TWI761316B - 來自mphosph1之胜肽及含此之疫苗 - Google Patents

來自mphosph1之胜肽及含此之疫苗 Download PDF

Info

Publication number
TWI761316B
TWI761316B TW105132521A TW105132521A TWI761316B TW I761316 B TWI761316 B TW I761316B TW 105132521 A TW105132521 A TW 105132521A TW 105132521 A TW105132521 A TW 105132521A TW I761316 B TWI761316 B TW I761316B
Authority
TW
Taiwan
Prior art keywords
peptide
present
peptides
mphosph1
hla
Prior art date
Application number
TW105132521A
Other languages
English (en)
Other versions
TW201726705A (zh
Inventor
山下祥子
引地哲郎
Original Assignee
日商腫瘤療法 科學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商腫瘤療法 科學股份有限公司 filed Critical 日商腫瘤療法 科學股份有限公司
Publication of TW201726705A publication Critical patent/TW201726705A/zh
Application granted granted Critical
Publication of TWI761316B publication Critical patent/TWI761316B/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/15Cells of the myeloid line, e.g. granulocytes, basophils, eosinophils, neutrophils, leucocytes, monocytes, macrophages or mast cells; Myeloid precursor cells; Antigen-presenting cells, e.g. dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001148Regulators of development
    • A61K39/001149Cell cycle regulated proteins, e.g. cyclin, CDC, CDK or INK-CCR
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • C12N5/0638Cytotoxic T lymphocytes [CTL] or lymphokine activated killer cells [LAK]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5047Cells of the immune system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5047Cells of the immune system
    • G01N33/505Cells of the immune system involving T-cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5154Antigen presenting cells [APCs], e.g. dendritic cells or macrophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5158Antigen-pulsed cells, e.g. T-cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/998Proteins not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/11Coculture with; Conditioned medium produced by blood or immune system cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/11Coculture with; Conditioned medium produced by blood or immune system cells
    • C12N2502/1114T cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Mycology (AREA)
  • Virology (AREA)
  • Urology & Nephrology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Oncology (AREA)
  • Physics & Mathematics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)

Abstract

本發明提供具有細胞毒性T細胞誘導能力之來自MPHOSPH1的抗原決定位胜肽。本發明並提供編碼為該胜肽之多核苷酸、呈現該胜肽之抗原呈現細胞及誘導以該胜肽為標靶之細胞毒性T細胞、及該抗原呈現細胞或該CTL之方法。本發明更提供包含以該等作為有效成分之組合物及藥學組合物。本發明更提供使用本發明之胜肽、多核苷酸、抗原呈現細胞、細胞毒性T細胞、或本發明之藥學組合物來治療及/或預防癌,及/或預防術後之癌再發之方法。又,提供誘導對於癌之免疫反應之方法。

Description

來自MPHOSPH1之胜肽及含此之疫苗
本發明係關於生物科學領域,更具體而言係關於癌療法之領域。尤其,本發明係關於作為癌疫苗有效之新穎胜肽、使用該胜肽之腫瘤之治療及預防中任一者或兩者之方法、及含有該胜肽之醫藥組合物。
已知CD8陽性細胞毒性T淋巴球(cytotoxic T lymphocyte:CTL)會辨認在細胞表面表現的主要組織相容複合體(MHC)第I類分子上呈現的來自腫瘤相關抗原(tumor-associated antigen:TAA)之抗原決定位胜肽,然後殺傷腫瘤細胞。自發現了黑色素瘤抗原(MAGE)家族以來,已有許多的TAA利用免疫學的方法被找到(非專利文獻1:Boon T,Int J Cancer 1993,54(2):177-80;非專利文獻2:Boon T & van der Bruggen P,J Exp Med 1996,183(3):725-9)。此等TAA中的一些作為免疫療法的標靶現已處於臨床開發的過程。
多數TAA中的一些已鑑別係能被CTL辨認之抗原決定位胜肽,期待應用於針對各種癌之免疫療法(非專利文獻3:Harris CC,J Natl Cancer Inst 1996,88(20):1442-55;非專利文獻4:Butterfield LH et al.,Cancer Res 1999,59(13):3134-42;非專利文獻5:Vissers JL et al.,Cancer Res 1999,59(21):5554-9;非專利文獻6:van der Burg SH et al.,J Immunol 1996,156(9):3308-14;非專利文獻7:Tanaka F et al.,Cancer Res 1997,57(20):4465-8;非專利文獻8:Fujie T et al.,Int J Cancer 1999,80(2):169-72;非專利文獻9:Kikuchi M et al.,Int J Cancer 1999,81(3):459-66;非專利文獻10:Oiso M et al.,Int J Cancer 1999,81(3):387-94)。直到現在,已有一些使用了來自該等TAA之CTL抗原決定位胜肽之臨床試驗被報告。但遺憾地,這些臨床試驗許多只顯示低的功效(非專利文獻11:Belli F et al.,J Clin Oncol 2002,20(20):4169-80;非專利文獻12:Coulie PG et al.,Immunol Rev 2002,188:33-42;非專利文獻13:Rosenberg SA et al.,Nat Med 2004,10(9):909-15)。因此,仍須要能鑑定可使用在癌免疫療法之新穎CTL抗原決定位胜肽。
MPHOSPH1(M期磷蛋白1;參考序列:GenBank存取編號NM_016195(序列編號:185)或NM_001284259(序列編號:187))在G2/M過渡期會專一地磷酸化,已鑑別是作為驅使細胞周期進行之驅動蛋白(Kinesin)相關蛋白質之特性蛋白質之一。尤其MPHOSPH1據報告是具有在細胞質分裂中發揮重要作用之分裂促進作用之分子馬達(非專利文獻14:Abaza A et al.,J Biol Chem 2003,278:27844-52)。另一方面,MPHOSPH1已利用使用包括27,648個基因為對象之基因體之cDNA微陣列之基因表現輪廓解析,鑑別為在膀胱癌中向上調控的新穎分子(非專利文獻15:Kanehira M et al.,Cancer Res 2007,67(7):3276-85)。此外,在北方點墨法解析中除了睪丸以 外在正常的重要器官並未找到MPHOSPH1之基因產物。再者,利用siRNA所為之MPHOSPH1表現之向下調控會引起膀胱癌細胞株之細胞增殖抑制(專利文獻1:WO2006/085684;專利文獻2:WO2008/023842)。
最近已有人鑑別出來自MPHOSPH1之HLA-A02限制性抗原決定位胜肽(專利文獻3:WO2013/024582;專利文獻4:WO2008/047473)及HLA-A24限制性CTL抗原決定位胜肽(專利文獻4:WO2008/047473)。該等胜肽所獲致之治療效果在有HLA-A02型或HLA-A24型之癌患者能夠期待,但其他癌患者無法期待。
[先前技術文獻] [專利文獻]
[專利文獻1]WO2006/085684
[專利文獻2]WO2008/023842
[專利文獻3]WO2013/024582
[專利文獻4]WO2008/047473
[非專利文獻]
[非專利文獻1]Boon T, Int J Cancer 1993, 54(2): 177-80
[非專利文獻2]Boon T & van der Bruggen P, J Exp Med 1996, 183(3):725-9
[非專利文獻3]Harris CC, J Natl Cancer Inst 1996, 88(20):1442-55
[非專利文獻4]Butterfield LH et al., Cancer Res 1999, 59(13):3134-42
[非專利文獻5]Vissers JL et al., Cancer Res 1999, 59(21):5554-9
[非專利文獻6]van der Burg SH et al., J Immunol 1996, 156(9):3308-14
[非專利文獻7]Tanaka F et al., Cancer Res 1997, 57(20):4465-8
[非專利文獻8]Fujie T et al., Int J Cancer 1999, 80(2):169-72
[非專利文獻9]Kikuchi M et al., Int J Cancer 1999, 81(3):459-66
[非專利文獻10]Oiso M et al., Int J Cancer 1999, 81(3):387-94
[非專利文獻11]Belli F et al., J Clin Oncol 2002, 20(20):4169-80
[非專利文獻12]Coulie PG et al., Immunol Rev 2002, 188:33-42
[非專利文獻13]Rosenberg SA et al., Nat Med 2004, 10(9):909-15
[非專利文獻14]Abaza A et al.,J Biol Chem 2003,278:27844-52
[非專利文獻15]Kanehira M et al.,Cancer Res 2007,67(7):3276-85
本發明係關於一種胜肽,能誘導針對表現MPHOSPH1之細胞會專一性地反應之CTL。該等胜肽和人白血球抗原(human leukocyte antigen:HLA)形成複合體,且此複合體若利用在本身表面上呈現之抗原呈現細胞(antigen-presenting cell:APC)向CD8陽性T細胞呈現,會誘導顯示胜肽專一性之細胞毒性活性之CTL。至今所鑑別之來自MPHOSPH1的具有CTL誘導能力之胜肽為HLA-A02限制性及HLA-A24限制性之胜肽,於抗原呈現細胞未表現該等HLA時,無法誘導CTL。所以,當於不具該等HLA之對象進行免疫療法時,習知之胜肽不適合。HLA-A11及HLA-A33為亞洲人種常見的對偶基因(Cao K et al.,Hum Immunol 2001;62(9):1009-30),期望對於HLA-A11陽性之對象宜投予HLA-A11限制性之胜肽,期望對於HLA-A33陽性之對象宜投予HLA-A33限制性之胜肽,所以,本發明係關於HLA-A11或HLA-A33限制性之來自MPHOSPH1之胜肽且係關於具有CTL誘導能力之胜肽。由本說明書揭示之結果可印證:本發明之胜肽為能誘導針對表現MPHOSPH1及HLA-A11或HLA-A33之細胞之強力且專一性免疫反應的抗原決定位胜肽。
因此,本發明一目的為提供能以HLA-A11或HLA-A33限制性之樣式誘導CTL之來自MPHOSPH1的胜肽。該等胜肽能用於在體外(in vitro)、活體外(ex vivo)或活體內(in vivo)內誘導CTL,或用於為了誘導針對表現MPHOSPH1之癌細胞之免疫反應而對於對象投予。理想的胜肽為包括選自序列 編號:5、12、27、52、53、118、119及170之中的胺基酸序列者,更佳為九胜肽或十胜肽,更佳為由選自於序列編號:5、12、27、52、53、118、119及170之中之胺基酸序列構成的胜肽。
本發明之胜肽只要結果產生之改變胜肽能保持原本胜肽之CTL誘導能力即可,也包括1個、2個、或更多胺基酸取代、缺失、插入及/或加成之胜肽。
本發明也提供編碼為本發明之任一胜肽之經單離的多核苷酸。該等多核苷酸和本發明之胜肽同樣,可用以誘導具有CTL誘導能力之APC,且可為了誘導針對表現MPHOSPH1之癌細胞之免疫反應而對於對象投予。
本發明更提供包含本發明之一或多種胜肽、編碼為本發明之一或多種胜肽之一或多種多核苷酸、本發明之APC、呈現本發明之胜肽之外吐小體、及/或本發明之CTL之組合物。本發明之組合物較佳為藥學組合物。本發明之藥學組合物可用於癌治療及/或預防、及預防術後之癌再發。又,可用於誘導對於癌之免疫反應。對於對象投予時,本發明之胜肽係呈現於APC之表面上,藉此誘導將該胜肽作為標靶之CTL。因此本發明之另一目的為提供用以誘導CTL之組合物,且係包含本發明之一或多種胜肽、編碼為本發明之一或多種胜肽之一或多種多核苷酸、本發明之APC、及/或呈現本發明之胜肽之外吐小體(exosome)之組合物。
本發明之另一目的為提供誘導具CTL誘導能力之APC之方法,且係包括以下步驟:使APC和本發明之一或多種 胜肽接觸,或使編碼為本發明之任一胜肽之多核苷酸導入到APC。
本發明更提供誘導CTL之方法,包括以下步驟:將CD8陽性T細胞和於自身表面上呈現HLA抗原與本發明胜肽之複合體之APC進行共培養、將CD8陽性T細胞與於自身表面上呈現HLA抗原與本發明胜肽之複合體之外吐小體進行共培養、或將包括編碼為能結合於在細胞表面上由HLA抗原呈現之本發明之胜肽的T細胞受體(T cell receptor:TCR)之各次單元之多核苷酸之載體導入到CD8陽性T細胞。本發明中,理想之HLA抗原為HLA-A11或HLA-A33。
本發明又另一目的為提供於自身表面上呈現HLA抗原與本發明胜肽之複合體之經單離之APC。本發明更提供將本發明之胜肽作為標靶之已單離之CTL。該等APC及CTL可用在對付表現MPHOSPH1之癌之免疫療法。本發明中,作為免疫療法之對象之癌,例如以同型或異型具有HLA-A11或HLA-A33之患者之癌。因此前述APC或CTL亦為以同型或異型具有HLA-A11或HLA-A33之細胞。亦即本發明提供表現MPHOSPH1以及選自HLA-A11及HLA-A33中之至少一種HLA抗原之癌之免疫療法。
本發明另一目的為提供誘導對象中之對於癌之免疫反應之方法,包括以下步驟:將本發明之胜肽、編碼為該胜肽之多核苷酸、本發明之APC、呈現本發明胜肽之外吐小體、及/或本發明之CTL對於該對象投予。本發明之另一目的為提供治療及/或預防對象中之癌及預防其術後之癌再發之方法, 包括以下步驟:將本發明之胜肽、編碼為該胜肽之多核苷酸、本發明之APC、呈現本發明胜肽之外吐小體、及/或本發明之CTL對於該對象投予。
如上述所述,此外,本發明之其他目的及特徵將合併附帶的圖表及實施例於以下詳細說明,而能被充分明瞭。但前述發明內容及以下之詳細說明均為例示態樣,應理解為不限定為本發明或本發明之其他替代態樣。尤其,本發明將參照一些特定態樣於本說明書說明,但此說明係例證本發明,應理解為不作為限定本發明構成。該技術領域中有通常知識者可在不脫離附帶之申請專利範圍記載之本發明之精神及範圍而想到各種變更及適用。同樣,本發明之其他目的、特徵、利益、及優點將由本概要及以下記載之特定態樣而明白,對於該技術領域中有通常知識者而言,可輕易地明白。如此的目的、特徵、利益、及優點可和附帶實施例、資料、圖表、及由此引出的各種妥當推論一起,而考慮上述單獨或納入本說明書之參考文獻而明白。
【第1圖】第1圖顯示使用來自MPHOSPH1的胜肽誘導之細胞實施之IFN-γ酵素連結免疫斑點(ELISPOT)分析結果,包括照片(a)~(f)。圖中,「+」代表經以目的胜肽衝擊(pulse)的標靶細胞對應的IFN-γ產生,「-」代表未經任一胜肽衝擊之標靶細胞對應之IFN-γ產生(陰性對照)。由和陰性對照之比較可明白: 使用MPHOSPH1-A11-9-762(序列編號:5)之孔編號#3(a)、使用MPHOSPH1-A11-9-1227(序列編號:12)之孔編號#2(b)、使用MPHOSPH1-A11-9-96(序列編號:27)之孔編號#5(c)、使用MPHOSPH1-A11-10-1546(序列編號:52)之孔編號#6(d)及使用MPHOSPH1-A11-10-1675(序列編號:53)之孔編號#5(e)中確認有胜肽專一性IFN-γ產生。照片上,以四角包圍的顯示反應的細胞代表為了建立CTL株使其增殖。另一方面作為未顯示專一性IFN-γ產生的典型的陰性數據的例子,顯示MPHOSPH1-A11-9-739(序列編號:4)(f)。
【第2圖】第2圖顯示將從以MPHOSPH1-A11-9-1227(序列編號:12)(a)及MPHOSPH1-A11-10-1546(序列編號:52)(b)刺激之CTL株產生之IFN-γ以IFN-γ酵素連結免疫吸附測定法(ELISA)之測定結果,包括折線圖(a)~(b)。該等結果實際驗證:經各胜肽誘導後,建立了胜肽專一性地產生IFN-γ之CTL株。圖中,「+」代表經目的胜肽衝擊之標靶細胞所對應之CTL株之IFN-γ產生,「-」代表未經任一胜肽衝擊之標靶細胞所對應之CTL株之IFN-γ產生。R/S比,代表:為反應細胞(Responder cells)之CTL株之細胞數與刺激其之標靶細胞(Stimulator cells)之細胞數之比。
【第3圖】第3圖顯示從經MPHOSPH1-A11-9-1227(序列編號:12)(a)及MPHOSPH1-A11-10-1546(序列編號:52)(b)誘導後,利用極限稀釋法建立之CTL選殖體之IFN-γ產生,包括一連串折線圖(a)~(b)。該等結果顯示CTL選殖體之胜肽專一性的IFN-γ產生。圖中,「+」代表經目的胜肽衝擊之標靶細胞 所對應之CTL選殖體之IFN-γ產生、「-」代表未經任一胜肽衝擊之標靶細胞所對應之CTL選殖體之IFN-γ產生。R/S比代表:為反應細胞(Responder cells)之CTL選殖體之細胞數與刺激其之標靶細胞(Stimulator cells)之細胞數之比。
【第4圖】第4圖顯示針對表現MPHOSPH1及HLA-A*11:01兩者之標靶細胞之CTL選殖體之IFN-γ產生之折線圖。製備已導入了HLA-A*11:01或全長MPHOSPH1基因中任一者而得之標靶細胞作為陰性對照。使用MPHOSPH1-A11-10-1546(序列編號:52)誘導建立之CTL選殖體,對於已導入了MPHOSPH1及HLA-A*11:01基因兩者而得之COS7細胞顯示IFN-γ產生(黑菱形)。另一方面,對於導入了HLA-A*11:01(三角)或MPHOSPH1(白圓)中任一者而得之COS7細胞未顯示顯著的IFN-γ產生。
【第5圖】第5圖顯示使用來自MPHOSPH1的胜肽誘導的細胞實施的IFN-γ酵素結合免疫斑點(ELISPOT)分析結果,包括照片(a)~(d)。圖中,「+」代表經目的胜肽衝擊之標靶細胞所對應之IFN-γ產生,「-」代表未經任一胜肽衝擊之標靶細胞所對應之IFN-γ產生(陰性對照)。由和陰性對照之比較可知:使用MPHOSPH1-A33-9-608(序列編號:118)之孔編號#4(a)、使用MPHOSPH1-A33-9-1474(序列編號:119)之孔編號#6(b)及使用MPHOSPH1-A33-10-57(序列編號:170)之編號#8(c)中確認有胜肽專一性的IFN-γ產生。照片上,以四角包圍的顯示反應的細胞代表為了建立CTL株使其增殖。另一方面作為未顯示專一性IFN-γ產生的典型的陰性數據的例子,顯示 MPHOSPH1-A33-9-1663(序列編號:48)(d)。
【第6圖】第6圖顯示將從以MPHOSPH1-A33-9-608(序列編號:118)(a)及MPHOSPH1-A33-10-57(序列編號:170)(b)刺激之CTL株產生之IFN-γ以ELISA測定之結果,包括折線圖(a)~(b)。該等結果顯示經胜肽誘導後,建立了胜肽專一性地產生IFN-γ之CTL株。圖中,「+」代表經目的胜肽衝擊之標靶細胞所對應之CTL細胞株之IFN-γ產生,「-」代表未經任一胜肽衝擊之標靶細胞所對應之CTL細胞株之IFN-γ產生。R/S比,代表:為反應細胞(Responder cells)之CTL株之細胞數與刺激其之標靶細胞(Stimulator cells)之細胞數之比。
【第7圖】第7圖顯示從經MPHOSPH1-A33-9-608(序列編號:118)(a)及MPHOSPH1-A33-10-57(序列編號:170)(b)誘導後,利用極限稀釋法建立之CTL選殖體之IFN-γ產生,包括一連串折線圖(a)~(b)。該等結果顯示CTL選殖體之胜肽專一性的IFN-γ產生。圖中,「+」代表經目的胜肽衝擊之標靶細胞所對應之CTL選殖體之IFN-γ產生、「-」代表未經任一胜肽衝擊之標靶細胞所對應之CTL選殖體之IFN-γ產生。R/S比代表:為反應細胞(Responder cells)之CTL選殖體之細胞數與刺激其之標靶細胞(Stimulator cells)之細胞數之比。
【第8圖】第8圖顯示針對表現MPHOSPH1及HLA-A*33:03兩者之標靶細胞之CTL選殖體之IFN-γ產生之折線圖。將已導入HLA-A*33:03或全長MPHOSPH1基因中任一者之標靶細胞細胞作為陰性對照。使用MPHOSPH1-A33-9-608(序列編號:118)誘導而建立之CTL選殖體,對於已導入MPHOSPH1及 HLA-A*33:03基因兩者之COS7細胞顯示IFN-γ產生(黑菱形)。另一方面,對於已導入HLA-A*33:03(白三角)或MPHOSPH1(白圓)中任一者之COS7細胞未顯示顯著IFN-γ產生。
態樣之說明
當實驗或試驗本發明之態樣時,可使用和本說明書記載之方法及材料為類似或同等任意之方法及材料,但在此記載較理想的方法、裝置、及材料。但是記載本發明之材料及方法前,應了解:本說明書記載之特定大小、形狀、尺寸、材料、方法論、實驗步驟等可因應慣例的實驗法及最適化變更,所以,本發明不限於此等記載。本記載使用之專門用語是只是為了說明特定的類型或態樣,應理解不意欲限定,只由附帶之申請專利範圍限定之本發明之範圍。
I.定義
本說明書使用之「1個(a)」、「個(an)」及「該(the)」之用語,若無特別記載,係指「至少1個」。
關於物質(例如:胜肽、抗體、多核苷酸等)使用之「經單離之」及「經精製之」的用語,若該物質並非如此,則指實質上不含天然源中可能含有之至少1種物質。因此經單離或精製之胜肽,係指實質上不含此胜肽來源之細胞或組織源而來的其他細胞材料,例如糖質、脂質及其他混入蛋白質之胜肽。又,胜肽係以化學合成時,經單離或精製之胜肽係指實質上不含前驅體物質或其他化學物質之胜肽。「實質不含細胞材料」之用語, 係指包括從其單離之細胞或重組產生之細胞之細胞成分已分離出胜肽之胜肽之製備物。因此實質不含細胞材料之胜肽,包括含有未達約30%、20%、10%、或5%、3%、2%或1%(乾燥重量基準)之其他細胞材料之胜肽之製備物。
將胜肽重組時,經單離或精製之胜肽實質不含培養基,實質不含培養基之胜肽以胜肽製備物容量之未達約20%、10%、或5%、3%、2%或1%(乾燥重量基準)含有包括培養基之胜肽之製備物。
將胜肽化學合成時,經單離或精製之胜肽實質不含前驅體物質及其他化學物質,實質不含前驅體物質及其他化學物質之胜肽,包括以胜肽製備物容量之未達約30%、20%、10%、5%、3%、2%或1%(乾燥重量基準)含有前驅體物質及其他化學物質之胜肽製備物。特定胜肽製備物是否為經單離或精製之胜肽,例如可以利用十二基硫酸鈉(SDS)-聚丙烯醯胺凝膠電泳及凝膠之考馬思亮藍染色等後出現單一帶以確認。理想態樣中,本發明之胜肽及多核苷酸係經單離或精製。
「多胜肽」、「胜肽」、及「蛋白質」之用語在本說明書可互換地使用,係指胺基酸殘基之聚合物。本用語除了適用天然型胺基酸聚合物,也適用包括1個或多個非天然型胺基酸殘基之非天然型胺基酸聚合物。非天然型胺基酸包括胺基酸類似體及胺基酸模倣體等。
本說明書使用之「胺基酸」之用語係指天然胺基酸、及和天然胺基酸同樣地作用的胺基酸類似體及胺基酸模倣體。天然胺基酸係指以基因密碼子編碼的胺基酸、及於細胞內 進行轉譯後修飾而得之胺基酸(例如:羥基脯胺酸、γ-羧基麩胺酸、及O-磷絲胺酸等)。「胺基酸類似體」之用語,係指和天然胺基酸有相同的基本化學結構(氫、羧基、胺基、及鍵結於R基之α碳)但具有經修飾之R基或經修飾之骨架之化合物(例如:高絲胺酸、正白胺酸、甲硫胺酸亞碸、及甲硫胺酸甲基鋶等)。「胺基酸模倣體」之用語係始和一般的胺基酸有相異之結構,但和胺基酸有同樣機能之化合物。胺基酸可為L-胺基酸或D-胺基酸中任一者,但本發明之胜肽宜為L-胺基酸之聚合物較佳。
「多核苷酸」、「寡核苷酸」、及「核酸」之用語在本說明書中可互換地使用,係指核苷酸之聚合物。
本說明書使用之「組合物」之用語意欲包括含有特定量特定成分之生成物、及由特定量特定成分之組合直接或間接產生之任意產物。組合物為藥學組合物時,組合物之用語意欲包括:含有有效成分及惰性成分之產物、及任意2種或更多成分之組合、複合體形成、或因凝集、因1或多數成分解離、或因1或多數成分之其他種類之反應或相互作用而直接的或間接的產生的任意產物。因此本發明之藥學組合物,包括利用將本發明之化合物或細胞與藥學的或生理學上可接受之載體混合而製作之任意組合物。本說明書使用之「藥學上可接受之載體」或「生理學上可接受之載體」之用語包括液體或固體之增量劑、稀釋劑、賦形劑、溶劑及密封材料,但不限於此等,意指藥學的或生理學上可接受之材料、組合物、物質、或介質。
若無特殊記載,「癌」之用語係指過度表現 MPHOSPH1基因之癌,其例可列舉:膀胱癌、乳癌、子宮頸癌、膽管細胞癌、慢性骨髓性白血病(CML)、大腸癌、胃癌、肺癌、淋巴瘤、骨肉瘤、前列腺癌、腎癌及軟組織腫瘤等但不限定於此等,又,於例示的態樣,「癌」係表現MPHOSPH1及HLA-A11及/或HLA-A33之癌。
若無特別指明,「細胞毒性T淋巴球」、「細胞毒性T細胞」、及「CTL」之用語在本說明書中可互換地使用,若無特殊限定,係指辨認非自我細胞(例如:腫瘤/癌細胞、病毒感染細胞)且可誘導如此之細胞之死滅之T淋巴球之亞群
若無特別指明,「HLA-A11」之用語係指包括HLA-A*11:01、HLA-A*11:02、HLA-A*11:03、HLA-A*11:04等次型之HLA-A11型。
若無特別指明,「HLA-A33」之用語係指包括HLA-A*33:03、HLA-A*33:01、HLA-A*33:04等次型之HLA-A33型。
於和對象或患者之關連,本說明書使用之「對象之(或患者之)HLA抗原為HLA-A11」之表達,係指對象或患者以同質接合的或異質接合的保有作為MHC(主要組織相容複合體)第I類分子之HLA-A11抗原基因,且HLA-A11抗原在對象或患者之細胞表現為HLA抗原。同樣地,本說明書使用之「對象之(或患者之)HLA抗原為HLA-A33」之表達,係指各對象或患者以同質接合的或異質接合的保有作為MHC(主要組織相容複合體)第I類分子之HLA-A33抗原基因,且HLA-A33抗原在對象或患者之細胞表現作為HLA抗原。
本發明之方法及組合物只要是在和癌之「治療」之關連為有用,則治療會帶來臨床的益處,例如對象之癌之大小、廣度、或轉移能力減少、癌之進行延遲、癌之臨床症狀之緩和、生存期間之延長、術後之癌再發之抑制等時,視為治療「有效」。當治療係預防性地適用時,「有效」係指由於治療而使癌形成延遲或受妨礙,或癌之臨床症狀受妨礙或緩和。有效性係相關於診斷或治療特定腫瘤之種類之任意習知方法而決定。
本發明之方法及組合物只要是在癌「預防」之關連方面為有用即可,「預防」之用語在本說明書包括因癌導致之死亡率或罹患率之負荷減輕之任意作用。預防可於「第一次、第二次、及第三次之預防層級」實施。第一次之預防係避免發生疾病,第二次及第三次層級之預防係指預防疾病進行及症狀出現,此外,包括使機能回復,且使疾病關連之合併症減少,藉此使現有疾病之不利影響減少為目的之作用。或預防可包括緩和特定機能損害之重症度緩和,例如為了使腫瘤之增殖及轉移減少之廣範圍之預防性治療。
和本發明之關連方面,癌治療及/或預防、及/或術後之其再發之預防,包括癌細胞之增殖阻礙、腫瘤之退化或退縮、舒解之誘導及癌發生之抑制、腫瘤退縮、及轉移減少或阻礙、癌術後之癌再發抑制、及生存期間之延長等事例中之任一者。癌之有效治療及/或預防,係使死亡率減少,改善有癌之個體之預後,並使血中之腫瘤標記之水平降低,且緩和能隨癌檢測之症狀。例如:症狀之減輕或改善構成有效的治療及/或預 防,且包括10%、20%、30%、或更多之減輕或症狀安定之狀態。
於和本發明之關連中,「抗體」之用語係指會和指定蛋白質或其胜肽專一性地反應之免疫球蛋白及其片段。抗體可包括人抗體、靈長類化抗體、嵌合抗體、雙專一性抗體、人化抗體、其與其他蛋白質或和放射標識融合成之抗體、及抗體片段。再者,本說明書中,「抗體」係廣義地使用,具體而言,包括完整的單株抗體、多株抗體、由2種以上之完整抗體形成之多重專一性抗體(例如:雙專一性抗體),並且只要顯示所望之生物活性即可,包括抗體片段。「抗體」可為任一類別(例如:IgA、IgD、IgE、IgG、及IgM)的抗體。
若無特別指明,本說明書使用之技術用語及科學用語皆具有和本發明所屬之發明所屬之技術領域之人士共通理解之用語為相同之含意。
II.胜肽
HLA-A11及HLA-A33是亞洲人之中常見之對偶基因(Cao et al.,Hum Immunol 2001;62(9):1009-30))。所以,藉由提供由HLA-A11或HLA-A33限制之來自MPHOSPH1的CTL誘導性胜肽,可對於眾多亞洲人提供表現MPHOSPH1之癌之有效治療方法。因此,本發明提供能以HLA-A11或HLA-A33限制性之樣式誘導CTL之來自MPHOSPH1的胜肽。
本發明之胜肽係能以HLA-A11或HLA-A33限制性之樣式誘導CTL之來自MPHOSPH1的胜肽。作為能以HLA-A11限制性之樣式誘導CTL之胜肽可列舉具有選自序列 編號:5、12、27、52及53中之胺基酸序列之胜肽。作為能以HLA-A33限制性之樣式誘導CTL之胜肽,可列舉具有選自序列編號:118、119及170中之胺基酸序列之胜肽。
藉由以經該等胜肽衝擊之樹狀細胞(dendritic cell;DC)所為之T細胞之體外之刺激,可建立對於該等胜肽有專一性細胞毒性活性之CTL。建立之CTL對於經各胜肽衝擊之標靶細胞顯示專一性細胞毒性活性。
MPHOSPH1基因在癌細胞,例如:膀胱癌、乳癌、子宮頸癌、膽管細胞癌、慢性骨髓性白血病(CML)、大腸癌、胃癌、肺癌、淋巴瘤、骨肉瘤、前列腺癌、腎癌及軟組織腫瘤等癌細胞過度表現,但在大部分正常器官不表現,故係用於免疫療法之優良標靶。因此,本發明之胜肽適合用在癌免疫療法。理想胜肽為九胜肽(由9個胺基酸殘基構成之胜肽)或十胜肽(由10個胺基酸殘基構成的胜肽),由選自序列編號:5、12、27、52、53、118、119及170之中之胺基酸序列構成的胜肽更理想。例如:有序列編號:52記載之胺基酸序列之胜肽,適合誘導針對表現HLA-A11與MPHOSPH1之細胞呈專一性細胞毒性活性之CTL,適合用在HLA-A11陽性患者之癌之免疫療法。又,例如有序列編號:118記載之胺基酸序列之胜肽適合誘導對於表現HLA-A33與MPHOSPH1之細胞呈專一性細胞毒性活性之CTL,可適當用於HLA-A33陽性患者之癌之免疫療法。於更理想之態樣中,本發明之胜肽係由選自序列編號:52及118中之胺基酸序列構成之胜肽。
本發明之胜肽,只要結果生成之胜肽保持原有胜 肽CTL誘導能力即可,本發明之胜肽之胺基酸序列可以和附加的胺基酸殘基相鄰。附加的胺基酸殘基只要是無損原本胜肽之CTL誘導能力即可,可由任意種類之胺基酸構成。所以,本發明之胜肽包括選自序列編號:5、12、27、52、53、118、119及170中之胺基酸序列之具CTL誘導能力之胜肽。如此之胜肽例如未達約40個胺基酸,時常未達約20個胺基酸,通常未達約15個胺基酸。因此本發明之胜肽若原本胜肽為九胜肽,包括於使該胜肽和附加胺基酸相鄰而成之10個胺基酸長、或11~40個胺基酸長之胜肽。又,若原本胜肽為十胜肽,則包括使該胜肽和附加的胺基酸相鄰而成之11~40個胺基酸長之胜肽。如此之胜肽例如為11~20個胺基酸長之胜肽,可為11~15個胺基酸長之胜肽。附加的胺基酸殘基的理想例,為MPHOSPH1之全長胺基酸序列(例如:序列編號:186或188)中之和本發明之胜肽之胺基酸序列相鄰之胺基酸殘基。因此本發明之胜肽包括係含有選自序列編號:5、12、27、52、53、118、119及170中之胺基酸序列之MPHOSPH1之胜肽片段且有CTL誘導能力之胜肽。
一般,在某胜肽中之1個、2個、或更多胺基酸之改變不會影響該胜肽之機能,視情形反而可能使原本胜肽之所期望的機能增強。實際上,改變胜肽(亦即,和原本之參照序列比較,有1個、2個、或數個胺基酸殘基改變(亦即,取代、缺失、插入及/或加成)之胺基酸序列構成之胜肽)已知會保持原本胜肽之生物活性(Mark et al.,Proc Natl Acad Sci USA 1984,81:5662-6;Zoller and Smith,Nucleic Acids Res 1982,10: 6487-500;Dalbadie-McFarland et al.,Proc Natl Acad Sci USA 1982,79:6409-13)。因此一態樣中,本發明之胜肽包括對於選自序列編號:5、12、27、52、53、118、119及170中之胺基酸序列有1個、2個、或數個胺基酸取代、缺失、插入及/或加成而得之胺基酸序列,且為可能有CTL誘導能力之胜肽。
該技術領域中有通常知識者可辨認有保存原本胺基酸側鏈特性之傾向之單一胺基酸或只變更少許比例之胺基酸之對於胺基酸序列之各個取代。此等常稱為「保留取代」或「保留改變」,利用「保留取代」或「保留改變」所致之蛋白質之改變,可能產生和原本蛋白質有類似機能之改變蛋白質。揭示機能類似之胺基酸之保留取代之表,在該發明所屬之技術領域中為周知。機能上類似之胺基酸側鏈之特性之例,例如包括疏水性胺基酸(A、I、L、M、F、P、W、Y、V)、親水性胺基酸(R、D、N、C、E、Q、G、H、K、S、T)、及共通有以下之官能基或特徵之側鏈:脂肪族側鏈(G、A、V、L、I、P);含羥基之側鏈(S、T、Y);含硫原子之側鏈(C、M);含羧酸及醯胺之側鏈(D、N、E、Q);含鹼基之側鏈(R、K、H);及含芳香族之側鏈(H、F、Y、W)。此外,以下8個群包括該發明所屬技術領域認知的彼此為保留取代的胺基酸:1)丙胺酸(A)、甘胺酸(G);2)天冬胺酸(D)、麩胺酸(E);3)天冬醯胺酸(N)、麩醯胺酸(Q);4)精胺酸(R)、離胺酸(K);5)異白胺酸(I)、白胺酸(L)、甲硫胺酸(M)、纈胺酸(V); 6)苯丙胺酸(F)、酪胺酸(Y)、色胺酸(W);7)絲胺酸(S)、蘇胺酸(T);及8)半胱胺酸(C)、甲硫胺酸(M)(例如可參照Creighton,Proteins 1984)。
如此的保留改變胜肽也包括在本發明之胜肽。但是本發明之胜肽不限定於此等,只要改變胜肽保持原本胜肽之CTL誘導能力,即包括在非保留改變。且,改變胜肽不排除來自MPHOSPH1之多型變異體、種間相同體、及對立基因之可誘導CTL之胜肽。
只要能保持原本胜肽之CTL誘導能力即可,可改變少數(例如:1個、2個、或數個)或少比例之胺基酸(亦即,取代、缺失、插入及/或加成)。本說明書中,「數個」之用語係指5個或更少胺基酸,例如4個或3個或更少。改變之胺基酸之比例,較佳為20%或更少,更佳為15%或更少,又更佳為10%或更少,或1~5%。
於和免疫療法關連使用時,本發明之胜肽較佳為以和HLA抗原之複合體的形式於細胞或外吐小體之表面上呈現。故本發明之胜肽宜對於HLA抗原有高結合親和性較佳。所以,也可利用胺基酸殘基之取代、缺失、插入及/或加成而改變胜肽,而獲得結合親和性有所改善之改變胜肽。利用向HLA抗原之結合而呈現之胜肽之序列之規則性為已知(Falk,et al.,Immunogenetics 1994 40 232-41;Chujoh,et al.,Tissue Antigens 1998:52:501-9;Takiguchi,et al.,Tissue Antigens 2000:55:296-302.),可將基於如此之規則性之改變導入到本 發明之胜肽。
例如對於HLA第I類有結合性之胜肽,一般從N末端起第2號胺基酸及C末端之胺基酸常是涉及向HLA第I類之結合之錨定殘基(Rammensee HG,et al.,Immunogenetics.1995;41(4):178-228.)。例如:HLA-A11中,已知:作為N末端起第2號胺基酸之蘇胺酸、纈胺酸、異白胺酸、白胺酸、苯丙胺酸及酪胺酸,作為C末端之胺基酸之離胺酸及精胺酸,為對於HLA-A11之結合親和性高之錨定殘基(Falk,et al.,Immunogenetics 1994 40 232-41;Chujoh,et al.,Tissue Antigens 1998:52:501-9)。
再者,HLA-A11中,自N末端起第3號及第7號位置已知具有輔助的錨定殘基,自N末端第3號胺基酸已知宜為白胺酸、苯丙胺酸、酪胺酸、異白胺酸及丙胺酸較佳,N末端起第7號之胺基酸已知宜為白胺酸、異白胺酸、酪胺酸、纈胺酸及苯丙胺酸較佳(Falk,et al.,Immunogenetics 1994 40 232-41;Chujoh,et al.,Tissue Antigens 1998:52:501-9)。故為了使HLA-A11結合親和性增大,將N末端起第2號胺基酸取代為蘇胺酸、纈胺酸、異白胺酸、白胺酸、苯丙胺酸或酪胺酸,及/或將C末端之胺基酸取代為離胺酸或精胺酸可能為理想。再者,將N末端起第3號之胺基酸取代為白胺酸、苯丙胺酸、酪胺酸、異白胺酸、或丙胺酸,及/或將N末端起第7號之胺基酸取代為白胺酸、異白胺酸、酪胺酸、纈胺酸或苯丙胺酸可能為較理想。
因此包括選自序列編號:5、12、27、52及53之 中之胺基酸序列中,N末端起第2號之胺基酸取代成蘇胺酸、纈胺酸、異白胺酸、白胺酸、苯丙胺酸或酪胺酸、N末端起第3號之胺基酸取代成白胺酸、苯丙胺酸、酪胺酸、異白胺酸、丙胺酸、N末端起第7號之胺基酸取代成白胺酸、異白胺酸、酪胺酸、纈胺酸或苯丙胺酸、及/或C末端之胺基酸取代成精胺酸之胺基酸序列之有CTL誘導能力之胜肽,包括在本發明之胜肽。
於理想態樣中,本發明之胜肽可為由選自序列編號:5、12、27、52及53之中之胺基酸序列中,N末端起第2號之胺基酸取代為蘇胺酸、纈胺酸、異白胺酸、白胺酸、苯丙胺酸或酪胺酸、N末端起第3號之胺基酸取代為白胺酸、苯丙胺酸、酪胺酸、異白胺酸或丙胺酸、N末端起第7號之胺基酸取代為白胺酸、異白胺酸、酪胺酸、纈胺酸或苯丙胺酸、及/或C末端之胺基酸取代為精胺酸之胺基酸序列構成之有CTL誘導能力之胜肽。
亦即,本發明之胜肽可包括對於選自序列編號:5、12、27、52及53中之胺基酸序列具有選自以下之(a)~(d)之中之1個以上之取代之胺基酸序列之有CTL誘導能力之胜肽:(a)N末端起第2號之胺基酸取代為蘇胺酸、纈胺酸、異白胺酸、白胺酸、苯丙胺酸或酪胺酸;(b)N末端起第3號之胺基酸取代為白胺酸、苯丙胺酸、酪胺酸、異白胺酸或丙胺酸;(c)N末端起第7號之胺基酸取代為白胺酸、異白胺酸、 酪胺酸、纈胺酸或苯丙胺酸;及(d)C末端之胺基酸取代為精胺酸。
於理想態樣,本發明之胜肽可為由對於選自序列編號:5、12、27、52及53中之胺基酸序列實施從上述(a)~(d)中選出之1個以上之取代而得之胺基酸序列構成之有CTL誘導能力之胜肽。本發明中,理想的取代數係選自上述(a)~(d)中之1個、2個、3個、或4個取代。
又,本發明之胜肽可為由選自序列編號:5、12、27、52及53中之胺基酸序列中,N末端起第2號之胺基酸取代為蘇胺酸、纈胺酸、異白胺酸、白胺酸、苯丙胺酸或酪胺酸、及/或C末端之胺基酸取代為離胺酸或精胺酸之胺基酸序列之有CTL誘導能力之胜肽。較佳為本發明之胜肽可為由選自序列編號:5、12、27、52及53中之胺基酸序列中,N末端起第2號之胺基酸取代為蘇胺酸、纈胺酸、異白胺酸、白胺酸、苯丙胺酸或酪胺酸、及/或C末端之胺基酸取代為精胺酸之胺基酸序列構成之有CTL誘導能力之胜肽。亦即,本發明之胜肽可為含有選自序列編號:5、12、27、52及53中之胺基酸序列中,具選自以下之(a)及(b)中之1個以上之取代之胺基酸序列之有CTL誘導能力之胜肽:(a)N末端起第2號之胺基酸取代為蘇胺酸、纈胺酸、異白胺酸、白胺酸、苯丙胺酸或酪胺酸;及(b)C末端之胺基酸取代為精胺酸。
於理想態樣中,本發明之胜肽可為由選自序列編號:5、12、27、52及53中之胺基酸序列中,具選自上述(a)~(b) 之中之1個以上之取代之胺基酸序列構成之有CTL誘導能力之胜肽。於更理想態樣中,N末端起第2號之胺基酸取代為蘇胺酸、纈胺酸、異白胺酸或白胺酸。
HLA-A33中,作為N末端起第2號之胺基酸之苯丙胺酸、酪胺酸、丙胺酸、異白胺酸、白胺酸及纈胺酸、作為C末端之胺基酸之精胺酸及離胺酸已知是對於HLA-A33之結合親和性高之錨定殘基(Falk,et al.,Immunogenetics 1994 40 232-41;Takiguchi,et al.,Tissue Antigens 2000:55:296-302.)。再者,於HLA-A33,已知N末端起第1號位置之胺基酸殘基也作為錨定殘基之作用,N末端起第1號胺基酸為天冬胺酸及麩胺酸較佳(Falk,et al.,Immunogenetics 1994 40 232-41;Takiguchi,et al.,Tissue Antigens 2000:55:296-302.)。
故為了使HLA-A33結合親和性維持或增大,將N末端起第1號胺基酸取代為天冬胺酸或麩胺酸、N末端起第2號之胺基酸取代為苯丙胺酸、酪胺酸、丙胺酸、異白胺酸、白胺酸或纈胺酸、及/或C末端之胺基酸取代為離胺酸可能為理想。因此包含選自序列編號:118、119及170中之胺基酸序列中,N末端起第1號胺基酸取代為天冬胺酸或麩胺酸、N末端起第2號之胺基酸取代為苯丙胺酸、酪胺酸、丙胺酸、異白胺酸、白胺酸或纈胺酸、及/或C末端之胺基酸取代為離胺酸之胺基酸序列之有CTL誘導能力之胜肽包括在本發明之胜肽。
於理想態樣,本發明之胜肽可為由選自序列編號:118、119及170之中之胺基酸序列中,N末端起第1號之胺基酸取代為天冬胺酸或麩胺酸、N末端起第2號之胺基酸取代為苯丙胺 酸、酪胺酸、丙胺酸、異白胺酸、白胺酸或纈胺酸、及/或C末端之胺基酸取代為離胺酸之胺基酸序列構成之有CTL誘導能力之胜肽。
亦即,本發明之胜肽包括含有對於選自序列編號:118、119及170之中之胺基酸序列實施從上述(a)~(c)之中選出之1個以上之取代而得之胺基酸序列之有CTL誘導能力之胜肽。
(a)N末端起第1號之胺基酸取代為天冬胺酸或麩胺酸;(b)N末端起第2號之胺基酸取代為苯丙胺酸、酪胺酸、丙胺酸、異白胺酸、白胺酸或纈胺酸;及(c)C末端之胺基酸取代為離胺酸。
於理想態樣中,本發明之胜肽可為由選自序列編號:118、119及170中之胺基酸序列中,具選自上述(a)~(c)中之1個以上之取代之胺基酸序列構成之有CTL誘導能力之胜肽。本發明中,理想之取代數為選自上述(a)~(c)中之1個、2個或3個取代。
又,本發明之胜肽可為含有選自序列編號:118、119及170中之胺基酸序列中,N末端起第2號之胺基酸取代為苯丙胺酸、酪胺酸、丙胺酸、異白胺酸、白胺酸或纈胺酸、及/或C末端之胺基酸取代為離胺酸之胺基酸序列之有CTL誘導能力之胜肽。較佳為本發明之胜肽可為由選自序列編號:118、119及170中之胺基酸序列中,N末端起第2號之胺基酸取代為苯丙胺酸、酪胺酸、丙胺酸、異白胺酸、白胺酸或纈胺酸、及/或C末端之胺基酸取代為離胺酸之胺基酸序列構成之 有CTL誘導能力之胜肽。亦即,本發明之胜肽可為含有選自序列編號:118、119及170中之胺基酸序列中具選自以下之(a)及(b)中之1個以上之取代之胺基酸序列之有CTL誘導能力之胜肽:(a)N末端起第2號之胺基酸取代為苯丙胺酸、酪胺酸、丙胺酸、異白胺酸、白胺酸或纈胺酸;及(b)C末端之胺基酸取代為離胺酸。
於理想態樣中,本發明之胜肽,可為由選自序列編號:118、119及170中之胺基酸序列中,具選自上述(a)~(b)之中之1個以上之取代之胺基酸序列構成之有CTL誘導能力之胜肽。於更佳態樣,N末端起第2號之胺基酸取代為苯丙胺酸或酪胺酸。
不只可對於錨定部位之胺基酸導入取代,也可對於胜肽的潛在的T細胞受體(TCR)辨認部位導入取代。在一些研究,已實證例如CAP1、p53(264-272)、Her-2/neu(369-377)、或gp100(209-217)等有胺基酸取代之胜肽和原本胜肽有同等活性或有更良好的活性(Zaremba et al.Cancer Res.1997,57,4570-7、T.K.Hoffmann et al.J Immunol.2002;168(3):1338-47.、S.O.Dionne et al.Cancer Immunol immunother.2003,52:199-206、及S.O.Dionne et al.Cancer Immunology,Immunotherapy 2004,53,307-14)。
本發明企圖能對於本發明之胜肽(例如:由選自序列編號:5、12、27、52、53、118、119及170中之胺基酸序列構成之胜肽)之N末端及/或C末端附加1個、2個、或數個 胺基酸。亦即本發明提供由在依各序列編號參照之胺基酸序列之N末端及C末端中任一者或兩者附加了1個、2個、或數個胺基酸之胺基酸序列構成之胜肽。保持CTL誘導能力之如此之改變胜肽也包括在本發明。例如:對於由序列編號:52或118之胺基酸序列構成之胜肽之N末端及/或C末端附加1個、2個、或數個胺基酸而得之胜肽,若和APC接觸,會被帶入APC內並經處理,成為由序列編號:52或118之胺基酸序列構成之胜肽。之後經過抗原呈現路徑而在APC之細胞表面呈現,可誘導CTL。亦即本發明之胜肽可為在N末端及C末端中任一者或兩者附加了1個、2個、或數個胺基酸而得之胜肽。
於本發明之另一態樣,提供由依各序列編號參照之胺基酸序列中包括1個、2個、或數個胺基酸之取代且該取代胺基酸序列之N末端及C末端中之任一者、或兩者附加了1個、2個、或數個胺基酸之胺基酸序列構成之胜肽。
本發明之胜肽含有胺基酸之取代時,理想的取代位置可從例如本發明之胜肽中含有之依序列編號:5、12、27、52、及53參照之胺基酸序列之N末端起第2號、N末端起第3號、N末端起第7號及C末端起的1個、2個、3個、或4個選擇。或可為從依序列編號:118、119、及170參照之胺基酸序列中之N末端起第1號、N末端起第2號、及C末端起選出的1個、2個、或3個。
但是胜肽之胺基酸序列和有不同機能之內因性或外因性蛋白質之胺基酸序列之一部分相同時,有可能誘發自體免疫損害及/或對特定物質之過敏症狀等副作用。因此為了避 免胜肽之胺基酸序列和其他蛋白質之胺基酸序列為一致之狀況,宜使用可利用之資料庫實施相同性檢索較佳。從相同性檢索得知,和對象胜肽比較,連1個或2個胺基酸不同之胜肽也不存在時,為了消除如此之副作用之危險,為了使HLA抗原和其之結合親和性增大,及/或為了使其之CTL誘導能力增大,可以改變該對象胜肽。
本發明之胜肽之1個、2個、或數個胺基酸經改變之胜肽可預測能保持原本胜肽之CTL誘導能力,但宜關於改變胜肽確認CTL誘導能力較佳。本說明書中,「有CTL誘導能力之胜肽」係指利用經此胜肽刺激之APC誘導CTL之胜肽。「CTL之誘導」包括:向CTL之分化誘導、CTL活化之誘導、CTL增殖之誘導、CTL之細胞毒性活性之誘導、CTL所致標靶細胞溶解之誘導、及CTL之IFN-γ產生增加之誘導。
CTL誘導能力之確認可藉由將表現目的HLA抗原之APC(例如:B淋巴球、巨噬體、及樹狀細胞)以胜肽刺激後和CD8陽性T細胞混合,之後測定由CTL釋放之針對標靶細胞之IFN-γ以進行。APC較佳為使用來自人末梢血單核白血球之樹狀細胞。反應系也可使用以表現HLA抗原之方式製得之基因轉殖動物。又,例如:也可以將標靶細胞以51Cr等進行放射標定,從標靶細胞放出之放射活性算出經胜肽誘導之CTL之細胞毒性活性。或於經胜肽刺激之APC存在下,測定由CTL產生及放出之IFN-γ,並使用抗IFN-γ單株抗體將培養基上之抑制區(inhibition zone)予以可見化以評價CTL誘導能力。
除了上述改變,本發明之胜肽只要是結果生成之 連結胜肽可保持CTL誘導能力即可,也可以和其他胜肽連結。作為和本發明之胜肽連結之適當胜肽,例如來自其他TAA之CTL誘導性胜肽。又,也可以使本發明之胜肽彼此連結。在胜肽間之連結能使用之適當連結子在該發明所屬之技術領域為習知,例如可使用如例如AAY(P.M.Daftarian et al.,J Trans Med 2007,5:26)、AAA、NKRK(序列編號:189)(R.P.M.Sutmuller et al.,J Immunol.2000,165:7308-15)、或K(S.Ota et al.,Can Res.62,1471-6、K.S.Kawamura et al.,J Immunol.2002,168:5709-15)之連結子。胜肽能以各種配置(例如:連鎖狀、重複等)連結,也可連接3個以上的胜肽。
本發明之胜肽只要結果生成之連結胜肽保持CTL誘導能力即可,可以和其他物質連結。能和本發明之胜肽連結之適當物質,例如:胜肽、脂質、糖或糖鏈、乙醯基、及天然或合成之聚合物等。本發明之胜肽只要無損CTL誘導能力,亦可進行糖鏈附加、側鏈氧化、或磷酸化等修飾。利用實施如此的種類的修飾,能給予附加的機能(例如:標靶化機能及送達機能)或使胜肽安定化。
例如在本發明所屬之技術領域中,為了使胜肽之活體內安定性提高,導入D-胺基酸、胺基酸模倣體、或非天然胺基酸為習知,此概念也可套用在本發明之胜肽。胜肽之安定性能以一些方法分析。例如可使用肽酶、及人血漿及血清等各種活體介質測試安定性(例如參照例如:Verhoef et al.,Eur J Drug Metab Pharmacokin 1986,11:291-302)。
再者,如上述,從1個、2個、或數個胺基酸殘基 被取代、缺失、插入及/或附加而得之改變胜肽中,可篩選或選擇和原本胜肽比較為有相同或更高活性者。故本發明也提供篩選或選擇和原本比較為有相同或更高活性之改變胜肽之方法。具體而言,本發明提供篩選有CTL誘導能力之胜肽之方法,包括以下階段:(a)製作對於由選自序列編號:5、12、27、52、53、118、119及170中之胺基酸序列構成之原本胺基酸序列有1個、2個、或數個胺基酸殘基經取代、缺失、插入、及/或附加之胺基酸序列構成之候選序列;(b)於(a)製作之候選序列中選擇和MPHOSPH1以外之任意習知人基因產物均無顯著相同性(序列同一性)之候選序列;(c)使由(b)選擇之候選序列構成之胜肽和APC接觸;(d)使(c)之APC和CD8陽性T細胞接觸;及(e)選擇和由原本胺基酸序列構成之胜肽有同等或更高CTL誘導能力之胜肽。
本說明書中,本發明之胜肽也記載為「MPHOSPH1胜肽」。
III.本發明之胜肽之製備
使用周知技術可製備本發明之胜肽。例如可使用重組DNA技術或化學合成製備本發明之胜肽。本發明之胜肽可合成為分別或含有2個或更多胜肽之較長多胜肽。使用重組DNA技術於宿主細胞內產生後、或化學合成後,從宿主細胞或合成反應物將本發明之胜肽單離亦可。亦即,能以實質上不含其他宿主細胞蛋白質及此等之片段、或其他任意化學物質之方式,將本 發明之胜肽予以精製或單離。
本發明之胜肽只要不因修飾而損及原本胜肽之生物活性即可,可包括糖鏈附加、側鏈氧化、或磷酸化等修飾。其他例示的修飾,例如包括納入為了使該胜肽之血清半衰期延長可使用之D-胺基酸或其他胺基酸模倣體。
可利用基於選擇之胺基酸序列之化學合成獲得本發明之胜肽。適於該合成之習知之胜肽合成法,例如包括如以下文獻記載之方法:(i)Peptide Synthesis,Interscience,New York,1966;(ii)The Proteins,Vol.2,Academic Press,New York,1976;(iii)「胜肽合成」(日文),丸善,1975;(iv)「胜肽合成之基礎與實驗」(日文),丸善,1985;(v)「醫藥品之開發」(日文),續第14卷(胜肽合成),廣川書店,1991;(vi)WO 99/67288;及(vii)Barany G.& Merrifield R.B.,Peptides Vol.2,Solid Phase Peptide Synthesis,Academic Press,New York,1980,100-118。
或也可套用為了產生胜肽之任意之習知之基因工程方法,獲得本發明之胜肽(例如:Morrison J,J Bacteriology 1977,132:349-51;Clark-Curtiss & Curtiss,Methods in Enzymology(Wu et al.)1983,101:347-62)。例如:首先,製備包括編碼為能表現本發明之胜肽之形態(例如:相當於啟動子序列之調節序列之下游)之多核苷酸之適當載體,對於適當宿主細胞進行轉形。其次培養該宿主細胞,使其產生發明之胜肽。 或也可使用體外轉譯系於體外製作本發明之胜肽。
IV.多核苷酸
本發明也提供編碼為本發明中任一胜肽之多核苷酸。此等包括來自天然MPHOSPH1基因(例如:GenBank存取編號NM_016195(序列編號:185)、或GenBank存取編號NM_001284259(序列編號:187))之多核苷酸、及具其保留改變之核苷酸序列之多核苷酸。本說明書中,「經保留改變之核苷酸序列」之用語,係指編碼為相同或本質相同之胺基酸序列之序列。由於基因密碼之冗餘(redundancy),許多機能上相同的核酸會編碼為任意特定之蛋白質。例如:密碼子GCA、GCC、GCG、及GCU皆編碼為胺基酸之丙胺酸。因此於利用某密碼子指定丙胺酸之任意位置,能不使所編碼之多胜肽改變而將該密碼子變更為前述對應之任一密碼子。如此之核酸之變異為「靜默變異」,屬於一種保留改變之變異。編碼為胜肽之本說明書中各種核酸序列也代表該核酸之各種可能的靜默變異。將核酸中之各密碼子(排除通常對於甲硫胺酸為唯一之密碼子AUG、及通常對於色胺酸為唯一之密碼子TGG)改變而獲得機能上相同分子的這一點,應為該技術領域中有通常知識者所認知的。因此編碼為胜肽之核酸之各靜默變異在揭示之各序列中非明示地記載。
本發明之多核苷酸可以由DNA、RNA、及此等之衍生物構成。DNA由A、T、C、及G等鹼基適當地構成,RNA係將T替換為U。
本發明之多核苷酸,能藉由在其間介隔或未介隔 之胺基酸序列而編碼為本發明之多數胜肽。例如:介隔之胺基酸序列可提供多核苷酸或經轉譯之胜肽之切斷部位(例如酵素辨認序列)。再者,多核苷酸可含有對於編碼為本發明之胜肽之編碼序列之任意附加序列。例如:多核苷酸可為包括對於胜肽之表現為必要之調節序列之重組多核苷酸,或可為有標記基因等之表現載體(例如:質體)。一般,可藉由使用例如聚合酶及內核酸酶之習知重組技術操作多核苷酸,以製備出如此的重組多核苷酸。
也可使用重組技術及化學合成技術中之任一者製作本發明之多核苷酸。例如可藉由插入到適當載體以製作多核苷酸,其當轉染到勝任細胞時可表現。或使用PCR技術或於適當宿主內之表現也可使多核苷酸放大(例如參照Sambrook et al.,Molecular Cloning:A Laboratory Manual,Cold Spring Harbor Laboratory,New York,1989)。或也可使用Beaucage SL & Iyer RP,Tetrahedron 1992,48:2223-311;Matthes et al.,EMBO J 1984,3:801-5記載之固相技術來合成多核苷酸。以此方式可獲得之多數之胜肽之連結物,可視需要精製,並以維持連結之狀態投予。於此情形,連結之胜肽可利用處理而生成可呈現抗原之胜肽,並引導各胜肽之CTL誘導作用。因此將胜肽連結時,宜為將HLA限制性相同之胜肽組合較佳。或可藉由將連結部分予以切斷而以各個胜肽之混合物的方式投予。
V.外吐小體
本發明更提供在自身表面上呈現本發明之胜肽與HLA抗原之間形成之複合體的稱為外吐小體之細胞內小胞。外吐小體 例如可使用日本特表平11-510507號及WO99/03499詳述之方法製備,可使用從成為治療及/或預防之對象之患者獲得之APC製備。本發明之外吐小體能以和本發明之胜肽同樣之樣式以疫苗的形式接種。
前述複合體中所含之HLA抗原之型必須和必須治療及/或預防之對象的型一致。例如HLA-A11(例如:HLA-A*11:01)及HLA-A33(例如:HLA-A*33:03)是亞洲人族群廣泛一般常見的對偶基因,據認為該HLA抗原之型適合亞洲人患者之治療。典型上,可藉由於臨床預先檢查須治療之患者之HLA抗原之型,適當選擇對於特定HLA抗原有高水平之結合親和性、或介隔特定HLA抗原之抗原呈現所獲致之有CTL誘導能力之胜肽。
本發明之外吐小體係於其表面上呈現本發明之胜肽與HLA-A11或HLA-A33之複合體。和本發明之胜肽形成複合體之HLA為HLA-A11時,本發明之胜肽宜為具有選自序列編號:5、12、27、52及53中之胺基酸序列之胜肽或其改變胜肽較佳,由選自序列編號:5、12、27、52及53中之胺基酸序列構成之胜肽或其改變胜肽更佳。又,於和本發明之胜肽形成複合體之HLA為HLA-A33時,本發明之胜肽宜為具有選自序列編號:118、119及170中之胺基酸序列之胜肽或其改變胜肽較佳,由選自序列編號:118、119及170中之胺基酸序列構成之胜肽或其改變胜肽更佳。
VI.抗原呈現細胞(APC)
本發明也提供於自身表面上呈現在HLA抗原與本發明之 胜肽之間形成之複合體的APC。或本發明提供於其細胞表面上具有在HLA抗原與本發明之胜肽之間之複合體的APC。本發明之APC可為經單離之APC。關於細胞(APC、CTL等)使用時,「經單離」之用語是指將該細胞從其他種類之細胞分離。本發明之APC,可為從來自成為治療及/或預防對象之患者之APC誘導者,且可單獨地或和包括本發明之胜肽、外吐小體、或CTL之其他藥物併用而以疫苗形式投予。
本發明之APC不限特定種類之細胞,包括已知以能被淋巴球辨認之方式在自身之細胞表面上呈現蛋白質性抗原之細胞,例如樹狀細胞(dendric cell:DC)、朗格罕細胞(Langerhans cell)、巨噬體、B細胞、及活化T細胞。DC為APC中之有最強力之CTL誘導作用之代表性APC,故DC宜作為本發明之APC理想地使用。本發明中,理想之DC為來自人之經單離之DC。又,本發明之APC也可為有抗原呈現機能之多種細胞之混合物,也可為呈現各不同之本發明之胜肽之APC之混合物。
例如:可藉由從末梢血單核球將DC單離,然後將此等於試管、活體外、或活體內利用本發明之胜肽予以刺激,而獲得本發明之APC。本發明之胜肽對於對象投予時,呈現本發明之胜肽之APC會在該對象之體內被誘導。因此本發明之APC可藉由將本發明之胜肽對於對象投予後,從該對象將APC回收以獲得。或本發明之APC,可藉由使從對象回收之APC接觸本發明之胜肽而獲得。
為了誘導對象中針對表現MPHOSPH1之癌細胞之 免疫反應,可將本發明之APC單獨,或和包括本發明之胜肽、外吐小體、或CTL之其他藥劑而對於對象投予。例如:活體外投予可包括以下階段(a)從第1對象回收APC、(b)使階段(a)之APC和胜肽接觸、及(c)將階段(b)之APC對於第2對象投予。
第1對象與第2對象可以為同一個體或為不同個體。第1對象與第2對象不同個體時,第1對象與第2對象之HLA為同一型較佳。利用上述階段(b)獲得之APC能成為用以治療及/或預防癌之疫苗。
利用如上述方法獲得之本發明之APC具有CTL誘導能力。關於APC使用之「CTL誘導能力」之用語,係指APC當和CD8陽性T細胞接觸能夠誘導CTL之能力。再者,「CTL誘導能力」包括:APC誘導CTL活化之能力、APC誘導CTL增殖之能力、APC促進CTL所致標靶細胞溶解之能力、及APC使CTL所致IFN-γ產生增加之能力。由本發明之APC誘導之CTL為針對MPHOSPH1為專一性之CTL,對於MPHOSPH1表現細胞呈現專一性細胞毒性活性。
本發明之APC除了利用上述方法,也可利用將編碼為本發明胜肽之多核苷酸於體外導入到APC以製備。導入之多核苷酸可為DNA或RNA之形態。導入方法之例無特殊限定,包括脂質轉染法、電穿孔法、及磷酸鈣法等該技術領域中以往實施之各種各樣方法。更具體而言,可使用如Cancer Res 1996,56:5672-7;J Immunol 1998,161:5607-13;J Exp Med 1996,184:465-72;日本公表專利公報第2000-509281號記載之方法。藉由將編碼為本發明胜肽之多核苷酸導入到APC,該多核苷酸會在細胞內轉錄、轉譯等,然後生成之胜肽經MHC第I類處理,經過呈現路徑而在APC細胞表面呈現本發明之胜肽。
於理想態樣,本發明之APC在自身之細胞表面上呈現形成於HLA-A11(更佳為HLA-A*11:01)或HLA-A33(更佳為HLA-A*33:03)與本發明之胜肽之間之複合體。和本發明之胜肽形成複合體之HLA為HLA-A11時,本發明之胜肽宜為具有選自序列編號:5、12、27、52及53中之胺基酸序列之胜肽或其改變胜肽較佳,由選自序列編號:5、12、27、52及53中之胺基酸序列構成之胜肽更佳。和本發明之胜肽形成複合體之HLA為HLA-A33時,本發明之胜肽宜為具有選自序列編號:118、119及170之中之胺基酸序列之胜肽或其改變胜肽較佳,由選自序列編號:118、119及170之中之胺基酸序列構成之胜肽更理想。
又,本發明之APC較佳為利用包括以下(a)或(b)記載之階段之方法誘導之APC:(a)使表現選自HLA-A11(更佳為HLA-A*11:01)及HLA-A33(更佳為HLA-A*33:03)中之至少1種HLA之APC接觸本發明之胜肽;(b)對於表現選自於HLA-A11(更佳為HLA-A*11:01)及HLA-A33(更佳為HLA-A*33:03)中之至少1種HLA之APC導入編碼為本發明胜肽之多核苷酸。
和表現HLA-A11之APC接觸之本發明之胜肽宜為具有選自序列編號:5、12、27、52及53中之胺基酸序列之胜肽或其改變胜肽較佳,由選自序列編號:5、12、27、52及53中之胺基酸序列構成之胜肽更佳。
和表現HLA-A33之APC接觸之本發明之胜肽宜為具有選自序列編號:118、119及170中之胺基序列之胜肽或其改變胜肽較佳,由選自序列編號:118、119及170中之胺基序列構成之胜肽更佳。
又,依照本發明,提供本發明之胜肽之用途,係用以製造誘導具CTL誘導能力之APC之藥學組合物。此外本發明提供用以製造誘導具CTL誘導能力之APC之藥學組合物之方法或步驟。再者,本發明提供用以誘導具CTL誘導能力之APC之本發明之胜肽。
VII.細胞毒性T淋巴球(CTL)
由本發明之胜肽誘導之CTL,因為會增強活體內將表現MPHOSPH1之癌細胞作為標靶之免疫反應,可以和本發明之胜肽同樣地作為疫苗使用。故本發明提供由本發明之胜肽誘導或活化之CTL。本發明之CTL係將本發明之胜肽作為標靶之CTL,係能和本發明之胜肽與HLA抗原之複合體結合之CTL。CTL向該複合體之結合,可介隔於CTL之細胞表面上存在之T細胞受體(TCR)實施。本發明之CTL可以為經單離之CTL。理想之CTL為來自人之經單離之CTL。又,本發明之CTL也可以為將各自不同之本發明之胜肽作為標靶之CTL之混合物。
本發明之CTL可藉由以下階段獲得:(1)將本發明 之胜肽對於對象投予、(2)於體外以本發明之胜肽刺激來自對象之APC及CD8陽性T細胞、或末梢血單核球(peripheral blood mononuclear cell:PBMC)、(3)使CD8陽性T細胞或PBMC體外接觸在自身表面上呈現HLA抗原與本發明之胜肽之複合體之APC或外吐小體、或(4)將包括編碼為和於細胞表面上利用HLA抗原呈現之本發明之胜肽結合之T細胞受體(TCR)之各次單元之多核苷酸之載體導入到CD8陽性T細胞。上述(2)或(3)之方法使用之外吐小體及APC各可利用「V.外吐小體」及「VI.抗原呈現細胞(APC)」之章節記載之方法製備,上述(4)之方法之詳情記載於「VIII.T細胞受體(TCR)」之章節。
本發明之CTL,可以對於成為治療及/或預防對象之患者單獨投予,或可為了調節效果而和包括本發明之胜肽、APC或外吐小體之其他藥物併用投予。又,本發明之CTL可以為從來自成為該CTL之投予對象之患者之CD8陽性T細胞誘導之CTL。本發明之CTL對於呈現和本發明之胜肽,例如本發明之CTL之誘導使用者為相同胜肽之標靶細胞專一性作用。標靶細胞可為如癌細胞般之內生地表現MPHOSPH1之細胞、或已轉染MPHOSPH1基因之細胞。本發明之胜肽所為之刺激而在細胞表面上呈現該胜肽之細胞也可成為本發明之CTL之攻擊標靶。又,本發明之CTL之標靶細胞較佳為HLA-A11(更佳為HLA-A*11:01)及HLA-A33(更佳為HLA-A*33:03)中之至少1者為陽性之細胞。
於理想態樣,本發明之CTL針對表現選自HLA-A11(更佳為HLA-A*11:01)及HLA-A33(更佳為 HLA-A*33:03)中之至少一者之HLA與MPHOSPH1兩者之細胞專一地靶向。本發明中,CTL所靶向之細胞可為以同型或異型地具有HLA-A11及HLA-A33對偶基因中之任一者的細胞。
本說明書中,CTL對於細胞「靶向(targeting)」,是指CTL辨認在細胞表面呈現HLA與本發明之胜肽之複合體之細胞,而對於該細胞呈現細胞毒性活性。又,「專一性靶向」,係指CTL對於該細胞呈現細胞毒性活性,但對於其他細胞則不呈現毒性活性。又,於和CTL之關連,「辨認細胞」之用語係指介隔其TCR介而結合於在細胞表面呈現之HLA與本發明之胜肽之複合體,並對於該細胞呈專一性細胞毒性活性。因此本發明之CTL較佳為能介隔TCR而結合於細胞表面上所呈現之形成在HLA-A11(更佳為HLA-A*11:01)或HLA-A33(更佳為HLA-A*33:03)與本發明之胜肽之間之複合體的CTL。
又,本發明之CTL較佳為利用包括以下(a)或(b)記載之階段的方法誘導之CTL:(a)使CD8陽性T細胞於體外接觸在自身表面上呈現HLA-A11(更佳為HLA-A*11:01)或HLA-A33(更佳為HLA-A*33:03)與本發明之胜肽之複合體之APC或外吐小體;(b)對於CD8陽性T細胞導入編碼為能結合於在細胞表面上由HLA-A11(更佳為HLA-A*11:01)或HLA-A33(更佳為HLA-A*33:03)呈現之本發明之胜肽之TCR之各次單元之多核苷酸。利用該方法誘導之CTL是具備專一性地辨認誘導使用之HLA抗原與胜肽之複合體的TCR的細胞。因此是取決於TCR之結構差異,反應專一性不同之和其他CTL在結構上有差別 的細胞。
VIII.T細胞受體(TCR)
本發明又提供包括編碼為能結合於在細胞表面上由HLA抗原呈現之本發明之胜肽之TCR之各次單元之多核苷酸之組合物、及使用其之方法。該多核苷酸藉由表現能結合於利用HLA抗原而於細胞表面上呈現之本發明之胜肽之TCR,能對於CD8陽性T細胞給予針對表現MPHOSPH1之癌細胞之專一性。可利用該發明所屬之技術領域習知之方法鑑別編碼為作為以本發明之胜肽誘導的CTL之TCR次單元之α鏈及β鏈之多核苷酸(WO2007/032255、及Morgan et al.,J Immunol,171,3288(2003))。例如:為了分析TCR,PCR法為較佳。用於分析之PCR引子,例如可以於以下的5'側引子組合以下之3'側引子而成放大用引子組,但不限定於此。
5'側引子:5'-R引子(5'-gtctaccaggcattcgcttcat-3')(序列編號:181)
3'側引子:對於TCRα鏈C區為專一性:3-TRa-C引子(5'-tcagctggaccacagccgcagcgt-3')(序列編號:182)對於TCRβ鏈C1區為專一性:3-TRb-C1引子(5'-tcagaaatcctttctcttgac-3')(序列編號:183)、或或對於TCRβ鏈C2區為專一性: 3-TRβ-C2引子(5'-ctagcctctggaatcctttctctt-3')(序列編號:184)
藉由將已鑑別之多核苷酸導入到CD8陽性T細胞而形成之TCR,能和呈現本發明胜肽之標靶細胞以高結合力結合,且能於活體內及體外媒介呈現本發明之胜肽之標靶細胞之有效率的殺傷。
編碼為TCR之各次單元之多核苷酸可納入到適當載體,例如反轉錄病毒載體。該等載體為該發明所屬之技術領域周知。可以將該多核苷酸或以可表現此等之形態包括該該多核苷酸之載體導入到CD8陽性T細胞,例如來自患者之CD8陽性T細胞。本發明藉由快速改變患者本身之T細胞(或來自其他對象之T細胞),能提供可快速且輕易地製作有優良之癌細胞殺傷特性之改變T細胞之既成之組合物。
本說明書中,專一性TCR係指當該TCR存在於CD8陽性T細胞表面上時,會專一地辨認在標靶細胞表面上呈現之本發明之胜肽與HLA抗原之複合體,而給予對於標靶細胞之專一細胞毒性活性之TCR。上述複合體之專一辨認可利用任意之習知方法確認,其理想例包括使用HLA分子及本發明之胜肽之HLA多聚體染色分析、及ELISPOT分析法。藉由實施ELISPOT分析,可以確認:導入有上述多核苷酸之T細胞可利用TCR而專一地辨認標靶細胞、及信號已傳達到細胞內。上述TCR係於CD8陽性T細胞表面上存在時,可依習知方法確認:該TCR對於CD8陽性T細胞可給予標靶細胞專一性細胞毒性活性。理想方法包括例如:利用鉻釋出分析法等測定對於 標靶細胞之細胞毒性活性。
本發明於和HLA-A11之關連,提供利用對於CD8陽性T細胞將編碼為結合在具例如選自序列編號:5、12、27、52及53中之胺基酸序列之胜肽與HLA-A11抗原構成之複合體的TCR的各次單元的多核苷酸進行轉導(transduction)以製備的CTL。
又,本發明於和HLA-A33之關連,提供藉由對於CD8陽性T細胞將編碼為和具有例如選自序列編號:118、119及170之中之胺基酸序列之胜肽與HLA-A33抗原構成之複合體結合之TCR之各次單元之多核苷酸進行轉導而製備之CTL。
經轉導之CTL能於活體內復位(homing:淋巴球從血中向淋巴組織移動),且可利用周知之體外培養法使其增殖(例如:Kawakami et al.,J Immunol 1989,142:3252-61)。本發明之CTL可用於形成對於須治療或預防之患者之疾病之治療或預防有用之免疫原性組合物(參照WO2006/031221,其內容利用參照納入本說明書)。
IX.藥學組合物
本發明並提供包括選自以下中之至少1種有效成分之組合物或藥學組合物:(a)本發明之胜肽;(b)以能表現本發明之胜肽之形態編碼之多核苷酸;(c)本發明之APC;(d)本發明之外吐小體;(e)本發明之CTL。
本發明之藥學組合物除了上述有效成分,可不特別限制地視需要包括醫藥品通常使用之載體、賦形劑等。可用於本發明之藥學組合物的載體,例如滅菌水、生理食鹽水、磷酸緩衝液、培養液等。因此本發明提供包括選自以下(a)~(e)中之至少1種有效成分與藥學上可接受之載體之藥學組合物:(a)本發明之胜肽;(b)以能表現本發明胜肽之形態編碼之多核苷酸;(c)本發明之APC;(d)本發明之外吐小體;(e)本發明之CTL。
再者,本發明之藥學組合物視需要可包括安定劑、懸浮液、保存劑、界面活性劑、溶解輔助劑、pH調整劑、凝聚抑制劑等。
MPHOSPH1之表現,和正常組織比較,在癌細胞顯著上昇。故本發明之胜肽或編碼為該胜肽之多核苷酸可用於癌之治療及/或預防、及/或預防術後之癌再發。故本發明提供用於癌治療及/或預防、及/或預防術後之癌再發之藥學組合物且包含本發明之胜肽或多核苷酸之一或多種作為有效成分之組合物。或可為了作為藥學組合物,而將本發明之胜肽呈現於外吐小體或APC之表面上。此外,將本發明之任一胜肽作為標靶之本發明之CTL也可以作為本發明之藥學組合物之有效成分。本發明之藥學組合物可含有治療的有效量或藥學的有效量的上述有效成分。
本發明之藥學組合物也可作為疫苗使用。在和本 發明之關連中,「疫苗」(也稱為「免疫原性組合物」)之用語,係指對於動物接種時具有誘導帶來抗腫瘤作用之免疫反應之機能之組合物。因此本發明之藥學組合物可用於在對象中誘導帶來抗腫瘤作用之免疫反應。利用本發明之胜肽、多核苷酸、APC、CTL及藥學組合物誘導免疫反應只要是可帶來抗腫瘤作用之免疫反應即可,不特別限定,例示地包括對於癌細胞為專一性CTL之誘導、及對於癌細胞為專一性細胞毒性活性之誘導。
本發明之藥學組合物可用於人為對象或患者中之癌治療及/或預防、及/或預防術後之癌再發。本發明之藥學組合物宜對於選自HLA-A11及HLA-A33中之至少1種HLA為陽性之對象使用。又,本發明之藥學組合物宜使用在表現選自HLA-A11及HLA-A33中之至少1種HLA及MPHOSPH1之癌之治療及/或預防、及/或預防術後之癌再發。
於其他態樣,本發明更提供選自以下之有效成分之用途,係用於製造癌治療或預防之藥學組合物:(a)本發明之胜肽;(b)以可表現本發明胜肽之形態編碼之多核苷酸;(c)於自身表現上呈現本發明胜肽之APC;(d)於自身表面上呈現本發明胜肽之外吐小體;及(e)本發明之CTL。
或本發明更提供用於癌治療或預防之選自以下之有效成分:(a)本發明之胜肽; (b)以可表現本發明胜肽之形態編碼之多核苷酸;(c)於自身表現上呈現本發明胜肽之APC;(d)於自身表面上呈現本發明胜肽之外吐小體;及(e)本發明之CTL。
或本發明更提供用以製造治療或預防癌之藥學組合物之方法或步驟,包括將選自以下中之至少1種有效成分與藥學的或生理學上可接受之載體加以製劑化之階段:(a)本發明之胜肽;(b)以可表現本發明胜肽之形態編碼之多核苷酸;(c)於自身表現上呈現本發明胜肽之APC;(d)於自身表面上呈現本發明胜肽之外吐小體;及(e)本發明之CTL。
於另一態樣,本發明更提供用以製造治療或預防癌之藥學組合物之方法或步驟,包括以下階段:將選自以下之有效成分和藥學上或生理學上可接受之載體混合之階段:(a)本發明之胜肽;(b)以可表現本發明胜肽之形態編碼之多核苷酸;(c)於自身表現上呈現本發明胜肽之APC;(d)於自身表面上呈現本發明胜肽之外吐小體;及(e)本發明之CTL。
於另一態樣,本發明提供用以治療或預防癌之方法,包括將選自以下之至少1種有效成分對於對象投予之階段:(a)本發明之胜肽;(b)以可表現本發明胜肽之形態編碼之多核苷酸; (c)於自身表現上呈現本發明胜肽之APC;(d)於自身表面上呈現本發明胜肽之外吐小體;及(e)本發明之CTL。
本發明中發現:具有選自序列編號:5、12、27、52及53中之胺基酸序列之胜肽係能誘導強力且專一性免疫反應的HLA-A11限制性抗原決定位胜肽。因此包括具選自序列編號:5、12、27、52及53中之胺基酸序列之至少一種胜肽之本發明之藥學組合物,特別適合對於具有HLA-A11(例如:HLA-A*11:01)作為HLA抗原之對象投予。同樣現象也可套用在包括編碼為該等任一胜肽之多核苷酸(亦即,本發明之多核苷酸)、呈現該等胜肽之APC或外吐小體(亦即本發明之APC或外吐小體)、及將該等胜肽作為標靶之CTL(亦即,本發明之CTL)之藥學組合物。亦即包含和具有選自序列編號:5、12、27、52及53中之胺基酸序列之胜肽相關連之有效成分之藥學組合物,適於向具有HLA-A11之對象(亦即,HLA-A11陽性之對象)投予。於更理想態樣,本發明之藥學組合物係包括具序列編號:52之胺基酸序列之胜肽之藥學組合物。
同樣地,本發明中發現:具有選自序列編號:118、119及170中之胺基酸序列之胜肽可作為能誘導強力且專一性免疫反應的HLA-A33限制性抗原決定位胜肽。因此包括具有選自序列編號:118、119及170中之胺基酸序列之至少一種胜肽之本發明之藥學組合物,特別適合向具有HLA-A33(例如:HLA-A*33:03)作為HLA抗原之對象投予。同樣現象也可套用在包含編碼為該等之任一胜肽之多核苷酸(亦即,本發明之 多核苷酸)、呈現該等胜肽之APC或外吐小體(亦即本發明之APC或外吐小體)、及將該等胜肽作為標靶之CTL(亦即,本發明之CTL)之藥學組合物。亦即,包括和具選自序列編號:118、119及170中之胺基酸序列之胜肽關連之有效成分之藥學組合物,適合向具有HLA-A33之對象(亦即,HLA-A33陽性之對象)投予。於更理想之態樣,本發明之藥學組合物係含有具有序列編號:118之胺基酸序列之胜肽之藥學組合物。
利用本發明之藥學組合物治療及/或預防之癌只要是表現MPHOSPH1之癌即可,不特別限定,可為各種癌,例如包括例如:膀胱癌、乳癌、子宮頸癌、膽管細胞癌、慢性骨髓性白血病(CML)、大腸癌、胃癌、肺癌、淋巴瘤、骨肉瘤、前列腺癌、腎癌及軟組織腫瘤等。又,本發明之藥學組合物宜對於以同型或異型具有選自HLA-A11及HLA-A33中之HLA對偶基因之對象使用較佳。
本發明之藥學組合物除了含有前述有效成分,也可含有具有誘導針對癌細胞之CTL之能力之其他胜肽(例如來自其他TAA之CTL誘導性胜肽)、編碼為該其他胜肽之其他多核苷酸、呈現該其他胜肽之其他細胞等。
本發明之藥學組合物只要不妨礙本發明之胜肽等上述有效成分的抗腫瘤效果,也可任意含有其他治療物質作為有效成分。例如:本發明之藥學組合物可任意地含有抗發炎組合物、鎮痛劑、化學療法藥等。本發明之藥學組合物本身含有其他治療物質,除此以外也可將本發明之藥學組合物和一或多種其他藥學組合物連續或同時投予。本發明之藥學組合物及其 他藥學組合物的投予量取決於例如:使用之藥學組合物之種類、治療之疾病、及投予之時程及路徑。
應理解:除了本說明書中具體言及的成分以外,本發明之藥學組合物也可含有考慮製劑之種類而該發明所屬之技術領域中慣例的其他成分。
本發明也提供包含本發明藥學組合物之製品或套組。本發明之製品或套組可包括容納本發明藥學組合物之容器。適當容器,例如瓶、小玻璃瓶、及試管,但不限定於此。容器可由玻璃或塑膠等各種材料形成。容器可貼標,標籤可記載應使用本發明之藥學組合物之疾病或疾病狀態。標籤也可顯示關於投予等的指示。
本發明之製品或套組除了容納本發明藥學組合物之容器以外,也可任意地含有容納藥學上可接受之稀釋劑之第2容器。本發明之製品或套組可更包含其他緩衝液、稀釋劑、過濾器、注射針、針筒、及記載了使用說明的附帶文書等從商業上之觀點及使用者之觀點為理想的其他材料。
視需要也可利用能含有包括有效成分之1或多數單位劑形之袋或分配器裝置來提供本發明之藥學組合物。該袋例如可包括如泡罩袋之金屬箔或塑膠箔。袋或分配器裝置可以附帶關於投予之說明書。
(1)含有胜肽作為有效成分之藥學組合物
含有本發明胜肽之藥學組合物,若有必要可依習知製劑化法予以製劑化。本發明之藥學組合物,除了本發明之胜肽,可無特別限制地因應須要含有醫藥品通常使用之載體、賦形劑等。本 發明之藥學組合物能使用之載體,例如滅菌水(例如:注射用水)、生理食鹽水、磷酸緩衝液、磷酸緩衝生理食鹽水、Tris-緩衝生理食鹽水、0.3%甘胺酸、培養液等。又,本發明之藥學組合物視需要可含有安定劑、懸浮液、保存劑、界面活性劑、溶解輔助劑、pH調整劑、凝聚抑制劑等。本發明之藥學組合物,因為能誘導針對表現MPHOSPH1之癌細胞之專一性免疫,故可用在癌治療或預防之目的。
例如:本發明之藥學組合物可溶解於滅菌水(例如:注射用水)、生理食鹽水、磷酸緩衝液、磷酸緩衝生理食鹽水、Tris-緩衝生理食鹽水等藥學的或生理學上可接受之水溶性之載體,視需要添加安定劑、懸浮液、保存劑、界面活性劑、溶解輔助劑、pH調整劑、凝聚抑制劑等後,將該胜肽溶液予以滅菌以製備。胜肽溶液之滅菌方法不特別限定,宜利用過濾滅菌進行較佳。過濾滅菌例如可使用孔徑0.22μm以下之過濾滅菌濾器進行。過濾滅菌後之胜肽溶液不限於此,例如能以注射劑形式對於對象投予。
又,本發明之藥學組合物也可利用將上述胜肽溶液冷凍乾燥以製備成冷凍乾燥製劑。冷凍乾燥製劑可藉由將依上述方式製備之胜肽溶液填充於安瓿、小玻璃瓶、或塑膠容器等適當容器後進行冷凍乾燥,復壓後以經滅菌洗滌之橡膠蓋等將容器密封以製備。冷凍乾燥製劑,可於投予前再度溶解於滅菌水(例如:注射用水)、生理食鹽水、磷酸緩衝液、磷酸緩衝生理食鹽水、Tris緩衝生理食鹽水等藥學的或生理學上可接受之水溶性之載體後,對於對象投予。本發明之藥學組合物之理想例中, 包括如此過濾滅菌之胜肽溶液之注射劑、及將該胜肽溶液予以冷凍乾燥而得之冷凍乾燥製劑。再者,包括如此之冷凍乾燥製劑與再溶解液之套組也含於本發明中。又,包括容納有為本發明之藥學組合物之冷凍乾燥製劑之容器及容納其再溶解液之容器的套組也含於本發明。
本發明之藥學組合物,也可包括本發明胜肽之2種或更多種類之組合。胜肽之組合可採取混合胜肽之雞尾酒形態,或也可使用標準技術使胜肽彼此結合。例如:胜肽可化學結合、或表現成單一之融合多胜肽序列。藉由投予本發明之胜肽,該胜肽可利用HLA抗原而在APC上以高密度呈現,然後誘導出對於形成在呈現之胜肽與該HLA抗原之間的複合體會專一反應之CTL。或從對象將APC(例如:DC)取出,然後利用本發明之胜肽刺激,獲得在自身的細胞表面上呈現本發明之任一胜肽之APC。將該等APC對於對象再度投予,於該對象中誘導CTL,結果能使針對表現MPHOSPH1之癌細胞之攻擊性增大。
本發明之藥學組合物也可包括已知有效率地確立細胞性免疫之佐劑。佐劑係指當和有免疫學活性之抗原一起(或連續)投予時,會增強對於該抗原之免疫反應之化合物。佐劑可使用例如Clin Microbiol Rev 1994,7:277-89等文獻記載之習知品。適當之佐劑,例如鋁鹽(磷酸鋁、氫氧化鋁、氧基氫氧化鋁等)、明礬、霍亂毒素、沙門氏菌毒素、不完全佛洛依德佐劑(IFA)、完全佛洛依德佐劑(CFA)、ISCOMatrix、GM-CSF其他免疫刺激性細胞介素、含有CpG模體之寡去氧核 苷酸(CpG7909等)、水中油型乳劑、皂素或其衍生物(QS21等)、脂質A或其衍生物等脂多糖(MPL、RC529、GLA、E6020等)、脂胜肽、乳鐵蛋白、鞭毛蛋白、雙鏈RNA或其衍生物(聚IC等)、細菌DNA、咪唑并喹啉(咪喹莫特(Imiquimod)、R848等)、C型凝集蛋白配體(海藻糖二(二十二酸)酯(trehalose-6,6'-dibehenate:TDB)等)、CD1d配體(α-半乳糖苷基神經醯胺等)、角鯊烯乳劑(MF59、AS03、AF03等)、PLGA等,但不限定於此。佐劑在包括本發明藥學組合物之套組中,也可容納在和含有本發明胜肽之藥學組合物為不同的容器。此時,該佐劑與該藥學組合物可以連續對於對象投予,也可以在即將向對象投予前混合。本發明也提供如此之包含包括本發明胜肽之藥學組合物與佐劑之套組。本發明之藥學組合物為冷凍乾燥製劑時,該套組可更包括再溶解液。又,本發明提供包括容納本發明之藥學組合物之容器,及容納佐劑之容器的套組。該套組視需要可更包括容納再溶解液之容器。
使用油性佐劑作為佐劑時,本發明之藥學組合物也可製備成乳劑。乳劑例如可利用將以如上述方式製備而得之胜肽溶液與油性佐劑予以混合‧攪拌以製備。胜肽溶液可為冷凍乾燥後再溶解者。乳劑可以為W/O型乳劑及O/W型乳劑中之任一者,但為了獲得高免疫反應增強效果,宜為W/O型乳劑較佳。油性佐劑宜使用IFA,但不限於此。乳劑之製備可以於即將對於對象投予前進行,此時,本發明之藥學組合物也可以作為包括本發明之胜肽溶液及油性佐劑之套組的形式提供。本發明之藥學組合物為冷凍乾燥製劑時,該套組可更包括 再溶解液。
再者,本發明之藥學組合物也可為封入有本發明胜肽之脂質體製劑、直徑數微米的珠粒有胜肽結合之顆粒製劑、或胜肽有脂質結合之製劑。
於本發明之另一態樣,本發明之胜肽也可以藥學上可接受之鹽之形態投予。鹽之理想例,包括和鹼金屬(鋰、鉀、鈉等)之鹽、和鹼土類金屬之鹽(鈣、鎂等)、和其他金屬(銅、鐵、鋅、錳等)之鹽、和有機鹼之鹽、和胺之鹽、和有機酸(乙酸、甲酸、丙酸、富馬酸、馬來酸、琥珀酸、酒石酸、檸檬酸、蘋果酸、草酸、苯甲酸、甲磺酸等)之鹽、及和無機酸(鹽酸、磷酸、氫溴酸、硫酸、硝酸等)之鹽。本說明書使用之「藥學上可接受之鹽」之用語,係指保持此化合物之藥理學的或藥學的有效性及特性之鹽。故,包括本發明胜肽之藥學上可接受之鹽之藥學組合物也包括在本發明。又,「本發明之胜肽」除了包括游離體之胜肽,也包括其藥學上可接受之鹽。
於一些態樣中,本發明之藥學組合物可更包括刺激CTL之成分。脂質已鑑別係能在活體內刺激對於病毒抗原之CTL的物質。例如:可以使棕櫚酸殘基附著於離胺酸殘基之ε胺基及α胺基,然後連結於本發明之胜肽。其次,可將已附加脂質之胜肽以微胞或粒子狀態直接投予、納入脂質體中而投予、或在佐劑中乳化而投予。作為利用CTL反應之脂質刺激之另一例,當共價鍵結於適當胜肽時,可使用三棕櫚醯基-S-甘油基半胱胺醯基-絲胺醯基-絲胺酸(P3CSS)等大腸菌(E.coli)脂蛋白質刺激CTL(可參照例如:Deres et al.,Natu59re 1989, 342:561-4)。
本發明之胜肽或藥學組合物之適當之投予方法,包括例如經口、皮內、皮下、肌肉內、骨內、腹膜及靜脈內注射等、及全身投予或向標靶部位之附近局部投予,但不限定於此。理想之投予方法可列舉向腋窩或鼠蹊部等淋巴節附近進行皮下注射。更具體而言,本發明之藥學的組合物含有胜肽、外吐小體作為有效成分時,例如對於皮下投予較佳。或為以APC、CTL作為有效成分之組合物,也可利用靜脈注射等投予。投予可利用單次投予進行,也可利用多次投予以追加。
本發明之胜肽可以用為了治療癌之治療的或藥學的有效量或對於誘導針對表現MPHOSPH1之癌細胞之免疫(更具體而言,為CTL)之治療的或藥學的有效量對於對象投予。本發明之胜肽之用量可因應治療之疾病、患者年紀、體重、投予方法等適當調整,關於各本發明之胜肽,通常為0.001mg~1000mg,例如0.01mg~100mg,例如0.1mg~30mg,例如0.1mg~10mg,例如0.5mg~5mg。又,投予間隔可以為數日~數個月1次,例如能以每週1次的間隔投予。該技術領域中有通常知識者可以適當選擇適當的投予量(用量)。
於理想態樣,本發明之藥學組合物包括治療有效量之本發明之胜肽及藥學的或生理學上可接受之載體。於另一態樣,本發明之藥學組合物包括治療有效量之本發明之胜肽、藥學的或生理學上可接受之載體、及佐劑。本發明之藥學組合物可含有本發明之胜肽0.001mg~1000mg,較佳為0.01mg~100mg,更佳為0.1mg~30mg,更佳為0.1mg~10mg, 例如0.5mg~5mg。又,本發明之藥學組合物為注射劑時,本發明之胜肽能以0.001mg/ml~1000mg/ml,較佳為0.01mg/ml~100mg/ml,更佳為0.1mg/ml~30mg/ml,又更佳為0.1mg/ml~10mg/ml,例如0.5mg/ml~5mg/ml之濃度含有。此時,可將例如:0.1~5ml,較佳為0.5ml~2ml之本發明之藥學組合物利用注射對於對象投予。
或本發明提供一種用於治療及/或預防癌、及或/預防術後之其再發之方法,包括對於對象投予治療有效量之本發明之胜肽或本發明之藥學組合物之階段。本發明之胜肽如上所述,通常能在1次投予對於對象投予0.001mg~1000mg,例如0.01mg~100mg,例如0.1mg~30mg,例如0.1mg~10mg,例如0.5mg~5mg。於理想態樣中,本發明之胜肽可和佐劑一起對於對象投予。又,投予間隔,可設為數日~數個月1次,較佳為數日~1個月1次之間隔,例如:每週1次或2週1次的間隔。
(2)含有多核苷酸作為有效成分之藥學組合物
本發明之藥學組合物也可包括以可表現本發明胜肽之形態編碼之多核苷酸。本說明書中,「以可表現之形態」之用語,係指多核苷酸導入到細胞時,表現本發明之胜肽之意。例示的態樣中,本發明之多核苷酸之序列包括對於表現本發明胜肽為必要之調節要素。本發明之多核苷酸可以具備對於使向標靶細胞之基因體達成安定插入為必要之序列(關於相同重組匣載體之說明,參照例如Thomas KR & Capecchi MR,Cell1987,51:503-12)。參照例如:Wolff et al.,Science 1990,247:1465-8;美國專利第5,580,859號;第5,589,466號;第5,804,566號;第 5,739,118號;第5,736,524號;第5,679,647號;及WO98/04720。基於DNA之遞送技術,例如「裸DNA」、經促進之(bupivacaine、聚合物、胜肽媒介性)遞送、陽離子性脂質複合體、及粒子媒介性(「基因槍」)或壓力媒介性之遞送(參照例如:美國專利第5,922,687號)。
也可以利用病毒載體或細菌載體使本發明之胜肽表現。表現載體,例如包括牛痘病毒或雞痘病毒等弱毒化病毒宿主。例如:作為為了使本發明之胜肽表現之載體,可使用牛痘病毒。若導入到宿主,重組牛痘病毒會表現免疫原性胜肽並藉此誘發免疫反應。對於免疫化方案有用之牛痘載體及方法記載於例如美國專利第4,722,848號。其他載體為BCG(Bacillus Calmette-Guérin)。BCG載體記載於Stover et al.,Nature 1991,351:456-60。對於治療性投予或免疫化有用之多種多樣的其他載體,例如腺病毒載體及腺病毒伴隨載體、反轉錄病毒載體、傷寒菌(Salmonella typhi)載體、無毒化碳疽毒素載體等為顯明。參照例如:Shata et al.,Mol Med Today 2000,6:66-71;Shedlock et al.,J Leukoc Biol 2000,68:793-806;Hipp et al.,In Vivo 2000,14:571-85。
本發明之多核苷酸向患者內之遞送可為直接的,此時可以使患者直接暴露於保有本發明之多核苷酸之載體。或也可為間接的,此時先於體外將細胞以保有本發明之多核苷酸之載體轉形,然後將該細胞移植到患者內。此等2種方法分別作為活體內及活體外之基因治療而習知。
基因治療之方法之一般的綜合說明,參照 Goldspiel et al.,Clinical Pharmacy 1993,12:488-505;Wu and Wu,Biotherapy 1991,3:87-95;Tolstoshev,Ann Rev Pharmacol Toxicol 1993,33:573-96;Mulligan,Science 1993,260:926-32;Morgan & Anderson,Ann Rev Biochem 1993,62:191-217;Trends in Biotechnology 1993,11(5):155-215。本發明也可使用之重組DNA技術之領域中之一般習知之方法記載於Ausubel et al.,Current Protocols in Molecular Biology,John Wiley & Sons,NY,1993;及Krieger,Gene Transfer and Expression,A Laboratory Manual,Stockton Press,NY,1990。
和胜肽之投予同樣地,多核苷酸之投予有經口、皮內、皮下、靜脈內、肌肉內、骨內及/或腹膜注射等進行的情形。又,多核苷酸之投予可為全身投予或向標靶部位附近之局部投予。投予可利用單次投予進行,也可利用多次投予追加。本發明之多核苷酸可以用為了治療癌之治療的或藥學的有效量或為了誘導針對表現MPHOSPH1之癌細胞之免疫(更具體而言為CTL)之治療的或藥學的有效量對於對象投予。適當擔體中之多核苷酸之用量、或經編碼為本發明之胜肽之多核苷酸轉形之細胞中之多核苷酸之用量,可因應治療之疾病、患者年紀、體重、投予方法等而適當調整,此用量通常為0.001mg~1000mg,例如0.01mg~100mg,例如:0.1mg~30mg,例如0.1mg~10mg,例如0.5mg~5mg。投予間隔可以為數日1次~數個月1次,例如每週1次的間隔投予。該技術領域中有通常知識者可以適當選擇適當的投予量(用量)。
X.使用胜肽、外吐小體、APC、及CTL之方法 可使用本發明之胜肽及多核苷酸誘導APC及CTL。也可使用本發明之外吐小體及APC誘導CTL。本發明之胜肽、多核苷酸、外吐小體、及APC只要是不妨礙此等之CTL誘導能力,也可以和任意之其他化合物組合使用。因此可使用包含本發明之胜肽、多核苷酸、APC及外吐小體中之任一者之藥學組合物而誘導本發明之CTL。又,可使用包含本發明之胜肽或多核苷酸之藥學組合物誘導本發明之APC。
(1)誘導APC之方法
本發明提供使用本發明之胜肽或多核苷酸誘導具有CTL誘導能力之APC之方法。
本發明之方法包括使APC在體外、活體外、或活體內接觸本發明之胜肽之階段。例如:使APC於活體外接觸該胜肽之方法可包括以下階段:(a)從對象回收APC之階段;及(b)使階段(a)之APC接觸本發明之胜肽之階段。
前述APC不限於特定種類之細胞,可使用已知係在自身之細胞表面上呈現蛋白質性抗原使淋巴球能辨認之細胞,例如DC、朗格罕細胞、巨噬體、B細胞、及活化T細胞。由於DC於APC中有最強力CTL誘導能力,較佳為使用DC。本發明之任意胜肽可以單獨使用、或和本發明之其他胜肽一起使用。又,本發明之胜肽可以和其他CTL誘導性胜肽(例如:來自其他TAA之CTL誘導性胜肽)組合使用。
另一方面,當本發明之胜肽對於對象投予時,APC會於活體內接觸該胜肽,結果可在該對象體內誘導具有高CTL 誘導能力之APC。故本發明之方法可包括將本發明之胜肽對於對象投予之階段。同樣地,將本發明之多核苷酸以可表現之形態對於對象投予時,本發明之胜肽會於活體內表現且和APC於活體內接觸,結果可於該對象體內誘導具有高CTL誘導能力之APC。故本發明可包括將本發明之多核苷酸對於對象投予之階段。
本發明為了誘導具CTL誘導能力之APC,可包括將本發明之多核苷酸導入到APC之階段。例如:本方法可包括以下階段:(a)從對象將APC回收;及(b)將編碼為本發明胜肽之多核苷酸導入到階段(a)之APC。階段(b)可依「VI.抗原呈現細胞(APC)」之章節所述實施。
因此一態樣中,本發明提供包括以下(a)或(b)之階段之誘導具CTL誘導能力之APC之方法:(a)使APC接觸本發明胜肽;(b)將編碼為本發明胜肽之多核苷酸導入到APC。
又,本發明提供包括以下(a)或(b)之階段之製備具CTL誘導能力之APC之方法:(a)使APC接觸本發明胜肽;(b)將編碼為本發明胜肽之多核苷酸導入到APC。
上述方法於體外、活體外、或活體內任一者均可進行,但於體外或活體外進行較佳。上述方法使用之APC可來自於預定投予已誘導之APC之對象,也可來自不同對象。當使用來自和預定投予之對象為不同之對象(捐出者)之APC 時,投予對象者與捐出者之HLA型必須相同。
本發明之方法中,當使用具有選自序列編號:5、12、27、52及53中之胺基酸序列之胜肽或其改變胜肽以作為本發明之胜肽時,投予對象者與捐出者之HLA型均為HLA-A11(更佳為HLA-A*11:01)較佳。或上述方法使用之APC宜為表現HLA-A11(更佳為HLA-A*11:01)之APC。
同樣地,使用具有選自序列編號:118、119及170之中之胺基酸序列之胜肽或其改變胜肽作為本發明之胜肽時,投予對象者與捐出者之HLA型均為HLA-A33(更佳為HLA-A*33:03)較佳。或上述方法使用之APC宜為表現HLA-A33(更佳為HLA-A*33:03)之APC較佳。APC可從捐出者採樣之血液利用比重離心分離法等分離PBMC後,從該PBMC使用習知方法製備。
於另一態樣,本發明更提供包括本發明之胜肽或編碼為該胜肽之多核苷酸之用於誘導有CTL誘導能力之APC之藥學組合物。
或本發明更提供本發明之胜肽或編碼為該胜肽之多核苷酸之用途,係使用在製造誘導具有CTL誘導能力之APC之藥學組合物。
或本發明更提供本發明之胜肽或編碼為該胜肽之多核苷酸,用於誘導具CTL誘導能力之APC。
或本發明更提供用以製造誘導APC之藥學組合物之方法或步驟,包括使本發明之胜肽或編碼為該胜肽之多核苷酸與藥學上或生理學上可接受之載體予以製劑化之階段。
於另一態樣,本發明更提供用以製造誘導具CTL誘導能力之APC之藥學組合物之方法或步驟,包括使本發明之胜肽或編碼為該胜肽之多核苷酸和藥學的或生理學上可接受之載體混合之階段。
依本發明之方法誘導之APC,能誘導對於MPHOSPH1為專一性之CTL(亦即本發明之CTL)。
(2)誘導CTL之方法
本發明更提供使用本發明之胜肽、多核苷酸、外吐小體、或APC而誘導CTL之方法。本發明更提供使用編碼為形成可辨認本發明之胜肽與HLA抗原之複合體之T細胞受體(TCR)之多胜肽(亦即,TCR次單元)之一或多數多核苷酸來誘導CTL之方法。較佳為誘導CTL之方法包括選自以下之至少1種階段:(a)使CD8陽性T細胞接觸在自身表面上呈現HLA抗原與本發明之胜肽之複合體之抗原呈現細胞;(b)使CD8陽性T細胞接觸在自身表面上呈現HLA抗原與本發明之胜肽之複合體之外吐小體;及(c)將編碼為能形成可辨認本發明之胜肽與HLA抗原之複合體之TCR之多胜肽的一或多數多核苷酸導入到CD8陽性T細胞。
本發明之胜肽、多核苷酸、外吐小體、或APC若對於對象投予,會在該對象之體內誘導CTL,增強將表現MPHOSPH1之癌細胞作為標靶之免疫反應之強度。故本發明之方法可更包括將本發明之胜肽、多核苷酸、APC、或外吐小體對於對象投予之階段。
或也可將此等於體外或活體外使用以誘導CTL。例如:本發明之方法可包括以下階段:(a)從對象回收APC、(b)使階段(a)之APC和本發明之胜肽接觸、及(c)將階段(b)之APC和CD8陽性T細胞進行共培養。已誘導之CTL之後也可返回對象。
上述階段(c)中,和CD8陽性T細胞一起共培養之APC,也可藉由如「VI.抗原呈現細胞(APC)」之章節所述,利用將編碼為本發明胜肽之多核苷酸導入到APC以製備。但本發明之方法使用之APC不限於此,可使用於自身表面呈現HLA抗原與本發明之胜肽之複合體的任意APC。
本發明之方法也可將如此的APC改為使用在自身表面上呈現HLA抗原與本發明之胜肽之複合體之外吐小體。亦即,本發明之方法可包括將於自身表面上呈現HLA抗原與本發明之胜肽之複合體之外吐小體進行共培養之階段。如此的外吐小體可利用「V.外吐小體」之章節所述方法製備。
再者,也可藉由包括編碼為能和細胞表面上由HLA抗原呈現之本發明胜肽之TCR之各次單元之多核苷酸之載體導入到CD8陽性T細胞,以誘導CTL。如此的轉導可利用「VIII.T細胞受體(TCR)」之章節所述實施。
因此一態樣中,本發明提供包括選自以下之階段之誘導CTL之方法:(a)將CD8陽性T細胞和於自身表面上呈現HLA抗原與本發明胜肽之複合體之APC進行共培養; (b)將CD8陽性T細胞和於自身表面上呈現HLA抗原與本發明胜肽之複合體的外吐小體進行共培養;及(c)將包括編碼為能結合於在細胞表面上由HLA抗原呈現之本發明之胜肽之TCR之各次單元的多核苷酸的載體導入到CD8陽性T細胞。
上述方法於體外、活體外、或活體內任一者均可進行,但於體外或活體外進行較佳。上述方法使用之APC或外吐小體、及CD8陽性T細胞可來自預定投予誘導之CTL之對象,也可來自不同對象。使用來自和預定投予之對象為不同之對象(捐出者)之APC或外吐小體、及CD8陽性T細胞時,投予對象者與捐出者之HLA型必須相同。例如:使用具選自序列編號:5、12、27、52及53中之胺基酸序列之胜肽或其改變胜肽作為本發明之胜肽時,投予對象者與捐出者之HLA型均為HLA-A11(更佳為HLA-A*11:01)較佳。或上述方法使用之APC或外吐小體宜為在自身表面上呈現HLA-A11(更佳為HLA-A*11:01與本發明胜肽(具有選自序列編號:5、12、27、52及53中之胺基酸序列之胜肽或其改變胜肽)之複合體之APC或外吐小體較佳。此時誘導之CTL對於呈現HLA-A11與本發明胜肽之複合體之細胞(例如:表現MPHOSPH1之HLA-A11陽性細胞)呈專一性細胞毒性活性。
又例如:使用具有選自序列編號:118、119及170之中之胺基酸序列之胜肽或其改變胜肽作為本發明之胜肽時,投予對象者與捐出者之HLA型均為HLA-A33(更佳為HLA-A*33:03)較佳。或上述方法使用之APC或外吐小體宜為 在自身表面上呈現HLA-A33(更佳為HLA-A*33:03)與本發明之胜肽(具選自序列編號:118、119及170之中之胺基酸序列之胜肽或其改變胜肽)之複合體之APC或外吐小體。此時誘導之CTL對於呈現HLA-A33與本發明胜肽之複合體之細胞(例如:表現MPHOSPH1之HLA-A33陽性細胞)呈專一性細胞毒性活性。
於另一態樣,本發明更提供包括選自以下中之至少1種有效成分之用以誘導CTL之組合物或藥學組合物:(a)本發明之胜肽;(b)以可表現本發明胜肽之形態編碼之多核苷酸;(c)於自身表現上呈現本發明胜肽之APC;及(d)於自身表面上呈現本發明胜肽之外吐小體。
於另一態樣,本發明更提供選自以下之有效成分之用途,係用在製造誘導CTL之組合物或藥學組合物:(a)本發明之胜肽;(b)以可表現本發明胜肽之形態編碼之多核苷酸;(c)於自身表現上呈現本發明胜肽之APC;及(d)於自身表面上呈現本發明胜肽之外吐小體。
或本發明更提供選自以下之有效成分,係用於誘導CTL:(a)本發明之胜肽;(b)以可表現本發明胜肽之形態編碼之多核苷酸;(c)於自身表現上呈現本發明胜肽之APC;及(d)於自身表面上呈現本發明胜肽之外吐小體。
或本發明更提供製造用以誘導CTL之組合物或藥學組合物之方法或步驟,包括將選自以下之有效成分與藥學的或生理學上可接受之載體予以製劑化之階段:(a)本發明之胜肽;(b)以可表現本發明胜肽之形態編碼之多核苷酸;(c)於自身表現上呈現本發明胜肽之APC;及(d)於自身表面上呈現本發明胜肽之外吐小體。
於另一態樣,本發明更提供用以製造誘導CTL之組合物或藥學組合物之方法或步驟,包括將選自以下之有效成分和藥學的或生理學上可接受之載體混合之階段:(a)本發明之胜肽;(b)以可表現本發明胜肽之形態編碼之多核苷酸;(c)於自身表現上呈現本發明胜肽之APC;及(d)於自身表面上呈現本發明胜肽之外吐小體。
XI.誘導免疫反應之方法
本發明提供誘導針對表現MPHOSPH1之癌之免疫反應之方法。能適用之癌包括膀胱癌、乳癌、子宮頸癌、膽管細胞癌、慢性骨髓性白血病(CML)、大腸癌、胃癌、肺癌、淋巴瘤、骨肉瘤、前列腺癌、腎癌及軟組織腫瘤等等,但不限定於此。又,癌宜表現選自HLA-A11及HLA-A33中之至少1種HLA較佳。
本發明提供誘導針對表現MPHOSPH1之癌細胞之免疫反應之方法。MPHOSPH1據認為在如上述各種癌係過度表現。故若誘導針對表現MPHOSPH1之癌細胞之免疫反應,其結果會妨礙癌細胞增殖。故本發明也提供妨礙表現MPHOSPH1 之癌細胞之增殖之方法。本發明之方法特別適於阻礙表現選自於MPHOSPH1與HLA-A11及HLA-A33中之至少1種HLA之癌細胞之增殖。
本發明之方法可包括將包括本發明之任一胜肽或編碼為此等胜肽的多核苷酸的組合物進行投予之階段。本發明之方法也意欲投予呈現本發明之任一胜肽之外吐小體或APC。關於詳情,參考「IX.藥學組合物」之項目,尤其針對本發明之藥學組合物以疫苗形式使用之相關記載部分。此外,為了誘導免疫反應,本發明之方法能使用之外吐小體及APC在前述「V.外吐小體」、「VI.抗原呈現細胞(APC)」、及「X.使用胜肽、外吐小體、APC、及CTL之方法」之(1)及(2)之項目中已詳述。
於另一態樣,本發明提供藥學組合物或疫苗,用以誘導針對表現MPHOSPH1之癌之免疫反應,包括選自以下之有效成分:(a)本發明之胜肽;(b)以可表現本發明胜肽之形態編碼之多核苷酸;(c)於自身表現上呈現本發明胜肽之APC;(d)於自身表面上呈現本發明胜肽之外吐小體;及(e)本發明之CTL。
或本發明更提供藥學組合物或疫苗,係用以誘導針對表現MPHOSPH1之癌細胞之免疫反應,包括選自以下之有效成分:(a)本發明之胜肽; (b)以可表現本發明胜肽之形態編碼之多核苷酸;(c)於自身表現上呈現本發明胜肽之APC;(d)於自身表面上呈現本發明胜肽之外吐小體;及(e)本發明之CTL。
或本發明提供藥學組合物或疫苗,係用以妨礙表現MPHOSPH1之癌細胞之增殖,包含選自以下之有效成分:(a)本發明之胜肽;(b)以可表現本發明胜肽之形態編碼之多核苷酸;(c)於自身表現上呈現本發明胜肽之APC;(d)於自身表面上呈現本發明胜肽之外吐小體;及(e)本發明之CTL。
於另一態樣,本發明提供選自以下之有效成分之用途,係用在製造用以誘導針對表現MPHOSPH1之癌之免疫反應之藥學組合物或疫苗:(a)本發明之胜肽;(b)以可表現本發明胜肽之形態編碼之多核苷酸;(c)於自身表現上呈現本發明胜肽之APC;(d)於自身表面上呈現本發明胜肽之外吐小體;及(e)本發明之CTL。
或本發明提供選自以下之有效成分之用途,係用在製造用以誘導針對表現MPHOSPH1之癌細胞之免疫反應之藥學組合物或疫苗:(a)本發明之胜肽;(b)以可表現本發明胜肽之形態編碼之多核苷酸; (c)於自身表現上呈現本發明胜肽之APC;(d)於自身表面上呈現本發明胜肽之外吐小體;及(e)本發明之CTL。
或本發明提供選自以下之有效成分之用途,係用於製造用以妨礙表現MPHOSPH1之癌細胞之增殖之藥學組合物或疫苗:(a)本發明之胜肽;(b)以可表現本發明胜肽之形態編碼之多核苷酸;(c)於自身表現上呈現本發明胜肽之APC;(d)於自身表面上呈現本發明胜肽之外吐小體;及(e)本發明之CTL。
本發明更提供製造用以誘導針對表現MPHOSPH1之癌之免疫反應之藥學組合物之方法或步驟,包括將本發明之胜肽和藥學上可接受之載體一起混合或製劑化之階段。
或本發明提供用以妨礙表現MPHOSPH1之癌細胞之增殖之方法、或誘導針對表現MPHOSPH1之癌之免疫反應之方法,包括將含有選自以下之有效成分之疫苗或藥學組合物對於對象投予之階段:(a)本發明之胜肽;(b)以可表現本發明胜肽之形態編碼之多核苷酸;(c)於自身表現上呈現本發明胜肽之APC;(d)於自身表面上呈現本發明胜肽之外吐小體;及(e)本發明之CTL。
在和本發明之關連中,可藉由投予本發明之胜 肽、多胜肽、APC、外吐小體及/或CTL以治療表現MPHOSPH1之癌。或可藉由投予本發明之胜肽、多胜肽、APC、外吐小體及/或CTL,以誘導針對表現MPHOSPH1之癌之免疫反應。如此之癌,例如包括膀胱癌、乳癌、子宮頸癌、膽管細胞癌、慢性骨髓性白血病(CML)、大腸癌、胃癌、肺癌、淋巴瘤、骨肉瘤、前列腺癌、腎癌及軟組織腫瘤等,但不限定於此。又,藉由投予本發明之胜肽、多胜肽、APC、外吐小體及/或CTL,可誘導針對表現MPHOSPH1之癌細胞之免疫反應。故宜於投予包括上述有效成分之疫苗或藥學組合物前,確認治療對象之疾病部位之MPHOSPH1之表現水平是否增強。
故一態樣中,本發明提供治療須治療表現MPHOSPH1之癌之患者中之該癌之方法,如此之方法包括以下階段:i)測定從罹癌對象之疾病部位採樣之活體試樣中之MPHOSPH1之表現水平;ii)依據於i)測定之MPHOSPH1之表現水平,指定出具有表現MPHOSPH1之癌之對象;及iii)將選自由上述(a)~(e)構成之群組中之至少1種成分對於和正常對照相較為有過度表現MPHOSPH1之癌之對象投予。
或本發明提供一種疫苗或藥學組合物,包括用以對於有表現MPHOSPH1之癌之對象投予之選自於由上述(a)~(e)構成之群組中之至少1種有效成分。本發明更提供以選自於由上述(a)~(e)構成之群組中之至少1種有效成分來指定或選擇治療對象之方法,如此之方法包括以下階段: i)測定從有癌之對象之疾病部位採樣之活體試樣中之MPHOSPH1之表現水平;ii)依據i)測得之MPHOSPH1之表現水平指定有表現MPHOSPH1之癌之對象;及iii)指定或選擇於ii)指定之對象作為能以選自於上述(a)~(e)構成之群組中之至少1種有效成分治療之對象。
上述方法中,為了測定MPHOSPH1之表現水平而從對象採樣之活體試樣不特別限定,例如宜使用利用切片等採樣的含有癌細胞之組織試樣。活體試樣中之MPHOSPH1之表現水平可利用習知方法測定,例如:可使用利用探針或PCR法檢測MPHOSPH1基因之轉錄產物之方法(例如:cDNA微陣列法、北方墨點法、RT-PCR法等)、利用抗體檢測MPHOSPH1基因之轉譯產物之方法(例如:西方墨點法、免疫染色法等)等。又,活體試樣也可以為血液試樣,此時,可測定對抗MPHOSPH1之抗體之血中水平,基於該血中水平評價疾病部位之MPHOSPH1之表現水平。測定對抗MPHOSPH1之抗體之血中水平可使用習知方法,例如可使用將MPHOSPH1蛋白質、本發明胜肽作為抗原之酵素免疫測定法(EIA)、酵素連結免疫吸附測定法(ELISA)、及放射免疫測定法(RIA)等。
通常未表現MPHOSPH1之組織及細胞中幾乎檢測不到MPHOSPH1之轉錄產物及轉譯產物。因此當從對象採樣之癌細胞或包括癌細胞之組織試樣中檢測到MPHOSPH1之轉錄產物或轉譯產物時,可判斷該對象之癌表現MPHOSPH1。又,在不具有表現MPHOSPH1之癌之對象之血液試樣幾乎檢 測不到對抗MPHOSPH1或其片段之抗體。因此從對象採樣的血液試樣檢測到有對抗MPHOSPH1或其片段之抗體時,可判斷該對象之癌係表現MPHOSPH1。
又,對象罹患之癌是否表現MPHOSPH1之判斷,可利用比較從該對象之非癌性部位採樣之同種活體材料或從未罹癌之對象採樣之同種活體材料(正常對照試樣)之測定結果以進行。亦即,當比起正常對照試樣之測定對象物之水平(正常對照水平),試驗對象之活體試樣之該水平上昇時,可判斷該對象之癌係表現MPHOSPH1。例如若比起正常對照水平,測定對象物之檢測量增大至少10%以上時,可判斷該對象之癌係表現MPHOSPH1。較佳為比起正常對照水平,測定對象物之檢測量增大25%以上,更佳為50%以上。又,MPHOSPH1之轉錄產物或轉譯產物之檢測量也可常態化β-肌動蛋白、甘油醛3磷酸脫氫酵素及核糖體蛋白質P1等習知之內務基因(housekeeping gene)之檢出量而評價。
於理想態樣,當投予選自於由上述(a)~(e)構成之群組中之至少1種有效成分前,宜確認對象之HLA型較佳。例如:就和具有選自序列編號:5、12、27、52及53中之胺基酸序列之胜肽關連之有效成分之投予對象而言,宜選擇HLA-A11陽性之對象。又,就和具有選自序列編號:118、119及170中之胺基酸序列之胜肽關連之有效成分之投予對象而言,宜選擇HLA-A33陽性之對象較理想。
本發明更提供本發明胜肽與HLA之複合體。前述本發明之複合體可為單體也可為多元體。本發明之複合體為多 元體時,聚合數不特別限定,可為任意聚合數之多元體。例如四元體、五元體、六元體等,但不限定於此。又,多元體(dextramer)(WO2002/072631)、streptamer(Knabel M et al.,Nat Med.2002 Jun;8(6):631-7.)也包括在本發明之多元體。本發明胜肽與HLA之複合體可依習知方法製備(例如:Altman JD et al.,Science.1996,274(5284):94-6、WO2002/072631、WO2009/003492、Knabel M et al.,Nat Med.2002 Jun;8(6):631-7.等)。
本發明之複合體例如可用於定量對於本發明胜肽為專一性CTL。例如:從已投予本發明之藥學組合物之採樣血液試樣,分離PBMC後製備CD4陰性細胞,使已結合螢光色素之本發明之複合體接觸該CD4陰性細胞。之後,利用流式細胞術解析,可測定對於本發明之胜肽為專一性CTL的比例。例如:在投予本發明之藥學組合物前、投予中,及/或投予後,藉由測定對於本發明胜肽為專一性CTL,可監測本發明之藥學組合物獲致之免疫反應誘導效果。
XII. 抗體
本發明更提供和本發明之胜肽結合之抗體。理想之抗體會專一地結合於本發明之胜肽,且不結合於非本發明之胜肽者(或弱結合)。於另一態樣,如此的抗體可包括辨認和HLA分子之關連胜肽之抗體,亦即結合於胜肽-MHC複合體之抗體。抗體之結合專一性能以阻礙試驗確認。亦即,分析之抗體與全長MPHOSPH1多胜肽之間之結合於本發明胜肽存在下受阻礙時,代表此抗體對於本發明之胜肽係專一性結合。對抗本發明 之胜肽之抗體可使用在疾病之診斷及預後診斷之分析、及本發明之藥學組合物之投予對象之選擇及本發明之藥學組合物之監測。
本發明更提供用以檢測及/或定量本發明之胜肽或其片段之各種免疫學的分析法。如此的免疫學的分析法包括放射免疫測定法、免疫層析法、酵素連結免疫吸附測定法(ELISA)、酵素連結免疫螢光測定法(ELIFA)等,但不限於此等,能於該發明所屬之技術領域周知之各種免疫學的分析形式之範圍內進行。
本發明之抗體可使用在能檢測表現MPHOSPH1之癌之免疫學的圖像化法,其例包括使用本發明之標記抗體之放射性閃爍圖術(scintigraphy)圖像化法,但不限於此。如此的分析法臨床使用在表現MPHOSPH1之癌之檢測、監測、及預後診斷中,如此的癌,例如包括膀胱癌、乳癌、子宮頸癌、膽管細胞癌、慢性骨髓性白血病(CML)、大腸癌、胃癌、肺癌、淋巴瘤、骨肉瘤、前列腺癌、腎癌及軟組織腫瘤等等,但不限定於此等。
本發明之抗體能以例如單株抗體或多株抗體等任意形態使用,更包括以本發明之胜肽對於兔等動物進行免疫而得之抗血清、所有類別的多株抗體及單株抗體、人抗體、及利用基因重組製得之嵌合抗體及人化抗體。
作為為了獲得抗體的抗原使用之本發明之胜肽或其片段,可基於本說明書揭示之胺基酸序列,利用化學合成或基因工程的方法獲得。
作為免疫抗原使用之胜肽可為本發明之胜肽或本發明之胜肽之片段。又,為了提高免疫原性,可以將胜肽和載體結合或連結。就載體而言,鑰孔血藍素(keyhole limpet hemocyanin,KLH)為周知。使KLH和胜肽結合之方法亦為該發明所屬之技術領域中周知。
任意哺乳動物可以用前述抗原免疫,但製作單株抗體時,宜考慮和細胞融合使用之母細胞間之適合性較佳。一般可使用囓齒目(Rodentia)、兔目(Lagomorpha)、或靈長目(Primate)之動物。囓齒目科的動物包括例如小鼠、大鼠、及倉鼠。兔目科之動物例如包括兔。靈長目科之動物包括例如食蟹猴(Macaca fascicularis)、獼猴、阿拉伯狒(Papio hamadryas)、及黑猩猩等狹鼻小目(Catarrhini)(舊世界猴)之猴類。
以抗原對於動物免疫之方法,在該發明所屬之技術領域為習知。抗原之腹腔內注射或皮下注射係對於哺乳動物免疫之標準方法。更具體而言,將抗原以適量磷酸緩衝食鹽水(PBS)、生理食鹽水等稀釋,並使其懸浮。視需要,可將抗原懸浮液和佛洛依德完全佐劑等適量之標準佐劑混合並乳化後,對於哺乳動物投予。之後宜將和適量佛洛依德不完全佐劑混合之抗原每隔4~21日投予,投予數次較佳。免疫化也可使用適當載體。如上述方式免疫後,血清關於所望的抗體量之增加可以用標準方法檢查。
對抗本發明胜肽之多株抗體,可以藉由已確認免疫後血清中之所望抗體水平之上昇的哺乳動物回收血液,利用任意之習知法從血液分離出血清以製備。多株抗體可為包括多 株抗體之血清,也可將包括多株抗體之級分從該血清單離。免疫球蛋白G或M可以從只辨認本發明胜肽之級分使用例如已結合本發明胜肽之親和性管柱,將此級分使用蛋白質A或蛋白質G管柱進一步精製而製備。
為了製備單株抗體,係於免疫後確認血清中之所望抗體水平已上昇後,從哺乳動物回收免疫細胞並供細胞融合。細胞融合使用之免疫細胞較佳為能從脾臟獲得。和上述免疫細胞融合之另一者的母細胞,可使用例如:哺乳動物之骨髓瘤細胞,較佳為已獲得利用藥物選擇融合細胞之特性之骨髓瘤細胞。
可依習知方法,例如:Milstein et al.(Galfre and Milstein,Methods Enzymol 73:3-46(1981))之方法使上述免疫細胞與骨髓瘤細胞融合。
由細胞融合得到的融合瘤可藉由將其在標準選擇培養基例如HAT培養基(含次黃嘌呤、氨基蝶呤和胸腺嘧啶的培養基)中培養而選擇。細胞培養係在HAT培養基中繼續充分期間(例如培養數天至數週),使除了所望融合瘤以外的其他細胞(非融合細胞)死亡。然後,可實施標準極限稀釋以篩選並選殖生產所望抗體的融合瘤細胞。
為了製備融合瘤,除了將非人類動物係以抗原免疫之上述方法,尚可將人淋巴球例如受EB病毒感染者以胜肽、胜肽表現細胞或其溶解物於體外免疫。然後,將經免疫的淋巴球與能無限分裂的人來源的骨髓瘤細胞例如U266融合,以得到生產能結合於該胜肽的所望人類抗體的融合瘤(日本特 開昭63-17688)。
接著將獲得的融合瘤移殖到小鼠的腹腔,並抽取腹水。獲得的單株抗體可利用例如硫酸銨沉澱、蛋白質A或蛋白質G管柱、DEAE離子交換層析或結合有本發明胜肽的親和性管柱精製。
或者可將經免疫的淋巴球等生產抗體之免疫細胞利用致癌基因使不死化並用於製備單株抗體。
如此獲得的單株抗體也可使用基因操作技術以重組方式製備(參見例如Borrebaeck and Larrick,Therapeutic Monoclonal Antibodies,於英國由MacMillan Publishers LTD(1990)出版)。例如可從免疫細胞例如生產該抗體的融合瘤或經免疫的淋巴球選殖(cloning)編碼為抗體的DNA,插入適當載體,並導入宿主細胞以製備重組抗體。本發明也提供如上述製備的重組抗體。
再者本發明抗體可為抗體片段或經修飾的抗體,條件是只要其結合於本發明的胜肽即可。例如:抗體片段宜包括抗體的抗原結合部位。具體而言,抗體片段可為Fab、F(ab')2、Fv、或衍生自H鏈及L鏈的Fv片段以適當連結子連接而得之單鏈Fv(scFv)(Huston et al.,Proc Natl Acad Sci USA 1988,85:5879-83)。更具體而言,可利用以木瓜酵素或胃蛋白酶等處理抗體而製作抗體片段。或者可構建編碼為該抗體片段的基因,插入表現載體並使其於適當的宿主細胞中表現(參見例如(例如:Co et al.,J Immunol 1994,152:2968-76;Better and Horwitz,Methods Enzymol 1989,178:476-96;Pluckthun and Skerra,Methods Enzymol 1989,178:497-515;Lamoyi,Methods Enzymol 1986,121:652-63;Rousseaux et al.,Methods Enzymol 1986,121:663-9;Bird and Walker,Trends Biotechnol 1991,9:132-7)。
抗體可藉由與各種分子例如聚乙二醇(PEG)結合而修飾。本發明提供此種經修飾的抗體。經修飾的抗體可藉由將抗體化學修飾而獲得。此等修飾方法在該領域為習知。
或者本發明抗體可為:來自非人類抗體的可變區與衍生自人抗體的不變區的嵌合抗體,或人化抗體,其包括來自非人抗體的互補決定區(CDR)、來自人抗體之框架區(FR)及不變區。此種抗體可依照已知技術製備。人化可藉由以非人抗體之CDR序列取代人抗體之對應序列以實施(參見例如:Verhoeyen et al.,Science 1998,239:1534-6)。因此此種人化抗體為嵌合抗體,其中實質上少於完整的人類可變區已取代成來自非人種的對應序列。
也可使用除了人框架區及不變區外包括人可變區的完全人抗體。此種抗體可使用該技術領域已知的各種技術製造。例如體外之方法涉及使用呈現在噬菌體的人抗體片段的重組庫(例如:Hoogenboom & Winter,J.Mol.Biol.1991,227:381)。同樣地,可藉由將人免疫球蛋白基因位導入基因轉殖動物例如內生免疫球蛋白已部分或全部失活的小鼠中,而製備人抗體。此方法敘述於例如美國專利第6,150,584號、第5,545,807號;第5,54583,806號;第5,569,825號;第5,625,126號;第5,633,425號;第5,661,016號。
如上獲得的抗體可純化成同質。例如可依照一般蛋白質使用的分離及純化方法將抗體分離及純化。例如可利用適當選擇及合併使用的管柱層析分離及單離抗體,管柱層析例如親和性層析等管柱層析、過濾、超過濾、鹽析、透析、SDS聚丙烯醯胺凝膠電泳及等電點電泳(Antibodies:A Laboratory Manual.Ed Harlow and David Lane,Cold Spring Harbor Laboratory(1988)),但不限於此等。可使用蛋白質A管柱及蛋白質G管柱當做該親和性管柱。可使用的蛋白質A管柱包括例如Hyper D、POROS及Sepharose F.F.(Pharmacia)。
親和性層析以外的層析,包括例如離子交換層析、疏水性層析、凝膠過濾、反相層析、吸附層析等(Strategies for Protein Purification and Characterization:A Laboratory Course Manual.Ed Daniel R.Marshak et al.,Cold Spring Harbor Laboratory Press(1996))。層析程序可利用液相層析,例如HPLC與FPLC實施。
例如可使用測量吸光度、酵素連結免疫吸附分析法(ELISA)、酵素免疫分析法(EIA)、放射免疫分析法(RIA)及/或免疫螢光以測量本發明抗體的抗原結合活性。ELISA中,係將本發明抗體固定化在一平板上,添加本發明胜肽於該平板,然後添加含有所望抗體的樣本,例如抗體產生細胞的培養上清或純化的抗體。然後,添加辨認該初級抗體且經鹼性磷解酶等酵素標記的二次抗體,然後溫育該平板。清洗後,添加酵素受質例如對硝基苯基磷酸到該平板,測量吸光度以評估該樣本的抗原結合活性。可使用該胜肽的片段例如C末端或N末 端片段當做抗原以評估該抗體的結合活性。可使用BIAcore(Pharmacia)來評估本發明抗體的活性。
上述方法,藉由使本發明抗體暴露於假定含有本發明胜肽的樣本,並偵測或測量該抗體與該胜肽形成的免疫複合體,能偵測或測量本發明的胜肽。
例如:本發明之抗體也可使用在檢測存在於對象之血液試樣(例如血清試樣)中之本發明胜肽之用途。或反之,可使用本發明胜肽檢測對象血液試樣(例如血清試樣)中存在之本發明之抗體。測定對象之血液試樣中之本發明之胜肽或本發明之抗體之結果,對於選擇本發明之藥學組合物之投予對象、或監測本發明之藥學組合物之效果方面有用。此外,具有對抗以例如疫苗形式投予之胜肽之抗體之患者,據報告有時對於疫苗之反應性高。因此本發明之胜肽可利用於作為當投予該胜肽作為疫苗時,用以將高反應性之患者的抗體作為指標進行選擇之免疫分析用抗原。
XIII.載體及宿主細胞
本發明也提供含有編碼為本發明胜肽的多核苷酸的載體與導入有該載體之宿主細胞。本發明的載體可使用於在宿主細胞中保持本發明之多核苷酸、使宿主細胞表現本發明之胜肽,或投予本發明多核苷酸供基因治療。
大腸菌為宿主細胞且載體在大腸菌(例如JM109、DH5 α、HB101或XL1-Blue)中放大及大量生產時,該載體應具有欲在大腸菌內放大的「複製起點」以及用於選擇經轉形的大腸菌的標記基因(例如由安皮西林、四環黴素、嘉那黴素、 氯黴素等藥物選擇的抗藥性基因)。例如,可使用M13系列載體、pUC系列載體、pBR322、pBluescript、pCR-Script等。此外,也可將pGEM-T、pDIRECT及pT7和上述載體同樣地用於選殖。當使用載體產生本發明胜肽時,可使用表現載體。例如欲在大腸菌中表現的表現載體應具有上述欲在大腸菌中放大需要的特性。當使用大腸菌例如JM109、DH5 α、HB101或XL1-Blue當做宿主細胞,該載體應具有能在大腸菌內有效率地表現所望基因之啟動子,例如lacZ啟動子(Ward et al.,Nature 1989,341:544-6;FASEB J 1989,6:2422-7)、araB啟動子(Better et al.,Science 1988,240:1041-3)、T7啟動子等。於此方面,可使用pGEX-5X-1(Pharmacia)、「QIAexpress system」(Qiagen)、pEGFP及pET(於此情形,宿主較佳為表現T7 RNA聚合酶的BL21)取代上述載體。此外,該載體也可含有信號序列以供胜肽分泌。引導該胜肽分泌到大腸菌胞間質的信號序列之例,為pelB信號序列(Lei et al.,J Bacteriol 1987,169:4379)。將該等載體導入目標宿主細胞的方法包括例如氯化鈣法及電穿孔法。
除了大腸菌,例如可使用來自哺乳動物的表現載體(例如pcDNA3(Invitrogen)及pEGF-BOS(Nucleic Acids Res 18(17):5322(1990))、pEF、pCDM8)、來自昆蟲細胞的表現載體(例如「Bac-to-BAC baculovirus expression system」(GIBCO BRL)、pBacPAK8)、來自植物的表現載體(例如pMH1、pMH2)、來自動物病毒的表現載體(例如pHSV、pMV、pAdexLcw)、來自反轉錄病毒的表現載體(例如pZIpneo)、來自 酵母菌的表現載體(例如「Pichia Expression Kit」(Invitrogen)、pNV11、SP-Q01),及來自枯草芽孢桿菌(Bacillus subtilis)的表現載體(例如pPL608、pKTH50),用於生產本發明之多胜肽。
為了於動物細胞例如CHO、COS或NIH3T3細胞中表現載體,該載體應具有對於在此種細胞中表現所需要的啟動子例如SV40啟動子(Mulligan et al.,Nature 1979,277:108)、MMLV-LTR啟動子、EF1 α啟動子(Mizushima et al.,Nucleic Acids Res 1990,18:5322)、CMV啟動子等,較佳為具有用於選擇轉形體的標記基因(例如由藥物(例如新黴素、G418)選擇的抗藥性基因)。具有此等特性的已知載體例如pMAM、pDR2、pBK-RSV、pBK-CMV、pOPRSV及pOP13。
基於上述說明之本發明之態樣列舉如下,但本發明不限於此等。
[1]一種胜肽,係具有細胞毒性T細胞(CTL)誘導能力之未達15個胺基酸之胜肽,包含選自以下群組之胺基酸序列:(a)選自於由序列編號:5、12、27、52、53、118、119及170構成之群組之胺基酸序列;及(b)相對於選自於由序列編號:5、12、27、52、53、118、119及170構成之群組之胺基酸序列有1個、2個、或多個胺基酸取代、缺失、插入及/或加成之胺基酸序列。
[2]如[1]所述之胜肽,其選自於由以下(i)~(ii)構成之群組:(i)包括對於選自於由序列編號:5、12、27、52及53構成之群組之胺基酸序列實施了選自於由以下(a)~(d)之1個以上之取代之胺基酸序列之胜肽: (a)N末端起第2號之胺基酸取代為選自於由蘇胺酸、纈胺酸、異白胺酸、白胺酸、苯丙胺酸及酪胺酸構成之群組之胺基酸;(b)N末端起第3號之胺基酸取代為選自於由白胺酸、苯丙胺酸、酪胺酸、異白胺酸及丙胺酸構成之群組之胺基酸;(c)N末端起第7號之胺基酸取代為選自於由白胺酸、異白胺酸、酪胺酸、纈胺酸及苯丙胺酸構成之群組之胺基酸;及(d)C末端之胺基酸取代為精胺酸;及以(ii)包括對於選自於由序列編號:118、119及170構成之群組之胺基酸序列實施了選自於由以下(a)~(c)之1個以上之取代之胺基酸序列之胜肽:(a)N末端起第1號之胺基酸取代為選自於由天冬胺酸及麩胺酸構成之群組之胺基酸;(b)N末端起第2號之胺基酸取代為選自於由苯丙胺酸、酪胺酸、丙胺酸、異白胺酸、白胺酸及纈胺酸構成之群組之胺基酸;及(c)C末端之胺基酸取代為離胺酸。
[3]如[1]所述之胜肽,其由選自於由序列編號:5、12、27、52、53、118、119及170構成之群組之胺基酸序列構成。
[4]一種多核苷酸,編碼為如[1]至[3]中任一項所述之胜肽。
[5]一種組合物,包含:藥學上可接受之載體,以及選自於由以下(a)~(e)構成之群組中之至少1種成分:(a)如[1]至[3]中任一項所述之一或多種胜肽;(b)以可表現如[1]至[3]中任一項所述之胜肽之形態編碼之 一或多種多核苷酸;(c)於自身細胞表面上呈現如[1]至[3]中任一項所述之胜肽與HLA抗原之複合體之抗原呈現細胞(APC);(d)於自身細胞表面上呈現如[1]至[3]中任一項所述之胜肽與HLA抗原之複合體之外吐小體;及(e)將如[1]至[3]中任一項所述之胜肽作為標靶之CTL。
[6]如[5]所述之組合物,係用於誘導CTL之組合物,其中,該成分係選自於由以下(a)~(d)構成之群組中之至少1種成分:(a)如[1]至[3]中任一項所述之一或多種胜肽;(b)以可表現如[1]至[3]中任一項所述之胜肽之形態編碼之一或多種多核苷酸;(c)於自身之細胞表面上呈現如[1]至[3]中任一項所述之胜肽與HLA抗原之複合體之抗原呈現細胞(APC);及(d)於自身之細胞表面上呈現如[1]至[3]中任一項所述之胜肽與HLA抗原之複合體之外吐小體。
[7]如[5]所述之組合物,其係藥學組合物。
[8]如[7]所述之組合物,係用於選自於由(i)癌之治療、(ii)癌之預防、及(iii)預防癌之術後再發構成之群組中之1種以上之用途之藥學組合物。
[9]如[7]所述之組合物,係用於誘導針對癌之免疫反應。
[10]如[8]或[9]所述之組合物,其中,癌係選自於由膀胱癌、乳癌、子宮頸癌、膽管細胞癌、慢性骨髓性白血病(CML)、大腸癌、胃癌、肺癌、淋巴瘤、骨肉瘤、前列腺癌、腎癌及軟組織腫瘤構成之群組。
[11]如[5]至[10]中任一項所述之組合物,其係製劑化成為了向選自於由HLA-A11及HLA-A33構成之群組中之至少1種HLA為陽性之對象投予。
[12]一種誘導具有CTL誘導能力之APC之方法,包含選自於由以下構成之群組之階段:(a)使APC在體外(in vitro)、活體外(ex vivo)或活體內(in vivo)接觸如[1]至[3]中任一項所述之胜肽;及(b)將編碼為如[1]至[3]中任一項所述之胜肽之多核苷酸導入到APC。
[13]一種誘導CTL之方法,包含選自於由以下(a)~(c)構成之群組之階段:(a)將CD8陽性T細胞和在自身表面上呈現HLA抗原與如[1]至[3]中任一項所述之胜肽之複合體之APC進行共培養;(b)將CD8陽性T細胞和在自身表面上呈現HLA抗原與如[1]至[3]中任一項所述之胜肽之複合體之外吐小體進行共培養;及(c)將編碼為能結合於在細胞表面上由HLA抗原呈現之如[1]至[3]中任一項所述之胜肽之T細胞受體(TCR)之各次單元之多核苷酸導入到CD8陽性T細胞。
[14]一種APC,係於自身表面上呈現HLA抗原與如[1]至[3]中任一項所述之胜肽之複合體。
[15]如[14]所述之APC,係利用如[12]所述之誘導具有CTL誘導能力之APC之方法誘導。
[16]一種CTL,係將如[1]至[3]中任一項所述之胜肽作為標靶。
[17]如[16]所述之CTL,係由如[13]之誘導CTL之方法誘導。
[18]一種誘導針對癌之免疫反應之方法,包括將選自於由以下(a)~(e)構成之群組中之至少1種成分對於對象投予之階段:(a)如[1]至[3]中任一項所述之一或多種胜肽;(b)以可表現如[1]至[3]中任一項所述之胜肽之形態編碼之一或多種多核苷酸;(c)於自身之細胞表面上呈現如[1]至[3]中任一項所述之胜肽與HLA抗原之複合體之抗原呈現細胞(APC);(d)於自身之細胞表面上呈現如[1]至[3]中任一項所述之胜肽與HLA抗原之複合體之外吐小體;及(e)將如[1]至[3]中任一項所述之胜肽作為標靶之CTL。
[19]一種治療及/或預防癌、及/或預防癌之術後再發之方法,包括將選自於由以下(a)~(e)構成之群組中之至少1種成分對於對象投予之階段:(a)如[1]至[3]中任一項所述之一或多種胜肽;(b)以可表現如[1]至[3]中任一項所述之胜肽之形態編碼之一或多種多核苷酸;(c)於自身之細胞表面上呈現如[1]至[3]中任一項所述之胜肽與HLA抗原之複合體之抗原呈現細胞(APC);(d)於自身之細胞表面上呈現如[1]至[3]中任一項所述之胜肽與HLA抗原之複合體之外吐小體;及(e)將如[1]至[3]中任一項所述之胜肽作為標靶之CTL。
[20]一種抗體,係結合於如[1]至[3]中任一項所述之胜肽。
[21]一種篩選有CTL誘導能力之胜肽之方法,包括以下階段: (a)製作由對於選自於由序列編號:5、12、27、52、53、118、119及170構成之群組之胺基酸序列構成之原本胺基酸序列有1個、2個、或數個胺基酸殘基取代、缺失、插入、及/或加成之胺基酸序列構成之候選序列;(b)從(a)製作之候選序列中選擇和MPHOSPH1以外之任意習知之人基因產物均沒有顯著相同性(序列同一性)之候選序列;(c)使由於(b)選擇之候選序列構成之胜肽接觸APC;(d)使(c)之APC接觸CD8陽性T細胞;及(e)選擇比起由原本胺基酸序列構成之胜肽有同等或更高之CTL誘導能力之胜肽。
[22]一種選自於由以下(a)~(e)構成之群組中之至少1種有效成分之用途,係用於誘導針對癌之免疫反應:(a)如[1]至[3]中任一項所述之一或多種胜肽;(b)以可表現如[1]至[3]中任一項所述之胜肽之形態編碼之一或多種多核苷酸;(c)在自身細胞表面上呈現如[1]至[3]中任一項所述之胜肽與HLA抗原之複合體之抗原呈現細胞(APC);(d)在自身細胞表面上呈現如[1]至[3]中任一項所述之胜肽與HLA抗原之複合體之外吐小體;及(e)將如[1]至[3]中任一項所述之胜肽作為標靶之CTL。
[23]一種選自於由以下(a)~(e)構成之群組中之至少1種成分之用途,係用於製造用於癌治療及/或預防、及/或預防癌之術後再發之藥學組合物: (a)如[1]至[3]中任一項所述之一或多種胜肽;(b)以可表現如[1]至[3]中任一項所述之胜肽之形態編碼之一或多種多核苷酸;(c)在自身細胞表面上呈現如[1]至[3]中任一項所述之胜肽與HLA抗原之複合體之抗原呈現細胞(APC);(d)在自身細胞表面上呈現如[1]至[3]中任一項所述之胜肽與HLA抗原之複合體之外吐小體;及(e)將如[1]至[3]中任一項所述之胜肽作為標靶之CTL。
[24]一種選自於由以下(a)~(e)構成之群組中之至少1種成分之用途,係用於誘導針對癌之免疫反應:(a)如[1]至[3]中任一項所述之一或多種胜肽;(b)以可表現如[1]至[3]中任一項所述之胜肽之形態編碼之一或多種多核苷酸;(c)在自身細胞表面上呈現如[1]至[3]中任一項所述之胜肽與HLA抗原之複合體之抗原呈現細胞(APC);(d)在自身細胞表面上呈現如[1]至[3]中任一項所述之胜肽與HLA抗原之複合體之外吐小體;及(e)將如[1]至[3]中任一項所述之胜肽作為標靶之CTL。
[25]一種選自於由以下(a)~(e)構成之群組中之至少1種成分之用途,係用於治療及/或預防癌、及/或預防癌之術後再發:(a)如[1]至[3]中任一項所述之一或多種胜肽;(b)以可表現如[1]至[3]中任一項所述之胜肽之形態編碼之一或多種多核苷酸;(c)在自身細胞表面上呈現如[1]至[3]中任一項所述之胜 肽與HLA抗原之複合體之抗原呈現細胞(APC);(d)在自身細胞表面上呈現如[1]至[3]中任一項所述之胜肽與HLA抗原之複合體之外吐小體;及(e)將如[1]至[3]中任一項所述之胜肽作為標靶之CTL。
[26]一種誘導針對表現MPHOSPH1之細胞之細胞毒性活性之方法,包括對於對象投予選自於由以下(a)~(e)構成之群組中之至少1種成分之階段:(a)如[1]至[3]中任一項所述之一或多種胜肽;(b)以可表現如[1]至[3]中任一項所述之胜肽之形態編碼之一或多種多核苷酸;(c)在自身細胞表面上呈現如[1]至[3]中任一項所述之胜肽與HLA抗原之複合體之抗原呈現細胞(APC);(d)在自身細胞表面上呈現如[1]至[3]中任一項所述之胜肽與HLA抗原之複合體之外吐小體;及(e)將如[1]至[3]中任一項所述之胜肽作為標靶之CTL。
[27]一種冷凍乾燥製劑,包括如[1]至[3]中任一項所述之一或多種胜肽。
[28]一種藥學組合物,係以包括將如[1]至[3]中任一項所述之一或多種胜肽溶於水溶性之載體並過濾滅菌之步驟的方法製備。
[29]一種經過濾滅菌之水溶液,包括如[1]至[3]中任一項所述之一或多種胜肽與水溶性之載體。
[30]一種乳劑,包含如[1]至[3]中任一項所述之一或多種胜肽、水溶性之載體、及油性佐劑。
[31]一種套組,包含:容納如[7]至[11]中任一項所述之藥學組合物之容器、及容納佐劑之容器。
[32]一種套組,包含:容納包括如[1]至[3]中任一項所述之胜肽之冷凍乾燥製劑之容器、容納佐劑之容器、及容納用於冷凍乾燥製劑之再溶解液之容器。
本發明書關於本發明就其特定態樣已詳細說明,但前述說明事實上係例示說明,應理解係意圖說明本發明及理想態樣。該技術領域中有通常知識者可理解:依日常實驗可在不脫離本發明精神及範圍而輕易進行各種變更及修正。故本發明並非受限於上述說明,而意欲由附帶的申請專利範圍及此等之均等物所限定。
以下參考實施例對於本發明更詳細敘述。然而,以下材料、方法及實施例係可協助該技術領域中具有通常知識者製造及使用本發明特定具體例,此等僅是意欲來解說本發明態樣,因此並不限制本發明的範圍。該技術領域中具有通常知識者當可輕易理解到,與在此所述者類似或等同之方法及材料可用於實施或測試本發明。
又,本說明書中引用之所有先前技術文獻納入本發明作為參照。又,本說明書中引用之所有先前技術文獻納入本發明作為參照。
【實施例】
實施例1
材料及方法
細胞株
為HLA-A及HLA-B陰性人B淋巴芽球樣細胞株之C1R細胞、及為非洲綠猴腎細胞株之COS7係向ATCC購買。
安定表現HLA-A*11:01之標靶細胞之製作
將安定表現HLA-A*11:01之C1R細胞(C1R-A11)作為刺激CTL之細胞使用。將編碼為HLA-A*11:01基因之cDNA以PCR放大,納入到表現載體。將已導入HLA-A*11:01基因表現載體之C1R細胞使用含G418(Invitrogen)之培養基進行2週藥劑選擇培養。將G418耐性C1R細胞懸浮液稀釋後接種到96孔盤,再以含G418之培養基進行30日選擇培養。以流式細胞術解析確認C1R細胞之HLA-A*11:01之表現。
來自MPHOSPH1的胜肽之選擇
使用結合預測伺服器「NetMHC 3.2」(www.cbs.dtu.dk/services/NetMHC-3.2/)(Buus et al.,Tissue Antigens.2003,62(5):378-84;Nielsen et al.,Protein Sci.2003,12(5):1007-17,Bioinformatics.2004,20(9):1388-97)決定期待會結合於HLA-A*11:01分子之來自MPHOSPH1的9員(9mer)及10員(10mer)之胜肽。
胜肽之合成
胜肽利用American Peptide Company(Sunnyvale,CA)依標準的固相合成法合成,並利用逆相高速液體層析(HPLC)精製。利用HPLC及質量分析分析保證該胜肽之品質(純度90%以上)。胜肽以二甲基亞碸溶解(最終濃度20mg/ml)並於-80℃保存。
於體外之CTL誘導
使用來自單核球之樹狀細胞(DC)作為抗原呈現細胞,誘導針對在人白血球抗原(HLA)上呈現之胜肽之專一性細胞毒性T淋巴球(CTL)反應。依已於文獻記載之方式,於體外製作DC(Nakahara S et al.,Cancer Res 2003,63(14):4112-8)。具體而言,使利用Ficoll-Paque plus(Pharmacia)溶液從健康的自願者(HLA-A*11:01陽性)收集的末梢血單核細胞(PBMC)接種於塑膠製組織培養皿(Corning),使PBMC中之單核球黏著於培養皿。於存在1000IU/ml之顆粒球巨噬體群落刺激因子(R&D System)及1000IU/ml之介白素(IL)-4(R&D System)之狀態培養7日。培養基使用含有5%之經失活之AB型血清(ABS)之AIM-V培養基(Invitrogen)。對於因細胞介素而從單核球分化誘導的DC,以20μg/ml之各合成胜肽衝擊(37℃,3小時)。胜肽衝擊係於含3μg/ml之β2-微球蛋白之AIM-V培養基中進行。使將經胜肽衝擊之該等DC利用X射線照射(20Gy)失活,與利用使用CD8陽性單離套組(Invitrogen)之陽性選擇獲得之自體CD8陽性T細胞以1:20之比率混合(1.5 x 104個DC與3 x 105個CD8陽性T細胞)並於48孔盤(Corning)中培養。各孔之5%ABS/AIM-V培養基量為0.5ml,於其中添加IL-7(R&D System)(最終濃度10ng/ml)。培養開始2日後添加IL-2(Novartis)(最終濃度20IU/ml)。於培養第7日及第14日,再利用經胜肽衝擊之DC刺激CD8陽性T細胞。每次以和上述相同方法製備DC。於第21日以後(3次DC刺激後,以人干擾素(IFN)-γ酵素連結免疫斑點(ELISPOT)分析確認針對經胜肽衝擊之C1R-A11之IFN-γ產生(Tanaka H et al.,Br J Cancer 2001,84(1):94-9;Umano Y et al.,Br J Cancer 2001,84(8):1052-7;Uchida N et al.,Clin Cancer Res 2004,10(24):8577-86;Suda T et al.,Cancer Sci 2006,97(5):411-9;Watanabe T et al.,Cancer Sci 2005,96(8):498-506)。
CTL增殖程序
使用和Riddell等人(Walter EA et al.,N Engl J Med 1995,333(16):1038-44;Riddell SR et al.,Nat Med 1996,2(2):216-23)報告之方法為類似的方法,使CTL增殖。將CTL和經絲裂黴素C(mitomycin C)處理之2種人B淋巴芽球樣細胞株(各5 x 106個細胞/培養基25ml)、及抗CD3抗體(最終濃度:40ng/ml)一起於25ml之5%ABS/AIM-V培養基中進行培養。培養開始1日後,將IL-2(最終濃度:120IU/ml)添加到該培養物。於第5、8及11日,以含有IL-2(最終濃度:30IU/ml)之5%ABS/AIM-V培養基進行培養基更換(Tanaka H et al.,Br J Cancer 2001,84(1):94-9;Umano Y et al.,Br J Cancer 2001,84(8):1052-7,Uchida N et al.,Clin Cancer Res 2004,10(24):8577-86;Suda T et al.,Cancer Sci 2006,97(5):411-9,Watanabe T et al.,Cancer Sci 2005,96(8):498-506)。
CTL選殖體之建立
經於體外之CTL誘導後,於96孔圓底微平板(Nalge Nunc International)將CTL以1個/孔或10個/孔的方式接種。將CTL和經絲裂黴素C處理之2種人B淋巴芽球樣細胞株(各1 x 104個/孔)、抗CD3抗體(最終濃度:30ng/ml)、及IL-2(最終濃度:125IU/ml)一起於總量150μl/孔之5%ABS/AIM-V培養基中培 養。10日後,將50μl/孔之含500IU/ml之IL-2之5%ABS/AIM-V培養基添加到該培養物。第14日後,使用和上述相同方法使在ELISPOT分析法中呈胜肽專一性IFN-γ產生之CTL增殖(Uchida N et al.,Clin Cancer Res 2004,10(24):8577-86;Suda T et al.,Cancer Sci 2006,97(5):411-9;Watanabe T et al.,Cancer Sci 2005,96(8):498-506)。
IFN-γ產生之確認
為了確認使用胜肽誘導的CTL的胜肽專一性IFN-γ產生,實施IFN-γ ELISPOT分析及IFN-γ ELISA。製備經胜肽衝擊之C1R-A11(1 x 104個/孔)作為標靶細胞。IFN-γ ELISPOT分析及IFN-γ ELISA係依分析套組製造商建議的程序實施。
強制表現MPHOSPH1及HLA-A*11:01之標靶細胞之製備
將編碼為MPHOSPH1或HLA-A*11:01基因之cDNA以PCR放大。將PCR放大產物分別納入到表現載體。依製造商建議的程序使用Lipofectamine2000(Invitrogen),對於係HLA之陰性細胞株之COS7細胞導入MPHOSPH1基因表現載體及HLA-A*11:01基因表現載體中任一者或兩者。基因導入起次日,使用Versene(Invitrogen)剝離、回收COS7細胞,作為用於確認IFN-γ產生之標靶細胞(5 x 104個細胞/孔)。
結果
來自MPHOSPH1的HLA-A*11:01結合胜肽之預測
表1a及表1b分別將依「NetMHC 3.2」預測之向HLA-A*11:01之結合之來自MPHOSPH1的9員(9mer)胜肽及 10員(10mer)胜肽以結合親和性由高至低的順序顯示。選擇可能有對於HLA-A*11:01之結合能力之合計117種胜肽作為抗原決定位胜肽候選物。
【表1a-1】來自MPHOSPH1之HLA-A*11:0結合9員(9mer)胜肽
Figure 105132521-A0202-12-0096-1
Figure 105132521-A0202-12-0097-2
開始位置代表自MPHOSPH1之N端起的胺基酸殘基數。
解離常數[Kd(nM)]係由「NetMHC3.2」導出。
【表1b-1】來自MPHOSPH1之HLA-A*11:0結合10員(10mer)胜肽
Figure 105132521-A0202-12-0098-3
Figure 105132521-A0202-12-0099-4
開始位置代表自MPHOSPH1之N端起的胺基酸殘基數。 解離常數[Kd(nM)]係由「NetMHC3.2」導出。
HLA-A*11:01限制性之來自MPHOSPH1之預測胜肽所為之CTL之誘導
依「材料及方法」記載之實驗步驟誘導針對來自MPHOSPH1的胜肽專一性的CTL。利用ELISPOT分析確認胜肽專一性的IFN-γ產生(第1圖)。
使用MPHOSPH1-A11-9-762(序列編號:5)之井編號#3(a)、使用MPHOSPH1-A11-9-1227(序列編號:12)之井編號#2(b)、使用MPHOSPH1-A11-9-96(序列編號:27)之井編號#5(c)、使用MPHOSPH1-A11-10-1546(序列編號:52)之井編號#6(d)及使用MPHOSPH1-A11-10-1675(序列編號:53)之井編號#5(e)中,顯示胜肽專一性的IFN-γ產生。另一方面,未確認到針對表1a及表1b所示之其他胜肽有專一性的IFN-γ產生。例如未確認到針對MPHOSPH1-A11-9-739(序列編號:4)之專一性IFN-γ產生(f)。雖任一胜肽皆有可能對於HLA-A*11:01結合,但結果選擇5種胜肽作為有CTL誘導能力之胜肽。
針對HLA-A*11:01限制性之來自MPHOSPH1之胜肽之CTL株及選殖體之建立
IFN-γ ELISPOT分析中,使得使用MPHOSPH1-A11-9-1227(序列編號:12)之孔編號#2(a)及使用MPHOSPH1-A11-10-1546(序列編號:52)之孔編號#6(b)之細胞增殖,建立CTL株。利用IFN-γ ELISA測定IFN-γ,結果,確認了針對使用MPHOSPH1-A11-9-1227(序列編號:12)(a)及MPHOSPH1-A11-10-1546(序列編號:52)(b)衝擊之標靶細胞 (C1R-A11),有CTL株之IFN-γ產生(第2圖)。再者,依上述「材料及方法」之章節記載,利用極限稀釋建立CTL選殖體,利用ELISA測定IFN-γ之結果,經MPHOSPH1-A11-9-1227(序列編號:12)(a)及MPHOSPH1-A11-10-1546(序列編號:52)(b)刺激之CTL選殖體分別有胜肽專一性的IFN-γ產生(第3圖)。
針對表現MPHOSPH1及HLA-A*11:01之標靶細胞之IFN-γ產生
驗證對於表現MPHOSPH1及HLA-A*11:01之標靶細胞,MPHOSPH1-A11-10-1546(序列編號:52)專一性CTL選殖體之IFN-γ產生。製備表現MPHOSPH1及HLA-A*11:01之兩者之COS7細胞作為標靶細胞。製備表現MPHOSPH1或HLA-A*11:01其中一者的COS7細胞作為陰性對照細胞。MPHOSPH1-A11-10-1546(序列編號:52)專一性的CTL選殖體,顯示對於表現MPHOSPH1及HLA-A*11:01兩者之COS7細胞有IFN-γ產生(第4圖)。另一方面,未確認對於陰性對照細胞有顯著的IFN-γ產生。由此可明確實證:MPHOSPH1-A11-10-1546(序列編號:52)係經抗原處理而生成之胜肽,且和HLA-A*11:01分子一起呈現於細胞表面上並由CTL所辨認。此結果啟示:MPHOSPH1-A11-10-1546(序列編號:52)作為在癌細胞中之MPHOSPH1表現亢進之患者為對象之癌疫苗係有用。
抗原胜肽之相同性解析
MPHOSPH1-A11-9-762(序列編號:5)、MPHOSPH1-A11-9-1227(序列編號:12)、 MPHOSPH1-A11-9-96(序列編號:27)、MPHOSPH1-A11-10-1546(序列編號:52)及MPHOSPH1-A11-10-1675(序列編號:53)已確認可誘導顯示胜肽專一性之IFN-γ產生之CTL。為了確認MPHOSPH1-A11-9-762(序列編號:5)、MPHOSPH1-A11-9-1227(序列編號:12)、MPHOSPH1-A11-9-96(序列編號:27)、MPHOSPH1-A11-10-1546(序列編號:52)及MPHOSPH1-A11-10-1675(序列編號:53)之序列僅來自MPHOSPH1,使用BLAST演算法(blast.ncbi.nlm.nih.gov/Blast.cgi)實施胜肽序列之相同性解析。其結果,確認MPHOSPH1-A11-9-762(序列編號:5)、MPHOSPH1-A11-9-1227(序列編號:12)、MPHOSPH1-A11-9-96(序列編號:27)、MPHOSPH1-A11-10-1546(序列編號:52)及MPHOSPH1-A11-10-1675(序列編號:53)之序列只在MPHOSPH1。因此據本案發明人等所知,認為該等胜肽係MPHOSPH1特有,幾乎不可能會對於已知監察人免疫系之MPHOSPH1以外之分子引起意外的免疫反應。就結論而言,可鑑別來自MPHOSPH1之新穎HLA-A11:01限制性抗原決定位胜肽。又,顯示來自MPHOSPH1的抗原決定位胜肽可以適用於癌免疫療法。
實施例2
材料及方法
細胞株
為細胞株HLA-A及HLA-B陰性人B淋巴芽球樣細胞株之C1R、及為非洲綠猴腎細胞株之COS7係向ATCC購買。
安定表現HLA-A*33:03之標靶細胞之製作
將安定表現HLA-A*33:03之C1R細胞(C1R-A33)作為刺激CTL之細胞使用。將編碼為HLA-A*33:03基因之cDNA以PCR放大,納入到表現載體。將已導入HLA-A*33:03基因表現載體之C1R細胞以含G418(Invitrogen)之培養基進行2週藥劑選擇培養。將G418耐性C1R細胞懸浮液稀釋後,接種到96孔盤,以含G418之培養基進一步進行30日選擇培養。以流式細胞術解析確認C1R細胞之HLA-A*33:03之表現。
來自MPHOSPH1之胜肽之選擇
使用結合預測伺服器「NetMHC pan2.4」(www.cbs.dtu.dk/services/NetMHCpan-2.4/)(Nielsen et al.,PLoS One.2007;29;2(8):e796;Hoof et al.,Immunogenetics.2009;61(1):1-13)決定期待結合於HLA-A*33:03之來自MPHOSPH1的9員(9mer)及10員(10mer)之胜肽。
胜肽之合成
胜肽利用American Peptide Company(Sunnyvale,CA)依固相合成法合成,並利用逆相高速液體層析(HPLC)精製。利用HPLC及質量分析法保證該胜肽之品質(純度90%以上)。胜肽溶於二甲基亞碸(最終濃度:20mg/ml)並於-80℃保存。
於體外之CTL誘導
使用來自單核球之樹狀細胞(DC)作為抗原呈現細胞,誘導 針對在人白血球抗原(HLA)上呈現之胜肽之專一性細胞毒性T淋巴球(CTL)反應。依於文獻記載之方式,於體外製作DC(Nakahara S et al.,Cancer Res 2003,63(14):4112-8)。具體而言,使利用Ficoll-Paque plus(Pharmacia)溶液從健康的自願者(HLA-A*33:03陽性)收集的末梢血單核細胞(PBMC)接種於塑膠製組織培養皿(Corning),使PBMC中之單核球黏著於培養皿。於存在1000IU/ml之顆粒球巨噬體群落刺激因子(R&D System)及1000IU/ml之介白素(IL)-4(R&D System)之狀態培養7日。培養基使用含有5%之經失活之AB型血清(ABS)之AIM-V培養基(Invitrogen)。對於因細胞介素而從單核球分化誘導的DC,以20μg/ml之各合成胜肽衝擊(37℃,3小時)。胜肽衝擊係於含3μg/ml之β2-微球蛋白之AIM-V培養基中進行。使將經胜肽衝擊之該等DC利用X射線照射(20Gy)失活,與利用使用CD8陽性單離套組(Invitrogen)之陽性選擇獲得之自體CD8陽性T細胞以1:20之比率混合(1.5 x 104個DC與3 x 105個CD8陽性T細胞)並於48孔盤(Corning)中培養。各孔之5%ABS/AIM-V培養基量為0.5ml,於其中添加IL-7(R&D System)(最終濃度:10ng/ml)。培養開始2日後添加IL-2(Novartis)(最終濃度20IU/ml)。於培養第7日及第14日,再利用經胜肽衝擊之DC刺激CD8陽性T細胞。每次以和上述相同方法製備DC。於第21日以後(3次DC刺激後,以酵素連結免疫斑點(ELISPOT)分析確認針對經胜肽衝擊之C1R-A33之IFN-γ產生(Tanaka H et al.,Br J Cancer 2001,84(1):94-9;Umano Y et al.,Br J Cancer 2001,84(8):1052-7;Uchida N et al., Clin Cancer Res 2004,10(24):8577-86;Suda T et al.,Cancer Sci 2006,97(5):411-9;Watanabe T et al.,Cancer Sci 2005,96(8):498-506)。
CTL增殖程序
使用和Riddell等人(Walter EA et al.,N Engl J Med 1995,333(16):1038-44;Riddell SR et al.,Nat Med 1996,2(2):216-23)報告之方法為類似的方法,使CTL增殖。將CTL和經絲裂黴素C(mitomycin C)處理之2種人B淋巴芽球樣細胞株(各5 x 106個細胞/培養基25ml)、及抗CD3抗體(最終濃度:40ng/ml)一起於25ml之5%ABS/AIM-V培養基中進行培養。培養開始1日後,將IL-2(最終濃度:120IU/ml)添加到該培養物。於第5、8及11日,以含有IL-2(最終濃度:30IU/ml)之5%ABS/AIM-V培養基進行培養基更換(Tanaka H et al.,Br J Cancer 2001,84(1):94-9;Umano Y et al.,Br J Cancer 2001,84(8):1052-7,Uchida N et al.,Clin Cancer Res 2004,10(24):8577-86;Suda T et al.,Cancer Sci 2006,97(5):411-9,Watanabe T et al.,Cancer Sci 2005,96(8):498-506)。
CTL選殖體之建立
經於體外之CTL誘導後,於96孔圓底微平板(Nalge Nunc International)將CTL以1個/孔或10個/孔的方式接種。將CTL和經絲裂黴素C處理之2種人B淋巴芽球樣細胞株(各1 x 104個/孔)、抗CD3抗體(最終濃度:30ng/ml)、及IL-2(最終濃度:125IU/ml)一起於總量150μl/孔之5%ABS/AIM-V培養基中培養。10日後,將50μl/孔之含500IU/ml之IL-2之5%ABS/AIM-V 培養基添加到該培養物。第14日後,使用和上述相同方法使在ELISPOT分析法中呈胜肽專一性IFN-γ產生之CTL增殖(Uchida N et al.,Clin Cancer Res 2004,10(24):8577-86;Suda T et al.,Cancer Sci 2006,97(5):411-9;Watanabe T et al.,Cancer Sci 2005,96(8)):498-506)。
IFN-γ產生之確認
為了確認使用胜肽誘導的CTL的胜肽專一性IFN-γ產生,實施IFN-γ ELISPOT分析及IFN-γ ELISA。製備經胜肽衝擊之C1R-A33(1 x 104個/孔)作為標靶細胞。IFN-γ ELISPOT分析及IFN-γ ELISA係依分析套組製造商建議的程序實施。
強制表現MPHOSPH1及HLA-A*33:03之標靶細胞之製備
將編碼為MPHOSPH1或HLA-A*33:03基因之cDNA以PCR放大。將PCR放大產物分別納入到表現載體。依製造商建議的程序使用Lipofectamine2000(Invitrogen),對於係HLA之陰性細胞株之COS7細胞導入MPHOSPH1基因表現載體及HLA-A*33:03基因表現載體中任一者或兩者。基因導入起次日,使用Versene(Invitrogen)剝離、回收COS7細胞,作為用於確認IFN-γ產生之標靶細胞(5 x 104個細胞/孔)。
結果
來自MPHOSPH1之HLA-A*33:03結合胜肽之預測
表2a及表2b分別將依「NetMHC pan2.4」預測之向HLA-A*33:03之結合之來自MPHOSPH1的9員(9mer)胜肽及(10員)10mer胜肽以結合親和性由高至低的順序顯示。將可能 有對於HLA-A*33:03之結合能力之合計78種胜肽作為抗原決定位胜肽候選物。
【表2a-1】來自MPHOSPH1之HLA-A*33:03結合9員(9mer)胜肽
Figure 105132521-A0202-12-0108-5
Figure 105132521-A0202-12-0109-6
開始位置代表自MPHOSPH1之N端起之胺基酸殘基數。
結合親和性[Kd(nM)]係由「NetMHCpan2.4」導出。
【表2b-1】來自MPHOSPH1之HLA-A*33:03結合10員(10mer)胜肽
Figure 105132521-A0202-12-0110-7
【表2b-2】
Figure 105132521-A0202-12-0111-8
開始位置代表自MPHOSPH1之N端起之胺基酸殘基數。
結合親和性[Kd(nM)]係由「NetMHCpan2.4」導出。
HLA-A*33:03限制性之來自MPHOSPH1之預測胜肽所為之CTL之誘導
依「材料及方法」記載之實驗步驟誘導針對來自MPHOSPH1的胜肽專一性的CTL。利用ELISPOT分析確認胜肽專一性的IFN-γ產生(第5圖)。使用MPHOSPH1-A33-9-608(序列編號:118)之孔編號#4(a)、使用MPHOSPH1-A33-9-1474(序列編號:119)之孔編號#6(b)及使用MPHOSPH1-A33-10-57(序列編號:170)之孔編號#8(c)中,顯示胜肽專一性的IFN-γ產生。另一方面,未確認到針對表2a及表2b所示之其他胜肽有專一性的IFN-γ產生。例如未確認到針對MPHOSPH1-A33-9-1663(序列編號:48)之專一性IFN-γ產生(d)。雖任一胜肽皆有可能對於HLA-A*33:03結合,但結果選擇3種胜肽作為有CTL誘導能力之胜肽。
針對HLA-A*33:03限制性之來自MPHOSPH1之胜肽之CTL株及選殖體之建立
IFN-γ ELISPOT分析中,使得使用MPHOSPH1-A33-9-608(序列編號:118)之孔編號#4(a)、及使用MPHOSPH1-A33-10-57(序列編號:170)之孔編號#8(b)之細胞增殖,建立CTL株。利用ELISA測定IFN-γ,結果,確認了針對使用 MPHOSPH1-A33-9-608(序列編號:118)(a)、及MPHOSPH1-A33-10-57(序列編號:170)(b)衝擊之標靶細胞(C1R-A33),有CTL株之IFN-γ產生(第6圖)。再者,依上述「材料及方法」之章節記載,利用極限稀釋法建立CTL選殖體,利用ELISA測定IFN-γ之結果,經MPHOSPH1-A33-9-608(序列編號:118)(a)、及MPHOSPH1-A33-10-57(序列編號:170)(b)刺激之CTL選殖體分別有胜肽專一性的IFN-γ產生(第7圖)。
針對表現MPHOSPH1及HLA-A*33:03之標靶細胞之IFN-γ產生
驗證對於表現MPHOSPH1及HLA-A*33:03之標靶細胞,MPHOSPH1-A33-9-608(序列編號:118)專一性CTL選殖體之IFN-γ產生。製備表現MPHOSPH1及HLA-A*33:03之兩者之COS7細胞作為標靶細胞。製備表現MPHOSPH1或HLA-A*33:03其中一者的COS7細胞作為陰性對照細胞。MPHOSPH1-A33-9-608(序列編號:118)專一性的CTL選殖體,顯示對於表現MPHOSPH1及HLA-A*33:03兩者之COS7細胞有IFN-γ產生(第8圖)。另一方面,未確認對於陰性對照細胞有顯著的IFN-γ產生。由此可明確實證:MPHOSPH1-A33-9-608(序列編號:118)係經抗原處理而生成之胜肽,且和HLA-A*33:03分子一起呈現於細胞表面上並由CTL所辨認。此結果啟示:MPHOSPH1-A33-9-608(序列編號:118)作為在癌細胞中之MPHOSPH1表現亢進之患者為對象之癌疫苗係有用。
抗原胜肽之相同性解析
MPHOSPH1-A33-9-608(序列編號:118)、MPHOSPH1-A33-9-1474(序列編號:119)及MPHOSPH1-A33-10-57(序列編號:170)已確認可誘導顯示胜肽專一性之IFN-γ產生之CTL。為了確認MPHOSPH1-A33-9-608(序列編號:118)、MPHOSPH1-A33-9-1474(序列編號:119)及MPHOSPH1-A33-10-57(序列編號:170)之序列僅來自MPHOSPH1,使用BLAST演算法(blast.ncbi.nlm.nih.gov/Blast.cgi)實施胜肽序列之相同性解析。其結果,確認MPHOSPH1-A33-9-608(序列編號:118)、MPHOSPH1-A33-9-1474(序列編號:119)及MPHOSPH1-A33-10-57(序列編號:170)之序列只在MPHOSPH1。因此據本案發明人等所知,認為該等胜肽係MPHOSPH1特有,幾乎不可能會對於已知監察人免疫系之MPHOSPH1以外之分子引起意外的免疫反應。就結論而言,可鑑別來自MPHOSPH1之新穎HLA-A*33:03限制性抗原決定位胜肽。又,顯示來自MPHOSPH1的抗原決定位胜肽可以適用於癌免疫療法。
實施例3
乳劑製劑之製備
將胜肽溶於注射用水或滅菌生理食鹽水使成為1.0~10.0mg/ml,收集到針筒內。將其以連接器和已填充與注射用水或生理食鹽水為等量IFA之針筒連結,交替按壓已連結之 2支針筒之針筒活塞以進行攪拌。數分鐘攪拌後,利用墜落測試法評價乳劑之完成。墜落測試法可藉由將1滴已攪拌之樣本滴加到水面上以進行。滴加到水面上之樣本未立即擴散到水中時評為乳劑完成,立即擴散到水中評為乳劑未完成。評為乳劑未完成時,進一步攪拌使乳劑完成。完成的乳劑可利用皮下注射對於癌患者投予。投予對象之癌患者可以選擇罹患膀胱癌、乳癌、子宮頸癌、膽管細胞癌、慢性骨髓性白血病(CML)、大腸癌、胃癌、肺癌、淋巴瘤、骨肉瘤、前列腺癌、腎癌及軟組織腫瘤等等之患者。
冷凍乾燥製劑之製備
將胜肽溶於注射用水使成為1.0~10.0mg/ml,並進行過濾滅菌。將其填充在滅菌小玻璃瓶,並將已滅菌之橡膠蓋輕輕插入。將此小玻璃瓶冷凍乾燥後,進行全封蓋及鋁蓋的捲封,製成冷凍乾燥製劑。使用時,於小玻璃瓶注入注射用水或滅菌生理食鹽水,將冷凍乾燥粉末予以再溶解。使用針筒抽取小玻璃瓶中之再溶解液,以連接器和已填充與抽取之再溶解液為等量之IFA的針筒連結。將已連結之2支針筒之針筒活塞交替地按壓以攪拌。數分鐘攪拌後,利用墜落測試法評價乳劑之完成。已完成之乳劑可利用皮下注射對於癌患者投予。投予對象之癌患者可選擇罹患膀胱癌、乳癌、子宮頸癌、膽管細胞癌、慢性骨髓性白血病(CML)、大腸癌、胃癌、肺癌、淋巴瘤、骨肉瘤、前列腺癌、腎癌及軟組織腫瘤等等之患者。
[產業利用性]
本發明提供能誘導強力且專一之抗腫瘤免疫反 應,故對於廣泛癌之種類有適用性之來自MPHOSPH1的新穎HLA-A11限制性及HLA-A33限制性抗原決定位胜肽。本發明之胜肽、組合物、APC、及CTL,可作為針對表現MPHOSPH1之癌,例如:膀胱癌、乳癌、子宮頸癌、膽管細胞癌、慢性骨髓性白血病(CML)、大腸癌、胃癌、肺癌、淋巴瘤、骨肉瘤、前列腺癌、腎癌及軟組織腫瘤等之胜肽疫苗使用。
本說明書係將本發明就其特定態樣詳細說明,但前述說明的本質係例示說明,應理解為係用以說明本發明及其理想態樣。該技術領域中有通常知識者可輕易地得知:透過慣常的實驗,能不脫離附帶有交界值及極限之專利請求之範圍定義之本發明之精神及範圍而進行各種變更及改變。
<110> 腫瘤療法科學股份有限公司(ONCOTHERAPY SCIENCE,INC.)
<120> 來自MPHOSPH1之胜肽及含此之疫苗
<150> JP 2015-200220
<151> 2015-10-08
<160> 189
<170> PatentIn version 3.5
<210> 1
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 1
Figure 105132521-A0305-02-0118-1
<210> 2
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 2
Figure 105132521-A0305-02-0118-2
<210> 3
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 3
Figure 105132521-A0202-12-0117-11
<210> 4
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 4
Figure 105132521-A0202-12-0117-12
<210> 5
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 5
Figure 105132521-A0202-12-0117-13
<210> 6
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 6
Figure 105132521-A0202-12-0117-14
<210> 7
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 7
Figure 105132521-A0202-12-0118-18
<210> 8
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 8
Figure 105132521-A0202-12-0118-17
<210> 9
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 9
Figure 105132521-A0202-12-0118-16
<210> 10
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 10
Figure 105132521-A0202-12-0118-15
<210> 11
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 11
Figure 105132521-A0202-12-0119-19
<210> 12
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 12
Figure 105132521-A0202-12-0119-20
<210> 13
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 13
Figure 105132521-A0202-12-0119-21
<210> 14
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 14
Figure 105132521-A0202-12-0120-25
<210> 15
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 15
Figure 105132521-A0202-12-0120-24
<210> 16
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 16
Figure 105132521-A0202-12-0120-23
<210> 17
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 17
Figure 105132521-A0202-12-0120-22
<210> 18
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 18
Figure 105132521-A0202-12-0121-26
<210> 19
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 19
Figure 105132521-A0202-12-0121-27
<210> 20
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 20
Figure 105132521-A0202-12-0121-28
<210> 21
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 21
Figure 105132521-A0202-12-0121-29
<210> 22
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 22
Figure 105132521-A0202-12-0122-34
<210> 23
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 23
Figure 105132521-A0202-12-0122-33
<210> 24
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 24
Figure 105132521-A0202-12-0122-31
<210> 25
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 25
Figure 105132521-A0202-12-0122-30
Figure 105132521-A0202-12-0123-35
<210> 26
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 26
Figure 105132521-A0202-12-0123-36
<210> 27
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 27
Figure 105132521-A0202-12-0123-37
<210> 28
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 28
Figure 105132521-A0202-12-0123-38
<210> 29
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 29
Figure 105132521-A0202-12-0124-42
<210> 30
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 30
Figure 105132521-A0202-12-0124-41
<210> 31
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 31
Figure 105132521-A0202-12-0124-40
<210> 32
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 32
Figure 105132521-A0202-12-0124-39
<210> 33
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 33
Figure 105132521-A0202-12-0125-43
<210> 34
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 34
Figure 105132521-A0202-12-0125-44
<210> 35
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 35
Figure 105132521-A0202-12-0125-45
<210> 36
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 36
Figure 105132521-A0202-12-0125-46
<210> 37
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 37
Figure 105132521-A0202-12-0126-50
<210> 38
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 38
Figure 105132521-A0202-12-0126-48
<210> 39
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 39
Figure 105132521-A0202-12-0126-47
<210> 40
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 40
Figure 105132521-A0202-12-0127-51
<210> 41
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 41
Figure 105132521-A0202-12-0127-52
<210> 42
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 42
Figure 105132521-A0202-12-0127-53
<210> 43
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 43
Figure 105132521-A0202-12-0127-54
<210> 44
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 44
Figure 105132521-A0202-12-0128-58
<210> 45
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 45
Figure 105132521-A0202-12-0128-57
<210> 46
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 46
Figure 105132521-A0202-12-0128-56
<210> 47
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 47
Figure 105132521-A0202-12-0128-55
<210> 48
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 48
Figure 105132521-A0202-12-0129-59
<210> 49
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 49
Figure 105132521-A0202-12-0129-60
<210> 50
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 50
Figure 105132521-A0202-12-0129-61
<210> 51
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 51
Figure 105132521-A0202-12-0129-62
Figure 105132521-A0202-12-0130-67
<210> 52
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 52
Figure 105132521-A0202-12-0130-66
<210> 53
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 53
Figure 105132521-A0202-12-0130-64
<210> 54
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 54
Figure 105132521-A0202-12-0130-63
<210> 55
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 55
Figure 105132521-A0202-12-0131-68
<210> 56
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 56
Figure 105132521-A0202-12-0131-69
<210> 57
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 57
Figure 105132521-A0202-12-0131-70
<210> 58
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 58
Figure 105132521-A0202-12-0131-71
<210> 59
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 59
Figure 105132521-A0202-12-0132-75
<210> 60
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 60
Figure 105132521-A0202-12-0132-74
<210> 61
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 61
Figure 105132521-A0202-12-0132-73
<210> 62
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 62
Figure 105132521-A0202-12-0132-72
<210> 63
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 63
Figure 105132521-A0202-12-0133-76
<210> 64
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 64
Figure 105132521-A0202-12-0133-77
<210> 65
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 65
Figure 105132521-A0202-12-0133-78
<210> 66
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 66
Figure 105132521-A0202-12-0134-82
<210> 67
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 67
Figure 105132521-A0202-12-0134-81
<210> 68
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 68
Figure 105132521-A0202-12-0134-80
<210> 69
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 69
Figure 105132521-A0202-12-0134-79
<210> 70
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 70
Figure 105132521-A0202-12-0135-84
<210> 71
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 71
Figure 105132521-A0202-12-0135-85
<210> 72
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 72
Figure 105132521-A0202-12-0135-86
<210> 73
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 73
Figure 105132521-A0202-12-0135-87
<210> 74
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 74
Figure 105132521-A0202-12-0136-91
<210> 75
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 75
Figure 105132521-A0202-12-0136-90
<210> 76
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 76
Figure 105132521-A0202-12-0136-89
<210> 77
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 77
Figure 105132521-A0202-12-0136-88
Figure 105132521-A0202-12-0137-92
<210> 78
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 78
Figure 105132521-A0202-12-0137-93
<210> 79
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 79
Figure 105132521-A0202-12-0137-94
<210> 80
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 80
Figure 105132521-A0202-12-0137-95
<210> 81
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 81
Figure 105132521-A0202-12-0138-99
<210> 82
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 82
Figure 105132521-A0202-12-0138-98
<210> 83
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 83
Figure 105132521-A0202-12-0138-97
<210> 84
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 84
Figure 105132521-A0202-12-0138-96
<210> 85
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 85
Figure 105132521-A0202-12-0139-100
<210> 86
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 86
Figure 105132521-A0202-12-0139-101
<210> 87
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 87
Figure 105132521-A0202-12-0139-102
<210> 88
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 88
Figure 105132521-A0202-12-0139-104
<210> 89
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 89
Figure 105132521-A0202-12-0140-107
<210> 90
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 90
Figure 105132521-A0202-12-0140-106
<210> 91
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 91
Figure 105132521-A0202-12-0140-105
<210> 92
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 92
Figure 105132521-A0202-12-0141-108
<210> 93
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 93
Figure 105132521-A0202-12-0141-109
<210> 94
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 94
Figure 105132521-A0202-12-0141-110
<210> 95
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 95
Figure 105132521-A0202-12-0141-111
<210> 96
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 96
Figure 105132521-A0202-12-0142-115
<210> 97
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 97
Figure 105132521-A0202-12-0142-114
<210> 98
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 98
Figure 105132521-A0202-12-0142-113
<210> 99
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 99
Figure 105132521-A0202-12-0142-112
<210> 100
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 100
Figure 105132521-A0202-12-0143-116
<210> 101
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 101
Figure 105132521-A0202-12-0143-117
<210> 102
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 102
Figure 105132521-A0202-12-0143-118
<210> 103
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 103
Figure 105132521-A0202-12-0143-119
Figure 105132521-A0202-12-0144-123
<210> 104
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 104
Figure 105132521-A0202-12-0144-122
<210> 105
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 105
Figure 105132521-A0202-12-0144-121
<210> 106
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 106
Figure 105132521-A0202-12-0144-120
<210> 107
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 107
Figure 105132521-A0202-12-0145-124
<210> 108
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 108
Figure 105132521-A0202-12-0145-125
<210> 109
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 109
Figure 105132521-A0202-12-0145-126
<210> 110
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 110
Figure 105132521-A0202-12-0145-127
<210> 111
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 111
Figure 105132521-A0202-12-0146-131
<210> 112
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 112
Figure 105132521-A0202-12-0146-130
<210> 113
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 113
Figure 105132521-A0202-12-0146-129
<210> 114
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 114
Figure 105132521-A0202-12-0146-128
<210> 115
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 115
Figure 105132521-A0202-12-0147-132
<210> 116
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 116
Figure 105132521-A0202-12-0147-133
<210> 117
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 117
Figure 105132521-A0202-12-0147-134
<210> 118
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 118
Figure 105132521-A0202-12-0148-138
<210> 119
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 119
Figure 105132521-A0202-12-0148-137
<210> 120
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 120
Figure 105132521-A0202-12-0148-136
<210> 121
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 121
Figure 105132521-A0202-12-0148-135
<210> 122
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 122
Figure 105132521-A0202-12-0149-139
<210> 123
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 123
Figure 105132521-A0202-12-0149-140
<210> 124
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 124
Figure 105132521-A0202-12-0149-141
<210> 125
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 125
Figure 105132521-A0202-12-0149-142
<210> 126
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 126
Figure 105132521-A0202-12-0150-146
<210> 127
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 127
Figure 105132521-A0202-12-0150-145
<210> 128
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 128
Figure 105132521-A0202-12-0150-144
<210> 129
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 129
Figure 105132521-A0202-12-0150-143
Figure 105132521-A0202-12-0151-147
<210> 130
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 130
Figure 105132521-A0202-12-0151-148
<210> 131
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 131
Figure 105132521-A0202-12-0151-149
<210> 132
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 132
Figure 105132521-A0202-12-0151-150
<210> 133
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 133
Figure 105132521-A0202-12-0152-154
<210> 134
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 134
Figure 105132521-A0202-12-0152-153
<210> 135
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 135
Figure 105132521-A0202-12-0152-152
<210> 136
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 136
Figure 105132521-A0202-12-0152-151
<210> 137
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 137
Figure 105132521-A0202-12-0153-155
<210> 138
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 138
Figure 105132521-A0202-12-0153-156
<210> 139
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 139
Figure 105132521-A0202-12-0153-157
<210> 140
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 140
Figure 105132521-A0202-12-0153-158
<210> 141
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 141
Figure 105132521-A0202-12-0154-161
<210> 142
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 142
Figure 105132521-A0202-12-0154-160
<210> 143
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 143
Figure 105132521-A0202-12-0154-159
<210> 144
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 144
Figure 105132521-A0202-12-0155-162
<210> 145
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 145
Figure 105132521-A0202-12-0155-163
<210> 146
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 146
Figure 105132521-A0202-12-0155-164
<210> 147
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 147
Figure 105132521-A0202-12-0155-165
<210> 148
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 148
Figure 105132521-A0202-12-0156-169
<210> 149
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 149
Figure 105132521-A0202-12-0156-168
<210> 150
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 150
Figure 105132521-A0202-12-0156-167
<210> 151
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 151
Figure 105132521-A0202-12-0156-166
<210> 152
<211> 9
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 152
Figure 105132521-A0202-12-0157-173
<210> 153
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 153
Figure 105132521-A0202-12-0157-172
<210> 154
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 154
Figure 105132521-A0202-12-0157-171
<210> 155
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 155
Figure 105132521-A0202-12-0157-170
Figure 105132521-A0202-12-0158-174
<210> 156
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 156
Figure 105132521-A0202-12-0158-175
<210> 157
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 157
Figure 105132521-A0202-12-0158-176
<210> 158
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 158
Figure 105132521-A0202-12-0158-177
<210> 159
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 159
Figure 105132521-A0202-12-0159-181
<210> 160
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 160
Figure 105132521-A0202-12-0159-180
<210> 161
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 161
Figure 105132521-A0202-12-0159-179
<210> 162
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 162
Figure 105132521-A0202-12-0159-178
<210> 163
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 163
Figure 105132521-A0202-12-0160-182
<210> 164
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 164
Figure 105132521-A0202-12-0160-183
<210> 165
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 165
Figure 105132521-A0202-12-0160-184
<210> 166
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 166
Figure 105132521-A0202-12-0160-185
<210> 167
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 167
Figure 105132521-A0202-12-0161-188
<210> 168
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 168
Figure 105132521-A0202-12-0161-187
<210> 169
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 169
Figure 105132521-A0202-12-0161-186
<210> 170
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 170
Figure 105132521-A0202-12-0162-189
<210> 171
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 171
Figure 105132521-A0202-12-0162-190
<210> 172
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 172
Figure 105132521-A0202-12-0162-191
<210> 173
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 173
Figure 105132521-A0202-12-0162-192
<210> 174
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 174
Figure 105132521-A0202-12-0163-196
<210> 175
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 175
Figure 105132521-A0202-12-0163-195
<210> 176
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 176
Figure 105132521-A0202-12-0163-194
<210> 177
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 177
Figure 105132521-A0202-12-0163-193
<210> 178
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 178
Figure 105132521-A0202-12-0164-197
<210> 179
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 179
Figure 105132521-A0202-12-0164-198
<210> 180
<211> 10
<212> PRT
<213> 人造序列
<220>
<223> 衍生自MPHOSPH1之胜肽
<400> 180
Figure 105132521-A0202-12-0164-199
<210> 181
<211> 22
<212> DNA
<213> 人造序列
<220>
<223> 供TCR分析之PCR引子
<400> 181
Figure 105132521-A0202-12-0164-201
<210> 182
<211> 24
<212> DNA
<213> 人造序列
<220>
<223> 供TCR分析之PCR引子
<400> 182
Figure 105132521-A0202-12-0165-202
<210> 183
<211> 21
<212> DNA
<213> 人造序列
<220>
<223> 供TCR分析之PCR引子
<400> 183
Figure 105132521-A0202-12-0165-203
<210> 184
<211> 24
<212> DNA
<213> 人造序列
<220>
<223> 供TCR分析之PCR引子
<400> 184
Figure 105132521-A0202-12-0165-256
<210> 185
<211> 6339
<212> DNA
<213> 人類
<220>
<221> CDS
<222> (93)..(5435)
<400> 185
Figure 105132521-A0202-12-0165-204
Figure 105132521-A0202-12-0166-205
Figure 105132521-A0202-12-0167-206
Figure 105132521-A0202-12-0168-207
Figure 105132521-A0202-12-0169-208
Figure 105132521-A0202-12-0170-209
Figure 105132521-A0202-12-0171-210
Figure 105132521-A0202-12-0172-211
Figure 105132521-A0202-12-0173-212
Figure 105132521-A0202-12-0174-213
Figure 105132521-A0202-12-0175-214
<210> 186
<211> 1780
<212> PRT
<213> 人類
<400> 186
Figure 105132521-A0202-12-0175-215
Figure 105132521-A0202-12-0176-216
Figure 105132521-A0202-12-0177-217
Figure 105132521-A0202-12-0178-218
Figure 105132521-A0202-12-0179-219
Figure 105132521-A0202-12-0180-220
Figure 105132521-A0202-12-0181-221
Figure 105132521-A0202-12-0182-222
Figure 105132521-A0202-12-0183-223
Figure 105132521-A0202-12-0184-224
<210> 187
<211> 6459
<212> DNA
<213> 人類
<220>
<221> CDS
<222> (93)..(5555)
<400> 187
Figure 105132521-A0202-12-0184-225
Figure 105132521-A0202-12-0185-226
Figure 105132521-A0202-12-0186-227
Figure 105132521-A0202-12-0187-228
Figure 105132521-A0202-12-0188-229
Figure 105132521-A0202-12-0189-230
Figure 105132521-A0202-12-0190-231
Figure 105132521-A0202-12-0191-232
Figure 105132521-A0202-12-0192-233
Figure 105132521-A0202-12-0193-234
Figure 105132521-A0202-12-0194-235
<210> 188
<211> 1820
<212> PRT
<213> 人類
<400> 188
Figure 105132521-A0202-12-0194-236
Figure 105132521-A0202-12-0195-237
Figure 105132521-A0202-12-0196-238
Figure 105132521-A0202-12-0197-239
Figure 105132521-A0202-12-0198-240
Figure 105132521-A0202-12-0199-241
Figure 105132521-A0202-12-0200-242
Figure 105132521-A0202-12-0201-243
Figure 105132521-A0202-12-0202-244
Figure 105132521-A0202-12-0203-245
<210> 189
<211> 4
<212> PRT
<213> 人造序列
<220>
<223> 連結胜肽
<400> 189
Figure 105132521-A0202-12-0203-246

Claims (23)

  1. 一種胜肽,具有細胞毒性T細胞(CTL)誘導能力且係由序列編號:52之胺基酸序列所組成。
  2. 一種胜肽,具有細胞毒性T細胞(CTL)誘導能力且係由對於序列編號:52之胺基酸序列實施了選自於由以下(a)~(d)之1個或2個胺基酸取代之胺基酸序列所組成:(a)N末端起第2號之胺基酸取代為選自於由纈胺酸、異白胺酸、白胺酸、苯丙胺酸及酪胺酸構成之群組之胺基酸;(b)N末端起第3號之胺基酸取代為選自於由白胺酸、苯丙胺酸、酪胺酸、異白胺酸及丙胺酸構成之群組之胺基酸;(c)N末端起第7號之胺基酸取代為選自於由白胺酸、異白胺酸、酪胺酸、纈胺酸及苯丙胺酸構成之群組之胺基酸;及(d)C末端之胺基酸取代為精胺酸。
  3. 一種多核苷酸,編碼為如申請專利範圍第1或2項中任一項所述之胜肽。
  4. 一種組合物,包含:藥學上可接受之載體,以及選自於由以下(a)~(e)構成之群組中之至少1種成分:(a)如申請專利範圍第1或2項中任一項所述之一或多種胜肽;(b)以可表現如申請專利範圍第1或2項中任一項所述之胜肽之形態編碼之一或多種多核苷酸;(c)於自身細胞表面上呈現如申請專利範圍第1或2項中任一項所述之胜肽與HLA抗原之複合體之抗原呈現細胞 (APC);(d)於自身細胞表面上呈現如申請專利範圍第1或2項中任一項所述之胜肽與HLA抗原之複合體之外吐小體;及(e)將如申請專利範圍第1或2項中任一項所述之胜肽作為標靶之CTL。
  5. 如申請專利範圍第4項所述之組合物,係用於誘導CTL之組合物,其中,該成分係選自於由以下(a)~(d)構成之群組中之至少1種成分:(a)如申請專利範圍第1或2項中任一項所述之一或多種胜肽;(b)以可表現如申請專利範圍第1或2項中任一項所述之胜肽之形態編碼之一或多種多核苷酸;(c)於自身之細胞表面上呈現如申請專利範圍第1或2項中任一項所述之胜肽與HLA抗原之複合體之抗原呈現細胞(APC);及(d)於自身之細胞表面上呈現如申請專利範圍第1或2項中任一項所述之胜肽與HLA抗原之複合體之外吐小體。
  6. 如申請專利範圍第4項所述之組合物,其係藥學組合物。
  7. 如申請專利範圍第6項所述之組合物,係用於癌之治療之用途之組合物。
  8. 如申請專利範圍第6項所述之組合物,係用於誘導針對癌之免疫反應。
  9. 如申請專利範圍第7項所述之組合物,其中,癌係選自於由膀胱癌、乳癌、子宮頸癌、膽管細胞癌、慢性骨髓性白 血病(CML)、大腸癌、胃癌、肺癌、淋巴瘤、骨肉瘤、前列腺癌、腎癌及軟組織腫瘤構成之群組。
  10. 如申請專利範圍第4至9項中任一項所述之組合物,其係製劑化成為了向HLA-A11為陽性之對象投予。
  11. 一種在體外(in vitro)或活體外(ex vivo)誘導具有CTL誘導能力之APC之方法,包含選自於由以下構成之群組之階段:(a)使APC在體外(in vitro)或活體外(ex vivo)接觸如申請專利範圍第1或2項中任一項所述之胜肽;及(b)將編碼為如申請專利範圍第1或2項中任一項所述之胜肽之多核苷酸導入到APC。
  12. 一種在體外誘導CTL之方法,包含選自於由以下構成之群組之階段:(a)將CD8陽性T細胞和在自身表面上呈現HLA抗原與如申請專利範圍第1或2項中任一項所述之胜肽之複合體之APC進行共培養;(b)將CD8陽性T細胞和在自身表面上呈現HLA抗原與如申請專利範圍第1或2項中任一項所述之胜肽之複合體之外吐小體進行共培養;及(c)將編碼為能結合於在細胞表面上由HLA抗原呈現之如申請專利範圍第1或2項中任一項所述之胜肽之T細胞受體(TCR)之各次單元之多核苷酸導入到CD8陽性T細胞。
  13. 一種APC,係於自身表面上呈現HLA抗原與如申請專利範圍第1或2項中任一項所述之胜肽之複合體。
  14. 如申請專利範圍第13項所述之APC,係利用如申請專利範 圍第11項所述之誘導具有CTL誘導能力之APC之方法誘導。
  15. 一種CTL,係將如申請專利範圍第1或2項中任一項所述之胜肽作為標靶。
  16. 如申請專利範圍第15項所述之CTL,係由如申請專利範圍第12項所述之誘導CTL之方法誘導。
  17. 一種選自於由以下(a)~(e)構成之群組中之至少1種成分之在用於製備誘導針對癌之免疫反應之醫藥的用途:(a)如申請專利範圍第1或2項中任一項所述之一或多種胜肽;(b)以可表現如申請專利範圍第1或2項中任一項所述之胜肽之形態編碼之一或多種多核苷酸;(c)於自身之細胞表面上呈現如申請專利範圍第1或2項中任一項所述之胜肽與HLA抗原之複合體之抗原呈現細胞(APC);(d)於自身之細胞表面上呈現如申請專利範圍第1或2項中任一項所述之胜肽與HLA抗原之複合體之外吐小體;及(e)將如申請專利範圍第1或2項中任一項所述之胜肽作為標靶之CTL。
  18. 一種選自於由以下(a)~(e)構成之群組中之至少1種成分在用於製備治療癌之醫藥的用途:(a)如申請專利範圍第1或2項中任一項所述之一或多種胜肽;(b)以可表現如申請專利範圍第1或2項中任一項所述之胜 肽之形態編碼之一或多種多核苷酸;(c)於自身之細胞表面上呈現如申請專利範圍第1或2項中任一項所述之胜肽與HLA抗原之複合體之抗原呈現細胞(APC);(d)於自身之細胞表面上呈現如申請專利範圍第1或2項中任一項所述之胜肽與HLA抗原之複合體之外吐小體;及(e)將如申請專利範圍第1或2項中任一項所述之胜肽作為標靶之CTL。
  19. 一種篩選有CTL誘導能力之胜肽之方法,包括以下階段:(a)製作由對於序列編號:52之胺基酸序列構成之原本胺基酸序列有選自於以下(i)~(iv)之1個或2個胺基酸殘基取代之胺基酸序列構成之候選序列:(i)N末端起第2號之胺基酸取代為選自於由纈胺酸、異白胺酸、白胺酸、苯丙胺酸及酪胺酸構成之群組之胺基酸;(ii)N末端起第3號之胺基酸取代為選自於由白胺酸、苯丙胺酸、酪胺酸、異白胺酸及丙胺酸構成之群組之胺基酸;(iii)N末端起第7號之胺基酸取代為選自於由白胺酸、異白胺酸、酪胺酸、纈胺酸及苯丙胺酸構成之群組之胺基酸;及(iv)C末端之胺基酸取代為精胺酸;(b)從(a)製作之候選序列中選擇和MPHOSPH1以外之任意習知之人基因產物均沒有顯著相同性(序列同一性)之候選 序列;(c)使由於(b)選擇之候選序列構成之胜肽接觸APC;(d)使(c)之APC接觸CD8陽性T細胞;及(e)選擇比起由原本胺基酸序列構成之胜肽有同等或更高之CTL誘導能力之胜肽。
  20. 一種乳劑,包含如申請專利範圍第1或2項中任一項所述之一或多種胜肽、水溶性之載體、及油性佐劑。
  21. 一種套組,包含:容納如申請專利範圍第4至10項中任一項所述之組合物之容器、及容納佐劑之容器。
  22. 一種以下(a)或(b)之在用於製備誘導具有CTL誘導能力之APC之組成物的用途:(a)如申請專利範圍第1或2項中任一項所述之胜肽;或(b)編碼為如申請專利範圍第1或2項中任一項所述之胜肽的多核苷酸。
  23. 一種以下(a)~(d)之任一個之在用於製備誘導CTL誘導之組成物的用途:(a)如申請專利範圍第1或2項中任一項所述之胜肽;(b)編碼為如申請專利範圍第1或2項中任一項所述之胜肽的多核苷酸;(c)於自身之表面上呈現如申請專利範圍第1或2項中任一項所述之胜肽與HLA抗原之複合體之APC;以及(d)於自身之表面上呈現如申請專利範圍第1或2項中任一項所述之胜肽與HLA抗原之複合體之外吐小體。
TW105132521A 2015-10-08 2016-10-07 來自mphosph1之胜肽及含此之疫苗 TWI761316B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015200220 2015-10-08
JP2015-200220 2015-10-08

Publications (2)

Publication Number Publication Date
TW201726705A TW201726705A (zh) 2017-08-01
TWI761316B true TWI761316B (zh) 2022-04-21

Family

ID=58487779

Family Applications (2)

Application Number Title Priority Date Filing Date
TW105132521A TWI761316B (zh) 2015-10-08 2016-10-07 來自mphosph1之胜肽及含此之疫苗
TW110101065A TWI784388B (zh) 2015-10-08 2016-10-07 來自mphosph1之胜肽及含此之疫苗

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW110101065A TWI784388B (zh) 2015-10-08 2016-10-07 來自mphosph1之胜肽及含此之疫苗

Country Status (15)

Country Link
US (1) US10793599B2 (zh)
EP (1) EP3360885A4 (zh)
JP (1) JP6857909B2 (zh)
KR (1) KR20180055892A (zh)
CN (2) CN116199738A (zh)
AU (1) AU2016334778B2 (zh)
BR (1) BR112018006894A2 (zh)
CA (1) CA3000808A1 (zh)
HK (1) HK1251928A1 (zh)
IL (1) IL258107B (zh)
MX (1) MX2018004305A (zh)
RU (1) RU2731099C2 (zh)
SG (2) SG10201913531PA (zh)
TW (2) TWI761316B (zh)
WO (1) WO2017061522A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201313737A (zh) * 2011-08-12 2013-04-01 Oncotherapy Science Inc Mphosph1胜肽及含其之疫苗

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69231621T2 (de) 1991-08-26 2001-05-31 Epimmune, Inc. Hepatitis-B-Virus-Epitope mit HLA-reduzierte CTL-Respons
FR2766205B1 (fr) 1997-07-16 2002-08-30 Inst Nat Sante Rech Med Nouveau procede de sensibilisation de cellules presentatrices d'antigene et nouveaux moyens pour la mise en oeuvre du procede
US6291663B1 (en) 1999-03-03 2001-09-18 Board Of Trustees Of The University Of Arkansas TADG-12: a novel transmembrane serine protease overexpressed in a ovarian carcinoma
EP1259812A2 (en) 1999-05-28 2002-11-27 Ludwig Institute For Cancer Research Breast, gastric and prostate cancer associated antigens and uses therefor
CA2425648A1 (en) 2000-10-19 2002-04-19 Epimmune Inc. Hla class i and ii binding peptides and their uses
US7919467B2 (en) 2000-12-04 2011-04-05 Immunotope, Inc. Cytotoxic T-lymphocyte-inducing immunogens for prevention, treatment, and diagnosis of cancer
US20040142325A1 (en) 2001-09-14 2004-07-22 Liat Mintz Methods and systems for annotating biomolecular sequences
US20040002455A1 (en) 2002-01-29 2004-01-01 Aventis Pasteur, Ltd. Targeted immunogens
US20060024692A1 (en) 2002-09-30 2006-02-02 Oncotherapy Science, Inc. Method for diagnosing non-small cell lung cancers
TW200413725A (en) 2002-09-30 2004-08-01 Oncotherapy Science Inc Method for diagnosing non-small cell lung cancers
EP1856278A2 (en) 2005-02-10 2007-11-21 Oncotherapy Science, Inc. Method of diagnosing bladder cancer
WO2007047796A2 (en) 2005-10-17 2007-04-26 Institute For Systems Biology Tissue-and serum-derived glycoproteins and methods of their use
CN101558307A (zh) 2006-08-25 2009-10-14 肿瘤疗法科学股份有限公司 抑制mphosph1与prc1之间的结合的作用剂的筛选方法
CN102850434B (zh) * 2006-10-17 2016-04-13 肿瘤疗法科学股份有限公司 用于表达mphosph1或depdc1多肽的癌症的肽疫苗
JP6255594B2 (ja) * 2012-07-10 2018-01-10 オンコセラピー・サイエンス株式会社 Th1細胞のLY6Kエピトープペプチドおよびこれを含有するワクチン

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201313737A (zh) * 2011-08-12 2013-04-01 Oncotherapy Science Inc Mphosph1胜肽及含其之疫苗

Also Published As

Publication number Publication date
CN108699111B (zh) 2022-11-01
RU2018116623A3 (zh) 2020-01-28
TW201726705A (zh) 2017-08-01
CN116199738A (zh) 2023-06-02
BR112018006894A2 (pt) 2018-10-16
SG11201802286PA (en) 2018-04-27
RU2731099C2 (ru) 2020-08-28
CN108699111A (zh) 2018-10-23
SG10201913531PA (en) 2020-03-30
IL258107A (en) 2018-05-31
KR20180055892A (ko) 2018-05-25
US10793599B2 (en) 2020-10-06
AU2016334778A1 (en) 2018-04-26
JPWO2017061522A1 (ja) 2018-07-26
MX2018004305A (es) 2018-05-01
US20180362581A1 (en) 2018-12-20
CA3000808A1 (en) 2017-04-13
EP3360885A4 (en) 2019-04-24
HK1251928A1 (zh) 2019-05-03
TWI784388B (zh) 2022-11-21
RU2018116623A (ru) 2019-11-08
TW202124412A (zh) 2021-07-01
WO2017061522A1 (ja) 2017-04-13
EP3360885A1 (en) 2018-08-15
IL258107B (en) 2022-08-01
AU2016334778B2 (en) 2020-12-17
JP6857909B2 (ja) 2021-04-14

Similar Documents

Publication Publication Date Title
JP7142276B2 (ja) Foxm1由来ペプチドおよびそれを含むワクチン
JP7266318B2 (ja) Cdca1由来ペプチドおよびそれを含むワクチン
TWI769984B (zh) 來自depdc1之胜肽及含此之疫苗
TWI754234B (zh) 來自koc1的胜肽及含其之疫苗
JP7448124B2 (ja) Cdca1由来ペプチドおよびそれを含むワクチン
JP2020079285A (ja) Urlc10由来ペプチドおよびそれを含むワクチン
TWI761316B (zh) 來自mphosph1之胜肽及含此之疫苗