TWI760191B - Time-to-digital converter - Google Patents

Time-to-digital converter Download PDF

Info

Publication number
TWI760191B
TWI760191B TW110114086A TW110114086A TWI760191B TW I760191 B TWI760191 B TW I760191B TW 110114086 A TW110114086 A TW 110114086A TW 110114086 A TW110114086 A TW 110114086A TW I760191 B TWI760191 B TW I760191B
Authority
TW
Taiwan
Prior art keywords
delay
aforementioned
stage
signal
time
Prior art date
Application number
TW110114086A
Other languages
Chinese (zh)
Other versions
TW202243411A (en
Inventor
王朝欽
希爾 阿赫
Original Assignee
國立中山大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中山大學 filed Critical 國立中山大學
Priority to TW110114086A priority Critical patent/TWI760191B/en
Application granted granted Critical
Publication of TWI760191B publication Critical patent/TWI760191B/en
Publication of TW202243411A publication Critical patent/TW202243411A/en

Links

Images

Landscapes

  • Analogue/Digital Conversion (AREA)
  • Measurement Of Unknown Time Intervals (AREA)

Abstract

A time-to-digital converter, characterized in that the start and end of a timing event are sampled by the buffer delay module to obtain a wide dynamic range. Then the edge detector is used as a bridge to detect a delayed start with a close lag from the stop signal and send it to the Vernier Delay Module for higher rate sampling in order to obtain higher resolution and moderate dynamic range. The entire structure is monitored by a PVT detector to resist the influence of process, voltage, and temperature changes to obtain the required resolution.

Description

時間至數位轉換器time to digital converter

本發明是有關於一種時間數位轉換器,更具體地是有關於一種能夠改善環境干擾,且具有高分辨率和寬動態範圍的時間數位轉換器。The present invention relates to a time-to-digital converter, and more particularly, to a time-to-digital converter capable of improving environmental interference and having high resolution and wide dynamic range.

隨著積體電路的發展,將感測器所獲得的感測資訊轉換為數位碼的形式,可以實現更加廣泛的運用。其中,對於時間量測系統而言,時間數位轉換器(TDC)可藉由時間寬度來表示感測資訊,並透過振盪器對時間寬度進行計數,從而將感測資訊轉換為數位形式的輸出。With the development of integrated circuits, the sensing information obtained by the sensor is converted into the form of digital code, which can be widely used. Among them, for the time measurement system, the time-to-digital converter (TDC) can represent the sensing information by the time width, and count the time width through the oscillator, so as to convert the sensing information into digital output.

時間數位轉換器(TDC)是用於測量兩個事件之間的時間間隔並將此模擬信息轉換為數字代碼的設備。事件的輸入時間間隔受TDC的動態範圍和分辨率限制。因此,在當今的應用中(例如雷達測距,飛行時間等),需要具有高分辨率和寬動態範圍的TDC。A time-to-digital converter (TDC) is a device used to measure the time interval between two events and convert this analog information into digital code. The input time interval of events is limited by the dynamic range and resolution of the TDC. Therefore, in today's applications (such as radar ranging, time-of-flight, etc.), TDCs with high resolution and wide dynamic range are required.

傳統的時間數位轉換器(TDC)為緩衝延遲模組,是基於具有限傳播延遲的數字延遲單元。相比之下,另一種時間數位轉換器(TDC)為游標延遲模組,游標延遲模組具有良好的傳播延遲,但動態範圍有限。Traditional time-to-digital converters (TDCs) are buffer delay modules based on digital delay cells with limited propagation delay. In contrast, another time-to-digital converter (TDC) is the vernier delay module, which has good propagation delay but limited dynamic range.

又,這緩衝延遲模組與游標延遲模組兩個模組均受PVT變化的影響。在現有技術中,時間數位轉換需要以高精度來設計各延遲元件的延遲量。如因製程差異或者溫度或電源電壓的差異,而在各級延遲元件的延遲量產生差異或變動,使時間數位轉換受PVT關係(PVT relation)影響產生無法得到所需的解析度。因此,如何有效改善上述問題,已成為時間數位轉換器的一個重點技術。 In addition, both the buffer delay module and the vernier delay module are affected by PVT changes. In the related art, time-to-digital conversion requires designing the delay amount of each delay element with high precision. For example, due to process differences or differences in temperature or power supply voltage, the delay amount of the delay elements at all levels varies or varies, so that the time-to-digital conversion is affected by the PVT relation and the required resolution cannot be obtained. Therefore, how to effectively improve the above problems has become a key technology of time-to-digital converters.

本發明的目的,是在提供一種具有抗PVT變化的時間數字轉換器(TDC),使用兩階段系統架構,其中第一階段是緩衝延遲線,以獲得寬的動態範圍,然後通過邊緣檢測器將延遲的開始和停止信號提供給第二階段的游標延遲線,以實現更高的分辨率,且整個架構由PVT檢測器監控,以抵抗製程、電壓、溫度(PVT)的變化。 The object of the present invention is to provide a time-to-digital converter (TDC) with resistance to PVT variation, using a two-stage system architecture, where the first stage is a buffered delay line to obtain a wide dynamic range, and then an edge detector is used to convert the Delayed start and stop signals are provided to the second-stage vernier delay line for higher resolution, and the entire architecture is monitored by a PVT detector to resist process, voltage, temperature (PVT) variations.

為解決上述問題,本發明為係一種將開始訊號和停止訊號的遷移時序的時間差轉換為數位值之轉換器,其特徵在於,包括:緩衝延遲模組進行開始訊號和停止訊號的開始和結束的採樣,且對前述開始訊號和停止訊號的邊緣的時間差進行計測;以邊緣檢測器做為橋樑,用於檢測前述緩衝延遲模組中的延遲啟動信號,該延遲啟動信號與停止信號之間的滯後時間較近;游標延遲模組接受前述邊緣檢測器輸出的延遲啟動信號,以進行更高速率的採樣與計測。編碼器用以將前述緩衝延遲模組與該游標延遲模組的數字代碼轉換為數字碼,以編碼為與以二進制值為代表的後續處理中相稱的格式;以及PVT補償器輸入時脈信號,用於監控前述緩衝延遲模組、邊緣檢測器與游標延遲模組內用於延遲的元件,使用於延遲的元件抵抗因製程、電壓和溫度變化所造成的影響。 In order to solve the above problem, the present invention is a converter that converts the time difference between the transition timings of the start signal and the stop signal into a digital value, and is characterized in that it includes: a buffer delay module for starting and ending the start signal and the stop signal. sampling and measuring the time difference between the edges of the start signal and the stop signal; an edge detector is used as a bridge to detect the delay start signal in the buffer delay module, the delay between the delay start signal and the stop signal The time is relatively short; the vernier delay module accepts the delay start signal output by the aforementioned edge detector for sampling and measurement at a higher rate. The encoder is used to convert the digital codes of the aforementioned buffer delay module and the vernier delay module into digital codes, so as to be encoded into a format commensurate with the subsequent processing represented by the binary value; and the PVT compensator inputs the clock signal with In monitoring the elements used for delay in the aforementioned buffer delay module, edge detector and vernier delay module, the elements used for delay are made resistant to the influences caused by process, voltage and temperature changes.

本發明的技術特徵在於使用兩階段系統架構,其中第一階段是緩衝延遲線,以獲得寬的動態範圍,然後通過邊緣檢測器將延遲的開始和停止信號提供給第二階段的游標延遲線,以實現更高的分辨率,且整個架構由PVT檢測器監控,以抵抗製程、電壓、溫度(PVT)的變化,是一種具有抗PVT變動機制的高分辨率時間數字轉換器的設計。A technical feature of the present invention is the use of a two-stage system architecture, where the first stage is a buffered delay line to obtain a wide dynamic range, then delayed start and stop signals are provided to the second stage vernier delay line through an edge detector, To achieve higher resolution, and the entire architecture is monitored by a PVT detector to resist process, voltage, temperature (PVT) variations, it is a high-resolution time-to-digital converter design with an anti-PVT variation mechanism.

為了使本技術領域的人員更好地理解本發明方案,下面將結合本發明實施例中的附圖,對本發明實施例中的技術方案進行清楚、完整地描述,顯然所描述的實施例僅僅是本發明一部分的實施例,而不是全部的實施例。然而,對於本公開的描述,如果確定詳細描述使本公開的實施例不清楚,則詳細描述可以被省略。與描述不相關的部分被省略以便具體地描述本公開,並且貫穿說明書,相同的附圖標記指代相同的元件。In order to enable those skilled in the art to better understand the solutions of the present invention, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only Embodiments of some, but not all, of the present invention. However, for the description of the present disclosure, if it is determined that the detailed description makes the embodiments of the present disclosure unclear, the detailed description may be omitted. Portions irrelevant to the description are omitted in order to specifically describe the present disclosure, and the same reference numerals refer to the same elements throughout the specification.

在實施方式中,相同或相似的元件將採用相同或相似的標號,且將省略其贅述。此外,不同示範實施例中的特徵在沒有衝突的情況下可相互組合,且依本說明書或申請專利範圍所作之簡單的等效變化與修飾,皆仍屬本專利涵蓋之範圍內。 In the embodiments, the same or similar elements will be given the same or similar reference numerals, and repeated descriptions thereof will be omitted. In addition, the features of the different exemplary embodiments may be combined with each other without conflict, and simple equivalent changes and modifications made in accordance with the present specification or the scope of the claims are still within the scope of the present patent.

請參閱圖1,圖1為本案的時間數位轉換器的方塊示意圖。時間數位轉換器100接收開始訊號start和停止訊號stop,並具有測量2個訊號邊緣的時間差(相位差)之機能,是一種將開始訊號start和停止訊號stop的遷移時序的時間差轉換為數位值之轉換器。該時間數位轉換器100的核心包括一緩衝延遲模組200、一邊緣檢測器300及一游標延遲模組400。該時間數位轉換器100也包括一編碼器500及PVT補償器600。 Please refer to FIG. 1 , which is a block diagram of the time-to-digital converter of the present invention. The time-to-digital converter 100 receives the start signal start and the stop signal stop, and has the function of measuring the time difference (phase difference) of the two signal edges, which is a method of converting the time difference of the transition timing of the start signal start and the stop signal stop into a digital value. converter. The core of the time-to-digital converter 100 includes a buffer delay module 200 , an edge detector 300 and a vernier delay module 400 . The time-to-digital converter 100 also includes an encoder 500 and a PVT compensator 600 .

開始訊號start和停止訊號stop是定時事件的開始和結束,該事件由該緩衝延遲模組200進行採樣,且對前述開始訊號start和停止訊號stop的邊緣的時間差進行計測;然後由該邊緣檢測器300做為橋樑將檢測到與停止訊號stop有密切滯後的延遲啟動信號,並將其發送到該游標延遲模組400以進行更高速率的採樣,以便獲得更高的分辨率和適度的動態範圍。編碼器500用以將該緩衝延遲模組200與該游標延遲模組400的數字代碼轉換為數字碼。 The start signal start and the stop signal stop are the start and end of the timing event, the event is sampled by the buffer delay module 200, and the time difference between the edges of the start signal start and the stop signal stop is measured; then the edge detector 300 as a bridge will detect a delayed start signal with a close lag to the stop signal stop and send it to the vernier delay module 400 for higher rate sampling for higher resolution and moderate dynamic range . The encoder 500 is used for converting the digital codes of the buffer delay module 200 and the vernier delay module 400 into digital codes.

該時間數位轉換器100的核心使用兩階段系統架構,其中第一階段是該緩衝延遲模組200,藉由該緩衝延遲模組200具有較低的分辨率和較高的動態範圍,取樣以獲得寬的動態範圍,然後通過該邊緣檢測器300將延遲的開始訊號start和停止訊號stop提供給第二階段的該游標延遲模組400,藉由該游標延遲模組400具有更高的分辨率和更低的動態範圍以實現 更高的分辨率。 The core of the time-to-digital converter 100 uses a two-stage system architecture, wherein the first stage is the buffer delay module 200, with the buffer delay module 200 having a lower resolution and a higher dynamic range, sampling to obtain wide dynamic range, then the delayed start signal start and stop signal stop are provided to the vernier delay module 400 in the second stage through the edge detector 300, and the vernier delay module 400 has higher resolution and lower dynamic range to achieve higher resolution.

該PVT補償器600的輸入是時脈信號clk,其中在說明例中該PVT補償器600生成4位PVT代碼Cin[3:0],用於自動調節該時間數位轉換器100的核心(緩衝延遲模組200、邊緣檢測器300、游標延遲模組400)中延遲元件的PVT變化。 The input of the PVT compensator 600 is the clock signal clk, where in the illustrated example the PVT compensator 600 generates a 4-bit PVT code Cin[3:0] for automatically adjusting the core (buffer delay) of the time-to-digital converter 100 PVT variation of delay elements in module 200, edge detector 300, and vernier delay module 400).

該緩衝延遲模組200將生成採樣時序的數字代碼,在本案實施例中,假設該數字代碼為31位溫度計代碼Q[30:0],最後,由編碼器500將31位溫度計代碼轉換為5位E[7:3],以編碼為與以二進制值為代表的後續處理中相稱的格式。同樣,在該游標延遲模組400中,編碼器500將7位溫度計代碼V[6:0]轉換為E[2:0],以編碼為與以二進制值為代表的後續處理中相稱的格式。 The buffer delay module 200 will generate a digital code of the sampling timing. In the embodiment of this case, it is assumed that the digital code is a 31-bit thermometer code Q[30:0]. Finally, the encoder 500 converts the 31-bit thermometer code into 5 Bits E[7:3], to encode into a format commensurate with subsequent processing represented by binary values. Likewise, in the vernier delay module 400, the encoder 500 converts the 7-bit thermometer code V[6:0] to E[2:0] to encode into a format commensurate with subsequent processing represented by binary values .

如圖2所示,為本案的緩衝延遲模組200示意圖。開始訊號start和停止訊號stop是定時事件的開始和結束,該事件由該緩衝延遲模組200進行採樣,該緩衝延遲模組200包括串級連接的多級延遲單元211形成的一緩衝器延遲線210,及對應每級延遲單元211的一觸發器220。開始訊號start被施加到多個延遲單元211串接形成的緩衝器延遲線210,其中每級延遲單元211輸出(startd1~dm)作為給出至對應的該級觸發器220的數據輸入,停止訊號stop被饋送到該觸發器220的時鐘(clk)輸入。在每一步之後,開始訊號start和停止訊號stop的上升沿之間的時間差減小,直到開始訊號start(startdi+1)領先於停止訊號stop為止,觸發器220的輸出(Q〔0〕~Q〔N-1〕)由”1”變為‘0’,如圖3所示。 As shown in FIG. 2 , it is a schematic diagram of the buffer delay module 200 of the present invention. The start signal start and the stop signal stop are the start and end of a timing event, and the event is sampled by the buffer delay module 200 . The buffer delay module 200 includes a buffer delay line formed by a multi-stage delay unit 211 connected in series 210 , and a flip-flop 220 corresponding to each stage of the delay unit 211 . The start signal start is applied to the buffer delay line 210 formed by a plurality of delay units 211 connected in series, wherein the outputs (startd1~dm) of each stage of the delay unit 211 are used as the data input to the corresponding flip-flop 220 of the stage, and the stop signal stop is fed to the clock (clk) input of the flip-flop 220 . After each step, the time difference between the rising edges of the start signal start and the stop signal stop decreases until the start signal start (startdi+1) leads the stop signal stop, the output of the flip-flop 220 (Q[0]~Q [N-1]) changes from "1" to '0', as shown in Figure 3.

如果,每個延遲單元211具有T1延遲值,延遲單元211的數量=N,則動態範圍DR=N×T1。在本案實施例中,這項工作中考慮的值為T1=28.7ps和N=31,因此DR=890ps。If each delay unit 211 has a delay value of T1, and the number of delay units 211=N, then the dynamic range DR=N×T1. In this case example, the values considered in this work are T1=28.7ps and N=31, so DR=890ps.

該邊緣檢測器300用於檢測前述緩衝延遲模組200中的延遲啟動信號,該延遲啟動信號與停止信號之間的滯後時間較近。例如,在圖3中,開始訊號startdi是最接近停止訊號stop的信號。該延遲啟動信號(startdi)將被發送到該游標延遲模組400進行進一步採樣。The edge detector 300 is used to detect the delay start signal in the buffer delay module 200, and the delay time between the delay start signal and the stop signal is relatively short. For example, in FIG. 3, the start signal startdi is the signal closest to the stop signal stop. The delay start signal (startdi) will be sent to the vernier delay module 400 for further sampling.

該邊緣檢測器300示意圖如圖4所示,該邊緣檢測器300包含與所述緩衝延遲模組200的觸發器220對應的多個反或閘(NOR gate)320,且該些多個反或閘(NOR gate)320的輸出接到一或閘(OR gate)330。每個反或閘320其中一個輸入經過具有T1延遲的一延遲單元310,輸入對應的該級觸發器220給出的反相Q訊號,另一輸入由下一級觸發器220的輸出訊號Q。只有在當這兩個輸入均為“ 0”時,或閘(OR gate)330才會輸出“ 1”,也就是當該延遲啟動信號(startdi)導致停止訊號stop時才會發生這種情況。其中 v-start是該邊緣檢測器300的輸出信號,v-stop是經延遲單元310的T1延遲”停止訊號stop”的信號。The schematic diagram of the edge detector 300 is shown in FIG. 4 , the edge detector 300 includes a plurality of NOR gates 320 corresponding to the flip-flops 220 of the buffer delay module 200 , and the plurality of NOR gates The output of the NOR gate 320 is connected to an OR gate 330 . One input of each inversion gate 320 passes through a delay unit 310 with a T1 delay, and inputs the inverted Q signal given by the corresponding flip-flop 220 of this stage, and the other input is the output signal Q of the flip-flop 220 of the next stage. This happens only when both inputs are "0", or the OR gate 330 outputs "1", that is, when the delayed start signal (startdi) causes the stop signal stop. Wherein v-start is the output signal of the edge detector 300 , and v-stop is the signal delayed by T1 of the delay unit 310 “stop signal stop”.

如圖5所示,為本案的游標延遲模組400示意圖。游標延遲模組400包括串級連接的多級上延遲單元411形成的一上延遲線410,及與該上延遲線410對應由多級下延遲單元421串級連接的一下延遲線420,和對應每級上延遲單元411、421的觸發器430。其中該邊緣檢測器300輸出的v-start信號是上延遲線410的給定輸入,其中每級上延遲單元411的輸出都提供給觸發器430的數據輸入。該邊緣檢測器300的v-stop信號是下延遲線420的給定輸入,其中每個級下延遲單元421的輸出作為時鐘信號(clk)提供給觸發器430。該游標延遲模組400傳播延遲時間值T是結構“T2-T3”中的上延遲鍊410和下延遲線420中的延遲單元(411、421)的傳播之間的時間差(T = T2 - T3),其中T2、T3分別是上延遲線410和下延遲線420上每個上延遲單元411與421的傳播延遲值,且實施應用上T2>T3。 As shown in FIG. 5 , it is a schematic diagram of the cursor delay module 400 of the present invention. The vernier delay module 400 includes an upper delay line 410 formed by a multi-stage upper delay unit 411 connected in series, and a lower delay line 420 corresponding to the upper delay line 410 and connected in series by the multi-stage lower delay unit 421, and the corresponding The flip-flops 430 of the delay cells 411, 421 on each stage. The v-start signal output by the edge detector 300 is a given input of the upper delay line 410 , wherein the output of each stage of the upper delay unit 411 is provided to the data input of the flip-flop 430 . The v-stop signal of the edge detector 300 is a given input to the lower delay line 420, where the output of each stage lower delay cell 421 is provided to flip-flop 430 as a clock signal (clk). The vernier delay module 400 propagation delay time value T is the time difference between the propagation of the upper delay chain 410 in the structure "T2-T3" and the delay elements (411, 421) in the lower delay line 420 (T = T2 - T3 ), where T2 and T3 are the propagation delay values of each of the upper delay units 411 and 421 on the upper delay line 410 and the lower delay line 420, respectively, and upper T2>T3 is applied.

製程、電壓和溫度變化的微小變化將對前述緩衝用的延遲單元211、310、411、421的延遲產生較大影響。因此,使用此延遲作為參考信號來控制該時間數位轉換器100核心(緩衝延遲模組200、邊緣檢測器300及游標延遲模組400)的PVT變化。如圖6所示,PVT補償器600由多個延遲單元611串接形成的緩衝延遲鏈610所組成,及對應每級延遲單元611的一負邊緣觸發器620。該PVT補償器600的輸入是時脈信號clk,所以時脈信號clk是緩衝延遲鏈610的輸入,也被用於負邊緣觸發器620。時脈信號clk經過每個級的延遲單元611輸出(clkd1~clkdm)均作為給出至對應的該級負邊緣觸發器620的數據輸入,且時脈信號clk直接被送至每個負邊緣觸發器620的時鐘(clk)輸入。 Small changes in process, voltage and temperature changes will have a great impact on the delay of the aforementioned buffering delay units 211 , 310 , 411 , and 421 . Therefore, this delay is used as a reference signal to control the PVT variation of the core of the TDC 100 (buffer delay module 200 , edge detector 300 and vernier delay module 400 ). As shown in FIG. 6 , the PVT compensator 600 is composed of a buffer delay chain 610 formed by connecting a plurality of delay units 611 in series, and a negative edge flip-flop 620 corresponding to each stage of the delay unit 611 . The input to the PVT compensator 600 is the clock signal clk, so the clock signal clk is the input to the buffer delay chain 610 and is also used for the negative edge flip-flop 620. The clock signal clk is output (clkd1 ~ clkdm) through the delay unit 611 of each stage as the data input to the corresponding negative edge flip-flop 620 of the stage, and the clock signal clk is directly sent to each negative edge trigger clock (clk) input to the controller 620.

該週期性時脈信號clk信號被緩衝延遲鏈610延遲,其中每個延遲單元611的傳播延遲值為T4,每個延遲單元611將時脈信號clk延遲T4。實施上,總共使用了m個延遲單元611,以便生成clkd1,clkd2,..clkdm信號。值得注意的是,假設在實施例中m=36。通過最初的時脈信號clk下降邊緣觸發相對應的負邊緣觸發器620,m個延遲的脈衝序列被相應的負邊緣觸發器620鎖存,該些負邊緣觸發器620鎖存了m個延遲的脈衝串P[0]~P[m],這些負邊緣觸發器620由原始“clk”下降沿觸發。 The periodic clock signal clk is delayed by the buffer delay chain 610, wherein the propagation delay value of each delay unit 611 is T4, and each delay unit 611 delays the clock signal clk by T4. In practice, a total of m delay units 611 are used to generate clkd1, clkd2, .. clkdm signals. Notably, it is assumed that m=36 in the embodiment. The corresponding negative edge flip-flops 620 are triggered by the falling edge of the initial clock signal clk, and the m delayed pulse sequences are latched by the corresponding negative edge flip-flops 620. The negative edge flip-flops 620 latch the m delayed pulses. For pulse trains P[0]~P[m], these negative edge flip-flops 620 are triggered by the falling edge of the original "clk".

通過全面仿真取樣,如圖7所示,發現PVT補償器600中緩衝延遲鏈610的第19、22、26、29和34階為在該緩衝延遲模組200和該游標延遲模組400中獲得抵抗PVT變化的最佳閾值(Threshold)(見下列表1),相應的負邊緣觸發器620的輸出來自反相Q,然後將PVT代碼Cin[3:0]提供給緩衝延遲模組200、邊緣檢測器300及游標延遲模組400,而緩衝延遲模組200產生一組Q[31:0]代 碼,游標延遲模組400產生另一組代碼V[6:0],而Q[31:0]代碼與代碼V[6:0]則送入編碼器500,以獲得最後輸出代碼E[7:0]。 Through comprehensive simulation sampling, as shown in FIG. 7 , it is found that the 19th, 22nd, 26th, 29th and 34th stages of the buffer delay chain 610 in the PVT compensator 600 are obtained in the buffer delay module 200 and the vernier delay module 400 The optimal threshold (Threshold) for resisting PVT changes (see Table 1 below), the output of the corresponding negative edge flip-flop 620 is from the inverted Q, and then the PVT code Cin[3:0] is provided to the buffer delay module 200, edge The detector 300 and the vernier delay module 400, and the buffer delay module 200 generate a set of Q[31:0] generations code, the vernier delay module 400 generates another set of codes V[6:0], and the Q[31:0] codes and the codes V[6:0] are sent to the encoder 500 to obtain the final output code E[7 :0].

本案的仿真模擬具反PVT變化設計的時間數位轉換器100是使用台積電(TSMC)混合信號/RF 1P9M低功耗90nm CMOS工藝實現的。如圖7所示,在所有過程,電壓(V)和溫度變化中都看到了clkd19、clkd22、clkd26、clkd29和clkd34的輸出信號。在圖7中觀察到,在時脈信號clk的負邊緣,它通過使用這些clkd19、clkd22、clkd26、clkd29和clkd34信號來區分慢、慢-快、典型、快-慢和快信號。這些信號被提供給對應的負邊緣觸發器620,用以產生輸出P19、P22、P26、P29、P34。但是實施應用上,我們只需要四個控制信號來控制核心的延遲單元中的延遲。因此,透過編碼器500將五個信號代碼(P19、P22、P26、P29、P34)轉換為四個信號代碼Cin[3:0],模擬PVT補償器600生成的代碼如下方表所示。 The simulation time-to-digital converter 100 with inverse PVT variation design in this case is implemented using TSMC mixed-signal/RF 1P9M low-power 90nm CMOS process. As shown in Figure 7, the output signals of clkd19, clkd22, clkd26, clkd29 and clkd34 were seen in all processes, voltage (V) and temperature changes. It is observed in Figure 7 that at the negative edge of the clock signal clk, it distinguishes between slow, slow-fast, typical, fast-slow and fast signals by using these clkd19, clkd22, clkd26, clkd29 and clkd34 signals. These signals are provided to corresponding negative edge flip-flops 620 to generate outputs P19, P22, P26, P29, P34. But in practice, we only need four control signals to control the delay in the delay unit of the core. Therefore, the five signal codes (P19, P22, P26, P29, P34) are converted into four signal codes Cin[3:0] by the encoder 500, and the codes generated by the analog PVT compensator 600 are shown in the following table.

Figure 110114086-A0305-02-0010-1
Figure 110114086-A0305-02-0010-1

眾所周知,延遲單元的延遲取決於第一階段的電流放電。因此,透過這些控制信號Cin[3:0]來保持延遲單元的延遲。其工作方式是在產生慢信號時,然後生成1111碼,因此電流放電較高,產生慢信號時,便會生成1110碼, 與上一級相比,電流放電的延遲很小。但是信號是慢-快的,因此由於延遲單元的這種延遲而得到了補償。相同的,其它信號也是如此,藉此可以減少該時間數位轉換器100核心的延遲單元的PVT變化。 It is well known that the delay of the delay cell depends on the current discharge in the first stage. Therefore, the delay of the delay unit is maintained through these control signals Cin[3:0]. Its working method is to generate a 1111 code when a slow signal is generated, so the current discharge is high, and when a slow signal is generated, a 1110 code is generated, The delay of current discharge is small compared to the previous stage. But the signal is slow-fast and therefore compensated for this delay by the delay unit. The same goes for other signals, whereby the PVT variation of the delay cells at the core of the time-to-digital converter 100 can be reduced.

又,該緩衝延遲鏈610中的延遲單元611與該緩衝延遲模組200和游標延遲模組400中的延遲單元211、411、421不同。PVT補償器600中的延遲單元611如圖8所示。除由NMOS電晶體Mn701、Mn702與PMOS電晶體Mp701、Mp702所構成的CMOS緩衝閘。一電晶體Mn703串接NMOS電晶體Mn701與Mn702,且因為電晶體Mn703始終導通,利用該電晶體Mn703充當電阻器;一電晶體Mn704受CMOS緩衝閘控制,且電晶體Mn704的源極和漏極短路,透過電晶體Mn704充當電容器,然後由電晶體Mn703和Mn704形成RC延遲。 In addition, the delay unit 611 in the buffer delay chain 610 is different from the delay units 211 , 411 and 421 in the buffer delay module 200 and the vernier delay module 400 . The delay unit 611 in the PVT compensator 600 is shown in FIG. 8 . Except for the CMOS buffer gate composed of NMOS transistors Mn701, Mn702 and PMOS transistors Mp701, Mp702. A transistor Mn703 is connected in series with the NMOS transistors Mn701 and Mn702, and because the transistor Mn703 is always on, the transistor Mn703 is used as a resistor; a transistor Mn704 is controlled by the CMOS buffer gate, and the source and drain of the transistor Mn704 A short circuit, through transistor Mn704 acts as a capacitor, and then an RC delay is formed by transistors Mn703 and Mn704.

實施應用中,再次參考圖2和圖5,該緩衝延遲模組200的延遲單元211、該邊緣檢測器300的延遲單元310、該游標延遲模組400的上延遲單元411、421由Cin[3:0]控制,Cin[3:0]直接耦合到PVT補償器600的輸出,因此延遲將被自動調整。 In implementation, referring to FIG. 2 and FIG. 5 again, the delay unit 211 of the buffer delay module 200, the delay unit 310 of the edge detector 300, and the upper delay units 411 and 421 of the vernier delay module 400 are determined by Cin[3 :0] control, Cin[3:0] is coupled directly to the output of the PVT compensator 600, so the delay will be adjusted automatically.

該時間數位轉換器100核心的緩衝延遲模組200、邊緣檢測器300及游標延遲模組400中的延遲單元211、310、411、421示意圖如圖9所示,其中除由NMOS電晶體Mn1、Mn2與PMOS電晶體Mp1、Mp2所構成的CMOS緩衝閘,其中CMOS緩衝閘串連一電晶體Mn7充當電阻器,因為該電晶體Mn7始終導通;有四個電晶體Mn3、Mn4、Mn5與Mn6分別與該電晶體Mn7並聯,且四個電晶體Mn3、Mn4、Mn5與Mn6分別受到Cin[3:0](Cin[0]、Cin[1]、Cin[2]、Cin[3])控制,生成的PVT代碼Cin[3:0]用於調整該些延遲單元211、310、411、421的電流吸收能力。整個該時間數位轉換器100核心由PVT補償器600監控, 以抵抗製程、電壓、溫度(PVT)所造成的延遲單元211、310、411、421的延遲變化。 The schematic diagram of the delay units 211 , 310 , 411 and 421 in the buffer delay module 200 , the edge detector 300 and the vernier delay module 400 at the core of the time-to-digital converter 100 is shown in FIG. 9 . A CMOS buffer gate composed of Mn2 and PMOS transistors Mp1 and Mp2, wherein the CMOS buffer gate is connected in series with a transistor Mn7 as a resistor, because the transistor Mn7 is always on; there are four transistors Mn3, Mn4, Mn5 and Mn6 respectively It is connected in parallel with the transistor Mn7, and the four transistors Mn3, Mn4, Mn5 and Mn6 are controlled by Cin[3:0] (Cin[0], Cin[1], Cin[2], Cin[3]) respectively, The generated PVT code Cin[3:0] is used to adjust the current sink capability of the delay units 211 , 310 , 411 , and 421 . The entire time-to-digital converter 100 core is monitored by the PVT compensator 600, In order to resist the delay variation of the delay units 211 , 310 , 411 and 421 caused by the process, voltage and temperature (PVT).

由前述的實施模擬具反PVT變化設計的時間數位轉換器100條件、本案的時間數位轉換器100具有5.4ps分辨率,2ps的延遲變化和890ps的動態範圍。 The TDC 100 of the present case has a resolution of 5.4ps, a delay variation of 2ps, and a dynamic range of 890ps by simulating the TDC 100 condition with an inverse PVT variation design as described above.

本發明的技術特徵在於使用兩階段系統架構,其中第一階段是緩衝延遲線,以獲得寬的動態範圍,然後通過邊緣檢測器將延遲的開始和停止信號提供給第二階段的游標延遲線,以實現更高的分辨率,且整個架構由PVT檢測器監控,以抵抗製程、電壓、溫度(PVT)的變化。 The technical feature of the present invention is to use a two-stage system architecture, where the first stage is a buffered delay line to obtain a wide dynamic range, and then delayed start and stop signals are provided to the second stage vernier delay line through an edge detector, For higher resolution, the entire architecture is monitored by PVT detectors to resist process, voltage, temperature (PVT) variations.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。However, the above are only preferred embodiments of the present invention, and should not limit the scope of the present invention, that is, any simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the contents of the description of the invention, All still fall within the scope of the patent of the present invention.

100:時間數位轉換器 100: Time to Digitizer

200:緩衝延遲模組 200: Buffer delay module

210:緩衝器延遲線 210: Buffer Delay Line

211:延遲單元 211: Delay unit

220:觸發器 220: Trigger

300:邊緣檢測器 300: Edge Detector

310:延遲單元 310: Delay unit

320:反或閘 320: anti-OR gate

330:或閘 330: or gate

400:游標延遲模組 400: Cursor delay module

410:上延遲線 410: up delay line

411:上延遲單元 411: Upper delay unit

420:下延遲線 420: Lower delay line

421:下延遲單元 421: Lower delay unit

430:觸發器 430: Trigger

500:編碼器 500: Encoder

600:PVT補償器 600: PVT compensator

610:緩衝延遲鏈 610: Buffered Delay Chain

611:延遲單元 611: Delay unit

620:負邊緣觸發器 620: negative edge trigger

Mn701、Mn702:NMOS電晶體 Mn701, Mn702: NMOS transistor

Mp701、Mp702:PMOS電晶體 Mp701, Mp702: PMOS transistors

Mn703、Mn704:電晶體 Mn703, Mn704: Transistor

Mn1、Mn2:NMOS電晶體 Mn1, Mn2: NMOS transistor

Mp1、Mp2:PMOS電晶體 Mp1, Mp2: PMOS transistors

Mn3、Mn4、Mn5、Mn6、Mn7:電晶體 Mn3, Mn4, Mn5, Mn6, Mn7: transistors

圖1為本案的時間數位轉換器的方塊示意圖。 圖2為本案的緩衝延遲模組之示意圖。 圖3為緩衝延遲模塊的時序示意圖。 圖4為本案的邊緣檢測器之示意圖。 圖5為本案的游標延遲模組之示意圖。 圖6為本案的PVT補償器之示意圖。 圖7為本案的PVT補償器全面仿真的示意圖。 圖8為PVT補償器的延遲單元之示意圖。 圖9為緩衝延遲模組、邊緣檢測器及游標延遲模組的延遲單元之示意圖。 FIG. 1 is a schematic block diagram of the time-to-digital converter of the present invention. FIG. 2 is a schematic diagram of the buffer delay module of the present invention. FIG. 3 is a timing diagram of the buffer delay module. FIG. 4 is a schematic diagram of the edge detector of the present invention. FIG. 5 is a schematic diagram of the cursor delay module of the present invention. FIG. 6 is a schematic diagram of the PVT compensator of the present invention. FIG. 7 is a schematic diagram of a comprehensive simulation of the PVT compensator in this case. FIG. 8 is a schematic diagram of a delay unit of a PVT compensator. FIG. 9 is a schematic diagram of the delay unit of the buffer delay module, the edge detector and the vernier delay module.

100:時間數位轉換器 100: Time to Digitizer

200:緩衝延遲模組 200: Buffer delay module

300:邊緣檢測器 300: Edge Detector

400:游標延遲模組 400: Cursor delay module

500:編碼器 500: Encoder

600:PVT補償器 600: PVT compensator

Claims (9)

一種時間至數位轉換器,係一種將開始訊號和停止訊號的遷移時序的時間差轉換為數位值之轉換器,其特徵在於,包括:緩衝延遲模組,進行前述開始訊號和前述停止訊號的開始和結束的採樣,且對前述開始訊號和前述停止訊號的邊緣的時間差進行計測,生成採樣時序的數字代碼;邊緣檢測器,做為橋樑用於檢測前述緩衝延遲模組中的延遲啟動信號,該邊緣檢測器藉檢測且出輸出最接近前述停止訊號的前述開始訊號做為前述延遲啟動信號,及經過延遲的前述停止訊號作為前述延遲停止信號;游標延遲模組,其接受前述邊緣檢測器輸出的前述延遲啟動信號,以進行更高速率的採樣與計測,生成採樣時序的數字代碼;編碼器,用以將前述緩衝延遲模組與該游標延遲模組的數字代碼轉換為數字碼;及PVT補償器,其輸入時脈信號生成PVT代碼,用於監控前述緩衝延遲模組、前述邊緣檢測器與前述游標延遲模組內用於延遲的元件,抵抗製程、電壓和溫度變化的微小變化。 A time-to-digital converter is a converter that converts the time difference between the transition timings of a start signal and a stop signal into a digital value, and is characterized in that it comprises: a buffer delay module, which performs the start and end of the start signal and the stop signal. The end of the sampling, and the time difference between the edges of the start signal and the stop signal is measured, and the digital code of the sampling timing is generated; the edge detector is used as a bridge to detect the delay start signal in the buffer delay module. The edge The detector detects and outputs the start signal closest to the stop signal as the delay start signal, and the delayed stop signal as the delay stop signal; the vernier delay module receives the output of the edge detector. The delay start signal is used for sampling and measurement at a higher rate, and the digital code of the sampling timing is generated; the encoder is used to convert the digital code of the buffer delay module and the vernier delay module into digital code; and PVT compensator , its input clock signal generates PVT code, which is used to monitor the components used for delay in the aforementioned buffer delay module, the aforementioned edge detector and the aforementioned vernier delay module, and resist the slight variation of process, voltage and temperature variation. 如請求項1所述之時間至數位轉換器,其中,所述緩衝延遲模組包括串級連接的多級延遲單元形成的一緩衝器延遲線,及對應每級延遲單元的一觸發器;前述開始訊號被施加到該緩衝器延遲線,每級延遲單元輸出作為對應的所述觸發器的數據輸入,前述停止訊號被饋送到所述觸發器的時鐘輸入。 The time-to-digital converter of claim 1, wherein the buffer delay module comprises a buffer delay line formed by a multi-stage delay unit connected in series, and a flip-flop corresponding to each stage of the delay unit; the aforementioned A start signal is applied to the buffer delay line, each stage of the delay cell outputs as the data input of the corresponding flip-flop, and the aforementioned stop signal is fed to the clock input of the flip-flop. 如請求項1所述之時間至數位轉換器,其中,該邊緣檢測器 包含與所述緩衝延遲模組的前述觸發器對應的多個反或閘,且該些個反或閘的輸出接到一或閘;每個反或閘其中一個輸入由對應的前述觸發器給出的反相訊號經過一延遲單元輸入,另一輸入為下一級觸發器的輸出訊號;藉此檢測且出輸出最接近前述停止訊號的前述開始訊號做為前述延遲啟動信號,及經過延遲的前述停止訊號作為前述延遲停止信號。 The time-to-digital converter of claim 1, wherein the edge detector Including a plurality of inverting OR gates corresponding to the aforementioned flip-flops of the buffer delay module, and the outputs of these inverting OR gates are connected to an OR gate; one input of each inverting OR gate is given by the corresponding aforementioned flip-flop. The output inversion signal is input through a delay unit, and the other input is the output signal of the next stage flip-flop; thereby detecting and outputting the start signal closest to the stop signal as the delay start signal, and the delayed start signal The stop signal serves as the aforementioned delayed stop signal. 如請求項1所述之時間至數位轉換器,其中,所述游標延遲模組包括串級連接的多級上延遲單元形成的一上延遲線,及與該上延遲線對應由多級下延遲單元串級連接的一下延遲線,和對應前述每級延遲單元的觸發器;其中該上延遲線的給定輸入是前述延遲啟動信號,前述每級上延遲單元的輸出都提供給所對應的前述觸發器的數據輸入;該下延遲線的給定輸入是前述延遲停止信號,前述每個級下延遲單元的輸出作為時鐘信號提供給所對應的前述觸發器。 The time-to-digital converter of claim 1, wherein the vernier delay module comprises an upper delay line formed by a multi-stage upper delay unit connected in series, and a multi-stage lower delay line corresponding to the upper delay line A lower delay line connected in series, and a flip-flop corresponding to the aforementioned delay unit of each stage; wherein the given input of the upper delay line is the aforementioned delay start signal, and the output of the aforementioned upper delay unit of each stage is provided to the corresponding aforementioned aforementioned delay unit The data input of the flip-flop; the given input of the lower delay line is the aforementioned delay stop signal, and the output of the aforementioned lower delay unit of each stage is provided as a clock signal to the corresponding aforementioned flip-flop. 如請求項4所述之時間至數位轉換器,其中,所述上延遲單元的傳播延遲時間值大於所述下延遲單元的傳播延遲時間值。 The time-to-digital converter of claim 4, wherein the propagation delay time value of the upper delay unit is greater than the propagation delay time value of the lower delay unit. 如請求項1所述之時間至數位轉換器,其中,所述PVT補償器係由多個延遲單元串接形成的緩衝延遲鏈所組成,及對應所述每級延遲單元的一負邊緣觸發器;前述時脈信號是該緩衝延遲鏈的輸入,所述每個級的延遲單元輸出作為對應的該級負邊緣觸發器的數據輸入,且前述時脈信號直接被送至所述每個負邊緣觸發器的時鐘輸入。 The time-to-digital converter of claim 1, wherein the PVT compensator is composed of a buffer delay chain formed by connecting a plurality of delay units in series, and a negative edge flip-flop corresponding to each stage of the delay unit ; The aforementioned clock signal is the input of the buffer delay chain, the output of the delay unit of each stage is used as the data input of the corresponding negative edge flip-flop of this stage, and the aforementioned clock signal is directly sent to each of the negative edges Clock input for flip-flop. 如請求項6所述之時間至數位轉換器,其中,通過全面仿真取樣,用以取的前述PVT補償器中所述緩衝延遲鏈那些級的所述延遲單元在該緩衝延遲模組和該游標延遲模組獲得最佳PVT變化的最佳閾值,再將所述最佳 閾值邏輯轉碼以獲得所需的前述PVT代碼。 The time-to-digital converter of claim 6, wherein the delay elements of those stages of the buffer delay chain in the aforementioned PVT compensator are taken between the buffer delay module and the vernier by full-scale simulation sampling. The delay module obtains the best threshold for the best PVT change, and then uses the best The threshold logic is transcoded to obtain the desired aforementioned PVT code. 如請求項6所述之時間至數位轉換器,其中,所述PVT補償器的該延遲單元係為RC延遲。 The time-to-digital converter of claim 6, wherein the delay element of the PVT compensator is an RC delay. 如請求項7所述之時間至數位轉換器,其中,所述PVT補償器生成的前述PVT代碼用於調整前述緩衝延遲模及前述游標延遲模組內用於延遲的元件的電流吸收能力,以抵抗製程、電壓、溫度所造成的延遲變化。The time-to-digital converter of claim 7, wherein the PVT code generated by the PVT compensator is used to adjust the current sinking capability of the delay element in the buffer delay module and the vernier delay module to Resistant to delay variations due to process, voltage, and temperature.
TW110114086A 2021-04-20 2021-04-20 Time-to-digital converter TWI760191B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110114086A TWI760191B (en) 2021-04-20 2021-04-20 Time-to-digital converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110114086A TWI760191B (en) 2021-04-20 2021-04-20 Time-to-digital converter

Publications (2)

Publication Number Publication Date
TWI760191B true TWI760191B (en) 2022-04-01
TW202243411A TW202243411A (en) 2022-11-01

Family

ID=82198724

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110114086A TWI760191B (en) 2021-04-20 2021-04-20 Time-to-digital converter

Country Status (1)

Country Link
TW (1) TWI760191B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201001927A (en) * 2008-03-03 2010-01-01 Qualcomm Inc High resolution time-to-digital converter
TW201008129A (en) * 2008-08-01 2010-02-16 Advantest Corp Time measure circuit and method, time to digital converter using the same, and test device
US20100295590A1 (en) * 2009-05-21 2010-11-25 Kabushiki Kaisha Toshiba Time to digital converter
US20130214959A1 (en) * 2012-02-16 2013-08-22 Electronics And Telecommunications Research Institute Low-power high-resolution time-to-digital converter
US9160322B2 (en) * 2013-07-22 2015-10-13 Realtek Semiconductor Corporation Clock edge detection device and method
TWI568195B (en) * 2015-02-18 2017-01-21 麥奎爾股份有限公司 Time-to-digital converter
TWI644516B (en) * 2013-11-15 2018-12-11 Arm股份有限公司 A circuit delay monitoring apparatus and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201001927A (en) * 2008-03-03 2010-01-01 Qualcomm Inc High resolution time-to-digital converter
TW201008129A (en) * 2008-08-01 2010-02-16 Advantest Corp Time measure circuit and method, time to digital converter using the same, and test device
US20100295590A1 (en) * 2009-05-21 2010-11-25 Kabushiki Kaisha Toshiba Time to digital converter
US20130214959A1 (en) * 2012-02-16 2013-08-22 Electronics And Telecommunications Research Institute Low-power high-resolution time-to-digital converter
US9160322B2 (en) * 2013-07-22 2015-10-13 Realtek Semiconductor Corporation Clock edge detection device and method
TWI644516B (en) * 2013-11-15 2018-12-11 Arm股份有限公司 A circuit delay monitoring apparatus and method
TWI568195B (en) * 2015-02-18 2017-01-21 麥奎爾股份有限公司 Time-to-digital converter

Also Published As

Publication number Publication date
TW202243411A (en) 2022-11-01

Similar Documents

Publication Publication Date Title
CN109143832B (en) High-precision multichannel time-to-digital converter
US10003353B2 (en) Time-based delay line analog comparator
KR100921815B1 (en) Delay time measurement circuit and method
US7893861B2 (en) Time-to-digital based analog-to-digital converter architecture
US7248197B2 (en) A/D converter that is implemented using only digital circuit components and digital signal processing
WO2010013385A1 (en) Time measurement circuit, time measurement method, time digital converter and test device using the same
Enomoto et al. A 16-bit 2.0-ps Resolution Two-Step TDC in 0.18-$\mu $ m CMOS Utilizing Pulse-Shrinking Fine Stage With Built-In Coarse Gain Calibration
TW200926609A (en) Time to digital converter apparatus
JP5481809B2 (en) Comparator circuit and analog-digital converter having the same
JP2006311284A (en) Analog-to-digital converting device
CN112838851A (en) Residual time sampling circuit based on differential sampling and time-to-digital converter
Hiremath et al. An ultra high speed encoder for 5GSPS Flash ADC
KR101503732B1 (en) Time to digital converter
CN113098482B (en) Delay difference measurement method for vernier type annular time digital converter
TWI760191B (en) Time-to-digital converter
WO2015177786A1 (en) Fully-digital fully-synthesizable delay-line analog to digital converter
CN214480526U (en) Residual time sampling circuit based on differential sampling and time-to-digital converter
Avilala et al. High resolution time-to-digital converter design with anti-PVT-variation mechanism
TWI594580B (en) Analog to digital converter and data conversion method
CN114690611B (en) Low-power-consumption time-to-digital converter and conversion method
Fernandez et al. An energy-efficient temperature sensor using CMOS thyristor delay elements
TWI706635B (en) Anti-pvt-variation time to digital converter and pvt variation detector thereof
Senapati Design of a simple digital ADC using only digital blocks and delay element circuit
JP4525706B2 (en) A / D conversion circuit test method
Wang et al. A 5.4 ps resolution TDC design with anti-PVT-variation mechanism using 90-nm CMOS process