TWI761540B - 分佈式lc濾波器結構 - Google Patents
分佈式lc濾波器結構 Download PDFInfo
- Publication number
- TWI761540B TWI761540B TW107121726A TW107121726A TWI761540B TW I761540 B TWI761540 B TW I761540B TW 107121726 A TW107121726 A TW 107121726A TW 107121726 A TW107121726 A TW 107121726A TW I761540 B TWI761540 B TW I761540B
- Authority
- TW
- Taiwan
- Prior art keywords
- distributed
- layer
- conductive layer
- filter structure
- contact array
- Prior art date
Links
- 230000003071 parasitic effect Effects 0.000 claims abstract description 33
- 239000002184 metal Substances 0.000 claims description 93
- 239000003990 capacitor Substances 0.000 claims description 48
- 239000012212 insulator Substances 0.000 claims description 28
- 239000000758 substrate Substances 0.000 claims description 26
- 230000010354 integration Effects 0.000 abstract description 7
- 230000003190 augmentative effect Effects 0.000 abstract 1
- 230000001939 inductive effect Effects 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 238000003491 array Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000009828 non-uniform distribution Methods 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/58—Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
- H01L23/64—Impedance arrangements
- H01L23/66—High-frequency adaptations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/40—Capacitors
- H01L28/60—Electrodes
- H01L28/82—Electrodes with an enlarged surface, e.g. formed by texturisation
- H01L28/90—Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/44—Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2223/00—Details relating to semiconductor or other solid state devices covered by the group H01L23/00
- H01L2223/58—Structural electrical arrangements for semiconductor devices not otherwise provided for
- H01L2223/64—Impedance arrangements
- H01L2223/66—High-frequency adaptations
- H01L2223/6605—High-frequency electrical connections
- H01L2223/6627—Waveguides, e.g. microstrip line, strip line, coplanar line
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/01—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate comprising only passive thin-film or thick-film elements formed on a common insulating substrate
- H01L27/016—Thin-film circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/10—Inductors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/01—Frequency selective two-port networks
- H03H7/0123—Frequency selective two-port networks comprising distributed impedance elements together with lumped impedance elements
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Semiconductor Integrated Circuits (AREA)
- Filters And Equalizers (AREA)
- Coils Or Transformers For Communication (AREA)
Abstract
一種分佈式LC濾波器結構係揭示。該分佈式LC濾波器結構係在相同結構中同時提供分佈式電感與分佈式電容。因此,離散的被動元件係免除且高的同質整合係達成。在分佈式電感與分佈式電容之間的互連係調整而制衡分佈式電容的寄生電感,以提高該分佈式LC濾波器結構的整體電感。類似地,該些互連係調整而制衡由分佈式電感所造成的寄生電容以和分佈式電容相加而增大該結構的整體電容。
Description
本發明係關於包括電感與電容構件之積體濾波器結構。
近來,使用愈來愈小、智慧、且獨立自主的通訊裝置之物聯網(IoT,Internet of Things)係已經出現。此等應用係預期以驅使針對於下個十年在電子整合領域之創新。明確而言,由於IoT裝置的關鍵特點係成本、尺寸、與效率,高效率、高整合的電源供應器電路之提供係在IoT應用中的研究之主要焦點。
在一般的電源供應器領域,線性調節器係已經由其操作於愈來愈高頻率之交換式電感DC-DC降壓(buck)轉換器所取代很多年。圖1係說明一種降壓DC-DC轉換器之一個實例的輸出級100之電路圖。如在圖1所示,輸出級100係包括一個串聯電感器102、一個分路電容器104、與一個負載106。電感器102係耦合在輸出級100的一個輸入端子與一個輸出端子之間。典型而言,電感器102係和一個寄生電阻110有關聯。電容器104係並聯耦合到其在輸出端子與一個接地端子之間的負載106。典型而言,電容器104係和一個寄生電阻112與一個寄生電感114有關聯。
在一種濾波應用中,一個方波輸入訊號108係提供在輸入端子,例如:藉由一個開關。方波輸入訊號108係由電感器102所積分以產生一個三角波的訊號。電容器104係將該三角波的訊號濾波以產生跨於負載106之一個低擺
幅的正弦波的輸出訊號。
在降壓轉換器之矽封裝(Silicon In Package)整合的企圖係已受到限制。一方面,此係因為(習用而言)電感器102與電容器104是由離散的裝置所作成,其針對於技術(例如:厚度不一致、熱膨脹差異等等)與可靠度的理由而無法容易整合於封裝且/或在矽上。再者,由於不佳的等效串聯電感(ESL,Equivalent Series Inductance)性能,和離散的被動構件之整合係受限於切換頻率以防止不可接受的效率損失。然而,隨著操作頻率持續提高,考慮到愈來愈小的被動值,在降壓轉換器整合方面之關注係已經重新開始。
一些嘗試係聚焦在降低電感器尺寸且加強電感器洩漏性能。其他嘗試係針對於降低對於電容構件的等效串聯電阻(ESR,Equivalent Series Resistance)與等效串聯電感(ESL)。舉例來說,圖2係基於被動積體共同基板(PICS®,Passive Integrated Common Substrate)核心的分佈式LC電感器之一種DC-DC轉換器200的橫截面圖。如在圖2所示,轉換器200係包括一種分佈式電容器結構206,其嵌入在一個矽插入件202之中。分佈式電容器結構206係設計以具有降低的寄生者(即:低的ESR與ESL)。一個離散的電感器208係堆疊在分佈式電容器結構206的頂部上以形成一種集總式LC濾波器。一個電源管理積體電路(PMIC,Power Management Integrated Circuit)204係倒裝晶片式接合到矽插入件202之上,俾使該集總式LC濾波器係接近位在PMIC 204之下方,降低雜散電容且允許一種極低的轉換器輪廓。使用該種設計,一種操作在頻率高達100MHz之高效率的轉換器係可達成。
然而,迄今,先前的方式係傾向於分別使得電感器與電容器為最佳化,導致於不同處理技術所製造的構件之無效率、異質的整合,尤其是針對於低功率轉換器。此外,在諸如圖2所示的PICS®設計中,已經嘗試聚焦在使其由分佈式電容器結構206所造成的電感為最小化或刪除,將其視為一種寄生
者。
本發明係鑒於上述問題而作成。
在一個觀點中,本發明之某些實施例係致能一種分佈式LC濾波器結構以在相同結構中同時提供分佈式電感與分佈式電容。是以,離散的被動元件係免除且高的同質整合係達成。在根據本發明的另一個觀點之某些實施例中,並非將由分佈式電容所造成的電感視為一種寄生者(且企圖使其降低),此等實施例係調整在分佈式電感與電容之間的互連而制衡此寄生電感以提高該分佈式LC濾波器結構的整體電感。同理,在分佈式電感與電容之間的互連係調整而制衡由分佈式電感所造成的寄生電容以和該分佈式電容相加而增大該結構的整體電容。
在一個實施例中,本發明係提出一種分佈式LC濾波器結構。該分佈式LC濾波器結構係包括:一個基板,其具有蝕刻在其一個頂表面上的一個溝槽;第一導電層,其配置在該溝槽中;第一絕緣體-金屬結構,其配置在該溝槽中而在該第一導電層的頂部上,該第一絕緣體-金屬結構係包含其配置在該第一導電層的頂部上之第一絕緣體層與其配置在該第一絕緣體層的頂部上之第二導電層;第二絕緣體-金屬結構,其配置在該溝槽中而在第一絕緣體-金屬結構的頂部上,該第二絕緣體-金屬結構係包含其配置在該第二導電層的頂部上之第二絕緣體層與其配置在該第二絕緣體層的頂部上之第三導電層;第一絕緣層,其沿著該基板的頂表面而沉積;第一金屬層,其沉積在該第一絕緣層的頂部上;第二絕緣層,其沉積在該第一金屬層的頂部上;第二金屬層,其沉積在該第二絕緣層的頂部上;第一接點陣列,其將該第一導電層連接到第一金屬層;第二接點陣列,其將該第二導電層連接到第二金屬層;及,第三接點陣列,其
將該第三導電層連接到第一金屬層。
在一個實施例中,該第一導電層、第二導電層、與第三導電層係分別提供第一、第二、與第三電極,該第一、第二、與第三電極係形成該分佈式LC濾波器的第一電容單元(cell)。在另一個實施例中,該第一、第二、與第三電極係形成該分佈式LC濾波器的第二電容單元,該第二電容單元係和該第一電容單元為並聯。在再一個實施例中,在該第一與第二電容單元的至少一者之中,該第一與第二電極係形成第一電容且該第二與第三電極係形成其和該第一電容為並聯的第二電容。
在一個實施例中,該第二金屬層係提供該分佈式LC濾波器結構的一個電感。在另一個實施例中,該第一接點陣列、第二接點陣列、與第三接點陣列的至少一者係裝配,俾使該第一與第二電容單元之至少一者的寄生電感係和由該第二金屬層所提供的電感為串聯耦合。該種耦合係提高該分佈式LC濾波器結構的整體電感而提供較大的濾波性能。
在一個實施例中,該第一與第二電容單元係置放在該第二金屬層的整個長度之下,因而形成一個均勻分佈的LC結構。在一個替代實施例中,該第一與第二電容單元係置放在該第二金屬層的整個長度的僅有一部分之下,因而形成一個非均勻分佈的LC結構。
在一個實施例中,該分佈式LC濾波器結構係包括L+LC、LC+L、或L+LC+L濾波器之一者。該種分佈式濾波器結構之僅有L部分係包括由該第二金屬層所提供的僅有一個電感構件而無置放在該電感構件之下的電容單元。
在一個實施例中,該分佈式LC濾波器結構的第二金屬層係具有一個長度與一個寬度,該長度係比寬度為較大至少100倍。
在一個實施例中,該第一金屬層係連接到一個接地端子,且該
第二金屬層係連接到一個輸入訊號端子。
在一個實施例中,該第一接點陣列、第二接點陣列、與第三接點陣列係具有相等的接點密度。替代或附加而言,該第一接點陣列、第二接點陣列、與第三接點陣列係具有相等的間距。在另一個實施例中,該第一接點陣列、第二接點陣列、與第三接點陣列係具有相等的接點表面。
在一個實施例中,該分佈式LC濾波器結構係耦合到接合在基板
上之一電源管理積體電路(PMIC,Power Management Integrated Circuit)倒裝晶片(flip-chip)。
在一個實施例中,分佈式LC濾波器結構係使用在諸如一個降壓轉換器之一種DC-DC轉換器。
本發明之其他特徵、元件、特性、與優點係將由關於隨附圖式之以下的實施例詳細說明而更為顯明。
100:輸出級
102:電感器
104:電容器
106:負載
108:輸入訊號
110:寄生電阻
112:寄生電阻
114:寄生電感
200:DC-DC轉換器
202:矽插入件
204:電源管理積體電路(PMIC)
206:分佈式電容器結構
208:電感器
300:分佈式LC濾波器結構
302:分佈式電感器
302-1,...,302-n:電感構件
304:分佈式電容器
304-1,...,304-n:電容構件
306-1,...,306-n:寄生電阻
308-1,...,308-n:寄生電阻
400:第一型樣佈局
402:第一導電層
404:溝槽型樣
406:第二導電層
408:第三導電層
500:第二型樣佈局
502:第一金屬層
504:第二金屬層
506:型樣
600:橫截面圖
602:層
604:層
700:橫截面圖
702:第一導電層
704:第一絕緣體層
706:第二導電層
708:第二絕緣體層
710:第三導電層
712:第一絕緣層
714:第一金屬層
716:第二絕緣層
718:第二金屬層
720:第二接點陣列
722:第三接點陣列
724:第一接點陣列
726:訊號路徑
728:接地路徑
800:橫截面圖
802:接地路徑
900:橫截面圖
902:結構的一個部分
904:結構的一個部分
1002:標號
1004:標號
1006:標號
伴隨圖式係說明本發明的某些實施例,且連同說明而用以告知熟習此技藝人士有關於如何來實施本發明。
圖1係說明一種降壓DC-DC轉換器之一個實例的輸出級之電路圖。
圖2係基於PICS®核心的集總式LC濾波器之一個實例的DC-DC轉換器之橫截面圖。
圖3係說明根據一個實施例之一個實例的分佈式LC濾波器結構之電路圖。
圖4係根據一個實施例之一個實例的分佈式LC濾波器結構之第一型樣佈局的俯視圖。
圖5係根據一個實施例之一個實例的分佈式LC濾波器結構之第二型樣佈局的俯視圖。
圖6係根據一個實施例之一個實例的分佈式LC濾波器結構之橫截面圖。
圖7係根據一個實施例之一個實例的分佈式LC濾波器結構之橫截面圖。
圖8係根據一個實施例之一個實例的分佈式LC濾波器結構之橫截面圖。
圖9係根據一個實施例之一個實例的分佈式LC濾波器結構之橫截面圖。
圖10A-G係說明其可用以形成根據一個實施例之一種分佈式LC濾波器結構的一連串型樣佈局之俯視圖。
本揭露內容係將參考伴隨圖式來描述。概括而言,一個元件最先出現於其的圖式係典型為由在該對應的參考標號中之最左的數字來指示。
本發明的實施例係克服先前解決方式的缺失。在一個觀點中,實施例係致能一種分佈式LC濾波器結構以在相同結構中同時提供分佈式電感與分佈式電容。是以,離散的被動元件係免除且高的同質整合係達成。在另一個觀點中,並非將分佈式電容所造成的電感視為一種寄生者(且企圖使其降低),實施例係調整在分佈式電感與電容之間的互連而制衡此寄生電感以提高該分佈式LC濾波器結構的整體電感。類似地,在分佈式電感與電容之間的互連係調整而制衡由分佈式電感所造成的寄生電容以和該分佈式電容相加而增大該種結構的整體電容。
圖3係說明根據一個實施例之一個實例的分佈式LC濾波器結構300之電路圖。舉例來說,分佈式LC濾波器結構300係可使用作為一種低通濾波器。在一個實施例中,分佈式LC濾波器結構300係可使用作為一個DC-DC降壓轉換器的一個輸出濾波級。在另一個實施例中,分佈式LC濾波器結構300係耦合到其倒裝晶片接合在基板上之一種電源管理積體電路(PMIC)。
如在圖3所示,分佈式LC濾波器結構300係包括一個分佈式電感
器302與一個分佈式電容器304。分佈式電感器302係包括複數個串聯電感構件302-1,...,302-n。各個電感構件302-1,...,302-n係可具有一個關聯的寄生電阻306-1,...,306-n。分佈式電容器304係包括複數個並聯電容構件304-1,...,304-n。各個電容構件304-1,...,304-n係可具有一個關聯的寄生電阻308-1,...,308-n。是以,分佈式LC濾波器結構300係基於將濾波器電感器串聯於水平路徑且將分路的電容器並聯於垂直路徑。
複數個電感構件302-1,...,302-n係可各自更包括一個各別的寄生電容,且複數個電容構件304-1,...,304-n係可各自更包括一個各別的寄生電感。在(未顯示於圖3的)一個實施例中,在分佈式電感器302與分佈式電容器304之間的互連係作成,俾使除了致能在圖3所示的電路之外,該些互連係還允許該複數個電感構件302-1,...,302-n之寄生電容和該複數個電容構件304-1,...,304-n為並聯耦合。附加或替代而言,在另一個實施例中,在分佈式電感器302與分佈式電容器304之間的互連係作成,俾使該複數個電容構件304-1,...,304-n之寄生電感和該複數個電感構件302-1,...,302-n為串聯耦合。是以,並非企圖降低該分路的電容器之寄生電感及/或該濾波器電感器之寄生電容,該些寄生者係制衡以提高該種LC濾波器的濾波器電感及/或分路的電容。由此造成的LC濾波器之性能係因而改善。
圖4與5(在下文所進而描述)係說明根據一個實施例之一個實例的分佈式LC濾波器結構之型樣佈局。在圖4與5所示的分佈式LC濾波器結構係可為分佈式LC濾波器結構300的一個實施例。
圖4係實例的分佈式LC濾波器結構之第一型樣佈局400的俯視圖。第一型樣佈局400係顯示該LC濾波器結構的一個溝槽型樣404、第一導電層402、第二導電層406、與第三導電層408之佈局。在一個實施例中,第一導電層402、第二導電層406、與第三導電層408係提供第一、第二、與第三電極,
其形成該LC濾波器結構的至少一個電容單元。為了呈現目的,中間層(諸如:在不同導電層之間的隔離層)係省略。
在一個實施例中,溝槽型樣404係藉由蝕刻一個基板的頂表面所形成。第一導電層402係接著配置在基板的頂表面且到其由溝槽型樣404所形成的溝槽中。由第一導電層402與溝槽型樣404所造成的一種型樣佈局係顯示於圖10A。溝槽型樣404係允許延伸(垂直到基板中)該LC濾波器結構所形成的電容器之表面。如此,造成的LC濾波器結構之電容係提高。然而,在另一個實施例中,LC濾波器結構係可在沒有將溝槽型樣404蝕刻到基板中的情況下而形成。
回到圖4,根據圖示的型樣,在第一絕緣體層(未顯示)係配置在第一導電層402的頂部上之後,第二導電層406係配置在第一絕緣體層的頂部上,且進入到其由溝槽型樣404所形成的溝槽中。在一個實施例中,第一絕緣體層與第二導電層406係形成該LC濾波器結構之第一絕緣體-金屬結構。如在圖4所示,第二導電層406係沿著基板的整個頂表面而配置,保留其環繞第一接點陣列CA1之第一的六角形區域,第一接點陣列CA1係配置以將第一導電層402連接到該結構的第一金屬層(未顯示,進一步論述於下文)。圖10B係說明由第一導電層402、溝槽型樣404、與第二導電層406所造成的一種型樣佈局。環繞第一接點陣列CA1(未顯示於圖10B)之第一的六角形區域係由標號1002所標示。如將由熟習此技藝人士所瞭解,由標號1002所標示的區域係可具有不同於六角形狀的其他者,諸如例如:方形、矩形、或圓形的形狀。
回到圖4,第二絕緣體層(未顯示)係接著配置在第二導電層406的頂部上,且第三導電層408係配置在第二絕緣體層的頂部上。第三導電層408係配置到由溝槽型樣404所形成的溝槽中。在一個實施例中,第二絕緣體層與第三導電層408係形成該LC濾波器結構之第二絕緣體-金屬結構。如在圖4所示,第三導電層408係沿著基板的整個頂表面而配置,保留其環繞第一接點陣
列CA1之第二的六角形區域(第二的六角形區域係包圍其由於第二導電層406之缺少所形成的第一的六角形區域)以及其環繞第二接點陣列CA2之第三的六角形區域,第二接點陣列CA2係配置以將第二導電層406連接到該結構的第二金屬層(進一步論述於下文)。
圖10C係說明由第一導電層402、溝槽型樣404、第二導電層406、與第三導電層408所造成的一種型樣佈局。第二的六角形區域係由標號1006所標示且第三的六角形區域係1004所標示。如將由熟習此技藝人士所瞭解,由標號1004及/或標號1006所標示的區域係可具有不同於六角形狀的其他者,諸如例如:方形、矩形、或圓形的形狀。
回到圖4,第三接點陣列CA3係接著配置以將第三導電層408連接到如由型樣CA3所示的結構之第一金屬。圖10D係說明由第一導電層402、溝槽型樣404、第二導電層406、第三導電層408、第一接點陣列CA1、第二接點陣列CA2、與第三接點陣列CA3所造成的一種型樣佈局。在一個實施例中,第一接點陣列CA1、第二接點陣列CA2、與第三接點陣列CA3係具有相等的接點密度(如每個表面單位之接點數所定義)。在另一個實施例中,第一接點陣列CA1、第二接點陣列CA2、與第三接點陣列CA3係具有相等的接點表面(如每個表面單位之接點的累計表面所定義)。在再一個實施例中,第一接點陣列CA1、第二接點陣列CA2、與第三接點陣列CA3係具有相等的接點間距(如在接點之間的距離所定義)。在一個實施例中,如在圖10D所示,第一接點陣列CA1係相對於第二接點陣列CA2而交錯且和第三接點陣列CA3為水平對準,第三接點陣列CA3係和第二接點陣列CA2為垂直對準。
圖5係根據一個實施例之一個實例的分佈式LC濾波器結構之第二型樣佈局500的俯視圖。第二型樣佈局500係顯示該LC濾波器結構之第一金屬層502、第二金屬層504、與一個金屬間的絕緣層之佈局。第二型樣佈局500係
對於在圖4所示的第一型樣佈局400之一個互補的佈局,且在該分佈式LC濾波器結構中,第二型樣佈局500係形成在第一型樣佈局400之上。
為了易於呈現,第一導電層402係顯示於圖5,由於其界定該種結構的最底層。
在一個實施例中,第一金屬層502係沉積在第一絕緣層(未顯示)的頂部上,第一絕緣層係沿著基板的頂表面而沉積。在一個實施例中,第一絕緣層係沿著基板的整個頂表面而沉積,除了在對應於由第一接點陣列CA1、第二接點陣列CA2、與第三接點陣列CA3所形成的聚集型樣之區域以外。
如在圖5所示,第一金屬層502係具有其對應於基板的頂表面之一種型樣,保留用於該型樣被中斷以形成六角形的島部之區域。
圖10E係說明由第一導電層402、溝槽型樣404、第一金屬層502、第一接點陣列CA1、第二接點陣列CA2、與第三接點陣列CA3所造成之一種型樣佈局。在此型樣佈局中,第一金屬層502係包括其為矩形的島部,而非為如同在圖5之中的六角形。
回到圖5,第二絕緣層(金屬間的介質)係接著形成在第一金屬層502的頂部上。在圖5,第二絕緣層係沿著基板的整個表面而形成,除了針對於由型樣506所界定的方形開口以外。在一個實施例中,型樣506係對應於第二接點陣列CA2的位置,如上所述,第二接點陣列CA2係將第二導電層506連接到第二金屬層504。
由第一導電層402、溝槽型樣404、第一金屬層502、與第二絕緣層所造成的一種型樣佈局係根據一個實施例而顯示在圖10F。如在圖10F所示,在此實施例中,型樣506係更包括條帶,其中,第二絕緣層係亦為中斷。
回到圖5,第二金屬層504係接著沉積在第二絕緣層的頂部上。如在圖5所示,第二金屬層504係具有一個線性的形狀,其具有長度(l)與寬度
(W)且l係大於W為至少100倍。由溝槽型樣404、第一金屬層502、第二金屬層504、與第二絕緣層所造成的一種型樣佈局係顯示在圖10G。
在一個實施例中,第二金屬層504係作用以提供該種分佈式LC濾波器結構之分佈式的電感。按照方程式L=f(l/W),電感值L係相關於長度l與寬度W,其中,f係代表頻率。在其他實施例中,第二金屬層504係可具有不同的佈局,如同:蜿蜒曲折的型樣、平坦的迴路、或螺旋形。
圖6係根據一個實施例之一個實例的分佈式LC濾波器結構之橫截面圖600。在一個實施例中,橫截面圖600係沿著在圖5所示的直線C-C’而對應於在上述的圖4與5所示的LC濾波器結構之一個橫截面。
如在圖6所示,第一導電層402、第二導電層406、與第三導電層408係配置在一個溝槽中。第一導電層402與第二導電層406係由第一絕緣體層(未顯示)所分開,且第二導電層406與第三導電層408係由第二絕緣體層(未顯示)所分開。
層604係對應於第一絕緣層(第一金屬間的介質),其係沉積在第三導電層408之上。層604係沿著基板的頂表面而沉積,除了針對於第一、第二、與第三接點陣列CA1、CA2、與CA3垂直延伸通過其而分別接觸第一導電層402、第二導電層406、與第三導電層408之開口以外。換言之,層604的型樣係接點陣列CA1、CA2、與CA3的聚集型樣之互補者。在圖6,通過對應於第二接點陣列CA2之層602的二個開口係可見。
第一金屬層502係沉積在層604之上,根據關於圖5之以上所論述的型樣。層602係對應於第二絕緣層(第二金屬間的介質),其係沉積在第一金屬層502之上。如圖所示,層602係沿著基板的頂表面而沉積,除了針對於對應於在圖5的型樣506之方形開口以外。此係允許第二金屬層504以接觸第二導電層406。
圖7係根據一個實施例之一個實例的分佈式LC濾波器結構之橫截面圖700。在一個實施例中,橫截面圖700係對應於參考上述的圖4與5所述的LC濾波器結構之一個橫截面。為了易於呈現,溝槽係未顯示在橫截面圖700。
如在圖7所示,該種分佈式LC濾波器結構係包括第一導電層702、第一絕緣體層704、第二導電層706、第二絕緣體層708、第三導電層710、第一絕緣層712、第一金屬層714、第二絕緣層716、第二金屬層718、第一接點陣列724、第二接點陣列720、與第三接點陣列722。
在一個實施例中,第一導電層702、第二導電層706、第三導電層710、第一金屬層714、第二金屬層718、第一接點陣列724、第二接點陣列720、與第三接點陣列722係分別對應於關於以上的圖4、5、與6所述之第一導電層402、第二導電層406、第三導電層408、第一金屬層502、第二金屬層504、第一接點陣列CA1、第二接點陣列CA2、與第三接點陣列CA3。
在一個實施例中,第一導電層702係配置在一個基板(未顯示)的頂表面上。在另一個實施例中,基板係具有蝕刻在其頂表面的溝槽且第一導電層702係配置到該溝槽中。
第一絕緣體層704係配置在第一導電層702的頂部上,且第二導電層706係配置在第一絕緣體層704的頂部上。在一個實施例中,第一絕緣體層704與第二導電層706係形成該分佈式LC濾波器結構的第一絕緣體-金屬結構。在一個實施例中,第一絕緣體-金屬結構係配置在其蝕刻到基板的溝槽中。
第二絕緣體層708係配置在第二導電層706的頂部上,且第三導電層710係配置在第二絕緣體層708的頂部上。在一個實施例中,第二絕緣體層708與第三導電層710係形成該分佈式LC濾波器結構的第二絕緣體-金屬結構。在一個實施例中,第二絕緣體-金屬結構係亦配置在其蝕刻到基板的溝槽中。
第一絕緣層712係沿著基板的頂表面而沉積在第三導電層710之
上,且第一金屬層714係沉積在第一絕緣層712的頂部上。第一接點陣列724係形成以將第一金屬層714連接到第一導電層702,且第三接點陣列722係形成以將第一金屬層714連接到第三導電層710。
第二絕緣層716係沉積在第一金屬層714的頂部上,且第二金屬層718係沉積在第二絕緣層716的頂部上。第二接點陣列720係形成以將第二金屬層718連接到第二導電層706。在一個實施例中,第二金屬層718係提供該種分佈式LC濾波器結構的一個電感。
在一個實施例中,第一導電層702、第二導電層706、與第三導電層710係分別提供第一、第二、與第三電極,其形成該分佈式LC濾波器的第一電容單元。如在圖7所示,第一電容單元係包括由第一與第二電極所形成的第一電容以及由第二與第三電極所形成的第二電容。因為第一與第三電極係均連接到第一金屬層714,第一電容與第二電容係並聯。
在另一個實施例中,第一、第二、與第三電極係形成該分佈式LC濾波器的第二電容單元(未顯示),其和該第一電容單元為並聯。在圖7的橫截面圖700,第二電容單元係將位在所顯示的第一電容單元之左側或右側。
在再一個實施例中,並聯電容單元係置於第二金屬層718的整個長度之下以作成一種均勻分佈的結構。在另一個實施例中,該些電容單元係置於第二金屬層718的僅有一部分之下以作成一種非均勻分佈的結構。舉例來說,圖9係根據一個實施例之一種非均勻分佈式LC濾波器結構之橫截面圖900。如在圖9所示,該些電容單元係設置在該結構的一個部分902之中且在該結構的一個部分904之中為中斷。如此,在該結構的一個部分904之中,僅有電感係形成。造成的結構係因此為一種LC+L結構。如將為熟習此技藝人士在基於本文揭露內容所瞭解,其他結構係可藉由形成/中斷在結構的一個或多個部分中之電容單元的形成而形成。舉例來說,該種分佈式LC濾波器結構係可設計以包括一
種L+LC、LC+L、或L+LC+L濾波器結構。
在一個實施例中,如在圖7所示,舉例來說,第一金屬層714係經由一個接地路徑728而連接到一個接地端子且第二金屬層718係經由一個訊號路徑726而連接到一個輸入訊號。在一種實施中,如在圖7之中,訊號連接係設計以提高在接地路徑728與訊號路徑726之間的互感。在另一種實施中,在圖8所示,訊號連接係設計以降低在接地路徑802與訊號路徑726之間的互感。
在另一個實施例中,從電磁干擾(EMI,Electromagnetic Interference)放射的觀點而言,尤其是在高頻,為了加強該種分佈式LC濾波器結構,一個接地平面層(未顯示)係配置在訊號路徑726之上(即:在第二金屬層718之上)。如此,電磁場係局限且關於其他構件的干擾係降低。
在一個實施例中,第一接點陣列724、第二接點陣列720、與第三接點陣列722之至少一者係裝配,俾使該第一與第二電容單元之至少一者的寄生電感係和由第二金屬層718所提供的電感為串聯耦合。替代或附加而言,第一接點陣列724、第二接點陣列720、與第三接點陣列722之至少一者係可裝配,俾使第二金屬層718的寄生電容係和該第一與第二電容單元為並聯耦合。
在實施例中,該種分佈式LC濾波器結構係可調諧以得到其具有如同一種集總式LC濾波器的等效頻率響應之一種濾波器。此外,結合電容單元間的一種創新的路由技術之分佈式電容設計係允許該種濾波器波封之極有彈性的調整。該種濾波器拒斥係可提高而同時維持高效率且改善輸出漣波。
在上述的實施例中,該種分佈式LC結構係已經主要針對於訊號濾波用途而描述。然而,該種結構係不受限於濾波應用且可使用在如將為熟習此技藝人士所將瞭解之種種其他的應用。舉例來說,該種結構係可使用以提供沿著互連線路之分佈式電容解耦合、具有對於接地的強電容耦合之傳輸線路、低通的單極濾波器、或在較高極階的濾波器中之低通的單元。
實施例的前述說明係將如此完整揭示此揭露內容的概括性質,在沒有過度實驗的情況下且在未偏離此揭露內容的概念的情況下,其他人士係可藉由應用在此技藝中的知識而容易修改及/或調整該些實施例以供種種應用。要瞭解的是,在本文中的語法或術語係為了敘述而非為限制,俾使本說明書的術語或語法係鑒於揭示內容與指導而為熟習此技藝人士所理解。
本揭露內容的實施例之廣度與範疇係不應受限於上述的示範的實施例之任一者,而應為僅根據以下的申請專利範圍來界定。
700‧‧‧橫截面圖
702‧‧‧第一導電層
704‧‧‧第一絕緣體層
706‧‧‧第二導電層
708‧‧‧第二絕緣體層
710‧‧‧第三導電層
712‧‧‧第一絕緣層
714‧‧‧第一金屬層
716‧‧‧第二絕緣層
718‧‧‧第二金屬層
720‧‧‧第二接點陣列
722‧‧‧第三接點陣列
724‧‧‧第一接點陣列
726‧‧‧訊號路徑
728‧‧‧接地路徑
Claims (12)
- 一種分佈式LC濾波器結構,其包含:一個基板,其具有蝕刻在其一個頂表面上的一個溝槽;第一導電層(702),其配置在該溝槽中;第一絕緣體-金屬結構,其配置在該溝槽中而在該第一導電層(702)的頂部上,該第一絕緣體-金屬結構係包含配置在該第一導電層(702)的頂部上之第一絕緣體層(704)與配置在該第一絕緣體層(704)的頂部上之第二導電層(706);第二絕緣體-金屬結構,其配置在該溝槽中而在該第一絕緣體-金屬結構的頂部上,該第二絕緣體-金屬結構係包含配置在該第二導電層(706)的頂部上之第二絕緣體層(708)與配置在該第二絕緣體層(708)的頂部上之第三導電層(710);第一絕緣層(712),其沿著該基板的頂表面而沉積在該第三導電層(710)之上;第一金屬層(714),其沉積在該第一絕緣層(712)的頂部上;第二絕緣層(716),其沉積在該第一金屬層(714)的頂部上;第二金屬層(718),其沉積在該第二絕緣層(716)的頂部上;第一接點陣列(724),其將該第一導電層(702)連接到第一金屬層(714);第二接點陣列(720),其將該第二導電層(706)連接到第二金屬層(718);及第三接點陣列(722),其將該第三導電層(710)連接到第一金屬層(714),其中該第一導電層(702)、第二導電層(706)、與第三導電層(710)係分別提供第一、第二、與第三電極,該第一、第二、與第三電極係形成該分佈式LC濾波器的第一電容單元;並且其中該第二金屬層(718)係具有一個長度與一個寬度,該長度係比該寬度為較大至少100倍,並且其中該第二金屬層(718)係提供該分佈式LC濾波器結構的 一個電感。
- 如請求項1所述之分佈式LC濾波器結構,其中該第一、第二、與第三電極係形成該分佈式LC濾波器的第二電容單元,該第二電容單元係和該第一電容單元為並聯。
- 如請求項2所述之分佈式LC濾波器結構,其中在該第一與第二電容單元的至少一者之中,該第一與第二電極係形成第一電容且該第二與第三電極係形成第二電容,該第一電容係和該第二電容為並聯。
- 如請求項1所述之分佈式LC濾波器結構,其中該第一接點陣列(724)、第二接點陣列(720)、與第三接點陣列(722)之至少一者係建構成使得該第一與第二電容單元之至少一者的寄生電感係和由該第二金屬層(718)所提供的電感為串聯耦合。
- 如請求項1所述之分佈式LC濾波器結構,其中該第一與第二電容單元係置放在該第二金屬層(718)的整個長度之下,因而形成一個均勻分佈的LC結構。
- 如請求項1所述之分佈式LC濾波器結構,其中該第一與第二電容單元係置放在該第二金屬層(718)的整個長度的僅有一部分之下。
- 如請求項6所述之分佈式LC濾波器結構,其中該分佈式LC濾波器結構係包括L+LC、LC+L、或L+LC+L濾波器之一者。
- 如請求項1至3中任一項所述之分佈式LC濾波器結構,其中該第一金屬層(714)係連接到一個接地端子,且該第二金屬層(718)係連接到一個輸入訊號端子。
- 如請求項1至3中任一項所述之分佈式LC濾波器結構,其中該第一接點陣列(724)、第二接點陣列(720)、與第三接點陣列(722)係具有相等的接點密度。
- 如請求項1至3中任一項所述之分佈式LC濾波器結構,其中該第一接點陣列(724)、第二接點陣列(720)、與第三接點陣列(722)係具有相等的間距。
- 如請求項1至3中任一項所述之分佈式LC濾波器結構,其中該分佈式LC濾波器結構係耦合到接合在該基板上之一電源管理積體電路(PMIC)倒裝晶片。
- 一種DC-DC轉換器,其包含如請求項1至11中任一項所述之一種分佈式LC濾波器結構。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
??17305846.2 | 2017-06-30 | ||
EP17305846.2 | 2017-06-30 | ||
EP17305846.2A EP3422417B1 (en) | 2017-06-30 | 2017-06-30 | Distributed lc filter structure |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201906167A TW201906167A (zh) | 2019-02-01 |
TWI761540B true TWI761540B (zh) | 2022-04-21 |
Family
ID=59772543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107121726A TWI761540B (zh) | 2017-06-30 | 2018-06-25 | 分佈式lc濾波器結構 |
Country Status (5)
Country | Link |
---|---|
US (2) | US10903538B2 (zh) |
EP (1) | EP3422417B1 (zh) |
CN (1) | CN110959197B (zh) |
TW (1) | TWI761540B (zh) |
WO (1) | WO2019002931A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3422417B1 (en) * | 2017-06-30 | 2021-08-04 | Murata Manufacturing Co., Ltd. | Distributed lc filter structure |
WO2020217850A1 (ja) * | 2019-04-24 | 2020-10-29 | 株式会社村田製作所 | キャパシタ |
CN111478576B (zh) * | 2020-04-30 | 2021-05-25 | 北京理工大学 | 一种滤波器设计方法 |
CN111478575B (zh) * | 2020-04-30 | 2021-05-25 | 北京理工大学 | 一种高压电源电磁干扰滤波器设计方法 |
JP2023049959A (ja) * | 2021-09-29 | 2023-04-10 | ローム株式会社 | チップ部品 |
CN115579348A (zh) * | 2022-10-26 | 2023-01-06 | 华进半导体封装先导技术研发中心有限公司 | 一种转接板结构及其制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170104057A1 (en) * | 2015-10-08 | 2017-04-13 | Ipdia | Capacitor 3d-cell and 3d-capacitor structure |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6731184B1 (en) * | 1999-07-29 | 2004-05-04 | Murata Manufacturing Co., Ltd. | High frequency switching component |
US6552696B1 (en) * | 2000-03-29 | 2003-04-22 | Hrl Laboratories, Llc | Electronically tunable reflector |
US6624500B2 (en) * | 2000-11-30 | 2003-09-23 | Kyocera Corporation | Thin-film electronic component and motherboard |
US6864669B1 (en) * | 2002-05-02 | 2005-03-08 | O2Micro International Limited | Power supply block with simplified switch configuration |
JP4843930B2 (ja) * | 2004-10-27 | 2011-12-21 | 富士電機株式会社 | 半導体装置およびその製造方法 |
JP2009500820A (ja) * | 2005-06-29 | 2009-01-08 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | アセンブリを製造する方法及びアセンブリ |
WO2007054858A2 (en) * | 2005-11-08 | 2007-05-18 | Nxp B.V. | Integrated capacitor arrangement for ultrahigh capacitance values |
US20070218699A1 (en) * | 2006-03-16 | 2007-09-20 | Tokyo Electron Limited | Plasma etching method and computer-readable storage medium |
WO2007115255A2 (en) * | 2006-03-31 | 2007-10-11 | University Of Florida Research Foundation, Inc. | Integrated power passives |
US20070246805A1 (en) * | 2006-04-25 | 2007-10-25 | Ligang Zhang | Multi-die inductor |
JP5612268B2 (ja) * | 2008-03-28 | 2014-10-22 | 株式会社東芝 | 半導体装置及びdc−dcコンバータ |
US8120142B2 (en) * | 2008-04-18 | 2012-02-21 | Alpha & Omega Semiconductor, Ltd. | Applying trenched transient voltage suppressor (TVS) technology for distributed low pass filters |
JP5127060B2 (ja) * | 2008-12-08 | 2013-01-23 | スミダコーポレーション株式会社 | 可変インダクタ |
JP5540912B2 (ja) * | 2009-08-12 | 2014-07-02 | 株式会社村田製作所 | 積層型フィルタ |
US8502340B2 (en) * | 2010-12-09 | 2013-08-06 | Tessera, Inc. | High density three-dimensional integrated capacitors |
US20130146345A1 (en) * | 2011-12-12 | 2013-06-13 | Kazuki KAJIHARA | Printed wiring board and method for manufacturing the same |
US9048809B2 (en) * | 2012-01-03 | 2015-06-02 | International Business Machines Corporation | Method of manufacturing switchable filters |
CN107852087B (zh) * | 2015-07-09 | 2020-05-22 | 建筑电子与通信公司 | 高功率密度逆变器 |
US10420171B2 (en) * | 2016-08-26 | 2019-09-17 | Qualcomm Incorporated | Semiconductor devices on two sides of an isolation layer |
US9917062B1 (en) * | 2016-09-15 | 2018-03-13 | Qualcomm Incorporated | Self-aligned transistors for dual-side processing |
EP3422417B1 (en) * | 2017-06-30 | 2021-08-04 | Murata Manufacturing Co., Ltd. | Distributed lc filter structure |
WO2019065419A1 (ja) * | 2017-09-29 | 2019-04-04 | 株式会社村田製作所 | 高周波モジュールおよび通信装置 |
EP3799084B1 (en) * | 2019-09-30 | 2023-05-03 | Murata Manufacturing Co., Ltd. | Nanomagnetic inductor cores, inductors and devices incorporating such cores, and associated manufacturing methods |
-
2017
- 2017-06-30 EP EP17305846.2A patent/EP3422417B1/en active Active
-
2018
- 2018-06-25 TW TW107121726A patent/TWI761540B/zh active
- 2018-06-29 CN CN201880049558.5A patent/CN110959197B/zh active Active
- 2018-06-29 WO PCT/IB2018/000690 patent/WO2019002931A1/en active Application Filing
-
2019
- 2019-12-27 US US16/728,403 patent/US10903538B2/en active Active
-
2020
- 2020-12-22 US US17/130,715 patent/US11862834B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170104057A1 (en) * | 2015-10-08 | 2017-04-13 | Ipdia | Capacitor 3d-cell and 3d-capacitor structure |
Also Published As
Publication number | Publication date |
---|---|
CN110959197B (zh) | 2023-08-08 |
US20210111468A1 (en) | 2021-04-15 |
US10903538B2 (en) | 2021-01-26 |
EP3422417A1 (en) | 2019-01-02 |
US20200136221A1 (en) | 2020-04-30 |
EP3422417B1 (en) | 2021-08-04 |
CN110959197A (zh) | 2020-04-03 |
TW201906167A (zh) | 2019-02-01 |
WO2019002931A1 (en) | 2019-01-03 |
US11862834B2 (en) | 2024-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI761540B (zh) | 分佈式lc濾波器結構 | |
US9978691B2 (en) | Semiconductor packages having wire bond wall to reduce coupling | |
CN101894795B (zh) | 具有多级电容器的集成电路系统及其制造方法 | |
US8310024B2 (en) | Assembly, chip and method of operating | |
US9401342B2 (en) | Semiconductor package having wire bond wall to reduce coupling | |
KR101268641B1 (ko) | 교번 층의 세그먼트를 구비하는 집적 커패시터 | |
EP3257079A1 (en) | Switched power stage with integrated passive components | |
US20070217122A1 (en) | Capacitor | |
CN112908994A (zh) | 半导体结构 | |
US8373252B1 (en) | Integrated circuit having capacitor on back surface | |
Jatlaoui et al. | New ultra low ESR Mosaïc PICS capacitors for power conversion | |
US7502218B2 (en) | Multi-terminal capacitor | |
US20100052817A1 (en) | Integrated Circuit Inductor with Transverse Interfaces | |
US9577022B2 (en) | Inductor | |
KR101102306B1 (ko) | LTCC를 이용한 GaN 증폭기의 내부 매칭 구조 | |
JP2017092292A (ja) | Lc複合デバイスおよびプロセッサ | |
CN116364705A (zh) | 半导体器件 | |
CN116913886A (zh) | 半导体装置 | |
CN117012500A (zh) | 电感结构、晶圆、裸片、芯片及电子设备 | |
CN115378387A (zh) | 滤波器元件及其设计方法和制造方法、电子设备 | |
KR20120000670A (ko) | 적층형 나선 인덕터 | |
Tseng et al. | Design considerations for radio frequency 3DICs |