋白(Acta Neurol. Scand.73 (1986) 388-393.
Shah等人報導了抗體的生物分佈係數,尤其是根據幾種臨床前物種和人的血漿濃度推斷單株抗體的組織濃度(MABS, 5 (2013) 297-305)。
Lavezzi等人報導了用於單株抗體(mAb)的MPBPK-TMDD模型,尤其是替代的模型、比較以及可識別性議題(J. Pharmacokin.Pharmcodyn.45 (2018) 787-802).
本文報導了一種用於判定治療性抗體量的方法,該治療性抗體已從血液穿過血腦屏障運輸到實驗動物的腦中。量優選地是在腦溶胞產物樣本中判定。本發明之要點在於額外之惰性抗體的施用,該惰性抗體不被運輸穿過跨血腦屏障,在獲得腦樣本的前夕,需判定在腦樣本中運輸穿過跨血腦屏障的治療性抗體量。藉由施用惰性抗體,可以獲得腦樣本殘留血液中存在之治療性抗體的校正值。該源自殘留血液的量用於校正非位於腦之抗體的判定量。不進行校正的判定會判定到樣本中治療性抗體的總量,即穿過血腦屏障運輸到大腦中的量以及樣本殘留血液中的量。殘留血液中治療性抗體的量不可忽略,因為血液中只有約0.1%的抗體會通過血腦屏障。因此,血液中的治療性抗體的濃度比腦中治療性抗體的濃度高出至少兩個且高達三個數量級。從而如果不以如本發明之方法進行校正,獲得的結果會太高。
本發明至少部分是基於以下發現:為了可靠且正確地判定在腦溶胞產物中穿過血腦屏障運輸到腦中之治療性抗體的量,必須用腦溶胞產物樣本之殘留血液中治療性抗體的量進行校正(即扣除)。
本發明至少部分是基於以下發現:可以藉由在採集腦樣本的前夕施用校正抗體來判定腦溶胞產物中的殘留血液的量。已發現將與獲得的腦樣本之實驗動物中的任何標的不特異性結合的抗體,用作參考抗體是特別有利的,最優選地是人胚系抗體。
本發明的一個態樣是一種用於判定實驗動物的組織中治療性抗體之濃度的方法/分析法,由此,該組織對該動物的血液循環具有屏障,並且由此,該治療性抗體已經投予該實驗動物,其中,來自用於判定該組織中的治療性抗體之濃度的實驗動物的組織樣本中的殘餘血液之干擾是經降低的,方法包含下列步驟:i)判定實驗動物的血液樣本中的治療性抗體之濃度,ii)判定實驗動物的組織樣本中的治療性抗體之濃度,iii)判定實驗動物的血液樣本中的惰性參考抗體之濃度,iv)判定實驗動物的組織樣本中的惰性參考抗體之濃度,v)判定組織樣本中的組織濃度,以及用下列公式判定實驗動物的組織中的治療性抗體之濃度:
其中,CtmAb,plasma,det.=i)的治療性抗體之濃度
CtmAb,tissue,det.=ii)的治療性抗體之濃度
CrefmAb,tissue,det.=iii)的惰性參考抗體之濃度
CrefmAb,plasma,det.=iv)的惰性參考抗體之濃度
Ctissue,sample=v)的組織濃度
由此,惰性參考抗體不會穿過組織與血液循環之間的該屏障,由此,惰性參考抗體已經i)與治療性抗體一起投予,則樣本是在投予治療性抗體後5分鐘內採集,或ii)在採集組織樣本前2至10分鐘投予。
相同之態樣以替代的措辭是一種用於判定已經投予治療性抗體的實驗動物的組織中的治療性抗體之濃度的方法,其中,來自用於判定該組織中的治療性抗體之濃度的實驗動物的組織樣本中的殘餘血液之干擾是經降低的,
其中,實驗動物的組織中的治療性抗體之濃度是用下式計算:
其中,
CtmAb,tissue,det.
=藉由判定實驗動物的組織樣本中的治療性抗體之濃度而獲得,
CtmAb,plasma,det.
=藉由判定實驗動物的血液樣本中的治療性抗體之濃度而獲得,
CrefmAb,tissue,det.
=藉由判定實驗動物的組織樣本中的惰性參考抗體之濃度而獲得,
CrefmAb,plasma,det.
=藉由判定實驗動物的血液樣本中的惰性參考抗體之濃度而獲得,
Ctissue,sample
=藉由判定組織樣本中的組織濃度而獲得,
由此,惰性參考抗體不會穿透到該組織中,
由此,惰性參考抗體是在獲得組織樣本前2至10分鐘投予。
以下是本發明每個及任何態樣之所有個別的實施例。因此,關於如本發明之任何個別的態樣,公開實施例的所有和任何可能的排列,
在一個實施例中,血液樣本是在組織樣本前至多5分鐘採集。在一個實施例中,血液樣本是在組織樣本前採集。在一個實施例中,血液樣本與組織樣本一起或同時採集。
在一個實施例中,組織為腦組織且治療性抗體可穿過血腦屏障,抑或為眼組織且治療性抗體可穿過血眼屏障。
本發明的一個態樣是一種用於判定實驗動物的腦組織或腦組織樣本中的治療性抗體之濃度的方法/分析法,由此,腦組織對該動物的血液循環具有屏障,並且由此,治療性抗體已經投予該實驗動物,其中,來自用於判定該腦組織中的治療性抗體之濃度的實驗動物的腦組織樣本中的殘餘血液之干擾是經降低的,方法包含下列步驟:i)判定實驗動物的血液樣本中的治療性抗體之濃度,ii)判定實驗動物的腦組織樣本中的治療性抗體之濃度,iii)判定實驗動物的血液樣本中的惰性參考抗體之濃度,iv)判定實驗動物的腦組織樣本中的惰性參考抗體之濃度,v)判定組織樣本中的腦組織濃度,以及用下列公式判定實驗動物的腦組織或腦組織樣本中的治療性抗體之濃度:
其中,CtmAb,plasma,det.=i)的治療性抗體之濃度
CtmAb,tissue,det.=ii)的治療性抗體之濃度
CrefmAb,tissue,det.=iii)的惰性參考抗體之濃度
CrefmAb,plasma,det.=iv)的惰性參考抗體之濃度
Ctissue,sample=v)的組織濃度
由此,惰性參考抗體不會穿過腦組織與血液循環之間的該血腦屏障,
由此,惰性參考抗體已經i)與治療性抗體一起投予,如果腦組織樣本是欲在投予治療性抗體後5分鐘內採集,或ii)在採集腦組織樣本前2至10分鐘投予。
相同之態樣以替代的措辭是一種用於判定已經投予治療性抗體的實驗動物的腦組織或腦組織樣本中的治療性抗體之濃度的方法,其中,來自用於判定該腦組織中的治療性抗體之濃度的實驗動物的腦組織樣本中的殘餘血液之干擾是經降低的,
其中,實驗動物的腦組織中的治療性抗體之濃度是用下式計算:
其中,
CtmAb,tissue,det.
=藉由判定實驗動物的腦組織樣本中的治療性抗體之濃度而獲得,
CtmAb,plasma,det.
=藉由判定實驗動物的血液樣本中的治療性抗體之濃度而獲得,
CrefmAb,tissue,det.
=藉由判定實驗動物的腦組織樣本中的惰性參考抗體之濃度而獲得,
CrefmAb,plasma,det.
=藉由判定實驗動物的血液樣本中的惰性參考抗體之濃度而獲得,
Ctissue,sample
=藉由判定腦組織樣本中的腦組織濃度而獲得,
由此,惰性參考抗體不會穿透到該腦組織中,
由此,惰性參考抗體是在獲得腦組織樣本前2至10分鐘投予。
在一個實施例中,治療性抗體為雙特異性抗體。
在一個實施例中,治療性抗體是與人轉鐵蛋白受體和腦標的特異性結合。
在一個實施例中,腦標的為人CD20或人Aβ或人α-突觸核蛋白或人τ或人葡萄糖腦苷酶或人lingo-1或人杭丁頓蛋白。
在一個實施例中,實驗動物選自小鼠、大鼠、兔、犬、綿羊、猿和猴。
在一個實施例中,實驗動物為體重大於100g且小於15kg的非人實驗動物。
在一個實施例中,實驗動物為食蟹獼猴。
在一個實施例中,惰性參考抗體為人胚系抗體。
在一個實施例中,惰性參考抗體為DP47GS。在一個實施例中,惰性參考抗體包含SEQ ID NO: 67之重鏈可變域及SEQ ID NO: 68之輕鏈可變域。在一個實施例中,惰性參考抗體包含SEQ ID NO: 69之重鏈及SEQ ID NO: 70之輕鏈。
在一個實施例中,惰性參考抗體在其施用後15分鐘內不會以可檢測的量穿過該屏障。
在一個實施例中,惰性參考抗體在其施用後10分鐘內不會以可檢測的量穿過該屏障。
在一個實施例中,惰性抗體是在採集組織樣本前5至10分鐘投予。
在一個實施例中,組織是直接在採集血液樣本後和採集組織樣本前用水溶液灌注。
在一個實施例中,濃度的判定是藉由橋式ELISA (bridging ELISA)。
圖1用於判定tmAb之殘留血漿校正後的腦溶胞產物濃度之示例性計算。
圖2在如本發明所式之方法的實例中,使用的示例性腦穿梭構建體的結構。
圖3在實例中使用之治療性抗體和參考抗體的檢測分析法。
圖4在分別存在1%之食蟹獼猴和小鼠腦溶胞產物的情況下,對惰性參考抗體如實例1所述之檢測分析法的校正曲線疊合圖。
圖5小鼠腦溶胞產物中抗體2之校正後濃度與未校正濃度的比例。
圖6用於判定抗體2的ELISA。
圖7補體因子H Elecsys分析法的校正曲線。
圖8用於定量cCSF中之α2-大球蛋白的ELISA。捕獲抗體是鼠類抗人α2-大球蛋白抗體;檢測抗體是生物素化的山羊抗人α2-大球蛋白抗體。
圖9圖8之ELISA的校正曲線。
圖10補體成分5a ELISA分析法的校正曲線。
圖11Magnevist在PK研究中在血漿和腦組織中的時間進程。
圖12用於定量cCSF中食蟹獼猴IgG的ELISA捕獲mAb是抗食蟹猴IgG抗體;檢測mAb是相對於第一抗體,結合至非干擾之抗原決定位的抗食蟹猴IgG抗體。
圖13圖12之ELISA的校正曲線。
本文報導了一種用於判定治療性抗體量的方法,該治療性抗體已從血液穿過血腦屏障運輸到實驗動物的腦中。量優選地是在腦溶胞產物樣本中判定。本發明之要點在於額外之惰性抗體的施用,該惰性抗體不被運輸穿過跨血腦屏障,在獲得腦樣本的前夕,需判定在腦樣本中運輸穿過跨血腦屏障的治療性抗體量。藉由施用惰性抗體,可以獲得腦樣本殘留血液中存在之治療性抗體的校正值。該源自殘留血液的量用於校正非位於腦之抗體的判定量。不進行校正的判定會判定到樣本中治療性抗體的總量,即穿過血腦屏障運輸到大腦中的量以及樣本殘留血液中的量。殘留血液中治療性抗體的量不可忽略,因為血液中只有約0.1%的抗體會通過血腦屏障。因此,血液中的治療性抗體的濃度比腦中治療性抗體的濃度高出至少兩個且高達三個數量級。從而如果不以如本發明之方法進行校正,獲得的結果會太高。
本發明至少部分是基於以下發現:為了可靠且正確地判定在腦溶胞產物中穿過血腦屏障運輸到腦中之治療性抗體的量,必須用腦溶胞產物樣本之殘留血液中治療性抗體的量進行校正(即扣除)。
本發明至少部分是基於以下發現:可以藉由在採集腦樣本的前夕施用校正抗體來判定腦溶胞產物中的殘留血液的量。已發現將與獲得的腦樣本之實驗動物中的任何標的不特異性結合的抗體,用作參考抗體是特別有利的,最優選地是人胚系抗體。
本發明的一個態樣是一種用於判定實驗動物的組織中治療性抗體之濃度的方法/分析法,由此,該組織對該動物的血液循環具有屏障,並且由此,該治療性抗體已經投予該實驗動物,其中,來自用於判定該組織中的治療性抗體之濃度的實驗動物的組織樣本中的殘餘血液之干擾是經降低的,方法包含下列步驟:
i) 判定實驗動物的血液血清樣本中的治療性抗體之濃度,
ii) 判定實驗動物的組織樣本中的治療性抗體之濃度,
iii) 判定實驗動物的血液血清樣本中的惰性參考抗體之濃度,
iv) 判定實驗動物的組織樣本中的惰性參考抗體之濃度,
v)判定組織樣本中的組織濃度,以及用下列公式判定實驗動物的組織中的治療性抗體之濃度:
其中,CtmAb,plasma,det.=i)的治療性抗體之濃度
CtmAb,tissue,det.=ii)的治療性抗體之濃度
CrefmAb,tissue,det.=iii)的惰性參考抗體之濃度
CrefmAb,plasma,det.=iv)的惰性參考抗體之濃度
Ctissue,sample=v)的組織濃度
由此,惰性參考抗體不會穿過組織與血液循環之間的該屏障,由此,惰性參考抗體已經i)與治療性抗體一起投予,則樣本是在投予治療性抗體後5分鐘內採集,或ii)在採集組織樣本前2至10分鐘投予,由此,血液樣本與組織樣本一起採集/直接先於組織樣本採集/同時採集。
界定
隆突-入-穴(knobs into holes)二聚模組及其在抗體工程中的用途已描述於Carter P.;Ridgway J.B.B.;Presta L.G.:Immunotechnology,第2卷,第1期,1996年2月,頁73-73(1)。
有關人免疫球蛋白輕鍊和重鏈核苷酸序列的一般資訊,請參見:Kabat,E.A.等人,Sequences of Proteins of Immunological Interest,第5版,Public Health Service,National Institutes of Health,Bethesda,MD(1991)。
如本文中所使用的重鏈及輕鏈之所有恆定區及域之胺基酸位置,係根據描述於Kabat等人,Sequences of Proteins of Immunological Interest,第5版,Public Health Service,National Institutes of Health,Bethesda,MD (1991)的Kabat編號系統,並本文中稱為「根據Kabat編號」。具體而言,Kabat編號系統(參見Kabat等人,Sequences of Proteins of Immunological Interest,第5版,Public Health Service,National Institutes of Health,Bethesda,MD (1991) 的第647-660頁)係用於κ及λ同型之輕鏈恆定域CL,以及Kabat EU索引編號系統(參見第661-723頁)係用於重鏈恆定域(CH1、鉸鏈、CH2及CH3,在此情況中,其於本文中藉由參考「根據Kabat EU索引編號」進一步闡明)。
術語「約」表示其後接著之數值+/- 20%的範圍。在一個實施例中,術語約表示其後接著之數值+/- 10%的範圍。在一個實施例中,術語約表示其後接著之數值+/- 5 %的範圍。
術語「抗體依賴性細胞毒性(ADCC)」是由Fc受體結合中介的功能,並且是指在效應細胞的存在下,藉由本文所報導之抗體裂解標的細胞。在一個實施例中,在效應細胞的存在下,例如新鮮分離的PBMC(周邊血單核細胞)或來自血沉棕黃層(buffy coat)之純化的效應細胞,例如單核球或Nk(自然殺傷)細胞,藉由用本文所報導之抗體處理表達CD19的類紅血球(例如表達重組人CD19的K562細胞)製劑來測量ADCC。用51Cr標記標的細胞,然後與抗體進行培養。將標記的細胞與效應細胞一起培養,並分析上清液中釋放的51Cr。對照包括將標的內皮細胞與效應細胞一起培養,但不與抗體一起培養。藉由測量抗體與Fcγ受體表達的細胞(例如重組表達FcγRI及/或FcγRIIA的細胞或NK細胞(基本上表達FcγRIIIA))的結合,來研究抗體誘導中介ADCC之初始步驟的能力。在一個優選實施例中,測量與NK細胞上之FcγR的結合。
術語「放大器」表示在檢測方法中增強訊號的實體或過程,例如在ELISA中(例如,在ELISA中使用的酶放大器)。
術語「抗人A–β抗體(anti-human A-beta antibody)」及「特異性結合人A–β之抗體(an antibody specifically binding to human A-beta)」是指能夠以足夠親和力結合A–β胜肽之抗體,從而使得該抗體可用作靶向A–β胜肽之診斷劑及/或治療劑。
值得注意的是,人A–β具有幾種天然存在的形式,由此,人的形式是被稱為Aβ39、Aβ40、Aβ41、Aβ42和Aβ43。最重要的形式Aβ42具有SEQ ID NO: 01的胺基酸序列。在Aβ41、Aβ40、Aβ39中,分別缺少C端胺基酸A、IA 和VIA。在Aβ43形式中,SEQ ID NO: 01 (33106)的C末端包含另外的蘇胺酸殘基。
因此,該術語還涵蓋與人A-β多肽之截短片段結合的抗體。
本文中的術語「抗體」以最廣義使用且涵蓋各種抗體結構,包括但不限於單株抗體、多株抗體或多特異性抗體(例如,雙特異性抗體)。
抗體通常包含兩條所謂的輕鏈多肽(輕鏈)和兩條所謂的重鏈多肽(重鏈)。每條重鏈和輕鏈多肽均包含可變域(可變區)(通常是多肽鏈的胺基端部分),該可變域包含能夠與抗原相互作用的結合區。每條重鍊和輕鏈多肽均包含恆定區(通常為羧基端部分)。重鏈的恆定區中介抗體結合至i)帶有Fcγ受體(FcγR)的細胞,如吞噬細胞,或ii)帶有新生Fc受體(FcRn)(也稱為Brambell受體)的細胞。它還中介結合至一些因子,其包括經典補體系統的因子,例如成分(C1q)。抗體重鏈的恆定域包含CH1–域、CH2–域和CH3–域,而輕鏈僅包含一個恆定域CL,其可以是κ同型或λ同型。
免疫球蛋白輕鏈或重鏈的可變域依次包含不同的片段,即四個框架區(FR)和三個高度可變區(HVR)。
「抗體片段」係指除完整抗體以外的分子,其包含結合完整抗體所結合抗原之完整抗體的一部分。抗體片段之實例包括但不限於Fv、Fab、Fab'、Fab’-SH、F(ab')2;雙抗體(diabody);線性抗體;單鏈抗體分子(例如scFv 及scFab);單域抗體(dAb);及從抗體片段所形成之多特異性抗體。關於某些抗體片段的綜述,參見Holliger及Hudson, Nature Biotechnology 23:1126-1136 (2005)。
「血腦屏障」或「BBB」是指周邊循環與腦和脊髓之間的生理屏障,其是由腦微血管內皮細胞膜內的緊密型連結所形成的,產生緊密的屏障,該屏障限制了分子運輸到腦中,甚至是如尿素(60道耳頓)之非常小的分子。腦內的BBB、脊髓內的血脊髓屏障以及視網膜內的血視網膜屏障,是CNS內的連續微血管屏障,並在本文中統稱為血腦屏障或BBB。BBB還包括血CSF屏障(脈絡叢),其中該屏障是由室管膜細胞組成,不是由微血管內皮細胞。
「血腦屏障受體」(在本文中縮寫為「BBBR」)是在腦內皮細胞上表達的細胞外膜連接受體蛋白,其能夠運輸分子穿過BBB或用於運輸外源性給藥分子。本文中BBBR的實例包括:轉鐵蛋白受體(TfR)、胰島素受體、類胰島素生長因子受體(IGF-R)、低密度脂蛋白受體(包括但不限於低密度脂蛋白受體相關的蛋白1(LRP1)和低密度脂蛋白受體相關的蛋白8(LRP8)),以及肝素結合表皮生長因子樣生長因子(HB-EGF)。一種優選BBBR為轉鐵蛋白受體(TfR)。
術語「腦效應物實體」表示被運輸穿過BBB至腦的分子。效應物實體一般是具有欲傳遞至腦的特徵治療性活性。效應物實體包括神經疾患藥物和細胞毒性劑,例如多肽和抗體,特別是針對腦標的的單株抗體或其片段。
術語「捕獲抗體」表示一種用於以三明治ELISA形式結合(即捕獲)樣本中存在的標的物質用於檢測的抗體。然後第二抗體(即檢測抗體)與捕獲的標的結合,並允許抗體-標的-抗體複合物(形成由抗體-標的-抗體組成的「三明治」)的檢測。
「中樞神經系統」或「CNS」是指控制身體功能的神經組織的複合物,且包括腦和脊髓。
術語「CNS抗原」和「腦標的」表示在CNS(包括腦)中表達的抗原及/或分子,其可以被抗體或小分子靶向。此類抗原及/或分子的實例包括但不限於:β-分泌酶1(BACE1)、類澱粉蛋白β(Aβ)、表皮生長因子受體(EGFR)、人表皮生長因子受體2(HER2)、τ蛋白、載脂蛋白E4(ApoE4)、α-突觸核蛋白、CD20、杭丁頓蛋白、普里昂蛋白(PrP)、白胺酸富集的重複激酶2(LRRK2)、帕金蛋白、早老素1、早老素2、γ分泌酶、死亡受體6(DR6)、類澱粉蛋白前驅蛋白(APP)、p75神經促素受體(p75NTR)、葡萄糖腦苷酶和凋亡蛋白酶6。
「共軛物」是與一個或多個異源分子共軛之本發明的融合蛋白,該異源分子包括但不限於標記、神經疾患藥物或細胞毒性劑。
術語「檢測抗體」表示一種抗體,其帶有用於視覺化或定量的手段。這種手段一般是酶(在加入合適的受質後可催化變色或螢光反應產物),例如山葵過氧化酶、尿素酶、鹼性磷酸酶、葡萄糖澱粉酶和β–半乳糖苷酶。在一些實施例中,檢測抗體是針對關注之抗原。在一些實施例中,檢測抗體為抗物種抗體。在一些實施例中,檢測抗體共軛至可檢測的標記,例如生物素、螢光標誌物或放射同位素,並使用該標記進行檢測和/或定量。
術語「檢測試劑」表示允許與抗原結合之抗體的檢測及/或定量的試劑。在一些實施例中,檢測試劑是用於酶的比色受質,該酶已共軛至抗體。將合適的受質加入抗體-酶共軛物,會引起比色或螢光訊號(例如,在共軛的抗體與關注的抗原結合之後)。該定義還涵蓋使用生物素和抗生物素蛋白為基礎的化合物(例如,包括但不限於中性抗生物素蛋白和鏈黴抗生物素蛋白)作為檢測系統的一部分。
如本文中所使用的,術語「緊隨其後」表示在取得第一樣本和第二樣本之間的這段時間,其僅涵蓋採檢裝置的變化和取得樣本的實際時間。在一個實施例中,術語緊接其後表示5分鐘或更短的時間,在另一實施例中表示3分鐘或更短的時間,在一個優選實施例中,表示2分鐘或更短的時間。
「效應功能(effector function)」,係指歸因於抗體的Fc區域的那些生物活性,其隨抗體種類而變化。抗體效應功能的實例包括C1q結合和補體依賴性細胞毒性(CDC);Fc受體結合;抗體依賴性細胞中介的細胞毒性 (ADCC);吞噬作用;細胞表面受體(例如,B細胞受體)的調降;及B細胞活化。
Fc受體結合依賴性效應功能可以藉由抗體的Fc區與Fc受體(FcR)的相互作用來進行中介,Fc受體是造血細胞上的特化細胞表面受體。Fc受體屬於免疫球蛋白超家族,並且已顯示其藉由免疫複合物的吞噬作用來中介抗體包覆之病原體的去除,以及其經由抗體依賴性的細胞媒介之細胞毒性(ADCC),中介包覆有相應抗體之紅血球及各種其他細胞標的(例如腫瘤細胞)的裂解(參見,例如Van de Winkel, J.G.和Anderson, C.L., J. Leukoc.Biol. 49 (1991) 511-524)。FcR由其對免疫球蛋白同型的特異性來定義:對於IgG抗體的Fc受體稱為FcγR。Fc受體結合被描述於例如Ravetch, J.V.和Kinet, J.P.,Immunol. 9 (1991) 457-492;Capel, P.J.等人,Immunomethods 4 (1994) 25-34;de Haas, M.等人,J. Lab. Clin. Med. 126 (1995) 330-341;以及Gessner, J.E.等人Ann. Hematol.76 (1998) 231-248。
對於IgG抗體(FcγR)之Fc區域的受體交聯,可觸發廣泛多樣的效應功能,包括吞噬作用、抗體依賴性細胞毒性、及發炎介質的釋放以及免疫複合物的清除和抗體產生的調節。在人中,已鑑定出三類FcγR,其為:
FcγRI(CD64)與具有高親和力的單體IgG結合,並表達在巨噬細胞、單核球、嗜中性球和嗜酸性球上。在Fc區域的IgG中至少一個胺基酸殘基 E233-G236、P238、D265、N297、A327和P329(根據Kabat的EU索引編號)的修飾,會降低與FcγRI的結合。IgG2殘基在位置233–236被IgG1和IgG4取代,與FcγRI的結合會降低10³倍,且消除了人單核球對抗體致敏之紅血球細胞的反應(Armour, K.L.等人,Eur. J. Immunol. 29 (1999) 2613–2624)。
FcγRII(CD32)與複合的IgG結合具有中至低的親和力,並廣泛地表達。此受體可以分為兩種亞型,FcγRIIA和FcγRIIB。FcγRIIA在參與毒殺的許多細胞(例如巨噬細胞、單核球、嗜中性球)上被發現,且似乎能夠活化毒殺過程。FcγRIIB似乎在抑制過程中起作用,並在B‑細胞、巨噬細胞以及肥大細胞和嗜酸性球上被發現。在B細胞上,它似乎具有抑制免疫球蛋白進一步產生和同型轉換為例如IgE類的功能。在巨噬細胞上,FcγRIIB可抑制透過FcγRIIA中介的吞噬作用。在嗜酸性球和肥大細胞上,B型可能透過IgE與其獨立受體的結合而有助於抑制這些細胞的活化。例如,已發現包含IgG Fc區域的抗體與FcγRIIA的結合降低,該Fc區域具有至少一個胺基酸殘基E233-G236、P238、D265、N297、A327、P329、D270、Q295、A327、R292及K414(根據Kabat EU索引編號)突變。
FcγRIII(CD16)與IgG結合具有中至低的親和力,並以兩種類型存在。FcγRIIIA在NK細胞、巨噬細胞、嗜酸性球以及一些單核球和T細胞上被發現,並中介ADCC。FcγRIIIB在嗜中性球上高度表達。例如,發現包含IgG Fc區域的抗體與FcγRIIIA的結合降低,該Fc區域具有至少一個胺基酸殘基E233-G236、P238、D265、N297、A327、P329、D270、Q295、A327、S239、E269、E293、Y296、V303、A327、K338及D376(根據 Kabat EU索引編號)突變。
對人IgG1上與Fc受體的結合位點進行定位,上述突變位點以及測量與FcγRI和FcγRIIA結合的方法,描述於Shields, R.L.等人,J. Biol. Chem. 276 (2001) 6591-6604。
藥劑,例如醫藥製劑的「有效量」是指在所需之給藥劑量和時間段內有效實現所需的治療性或預防性效果的量。
術語「ELISA」表示酶聯免疫吸附分析法。不同的ELISA形式和應用在本領域中是習知的(參見,例如,Crowther,「Enzyme-Linked Immunosorbent Assay (ELISA)」於Molecular Biomethods Handbook,Rapley等人編輯,頁595-617,Humana出版,Inc., Totowa, NJ (1998);Harlow和Lane編輯, Antibodies: A Laboratory Manual,Cold Spring Harbor Laboratory出版(1988);Ausubel等人編輯,Current Protocols in Molecular Biology,第11章,John Wiley & Sons, Inc., New York (1994))。
一種特定的ELISA形式為所謂的「直接式ELISA」。在這種ELISA形式中,標的(例如多肽)存在於被檢測之樣本中。在直接式ELISA中,將包含標的的樣本與固相接觸,例如該固相為不動或固定的支持物(例如微孔盤)。如果樣本中存在標的,則該標的會被固定在固相上,然後直接使用酶共軛之檢測分子進行檢測。如果標的為抗原,則檢測分子為對該抗原特異性的抗體,或者如果標的為對抗原特異性的抗體,則檢測分子為對該抗原特異性的酶共軛之抗體。
另一種特定的ELISA形式為所謂的「間接式ELISA」。在這種ELISA形式中,抗原(或抗體)被固定在固相(例如微孔盤)上。此後,加入抗原特異性抗體(或抗原),然後加入對特異性結合抗原的抗體具有特異性的檢測抗體。該檢測抗體可以為「物種特異性」抗體(例如,山羊抗兔抗體)。
另一種特定的ELISA形式為所謂的「三明治ELISA」。在這種形式,抗原經由被與該抗原特異性結合的抗體(即捕獲抗體)捕獲後,被固定在固相(例如,微孔盤)上,該抗體(共價或經由特異性結合的配對)固定在固相上。通常來說,將包含抗原的樣本加入固相中,然後洗滌。如果樣本中存在關注之抗原,則它會藉由捕獲抗體結合到固相上。
以上特定的ELISA形式可以組合使用。三明治ELISA可以為「直接式三明治ELISA」,其中,藉由使用針對抗原之酶共軛的抗體,直接檢測被捕獲的該抗原。三明治ELISA可以為「間接式三明治ELISA」,其中,藉由使用針對抗原的抗體,間接檢測被捕獲的抗原,然後藉由另一種酶共軛的抗體檢測該抗原,該酶共軛的抗體是直接或經由附著之標記結合至該抗原特異性抗體。用報導試劑檢測第三抗體。
本文所使用的術語「Fc受體」是指活化受體,其特徵在於存在與受體相關的胞質ITAM序列(參見例如Ravetch,JV和Bolland,S.,Annu. Rev. Immunol. 19 (2001) 275-290)。這種受體為FcγRI、FcγRIIA和FcγRIIIA。術語「不結合FcγR」是指在抗體濃度為10 µg/ml時,如本文所報導之抗體與NK細胞的結合,為WO 2006/029879中所報導的抗OX40L抗體LC.001之結合的10%或更少。
儘管IgG4顯示出降低的FcR結合,但其他IgG亞類的抗體顯示出強結合。然而,Pro238、Asp265、Asp270、Asn297 (Fc碳水化合物缺乏)、Pro329和234、235、236及237、Ile253、Ser254、Lys288、Thr307、Gln311、Asn434及His435為殘基,該些殘基若被改變,也會提供降低的FcR結合(Shields, R.L.等人,J. Biol. Chem. 276 (2001) 6591-6604;Lund, J.等人,FASEB J. 9 (1995) 115-119;Morgan, A.等人,Immunology 86 (1995) 319-324;及EP 0 307 434)。在一個實施例中,本文報導的抗體為IgG1或IgG2亞類,並包含突變PVA236、GLPSS331及/或L234A / L235A。在一個實施例中,本文報導的抗體為IgG4亞類,並且包含突變L235E。在一個實施例中,抗體進一步包含突變S228P。
本文中的術語「Fc區域」,用於定義包含至少一部分恆定區的免疫球蛋白重鏈的C端區域。該術語包括天然序列Fc區域和變異Fc區域。在一個實施例中,人IgG重鏈Fc區域從Cys226或從Pro230延伸至重鏈的羧基端。然而,Fc區域的C端離胺酸(Lys447)可以存在或可以不存在。除非本文另有說明,否則Fc區域或恆定區中胺基酸殘基之編號是根據EU編號系統(也稱為EU索引),如描述於Kabat, E.A.等人,Sequences of Proteins of Immunological Interest,第5版,Public Health Service,National Institutes of Health,Bethesda,MD (1991),NIH Publication 91-3242。
在一個實施例中,本文報導的抗體包含作為Fc區域之衍生自人起源的Fc區域。在一個實施例中,Fc區域包含人恆定區的所有部分。抗體的Fc區域直接參與補體活化、C1q結合、C3活化和Fc受體結合。儘管抗體對補體系統的影響取決於某些條件,但與C1q的結合是由Fc區域中定義的結合位點所引起的。此結合位點在現有技術中是習知的,並描述於例如Lukas, T.J.等人,J. Immunol. 127 (1981) 2555-2560;Brunhouse, R.和Cebra, J.J.,Mol. Immunol. 16 (1979) 907-917;Burton, D.R.等人,Nature 288 (1980) 338-344;Thommesen, J.E.等人,Mol. Immunol. 37 (2000) 995-1004;Idusogie, E.E.等人,J. Immunol. 164 (2000) 4178-4184;Hezareh, M.等人,J. Virol. 75 (2001) 12161-12168;Morgan, A.等人,Immunology 86 (1995) 319-324;及EP 0 307 434。例如,此結合位點為 L234、L235、D270、N297、E318、K320、K322、P331和P329(根據Kabat EU索引編號;除非本文另有說明,否則Fc區域或恆定區中胺基酸殘基之編號是根據EU編號系統(也稱為EU索引),如描述於Kabat, E.A.等人,Sequences of Proteins of Immunological Interest,第5版,Public Health Service,National Institutes of Health,Bethesda,MD (1991),NIH Publication 91-3242)。亞類IgG1、IgG2和IgG3的抗體通常顯示出補體活化、C1q結合和C3活化,而IgG4不活化補體系統、不結合C1q及不活化C3。「抗體的Fc區域」是技術人員眾所周知的術語,且由抗體之木瓜酶切割為基礎來定義。在一個實施例中,Fc區域為人Fc區域。在一個實施例中,Fc區域為人IgG4亞類的Fc區域,其包含突變 S228P及/或L235E(根據Kabat EU索引編號)。在一個實施例中,Fc區域為人IgG1亞類的Fc區域,其包含突變L234A和L235A(根據Kabat EU索引編號)。
術語「全長抗體」、「完整抗體」及「全抗體」在本文中可互換使用,係指具有與天然抗體結構實質上類似的結構,即包含兩條輕鏈和兩條重鏈。
「人抗體(human antibody)」為一種具有胺基酸序列之抗體,該胺基酸序列對應於藉由人或人的細胞所產生的抗體、或衍生自利用人抗體譜系 (antibody repertoire)或其他人抗體編碼序列之非人來源所產生的抗體。人抗體的該定義特定地排除包含非人抗原結合殘基之人源化抗體。
術語「體外」表示此類的人工環境,或者在此類人工環境內執行的製程或反應。
術語「體內」表示化合物的天然環境(例如動物或細胞),或者在其天然環境內執行的製程或反應。
術語「免疫分析法」表示利用特異性結合的分子(例如抗體)來捕獲及/或檢測特定標的,以進行定性或定量分析的任何技術。通常來說,免疫分析法的特徵在於以下步驟:1)固定或捕獲分析物,以及2)檢測和測量分析物。可以將分析物捕獲(即結合)在任何固體表面上,例如薄膜、塑膠板或其他固體表面。
術語「連接子」表示化學連接子或單鏈胜肽之連接子,其共價連接如本文所報導之血腦屏障穿梭模組及/或融合多肽及/或共軛物的不同實體。例如,連接子將腦效應物實體連接至單價結合實體。例如,如果單價結合實體包含CH2-CH3 Ig實體和針對血腦屏障受體的scFab,則連接子共軛至scFab的CH3-CH2 Ig實體的C端末端。將腦效應物實體共軛至單價結合實體的連接子(第一連接子),和將scFab連接至CH2-CH3 Ig域之C端的連接子(第二連接子),可以是相同的或不同的。
可以使用單鏈胜肽之連接子,其由透過肽鍵連接的1至20個胺基酸殘基所組成。在某些實施例中,胺基酸選自二十種天然存在的胺基酸。在某些其他實施例中,一種或多種胺基酸選自甘胺酸、丙胺酸、脯胺酸、天門冬醯胺酸、麩醯胺酸和離胺酸。在其他實施例中,連接子為化學連接子。在某些實施例中,連接子為具有長度為至少25個胺基酸殘基之胺基酸序列的單鏈胜肽之連接子,在一個優選實施例中,為32至50個胺基酸殘基的長度。在一個實施例中,胜肽之連接子為(GxS)n連接子,其中G=甘胺酸,S=絲胺酸,(x=3,n=8、9或10)或(x=4且n=6、7或8),在一個實施例中,x=4,n=6或7,在一個優選實施例中,x=4,n=7。在一個實施例中,連接子為(G4S)4 (SEQ ID NO: 02)。在一個實施例中,連接子為(G4S)6G2 (SEQ ID NO: 03)。
可以使用多種化學連接子進行共軛。例如,單價結合實體或融合多肽及腦效應物實體可使用多種雙功能蛋白偶聯劑進行共軛,該雙功能蛋白耦聯劑例如N-琥珀醯亞胺基-3-(2-吡啶基二硫代)丙酸鹽(SPDP)、琥珀醯亞胺基-4-(N-順丁烯二醯亞胺基甲基)環己烷-1-羧酸鹽(SMCC)、亞胺雜四氫噻吩(IT)、亞胺酯的雙功能衍生物(例如二甲基己二亞醯胺化物HCl)、活性酯(例如雙琥珀醯亞胺辛二酸)、醛(例如戊二醛)、雙疊氮化合物(例如雙(對疊氮基苯甲醯基)己二胺)、雙重氮衍生物(例如雙-(對重氮苯甲醯基)-乙二胺)、二異氰酸酯(例如 2,6-二異氰酸甲苯酯)以及雙活性氟化合物(例如1,5-二氟-2,4-二硝基苯)。連接子可以為「可切割連接子」,其在遞送到腦中時促進效應物實體的釋放。例如,可使用酸不穩定之連接子、對肽酶敏感之連接子、光不穩定之連接子、二甲基連接子或含二硫化物之連接子(Chari等人,Cancer Res. 52 (1992) 127-131;US 5,208,020)。
共價共軛可以是直接的,也可以經由連接子。在某些實施例中,直接共軛是藉由多肽融合的構建(即,藉由編碼為針對BBBR和效應物實體之單價結合實體兩個基因的基因融合,並表達為單一多肽(鏈))。在某些實施例中,直接共軛是藉由在針對BBBR之單價結合實體的兩部分之一者上的反應基團,與腦效應物實體上的相應基團或受體之間形成共價鍵。在某些實施例中,直接共軛是藉由修飾(即基因修飾)待共軛的兩個分子之一,使其包含在適當條件下與另一個待共軛的分子形成共價連接的反應基團(硫氫基或羧基作為非限制性實例)。作為一個非限制性實例,可以將具有所需反應基團(即半胱胺酸殘基)的分子(即胺基酸)引入(例如)針對BBBR抗體的單價結合實體中,與神經治療性抗體形成二硫鍵。將核酸與蛋白質共價共軛的方法在本領域中也是習知的(即,光交聯,參見,例如,Zatsepin等人,Russ.Chem. Rev. 74 (2005) 77-95)。共軛也可以用多種連接子來進行。例如,單價結合實體和效應物實體可使用多種雙功能蛋白耦聯劑進行共軛,該雙功能蛋白偶聯劑例如N-琥珀醯亞胺基-3-(2-吡啶基二硫代)丙酸鹽(SPDP)、琥珀醯亞胺基-4-(N-順丁烯二醯亞胺基甲基)環己烷-1-羧酸鹽(SMCC)、亞胺雜四氫噻吩(IT)、亞胺酯的雙功能衍生物(例如二甲基己二亞醯胺化物HCl)、活性酯(例如雙琥珀醯亞胺辛二酸)、醛(例如戊二醛)、雙疊氮化合物(例如雙(對疊氮基苯甲醯基)己二胺)、雙重氮衍生物(例如雙-(對重氮苯甲醯基)-乙二胺)、二異氰酸酯(例如2,6-二異氰酸甲苯酯)以及雙活性氟化合物(例如1,5-二氟-2,4-二硝基苯)。也可以使用胜肽之連接子,其由透過肽鍵連接的1至20個胺基酸殘基所組成。在某些此類的實施例中,胺基酸殘基選自二十種天然存在的胺基酸。在某些其他此類的實施例中,一種或多種胺基酸殘基選自甘胺酸、丙胺酸、脯胺酸、天門冬醯胺酸、麩醯胺酸和離胺酸。連接子可以為「可切割連接子」,其在遞送到腦中時促進效應物實體的釋放。例如,可使用酸不穩定之連接子、對肽酶敏感之連接子、光不穩定之連接子、二甲基連接子或含二硫化物之連接子(Chari等人,Cancer Res. 52 (1992) 127-131;US 5,208,020)。
如本文所使用的術語「單株抗體」係指獲自實質上同源抗體群體之抗體,即群體中包含的受試者抗體係相同的,但不包括,例如,含有天然生成之突變或產生於單株抗體製劑生產過程中的可能的變異抗體,此等變異通常係以少量存在。與通常包括針對不同決定位(抗原決定基)之不同抗體之多株抗體製劑相反,單株抗體製劑之每個單株抗體係針對於抗原上的單一決定位。因此,修飾詞「單株」表示抗體之特徵係獲自實質上同質之抗體群體,且不應解釋為需要藉由任何特定方法產生抗體。例如,意欲根據本發明使用的單株抗體可藉由多種技術來製造,包括但不限於融合瘤方法、重組DNA方法、噬菌體展示方法、及利用包含全部或部分人免疫球蛋白基因座之轉殖基因動物之方法,本文描述此等方法及用於製備單株抗體之其他例示性方法。
術語「單價結合實體」表示能夠以單價結合的模式特異性結合BBBR的分子。本文報導的血腦穿梭模組及/或共軛物的特徵在於單價結合實體之單個單元的存在,即本發明之血腦穿梭模組及/或共軛物包含正好單價結合實體的一個單元。單價結合實體包括但不限於多肽、全長抗體、含有Fab、Fab'、Fv片段、單鏈抗體分子(例如單鏈Fab、scFv)的抗體片段。單價結合實體可以例如是使用諸如噬菌體顯示或免疫作用之類之最先進的技術改造的支架蛋白。單價結合實體也可以是多肽。在某些實施方案中,單價結合實體包含 CH2 -CH3 Ig域和針對血腦屏障受體的單鏈Fab(scFab)。scFab藉由連接子偶聯至CH2-CH3 Ig域的C‑端末端。在某些實施方案中,scFab針對轉鐵蛋白受體。
術語「單價結合的模式」表示與BBBR的特異性結合,其中單價結合的實體和BBBR之間的相互作用是透過一個單一的抗原決定位發生。單價結合的模式可防止由於單個抗原決定位相互作用點而導致之BBBR任何的二聚化/多聚化。單價結合的模式防止BBBR的細胞內分選被改變。
「裸抗體」係指未與異源部分(例如,細胞毒性部分)或放射性標記結合之抗體。裸抗體可存在於醫藥組成物中。
「天然抗體」係指具有不同結構的天然生成之免疫球蛋白分子。例如,天然IgG抗體為約150,000個道耳頓的異四聚體糖蛋白,其由二條相同之輕鏈及二條相同之重鏈經二硫鍵鍵合所構成。從N端至C端,每條重鏈具有可變域(VH),亦稱為可變重鏈域或重鏈可變區,接著係三個重鏈恆定域(CH1、CH2及CH3)。類似地,從N端至C端,每條輕鏈具有可變域(VL),亦稱為可變輕鏈域或輕鏈可變區,接著為輕鏈恆定(CL)域。
術語「醫藥組成物」係指以下製劑,其形式為允許其中所含之活性成分的生物活性有效,並且不含對組成物將投予之受試者具有不可接受之毒性的其他組分。
「醫藥上可接受之載體」係指醫藥組成物中除對受試者無毒之活性成分以外的成分。醫藥上可接受之載體包括但不限於緩沖劑、賦形劑、穩定劑或防腐劑。
術語「樣本」包括但不限於來自生物或原為生物的任何物質含量。這些生物包括小鼠、猴、大鼠、兔和其他動物。在一個實施例中,樣本取自猴,特別是食蟹獼猴、或兔、或小鼠、或大鼠。
如本文所使用,術語「訊號」涵蓋可用於指示反應已發生(例如抗體與其抗原的結合)的任何可檢測的物理變化。預期螢光或比色產品/試劑形式的訊號是訊號的特定形式,並且可以用於如本發明之方法中。在本發明的一些實施例中,訊號被定量地評估。
術語「固相」表示非流體物質,並且包括由諸如聚合物、金屬(順磁性、鐵磁性顆粒)、玻璃和陶瓷之類的材料所製成的顆粒(包括微粒和珠粒);凝膠物質,例如二氧化矽、氧化鋁和聚合物凝膠;毛細管,其可以由聚合物、金屬、玻璃及/或陶瓷所製成;沸石和其他多孔物質;電極;微孔盤;固相試條和光析槽、試管或其他光譜儀樣本容器。固相成分與惰性固體表面的區別在於,「固相」在其表面上包含至少一個部分,該部分旨在與樣本中的物質相互作用。固相可以是固定的成分,例如試管、試條、光析槽或微孔盤,也可以是非固定的成分,例如珠粒和微粒。可以使用允許蛋白質和其他物質的非共價或共價連接的多種微粒。這種顆粒包括聚合物顆粒,例如聚苯乙烯和聚(甲基丙烯酸甲酯);金粒子,例如金納米粒子和金膠體;以及陶瓷顆粒,例如二氧化矽、玻璃和金屬氧化物顆粒。參見,例如,Martin, C.R.等人,Analytical Chemistry-News & Features,70 (1998) 322A-327A,或Butler, J.E.,Methods 22 (2000) 4-23。
術語「治療性(單株)抗體」和「藥物」在本文可互換使用。這些術語是在最寬廣的意義上使用,且涵蓋各種抗體結構,包括但不限於單株抗體、多株抗體及抗體片段,只要其等展示出所需抗原結合活性即可。
「轉鐵蛋白受體」("TfR")是一種跨膜糖蛋白(分子量約為 180,000 Da),由兩個二硫鍵鍵合的次單元(每個表觀分子量約為90,000 Da)組成,參與脊椎動物的鐵攝入。在一個實施例中,本文提到的TfR為人TfR,例如包含Schneider等人(Nature 311 (1984) 675-678)中的胺基酸序列的。
多特異性抗體
在某些實施例中,治療性抗體為雙特異性抗體。在一個實施例中,治療性抗體為雙特異性、三價抗體。在一個優選實施例中,治療性抗體為單株、雙特異性、三價抗體。
在某些實施例中,治療性抗體為多特異性抗體,例如雙特異性抗體。多特異性抗體是對至少兩個不同抗原具有結合特異性的單株抗體。在某些實施例中,結合特異性之一為針對第一抗原,而其他的為針對不同的第二抗原。雙特異性抗體可製成全長抗體或抗體片段。在一個實施例中,抗體為雙特異性抗體,其特異性結合至第一和第二抗原。在一個實施例中,雙特異性抗體具有:i)與第一抗原特異性結合的第一結合特異性,和ii)與第二抗原特異性結合的第二結合特異性。在一個實施例中,抗體為雙特異性、三價抗體。在一個優選實施例中,抗體為單株、雙特異性、三價抗體。
在一個實施例中,結合位點之一特異性結合BBBR。
製備多特異性抗體的技術包括但不限於具有不同特異性之兩個免疫球蛋白重鏈-輕鏈配對的重組共表達(參見Milstein和Cuello,Nature 305 (1983) 537-540,WO 93/08829和Traunecker, A.等人,EMBO J. 10 (1991) 3655-3659),以及「隆突-入-穴」工程(參見例如,US 5,731,168)。多特異性抗體也可藉由以下方法進行製備:用於製備抗體Fc-異源二聚體分子的工程靜電轉向效應(WO 2009/089004);交聯兩個或更多個抗體或片段(參見例如US 4,676,980號專利;及Brennan等人,Science,229 (1985) 81-83);使用白胺酸拉鏈產生雙特異性抗體(參見例如,Kostelny, S.A.等人,J. Immunol.,148(1992) 1547-1553);使用「雙抗體」技術製備雙鏈抗體片段(參見例如,Holliger, P.等人,Proc. Natl. Acad. Sci. USA 90 (1993) 6444-6448);以及使用單鏈Fv (scFv)二聚體(參見例如Gruber, M.等人,J. Immunol. 152 (1994) 5368-5374);以及按照例如Tutt, A.等人(J. Immunol. 147 (1991) 60-69)所述之方法製備三特異性抗體。
多特異性抗體描述於WO 2009/080251、WO 2009/080252、WO 2009/080253、WO 2009/080254、WO 2010/112193、WO 2010/115589、WO 2010/136172、WO 2010/145792或WO 2010/145793 。
已知不同的雙特異性抗體形式。
可以使用本文報導之方法的示例性雙特異性抗體形式
CrossMab形式(=CrossMab):包含第一Fab片段和第二Fab片段的多特異性IgG抗體,其中,在第一Fab片段中
a) 僅CH1和CL域被彼此取代(即第一Fab片段的輕鏈包含VL和CH1域,而第一Fab片段的重鏈包含VH和CL域);
b) 僅VH和VL域被彼此取代(即第一Fab片段的輕鏈包含VH和CL域,而第一Fab片段的重鏈包含VL和CH1域);或
c) CH1和CL域被彼此取代,且VH和VL域被彼此取代(即第一Fab片段的輕鏈包含VH和CH1域,而第一Fab片段的重鏈包含VL和CL域);及
其中,第二Fab片段包含包含VL和CL域的輕鏈,以及包含VH和CH1域的重鏈;
CrossMab可包含含有CH3域的第一重鏈和含有CH3域的第二重鏈,其中,兩個CH3域均藉由各自的胺基酸取代以互補方式進行工程改造,以支持第一重鏈和修飾之第二重鏈的異源二聚作用,例如公開於WO 96/27011、WO 98/050431、EP 1870459、WO 2007/110205、WO 2007/147901、WO 2009/089004、WO 2010/129304、WO 2011/90754、WO 2011/143545、WO 2012/058768、WO 2013/157954或WO 2013/096291(藉由引用併入本文);
單臂單鏈形式(=單臂單鏈抗體):抗體,其包含與第一抗原特異性結合的第一結合位點,以及與第二抗原特異性結合的第二結合位點,由此,各條鏈如下:
輕鏈(可變輕鏈域+輕鏈κ恆定域)
輕/重鏈組合(帶有隆突突變之可變輕鏈域+輕鏈恆定域+胜肽之連接子+可變重鏈域+CH1+鉸鏈+CH2+CH3)
重鏈(帶有穴突變之可變重鏈域+CH1+鉸鏈+CH2+CH3);
雙臂單鏈形式(=雙臂單鏈抗體):抗體,其包含與第一抗原特異性結合的第一結合位點,以及與第二抗原特異性結合的第二結合位點的,由此,各條鏈如下:
輕/重鏈1組合(帶有穴突變之可變輕鏈域+輕鏈恆定域+胜肽之連接子+可變重鏈域+CH1+鉸鏈+CH2+CH3)
輕/重鏈2組合(帶有隆突突變之可變輕鏈域+輕鏈恆定域+胜肽之連接子+可變重鏈域+CH1+鉸鏈+CH2+CH3);
普通輕鏈雙重特異性形式(=普通輕鏈雙特異性抗體):抗體,其包含與第一抗原特異性結合的第一結合位點,以及與第二抗原特異性結合的第二結合位點的,由此,各條鏈如下:
輕鏈(可變輕鏈域+輕鏈恆定域)
重鏈1(帶有穴突變之可變重鏈域+CH1+鉸鏈+CH2+CH3)
重鏈2(帶有隆突突變之可變重鏈域+CH1+鉸鏈+CH2+CH3);
雙特異性Fab形式:Fab在VH和VL域的互補配對中包含兩個(不重疊的)互補位,其中,第一互補位包含(由)來自VL域之CDR1和CDR3以及VH域之CDR2的胺基酸殘基(所組成),而第二互補位包含(由)來自VH域之CDR1和CDR3以及VL域之CDR2的殘基(所組成);在本文中術語「不重疊的」是指雙特異性Fab的第一互補位內所包含的胺基酸殘基,以及雙特異性Fab的第二互補位內所含的胺基酸殘基不包含在第一互補位中;
TCB形式:雙特異性抗體包含
第一和第二Fab片段,其中,第一和第二Fab片段的每個結合位點均特異性結合至第二抗原,
第三Fab片段,其中,第三Fab片段的結合位點特異性結合至第一抗原,且其中,第三Fab片段包含域交叉,使得可變輕鏈域(VL)和可變重鏈域(VH)被彼此取代,並且
Fc區包含第一Fc區域多肽和第二Fc區域多肽,
其中,第一和第二Fab片段各自包含重鏈片段和全長輕鏈,
其中,第一Fab片段之重鏈片段的C端與第一Fc區域多肽的N端融合,
其中,第二Fab片段之重鏈片段的C端與第三Fab片段之可變輕鏈域的N端融合,且第三Fab片段之重鏈恆定域1的C端與第二Fc區域多肽的N端融合。
腦穿梭形式(BS):雙特異性抗體包含
a) 一種(全長)抗體,其包含(全長)抗體輕鏈和(全長)抗體重鏈各兩對,其中,每一對(全長)重鏈和(全長)輕鏈所形成的結合位點特異性結合至第一抗原,及
b) 一個另外的Fab片段,其中,另外的Fab片段與(全長)抗體之任一條重鏈的C端融合,其中,另外的Fab片段的結合位點特異性結合至第二抗原,
其中,與第二抗原特異性結合之另外的Fab片段包含域交叉,使得恆定輕鏈域(CL)和恆定重鏈域1(CH1)被彼此取代,及
其中,第一抗原為腦標的,而第二抗原為人轉鐵蛋白受體。
在一個實施例中,雙特異性抗體為CrossMab。
在一個實施例中,雙特異性抗體為單臂單鏈抗體。
在一個實施例中,雙特異性抗體為雙臂單鏈抗體。
在一個實施例中,雙特異性抗體為常見的輕鏈雙特異性抗體。
在一個實施例中,雙特異性抗體為雙特異性Fab。
在一個實施例中,雙特異性抗體為TCB。
在一個實施例中,雙特異性抗體為BS。
多價、多特異性抗體特異性結合至不同的標的,每個標的最可能具有不同的親和力和複合穩定性。只有完全活性的多價、多特異性抗體可以結合所有標的,並在相應的分析法中顯示出完整的生物學活性。
A.
示例性雙特異性抗體:抗人
A-β/
人轉鐵蛋白受體抗體
在某些實施例中,在如本發明之方法中待判定的治療性抗體是與人A-β和人轉鐵蛋白受體結合的抗體。該抗體是雙特異性抗體,由全長核心抗體和其中某些域交叉交換的融合Fab片段所組成。因此,所得到的雙特異性抗體是不對稱的。因此,使用稱為隆突-入-穴的異源二聚作用之技術,產生雙特異性抗體,該技術使用具有所謂隆突突變(Hcknob)的第一重鏈,以及具有所謂穴突變(Hchole)的第二重鏈。
示例性抗體0012由具有SEQ ID NO: 04至07之胺基酸序列的四個多肽所組成。
示例性抗體0015由具有SEQ ID NO: 08至11之胺基酸序列的四個多肽所組成。
示例性抗體0020由具有SEQ ID NO: 12至14之胺基酸序列的三個多肽所組成。
示例性抗體0024由具有SEQ ID NO: 15至18之胺基酸序列的四個多肽所組成。
在一個態樣中,治療性抗體為雙特異性抗體,其包含
a) 一種全長抗體,其包含全長抗體輕鏈和全長抗體重鏈各兩對,其中,每一對全長重鏈和全長輕鏈所形成的的結合位點特異性結合至第一抗原,及
b) 一個另外的Fab片段,其中,另外的Fab片段與全長抗體之一條重鏈的C端融合,其中,另外的Fab片段的結合位點特異性結合至第二種抗原,
其中,每個全長抗體輕鏈包含有胺基酸殘基精氨酸(而非野生型麩胺酸殘基;E123R突變)在恆定輕鏈域(CL)中位置123,以及胺基酸殘基離胺酸(而非野生型麩醯胺酸殘基;Q124K突變)在位置124(根據Kabat編號),
其中,每個全長抗體重鏈包含有麩胺酸殘基(而非野生型離胺酸殘基;K147E突變)在第一恆定重鏈域(CH1)中位置147,以及麩胺酸殘基(而非野生型離胺酸胺基酸殘基;K213E突變)在位置213(根據Kabat EU索引編號),
其中,與第二抗原特異性結合之另外的Fab片段包含域交叉,使得恆定輕鏈域(CL)和恆定重鏈域1(CH1)被彼此取代,及
其中,第一抗原為人A-β蛋白,而第二抗原為人轉鐵蛋白受體。
在另一個實施例中,治療性抗體為雙特異性抗體,其包含
a) 一種全長抗體,其包含全長抗體輕鏈和全長抗體重鏈各兩對,其中,每一對全長重鏈和全長輕鏈所形成的的結合位點特異性結合至第一抗原,及
b) 一個另外的Fab片段,其中,另外的Fab片段與全長抗體之一條重鏈的C端融合,其中,另外的Fab片段的結合位點特異性結合至第二種抗原,
其中,每個全長抗體輕鏈包含有胺基酸殘基精氨酸(而非野生型麩胺酸殘基;E123R突變)在恆定輕鏈域(CL)中位置123,以及胺基酸殘基離胺酸(而非野生型麩醯胺酸殘基;Q124K突變)在位置124(根據Kabat編號),
其中,每個全長抗體重鏈包含有麩胺酸殘基(而非野生型離胺酸殘基;K147E突變)在第一恆定重鏈域(CH1)中位置147,以及麩胺酸殘基(而非野生型離胺酸胺基酸殘基;K213E突變)在位置213(根據Kabat EU索引編號),
其中,與第二抗原特異性結合之另外的Fab片段包含域交叉,使得恆定輕鏈域(CL)和恆定重鏈域1(CH1)被彼此取代,
其中,第一抗原為人A-β蛋白,而第二抗原為人轉鐵蛋白受體,
其中,人A-β結合位點包含與序列SEQ ID NO: 19之胺基酸序列具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%序列同一性的重鏈可變域(VH),及與序列SEQ ID NO: 20之胺基酸序列具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%序列同一性的輕鏈可變域(VL),以及
其中,人轉鐵蛋白受體結合位點包含與序列SEQ ID NO: 21之胺基酸序列具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%序列同一性的重鏈可變域(VH),及與序列SEQ ID NO: 22之胺基酸序列具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%序列同一性的輕鏈可變域(VL)。
在某些實施例中,具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%或99%同一性的VH序列,包含相對於參考序列的取代(例如保守取代)、插入或缺失,但結合位點包含保留與其抗原結合之能力的序列。在某些實施例中,在SEQ ID NO: 19或21中,共有1至10個胺基酸被取代、插入及/或缺失。在某些實施例中,取代、插入或缺失發生在HVR以外的區域(即,在FR中)。
在某些實施例中,具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%或99%同一性的VL序列,包含相對於參考序列的取代(例如保守取代)、插入或缺失,但結合位點包含保留與其抗原結合之能力的序列。在某些實施例中,在SEQ ID NO: 20或22中,共有1至10個胺基酸被取代、插入及/或缺失。在某些實施例中,取代、插入或缺失發生在HVR以外的區域(即,在FR中)。
在一個實施例中,人A-β結合位點包含如SEQ ID NO: 19中之VH序列(包括該序列的轉譯後修飾)和如SEQ ID NO: 20中之VL序列。
在一個實施例中,人轉鐵蛋白受體結合位點包含如SEQ ID NO: 21中之VH序列(包括該序列的轉譯後修飾)和如SEQ ID NO: 22中之VL序列。
在一個實施例中,雙特異性抗體包含
i) 具有與SEQ ID NO: 23至少70%、至少80%、至少90%或95%或更高之序列同一性的輕鏈,
ii) 具有與SEQ ID NO: 24至少70%、至少80%、至少90%或95%或更高之序列同一性的重鏈,
iii) 具有與SEQ ID NO: 25至少70%、至少80%、至少90%或95%或更高之序列同一性的輕鏈,及
iv) 具有與SEQ ID NO: 26至少70%、至少80%、至少90%或95%或更高之序列同一性的重鏈Fab片段,
其中,
SEQ ID NO: 23具有胺基酸序列DIVLTQSPATLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGVPARFSGSGSGTDFTLTISSLEPEDFATYYCLQIYNMPITFGQGTKVEIKRTVAAPSVFIFPPSDRKLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC,
SEQ ID NO: 24具有胺基酸序列QVELVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAINASGTRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGKGNTHKPYGYVRYFDVWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVCTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG,
SEQ ID NO: 25具有胺基酸序列AIQLTQSPSSLSASVGDRVTITCRASQSISSYLAWYQQKPGKAPKLLIYRASTLASGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQNYASSNVDNTFGGGTKVEIKSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC,及
SEQ ID NO: 26具有胺基酸序列QSMQESGPGLVKPSQTLSLTCTVSGFSLSSYAMSWIRQHPGKGLEWIGYIWSGGSTDYASWAKSRVTISKTSTTVSLKLSSVTAADTAVYYCARRYGTSYPDYGDASGFDPWGQGTLVTVSSASVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 。
在另一個實施例中,治療性抗體為雙特異性抗體,其包含
a) 一種全長抗體,其包含全長抗體輕鏈和全長抗體重鏈各兩對,其中,每一對全長重鏈和全長輕鏈所形成的的結合位點特異性結合至第一抗原,及
b) 一個另外的Fab片段,其中,另外的Fab片段與全長抗體之一條重鏈的C端融合,其中,另外的Fab片段的結合位點特異性結合至第二種抗原,
其中,每個全長抗體輕鏈包含有胺基酸殘基精氨酸(而非野生型麩胺酸殘基;E123R突變)在恆定輕鏈域(CL)中位置123,以及胺基酸殘基離胺酸(而非野生型麩醯胺酸殘基;Q124K突變)在位置124(根據Kabat編號),
其中,每個全長抗體重鏈包含有麩胺酸殘基(而非野生型離胺酸殘基;K147E突變)在第一恆定重鏈域(CH1)中位置147,以及麩胺酸殘基(而非野生型離胺酸胺基酸殘基;K213E突變)在位置213(根據Kabat EU索引編號),
其中,與第二抗原特異性結合之另外的Fab片段包含域交叉,使得恆定輕鏈域(CL)和恆定重鏈域1(CH1)被彼此取代,
其中,第一抗原為人A-β蛋白,而第二抗原為人轉鐵蛋白受體,
其中,人A-β結合位點包含重鏈可變域(VH),其具有SEQ ID NO: 19之胺基酸序列,及輕鏈可變域(VL),其具有SEQ ID NO: 20之胺基酸序列,及
其中,人轉鐵蛋白受體結合位點包含重鏈可變域(VH),其具有SEQ ID NO: 21之胺基酸序列,及輕鏈可變域(VL),其具有SEQ ID NO: 22之胺基酸序列。
在另一個實施例中,治療性抗體為雙特異性抗體,其包含
a) 一種全長抗體,其包含全長抗體輕鏈和全長抗體重鏈各兩對,其中,每一對全長重鏈和全長輕鏈所形成的的結合位點特異性結合至第一抗原,其中,該全長抗體包含由Fc區域多肽所形成的Fc區域,每個Fc區域多肽包含兩條全長重鏈的CH1、CH2和CH3域,及
b) 一個另外的Fab片段,其中,另外的Fab片段與全長抗體之一條重鏈的C端融合,其中,另外的Fab片段的結合位點特異性結合至第二種抗原,
其中,每個全長抗體輕鏈包含有胺基酸殘基精氨酸(而非野生型麩胺酸殘基;E123R突變)在恆定輕鏈域(CL)中位置123,以及胺基酸殘基離胺酸(而非野生型麩醯胺酸殘基;Q124K突變)在位置124(根據Kabat編號),
其中,每個全長抗體重鏈包含有麩胺酸殘基(而非野生型離胺酸殘基;K147E突變)在第一恆定重鏈域(CH1)中位置147,以及麩胺酸殘基(而非野生型離胺酸胺基酸殘基;K213E突變)在位置213(根據Kabat EU索引編號),
其中,與第二抗原特異性結合之另外的Fab片段包含域交叉,使得恆定輕鏈域(CL)和恆定重鏈域1(CH1)被彼此取代,
其中,第一抗原為人A-β蛋白,而第二抗原為人轉鐵蛋白受體,
其中,人A-β結合位點包含重鏈可變域(VH),其具有SEQ ID NO: 19之胺基酸序列,及輕鏈可變域(VL),其具有SEQ ID NO: 20之胺基酸序列,
其中,人轉鐵蛋白受體結合位點包含重鏈可變域(VH),其具有SEQ ID NO: 21之胺基酸序列,及輕鏈可變域(VL),其具有SEQ ID NO: 22之胺基酸序列,及
其中,Fc區域多肽為
a) 人亞類IgG1,
b) 人亞類IgG4,
c) 具有突變L234A、L235A和P329G的人亞類IgG1
d) 具有突變S228P、L235E和P329G的人亞類IgG4
e) 在兩個Fc區域多肽中均具有突變L234A、L235A和P329G,且在一個Fc區域多肽中具有突變T366W和S354C以及在相應的另一個Fc區域多肽中具有突變T366S、L368A、Y407V和Y349C的人亞類IgG1,
f) 在兩個Fc區域多肽中均具有突變S228P和P329G,且在一個Fc區域多肽中具有突變T366W和S354C以及在相應的另一個Fc區域多肽中具有突變T366S、L368A、Y407V和Y349C的人亞類IgG4,
g) 在兩個Fc區域多肽中均具有突變L234A、L235A、P329G、I253A、H310A和H435A,且在一個Fc區域多肽中具有突變T366W和S354C以及在相應的另一個Fc區域多肽中具有突變T366S、L368A、Y407V和Y349C的人亞類IgG1,或
h) 在兩個Fc區域多肽中均具有突變L234A、L235A、P329G、M252Y、S254T和T256E,且在一個Fc區域多肽中具有突變T366W和S354C以及在相應的另一個Fc區域多肽中具有突變T366S、L368A、Y407V和Y349C的人亞類IgG1,
B.
示例性抗轉鐵蛋白受體抗體
在如本發明之方法中待判定之治療性抗體的抗轉鐵蛋白受體結合位點,具有與人轉鐵蛋白受體結合在一定範圍內的解離速率,以確保適當的BBB穿梭。該範圍的一端是藉由鼠類抗轉鐵蛋白受體抗體128.1(SEQ ID NO: 27和28中給出的可變域胺基酸序列)的解離速率來確定,該解離速率由食蟹獼猴轉鐵蛋白受體的表面電漿子共振來判定,另一端是由該解離速率的5%(即慢20倍解離)來確定。人轉鐵蛋白受體的解離速率應在0.11/s至0.0051/s之間,並包括0.11/s和0.0051/s。
本文報導的一個態樣是與人轉鐵蛋白受體和食蟹獼猴轉鐵蛋白受體特異性結合的抗轉鐵蛋白受體抗體,其包括
i) 衍生自SEQ ID NO: 29之重鏈可變域的人源化重鏈可變域,及
ii) 衍生自SEQ ID NO: 30之輕鏈可變域的人源化輕鏈可變域,
其中,抗體對人轉鐵蛋白受體的解離速率,等於或小於(即至多)抗轉鐵蛋白受體抗體128.1對食蟹獼猴轉鐵蛋白受體的解離速率,
由此,解離速率是由表面電漿子共振來判定,及
由此,抗轉鐵蛋白受體抗體128.1具有SEQ ID NO: 27的重鏈可變域和 SEQ ID NO: 28的輕鏈可變域。
在一個實施例中,人轉鐵蛋白受體的解離速率在0.11/s至0.0051/s之間,並包括0.11/s和0.0051/s。
在一個實施例中,抗體在輕鏈可變域的位置80具有脯胺酸胺基酸殘基(P)(根據Kabat編號)。
在一個實施例中,抗體在輕鏈可變域的位置91具有天門冬醯胺酸胺基酸殘基(N)(根據Kabat編號)。
在一個實施例中,抗體在輕鏈可變域的位置93具有丙胺酸胺基酸殘基(A)(根據Kabat編號)。
在一個實施例中,抗體在重鏈可變域的位置100g具有絲胺酸胺基酸殘基(S)(根據Kabat編號)。
在一個實施例中,抗體在重鏈可變域的位置100g具有麩醯胺酸胺基酸殘基(Q)(根據Kabat編號)。
在一個實施例中,抗體在重鏈可變域的位置65具有絲胺酸胺基酸殘基(S)(根據Kabat編號)。
在一個實施例中,抗體在重鏈可變域的位置105具有麩醯胺酸胺基酸殘基(Q)(根據Kabat編號)。
在一個實施例中,抗體在輕鏈可變域的位置80具有脯胺酸胺基酸殘基(P),在輕鏈可變域的位置91具有天門冬醯胺酸胺基酸殘基(N),在輕鏈可變域的位置93具有丙胺酸胺基酸殘基(A),重鏈可變域的位置100g具有絲胺酸胺基酸殘基(S),在重鏈可變域的位置65具有絲胺酸胺基酸殘基(S),以及在重鏈可變域的位置105具有麩醯胺酸胺基酸殘基(Q)(根據Kabat編號)。
在一個實施例中,抗體在輕鏈可變域的位置80具有脯胺酸胺基酸殘基(P),在輕鏈可變域的位置91具有天門冬醯胺酸胺基酸殘基(N),在輕鏈可變域的位置93具有丙胺酸胺基酸殘基(A),重鏈可變域的位置100g具有麩醯胺酸胺基酸殘基(Q),在重鏈可變域的位置65具有絲胺酸胺基酸殘基(S),以及在重鏈可變域的位置105具有麩醯胺酸胺基酸殘基(Q)(根據Kabat編號)。
這種抗轉鐵蛋白受體雙特異性抗體可以用作血腦屏障穿梭模組,以遞送腦效應物實體穿過血腦屏障到腦中。血腦屏障穿梭模組是與人轉鐵蛋白受體特異性結合的單價結合實體。在用作為血腦屏障穿梭模組時,抗轉鐵蛋白受體雙特異性抗體是有用的,例如可用於診斷或治療神經疾患,例如阿茲海默氏症、帕金森氏症以及阿茲海默氏症與帕金森氏症並存者。
在一個實施例中,治療性抗體的抗轉鐵蛋白受體結合位點包含SEQ ID NO: 31的重鏈可變域和SEQ ID NO: 32的輕鏈可變域,其相對於人轉鐵蛋白受體,反映了鼠類抗體128.1相對於食蟹獼猴轉鐵蛋白受體之解離速率的結合特性。
在一個實施例中,治療性抗體的抗轉鐵蛋白受體結合位點,特異性結合至人轉鐵蛋白受體(huTfR)和食蟹獼猴轉鐵蛋白受體(cyTfR),並且包含i)衍生自SEQ ID NO: 29之重鏈可變域的人源化重鏈可變域,及ii)衍生自SEQ ID NO: 30之輕鏈可變域的人源化輕鏈可變域,其中,在該輕鏈可變域的位置80具有脯胺酸胺基酸殘基(P)、在位置91具有天門冬醯胺酸胺基酸殘基(N)及在位置93具有丙胺酸胺基酸殘基(A)(根據Kabat編號)。
在一個實施例中,治療性抗體的抗轉鐵蛋白受體結合位點,進一步具有在重鏈可變域之位置100g的絲胺酸胺基酸殘基(S)(根據Kabat編號)。
在一個實施例中,治療性抗體的抗轉鐵蛋白受體結合位點,進一步具有在重鏈可變域之位置65的絲胺酸胺基酸殘基(S)(根據Kabat編號)。
在一個實施例中,治療性抗體的抗轉鐵蛋白受體結合位點,進一步具有在重鏈可變域之位置105的麩醯胺酸胺基酸殘基(Q)(根據Kabat編號)。
在一個實施例中,治療性抗體的抗轉鐵蛋白受體結合位點,特異性結合至人轉鐵蛋白受體(huTfR)和食蟹猴轉鐵蛋白受體(cyTfR),並且包含i)衍生自SEQ ID NO:29的重鏈可變域的人源化重鏈可變域,及ii)衍生自SEQ ID No:30的輕鏈可變域的人源化輕鏈可變域,其中,治療性抗體對人轉鐵蛋白受體的解離速率,等於或小於(即至多)單位為1/s之抗轉鐵蛋白受體抗體128.1對食蟹獼猴轉鐵蛋白受體的解離速率,由此,解離速率是由表面電漿子共振來判定,並且由此,抗轉鐵蛋白受體抗體128.1具有SEQ ID NO: 27的重鏈可變域和SEQ ID NO: 28的輕鏈可變域。
在一個實施方案中,治療性抗體的抗轉鐵蛋白受體結合位點對於人轉鐵蛋白受體具有單位為1/s之解離速率,其i)等於或小於(即至多)單位為1/s之抗轉鐵蛋白受體抗體128.1對食蟹獼猴轉鐵蛋白受體的解離速率,及ii)等於或大於(即至少)單位為1/s之抗轉鐵蛋白受體抗體128.1對食蟹猴轉鐵蛋白受體之解離速率的5%。
在一個實施例中,治療性抗體的抗轉鐵蛋白受體結合位點包含(a)HVR-H1,其包含胺基酸序列SEQ ID NO: 33;(b)HVR-H2,其包含胺基酸序列SEQ ID NO: 34;(c)HVR-H3,其包含胺基酸序列SEQ ID NO: 35、36或37,在一個優選實施例中為SEQ ID NO: 36;(d)HVR-L1,其包含胺基酸序列SEQ ID NO: 38;(e)HVR-L2,其包含胺基酸序列SEQ ID NO: 39;及(f)HVR-L3,其包含胺基酸序列SEQ ID NO: 40。
在以上任何實施例中,抗轉鐵蛋白受體結合位點為人源化的。在一個實施例中,抗轉鐵蛋白受體結合位點包含如以上任一實施例所述的HVR,並且進一步包含受體人框架,例如人免疫球蛋白框架或人共有的框架。
在一個實施例中,抗體為雙特異性抗體,其包含至少一對SEQ ID NO: 31的重鏈可變域和SEQ ID NO: 32的輕鏈可變域,其形成針對轉鐵蛋白受體的結合位點,及至少一對SEQ ID NO: 41的重鏈可變域和SEQ ID NO: 42的輕鏈可變域之針對人CD20的結合位點。在一個實施例中,重鏈可變區域包含用白胺酸以外之任何胺基酸,取代在Kabat位置11的胺基酸殘基。在一個實施例中,取代包含用非極性胺基酸取代在Kabat位置11的胺基酸殘基。在一個優選實施例中,取代包含用以下胺基酸殘基來取代SEQ ID NO: 41之重鏈可變域中在Kabat位置11的胺基酸殘基,該胺基酸殘基選自由纈胺酸、白胺酸、異白胺酸、絲胺酸和苯丙胺酸所組成之群組。
在一個實施例中,抗體為雙特異性抗體,其包含至少一對SEQ ID NO: 31的重鏈可變域和SEQ ID NO: 32的輕鏈可變域,其形成針對轉鐵蛋白受體的結合位點,及至少一對SEQ ID NO: 43的重鏈可變域和SEQ ID NO: 44的輕鏈可變域之針對人α–突觸核蛋白的結合位點。
在一個實施例中,抗體為雙特異性抗體,其包含至少一對SEQ ID NO: 31的重鏈可變域和SEQ ID NO: 32的輕鏈可變域,其形成針對轉鐵蛋白受體的結合位點,及至少一對衍生自SEQ ID NO: 45之人源化重鏈可變域和衍生自SEQ ID NO: 46之人源化輕鏈可變域的針對人α–突觸核蛋白之結合位點。
在一個實施例中,抗體為雙特異性抗體,其包含至少一對SEQ ID NO: 31的重鏈可變域和SEQ ID NO: 32的輕鏈可變域,其形成針對轉鐵蛋白受體的結合位點,及至少一對衍生自SEQ ID NO: 47之人源化重鏈可變域和衍生自SEQ ID NO: 48之人源化輕鏈可變域的針對人α–突觸核蛋白之結合位點。
在一個實施例中,抗體為雙特異性抗體,其包含至少一對SEQ ID NO: 31的重鏈可變域和SEQ ID NO: 32的輕鏈可變域,其形成針對轉鐵蛋白受體的結合位點,及至少一對衍生自SEQ ID NO: 49之人源化重鏈可變域和衍生自SEQ ID NO: 50之人源化輕鏈可變域的針對人α–突觸核蛋白之結合位點。
在一個實施例中,抗體為雙特異性抗體,其包含至少一對SEQ ID NO: 31的重鏈可變域和SEQ ID NO: 32的輕鏈可變域,其形成針對轉鐵蛋白受體的結合位點,及至少一對衍生自SEQ ID NO: 51之人源化重鏈可變域和衍生自SEQ ID NO: 52之人源化輕鏈可變域的針對人α–突觸核蛋白之結合位點。
在一個實施例中,抗體為雙特異性抗體,其包含至少一對SEQ ID NO: 31的重鏈可變域和SEQ ID NO: 32的輕鏈可變域,其形成針對轉鐵蛋白受體的結合位點,及至少一對衍生自SEQ ID NO: 53之人源化重鏈可變域和衍生自SEQ ID NO: 54之人源化輕鏈可變域的針對人α–突觸核蛋白之結合位點。
在一個實施例中,抗體為雙特異性抗體,其包含至少一對SEQ ID NO: 31的重鏈可變域和SEQ ID NO: 32的輕鏈可變域,其形成結合位點針對轉鐵蛋白受體以及結合位點針對i)具有胺基酸序列SEQ ID NO: 55的葡萄糖腦苷酶的,或ii)具有與SEQ ID NO: 55至少70%之序列同一性的功能變異體,或iii) SEQ ID NO: 55的功能變異體,其具有一個或多個胺基酸突變、缺失或插入,或iv) SEQ ID NO:55之截斷的功能變異體,其在N端或C端或在缺失的胺基酸序列內,具有至少一個胺基酸殘基,或v)與iii)和iv)的組合。
在另一個實施例中,治療性抗體為多特異性抗體。在一個此類的實施例中,多特異性抗體包含結合至TfR的第一抗原結合位點和結合至腦抗原的第二抗原結合位點。在一個此類的態樣中,腦抗原選自由β-分泌酶1(BACE1)、Aβ、表皮生長因子受體(EGFR)、人表皮生長因子受體2(HER2)、τ蛋白、載脂蛋白E(ApoE)、α-突觸核蛋白、CD20、杭丁頓蛋白、普里昂蛋白(PrP)、白胺酸富集的重複激酶2(LRRK2)、帕金蛋白、早老素1、早老素2、γ分泌酶、死亡受體6(DR6)、類澱粉蛋白前驅蛋白(APP)、p75神經促素受體(p75NTR)、葡萄糖腦苷酶和凋亡蛋白酶6所組成之群組。在另一個實施例中,多特異性抗體結合至TfR和BACE1兩者。在另一個實施例中,多特異性抗體結合至TfR和Aβ兩者。在另一個實施例中,多特異性抗體結合至TfR和α-突觸核蛋白兩者。在另一個實施例中,多特異性抗體結合至TfR和CD20兩者。在另一個實施例中,多特異性抗體結合至TfR和葡萄糖腦苷酶兩者。在另一個實施例中,治療性化合物為神經疾患治療性抗體。
在一個實施例中,效應功能藉由Fc區域的至少一個修飾而降低或消除。在一個實施例中,效應功能或補體活化功能的降低或消除,是藉由全部或部分Fc區域的缺失,或藉由工程改造抗體,使其不包括能發揮效應功能或補體活化功能的Fc區域或非Fc區域。在一個實施例中,Fc區域的至少一個修飾係選自:削弱與一種或多種Fc受體結合之Fc區域的點突變,其選自以下位置:238、239、248、249、252、254、265、268、269、270、272、278、289、292、293、294、295、296、297、298、301、303、322、324、327、329、333、30 335、338、340、373、376、382、388、389、414、416、419、434、435、437、438及439;以及削弱與C1q受體結合之Fc區域的點突變,其選自以下位置:270、322、329及321;消除部分或全部Fc區域,以及在CH1域之位置132的點突變。在一個實施例中,修飾為削弱與C1q受體結合之Fc區域的點突變,其選自以下位置:270、322、329及321。在另一個實施例中,修飾為消除部分或全部Fc區域。在另一個實施例中,補體觸發功能的降低或消除,是藉由全部或部分Fc區域的缺失,或藉由工程改造抗體,使其不包括與補體途徑結合的Fc區域。在另一個實施例中,抗體選自Fab或單鏈抗體。在另一個實施例中,修飾抗體的非Fc區域以降低或消除抗體對補體途徑的活化。在一個實施例中,修飾為CH1區域的點突變,以削弱與C3的結合。在一個實施例中,點突變是在位置132(參見,例如,Vidarte等人,J. Biol. Chem. 276 (2001) 38217-38223)。
在上述實施例的一個態樣中,相對於對TfR不具有降低之親和力的相同同型的野生型抗體所測量到的,該抗體對TfR的親和力減少。在一個這樣的態樣中,抗體對TfR的KD
或IC50
為約1pM至約100μM。
在一個實施例中,本文報導的抗體為效應功能沉默的。在一個實施例中,抗體不具有效應功能。在一個實施例中,抗體為人IgG1亞類,且在兩條重鏈中皆具有突變L234A、L 235A和P329G(根據Kabat EU索引編號)。
在一個實施例中,抗體為
a) 人亞類IgG1的全長抗體,或
b) 人亞類IgG4的全長抗體,或
c) 人亞類IgG1的全長抗體,其具有突變L234A、L235A和P329G,
d) 人亞類IgG4的全長抗體,其具有突變S228P、L235E和視情況的P329G,
e) 人亞類IgG1的全長抗體,其兩條重鏈中皆具突變L234A、L235A和P329G,且在一個重鏈中具有突變T366W和S354C以及在相應的另一個重鏈中具有突變T366S、L368A、Y407V和Y349C,或
f) 人亞類IgG4的全長抗體,其兩條重鏈中皆具突變S228P和視情況的P329G,且在一個重鏈中具有突變T366W和S354C以及在相應的另一個重鏈中具有突變T366S、L368A、Y407V和Y349C。
在一個實施例中,雙特異性治療性抗體包含
i) 人IgG1亞類的同型二聚Fc區域,視情況具有突變P329G、L234A和L235A,或
ii) 人IgG4亞類的同型二聚Fc區域,視情況具有突變P329G、S228P和L235E,或
iii) 異源二聚Fc區域,關於
a) 一個Fc區域多肽包含突變T366W,而另一個Fc區多肽包含突變T366S、L368A和Y407V,或
b) 一個Fc區域多肽包含突變T366W和Y349C,而另一個Fc區域多肽包含突變T366S、L368A、Y407V和S354C,或
c) 一個Fc區域多肽包含突變T366W和S354C,而另一個Fc區域多肽包含突變T366S、L368A、Y407V和Y349C,
或
iv) 人IgG4亞類的異源二聚Fc區域,關於兩個Fc區域多肽均包含突變P329G、L234A和L235A,及
a) 一個Fc區域多肽包含突變T366W,而另一個Fc區多肽包含突變T366S、L368A和Y407V,或
b) 一個Fc區域多肽包含突變T366W和Y349C,而另一個Fc區域多肽包含突變T366S、L368A、Y407V和S354C,或
c) 一個Fc區域多肽包含突變T366W和S354C,而另一個Fc區域多肽包含突變T366S、L368A、Y407V和Y349C,
或
v) 人IgG4亞類的異源二聚Fc區域,關於兩個Fc區域多肽均包含突變P329G、S228P和L235E,及
a) 一個Fc區域多肽包含突變T366W,而另一個Fc區多肽包含突變T366S、L368A和Y407V,或
b) 一個Fc區域多肽包含突變T366W和Y349C,而另一個Fc區域多肽包含突變T366S、L368A、Y407V和S354C,或
c) 一個Fc區域多肽包含突變T366W和S354C,而另一個Fc區域多肽包含突變T366S、L368A、Y407V和Y349C。
免疫分析法
在本領域中已描述了不同免疫分析法的原理。例如,Hage, D.S. (Anal. Chem. 71 (1999) 294R-304R)。Lu, B.等人(Analyst 121 (1996) 29R-32R)報導了用於免疫分析法之抗體的導向固定。例如,抗生物素蛋白-生物素中介的免疫分析法已報導於Wilchek, M.和Bayer, E.A.,Methods Enzymol. 184 (1990) 467-469。
單株抗體及其恆定域包含許多反應胺基酸側鏈,用於與結合配對的成員共軛,例如多肽/蛋白質、聚合物(例如PEG、纖維素或聚苯乙烯)或酶。例如,胺基酸的化學反應基團是胺基(離胺酸、α-胺基)、硫醇基(胱胺酸、半胱胺酸和甲硫胺酸)、羧酸基(天門冬胺酸、麩胺酸)及糖醇基。例如,這種方法是描述於Aslam M.和Dent, A.,「Bioconjugation」,MacMillan Ref. Ltd. 1999,頁50-100。
抗體最常見的反應基團之一是胺基酸離胺酸的脂肪族ε-胺。通常來說,幾乎所有抗體都含有豐富的離胺酸。離胺酸胺類在pH 8.0以上(pKa = 9.18)時是相當好的親核劑,因此可以輕鬆地與多種試劑反應,形成穩定的鍵合。胺反應試劑主要與離胺酸和蛋白質的α-胺基反應。反應酯,特別是N-羥基-琥珀醯亞胺(NHS)酯,是最常用的胺基修飾試劑。在水相環境中反應的最佳pH為8.0至9.0。異硫氰酸鹽為胺修飾試劑,可與蛋白質形成硫脲鍵。它們與水溶液中的蛋白質胺類反應(最佳pH值為9.0至9.5)。醛類在適度的水相條件下與脂肪族和芳香族的胺、肼和醯肼反應,形成亞胺中間體(希夫鹼)。可以用適度的或強還原劑(例如硼氫化鈉或氰基硼氫化鈉)選擇性地還原希夫鹼,以生成穩定的烷基胺鍵。已用於修飾胺的其他試劑為酸酐。例如,二乙烯三胺五乙酸酐(DTPA)為包含兩個胺反應酸酐基的雙官能螯合劑。它可以與胺基酸的N端和ε-胺基反應,形成醯胺鍵合。酸酐環打開以產生多價金屬螯合臂,該多價金屬螯合臂能夠與配位錯合物中的金屬緊密結合。
抗體中另一個常見的反應基團是來自含硫胺基酸胱胺酸,及其還原產物半胱胺酸(或一半的胱胺酸)的硫醇殘基。半胱胺酸含有一個游離的硫醇基,比胺類更親核,通常是蛋白質中最具反應性的官能團。硫醇通常在中性pH下具有反應性,因此可以在存在胺的情況下,選擇性地與其他分子偶聯。由於游離的硫氫基具有相對的反應性,因此帶有這些基團的蛋白質通常以氧化形式作為雙硫基或雙硫鍵與它們一起存在。在這種蛋白質中,需要用例如二硫蘇糖醇(DTT)的試劑還原雙硫鍵以產生反應性游離硫醇。硫醇反應試劑是那些將與多肽上的硫醇基偶聯,形成硫醚偶聯產物的試劑。這些試劑在弱酸性至中性pH值下快速反應,因此可以在胺基存在下選擇性反應。文獻報導了幾種硫醇化交聯劑的使用,例如Traut試劑(2-亞胺雜四氫噻吩),琥珀醯亞胺基(乙醯硫基)乙酸酯(SATA)和磺基琥珀醯亞胺基6-[3-(2-吡啶基二硫基)丙醯胺基]己酸(Sulfo-LC-SPDP),提供經由反應性胺基引入多個硫氫的有效方法。鹵代乙醯衍生物(例如碘乙醯胺)形成硫醚鍵,是用於硫醇基修飾的試劑。進一步有用的試劑為順丁烯二醯亞胺。順丁烯二醯亞胺與硫醇反應試劑的反應,與碘乙醯胺的反應基本相同。順丁烯二醯亞胺在弱酸性至中性的pH下迅速反應。
抗體中另一個常見的反應基團為羧酸類。抗體在C端位置以及天門冬胺酸和麩胺酸的側鏈內包含羧酸基團。羧酸在水中相對較低的反應性,通常使其難以使用這些基團來選擇性地修飾多肽和抗體。當這樣做時,通常藉由使用水溶性碳二亞胺將羧酸基團轉化為反應酯,並與親核試劑如胺、醯肼或肼反應。含胺的試劑應該是弱鹼性的,以便在高鹼性離胺酸之ε-胺的存在下,選擇性與活化的羧酸反應,形成穩定的醯胺鍵。當pH值升高到8.0以上時,可能發生蛋白質交聯。
高碘酸鈉可用於抗體連接之碳水化合物部分中,將糖的醇部分氧化為醛。如對於羧酸所述,每個醛基可與胺、醯肼或肼反應。由於碳水化合物部分主要存在於抗體的可結晶片段區域(Fc區域),因此可以透過將碳水化合物進行定點修飾來實現共軛,遠離抗原結合位點。形成了希夫鹼中間體,透過用氰基硼氫化鈉(適度的及選擇的)或硼氫化鈉(強)水溶性還原劑將中間體還原,其可以將希夫鹼中間體還原為烷基胺。
示蹤及/或捕獲及/或檢測抗體與其共軛夥伴的共軛,可以藉由不同的方法來進行,例如化學結合或經由結合配對的結合。如本文所使用,術語「共軛夥伴(conjugation partner)」表示例如固相支持物、多肽、可檢測之標記、特異性結合的配對成員。在一個實施例中,捕獲及/或示蹤及/或檢測抗體與其共軛夥伴的共軛是藉由化學結合來進行,該化學結合經由N端及/或ε-胺基(離胺酸)、不同離胺酸的ε-胺基、抗體胺基酸骨架的羧基、硫氫基、羥基及/或酚官能基、及/或抗體碳水化合物結構的糖醇基。在一個實施例中,捕獲抗體經由結合配對共軛至其共軛夥伴。在一個優選實施例中,將捕獲抗體共軛至生物素,並經由固相支持物固定化的抗生物素蛋白或鏈黴抗生物素蛋白,來執行固定捕獲抗體至固相支持物。在一個實施例中,捕獲抗體經由結合配對共軛至其共軛夥伴。在一個優選實施例中,示蹤抗體藉由共價鍵作為可檢測的標記共軛至長葉毛地黃配質(digoxygenin)。
「可檢測標記」的實例為色素原(螢光或發光基團和染劑)、酶、NMR活性基團或金屬顆粒、不完全抗原,例如長葉毛地黃配質。可檢測標記還可以為可光活化之交聯基團,例如疊氮或氮吮基團。可以藉由電化學發光科學檢測到的金屬螯合物,也是優選的訊號發射基團,特別優選為釕螯合物,例如釕(雙吡啶基)32+螯合物。例如,合適的釕標記基團描述於EP 0 580 979、WO 90/05301、WO 90/11511和WO 92/14138中。對於直接式檢測而言,標記基團可以選自任何已知的可檢測標記基團,例如染劑、發光標記基團,例如化學發光基團,例如吖啶翁酯(acridinium esters)或二氧環丁烷、或螢光染劑,例如螢光素、香豆素、玫瑰紅、口咢口井、試鹵靈、青色素及其衍生物。標記基團的其他實例是發光金屬複合物,例如釕或銪複合物、酶,例如用於ELISA或CEDIA(殖株酶予體免疫分析法,例如EP-A-0 061 888)和放射性同位素。
例如,間接式檢測系統包含檢測試劑,例如標記有結合配對之第一夥伴的檢測抗體。合適之結合配對的實例是抗原/抗體、生物素或生物素類似物,例如胺基生物素、亞胺基生物素或去硫生物素/抗生物素蛋白或鏈黴抗生物素蛋白、糖/凝集素,核酸或核酸類似物/互補核酸,以及受體/配體,例如類固醇激素受體/類固醇激素。在一個優選實施例中,第一結合配對成員包含不完全抗原、抗原和激素。在一個優選實施例中,不完全抗原選自由長葉毛地黃苷、長葉毛地黃配質和生物素及其類似物所組成之群組。這種結合配對的第二夥伴(例如抗體、鏈黴抗生物素蛋白等)通常被標記以允許用於直接式檢測,例如藉由如上所述的標記。
免疫分析法通常可以以三種不同的形式進行。一種為直接式檢測、一種為間接式檢測或通過三明治分析法。直接式檢測免疫分析法使用可以直接測量的檢測(或示蹤)抗體。酶或其他分子可用於產生訊號,該訊號將產生顏色、螢光或發光,從而使訊號可被看見或測量(也可使用放射性同位素,儘管現今並不常用)。在間接式分析法中,與分析物結合的初級抗體是用於為二級抗體(示蹤抗體)提供明確的標的,該二級抗體與該初級抗體提供的標的特異性結合(稱為檢測或示蹤抗體)。二級抗體產生可測量的訊號。三明治分析法使用兩種抗體,捕獲抗體和示蹤(檢測)抗體。捕獲抗體用於結合(固定)溶液中的分析物或在溶液中與其結合。這允許從樣本中特異性地去除分析物。示蹤(檢測)抗體是用於第二步以生成訊號(如上所述直接式或間接式)。三明治形式需要兩種抗體,每種抗體在標的分子上具有不同的抗原決定位。另外,它們不能互相干擾,因為兩種抗體必須同時結合到標的上。
免疫分析中判定雙特異性抗體的不同原理,是本領域技術人員習知的:
1) 捕獲使用:
抗原之一;
針對結合位點之一的抗獨特型抗體(anti-idiotypic antibody);
2) 檢測使用:
相應的另一個抗原;
針對相應的另一個結合位點的抗獨特型抗體;
這些可以彼此獨立地組合。
如本發明之方法的血腦屏障穿透抗體
在一個態樣中,本發明涉及判定用於治療腦組織疾病的患者之雙特異性抗體的濃度,
其中,雙特異性治療性抗體包括
i) (能執行效應功能的)Fc區域,
ii) 與第一(細胞表面)標的特異性結合的兩個結合位點,及
iii) 與第二(細胞表面)標的特異性結合的一個結合位點,
其中,在投予後治療的副作用減少,
其中,副作用是選自由血管舒張、支氣管收縮、喉水腫、心壓下降和體溫過低所組成之群組中的一種或多種。
在一個實施例中,特異性結合至第一標的的兩個結合位點和特異性結合第二標的的結合位點以相反的方向排列,即一個共軛至Fc區域的N端,另一個共軛至Fc區域的C端。
在一個實施例中,第一(細胞表面)標的和第二(細胞表面)標的是不同的。
在一個實施例中,特異性結合至第一(細胞表面)標的的結合位點和特異性結合至第二(細胞表面)標的的結合位點,是位於相對的末端,即特異性結合至第一標的的結合位點,兩者/各自均在(全長)抗體重鏈的N端,而對第二個標的的結合位點,是位於雙特異性抗體的(全長)抗體重鏈之一的C端。
在一個實施例中,特異性結合至第一(細胞表面)標的的結合位點和特異性結合至第二(細胞表面)標的的結合位點,是位於雙特異性抗體之相對的末端,即特異性結合至第一標的的一個結合位點,共軛至Fc區域的第一N端,且另一個共軛至與Fc區域的第二N端,而特異性結合至第二個標的的結合位點,共軛至Fc區域的C端之一。
在一個實施例中,特異性結合至第二(細胞表面)標的的結合位點,藉由胜肽之連接子,連接至特異性結合至第一(細胞表面)標的的結合位點之一。在一個實施例中,胜肽之連接子包含胺基酸序列SEQ ID NO: 56或57。
在一個實施例中,與第二(細胞表面)標的特異性結合的結合位點是在Fc區域內,其中,CH2域、CH3域或CH4構域中任一個之至少一個結構環圈區域,其包含至少一個修飾,使得該至少一個修飾的環圈區域與第二(細胞表面)標的結合,其中,未修飾的免疫球蛋白恆定域不與該標的結合。
在一個實施例中,結合位點是抗體重鏈可變域和抗體輕鏈可變域的對子。
在一個實施例中,雙特異性治療性抗體包含
i) 第一抗體輕鏈和第一抗體重鏈的對子,
ii) 第二抗體輕鏈和第二抗體重鏈的對子,及
iii) 另外的抗體片段選自由scFv、Fab、scFab、dAb片段、DutaFab和CrossFab所組成之群組,
其中,i)和ii)的抗體鏈對子包含與第一(細胞表面)標的特異性結合的結合位點,並且iii)之另外的抗體片段包含與第二(細胞表面)標的特異性結合的結合位點。
在一個實施例中,iii)之另外的抗體片段直接或經由胜肽之連接子共軛至第一抗體重鏈或第二抗體重鏈。在一個實施例中,iii)之另外的抗體片段直接或經由胜肽之連接子共軛至i)或ii)之抗體重鏈的C端。在一個實施例中,胜肽之連接子包含胺基酸序列SEQ ID NO: 56或57。在一個實施例中,第一抗體輕鏈和第二抗體輕鏈具有相同的胺基酸序列,而第一抗體重鏈和第二抗體重鏈由用於異源二聚作用所需的突變而不同。在一個實施例中,異源二聚作用所需的突變為隆突-入-穴突變。在一個實施例中,不與iii)之另外的抗體片段共軛的抗體重鏈不包含i)C端離胺酸殘基,或ii)C端甘胺酸–離胺酸二肽。
在一個實施例中,第一標的為腦標的,第二標的為人轉鐵蛋白受體。在一個實施例中,第一標的為腦標的,第二標的為人轉鐵蛋白受體1。
在一個實施例中,腦標的選自由β-分泌酶1(BACE1)、類澱粉蛋白β(Aβ)、表皮生長因子受體(EGFR)、人表皮生長因子受體2(HER2)、人τ蛋白、磷酸化人τ蛋白、載脂蛋白E4(ApoE4)、人α-突觸核蛋白、人CD20、杭丁頓蛋白、普里昂蛋白(PrP)、白胺酸富集的重複激酶2(LRRK2)、帕金蛋白、早老素1、早老素2、γ分泌酶、死亡受體6(DR6)、類澱粉蛋白前驅蛋白(APP)、p75神經促素受體(p75NTR)、葡萄糖腦苷酶和凋亡蛋白酶6所組成之群組。在一個優選實施例中,腦標的選自由人CD20、人τ蛋白、磷酸化的人τ蛋白、人α-突觸核蛋白和人類澱粉β蛋白所組成之群組。在一個優選實施例中,腦標的為人類澱粉β蛋白。在一個實施例中,腦標的選自SEQ ID NO: 58、59、60、01、61。
在一個優選實施例中,雙特異性治療性抗體包括
i) 第一抗體輕鏈和第一抗體重鏈的對子,其包含第一輕鏈可變域和第一重鏈可變域,其形成特異性結合至腦標的的第一結合位點,該腦標的選自由人CD20、人τ蛋白、磷酸化的人τ蛋白、人α-突觸核蛋白和人類澱粉β蛋白所組成之群組,
ii) 第二抗體輕鏈和第二抗體重鏈的對子,其包含第二輕鏈可變域和第二重鏈可變域,其形成如第一結合位點一樣特異性結合至相同腦標的的第二結合位點,
iii) 另外的抗體片段選自由scFv、Fab、scFab、dAb片段、DutaFab和CrossFab所組成之群組,其包含第三輕鏈可變域和第三重鏈可變域,其形特異性結合至人轉鐵蛋白受體(轉鐵蛋白受體1)的第三結合位點,及
iv) 能執行(人)效應功能之(人IgG1亞類的)Fc區,
其中,iii)之另外的抗體片段直接或經由胜肽之連接子共軛至i)或ii)之抗體重鏈的C端。
在一個實施例中,另外的抗體片段是Fab片段,其特異性結合至第二抗原,且其經由胜肽之連接子與i)或ii)的重鏈之一的C端融合,其中,第二輕鏈和第二重鏈的恆定域CL和CH1被彼此取代,包含第三輕鏈可變域和第三重鏈可變域,其形成特異性結合至人轉鐵蛋白受體(轉鐵蛋白受體1)的第三結合位點。
在一個實施例中,特異性結合至人轉鐵蛋白受體(轉鐵蛋白受體1)的結合位點包含(a)HVR-H1,其包含胺基酸序列SEQ ID NO: 33或62;(b)HVR-H2,其包含胺基酸序列SEQ ID NO: 34或63或35;(c)HVR-H3,其包含胺基酸序列SEQ ID NO: 36、37或64;(d)HVR-L1,其包含胺基酸序列SEQ ID NO: 38或65;(e)HVR-L2,其包含胺基酸序列SEQ ID NO: 39;及(f)HVR-L3,其包含胺基酸序列SEQ ID NO: 66或40。
在一個實施例中,特異性結合至人轉鐵蛋白受體(轉鐵蛋白受體1)的結合位點包含(a)HVR-H1,其包含胺基酸序列SEQ ID NO: 33;(b)HVR-H2,其包含胺基酸序列SEQ ID NO: 34;(c)HVR-H3,其包含胺基酸序列SEQ ID NO: 37;(d)HVR-L1,其包含胺基酸序列SEQ ID NO: 38;(e)HVR-L2,其包含胺基酸序列SEQ ID NO: 39;及(f)HVR-L3,其包含胺基酸序列SEQ ID NO: 40。
在一個實施例中,治療性抗體包含SEQ ID NO:31之重鏈可變域和SEQ ID NO:32之輕鏈可變域的對子,其形成對轉鐵蛋白受體(轉鐵蛋白受體1)的結合位點,以及SEQ ID NO:19之重鏈可變域和SEQ ID NO:20之輕鏈可變域的至少一個(即一個或兩個)對子,其形成對人類澱粉β蛋白(A β )的結合位點。
在一個實施例中,治療性抗體包含SEQ ID NO:31之重鏈可變域和SEQ ID NO:32之輕鏈可變域的對子,其形成對人轉鐵蛋白受體(轉鐵蛋白受體1)的結合位點,以及SEQ ID NO:41之重鏈可變域和SEQ ID NO:42之輕鏈可變域的兩個對子,其分別形成對人CD20的結合位點。在一個實施例中,重鏈可變區域包含用白胺酸以外之任何胺基酸,取代在Kabat位置11的胺基酸殘基。在一個實施例中,取代包含用非極性胺基酸取代在Kabat位置11的胺基酸殘基。在一個優選實施例中,取代包含用以下胺基酸殘基來取代SEQ ID NO: 41之重鏈可變域中在Kabat位置11的胺基酸殘基,該胺基酸殘基選自由纈胺酸、白胺酸、異白胺酸、絲胺酸和苯丙胺酸所組成之群組。
在一個實施例中,治療性抗體包含SEQ ID NO:31之重鏈可變域和SEQ ID NO:32之輕鏈可變域的一個對子,其形成對人轉鐵蛋白受體(轉鐵蛋白受體1)的結合位點,以及SEQ ID NO:43之重鏈可變域和SEQ ID NO:44之輕鏈可變域的兩個對子,其分別形成對人α-突觸核蛋白的結合位點。
在一個實施例中,治療性抗體包含SEQ ID NO:31之重鏈可變域和SEQ ID NO:32之輕鏈可變域的一個對子,其形成對人轉鐵蛋白受體(轉鐵蛋白受體1)的結合位點,以及衍生自SEQ ID NO: 45之人源化重鏈可變域和衍生自SEQ ID NO: 46之人源化輕鏈可變域的兩個對子,其分別形成對人α-突觸核蛋白的結合位點。
在一個實施例中,治療性抗體包含SEQ ID NO:31之重鏈可變域和SEQ ID NO:32之輕鏈可變域的一個對子,其形成對人轉鐵蛋白受體的結合位點,以及衍生自SEQ ID NO: 47之人源化重鏈可變域和衍生自SEQ ID NO: 48之人源化輕鏈可變域的兩個對子,其分別形成對人α-突觸核蛋白的結合位點。
在一個實施例中,治療性抗體包含SEQ ID NO:31之重鏈可變域和SEQ ID NO:32之輕鏈可變域的一個對子,其形成對人轉鐵蛋白受體(轉鐵蛋白受體1)的結合位點,以及衍生自SEQ ID NO: 49之人源化重鏈可變域和衍生自SEQ ID NO: 50之人源化輕鏈可變域的兩個對子,其分別形成對人α-突觸核蛋白的結合位點。
在一個實施例中,治療性抗體包含SEQ ID NO:31之重鏈可變域和SEQ ID NO:32之輕鏈可變域的一個對子,其形成對人轉鐵蛋白受體(轉鐵蛋白受體1)的結合位點,以及衍生自SEQ ID NO: 51之人源化重鏈可變域和衍生自SEQ ID NO: 52之人源化輕鏈可變域的兩個對子,其分別形成對人α-突觸核蛋白的結合位點。
在一個實施例中,治療性抗體包含SEQ ID NO:31之重鏈可變域和SEQ ID NO:32之輕鏈可變域的一個對子,其形成對人轉鐵蛋白受體(轉鐵蛋白受體1)的結合位點,以及衍生自SEQ ID NO: 53之人源化重鏈可變域和衍生自SEQ ID NO: 54之人源化輕鏈可變域的兩個對子,其分別形成對人α-突觸核蛋白的結合位點。
在一個實施例中,疾病為神經疾患。在一個實施例中,疾病選自由以下項所組成之群組的神經疾患:神經病變、類澱粉變性病、癌症、眼部疾病或疾患、病毒或微生物感染、炎症、局部缺血症、神經退行性疾病、癲癇、行為障礙、胞溶體貯積症、路易氏體疾病、小兒麻痺後期症候群、Shy-Draeger症候群、橄欖體橋腦小腦萎縮、帕金森氏症、多系統萎縮症、紋狀體黑質退化症、τ蛋白病、阿茲海默症、核上神經麻痺症、朊病毒病、狂牛症、綿羊癢病、克雅氏病症候群、庫魯病、Gerstmann-Straussler-Scheinker病、慢性消耗型疾病和致死性家族性失眠症、延髓性麻痺症、運動神經元疾病、神經系統异變性障礙、Canavan病、杭丁頓氏舞蹈症、神經性類蠟脂褐質病、亞歷山大氏病、妥瑞氏症候群、Menkes氏捲髮症候群、Cockayne氏症候群、Halervorden-Spatz症候群、拉福拉病、雷特氏症候群、肝豆狀核變性、Lesch-Nyhan症候群、Unverricht-Lundborg症候群、失智症、皮克氏症、脊髓小腦性失調症、CNS及/或腦的癌症、包括由身體其他部位之癌症引起的腦轉移。在一個實施例中,疾病選自由以下項所組成之群組的神經疾患:阿茲海默症、帕金森氏症、CNS及/或腦的癌症、包括由身體其他部位之癌症引起的腦轉移以及τ蛋白病。在一個實施例中,疾病選自由阿茲海默症、帕金森氏症和τ蛋白病所組成之群組的神經疾患。
在一個實施例中,治療性抗體包含能執行效應功能的Fc區域。在一個實施例中,能執行效應功能的Fc區域是特異性結合至/可以特異性結合人FcγR的Fc區域。在一個實施例中,能執行效應功能的Fc區域可以引發ADCC。
在一個實施例中,由雙重特異性治療性抗體引起的ADCC(注射時/結合至第二(細胞表面)標的時),低於雙價雙特異性抗體引起的ADCC,該雙價雙特異性抗體僅具有一個(即精確的一個)特異性結合至第一(細胞表面)標的的結合位點,以及(精確的)一個特異性結合至第二(細胞表面)標的的結合位點,即特異性結合至第一(細胞表面)標的的結合位點之一被刪除。在一個實施例中,ADCC為低10倍或更多。
在一個實施例中,投予為靜脈內投予、皮下投予或肌內投予。
在一個實施例中,(i)的)第一抗體重鏈和(ii)的)第二抗體重鏈形成異型二聚體。在一個實施例中,第一抗體重鏈和第二抗體重鏈包含支持異型二聚體形成的突變。
在一個實施例中,
a) 抗體重鏈為人IgG1亞類的全長抗體重鏈,
b) 抗體重鏈為人IgG4亞類的全長抗體重鏈,
c) 一條抗體重鏈為具有突變T366W和視情況的S354C或Y349C之人亞類IgG1的全長抗體重鏈,而另一條抗體重鏈為具有突變T366S、L368A、Y407V和視情況的Y349C或S354C之人亞類IgG1的全長抗體重鏈,
d) 兩條抗體重鏈均為人亞類IgG1的全長抗體重鏈,其中一條抗體重鏈具有突變I253A、H310A和H435A,以及突變T366W和視情況的S354C或Y349C,而相應的另一條抗體重鏈為具有突變T366S、L368A、Y407V和視情況的Y349C或S354C,
e) 兩條抗體重鏈均為人亞類IgG1的全長抗體重鏈,其中一條抗體重鏈具有突變M252Y、S254T和T256E,以及突變T366W和視情況的S354C或Y349C,而相應的另一條抗體重鏈為具有突變T366S、L368A、Y407V和視情況的Y349C或S354C,或
f) 兩條抗體重鏈均為人亞類IgG1的抗體重鏈,其中一條抗體重鏈具有突變T307H和N434H,以及突變T366W和視情況的S354C或Y349C,而相應的另一條抗體重鏈為具有突變T366S、L368A、Y407V和視情況的Y349C或S354C。
在一個實施例中,
a) 抗體重鏈為人亞類IgG1的抗體重鏈,
b) 抗體重鏈為人亞類IgG4的抗體重鏈,
c) 一條抗體重鏈為具有突變T366W和視情況的S354C或Y349C之人亞類IgG1的抗體重鏈,而另一條抗體重鏈為具有突變T366S、L368A、Y407V和視情況的Y349C或S354C之人亞類IgG1的抗體重鏈,
d) 兩條抗體重鏈均為人亞類IgG1的抗體重鏈,其中一條抗體重鏈具有突變I253A、H310A和H435A,以及突變T366W和視情況的S354C或Y349C,而相應的另一條抗體重鏈為具有突變T366S、L368A、Y407V和視情況的Y349C或S354C,
e) 兩條抗體重鏈均為人亞類IgG1的抗體重鏈,其中一條抗體重鏈具有突變M252Y、S254T和T256E,以及突變T366W和視情況的S354C或Y349C,而相應的另一條抗體重鏈是具有突變T366S、L368A、Y407V和視情況的Y349C或S354C,或
f) 兩條抗體重鏈均為人亞類IgG1的抗體重鏈,其中一條抗體重鏈具有突變T307H和N434H,以及突變T366W和視情況的S354C或Y349C,而相應的另一條抗體重鏈是具有突變T366S、L368A、Y407V和視情況的Y349C或S354C,
其中,存在或不存在C端離胺酸或甘胺酸–離胺酸二肽。
如本發明所述之方法的實施例
Katsinelos, T.等人(Front. Immunol. 10 (2019) 1139)已經綜述了CSF、血腦屏障和血液之間的關係,如下:
IgG水準在人血清中維持在約10 mg/ml。腦是藉由血腦屏障(BBB)從血清中隔離出來,血腦屏障(BBB)對於包含IgG的大分子是不可滲透的(Neuwelt, E.A.等人,Nat. Rev. Neurosci. 12 (2011) 169-182)。取而代之的是,腦被浸在腦脊髓液(CSF)中,腦脊髓液是血液過濾且離子穿過脈絡膜叢運輸後產生的。所產生之CSF中IgG濃度比血清中低約500至1,000倍。從表面上看,腦中這種低濃度的抗體使CNS抗原作為被動免疫療法的標的是沒有吸引力的,因被動免疫療法通常是投予周圍神經系統。由於對維持抗體穩態水準的機致了解不足,使情況更加複雜。CSF在沿著脊神經和腦神經離開CNS並經由引流至淋巴系統之前,在大腦周圍流動(Louveau, A.等人,Nature 523 (2015) 337-341;Aspelund, A., J. Exp. Med. 212 (2015) 991-999)。鞘內投予的IgG可以從大腦中迅速清除,主要是透過這種大量流動並具有選擇性運輸出腦的可能貢獻。新生兒Fc受體(FcRn)在BBB處大量表達(Schlachetzki, F.等人,J. Neurochem.81 (2002) 203-206).考慮到FcRn在胞吞轉送抗體穿過胎盤的作用,已建議FcRn可以進行逆向胞吞轉送,以幫助維持CNS的低IgG環境。有證據表明抗體從大腦中清除的過程部分由抗體Fc域中介(Zhang, Y.和Pardridge, W.M., J. Neuroimmunol.114 (2001) 168-172; Cooper, P.R.等人,Brain Res. 1534 (2013) 13-21),並且在FcRn缺陷型小鼠中抗Aβ單株抗體的輸出降低(Deane, R.等人,J. Neurosci. 25 (2005) 11495-11503)。然而,周邊投予之IgG的大腦濃度在野生型小鼠和缺乏FcRn的小鼠之間沒有顯著差異(Abuqayyas, L.和Balthasar, J.P., Mol. Pharma.10 (2013) 1505-1513).
針對小型實驗動物,在藉由灌流進行採檢之前,要先將血液從腦中去除。例如,可以用冰冷的PBS以2ml/min的速度經心臟灌注持續8分鐘,隨後收穫腦部。
例如,目前正在探索使用多特異性抗體、雙特異性抗體或三特異性抗體,經由受體中介的胞吞轉送途徑,運輸治療性抗體穿過血腦屏障的方法,該多重特異性抗體包含一個或一個以上的載體分子及一個或一個以上的貨物分子。例如,可以使用轉鐵蛋白受體(TfR)結合的抗體(及其變體)作為載體,而當融合至貨物分子時,會產生能夠穿過血腦屏障的雙特異性抗體(參見例如Zuchero, Y. J, Y.等人,Neuron 89 (12016) 70-82;Bien-Ly, N等人,J. Exp. Med. 211 (2014) 233-244;US 2018/8002433;CA 3,000,560;其藉由引用併入本文)。替代地,可以將類胰島素生長因子1受體(IGF-1R)結合的抗體用作載體,並融合到貨物分子上,以產生穿過血腦屏障的雙特異性抗體(參見例如WO 2015/131256;WO 2015/131257;WO 2015/131258;藉由引用併入本文)。
為了可靠、正確地判定腦中的量,必須排除穿過血腦屏障運輸到腦中之治療性抗體的溶胞產物,並避免樣本中殘留血液的干擾。如上所述,CSF中IgG的最終濃度比血清中低約500至1,000倍,且腦是被交織的血管網所覆蓋。因此,腦組織樣本中殘留血液的改變是不可忽略。此外,即使少量的殘留血液也會嚴重干擾腦組織中抗體的定量判定。
因此,必須用腦溶胞產物樣本之殘留血液中的治療性抗體量進行校正,即扣除。
因此,需要使用在灌流階段不會顯著擴散到腦的定量血液校正標誌物。然而,如果這些被判定為處於穩態,則BBB後面會存在一個小的恆定濃度。
本發明至少部分是基於以下發現:可以藉由在採集腦樣本的前夕施用校正抗體來判定腦溶胞產物中的殘留血液的量。已發現將與獲得的腦樣本之實驗動物中的任何標的不特異性結合的抗體,用作參考抗體是特別有利的,最優選地是人胚系抗體。
因此,本文報導一種用於判定治療性抗體量的方法,該治療性抗體已從血液穿過血腦屏障運輸到實驗動物的腦中。量優選地是在腦溶胞產物樣本中判定。本發明之要點在於額外之惰性抗體的施用,該惰性抗體不被運輸穿過跨血腦屏障,在獲得腦樣本的前夕,需判定在腦樣本中運輸穿過跨血腦屏障的治療性抗體量。藉由施用惰性抗體,可以獲得腦樣本殘留血液中存在之治療性抗體量的校正值。該源自殘留血液的量用於校正非位於腦之抗體的判定量。不進行校正的判定會判定到樣本中治療性抗體的總量,即穿過血腦屏障運輸到大腦中的量以及樣本殘留血液中的量。殘留血液中治療性抗體的量不可忽略,因為血液中只有約0.1%的抗體會通過血腦屏障。因此,血液中的治療性抗體的濃度比腦中治療性抗體的濃度高出至少兩個且高達三個數量級。從而如果不以如本發明之方法進行校正,獲得的結果會太高。
這對於比對IgG或清除率接近IgG的腦穿梭工具尤為重要,因為緩慢清除的分子在血液中保持高濃度,並且如果腦中的清除量相對很小,則少量血液污染會覆蓋腦濃度的判定。
如本發明所述之方法,可以應用於任何腦組織樣本,獨立於用於從其中去除血液的方法。
如本發明所述之方法,其具有跨物種分析可行性、足夠的分析穩健性、精確度和準確性以及寬泛的靈敏範圍。
簡而言之,本發明提供了一種判定實驗動物腦樣本中殘留血液的方法,
其中,在灌流前夕,即最多5分鐘前,先投予第二惰性IgG,採集血漿樣本,進行灌流,測量並校正腦和血漿濃度
其中,優點是,通過血腦屏障的量是有限的;從而,第二惰性抗體的濃度僅反映血漿體積
其中,使用針對治療性抗體的第一特異性分析法和針對第二惰性抗體的第二特異性分析法
其中,可以預防可能混淆測量結果的抗治療性抗體抗體陽性動物的問題。
圖1提供了利用抗體間判定(腦)組織樣本中血液污染的示例性計算。
例如,使用常規ELISA,在血漿以及均質化的腦組織樣本中,判定治療性單株抗體(tmAb)和惰性參考單株抗體(refmAb)的濃度。ELISA的結果通常以SI單位[g/L]的質量濃度獲得。在第一步驟中,藉由將判定的質量濃度除以樣本的腦組織濃度,將分別為tmAb和refmAb判定的每個質量濃度轉換成單位為[g/g]的質量分數。在第二步驟中,藉由將第一步驟中獲得之惰性抗體的質量分數,除以判定的refmAb之血漿濃度,計算出腦組織樣本中的血漿殘留量,即血漿污染。從而獲得每腦樣本重量殘留血漿體積(殘留血漿體積/腦樣本重量)。在第三步驟中,藉由將tmAb的血漿濃度乘以每腦樣本重量殘留血漿體積,計算出源自血漿污染的腦組織樣本中tmAb的質量分數。在第四步驟(也是最後一步)中,藉由從第一步驟中判定的tmAb質量分數中,減去從第三步驟獲得的血漿污染之腦組織樣本中的tmAb質量分數,即可得到真實之tmAb的腦濃度。
如本發明所述之方法,在食蟹獼猴腦溶胞產物中,已應用於分析兩種分別與TfR和治療性標的1或2結合的雙特異性抗體。該抗體各自的結構如圖2所示。用於治療性抗體和參考抗體的檢測分析法,分別如圖3所示。
如實例1所概述的,用於判定惰性抗體之分析法的靈敏度為8ng/ml,即可以檢測到約1.1-1.5µL血漿/g食蟹獼猴腦(相當於約2.2-3µL血液/g食蟹猴腦))。
已分析五個不同的大腦區域:小腦、海馬迴、紋狀體、皮質和脈絡叢。
已分析四種不同的動物,其中動物1至3在腦樣本中沒有殘留血液,但是通過光分析判定的動物4卻有殘留血液(數據未顯示)。
使用如本發明所述之方法,可以檢測到這種污染,因此可以相應地校正各個值。
動物 | 時間 | 樣本組織 | DP47GS PGLALA [ng/mL] 無微波 | 血漿濃度 [µL 血漿/g 腦] | 血液污染 [µL 血液/g 腦] | DP47GS PGLALA [µg/mL] 在CPP 中 |
1 | 336 小時 | 小腦 海馬迴 紋狀體 皮質 脈絡叢 | BLQ BLQ BLQ BLQ BLQ | 25 | ||
2 | 336 小時 | 小腦 海馬迴 紋狀體 皮質 脈絡叢 | BLQ BLQ BLQ BLQ BLQ | 23 | ||
3 | 336 小時 | 小腦 海馬迴 紋狀體 皮質 脈絡叢 | BLQ BLQ BLQ BLQ BLQ | 33 | ||
4 | 336 小時 | 小腦 海馬迴 紋狀體 皮質 脈絡叢 | 18 BLQ 9 17 BLQ | 1.6 1.3 2.1 | 3 3 4 | 27 |
動物 | 判定濃度 | |||||||
血漿 | 腦[ng/g] | |||||||
[ng/mL] | [ng/µL] | 小腦 | 海馬迴 | 紋狀體 | 皮質 | 脈絡叢 | ||
1 | antibody_1 | 35 | 0.034741 | 10.9 | 50.5 | 21.0 | 13.4 | 334 |
2 | antibody_1 | 184 | 0.184316 | 21.5 | 47.5 | 28.7 | 21.8 | 744 |
3 | antibody_1 | 20 | 0.019709 | 17.3 | 46.1 | 24.4 | 24.6 | 747 |
4 | antibody_1 | 101 | 0.101429 | 17.5 | 45.1 | 28.2 | 25.1 | 385 |
腦組織濃度[g/mL]-> | 0.422 | 0.164 | 0.262 | 0.295 | 0.019 | |||
校正後的腦濃度[ng/g]-> | 17.3 | 27.9 | 24.9 | |||||
血漿 | 腦[ng/mL] | |||||||
[ng/mL] | [ng/µL] | 小腦 | 海馬迴 | 紋狀體 | 皮質 | 脈絡叢 | ||
1 | 惰性參考抗體 | 25107 | 25.107 | BLQ | BLQ | BLQ | BLQ | BLQ |
2 | 惰性參考抗體 | 25807 | 25.807 | BLQ | BLQ | BLQ | BLQ | BLQ |
3 | 惰性參考抗體 | 33193 | 33.193 | BLQ | BLQ | BLQ | BLQ | BLQ |
4 | 惰性參考抗體 | 27212 | 27.212 | 18 | BLQ | 9 | 17 | BLQ |
在進一步的研究中,15隻動物以20mg/kg的抗Aβ抗體投藥,並且15隻動物以10mg/kg的抗Aβ/TfR抗體投藥。在投予後的不同時間點之後,分析各個樣本。在所有樣本中,已經檢測到各個腦組織樣本中的殘留血液。因此,在這些情況下,利用如本發明所述的方法獲得校正後的值。
分析物 | 施用後的時間 | 動物 | 樣本組織 | 抗體 ng/g 組織 | 血漿 µl/g 組織 | |
抗Aβ抗體 | 4小時 | 29211 | 腦(小腦) | 22 | 1.0 | |
腦(海馬迴) | 21 | 0.9 | ||||
腦(紋狀體) | 20 | 0.9 | ||||
腦(皮質) | 26 | 1.2 | ||||
抗Aβ抗體 | 4小時 | 29213 | 腦(小腦) | 16 | 0.6 | |
腦(海馬迴) | 20 | 0.7 | ||||
腦(紋狀體) | 13 | 0.5 | ||||
腦(皮質) | 15 | 0.6 | ||||
腦(脈絡叢) | 822 | 29.6 | ||||
抗Aβ抗體 | 4小時 | 29214 | 腦(小腦) | 31 | 1.2 | |
腦(海馬迴) | 38 | 1.4 | ||||
腦(紋狀體) | 21 | 0.8 | ||||
腦(皮質) | 25 | 1.0 | ||||
腦(脈絡叢) | 569 | 21.7 | ||||
抗Aβ抗體 | 24小時 | 29328 | 腦(小腦) | 53 | 3.7 | |
腦(海馬迴) | 31 | 2.1 | ||||
腦(紋狀體) | 22 | 1.5 | ||||
腦(皮質) | 13 | 0.9 | ||||
腦(脈絡叢) | 925 | 63.8 | ||||
抗Aβ抗體 | 24小時 | 29329 | 腦(小腦) | 22 | 1.1 | |
腦(海馬迴) | 22 | 1.0 | ||||
腦(紋狀體) | 21 | 1.0 | ||||
腦(皮質) | 23 | 1.1 | ||||
腦(脈絡叢) | 925 | 43.6 | ||||
抗Aβ抗體 | 24小時 | 29330 | 腦(小腦) | 18 | 0.9 | |
腦(海馬迴) | 25 | 1.3 | ||||
腦(紋狀體) | 25 | 1.2 | ||||
腦(皮質) | 28 | 1.4 | ||||
腦(脈絡叢) | 493 | 25.0 | ||||
抗Aβ抗體 | 96小時 | 29208 | 腦(小腦) | 29 | 1.1 | |
腦(海馬迴) | 32 | 1.2 | ||||
腦(紋狀體) | 32 | 1.2 | ||||
腦(皮質) | 35 | 1.3 | ||||
腦(脈絡叢) | 411 | 15.0 | ||||
抗Aβ抗體 | 96小時 | 29217 | 腦(小腦) | 19 | 0.6 | |
腦(海馬迴) | 42 | 1.3 | ||||
腦(紋狀體) | 22 | 0.7 | ||||
腦(皮質) | 23 | 0.7 | ||||
腦(脈絡叢) | 925 | 28.8 | ||||
抗Aβ抗體 | 96小時 | 29219 | 腦(小腦) | 21 | 0.6 | |
腦(海馬迴) | 21 | 0.6 | ||||
腦(紋狀體) | 16 | 0.5 | ||||
腦(皮質) | 28 | 0.8 | ||||
腦(脈絡叢) | 529 | 15.7 | ||||
抗Aβ抗體 | 168小時 | 29114 | 腦(小腦) | 33 | 1.1 | |
腦(海馬迴) | 23 | 0.7 | ||||
腦(紋狀體) | 32 | 1.0 | ||||
腦(皮質) | 22 | 0.7 | ||||
腦(脈絡叢) | 493 | 15.9 | ||||
抗Aβ抗體 | 168小時 | 29119 | 腦(小腦) | 20 | 1.1 | |
腦(海馬迴) | 19 | 1.0 | ||||
腦(紋狀體) | 26 | 1.4 | ||||
腦(皮質) | 28 | 1.5 | ||||
腦(脈絡叢) | 569 | 30.7 | ||||
抗Aβ抗體 | 168小時 | 29122 | 腦(小腦) | 24 | 1.1 | |
腦(海馬迴) | 18 | 0.8 | ||||
腦(紋狀體) | 26 | 1.2 | ||||
腦(皮質) | 21 | 1.0 | ||||
腦(脈絡叢) | 925 | 42.3 | ||||
抗Aβ抗體 | 336小時 | 29140 | 腦(小腦) | 34 | 1.5 | |
腦(海馬迴) | 20 | 0.9 | ||||
腦(紋狀體) | 37 | 1.7 | ||||
腦(皮質) | 54 | 2.5 | ||||
腦(脈絡叢) | 569 | 25.7 | ||||
抗Aβ抗體 | 336小時 | 29191 | 腦(小腦) | 22 | 0.8 | |
腦(海馬迴) | 23 | 0.9 | ||||
腦(紋狀體) | 21 | 0.8 | ||||
腦(皮質) | 22 | 0.8 | ||||
腦(脈絡叢) | 925 | 34.7 | ||||
抗Aβ抗體 | 336小時 | 29194 | 腦(小腦) | 59 | 2.9 | |
腦(海馬迴) | 22 | 1.1 | ||||
腦(紋狀體) | 16 | 0.8 | ||||
腦(皮質) | 33 | 1.6 | ||||
腦(脈絡叢) | 740 | 36.2 | ||||
抗Aβ/TfR抗體 | 4小時 | 29317 | 腦(小腦) | 22 | 0.8 | |
腦(海馬迴) | 32 | 1.2 | ||||
腦(紋狀體) | 20 | 0.8 | ||||
腦(皮質) | 23 | 0.9 | ||||
腦(脈絡叢) | 206 | 7.9 | ||||
抗Aβ/TfR抗體 | 4小時 | 29319 | 腦(小腦) | 13 | 0.6 | |
腦(海馬迴) | 23 | 1.1 | ||||
腦(紋狀體) | 28 | 1.3 | ||||
腦(皮質) | 13 | 0.6 | ||||
腦(脈絡叢) | 673 | 30.8 | ||||
抗Aβ/TfR抗體 | 4小時 | 29331 | 腦(小腦) | 44 | 1.6 | |
腦(海馬迴) | 22 | 0.8 | ||||
腦(紋狀體) | 14 | 0.5 | ||||
腦(皮質) | 19 | 0.7 | ||||
腦(脈絡叢) | 617 | 21.6 | ||||
抗Aβ/TfR抗體 | 24小時 | 29197 | 腦(小腦) | 32 | 1.2 | |
腦(海馬迴) | 23 | 0.9 | ||||
腦(紋狀體) | 69 | 2.7 | ||||
腦(皮質) | 22 | 0.8 | ||||
腦(脈絡叢) | 308 | 11.9 | ||||
抗Aβ/TfR抗體 | 24小時 | 29199 | 腦(小腦) | 21 | 0.7 | |
腦(海馬迴) | 20 | 0.6 | ||||
腦(紋狀體) | 16 | 0.5 | ||||
腦(皮質) | 19 | 0.6 | ||||
腦(脈絡叢) | 296 | 9.6 | ||||
抗Aβ/TfR抗體 | 24小時 | 29201 | 腦(小腦) | 21 | 0.6 | |
腦(海馬迴) | 19 | 0.6 | ||||
腦(紋狀體) | 18 | 0.6 | ||||
腦(皮質) | 17 | 0.5 | ||||
腦(脈絡叢) | 389 | 11.7 | ||||
抗Aβ/TfR抗體 | 96小時 | 29207 | 腦(小腦) | 16 | 0.6 | |
腦(海馬迴) | 21 | 0.8 | ||||
腦(紋狀體) | 25 | 0.9 | ||||
腦(皮質) | 30 | 1.1 | ||||
腦(脈絡叢) | 389 | 14.3 | ||||
抗Aβ/TfR抗體 | 96小時 | 29218 | 腦(小腦) | 26 | 1.0 | |
腦(海馬迴) | 24 | 0.9 | ||||
腦(紋狀體) | 16 | 0.6 | ||||
腦(皮質) | 23 | 0.9 | ||||
腦(脈絡叢) | 822 | 32.1 | ||||
抗Aβ/TfR抗體 | 96小時 | 29220 | 腦(小腦) | 17 | 0.7 | |
腦(海馬迴) | 15 | 0.6 | ||||
腦(紋狀體) | 21 | 0.9 | ||||
腦(皮質) | 17 | 0.7 | ||||
腦(脈絡叢) | 389 | 16.3 | ||||
抗Aβ/TfR抗體 | 168小時 | 29118 | 腦(小腦) | 17 | 0.6 | |
腦(海馬迴) | 19 | 0.7 | ||||
腦(紋狀體) | 19 | 0.7 | ||||
腦(皮質) | 20 | 0.7 | ||||
腦(脈絡叢) | 493 | 18.4 | ||||
抗Aβ/TfR抗體 | 168小時 | 29141 | 腦(小腦) | 21 | 1.0 | |
腦(海馬迴) | 32 | 1.6 | ||||
腦(紋狀體) | 45 | 2.2 | ||||
腦(皮質) | 20 | 1.0 | ||||
腦(脈絡叢) | 1057 | 51.9 | ||||
抗Aβ/TfR抗體 | 168小時 | 29157 | 腦(小腦) | 24 | 0.7 | |
腦(海馬迴) | 24 | 0.6 | ||||
腦(紋狀體) | 50 | 1.4 | ||||
腦(皮質) | 18 | 0.5 | ||||
腦(脈絡叢) | 1057 | 28.8 | ||||
抗Aβ/TfR抗體 | 240小時 | 28640 | 腦(小腦) | 29 | 1.4 | |
腦(海馬迴) | 22 | 1.0 | ||||
腦(紋狀體) | 20 | 0.9 | ||||
腦(皮質) | 19 | 0.9 | ||||
腦(脈絡叢) | 1057 | 49.9 | ||||
抗Aβ/TfR抗體 | 240小時 | 28641 | 腦(小腦) | 14 | 0.4 | |
腦(海馬迴) | 16 | 0.5 | ||||
腦(紋狀體) | 26 | 0.8 | ||||
腦(皮質) | 19 | 0.6 | ||||
腦(脈絡叢) | 463 | 14.5 | ||||
抗Aβ/TfR抗體 | 240小時 | 29139 | 腦(小腦) | 21 | 0.9 | |
腦(海馬迴) | 17 | 0.7 | ||||
腦(紋狀體) | 22 | 0.9 | ||||
腦(皮質) | 12 | 0.5 | ||||
腦(脈絡叢) | 218 | 9.4 |
為了顯示如本發明所述之方法的一般適用性,已在C57BL/6野生型小鼠中用第二抗體,即抗TfR/標的_2抗體進行了相同的分析。
圖4顯示在存在1%食蟹獼猴腦溶胞產物(CBL; cynoBL)和1%小鼠腦溶胞產物(MBL; muBL)的情況下,惰性參考抗體檢測分析法之校正曲線的疊合圖。可以看出,基質的來源不影響分析法。
在1%MBL存在下,分析法的工作範圍為8.4ng/mL至250 ng/mL。在1%MBL的存在下,分析法中可存在高達10µg/mL的治療性抗體而不會產生干擾。
在存在1%小鼠匯集血漿(MPP)的情況下,分析法的工作範圍為11ng/mL至220ng/mL。在1%MPP的存在下,分析法中可存在高達20µg/mL的治療性抗體而不會產生干擾。
施用單一劑量20mg/ml的抗體,並在施用後24小時、48小時、96小時、168小時、336小時、504小時和672小時,對樣本進行分析。已判定腦溶胞產物和血漿中各自的濃度。在圖5中,腦溶胞產物中判定到之施用的抗體濃度,顯示為未校正的與校正後的腦濃度之比。也就是說,如果校正不影響該數值,則該比率為1。如果由於殘留血漿值的校正導致判定的第二抗體濃度降低,則該數值將小於1。更多的抗體隨著時間被運輸穿過血腦屏障,這種差異會隨之增加。從圖5可以看出,該比率隨著時間變得越來越小。從而可以看出,如本發明所述之方法所進行的校正,消除了來自腦樣本中殘留血液的干擾。圖6顯示用於判定第二抗體之對應的分析法。
如本發明所述之方法的惰性參考單株抗體
在如本發明所述之方法中,有用的惰性參考單株抗體優選地是人免疫球蛋白分子,特別是不能與抗原特異性結合的人免疫球蛋白分子。
示例性的惰性參考單株抗體為抗體DP47GS。DP47GS包括基於人VH3-23生殖系序列的重鏈可變區域序列和基於人Vk3-20胚系序列的輕鏈可變區域序列。
在一個實施例中,該惰性參考單株抗體為IgG類免疫球蛋白分子,特別為IgG1亞類免疫球蛋白分子。在一個實施例中,該惰性參考單株抗體為人免疫球蛋白分子。在一個實施例中,該惰性參考單株抗體為單株抗體。在一個實施例中,該惰性參考單株抗體不能特異性結合至抗原。在一個實施例中,該惰性參考單株抗體包含基於人VH3-23胚系序列的重鏈可變區域序列。在一個具體的實施例中,該惰性參考單株抗體包含SEQ ID NO: 67的重鏈可變區域序列。在一個實施例中,該惰性參考單株抗體包含基於人Vk3-20胚系序列的輕鏈可變區域序列。在一個具體的實施例中,該惰性參考單株抗體包含SEQ ID NO: 68的輕鏈可變區域序列。在一個甚至更具體的實施例中,該惰性參考單株抗體包含SEQ ID NO: 67的重鏈可變區域序列和SEQ ID NO: 68的輕鏈可變區域序列。在一個實施例中,該惰性參考單株抗體不能與抗原特異性結合,並且包含基於人VH3-23胚系序列的重鏈可變區域序列和基於人Vk3-20胚系序列的輕鏈可變區域序列。
在一個實施例中,該惰性參考單株抗體包含基於人VH3-23胚系序列的重鏈可變區域序列。在一個具體的實施例中,該惰性參考單株抗體包含與SEQ ID NO: 67的序列至少95%、96%、97%、98%、99%或100%同一性的重鏈可變區域序列。在一個實施例中,該惰性參考單株抗體包含基於人Vk3-20胚系序列的輕鏈可變區域序列。在一個具體的實施例中,該惰性參考單株抗體包含與SEQ ID NO: 68的序列至少95%、96%、97%、98%、99%或100%同一性的輕鏈可變區域序列。在一個甚至更具體的實施例中,該惰性參考單株抗體包含SEQ ID NO: 67的重鏈可變區域序列和SEQ ID NO: 68的輕鏈可變區域序列。包含這些可變區域序列的免疫球蛋白分子,無法特異性結合至抗原,特別是人抗原。它們缺乏與正常組織以及PBMC的結合,沒有多反應性,並且藉由成像沒有顯示出在體內有非特異性的蓄積(數據未顯示)。可變區域序列完全是基於人胚系序列,除了重鏈CDR 3以外,其中,已引入GSG序列以產生非結合的免疫球蛋白。
在一個實施例中,該惰性參考單株抗體包含具有胺基酸序列為SEQ ID NO: 67之可變域和人IgG1恆定區域的重鏈,以及具有胺基酸序列為SEQ ID NO: 68之可變域和人κ輕鏈恆定域的輕鏈。在一個實施例中,該惰性參考單株抗體在重鏈Fc區中包含突變L234A、L235A和P329G(根據Kabat EU索引編號)。
在一個實施例中,該惰性參考單株抗體包含胺基酸序列為SEQ ID NO: 69的重鏈,以及胺基酸序列為SEQ ID NO:70的輕鏈。
比較方法和結果
比較技術方法:
藉由無灌流之殘留血液量進行校正
Friden等人(J. Cerebral Blood Flow & Met 30 (2010) 150-161)從文獻中收集了有關腦血管空間的可用資訊(參見Friden等人的表1)。
根據最常用的14C-Dextran方法,腦血漿值將大約為18.1µL/g腦組織。將此應用於校正時,所有判定的數值均變為負值。
因此,僅假設總腦血漿值會存在於腦組織樣本中是不正確的。
因此,無法應用絕對值,但是需要共判定的校正因子。
因此,需要不同的校正因子。
由於會要進行灌流,因此需要對殘留血液污染進行控制。這對於比對IgG或清除率接近IgG的腦穿梭工具尤為重要─為什麼?因為緩慢清除的分子在血液中保持高濃度,而如果腦中的清除量相對很小,則少量血液污染會覆蓋腦濃度的判定。
因此,需要使用在施用及灌流階段不會顯著擴散到腦的定量血液校正標誌物。
比較標誌物:
在測試之前,被認為同樣適合作為本發明方法中之校正手段的不同其他非抗體惰性參考分子,其是具有高分子量和高內源性血液水準的其他內源性蛋白質。
補體因子
H
的判定
不同的公開物指出,在食蟹獼猴腦脊髓液以及食蟹猴腦溶胞產物中,不存在補體因子H,其中,補體因子H常見於非CSF或非腦組織。因此,已假設補體因子H的檢測,是用於在cCSF和CBL樣本中,判定殘留污染血液之可行的替代標誌物。
作為陽性對照,可以使用人的匯集血清(HPS;200–800µg/mL補體因子H)和人的匯集血漿(HPP;約300μg/mL補體因子H)。
該分析法被設置為Elecsys分析法(Roche Diagnostics GmbH, Mannheim, Germany)。對應的校正曲線如圖7所示。該分析法的工作範圍為7.8µg/mL至2000µg/mL。
樣本 | µg/mL | ||
陽性對照 | 人的匯集血漿 | 322 | |
人的匯集血清 | 324 | ||
1 | 食蟹獼猴匯集血清 | 1.4 | |
2 | 食蟹獼猴匯集血漿1 | 1.4 | |
3 | 食蟹獼猴匯集血漿2 | 1.4 | |
4 | 動物01 | HH8061813 | 1.2 |
5 | 動物02 | HH8061813 | 1.2 |
6 | 動物12 | HH7061813 | 1.2 |
7 | 動物07 | HH7061813 | 1.0 |
8 | 動物08 | HH7061813 | 1.0 |
9 | 食蟹獼猴匯集血漿1 | 1.1 | |
10 | 食蟹獼猴匯集血漿2 | 1.3 | |
11(1的複品) | 食蟹獼猴匯集血清 | 1.5 | |
陰性對照 | 食蟹獼猴腦溶胞產物動物1 | 空白值 | |
食蟹獼猴腦溶胞產物動物2 | 空白值 | ||
食蟹獼猴腦脊髓液 | 空白值 |
因此,已發現補體因子H的判定不適合作為殘留污染血液的替代標誌物,因為該分析法不夠靈敏。
α-2-
大球蛋白的判定
不同公開物指出,在食蟹獼猴腦脊髓液以及食蟹獼猴腦溶胞產物中,不存在α2-大球蛋白,其中,α2-大球蛋白常見於非CSF或非腦組織(1500-2000µg/mL)。因此,已假設α2-大球蛋白的檢測,是用於在cCSF和CBL樣本中,判定殘留污染血液之可行的替代標誌物。
用於判定α2-大球蛋白之ELISA分析法的分析法原理如圖8所示,相應的校正曲線如圖9所示。
該分析法的工作範圍為0.62ng/mL(LLOQ)至39ng/mL(ULOQ)。
人的匯集血清 | 2.8 g/l |
食蟹獼猴匯集血清1 | 36 ng/ml |
食蟹獼猴匯集血清2 | 44 ng/ml |
食蟹獼猴腦溶胞產物樣本 | 0 ng/ml |
可以確認人血清和血漿的預期值,而在食蟹獼猴匯集血清中只能檢測到預期量的1/25,000。因此,該數值太低以至於無法在稀釋形式的食蟹獼猴腦脊髓液和腦溶胞產物中,進行定量。因此,α2-大球蛋白的判定不適合作為替代標誌物。
補體成分
5a (C5a)
的判定
不同公開物指出,在食蟹獼猴腦脊髓液以及食蟹獼猴腦溶胞產物中,不存在補體成分5a,其中,補體成分5a常見於非CSF或非腦組織(人血清中60-110µg/mL)。因此,已假設補體成分5a的檢測,是用於在cCSF和CBL樣本中,判定殘留污染血液之可行的替代標誌物。
像α2-大球蛋白一樣,已建立以鼠類抗人C5a抗體作為捕獲抗體,及生物素化鼠類抗人C5a抗體作為檢測抗體的ELISA,由此,兩種抗體均結合至人C5a之非干擾的抗原決定位。對應的校正曲線如圖10所示。
該分析法的工作範圍為0.03ng/mL(LLOQ)至2ng/mL(ULOQ)。
基質中的最終濃度 | ||
人的匯集血清 | 57 | µg/mL |
人的匯集血漿 | 24.5 | µg/mL |
食蟹獼猴匯集血清1 | 52 | µg/mL |
食蟹獼猴匯集血清2 | 70 | µg/mL |
食蟹獼猴腦溶胞產物 | 11 | µg/mL |
因此,已發現可以在CBL樣本中判定到C5a。
因此,C5a的判定不適合作為替代標誌物。
使用
Magnevist®
Magnevist®(加多巴妥他-二聚體(Gadopentetate dimeglumine))是一種MRT顯影劑。假定Magnevist®不會通過血腦屏障。
藥物動力學研究表明,只有在至多15分鐘的時間裡,測得的腦部濃度可以正確地代表血液腔室。在這段時間之後,Magnevist®會擴散到腦組織中,使應用於校正變得混亂。對應的時間–進程如圖11所示。在5‑分鐘的時間點,血漿體積估計為14.1µL/g腦。
因此,這種方法無法與灌流一起,因為灌流所花費的時間會導致Magnevist穿過血腦屏障而擴散─混淆殘留血液校正。
食蟹獼猴腦脊髓液
(cCSF)
中食蟹獼猴
IgG
的判定
不同的公開物表明,在食蟹獼猴腦脊髓液中僅存在少量的食蟹獼猴IgG。因此,已假定在cCSF中總Ig的檢測是可行的替代標誌物,其用於直接判定運輸的治療性抗體。因此,建立橋式ELISA,如圖12所示。為了排除基質效應,藉由將cCSF與結合到磁珠的抗人CH1/κ抗體一起培養,來生成人IgG耗乏的cCSF。
緩衝液和人IgG耗乏的cCSF之對應的校正曲線如圖13所示。可以看出,沒有發生基質效應。
該分析法的工作範圍為120ng/ml至7.2ng/mL IgG。
使用該分析法發現,在食蟹獼猴血漿匯集樣本(CPP)中,可檢測到約11–19mg/mL IgG,而在cCSF樣本中可檢測到大量約4–18µg/mL食蟹獼猴IgG。
***
提供以下實例、序列和附圖以幫助理解本發明,其真正的範圍在所附申請專利範圍中闡明。應當理解的是,在不脫離本發明之精神的前提下,可以對所提出的步驟進行修改。
序列說明
序列識別號 | 説明 |
01 | 人Aβ42 |
02 | (G4S)4連接子 |
03 | (G4S)6G2連接子 |
04 | mAb 0012 |
05 | mAb 0012 |
06 | mAb 0012 |
07 | mAb 0012 |
08 | mAb 0015 |
09 | mAb 0015 |
10 | mAb 0015 |
11 | mAb 0015 |
12 | mAb 0020 |
13 | mAb 0020 |
14 | mAb 0020 |
15 | mAb 0024 |
16 | mAb 0024 |
17 | mAb 0024 |
18 | mAb 0024 |
19 | A-β結合位點VH |
20 | A-β結合位點VL |
21 | 轉鐵蛋白受體結合位點VH |
22 | 轉鐵蛋白受體結合位點VL |
23 | 輕鏈 |
24 | 重鏈 |
25 | 輕鏈 |
26 | 重鏈Fab片段 |
27 | 抗轉鐵蛋白受體抗體128.1 VH |
28 | 抗轉鐵蛋白受體抗體128.1 VL |
29 | 重鏈可變域 |
30 | 輕鏈可變域 |
31 | 抗轉鐵蛋白受體結合位點VH |
32 | 抗轉鐵蛋白受體結合位點VL |
33 | 抗轉鐵蛋白受體結合位點HVR-H1 |
34 | 抗轉鐵蛋白受體結合位點HVR-H2 |
35 | 抗轉鐵蛋白受體結合位點HVR-H3 |
36 | 抗轉鐵蛋白受體結合位點HVR-H3 |
37 | 抗轉鐵蛋白受體結合位點HVR-H3 |
38 | 抗轉鐵蛋白受體結合位點HVR-L1 |
39 | 抗轉鐵蛋白受體結合位點HVR-L2 |
40 | 抗轉鐵蛋白受體結合位點HVR-L3 |
41 | 重鏈可變域抗CD20抗體 |
42 | 輕鏈可變域抗CD20抗體 |
43 | 重鏈可變域抗α突觸核蛋白(asyn)抗體 |
44 | 輕鏈可變域抗α突觸核蛋白抗體 |
45 | 重鏈可變域抗α突觸核蛋白抗體 |
46 | 輕鏈可變域抗α突觸核蛋白抗體 |
47 | 重鏈可變域抗α突觸核蛋白抗體 |
48 | 輕鏈可變域抗α突觸核蛋白抗體 |
49 | 重鏈可變域抗α突觸核蛋白抗體 |
50 | 輕鏈可變域抗α突觸核蛋白抗體 |
51 | 重鏈可變域抗α突觸核蛋白抗體 |
52 | 輕鏈可變域抗α突觸核蛋白抗體 |
53 | 重鏈可變域抗α突觸核蛋白抗體 |
54 | 輕鏈可變域抗α突觸核蛋白抗體 |
55 | 葡萄糖腦苷酶 |
56 | 胜肽之連接子 |
57 | 胜肽之連接子 |
58 | 腦標的 |
59 | 腦標的 |
60 | 腦標的 |
61 | 腦標的 |
62 | 抗轉鐵蛋白受體結合位點HVR-H1 |
63 | 抗轉鐵蛋白受體結合位點HVR-H2 |
64 | 抗轉鐵蛋白受體結合位點HVR-H3 |
65 | 抗轉鐵蛋白受體結合位點HVR-L1 |
66 | 抗轉鐵蛋白受體結合位點HVR-L3 |
67 | 重鏈可變區域序列DP47GS |
68 | 輕鏈可變區域序列DP47GS |
69 | 包含重鏈之惰性參考單株抗體 |
70 | 包含輕鏈之惰性參考單株抗體 |
通用方法:
食蟹獼猴腦組織勻質物的製備
將300mg之冷凍食蟹獼猴/小鼠腦組織樣本在室溫下融化2小時。將800µL胞溶緩衝液、一錠cOmplete蛋白酶抑製劑混合物(Roche Diagnostics GmbH)溶解在50mL之組織提取試劑I(Invitrogen)中,將其添加到解凍的腦組織中。接著,將樣本在MagNA Lyser儀器(Roche Diagnostics)中以6500rpm均質化20秒。然後使用離心機5430(Eppendorf)以12,000rpm將組織勻質物離心10分鐘。最後,將上清液轉移至1.5 mL小瓶中進行進一步分析或保存在-80°C下。
實例
1
用於定量腦溶胞產物中
DP47GS-PGLALA
的
ELISA
為了定量食蟹獼猴溶胞產物樣本中的惰性參考單株抗體DP47GS-PGLALA(SEQ ID NO: 69和70),使用了一系列三明治酶聯免疫吸附分析法(ELISA)。在ELISA步驟中,所有樣本和對照均在分析法稀釋液中以1:100進行初步預稀釋,以達到所需的1%最終分析法濃度。
依次將捕獲抗體(抗DP47GS抗體、生物素化)、稀釋的校正物(DP47GS-PGLALA)以及稀釋的品管品和樣本、檢測試劑(抗PGLALA抗體株M-1.7.24,長葉毛地黃配質化)和抗長葉毛地黃配質–抗體–POD–共軛物,添加到塗佈有鏈黴抗生物素蛋白的微孔盤(SA-MTP)中。將試劑在MTP振盪器上以500rpm的溫度培養1小時,然後在每個步驟之後,將MTP用300µL之洗滌緩衝液(1 x PBS, 0.05% Tween)洗滌3次,並除去殘留的液體。此後,藉由添加ABTS溶液、山葵POD受質使所形成之固定的免疫複合物可視化,其被轉化為變色反應產物。最後,利用光度法測定顏色強度(在405nm–490nm參考波長處的吸光值)。訊號與腦溶胞產物樣本中的分析物濃度成正比。藉由回溯計算吸光值來進行DP47GS-PGLALA的定量,該回溯計算使用帶有加權之非線性4參數Wiemer-Rodbard曲線配適功能之相應的校正曲線。
品管 | 計算方式 | 腦溶胞產物 DP47GS-PGLALA 濃度 [ng/mL] | 分析法 DP47GS-PGLALA 濃度 [ng/mL] |
ULQC 定量上限 | 最高校正物 | 250 | 2.5 |
HQC 高範圍 | 最高校正物x0.75 | 185 | 1.85 |
MQC 中範圍 | HQC和LQC的幾何平均值 | 80 | 0.80 |
LQC 低範圍 | LLQCx3 | 25 | 0.25 |
LLQC 定量下限 | 最低校正物 | 8 | 0.08 |
藉由將100μL之包含500ng/mL生物素化抗DP47GS抗體的溶液,吸移到每個SA-MTP孔中,可以實現塗佈捕獲試劑。此後,MTP用黏性覆蓋箔紙覆蓋,並在MTP振盪器(500rpm)上培養1小時。除去上清液,並用300μL之洗滌緩衝液(PBS, 0.05% Tween)將MTP的每個孔洗滌3次。小心的去除殘留的洗滌緩衝液。
然後將100µl之各自的校正物、品管品和樣本送至塗佈有MTP的指定孔中。此後,MTP用黏性覆蓋箔紙覆蓋,並在MTP振盪器(500rpm)上培養1小時。除去上清液,並用300μL之洗滌緩衝液(PBS, 0.05 % Tween)將MTP的每個孔洗滌3次。小心的去除殘留的洗滌緩衝液。
然後將濃度為125ng/mL之100μL的長葉毛地黃配質化抗PGLALA抗體株M-1.7.24,添加到每個MTP孔中。此後,MTP用黏性覆蓋箔紙覆蓋,並在MTP振盪器(500rpm)上培養1小時。除去上清液,並用300μL之洗滌緩衝液(PBS, 0.05% Tween)將MTP的每個孔洗滌3次。小心的去除殘留的洗滌緩衝液。
將100μL之抗長葉毛地黃配質–抗體–POD–共軛物,以50mU/mL的濃度添加到每個MTP孔中。此後,MTP用黏性覆蓋箔紙覆蓋,並在MTP振盪器(500rpm)上培養1小時。除去上清液,並用300μL之洗滌緩衝液(PBS, 0.05% Tween)將MTP的每個孔洗滌3次。小心的去除殘留的洗滌緩衝液。
然後將100μL之ABTS溶液添加到每個MTP孔中。在405nm的測量波長下(參考波長490nm),測量光學密度,直到校正物樣本1之重複樣本的平均訊號達到1.8–2.2AU。
實例
2
ELISA
用於
CSF
中食蟹獼猴
IgG
的定量
為了定量食蟹獼猴腦脊髓液中的食蟹獼猴IgG,使用了一系列三明治酶聯免疫吸附分析法(ELISA)。在ELISA步驟中,所有樣本和對照均在分析法稀釋液中進行初步預稀釋,以達到所需的1%最終分析法濃度。
依次將捕獲抗體(抗食蟹獼猴IgG抗體1;抗原決定位1;生物素化)、稀釋的校正物以及稀釋的品管品和樣本、檢測試劑(抗食蟹獼猴IgG抗體2;抗原決定位2,不干擾抗原決定位1;長葉毛地黃配質化)和抗長葉毛地黃配質–抗體–POD–共軛物,添加到塗佈有鏈黴抗生物素蛋白的微孔盤(SA-MTP)中。將試劑在MTP振盪器上以500rpm的溫度培養1小時,然後在每個步驟之後,將MTP用300µL之洗滌緩衝液(1 x PBS, 0.05% Tween)洗滌3次,並除去殘留的液體。此後,藉由添加ABTS溶液、山葵POD受質使所形成之固定的免疫複合物可視化,其被轉化為變色反應產物。最後,利用光度法測定顏色強度(在405nm–490nm參考波長處的吸光值)。訊號與腦溶胞產物樣本中的分析物濃度成正比。藉由回溯計算吸光值來進行食蟹獼猴IgG的定量,該回溯計算使用帶有加權之非線性4參數Wiemer-Rodbard曲線配適功能之相應的校正曲線。
品管 | 計算方式 | cCSF 食蟹獼猴 IgG 濃度 [ng/mL] | 分析法 食蟹獼猴 IgG 濃度 [ng/mL] |
ULQC 定量上限 | 最高校正物 | 12000 | 120 |
HQC 高範圍 | 最高校正物x0.75 | 9000 | 90 |
MQC 中範圍 | HQC和LQC的幾何平均值 | 45000 | 45 |
LQC 低範圍 | LLQCx3 | 2200 | 22 |
LLQC 定量下限 | 最低校正物 | 720 | 7.2 |
藉由將100μL之包含250ng/mL生物素化抗食蟹獼猴IgG抗體1的溶液,吸移到每個SA-MTP孔中,可以實現塗佈捕獲試劑此後,MTP用黏性覆蓋箔紙覆蓋,並在MTP振盪器(500rpm)上培養1小時。除去上清液,並用300μL之洗滌緩衝液(PBS, 0.05% Tween)將MTP的每個孔洗滌3次。小心的去除殘留的洗滌緩衝液。
然後將100µl之各自的校正物、品管品和樣本送至塗佈有MTP的指定孔中。此後,MTP用黏性覆蓋箔紙覆蓋,並在MTP振盪器(500rpm)上培養1小時。除去上清液,並用300μL之洗滌緩衝液(PBS, 0.05% Tween)將MTP的每個孔洗滌3次。小心的去除殘留的洗滌緩衝液。
然後將濃度為250ng/mL之100μL的長葉毛地黃配質化抗食蟹獼猴IgG抗體2,添加到每個MTP孔中。此後,MTP用黏性覆蓋箔紙覆蓋,並在MTP振盪器(500rpm)上培養1小時。除去上清液,並用300μL之洗滌緩衝液(PBS, 0.05% Tween)將MTP的每個孔洗滌3次。小心的去除殘留的洗滌緩衝液。
將100μL之抗長葉毛地黃配質–抗體–POD–共軛物,以25mU/mL的濃度添加到每個MTP孔中。此後,MTP用黏性覆蓋箔紙覆蓋,並在MTP振盪器(500rpm)上培養1小時。除去上清液,並用300μL之洗滌緩衝液(PBS, 0.05% Tween)將MTP的每個孔洗滌3次。小心的去除殘留的洗滌緩衝液。
然後將100μL之ABTS溶液添加到每個MTP孔中。在405nm的測量波長下(參考波長490nm),測量光學密度,直到校正物樣本1之重複樣本的平均訊號達到1.8–2.2AU。
實例
3
腦組織溶胞產物的產生
首先,根據製造商的說明(Invitrogen;組織提取試劑I;目錄號FNN0071)製備新鮮的胞溶緩衝液。每50ml胞溶緩衝液中添加1錠Complete (Roche Diagnostics GmbH, Mannheim, Germany;目錄號:11697498001)。
其次,加入介於600µL和800µL之間的胞溶緩衝液至大約100-300mg的腦組織樣本。視情況添加MagNA Lyser綠珠。
第三,將樣本放置在MagNA Lyser (Roche Diagnostics GmbH, Mannheim, Germany)中以6500rpm的轉速運轉持續20秒。
第四,在MagNA Lyser中培養後,將樣本以12,000rpm離心10分鐘(Eppendorf Centrifuge 5430)。
第五,回收上清液(500-700µL)並保存在-80°C直至進一步分析。
Claims (17)
- 一種用於判定實驗動物的組織中的治療性抗體之濃度的方法,由此,該組織對該動物的血液循環具有屏障,並且由此,該治療性抗體已經投予該實驗動物,其中,來自用於判定該組織中的治療性抗體之濃度的該實驗動物的組織樣本中的殘餘血液之干擾是經降低的,該方法包含下列步驟:i)判定該實驗動物的血液樣本中的該治療性抗體之濃度,ii)判定該實驗動物的組織樣本中的該治療性抗體之濃度,iii)判定該實驗動物的血液樣本中的惰性參考抗體之濃度,iv)判定該實驗動物的組織樣本中的該惰性參考抗體之濃度,v)判定該組織樣本中的組織濃度,以及用下列公式判定該實驗動物的組織中的該治療性抗體之濃度:
- 如請求項1之方法,其中,該治療性抗體為雙特異性抗體。
- 如請求項2之方法,其中,該治療性抗體是與人轉鐵蛋白受體和腦標的特異性結合。
- 如請求項3之方法,其中,該腦標的為人CD20或人Aβ或人α-突觸核蛋白或人τ或人葡萄糖腦苷酶或人lingo-1或人杭丁頓蛋白(huntingtin)。
- 如請求項1至4中任一項之方法,其中,該實驗動物選自小鼠、大鼠、兔、犬、綿羊、猿及猴。
- 如請求項1至4中任一項之方法,其中,該實驗動物為體重大於100g且小於15kg的非人實驗動物。
- 如請求項1至4中任一項之方法,其中,該實驗動物為食蟹獼猴。
- 如請求項1至4中任一項之方法,其中,該惰性參考抗體為人胚系抗體。
- 如請求項1至4中任一項之方法,其中,該惰性參考抗體包含SEQ ID NO:69及70。
- 如請求項7之方法,其中,該惰性參考抗體包含SEQ ID NO:69及70。
- 如請求項1至4中任一項之方法,其中,該惰性參考抗體在其施用後15分鐘內不會以可檢測的量穿過該屏障。
- 如請求項11之方法,其中,該惰性參考抗體在其施用後10分鐘內不會以可檢測的量穿過該屏障。
- 如請求項1至4中任一項之方法,其中,該惰性參考抗體是在採集該組織樣本前約5分鐘投予。
- 如請求項7之方法,其中,該惰性參考抗體是在採集該組織樣本前約5分鐘投予。
- 如請求項9之方法,其中,該惰性參考抗體是在採集該組織樣本前約5分鐘投予。
- 如請求項1至4中任一項之方法,其中,該組織是直接在採集該血液樣本後和採集該組織樣本前用水溶液灌注。
- 如請求項1至4中任一項之方法,其中,該濃度的判定是藉由橋式ELISA。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20150135 | 2020-01-02 | ||
EP20150135.0 | 2020-01-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202138808A TW202138808A (zh) | 2021-10-16 |
TWI766512B true TWI766512B (zh) | 2022-06-01 |
Family
ID=69105719
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109146679A TWI766512B (zh) | 2020-01-02 | 2020-12-29 | 用於判定腦中的治療性抗體量之方法 |
Country Status (6)
Country | Link |
---|---|
US (3) | US11913945B2 (zh) |
EP (1) | EP4085251B1 (zh) |
JP (1) | JP2023508596A (zh) |
CN (1) | CN114930170A (zh) |
TW (1) | TWI766512B (zh) |
WO (1) | WO2021136772A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4085251B1 (en) * | 2020-01-02 | 2024-07-31 | F. Hoffmann-La Roche AG | Method for determining the amount of a therapeutic antibody in the brain |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2095818B (en) | 1981-03-27 | 1985-10-02 | Exxon Research Engineering Co | Staged adsorption/resorption heat pump |
US5238808A (en) | 1984-10-31 | 1993-08-24 | Igen, Inc. | Luminescent metal chelate labels and means for detection |
US4676980A (en) | 1985-09-23 | 1987-06-30 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Target specific cross-linked heteroantibodies |
WO1988007089A1 (en) | 1987-03-18 | 1988-09-22 | Medical Research Council | Altered antibodies |
US5068088A (en) | 1988-11-03 | 1991-11-26 | Igen, Inc. | Method and apparatus for conducting electrochemiluminescent measurements |
IL92164A (en) | 1988-11-03 | 1996-01-19 | Igen Inc | Particle-based electrochemiluminescent test method |
US5208020A (en) | 1989-10-25 | 1993-05-04 | Immunogen Inc. | Cytotoxic agents comprising maytansinoids and their therapeutic use |
GB9102385D0 (en) | 1991-02-04 | 1991-03-20 | Raychem Ltd | Temperature sensor |
IL100866A (en) | 1991-02-06 | 1995-10-31 | Igen Inc | Luminescence test method and device based on magnetic tiny particles, containing many magnets |
WO1993008829A1 (en) | 1991-11-04 | 1993-05-13 | The Regents Of The University Of California | Compositions that mediate killing of hiv-infected cells |
US5731168A (en) | 1995-03-01 | 1998-03-24 | Genentech, Inc. | Method for making heteromultimeric polypeptides |
IL132560A0 (en) | 1997-05-02 | 2001-03-19 | Genentech Inc | A method for making multispecific antibodies having heteromultimeric and common components |
TWI309240B (en) | 2004-09-17 | 2009-05-01 | Hoffmann La Roche | Anti-ox40l antibodies |
WO2006106905A1 (ja) | 2005-03-31 | 2006-10-12 | Chugai Seiyaku Kabushiki Kaisha | 会合制御によるポリペプチド製造方法 |
PL1999154T3 (pl) | 2006-03-24 | 2013-03-29 | Merck Patent Gmbh | Skonstruowane metodami inżynierii heterodimeryczne domeny białkowe |
WO2007147901A1 (en) | 2006-06-22 | 2007-12-27 | Novo Nordisk A/S | Production of bispecific antibodies |
US20090162359A1 (en) | 2007-12-21 | 2009-06-25 | Christian Klein | Bivalent, bispecific antibodies |
US8242247B2 (en) | 2007-12-21 | 2012-08-14 | Hoffmann-La Roche Inc. | Bivalent, bispecific antibodies |
US9266967B2 (en) | 2007-12-21 | 2016-02-23 | Hoffmann-La Roche, Inc. | Bivalent, bispecific antibodies |
US8227577B2 (en) | 2007-12-21 | 2012-07-24 | Hoffman-La Roche Inc. | Bivalent, bispecific antibodies |
AU2009204501B2 (en) | 2008-01-07 | 2015-02-12 | Amgen Inc. | Method for making antibody Fc-heterodimeric molecules using electrostatic steering effects |
KR101431318B1 (ko) | 2009-04-02 | 2014-08-20 | 로슈 글리카트 아게 | 전장 항체 및 단일쇄 fab 단편을 포함하는 다중특이성 항체 |
PL2417156T3 (pl) | 2009-04-07 | 2015-07-31 | Roche Glycart Ag | Trójwartościowe, bispecyficzne przeciwciała |
AU2010245011B2 (en) | 2009-04-27 | 2015-09-03 | Oncomed Pharmaceuticals, Inc. | Method for making heteromultimeric molecules |
BRPI1007602A2 (pt) | 2009-05-27 | 2016-02-16 | Hoffmann La Roche | "anticorpo tri ou tetraespecífico, método para preparação de um anticorpo triespecífico ou tetraespecífico, célula hospedeira, composição, composição farmacêutica e método para o tratamento de um paciente com necessidade de terapia" |
US9676845B2 (en) | 2009-06-16 | 2017-06-13 | Hoffmann-La Roche, Inc. | Bispecific antigen binding proteins |
US8703132B2 (en) | 2009-06-18 | 2014-04-22 | Hoffmann-La Roche, Inc. | Bispecific, tetravalent antigen binding proteins |
US20130089554A1 (en) | 2009-12-29 | 2013-04-11 | Emergent Product Development Seattle, Llc | RON Binding Constructs and Methods of Use Thereof |
EP2569337A1 (en) | 2010-05-14 | 2013-03-20 | Rinat Neuroscience Corp. | Heterodimeric proteins and methods for producing and purifying them |
RS59589B1 (sr) | 2010-11-05 | 2019-12-31 | Zymeworks Inc | Dizajniranje stabilnog heterodimernog antitela sa mutacijama u fc domenu |
PT2794905T (pt) | 2011-12-20 | 2020-06-30 | Medimmune Llc | Polipéptidos modificados para estrutura de anticorpos bispecíficos |
NZ630568A (en) | 2012-04-20 | 2017-06-30 | Merus Nv | Methods and means for the production of ch3 domain-comprising molecules |
WO2014189973A2 (en) | 2013-05-20 | 2014-11-27 | Genentech, Inc. | Anti-transferrin receptor antibodies and methods of use |
EP3114142B1 (en) | 2014-03-06 | 2019-06-05 | National Research Council of Canada | Insulin-like growth factor 1 receptor -specific antibodies and uses thereof |
JP6541237B2 (ja) | 2014-03-06 | 2019-07-10 | ナショナル リサーチ カウンシル オブ カナダ | インスリン様成長因子1受容体特異的抗体及びそれらの使用 |
CA2941654C (en) | 2014-03-06 | 2023-08-08 | National Research Council Of Canada | Insulin-like growth factor 1 receptor-specific antibodies and uses thereof |
AR106189A1 (es) | 2015-10-02 | 2017-12-20 | Hoffmann La Roche | ANTICUERPOS BIESPECÍFICOS CONTRA EL A-b HUMANO Y EL RECEPTOR DE TRANSFERRINA HUMANO Y MÉTODOS DE USO |
EP3583123A1 (en) | 2017-02-17 | 2019-12-25 | Denali Therapeutics Inc. | Anti-tau antibodies and methods of use thereof |
EP4085251B1 (en) * | 2020-01-02 | 2024-07-31 | F. Hoffmann-La Roche AG | Method for determining the amount of a therapeutic antibody in the brain |
-
2020
- 2020-12-29 EP EP20842239.4A patent/EP4085251B1/en active Active
- 2020-12-29 WO PCT/EP2020/087965 patent/WO2021136772A1/en unknown
- 2020-12-29 JP JP2022540908A patent/JP2023508596A/ja active Pending
- 2020-12-29 US US17/136,289 patent/US11913945B2/en active Active
- 2020-12-29 TW TW109146679A patent/TWI766512B/zh active
- 2020-12-29 CN CN202080090420.7A patent/CN114930170A/zh active Pending
-
2022
- 2022-06-14 US US17/806,869 patent/US20220357340A1/en not_active Abandoned
-
2024
- 2024-02-02 US US18/430,887 patent/US20240219381A1/en active Pending
Non-Patent Citations (3)
Title |
---|
期刊 C A Vedeler, R Matre, H Nyland.Immunoglobulins in serum and cerebrospinal fluid from patients with acute Guillain-Barré syndrome. Acta Neurol Scand. Vol. 73. John Wiley & Sons, Ltd. 1986 Apr 1. 388-93.; * |
期刊 Dhaval K Shah, Alison M Betts.Antibody biodistribution coefficients: inferring tissue concentrations of monoclonal antibodies based on the plasma concentrations in several preclinical species and human. mAbs. Vol. 5. Taylor & Francis. Epub 2013 Feb 13. 297-305.; * |
期刊 Silvia Maria Lavezzi, Enrica Mezzalana, Stefano Zamuner, Giuseppe De Nicolao, Peiming Ma, Monica Simeoni.MPBPK-TMDD models for mAbs: alternative models, comparison, and identifiability issues. Journal of Pharmacokinetics and Pharmacodynamics. Vol. 45. Springer Nature. Epub 2018 Nov 10. 787-802. * |
Also Published As
Publication number | Publication date |
---|---|
JP2023508596A (ja) | 2023-03-02 |
US20220357340A1 (en) | 2022-11-10 |
EP4085251A1 (en) | 2022-11-09 |
EP4085251C0 (en) | 2024-07-31 |
EP4085251B1 (en) | 2024-07-31 |
WO2021136772A1 (en) | 2021-07-08 |
TW202138808A (zh) | 2021-10-16 |
CN114930170A (zh) | 2022-08-19 |
US20240219381A1 (en) | 2024-07-04 |
US11913945B2 (en) | 2024-02-27 |
US20210364504A1 (en) | 2021-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI765890B (zh) | 針對α-突觸核蛋白之抗體及其用途 | |
CN110506057B (zh) | Alpha突触核蛋白抗体及其应用 | |
JP6949016B2 (ja) | 抗バリアントFc領域抗体および使用法 | |
JP7092881B2 (ja) | TriFabコントースボディ | |
US20240219381A1 (en) | Method for determining the amount of a therapeutic antibody in the brain | |
US20230174646A1 (en) | Compositions and Methods For Blood-Brain Barrier Delivery | |
JP7563975B2 (ja) | 治療のための薬剤、使用及び方法 | |
KR20200130354A (ko) | 신경퇴행을 검출하기 위한 분석 | |
JP7072114B2 (ja) | 抗EphA4抗体 | |
US20240141027A1 (en) | Bispecific binding molecule | |
JP2023139238A (ja) | Compボディ-多価標的結合物質 | |
US20220265819A1 (en) | Tau epitope and binding molecules | |
CA2901644A1 (en) | Agents, kits and methods for complement factor h-related protein 1 detection | |
WO2022138708A1 (ja) | 抗EphA4抗体 | |
CN118284809A (zh) | 少量抗体副产物的定量 | |
CN112239503A (zh) | 针对人TGF-β的LAP片段的抗体及其利用 |