TWI754691B - Formulation of an organic functional material - Google Patents

Formulation of an organic functional material Download PDF

Info

Publication number
TWI754691B
TWI754691B TW106137139A TW106137139A TWI754691B TW I754691 B TWI754691 B TW I754691B TW 106137139 A TW106137139 A TW 106137139A TW 106137139 A TW106137139 A TW 106137139A TW I754691 B TWI754691 B TW I754691B
Authority
TW
Taiwan
Prior art keywords
organic solvent
formulation
organic
group
compounds
Prior art date
Application number
TW106137139A
Other languages
Chinese (zh)
Other versions
TW201829658A (en
Inventor
蓋勒 貝拉
克里斯多夫 萊昂哈德
曾信榮
曼努爾 漢柏格
安佳 傑許
Original Assignee
德商麥克專利有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商麥克專利有限公司 filed Critical 德商麥克專利有限公司
Publication of TW201829658A publication Critical patent/TW201829658A/en
Application granted granted Critical
Publication of TWI754691B publication Critical patent/TWI754691B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/36Inkjet printing inks based on non-aqueous solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/353Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising blocking layers, e.g. exciton blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

The present invention relates to a formulation containing at least one organic functional material and at least four different organic solvents, a first organic solvent A, a second organic solvent B, a third organic solvent C, and a fourth organic solvent D, wherein the first organic solvent A comprises a group, which is capable of receiving or giving a hydrogen bonding, the second organic solvent B has a boiling point in the range from 150 to 350°C, the third organic solvent C has a boiling point in the range from 100 to 300°C, and the fourth organic solvent D has a boiling point in the range from 200 to 400°C, is present in an amount from 0,01 to 15 vol.-% and has a viscosity of ≥ 15 mPas, the solubility of the at least one organic functional material in the second organic solvent B and in the fourth organic solvent D is ≥ 5 g/l, the boiling point of the third organic solvent C is at least 10°C lower than the boiling point of the second organic solvent B; and the boiling point of the fourth organic solvent D is at least 10°C higher than the boiling point of the second organic solvent B; as well as to electrolumines-cent devices prepared by using these formulations.

Description

有機功能材料的調配物Formulations of organic functional materials

本發明係關於一種調配物,其含有至少一種有機功能材料及至少四種不同有機溶劑為第一有機溶劑A、第二有機溶劑B、第三有機溶劑C、及第四有機溶劑D,其特徵在於:   - 第一有機溶劑A包含能夠接收或給予氫鍵結之基團,   - 第二有機溶劑B具有沸點在150至350℃之範圍,   - 第三有機溶劑C具有沸點在100至300℃之範圍,以及   - 第四有機溶劑D具有沸點在200至400℃之範圍,以0.01至15 體積%之含量存在且具有≥15 mPas之黏度,   - 至少一種有機功能材料在第二溶劑B中及在第四有機溶劑D中之溶解度為≥5 g/l,   - 第三有機溶劑C的沸點比第二有機溶劑B的沸點低至少10℃;以及   - 第四有機溶劑D的沸點比第二有機溶劑B的沸點高至少10℃;   以及藉由使用此等調配物所製備的電致發光裝置。The present invention relates to a formulation, which contains at least one organic functional material and at least four different organic solvents: a first organic solvent A, a second organic solvent B, a third organic solvent C, and a fourth organic solvent D, characterized by In that: - the first organic solvent A contains groups capable of accepting or donating hydrogen bonds, - the second organic solvent B has a boiling point in the range of 150 to 350°C, - the third organic solvent C has a boiling point in the range of 100 to 300°C range, and - the fourth organic solvent D has a boiling point in the range of 200 to 400°C, is present in a content of 0.01 to 15% by volume and has a viscosity of ≥15 mPas, - at least one organic functional material in the second solvent B and in The solubility in the fourth organic solvent D is ≥5 g/l, - the boiling point of the third organic solvent C is at least 10°C lower than the boiling point of the second organic solvent B; and - the boiling point of the fourth organic solvent D is lower than that of the second organic solvent The boiling point of B is at least 10°C higher; and electroluminescent devices prepared by using these formulations.

有機發光裝置(OLED)長期以來係藉由真空沉積法製造。近來已徹底研究其他技術諸如噴墨印刷,原因係彼等之諸如節省成本及放大規模可能性的優點。多層印刷的主要挑戰之一係識別相關參數以獲得印墨(ink)在基板上之均質沉積。為了觸發此等參數(諸如表面張力、黏度或沸點),可添加一些添加劑至調配物。 技術問題及發明目的   在有機電子裝置中已提出許多溶劑以供噴墨印刷。然而,在沉積及乾燥過程期間發揮作用之重要參數的數目使溶劑的選擇變得非常有挑戰性。因此,用於藉由噴墨印刷沉積之含有有機半導體的調配物仍需改良。本發明的一個目的係提供有機半導體之調配物,其允許受控制沉積以形成具有良好層性質及高效性能之有機半導體層。本發明另一目的係提供有機半導體的調配物,當其使用例如噴墨印刷法沉積或乾燥在基板上時,允許優異膜均一性,從而給出良好層性質及高效性能。   在JP 2015/191792 A2中,揭示溶解在第一及第二溶劑中之溶質,該溶質係由功能層之成分材料或其前驅物所構成,其中第一溶劑具有第一溶解度參數及第一沸點及第二溶劑具有比第一溶解度參數小之第二溶解度參數及比第一沸點小之第二沸點,第一沸點為≥250℃及第二沸點為≥170℃,第一沸點與第二沸點間的差異為≥40℃及第二溶解度參數為9.0 (cal/cm3 )1/2 或更低。   在EP 2924083 A1中,揭示用於形成功能層之印墨,其包含為溶質之第一組分;具有在280至350℃範圍的沸點,為第一組分之良好溶劑,且為至少一種選自包括至少兩個芳族環的芳族烴、芳族二醇醚、脂族二醇醚、脂族乙酸酯、及脂族酯所組成群組之第二組分;以及具有在200至300℃範圍的沸點,為第一組分之良好溶劑,且為至少一種選自芳族烴、芳族醚、及脂族醚所組成群組之第三組分,其中第二組分在包括第二組分與第三組分的混合之溶劑中的比例為10 wt%或更大。   在US 2013/256636 A1中,揭示用於藉由液體塗覆法形成功能層之功能層印墨,其中功能層材料含有巨分子或低分子量材料,以及含有0.1重量%或更多之溶劑A(具有在0.01至0.05 Pa. s範圍之黏度)與溶劑B(具有小於0.01 Pa. s之黏度及比溶劑A低之沸點)的混合之溶劑,該混合之溶劑具有少於0.02 Pa. s之黏度及在200至350℃範圍之沸點。   在WO 2005/083814 A1中,揭示含有至少一種高分子量成分之至少一種有機半導體於至少三種不同溶劑A、B及C之溶劑混合物中的溶液。溶劑A及B為該有機半導體之良好溶劑,溶劑C為該有機半導體之不良溶劑。   在WO 2005/112145 A1中,揭示單相液體組成物(溶液),其包含包含至少一種高分子量成分之至少一種有機半導體,以及為該有機半導體之良好溶劑之至少一種有機溶劑A,以及為該有機半導體之不良溶劑之至少一種有機溶劑B,特徵在於下列適用於有機溶劑A與B之沸點(b.p.):b.p.(A) > b.p.(B)。 解決方案   本發明之上述目的係藉由提供包含下列者之調配物來解決:至少一種有機功能材料及至少四種不同有機溶劑為第一有機溶劑A、第二有機溶劑B、第三有機溶劑C、及第四有機溶劑D,其特徵在於:第一有機溶劑A包含能夠接收或給予氫鍵結之基團,第二有機溶劑B具有沸點在150至350℃之範圍,第三有機溶劑C具有沸點在100至300℃之範圍,以及第四有機溶劑D具有沸點在200至400℃之範圍、以0,01至15 體積%之含量存在且具有≥15 mPas之黏度,至少一種有機功能材料在第二溶劑B中及在第四有機溶劑D中之溶解度為≥5 g/l,第三有機溶劑C的沸點比第二有機溶劑B的沸點低至少10℃,以及第四有機溶劑D的沸點比第二有機溶劑B的沸點高至少10℃。 發明之有利效果   本發明人意外地發現使用本發明之調配物允許有效之印墨沉積,以形成具有良好層性質及性能之均一且經良好界定之功能材料的有機層。Organic Light Emitting Devices (OLEDs) have long been fabricated by vacuum deposition methods. Other technologies such as inkjet printing have recently been thoroughly investigated for their advantages such as cost savings and scale-up possibilities. One of the main challenges of multi-layer printing is identifying the relevant parameters to obtain a homogeneous deposition of ink on the substrate. To trigger such parameters, such as surface tension, viscosity or boiling point, some additives can be added to the formulation. TECHNICAL PROBLEM AND OBJECT OF THE INVENTION Many solvents have been proposed for inkjet printing in organic electronic devices. However, the number of important parameters that come into play during the deposition and drying process makes solvent selection very challenging. Accordingly, there is still a need for improvement in organic semiconductor-containing formulations for deposition by ink jet printing. It is an object of the present invention to provide formulations of organic semiconductors that allow controlled deposition to form organic semiconductor layers with good layer properties and efficient performance. Another object of the present invention is to provide formulations of organic semiconductors which, when deposited or dried on substrates using eg ink jet printing methods, allow excellent film uniformity, giving good layer properties and efficient performance. In JP 2015/191792 A2, a solute dissolved in a first and a second solvent is disclosed, the solute is composed of a component material of a functional layer or a precursor thereof, wherein the first solvent has a first solubility parameter and a first boiling point and the second solvent has a second solubility parameter smaller than the first solubility parameter and a second boiling point smaller than the first boiling point, the first boiling point is ≥250°C and the second boiling point is ≥170°C, the first boiling point and the second boiling point The difference is > 40°C and the second solubility parameter is 9.0 (cal/cm 3 ) 1/2 or less. In EP 2924083 A1, an ink for forming a functional layer is disclosed, which comprises a first component as a solute; has a boiling point in the range of 280 to 350° C., is a good solvent for the first component, and is at least one optional a second component selected from the group consisting of aromatic hydrocarbons including at least two aromatic rings, aromatic glycol ethers, aliphatic glycol ethers, aliphatic acetates, and aliphatic esters; The boiling point in the range of 300°C is a good solvent for the first component, and is at least one third component selected from the group consisting of aromatic hydrocarbons, aromatic ethers, and aliphatic ethers, wherein the second component includes The ratio in the solvent of the mixture of the second component and the third component is 10 wt % or more. In US 2013/256636 A1, a functional layer printing ink for forming a functional layer by a liquid coating method is disclosed, wherein the functional layer material contains macromolecules or low molecular weight materials, and contains 0.1% by weight or more of solvent A ( A solvent having a viscosity in the range of 0.01 to 0.05 Pa.s) mixed with solvent B (having a viscosity of less than 0.01 Pa.s and a lower boiling point than solvent A), the mixed solvent having a viscosity of less than 0.02 Pa.s and boiling points in the range of 200 to 350 °C. In WO 2005/083814 A1, solutions of at least one organic semiconductor containing at least one high molecular weight component in a solvent mixture of at least three different solvents A, B and C are disclosed. Solvents A and B are good solvents for the organic semiconductor, and solvent C is a poor solvent for the organic semiconductor. In WO 2005/112145 A1, a single-phase liquid composition (solution) is disclosed which comprises at least one organic semiconductor comprising at least one high molecular weight component, and at least one organic solvent A which is a good solvent for the organic semiconductor, and which is the At least one organic solvent B, which is a poor solvent for organic semiconductors, is characterized in that the following applies to the boiling points (bp) of organic solvents A and B: bp(A) > bp(B). Solution The above object of the present invention is solved by providing a formulation comprising the following: at least one organic functional material and at least four different organic solvents are a first organic solvent A, a second organic solvent B, and a third organic solvent C , and a fourth organic solvent D, characterized in that the first organic solvent A contains a group capable of accepting or donating hydrogen bonds, the second organic solvent B has a boiling point in the range of 150 to 350°C, and the third organic solvent C has The boiling point is in the range of 100 to 300°C, and the fourth organic solvent D has a boiling point in the range of 200 to 400°C, is present in an amount of 0,01 to 15% by volume, and has a viscosity of ≥15 mPas, and at least one organic functional material is The solubility in the second solvent B and in the fourth organic solvent D is ≥5 g/l, the boiling point of the third organic solvent C is at least 10°C lower than the boiling point of the second organic solvent B, and the boiling point of the fourth organic solvent D At least 10°C higher than the boiling point of the second organic solvent B. ADVANTAGEOUS EFFECTS OF THE INVENTION The inventors have unexpectedly discovered that the use of the formulations of the present invention allows efficient ink deposition to form organic layers of uniform and well-defined functional materials with good layer properties and properties.

and

實施態樣之說明   本發明係關於含有下列者之調配物:至少一種有機功能材料以及至少四種不同有機溶劑為第一有機溶劑A、第二有機溶劑B、第三有機溶劑C、及第四有機溶劑D,其特徵在於:第一有機溶劑A包含能夠接收或給予氫鍵結之基團,第二有機溶劑B具有沸點在150至350℃之範圍,第三有機溶劑C具有沸點在100至300℃之範圍,以及第四有機溶劑D具有沸點在200至400℃之範圍、以0,01至15 體積%之含量存在且具有≥15 mPas之黏度,至少一種有機功能材料在第二有機溶劑B中及在第四有機溶劑D中之溶解度為≥5 g/l,第三有機溶劑C的沸點比第二有機溶劑B的沸點低至少10℃,以及第四有機溶劑D的沸點比第二有機溶劑B的沸點高至少10℃。   氫鍵予體/受體的明確定義可在CRC Handbook of solubility parameters and other cohesion parameters, second edition, Allan F. M Barton, 1991中找到。下列定義被提及:“氫鍵結相互作用是特殊類型的路易斯酸-鹼反應,其中電子受體是布朗斯特酸(Brönsted acid)。方便的定義是氫鍵係藉由共價結合之氫原子而向另一原子形成的第二個鍵。在下列方案中,原子X與Y具有比H所具者高之陰電性(經鍵結原子吸引電子的相對趨勢),例如C、N、P、O、S、F、Cl、Br、或I:

Figure 02_image002
Pimentel與McClellan(The hydrogen Bond, W. H. Freeman, San Francisco, 1960)對液體的分類,根據彼等的氫鍵結特性,也被廣泛使用:   - 質子予體,諸如三氯甲烷,   - 質子受體,諸如酮、醛、酯、醚、三級胺、芳族烴、烯烴,   - 質子予體/受體,諸如醇、羧酸、水、一級胺及二級胺。 較佳實施態樣   在較佳實施態樣中,調配物的特徵在於第一有機溶劑A包含至少一種,較佳一種能夠給予氫鍵結之基團。   在更佳實施態樣中,調配物的特徵在於第一有機溶劑A的該至少一種,較佳一種能夠給予氫鍵結之基團為OH-或NH-基團。   在一種較佳實施態樣中,本發明之調配物的特徵在於第一有機溶劑A為根據通式(I)之溶劑:
Figure 02_image004
其中,   X 為O或NR4 ,   R1 、R2 及R3 在每次出現時係相同或不同,且為H、D、具有1至12個碳原子之直鏈烷基或具有3至12個碳原子之支鏈或環狀烷基,其中一或多個非相鄰CH2 基可經-O-、-S-、-NR5 -、-CO-O-、-C=O-、-CH=CH-或-C≡C-置換,且其中一或多個氫原子可經F或具有4至14個碳原子且可經一或多個非芳族R5 基取代的芳基或雜芳基置換,而且在同一環上或在兩個不同環上之複數個取代基R5 可進而一起形成單環或多環之脂族、芳族或雜芳族環系統,其可經複數個取代基R5 取代;或R1 、R2 及R3 中之二者可進而一起形成具有4至14個碳原子之單環或多環之脂族、芳族或雜芳族環系統,其可經複數個取代基R5 取代;   R4 為H、具有1至12個碳原子之直鏈烷基、具有3至12個碳原子之支鏈或環狀烷基、或具有4至14個碳原子之芳基或雜芳基,其可經一或多個非芳族R5 基取代,以及   R5 在每次出現時係相同或不同,且為H、具有1至12個碳原子之直鏈烷基或烷氧基或具有3至20個碳原子之支鏈或環狀烷基或烷氧基,其中一或多個非相鄰CH2 基可經-O-、-S-、-CO-O-、-C=O-、 -CH=CH-或-C≡C-置換。   在一種更佳實施態樣中,本發明之調配物的特徵在於第一有機溶劑A為根據通式(II)之溶劑:
Figure 02_image006
其中,R1 、R2 及R3 係如上述般定義。   在另一較佳實施態樣中,本發明之調配物的特徵在於第一有機溶劑A為根據通式(III)之溶劑:
Figure 02_image008
其中,R1 、R2 、R3 及R4 係如上述般定義。   在第三與第四最佳實施態樣中,本發明之調配物的特徵在於第一有機溶劑A為根據通式(II)或(III)之溶劑:   其中,   R1 、R2 及R3 在每次出現時係相同或不同,且為具有1至8個碳原子之直鏈烷基或具有3至8個碳原子之支鏈或環狀烷基,其中一或多個非相鄰CH2 基可經-O-、-NH-、-CO-O-、-C=O-、-CH=CH-或 -CºC-置換,且其中一或多個氫原子可經F或具有4至10個碳原子且可經一或多個非芳族R5 基取代的芳基或雜芳基置換,而且其中R5 係如上述般定義。   在第一更佳實施態樣中,本發明之調配物的特徵在於第一有機溶劑A為根據通式(I)之溶劑,其中X為O且R3 為Ar1 -Y-,其係藉由下式(IV)例示說明:
Figure 02_image010
其中,   R1 、R2 在每次出現時係相同或不同,且為H或具有1至5個碳原子,較佳1至3個碳原子,且更佳1個碳原子之直鏈烷基,   Ar1 為芳基或雜芳基,其具有4至14個碳原子且可經一或多個非芳族R5 基取代,其可經複數個取代基R5 取代,   R5 在每次出現時係相同或不同,且為H、具有1至12個碳原子之直鏈烷基或烷氧基或具有3至20個碳原子之支鏈或環狀烷基或烷氧基,其中一或多個非相鄰CH2 基可經-O-、-S-、-CO-O-、-C=O-、 -CH=CH-或-C≡C-置換,以及   Y 為直鏈或支鏈-Cn H2n -基團,具有n=1至10個碳原子,其中Y基團的一或多個非相鄰CH2 基可經-O-置換。   在第二更佳實施態樣中,本發明之調配物的特徵在於第一有機溶劑A為根據通式(II)之溶劑,   其中,   R1 、R2 在每次出現時係相同或不同,且為H或具有1至3個,較佳1個碳原子之直鏈烷基,以及   R3 為H、D、具有1至12個碳原子之直鏈烷基或具有3至12個碳原子之支鏈或環狀烷基,其中一或多個非相鄰CH2 基可經-O-、-S-、-NR5 -、-CO-O-、 -C=O-、-CH=CH-或-CºC-置換,且其中一或多個氫原子可經F置換。   在最佳實施態樣中,本發明之調配物的特徵在於第一有機溶劑A為根據通式(III)之溶劑,其中R4 為H。   在最佳實施態樣中,本發明之調配物的特徵在於第一有機溶劑A為根據通式(II)或(IV)之溶劑,其中R1 為H且R2 為H或CH3 。   較佳第一溶劑的實例及彼等之沸點(BP)及熔點(MP)係顯示於下表1中。
Figure 02_image012
Figure 02_image014
Figure 02_image016
Figure 02_image018
Figure 02_image020
較佳的,第一有機溶劑A具有表面張力≥20 mN/m。更佳的,第一有機溶劑A之表面張力係在25至50 mN/m之範圍,及最佳係在28至45 mN/m之範圍。   較佳的,第一有機溶劑A具有沸點在150至350℃之範圍,更佳在175至325℃之範圍,且最佳在200至300℃之範圍。   第一溶劑A之含量以調配物中溶劑的總量計係在5至60體積%之範圍,較佳係在10至60體積%之範圍,更佳係在15至55體積%之範圍,及最佳係在20至50體積%之範圍。   本發明之調配物至少包含與第一有機溶劑A不同的第二有機溶劑B。第二有機溶劑B係與第一有機溶劑A一起使用。   合適之第二有機溶劑B較佳為有機溶劑,其包括尤其酮、醚、酯、醯胺,諸如二-C1-2 -烷基甲醯胺、硫化合物、硝基化合物、烴、鹵化烴(例如,氯化烴)、芳族或雜芳族烴(例如,萘衍生物)及鹵化芳族或雜芳族烴。   較佳的,第二有機溶劑B可選自下列群組中之一者:經取代及未經取代之芳族或直鏈醚,諸如3-苯氧基甲苯或苯甲醚;經取代或未經取代之芳烴衍生物;經取代或未經取代之二氫茚,諸如六甲基-二氫茚;經取代及未經取代之芳族或直鏈酮;經取代及未經取代之雜環,諸如吡咯啶酮、吡啶、吡嗪;其他氟化或氯化芳族烴;經取代或未經取代之萘,諸如經烷基取代之萘,諸如1-乙基萘。   特佳之第二有機溶劑B係,例如1-乙基萘、2-乙基萘、2-丙基萘、2-(1-甲基乙基)萘、1-(1-甲基乙基)萘、2-丁基萘、1,6-二甲基萘、2,2'-二甲基聯苯、3,3'-二甲基聯苯、1-乙醯基萘、1,2,3,4-四甲基苯、1,2,3,5-四甲基苯、1,2,3-三甲基苯、1,2,4,5-四甲基苯、1,2,4-三氯苯、1,2,4-三甲基苯、1,2-二氫萘、1,2-二甲基萘、1,3-苯并二㗁唑、1,3-二異丙基苯、1,3-二甲基萘、1,4-苯并二㗁烷、1,4-二異丙基苯、1,4-二甲基萘、1,5-二甲基四氫萘、1-苯并噻吩、硫雜萘(thianaphthalene)、1-溴萘、1-氯甲基萘、1-甲氧基萘、1-甲基萘、2,3-苯并呋喃、2,3-二氫苯并呋喃、2,3-二甲基苯甲醚、2,4-二甲基苯甲醚、2,5-二甲基苯甲醚、2,6-二甲基苯甲醚、2-溴-3-溴甲基萘、2-溴甲基萘、2-溴萘、2-乙氧基萘、2-異丙基苯甲醚、2-甲基苯甲醚、2-甲基吲哚、3,4-二甲基苯甲醚、3,5-二甲基苯甲醚、3-甲基苯甲醚、4-甲基苯甲醚、5-甲氧基二氫茚、5-甲氧基吲哚、5-第三丁基-間二甲苯、6-甲基喹啉、8-甲基喹啉、苯乙酮、苯甲醚、苯甲腈、苯并噻唑、乙酸苯甲酯、溴苯、丁基苯基醚、環己基苯、十氫萘酚、二甲氧基甲苯、3-苯氧基甲苯、二苯醚、苯丙酮、己基苯、二氫茚、六甲基二氫茚、茚、異
Figure 106137139-A0304-1
唍、異丙苯、間異丙基甲苯、1,3,5-三甲苯、丙基苯、鄰二氯苯、苯基乙基醚、乙氧基苯、乙酸苯酯、對異丙基甲苯、苯丙酮、第二丁基苯、第三丁基苯、藜蘆素、吡咯啶酮、二甲基乙醯胺、及十氫萘。   第二有機溶劑B具有沸點在150至350℃之範圍,較佳在175至325℃之範圍,且最佳在200至300℃之範圍。   第二有機溶劑B之含量以調配物中有機溶劑的總量計係在5至95體積%之範圍,較佳係在10至75體積%之範圍,更佳係在15至70體積%之範圍,及最佳係在20至65體積%之範圍。   該至少一種有機功能材料具有在第二有機溶劑B中之溶解度為≥5 g/l,較佳≥10 g/l且更佳≥15 g/l。
Figure 02_image022
Figure 02_image024
Figure 02_image026
Figure 02_image028
Figure 02_image030
Figure 02_image032
本發明之調配物至少包含與第一有機溶劑A及第二有機溶劑B不同的第三有機溶劑C。第三有機溶劑C係與第一有機溶劑A及第二有機溶劑B一起使用。   第三有機溶劑C具有沸點在100至300℃之範圍,較佳在125至275℃之範圍,且最佳在150至250℃之範圍。再者,第三有機溶劑C之沸點比第二有機溶劑B的沸點低至少10℃,較佳低至少20℃及更佳低至少30℃。   第三有機溶劑C之含量以調配物中有機溶劑的總量計較佳係在1至30體積%之範圍,更佳係在3至25體積%之範圍,及最佳係在5至20體積%之範圍。
Figure 02_image034
Figure 02_image036
本發明之調配物至少包含與第一有機溶劑A、第二有機溶劑B及第三有機溶劑C不同的第四有機溶劑D。第四有機溶劑D係與第一有機溶劑A、第二有機溶劑B及第三有機溶劑C一起使用。   合適之第四有機溶劑D較佳為有機溶劑,其包括尤其經單或多取代之萘衍生物、部分或完全氫化之經單或多取代之萘衍生物、經單或多取代之二氫茚衍生物、及完全氫化之蒽衍生物。   特佳之第四有機溶劑D為,例如1-環己基萘、1-苯基萘、1-環己基十氫萘、及1-苯基-1,2,3,4-四氫萘。   第四有機溶劑D具有沸點在200至400℃之範圍,較佳在225至375℃之範圍,且最佳在250至350℃之範圍。   第四有機溶劑D之含量以調配物中有機溶劑的總量計係在0,01至15體積%,較佳係在0,1至≤ 15體積%。   第四有機溶劑D的黏度為≥15 mPas,較佳≥20 mPas且最佳≥25 mPas。   該至少一種有機功能材料具有在第四有機溶劑D中之溶解度,其為≥5 g/l。
Figure 02_image038
Figure 02_image040
Figure 02_image042
調配物中之至少一種有機功能材料的含量以該調配物之總重計係在0.001至20重量%之範圍,較佳係在0.01至10重量%之範圍,更佳係在0.1至5重量%之範圍,及最佳係在0.3至5重量%之範圍。   再者,根據本發明之調配物具有黏度較佳在1至50 mPa. s之範圍,更佳係在2至40 mPa. s之範圍,及最佳係在2至20 mPa. s之範圍。   根據本發明之調配物與溶劑之黏度係使用Discovery AR3 (Thermo Scientific)類型的1°錐-板旋轉流變儀測量。該設備允許精確控制溫度和剪切速率。黏度的測量係在25.0℃(+/- 0.2℃)的溫度和500 s-1 的剪切速率下進行。每個樣品測量三次,並將獲得的測量值平均。   根據本發明之調配物具有表面張力較佳在15至50 mN/m之範圍,更佳係在20至45 mN/m之範圍,及最佳係在25至40 mN/m之範圍。   較佳的,有機溶劑摻混物包含表面張力在15至50 mN/m之範圍,較佳係在20至45 mN/m之範圍,及最佳係在25至40 mN/m之範圍。   表面張力可使用FTA (First Ten Angstrom) 1000接觸角測角儀於20℃下測量。該方法的細節可得自First Ten Angstrom由Roger P. Woodward, Ph.D.出版之"Surface Tension Measurements Using the Drop Shape Method"。較佳的,可使用懸滴法來測定表面張力。該測量技術係在散裝液體或氣相中從針分配液滴。液滴之形狀由介於表面張力、重力與密度差異之間的關係形成。使用懸滴法,表面張力係使用下者從懸滴之陰影影像計算:http:// www.kruss.de/services/education-theory/glossary/drop-shape-analysis。常用且市售高精確度液滴形狀分析工具(換言之,來自First Ten Ångstrom之FTA1000)係用以進行所有表面張力測量。表面張力係由軟體FTA1000測定。所有測量係在介於20℃與25℃之範圍的室溫進行。標準操作製程包括使用全新拋棄式液滴分配系統(注射器及針頭)測定每一調配物之表面張力。各液滴係在1分鐘持續期間內進行六十次測量,該等測量於稍後予以平均。各調配物測量三個液滴。最終值係以所述測量平均。該工具係定期地針對具有眾所周知之表面張力的各種液體進行交叉核對。   根據本發明之調配物包含至少一種用於製造電子裝置之功能層的有機功能材料。功能材料通常為引入電子裝置之陽極與陰極之間的有機材料。   用語有機功能材料尤其表示有機導體、有機半導體、有機螢光化合物、有機磷光化合物、有機吸光性化合物、有機光敏性化合物、有機光敏化劑及其他有機光活性化合物。用語有機功能材料另外包括過渡金屬、稀土金屬、鑭系元素及錒系元素之有機金屬錯合物。   有機功能材料係選自由下列所組成之群組:螢光發射體、磷光發射體、主體材料、基質材料、激子阻擋材料、電子傳輸材料、電子注入材料、電洞導體材料、電洞注入材料、n-摻雜劑、p-摻雜劑、寬能帶隙材料、電子阻擋材料及電洞阻擋材料。   有機功能材料之較佳實施態樣係詳細揭示於WO 2011/076314 A1,其中該文件係以引用方式併入本申請案中。   在較佳實施態樣中,有機功能材料為選自由下列所組成之群組的有機半導體:電洞注入、電洞傳輸、發射、電子傳輸及電子注入材料。   有機功能材料可為具有低分子量之化合物、聚合物、寡聚物或樹枝狀聚合物,其中該有機功能材料亦可呈混合物形式。因此,根據本發明之調配物可包含具有低分子量的二或更多種不同化合物、具有低分子量的一種化合物及一種聚合物或兩種聚合物(摻混物)。   有機功能材料經常經由前沿軌域之性質來描述,其係於下文更詳細說明。該等材料之分子軌域,特別是最高占用分子軌域(HOMO)及最低未佔用分子軌域(LUMO),其能階及最低三重態T1 之能量或最低受激單重態S1 之能量可根據量子-化學計算估算。為了計算無金屬之有機物質的該等性質,首先使用「基態/半經驗/預設自旋/AM1/電荷0/自旋單重態(Ground State/Semi-empirical/Default Spin/AM1/Charge 0/Spin Singlet)」法進行幾何形狀最佳化。隨後根據該最佳化幾何形狀進行能量計算。此處使用具有「6-31G(d)」基組(電荷0,自旋單重態)之「TD-SCF/ DFT/原定自旋/B3PW91(TD-SCF/DFT/Default Spin/B3PW91)」法。就含金屬之化合物而言,幾何形狀係經由「基態/哈崔-佛克/預設自旋/LanL2MB/電荷0/自旋單重態(Ground State/Hartree-Fock/Default Spin/LanL2MB/Charge 0/Spin Singlet)」法最佳化。與前述之有機物質的方法類似地進行能量計算,差別在於金屬原子使用「LanL2DZ」基組,而配位基使用「6-31G(d)」基組。能量計算求得以哈崔單位計之HOMO能階HEh或LUMO能階LEh。以電子伏特計且參考循環伏安法測量校正之HOMO及LUMO能階係如下測定:
Figure 02_image044
就本申請案之目的而言,該等值應分別視為材料的HOMO及LUMO能階。   最低三重態T1 係界定為具有源自於所述量子-化學計算之最低能量的三重態之能量。   最低受激單重態S1 係界定為具有源自於所述量子-化學計算之最低能量的受激單重態之能量。   本文所述之方法與所使用之套裝軟體無關,且始終獲得相同結果。為此目的之經常使用的程式實例為「Gaussian09W」(Gaussian Inc.)及Q-Chem 4.1 (Q-Chem, Inc.)。   具有電洞注入性質之化合物(於本文亦稱為電洞注入材料)簡化或促進電洞(即,正電荷)從陽極轉移至有機層。通常,電洞注入材料具有在或高於陽極之能階的範圍之HOMO能階,即,通常為至少-5.3 eV。   具有電洞傳輸性質之化合物(於本文亦稱為電洞傳輸材料)能傳輸電洞(即,正電荷),電洞通常係從陽極或相鄰層(例如電洞注入層)注入。電洞傳輸材料通常具有較佳為至少-5.4 eV之高HOMO能階。視電子裝置之結構而定,亦可使用電洞傳輸材料作為電洞注入材料。   具有電洞注入及/或電洞傳輸性質之較佳化合物包括例如三芳基胺、聯苯胺、四芳基-對-苯二胺、三芳基膦、啡噻嗪、啡㗁嗪、二氫啡嗪、噻蒽、二苯并-對-戴奧辛、啡㗁噻恩(phenoxathiyne)、咔唑、薁、噻吩、吡咯及呋喃以及彼等之衍生物,及其他具有高HOMO(HOMO=最高占用分子軌域)之含O、含S或含N雜環。   作為具有電洞注入及/或電洞傳輸性質之化合物,特別可提及:苯二胺衍生物(US 3615404)、芳基胺衍生物(US 3567450)、胺基取代之查耳酮衍生物(US 3526501)、苯乙烯基蒽衍生物(JP-A-56-46234)、多環芳族化合物(EP 1009041)、聚芳基烷衍生物(US 3615402)、茀酮衍生物(JP-A-54-110837)、腙衍生物(US 3717462)、醯基腙、茋衍生物(JP-A-61-210363)、矽氮烷衍生物(US 4950950)、聚矽烷(JP-A-2-204996)、苯胺共聚物(JP-A-2-282263)、噻吩寡聚物(JP Heisei 1 (1989) 211399)、聚噻吩、聚(N-乙烯基咔唑) (PVK)、聚吡咯、聚苯胺及其他導電性巨分子、卟啉化合物(JP-A-63-2956965、US 4720432)、芳族二亞甲基型(dimethylidene-type)化合物、咔唑化合物(諸如例如CDBP、CBP、mCP)、芳族三級胺及苯乙烯胺化合物(US 4127412)(諸如例如聯苯胺型之三苯胺、苯乙烯胺型之三苯胺、及二胺型之三苯胺)。亦可能使用芳基胺樹枝狀聚合物(JP Heisei 8 (1996) 193191)、單體三芳基胺(US 3180730)、含有一或多個乙烯基及/或至少一個含有活性氫之官能基的三芳基胺(US 3567450及US 3658520)、四芳基二胺(兩個三級胺單元係經由芳基連接)。該分子中亦可存在更多三芳基胺基。酞青衍生物、萘酞青衍生物、丁二烯衍生物及喹啉衍生物(諸如例如二吡嗪并[2,3-f:2',3'-h]喹㗁啉六甲腈)亦適用。   較佳係含有至少兩個三級胺單元之芳族三級胺(US 2008/0102311 A1、US 4720432及US 5061569),諸如例如NPD (α-NPD=4,4'-雙[N-(1-萘基)-N-苯胺基]聯苯)(US 5061569)、TPD 232 (= N,N'-雙-(N,N'-二苯基-4-胺苯基)-N,N-二苯基-4,4'-二胺基-1,1'-聯苯)或MTDATA (MTDATA或m-MTDATA=4,4',4''-三[3-甲苯基)苯胺基]-三苯胺) (JP-A-4-308688)、TBDB (=N,N,N',N'-四(4-聯苯基)-二胺基聯伸二苯)、TAPC (= 1,1-雙(4-二-對甲苯基胺苯基)環己烷)、TAPPP (= 1,1-雙(4-二-對甲苯基胺苯基)-3-苯基丙烷)、BDTAPVB (= 1,4-雙[2-[4-[N,N-二(對甲苯基)胺基]苯基]乙烯基]苯)、TTB (= N,N,N',N'-四-對甲苯基-4,4'-二胺基聯苯)、TPD (= 4,4'-雙[N-3-甲苯基]-N-苯胺基)聯苯)、N,N,N',N'-四苯基-4,4'''-二胺基-1,1',4',1'',4'',1'''-聯四苯,還有含有咔唑單元之三級胺,諸如例如TCTA (= 4-(9H-咔唑-9-基)-N,N-雙[4-(9H-咔唑-9-基)苯基]苯胺)。同樣較佳者為根據US 2007/0092755 A1之六氮雜聯伸三苯化合物及酞青衍生物(例如H2 Pc、CuPc (=銅酞青)、CoPc、NiPc、ZnPc、PdPc、FePc、MnPc、ClAlPc、ClGaPc、ClInPc、ClSnPc、Cl2 SiPc、(HO)AlPc、(HO)GaPc、VOPc、TiOPc、MoOPc、GaPc-O-GaPc)。   特佳者係下列式(TA-1)至(TA-12)之三芳基胺化合物,彼等係揭示於EP 1162193 B1、EP 650 955 B1、Synth.Metals 1997, 91(1-3), 209、DE 19646119 A1、WO 2006/122630 A1、EP 1 860 097 A1、EP 1834945 A1、JP 08053397 A、US 6251531 B1、US 2005/0221124、JP 08292586 A、US 7399537 B2、US 2006/0061265 A1、EP 1 661 888及WO 2009/041635。所述式(TA-1)至(TA-12)之化合物亦可經取代:
Figure 02_image046
Figure 02_image048
Figure 02_image050
可用作電洞注入材料之其他化合物係描述於EP 0891121 A1及EP 1029909 A1,注入層大致描述於US 2004/0174116 A1。   通常可用作電洞注入及/或電洞傳輸材料之該等芳基胺及雜環較佳形成HOMO大於-5.8 eV (相對於真空能階),特佳係大於-5.5 eV之聚合物。   具有電子注入及/或電子傳輸性質之化合物為例如吡啶、嘧啶、嗒嗪、吡嗪、㗁二唑、喹啉、喹㗁啉、蒽、苯并蒽、芘、苝、苯并咪唑、三嗪、酮、氧化膦及啡嗪及彼等之衍生物,但亦可為三芳基硼烷及其他具有低LUMO(LUMO=最低未佔用分子軌域)之含O、含S或含N雜環。   特別適合用於電子傳輸及電子注入層的化合物為8-羥基喹啉之金屬螯合物(例如LiQ、AlQ3 、GaQ3 、MgQ2 、ZnQ2 、InQ3 、ZrQ4 )、BAlQ、類喔星Ga(Ga oxinoid)錯合物、4-吖菲-5-醇-Be錯合物(US 5529853 A,參考式ET-1)、丁二烯衍生物(US 4356429)、雜環光學增亮劑(US 4539507)、苯并咪唑衍生物(US 2007/0273272 A1),諸如例如TPBI (US 5766779,參考式ET-2)、1,3,5-三嗪,例如螺雙茀基三嗪衍生物(例如根據DE 102008064200)、芘、蒽、稠四苯、茀、螺茀、樹枝狀聚合物、稠四苯(例如紅螢烯衍生物)、1,10-啡啉衍生物(JP 2003-115387、JP 2004-311184、JP 2001-267080、WO 02/043449)、矽雜環戊二烯(silacyclopentadiene)衍生物(EP 1480280、EP 1478032、EP 1469533)、硼烷衍生物,諸如例如含Si之三芳基硼烷衍生物(US 2007/0087219 A1,參考式ET-3)、吡啶衍生物(JP 2004-200162)、啡啉,尤其是1,10-啡啉衍生物,諸如例如BCP及Bphen,以及數種經由聯苯基或其他芳族基團連接的啡啉(US 2007-0252517 A1)或連接至蒽之啡啉(US 2007-0122656 A1,參考式ET-4及ET-5)。
Figure 02_image052
Figure 02_image054
同樣適用者為雜環有機化合物,諸如例如噻喃二氧化物、㗁唑、三唑、咪唑或㗁二唑。使用含N之五員環,諸如例如㗁唑,較佳為1,3,4-㗁二唑,例如式ET-6、ET-7、ET-8及ET-9之化合物,彼等尤其揭示於US 2007/0273272 A1;噻唑、㗁二唑、噻二唑、三唑的實例尤其詳見US 2008/0102311 A1及Y.A. Levin、M.S. Skorobogatova, Khimiya Geterotsiklicheskikh Soedinenii 1967 (2),339-341,較佳為式ET-10之化合物、矽雜環戊二烯衍生物。較佳化合物為下列式(ET-6)至(ET-10):
Figure 02_image056
Figure 02_image058
亦可能使用有機化合物,諸如茀酮、亞茀基甲烷、苝四碳酸(perylenetetracarbonic acid)、蒽醌二甲烷、聯苯醌、蒽酮及蒽醌二乙二胺及彼等之衍生物。   較佳者為2,9,10-取代之蒽(經1-或2-萘基及4-或3-聯苯基取代)或含有兩個蒽單元之分子(US 2008/0193796 A1,參考式ET-11)。亦極有利的是將9,10-取代之蒽單元連接至苯并咪唑衍生物(US 2006/147747 A及EP 1551206 A1,參考式ET-12及ET-13)。
Figure 02_image060
Figure 02_image062
能產生電子注入及/或電子傳輸性質之化合物較佳造成低於-2.5 eV(相對於真空能階),特佳為低於-2.7 eV之LUMO。   本發明之調配物可包含發射體。用語發射體表示在激發(其可藉由任何類型之能量轉移發生)之後允許輻射躍遷至基態並發光的材料。通常,已知兩種類別之發射體,即,螢光發射體及磷光發射體。用語螢光發射體表示發生從受激單重態輻射躍遷至基態之材料或化合物。用語磷光發射體較佳係表示含有過渡金屬之發光材料或化合物。   若摻雜劑在系統中造成上述性質,亦經常將發射體稱為摻雜劑。在包含基質材料及摻雜劑之系統中的摻雜劑係意指在混合物中比例較少的組分。因此,在包含基質材料及摻雜劑之系統中的基質材料係意指在混合物中比例較大的組分。因此,用語磷光發射體亦可意指例如磷光摻雜劑。   能發光之化合物尤其包括螢光發射體及磷光發射體。此等尤其包括含有茋、茋胺、苯乙烯胺、香豆素、紅螢烯、玫瑰紅、噻唑、噻二唑、花青、噻吩、對伸苯基(paraphenylene)、苝、酞青、卟啉、酮、喹啉、亞胺、蒽及/或芘結構之化合物。特佳者為即使在室溫下能高效率從三重態發光,即,展現經常導致能量效率提高之電致磷光(electrophosphorescence)而非電致螢光(electrofluorescence)的化合物。適於此目的者首先為含有具有大於36之原子序的重原子之化合物。較佳者為滿足上述條件之含有d-過渡金屬或f-過渡金屬的化合物。此處之特佳者為含有第8至10族之元素(Ru、Os、Rh、Ir、Pd、Pt)的對應化合物。此處之適合的功能性化合物為例如在WO 02/068435 A1、WO 02/081488 A1、EP 1239526 A2及WO 2004/026886 A2中所述之各種不同錯合物。   可用作螢光發射體之較佳化合物係以舉例方式描述於下文。特佳之螢光發射體係選自以下類別:單苯乙烯胺、二苯乙烯胺、三苯乙烯胺、四苯乙烯胺、苯乙烯膦、苯乙烯醚及芳基胺。   單苯乙烯胺係意指含有一個經取代或未經取代之苯乙烯基及至少一個(較佳為芳族)胺之化合物。二苯乙烯胺係意指含有兩個經取代或未經取代之苯乙烯基及至少一個(較佳為芳族)胺之化合物。三苯乙烯胺係意指含有三個經取代或未經取代之苯乙烯基及至少一個(較佳為芳族)胺之化合物。四苯乙烯胺係意指含有四個經取代或未經取代之苯乙烯基及至少一個(較佳為芳族)胺之化合物。苯乙烯基特佳為茋,其亦可進一步經取代。對應之膦及醚與胺類似地定義。在本發明意義中之芳基胺或芳族胺係意指含有三個直接鍵結至氮的經取代或未經取代之芳環或雜芳環系統的化合物。此等芳環或雜芳環系統中至少一者較佳為縮合環系統,較佳係具有至少14個芳環原子。其較佳實例為芳族蒽胺、芳族蒽二胺、芳族芘胺、芳族芘二胺、芳族䓛胺或芳族䓛二胺。芳族蒽胺係意指其中一個二芳胺基係直接鍵結至蒽基(較佳係在9-位)之化合物。芳族蒽二胺係意指其中兩個二芳胺基係直接鍵結至蒽基(較佳係在2,6-或9,10-位)之化合物。芳族芘胺、芘二胺、䓛胺及䓛二胺係與其類似地定義,其中二芳胺基較佳係在1-位或在1,6-鍵結至芘。   其他較佳之螢光發射體係選自茚并茀胺或茚并茀二胺,其特別描述於WO 2006/122630;苯并茚并茀胺或苯并茚并茀二胺,其特別描述於WO 2008/006449;及二苯并茚并茀胺或二苯并茚并茀二胺,其特別描述於WO 2007/140847。   可用作螢光發射體之來自苯乙烯胺類別的化合物之實例為描述於WO 2006/000388、WO 2006/058737、WO 2006/000389、WO 2007/065549及WO 2007/115610中之經取代或未經取代之三茋胺或摻雜劑。二苯乙烯基苯及二苯乙烯基聯苯衍生物係描述於US 5121029。其他苯乙烯胺可見US 2007/0122656 A1。   特佳之苯乙烯胺化合物為US 7250532 B2 中所述之式EM-1的化合物以及DE 10 2005 058557 A1中所述之式EM-2的化合物:
Figure 02_image064
特佳之三芳基胺化合物為CN 1583691 A、JP 08/053397 A及US 6251531 B1、EP 1957606 A1、US 2008/0113101 A1、US 2006/210830 A、WO 2008/006449及DE 102008035413中所揭示之式EM-3至EM-15的化合物及彼等之衍生物:
Figure 02_image066
Figure 02_image068
Figure 02_image070
Figure 02_image072
可用作螢光發射體之其他較佳化合物係選自下列者之衍生物:萘、蒽、稠四苯、苯并蒽、苯并菲(DE 10 2009 005746)、茀、丙二烯合茀、二茚并芘(periflanthene)、茚并苝、菲、苝(US 2007/0252517 A1)、芘、䓛、十環烯(decacyclene)、蔻、四苯基環戊二烯、五苯基環戊二烯、茀、螺茀、紅螢烯、香豆素(US 4769292、US 6020078、US 2007/0252517 A1)、哌喃、㗁唑、苯并㗁唑、苯并噻唑、苯并咪唑、吡嗪、桂皮酸酯、二酮吡咯并吡咯、吖啶酮及喹吖酮(US 2007/0252517 A1)。   在蒽化合物當中,特佳者為9,10-取代之蒽,諸如例如9,10-二苯蒽及9,10-雙(苯乙炔基)蒽。1,4-雙(9'-乙炔基蒽基)苯亦為較佳摻雜劑。   較佳者同樣可為紅螢烯、香豆素、玫瑰紅、喹吖酮(諸如例如DMQA (= N,N'-二甲基喹吖酮))、二氰亞甲基哌喃(諸如例如DCM (= 4-(二氰伸乙基)-6-(4-二甲胺基苯乙烯基-2-甲基)-4H-哌喃))、噻喃、聚次甲基(polymethine)、哌喃鎓(pyrylium)及噻喃鎓鹽,二茚并苝及茚并苝之衍生物。   藍色螢光發射體較佳為多芳族化合物,諸如例如9,10-二(2-萘蒽)及其他蒽衍生物;稠四苯、二苯并哌喃、苝之衍生物,諸如例如2,5,8,11-四-第三丁基苝,伸苯基,例如4,4'-雙(9-乙基-3-咔唑乙烯基)-1,1'-聯苯、茀、丙二烯合茀、芳基芘(US 2006/0222886 A1)、伸芳基伸乙烯基(US 5121029、US 5130603)、雙(吖嗪基)亞胺-硼化合物(US 2007/0092753 A1)、雙(吖嗪基)亞甲基化合物及喹諾酮(carbostyryl)化合物。   其他較佳藍色螢光發射體係描述於C.H. Chen等人:"Recent developments in organic electroluminescent materials" Macromol. Symp. 125, (1997) 1-48及"Recent progress of molecular organic electroluminescent materials and devices" Mat. Sci. and Eng. R, 39 (2002), 143-222。   其他較佳藍色螢光發射體為揭示於WO 2010/012328 A1、WO 2014/111269 A2及PCT/EP2017/066712之烴。   可用作磷光發射體之較佳化合物係以舉例方式描述於下文。   磷光發射體之實例係由WO 00/70655、WO 01/41512、WO 02/02714、WO 02/15645、EP 1191613、EP 1191612、EP 1191614及WO 2005/033244揭露。通常,如根據磷光OLED之先前技術所使用以及如熟悉有機電致發光領域技術之人士習知的所有磷光錯合物均適用,且熟習本領域之人士可在不需進步性步驟下使用其他磷光錯合物。   磷光金屬錯合物較佳含有Ir、Ru、Pd、Pt、Os或Re,更佳為Ir。   較佳之配位基為2-苯基吡啶衍生物、7,8-苯并喹啉衍生物、2-(2-噻吩基)吡啶衍生物、2-(1-萘基)吡啶衍生物、1-苯基異喹啉衍生物、3-苯基異喹啉衍生物或2-苯基喹啉衍生物。所有此等化合物均可經例如,氟基、氰基及/或三氧甲基取代基取代,就藍色而言。輔助配位基較佳為乙醯丙酮根或2-吡啶甲酸根。   特別是,Pt或Pd與式EM-16之四牙配位基的錯合物是合適的
Figure 02_image074
式EM-16之化合物更詳細描述於US 2007/0087219 A1,其中,關於上式之取代基及指數之解釋,基於揭示目的,參考本說明書。此外,具有增大之環系統之Pt-卟啉錯合物(US 2009/0061681 A1)及Ir錯合物,例如2,3,7,8,12,13,17,18-八乙基-21H,23H-卟啉-Pt(II)、四苯基-Pt(II)四苯并卟啉(US 2009/0061681 A1)、順式-雙(2-苯基吡啶根-N,C2 ')Pt(II)、順式-雙(2-(2'-噻吩基)吡啶根-N,C3 ')Pt(II)、順式-雙(2-(2'-噻吩基)喹啉根-N,C5 ')Pt(II)、(2-(4,6-二氟苯基)吡啶根-N,C2 ')Pt(II)(乙醯丙酮酸根)、或參(2-苯基吡啶根-N,C2 ')Ir(III) (= Ir(ppy)3 ,綠色)、雙(2-苯基吡啶根-N,C2 )Ir(III)(乙醯丙酮酸根) (= Ir(ppy)2 乙醯丙酮酸根,綠色、US 2001/0053462 A1,Baldo, Thompson等人,Nature 403,(2000),750-753)、雙(1-苯基異喹啉根-N,C2 ')(2-苯基吡啶根-N,C2 ')銥(III)、雙(2-苯基吡啶根-N,C2 ')(1-苯基異喹啉根-N,C2 ')銥(III)、雙(2-(2'-苯并噻吩基)吡啶根-N,C3 ')銥(III)(乙醯丙酮酸根)、雙(2-(4',6'-二氟苯基)吡啶根-N,C2 ')銥(II)(2-吡啶甲酸根) (FIrpic,藍色)、雙(2-(4',6'-二氟苯基)吡啶根-N,C2 ')Ir(III)(肆(1-吡唑基)硼酸根)、參(2-(聯苯-3-基)-4-第三丁基吡啶)銥(III)、(ppz)2 Ir(5phdpym) (US 2009/0061681 A1)、(45ooppz)2 Ir(5phdpym) (US 2009/0061681 A1)、2-苯基吡啶-Ir錯合物之衍生物,諸如例如PQIr (= 雙(2-苯基喹啉基-N,C2 ')乙醯丙酮銥(III))、參(2-苯基異喹啉根-N,C)Ir(III) (紅色)、雙(2-(2'-苯并[4,5-a]噻吩基)吡啶根-N,C3 )Ir(乙醯丙酮酸根) ([Btp2 Ir(acac)],紅色,Adachi等人,Appl. Phys. Lett. 78 (2001),1622-1624)。   同樣適用者為三價鑭系元素(諸如例如Tb3+ 及Eu3+ )之錯合物(J. Kido等人,Appl. Phys. Lett. 65 (1994),2124;Kido等人,Chem. Lett. 657,1990,US 2007/0252517 A1),或Pt(II)、Ir(I)、Rh(I)與順丁烯腈二硫醇(maleonitrile dithiolate)之磷光錯合物(Johnson等人,JACS 105,1983,1795)、Re(I)三羰基-二亞胺錯合物(Wrighton,JACS 96,1974,尤其是998)、具有氰基配位基與聯吡啶基或啡啉配位基之Os(II)錯合物(Ma等人,Synth. Metals 94,1998,245)。   具有三牙配位基之其他磷光發射體係描述於US 6824895及US 10/729238。紅色發射磷光錯合物係見於US 6835469及US 6830828。   用作磷光摻雜劑之特佳化合物尤其為特別描述於US 2001/0053462 A1及Inorg. Chem. 2001, 40(7), 1704-1711, JACS 2001, 123(18), 4304-4312的式EM-17之化合物及彼等之衍生物。
Figure 02_image076
衍生物係描述於US 7378162 B2、US 6835469 B2及JP 2003/253145 A。   此外,可使用描述於 US 7238437 B2、US 2009/ 008607 A1及EP 1348711中之式EM-18至EM-21的化合物及彼等之衍生物作為發射體。
Figure 02_image078
Figure 02_image080
量子點同樣可用作發射體,該等材料詳細揭示於WO 2011/076314 A1。   用作主體材料之化合物,特別是與發射化合物一起使用者,包括來自各種不同類別物質的材料。   主體材料通常具有大於所使用之發射體材料的介於HOMO與LUMO之間的能帶隙。此外,較佳主體材料展現電洞或電子傳輸材料的性質。再者,主體材料可兼具電子及電洞傳輸性質二者。   主體材料在一些情況下亦稱為基質材料,特別是當主體材料與磷光發射體併用於OLED中時。   特別是與螢光摻雜劑一起使用時,較佳之主體材料或共主體材料(co-host material)係選自下列類別:寡聚伸芳基(oligoarylene)(例如根據EP 676461之2,2',7,7'-四苯基螺雙茀或二萘蒽),特別是含有縮合芳族基團之寡聚伸芳基,諸如例如蒽、苯并蒽、苯并菲(DE 10 2009 005746、WO 2009/069566)、菲、稠四苯、蔻、䓛、茀、螺茀、苝、酞苝(phthaloperylene)、萘酞苝(naphthaloperylene)、十環烯、紅螢烯;寡聚伸芳基伸乙烯基(例如根據EP 676461之DPVBi=4,4'-雙(2,2-二苯基乙烯基)-1,1'-聯苯或螺-DPVBi);多牙(polypodal)金屬錯合物(例如根據WO 04/081017),特別是8-羥基喹啉之金屬錯合物,例如AlQ3 (= 鋁(III) 參(8-羥基喹啉根))或雙(2-甲基-8-羥基喹啉根)-4-(苯基苯酚)鋁,以及與咪唑的螯合物(US 2007/0092753 A1),及喹啉-金屬錯合物,胺基喹啉-金屬錯合物,苯并喹啉-金屬錯合物;電洞傳導化合物(例如根據WO 2004/058911);電子傳導化合物,特別是酮、膦氧化物、亞碸等(例如根據WO 2005/084081及WO 2005/084082);構型異構物(例如根據WO 2006/048268);硼酸衍生物(例如根據WO 2006/117052)或苯并蒽(例如根據WO 2008/145239)。   可用作主體材料或共主體材料之特佳化合物係選自寡聚伸芳基之類別,包含蒽、苯并蒽及/或芘,或此等化合物之構型異構物。本發明意義中之寡聚伸芳基意欲指其中至少三個芳基或伸芳基係彼此鍵結的化合物。   較佳之主體材料特別是選自式(H-1)之化合物,
Figure 02_image082
其中Ar4 、Ar5 、Ar6 在每次出現時係相同或不同地為具有5至30個芳環原子之芳基或雜芳基,其可隨意地經取代,且p代表在1至5之範圍的整數;若p=1,則Ar4 、Ar5 及Ar6 中之π電子的總和為至少30,且若p=2,則該總和為至少36,且若p=3,則該總和為至少42。   在式(H-1)之化合物中,基團Ar5 特佳係代表蒽,而基團Ar4 及Ar6 係鍵結於9-位及10-位,其中該等基團亦可隨意地經取代。最佳地,基團Ar4 及/或Ar6 中之至少一者係選自1-或2-萘基、2-、3-或9-菲基或2-、3-、4-、5-、6-或7-苯并蒽基之縮合芳基。蒽系化合物係描述於US 2007/0092753 A1及US 2007/0252517 A1,例如2-(4-甲苯基)-9,10-二-(2-萘基)蒽、9-(2-萘基)-10-(1,1'-聯苯基)蒽及9,10-雙[4-(2,2-二苯基乙烯基)苯基]蒽、9,10-二苯基蒽、9,10-雙(苯乙炔基)蒽及1,4-雙(9'-乙炔基蒽基)苯。較佳者亦為含有兩個蒽單元之化合物(US 2008/0193796 A1),例如10,10'-雙[1,1',4',1'']聯三苯-2-基-9,9'-雙蒽基。   其他較佳化合物為下列之衍生物:芳基胺、苯乙烯胺、螢光素、二苯基丁二烯、四苯基丁二烯、環戊二烯、四苯基環戊二烯、五苯基環戊二烯、香豆素、㗁二唑、雙苯并㗁唑啉、㗁唑、吡啶、吡嗪、亞胺、苯并噻唑、苯并㗁唑、苯并咪唑(US 2007/0092753 A1),例如2,2',2''-(1,3,5-伸苯基)三[1-苯基-1H-苯并咪唑]、醛連氮(aldazine)、茋、苯乙烯基伸芳基衍生物,例如9,10-雙[4-(2,2-二苯基乙烯基)苯基]蒽、及二苯乙烯基伸芳基衍生物(US 5121029)、二苯乙烯、乙烯基蒽、二胺基咔唑、哌喃、噻喃、二酮吡咯并吡咯、聚次甲基、桂皮酸酯及螢光染料。   特佳者為芳基胺及苯乙烯胺之衍生物,例如TNB (= 4,4'-雙[N-(1-萘基)-N-(2-萘基)胺基]聯苯)。可使用金屬-類喔星錯合物(諸如LiQ或AlQ3 )作為共主體。   作為基質之具有寡聚伸芳基的較佳化合物係揭示US 2003/0027016 A1、US 7326371 B2、US 2006/043858 A、WO 2007/114358、WO 2008/145239、JP 3148176 B2、EP 1009044、US 2004/018383、WO 2005/061656 A1、EP 0681019B1、WO 2004/013073A1、US 5077142、WO 2007/065678及DE 102009005746,其中特佳之化合物係以式H-2至H-8描述。
Figure 02_image084
Figure 02_image086
Figure 02_image088
此外,可用作主體或基質之化合物包括與磷光發射體一起使用的材料。   亦可用作聚合物中之結構要素的該等化合物包括CBP (N,N-雙咔唑基聯苯)、咔唑衍生物(例如根據WO 2005/039246、US 2005/0069729、JP 2004/288381、EP 1205527或WO 2008/086851)、氮雜咔唑(例如根據EP 1617710、EP 1617711、EP 1731584或JP 2005/347160)、酮(例如根據WO 2004/093207或根據DE 102008033943)、膦氧化物、亞碸及碸(例如根據WO 2005/003253)、寡聚伸苯基、芳族胺(例如根據US 2005/0069729)、雙極基質材料(例如根據WO 2007/137725)、矽烷(例如根據WO 2005/111172)、9,9-二芳基茀衍生物(例如根據DE 102008017591)、氮雜硼呃或硼酸酯(例如根據WO 2006/117052)、三嗪衍生物(例如根據DE 102008036982)、吲哚并咔唑衍生物(例如根據WO 2007/063754或WO 2008/056746)、茚并咔唑衍生物(例如根據DE 102009023155及DE 102009031021)、二吖磷雜呃(diazaphosphole)衍生物(例如根據DE 102009022858)、三唑衍生物、㗁唑及㗁唑衍生物、咪唑衍生物、聚芳基烷衍生物、吡唑啉衍生物、吡唑哢衍生物、二苯乙烯基吡嗪衍生物、噻喃二氧化物衍生物、苯二胺衍生物、三級芳族胺、苯乙烯胺、胺基取代之查耳酮衍生物、吲哚、腙衍生物、茋衍生物、矽氮烷衍生物、芳族二亞甲基化合物、碳二醯亞胺衍生物、8-羥基喹啉衍生物之金屬錯合物,諸如例如AlQ3 ,其亦可含有三芳胺基苯酚配位基(US 2007/0134514 A1)、金屬錯合物/聚矽烷化合物、及噻吩、苯并噻吩及二苯并噻吩衍生物。   較佳之咔唑衍生物的實例為mCP (= 1,3-N,N-二咔唑基苯(= 9,9'-(1,3-伸苯基)雙-9H-咔唑)) (式H-9)、CDBP (= 9,9'-(2,2'-二甲基[1,1'-聯苯]-4,4'-二基)雙-9H-咔唑)、1,3-雙(N,N'-二咔唑基)苯(= 1,3-雙(咔唑-9-基)苯)、PVK(聚乙烯基咔唑)、3,5-二(9H-咔唑-9-基)聯苯及CMTTP (式H-10)。特佳之化合物係揭示於US 2007/0128467 A1及US 2005/0249976 A1 (式H-11及H-13)。
Figure 02_image090
Figure 02_image092
較佳之四芳基-Si化合物係揭示於例如US 2004/0209115、US 2004/0209116、US 2007/0087219 A1及於H. Gilman、E.A. Zuech,Chemistry & Industry (英國倫敦),1960,120。   特佳之四芳基-Si化合物係以式H-14至H-21描述。
Figure 02_image094
Figure 02_image096
來自用於製備磷光摻雜劑之基質的第4族之特佳化合物尤其揭示於DE 102009022858、DE 102009023155、EP 652273 B1、WO 2007/063754及WO 2008/056746,其中特佳之化合物係以式H-22至H-25描述。
Figure 02_image098
Figure 02_image100
關於根據本發明可使用及可用作主體材料之功能性化合物,尤佳者為含有至少一個氮原子的物質。此等較佳包括芳族胺、三嗪衍生物及咔唑衍生物。如此,咔唑衍生物特別展現令人意外的高效率。三嗪衍生物造成出人意料之電子裝置的長使用壽命。   亦會較佳的是使用呈混合物形式之複數種不同基質材料,特別是至少一種電子傳導基質材料及至少一種電洞傳導基質材料。較佳者同樣係使用電荷傳輸基質材料及不會顯著程度地涉入電荷傳輸(若有涉及電荷傳輸)的電惰性(electrically inert)基質材料之混合物,例如於WO 2010/108579所述。   另外可能使用改善從單重態至三重態之躍遷且用於支持具有發射體性質之功能性化合物時改善該等化合物之磷光性質的化合物。適用於此目的者特別是咔唑及橋接之咔唑二聚物單元,例如於WO 2004/070772 A2及WO 2004/113468 A1所述。亦適於此目的者為酮、膦氧化物、亞碸、碸、矽烷衍生物及相似化合物,例如於WO 2005/040302 A1所述。   本文中之n-摻雜劑意指還原劑,即,電子供體。n-摻雜劑之較佳實例為W(hpp)4 及根據WO 2005/086251 A2之其他富含電子的金屬錯合物、P=N化合物(例如WO 2012/175535 A1、WO 2012/175219 A1)、伸萘基碳二醯亞胺(例如WO 2012/168358 A1)、茀(例如WO 2012/031735 A1)、自由基及雙自由基(例如EP 1837926 A1、WO 2007/107306 A1)、吡啶(例如EP 2452946 A1、EP 2463927 A1)、N-雜環化合物(例如WO 2009/000237 A1)及吖啶以及啡嗪(例如US 2007/145355 A1)。   此外,該等調配物可包含寬能帶隙材料作為功能材料。寬能帶隙材料意指在US 7,294,849之揭示內容的意義中之材料。該等系統展現在電致發光裝置中特別有利的性能數據。   用作寬能帶隙材料之化合物較佳可具有2.5 eV或更大,較佳為3.0 eV或更大,特佳為3.5 eV或更大之能帶隙。能帶隙尤其可藉由最高占用分子軌域(HOMO)及最低未佔用分子軌域(LUMO)之能階的手段來計算。   此外,該等調配物可包含電洞阻擋材料(HBM)作為功能材料。電洞阻擋材料表示防止或最小化電洞(正電荷)在多層系統中傳送之材料,特別是當該材料以層形式與發射層或電洞傳導層相鄰配置時。通常,電洞阻擋材料具有比相鄰層之電洞傳輸材料更低之HOMO能階。電洞阻擋層經常配置在OLED中之發光層與電子傳輸層之間。   基本上可使用任何已知的電洞阻擋材料。除了本申請案其他處所述之其他電洞阻擋材料以外,有利的電洞阻擋材料為金屬錯合物(US 2003/0068528),諸如例如雙(2-甲基-8-羥基喹啉根)(4-苯基苯酚根)鋁(III)(BAlQ)。面式-參(1-苯基吡唑根-N,C2)銥(III) (Ir(ppz)3 )同樣用於此目的(US 2003/0175553 A1)。啡啉衍生物(諸如例如BCP)或酞醯亞胺(諸如例如TMPP)同樣可使用。   此外,有利的電洞阻擋材料描述於WO 00/70655 A2、WO 01/41512及WO 01/93642 A1。   此外,該等調配物可包含電子阻擋材料(EBM)作為功能材料。電子阻擋材料表示防止或最小化電子在多層系統中傳送之材料,特別是當該材料以層形式與發射層或電子傳導層相鄰配置時。通常,電子阻擋材料具有比相鄰層中之電子傳輸材料更高的LUMO能階。   基本上可使用任何已知的電子阻擋材料。除了本申請案中其他處所述之其他電子阻擋材料以外,有利的電子阻擋材料為過渡金屬錯合物,諸如例如Ir(ppz)3 (US 2003/ 0175553)。   電子阻擋材料較佳可選自胺、三芳基胺及彼等之衍生物。   此外,可用作該等調配物中之有機功能材料的功能性化合物若為低分子量化合物,較佳具有分子量為≤ 3,000 g/mol,更佳為≤ 2,000 g/mol,及最佳為≤ 1,000 g/mol。   特別關注的是以高玻璃轉化溫度著稱的其他功能性化合物。在這方面,可用作該等調配物中之有機功能材料的特佳功能性化合物為根據DIN 51005測定,具有≥70℃,較佳為≥100℃,更佳為≥125℃及最佳為≥150℃之玻璃轉化溫度者。   該等調配物亦可包含聚合物作為有機功能材料。經常具有相對低分子量之如上述作為有機功能材料的化合物亦可與聚合物混合。同樣可能將該等化合物共價併入聚合物。特別可能的是採用經反應性脫離基(諸如溴、碘、氯、硼酸或硼酸酯)取代、或經反應性可聚合基團(諸如烯烴或氧雜環丁烷)取代之化合物。發現彼等可用作製造對應寡聚物、樹枝狀聚合物或聚合物之單體。此處之寡聚或聚合較佳係經由鹵素官能或硼酸官能、或經由可聚合基團進行。此外可能的是經由此類型基團交聯聚合物。根據本發明之化合物及聚合物可用作經交聯或未經交聯層。   可用作有機功能材料之聚合物經常含有在上述化合物內容中已描述之單元或結構要素,尤其是揭示且廣泛列於WO 02/077060 A1、WO 2005/014689 A2及WO 2011/076314 A1中者。該等專利案係以引用之方式併入本申請案中。該等功能材料可源自例如下列類別:   第1組: 能產生電洞注入及/或電洞傳輸性質之結構要素;   第2組: 能產生電子注入及/或電子傳輸性質之結構要素;   第3組: 組合關於第1組及第2組中所述之性質的結構要素;   第4組: 具有發光性質,特別是磷光基團之結構要素;   第5組: 改善所謂單重態至三重態之躍遷的結構要素;   第6組: 影響所得聚合物之形態或發射色彩的結構要素;   第7組: 通常用作主鏈之結構要素。   此處之結構要素亦具有各種功能,因此明確指定不必然有利。例如,第1組之結構要素同樣可用作主鏈。   用作有機功能材料之含有來自第1組的結構要素之具有電洞傳輸或電洞注入性質的聚合物可較佳含有對應於上述電洞傳輸或電洞注入材料之單元。   其他較佳的第1組之結構要素為例如三芳基胺、聯苯胺、四芳基-對-苯二胺、咔唑、薁、噻吩、吡咯及呋喃以及彼等之衍生物,及其他具有高HOMO之含O、含S或含N雜環。該等芳基胺及雜環較佳具有高於-5.8 eV (相對於真空能階),特佳係高於-5.5 eV之HOMO。   特佳者尤其是具有電洞傳輸或電洞注入性質之含有下列式HTP-1之重複單元中之至少一者的聚合物:
Figure 02_image102
其中之符號具有下列意義:   Ar1 在各情況下針對不同重複單元相同或不同地為單鍵或單環或多環芳基,其可隨意地經取代;   Ar2 在各情況下針對不同重複單元相同或不同地為單環或多環芳基,其可隨意地經取代;   Ar3 在各情況下針對不同重複單元相同或不同地為單環或多環芳基,其可隨意地經取代;   m 為1、2或3。   特佳者為式HTP-1之重複單元,其係選自式HTP-1A至HTP-1C之單元所組成的群:
Figure 02_image104
Figure 02_image106
其中之符號具有下列意義:   Ra 於各次出現時係相同或不同地為H、經取代或未經取代之芳族或雜芳族基團、烷基、環烷基、烷氧基、芳烷基、芳氧基、芳硫基、烷氧基羰基、矽基或羧基、鹵素原子、氰基、硝基或羥基;   r 為0、1、2、3或4,且   s 為0、1、2、3、4或5。   特佳者尤其是具有電洞傳輸或電洞注入性質之含有下列式HTP-2之重複單元中之至少一者的聚合物:
Figure 02_image108
其中之符號具有下列意義:   T1 及T2 係獨立地選自噻吩、硒吩、噻吩并[2,3-b]噻吩、噻吩并[3,2-b]噻吩、二噻吩并噻吩、吡咯及苯胺,其中該等基團可經一或多個Rb 基取代;   Rb 在各次出現時係獨立地選自鹵素、-CN、-NC、 -NCO、-NCS、-OCN、-SCN、-C(=O)NR0 R00 、-C(=O)X、 -C(=O)R0 、-NH2 、-NR0 R00 、-SH、-SR0 、-SO3 H、 -SO2 R0 、-OH、-NO2 、-CF3 、-SF5 、隨意地經取代之矽基、碳基或具有1至40碳原子之烴基,其可隨意地經取代及可隨意地含有一或多個雜原子;   R0 及R00 各獨立地為H或隨意地經取代之碳基或具有1至40碳原子之烴基,其可隨意地經取代及可隨意地含有一或多個雜原子;   Ar7 及Ar8 彼此獨立地表示單環或多環芳基或雜芳基,其可隨意地經取代且可隨意地鍵結至相鄰噻吩或硒吩基團之一或二者的第2,3-位;   c及e彼此獨立地為0、1、2、3或4,其中1<c+e≤ 6;   d及f彼此獨立地為0、1、2、3或4。   具有電洞傳輸或電洞注入性質之聚合物的較佳實例尤其描述於WO 2007/131582 A1及WO 2008/ 009343 A1。   用作有機功能材料之含有來自第2組的結構要素之具有電子注入及/或電子傳輸性質的聚合物較佳可含有對應於上述電子注入及/或電子傳輸材料之單元。   具有電子注入及/或電子傳輸性質之其他較佳第2組的結構要素係衍生自例如吡啶、嘧啶、嗒嗪、吡嗪、㗁二唑、喹啉、喹㗁啉及啡嗪及彼等之衍生物,但亦可衍生自三芳基硼烷或其他具有低LUMO能階之含O、含S或含N雜環。該等第2組的結構要素較佳具有低於-2.7 eV (相對於真空能階),特佳係低於-2.8 eV之LUMO。   該有機功能材料較佳可為含有來自第3組之結構要素的聚合物,其中改善電洞及電子移動率(即,來自第1及第2組之結構要素)之結構要素係彼此直接連接。該等結構要素中之一些於此處可用作發射體,其中發射色彩會偏移,例如,偏移至綠色、紅色或黃色。因此,使用彼等係有利,例如對藉由原本發射藍色之聚合物產生其他發射色彩或寬頻發射而言。   用作有機功能材料之具有發光性質且含有來自第4組之結構要素的聚合物較佳可含有對應於上述發射體材料之單元。此處較佳者係含有磷光基團之聚合物,特別上述含有含來自第8至第10族元素(Ru、Os、Rh、Ir、Pd、Pt)之對應單元的發射金屬錯合物。   用作含有改善所謂單重態至三重態之躍遷的第5組之單元的有機功能材料之聚合物較佳可用於磷光化合物之支撐,較佳係含有上述第4組之結構要素的聚合物。此處可使用聚合三重態基質。   適用於此目的者特別是咔唑及連接之咔唑二聚物單元,例如於DE 10304819 A1及DE 10328627 A1中所述。亦適於此目的者為酮、膦氧化物、亞碸、碸、矽烷衍生物及相似化合物,例如於DE 10349033 A1所述。此外,較佳之結構單元可衍生自前文關於與磷光化合物一起使用之基質材料中所述的化合物。   其他有機功能材料較佳為含有影響聚合物之形態及/或發射色彩之第6組的單元之聚合物。除了上述聚合物之外,此等為具有至少一個不計入上述基團中之另外的芳族或其他共軛結構者。此等基團因此只對電荷-載子移動率、非有機金屬錯合物或單重態-三重態躍遷具有少許影響或無影響。   此類型之結構單元能影響所得之聚合物的形態及/或發射色彩。視結構單元而定,該等聚合物因此亦可用作發射體。   在螢光OLED之情況下,較佳者因此為具有6至40個C原子之芳族結構要素,亦或二苯乙炔、茋或雙苯乙烯基伸芳基衍生物單元,其各經一或多個基取代。此處之特佳者係使用衍生自下列之基團:1,4-伸苯基、1,4-伸萘基、1,4-或9,10-伸蒽基、1,6-、2,7-或4,9-伸芘基、3,9-或3,10-伸苝基、4,4'-伸聯苯基、4,4''-伸聯三苯基、4,4'-雙-1,1'-伸萘基、4,4'-伸二苯乙炔基(tolanylene)、4,4'-伸茋基或4,4''-雙苯乙烯基伸芳基衍生物。   用作有機功能材料之聚合物較佳含有第7組之單元,其較佳含有經常用作主鏈之具有6至40個C原子的芳族結構。   此等尤其包括4,5-二氫芘衍生物、4,5,9,10-四氫芘衍生物、茀衍生物,彼等係揭示於例如US 5962631、WO 2006/052457 A2及WO 2006/118345 A1;9,9-螺雙茀衍生物,彼等係揭示於例如WO 2003/020790 A1;9,10-菲衍生物,彼等係揭示於例如WO 2005/104264 A1;9,10-二氫菲衍生物,彼等係揭示於例如WO 2005/014689 A2;5,7-二氫二苯并㗁呯衍生物以及順式及反式茚并茀衍生物,彼等係揭示於例如WO 2004/041901 A1及WO 2004/113412 A2;以及伸聯萘衍生物,彼等係揭示於例如WO 2006/063852 A1;以及揭示例如WO 2005/056633 A1、EP 1344788 A1、WO 2007/043495 A1、WO 2005/033174 A1、WO 2003/099901 A1及DE 102006003710之其他單元。   特佳者為選自下列之第7組的結構單元:茀衍生物,彼等係揭示於例如US 5,962,631、WO 2006/052457 A2及WO 2006/118345 A1;螺雙茀衍生物,彼等係揭示於例如WO 2003/ 020790 A1;苯并茀、二苯并茀、苯并噻吩及二苯并茀基及彼等之衍生物,彼等係揭示於例如WO 2005/056633 A1、EP 1344788 A1及WO 2007/043495 A1。   尤佳之第7組之結構要素係以通式PB-1表示:
Figure 02_image110
其中符號及指數具有下列意義:   A、B及B'各,亦針對不同重複單元,相同或不同地為二價基團,其較佳係選自-CRc Rd -、-NRc -、-PRc -、-O-、 -S-、-SO-、-SO2 -、-CO-、-CS-、-CSe-、-P(=O)Rc -、 -P(=S)Rc -及-SiRc Rd -;   Rc 及Rd 在每次出現時係獨立地選自H、鹵素、-CN、 -NC、-NCO、-NCS、-OCN、-SCN、-C(=O)NR0 R00 、 -C(=O)X、-C(=O)R0 、-NH2 、-NR0 R00 、-SH、-SR0 、 -SO3 H、-SO2 R0 、-OH、-NO2 、-CF3 、-SF5 、隨意地經取代之矽基、碳基或具有1至40碳原子之烴基,其可隨意地經取代及可隨意地含有一或多個雜原子,其中基團Rc 及Rd 可隨意地與彼等所鍵結之茀基形成螺基;   X為鹵素;   R0 及R00 各獨立地為H或隨意地經取代之碳基或具有1至40碳原子之烴基,其可隨意地經取代及可隨意地含有一或多個雜原子;   g在各情況下獨立地為0或1,且h在各情況下獨立地為0或1,其中在子單元中之g和h的總和較佳為1;   m為≥1之整數;   Ar1 及Ar2 彼此獨立地表示單環或多環芳基或雜芳基,其可隨意地經取代且可隨意地鍵結至茚并茀基團的第7,8-位或第8,9-位;且   a及b彼此獨立地為0或1。   若基團Rc 及Rd 與彼等所鍵結之茀基形成螺基,此基團較佳表示螺雙茀。   特佳者為式PB-1之重複單元,其係選自式PB-1A至PB-1E之單元所組成的群組:
Figure 02_image112
Figure 02_image114
其中Rc 具有上述式PB-1之意義,r為0、1、2、3或4,且Re 具有與Rc 基相同意義。   Re 較佳為-F、-Cl、-Br、-I、-CN、-NO2 、-NCO、 -NCS、-OCN、-SCN、-C(=O)NR0 R00 、-C(=O)X、 -C(=O)R0 、-NR0 R00 、隨意地經取代之矽基、具有4至40,較佳為6至20個C原子之芳基或雜芳基、或具有1至20,較佳為1至12個C原子之直鏈、支鏈或環狀烷基、烷氧基、烷基羰基、烷氧基羰基、烷基羰氧基或烷基羰氧基,其中一或多個氫原子可隨意地經F或Cl取代,且基團R0 、R00 及X具有前文式PB-1所述之意義。   特佳者為式PB-1之重複單元,其係選自式PB-1F至PB-1I之單元所組成的群組:
Figure 02_image116
Figure 02_image118
其中之符號具有下列意義:   L為H、鹵素或具有1至12個C原子之隨意地經氟化的直鏈或支鏈烷基或烷氧基,且較佳表示H、F、甲基、異丙基、第三丁基、正戊氧基或三氟甲基;以及   L'為具有1至12個C原子之隨意地經氟化的直鏈或支鏈烷基或烷氧基,且較佳表示正辛基或正辛氧基。   為了進行本發明,較佳者為含有上述第1至7組的結構要素中之多於一者的聚合物。此外,可提供較佳含有來自上述一組的結構要素中之多於一者的聚合物,即,包含選自一個組之結構要素的混合物。   特佳者特別為除了至少一種具有發光性質(第4組)之結構要素(較佳係至少一個磷光基團)以外另外含有至少一種上述第1至3、5或6組之其他結構要素的聚合物,其中此等結構要素較佳係選自第1至3組。   若存在於聚合物中,各種類別之組的比例可在廣泛範圍,其中此等範圍為熟習本領域之人士已知。若存在於聚合物中之一種類別(在各情況下係選自上述第1至7組的結構要素)之比例較佳係在各情況下為≥5莫耳%,特佳係在各情況下為≥10莫耳%,可獲致令人意外的優點。   白色發射共聚物之製備係特別詳細描述於DE 10343606 A1。   為了改善溶解度,該等聚合物可含有對應之基團。較佳可提供含有取代基之聚合物,以使得每個重複單元存在平均至少2個非芳族碳原子,特佳為至少4個及尤佳係至少8個非芳族碳原子,其中該平均係關於數量平均。此處之個別碳原子可經例如O或S置換。然而,就特別比例而言,隨意地所有重複單元不含含有非芳族碳原子的取代基。此處以短鏈取代基為佳,原因係長鏈取代基會對於使用有機功能材料可獲得的層具有負面影響。該等取代基在直鏈中較佳含有至多12個碳原子,較佳為至多8個碳原子,及特佳為至多6個碳原子。   根據本發明用作有機功能材料之聚合物可為隨機、交替或區域規則性共聚物、嵌段共聚物或該等共聚物形式之組合。   在其他實施態樣中,用作有機功能材料之聚合物可為具有側鏈之非共軛聚合物,其中該實施態樣對於基於聚合物之磷光OLED而言特別重要。通常,磷光聚合物可藉由乙烯基化合物之自由基共聚作用獲得,其中該等乙烯基化合物含有至少一個具有磷光發射體之單元及/或至少一個電荷傳輸單元,如特別是US 7250226 B2中所揭示。其他磷光聚合物特別描述於JP 2007/ 211243 A2、JP 2007/197574 A2、US 7250226 B2及JP 2007/059939 A。   在另一較佳實施態樣中,非共軛聚合物含有主鏈單元,其係藉由間隔單元彼此連接。基於以主鏈單元為主之非共軛聚合物的此種三重態發射體之實例係揭示於例如DE 102009023154。   在另一較佳實施態樣中,非共軛聚合物可稱為螢光發射體。基於具有側鏈之非共軛聚合物的較佳螢光發射體在側鏈中含有蒽或苯并蒽基或該等基團之衍生物,其中該等聚合物係揭示於例如JP 2005/108556、JP 2005/285661及JP 2003/338375。   該等聚合物可經常用作電子-或電洞-傳輸材料,其中該等聚合物較佳係稱為非共軛聚合物。   此外,在聚合化合物之情況下,用作調配物中之有機功能材料的功能性化合物較佳具有分子量Mw為≥10,000 g/mol,更佳為≥20,000 g/mol,及尤佳為≥40,000 g/mol。   此處該等聚合物之分子量Mw較佳係在10,000至2,000,000 g/mol之範圍,特佳係在20,000至1,000,000 g/mol之範圍,及尤特佳係在40,000至300,000 g/mol之範圍。分子量Mw係利用GPC (= 凝膠滲透層析術)對於內部聚苯乙烯標準測定。   前文引用來說明功能性化合物的公開本係以基於揭示目的而引用之方式併入本申請案。   根據本發明之調配物可包含製造電子裝置之個別功能層必要的所有有機功能材料。若例如自一種功能性化合物精確地建造電洞傳輸、電洞注入、電子傳輸或電子注入層,該調配物精確地包含該化合物作為有機功能材料。若發射層包含例如發射體並組合基質或主體材料,該調配物精確地包含發射體及基質或主體材料之混合物作為有機功能材料,如本申請案其他處更詳細描述。   除了所述組分之外,根據本發明之調配物可包含其他添加劑及加工助劑。此等尤其包括表面活性物質(界面活性劑)、潤滑劑及油脂、改質黏度之添加劑、提高傳導率之添加劑、分散劑、疏水劑、黏著促進劑、流動改良劑、消泡劑、除氣劑、可為反應性或非反應性之稀釋劑、填料、助劑、加工助劑、染料、顏料、安定劑、敏化劑、奈米粒子及抑制劑。   本發明進一步關於製備根據本發明之調配物的方法,其中將可用於製造電子裝置之功能層的至少一種有機功能材料與至少四種不同有機溶劑A、B、C及D予以混合。   根據本發明之調配物可用於製造其中有機功能材料存在層中之一層或多層結構,視較佳電子或光電子組件(諸如OLED)之製造需要。   本發明之調配物較佳用於形成在基板或施加至該基板的層之一者上之功能層。該等基板可具有或不具有堤狀結構。   本發明同樣關於用於製造電子裝置之方法,其中根據本發明之調配物係施加至基板上並予以乾燥。   功能層可例如藉由溢流塗布(flood coating)、浸塗、噴塗、旋塗、網版印刷、凸版印刷、凹版印刷、旋轉印刷(rotary printing)、滾筒塗布、快乾印刷、套版印刷或噴嘴印刷,較佳為噴墨印刷在基板或者施加至該基板的層之一者上所製造。   在將根據本發明之調配物施加至基板或已施加之功能層之後,可進行乾燥步驟以從上述連續相移除溶劑。乾燥較佳可在相對低溫及在相對長期間進行,以避免形成氣泡及獲得均一塗層。乾燥較佳可在80至300℃之範圍,更佳為150至250℃,及最佳為160至200℃的溫度下進行。此處之乾燥較佳可在10-6 mbar至2 bar之範圍,更佳在10-2 mbar至1 bar之範圍,及最佳在10-1 mbar至100 mbar之範圍的壓力下進行。在乾燥過程期間,基板之溫度可在-15℃至250℃之間變化。乾燥之持續期間係視欲達成的乾燥程度而定,其中少量水可隨意地在相對高溫下並組合燒結(進行此舉為佳)予以去除。   此外可提出重複該方法步驟數次,而形成不同或相同功能層。此處可發生所形成之功能層的交聯以防止其溶解,如例如EP 0 637 899 A1所述。   本發明亦關於可藉由該用於製造電子裝置之方法獲得之電子裝置。   本發明進一步關於具有至少一包含至少一種有機功能材料之功能層的電子裝置,其可藉由上述用於製造電子裝置之方法獲得。   電子裝置意指包含陽極、陰極與在其間之至少一功能層的裝置,其中該功能層包含至少一種有機或有機金屬化合物。   該有機電子裝置較佳為有機電致發光裝置(OLED)、聚合物電致發光裝置(PLED)、有機積體電路(O-IC)、有機場效電晶體(O-FET)、有機薄膜電晶體(O-TFT)、有機發光電晶體(O-LET)、有機太陽能電池(O-SC)、有機光伏打(OPV)電池、有機光偵測器、有機感光器、有機場猝滅(field-quench)裝置(O-FQD)、有機電感測器、發光電化學電池(LEC)或有機雷射二極體(O-雷射),更佳為有機電致發光裝置(OLED)或聚合物電致發光裝置(PLED)。   活性組分通常為引入介於陽極與陰極之間的有機或無機材料,其中該等活性組分發揮、維持及/或改善電子裝置之性質,例如其性能及/或其使用壽命,例如電荷注入、電荷傳輸或電荷阻擋材料,但特別是發射材料及基質材料。因此,可用於製造電子裝置之功能層的有機功能材料較佳包含該電子裝置之活性組分。   有機電致發光裝置為本發明之較佳實施態樣。該有機電致發光裝置包含陰極、陽極與至少一層發射層。   另外較佳係使用二或更多種三重態發射體與基質一起的混合物。具有較短波長之發射光譜的三重態發射體於此處用作具有較長波長之發射光譜的三重態發射體之共基質。   該情況下之發射層中的基質材料之比例,就螢光發射層而言,較佳係介於50與99.9體積%,更佳係介於80與99.5體積%,最佳係介於92與99.5體積%,及就磷光發射層而言係介於85與97體積%。   因此,摻雜劑之比例,就螢光發射層而言,較佳係介於0.1與50體積%,更佳係介於0.5與20體積%,最佳係介於0.5與8體積%,及就磷光發射層而言係介於3與15體積%。   有機電致發光裝置之發射層亦可包括包含複數種基質材料(混合基質系統)及/或複數種摻雜劑之系統。在該情況下,同樣的,摻雜劑通常為在該系統中之比例較小的材料,而基質材料為在該系統中比例較大的材料。然而,在個別情況下,在該系統中之個別基質材料的比例會小於個別摻雜劑的比例。   混合基質系統較佳包含二或三種不同基質材料,更佳為兩種不同基質材料。此處這兩種材料之一者較佳為具有電洞傳輸性質的材料,而另一材料為具有電子傳輸性質的材料。然而,該等混合基質組分之所需要的電子傳輸及電洞傳輸性質亦可主要或完全組合在單一混合基質組分中,其中其他混合基質組分實行其他功能。此處兩種不同基質材料可以1:50至1:1之比,較佳為1:20至1:1,更佳為1:10至1:1及最佳為1:4至1:1存在。混合基質系統較佳係用於磷光有機電致發光裝置。關於混合基質系統的其他細節可見例如WO 2010/108579。   除了該等層之外,有機電致發光裝置亦可包含其他層,例如在各情況下為一或多層電洞注入層、電洞傳輸層、電洞阻擋層、電子傳輸層、電子注入層、激子阻擋層、電子阻擋層、電荷產生層(IDMC 2003,台灣;Session 21 OLED (5),T. Matsumoto、T. Nakada、J. Endo、K. Mori、N. Kawamura、A. Yokoi、J. Kido,Multiphoton Organic EL Device Having Charge Generation Layer)及/或有機或無機p/n接面。此處,一或多層電洞傳輸層可為p-摻雜,例如用金屬氧化物(諸如MoO3 或WO3 ),或用(全)氟化缺電子芳族化合物摻雜,及/或一或多層電子傳輸層可經n-摻雜。同樣可能將具有激子阻擋功能及/或控制電致發光裝置中之電荷平衡的中間層引入兩個發射層之間。不過,應指出的是此等層不一定全都必須存在。在使用如前文界定之根據本發明之調配物時,此等層同樣可存在。   在本發明其他實施態樣中,該裝置包含複數個層。根據本發明之調配物於此處較佳係用於製造電洞傳輸、電洞注入、電子傳輸、電子注入及/或發射層。   因此,本發明亦關於包含至少三個層,但在較佳實施態樣中包含所有所述層(從電洞注入、電洞傳輸、發射、電子傳輸、電子注入、電荷阻擋及/或電荷產生層),且其中至少一個層係根據本發明使用之調配物所獲得的電子裝置。該等層(例如電洞傳輸及/或電洞注入層)之厚度較佳可在1至500 nm之範圍,更佳在2至200 nm之範圍。   該裝置可進一步包含自未藉由使用根據本發明之調配物施加的其他低分子量化合物或聚合物構成之層。此等亦可藉由在高度真空下蒸發低分子量化合物來製造。   根據本發明的一種較佳實施態樣,該裝置包含藉由蒸發低分子量化合物施加之發射層。根據此種實施態樣,可使用本技術領域狀態已知用於經真空施加之發射層的任何基質材料及發射體 。作為用於此目的之三重態基質材料,尤其是可使用下列材料:
Figure 02_image120
Figure 02_image122
Figure 02_image124
這些材料也可用來作為藉由氣相沉積施加之電洞傳輸層中的電洞傳輸材料。這些化合物之合成,若於先前技術中未具體揭示,可根據先前技術中一般已知的方法為技術領域中具通常知識者完成。例如,化合物(22)之合成可如WO 2007/072952中用於合成該申請案之化合物3所述者(參見p. 32-33)般完成。   另外較佳係不以純物質形式而是以與其他任何所需類型之聚合、寡聚、樹枝狀或低分子量物質的混合物(摻混物)形式使用該等化合物。彼等可例如改善電子性質或自身發光。   在本發明較佳實施態樣中,根據本發明之調配物包含用作在發射層中之主體材料或基質材料的有機功能材料。此處之調配物除了主體材料或基質材料之外還可包含上述發射體。此處之有機電致發光裝置可包含一或多層發射層。若存在複數個發射層,較佳係具有在380 nm與750 nm之間的複數發射最大值,使整體呈白色發射,即,可發出螢光或磷光的各種發射化合物係用於該發射層。極佳者係三層系統,其中這三層展現出藍色、綠色與橙色或紅色發射(就基礎結構而言,詳見例如WO 2005/011013)。白色發射裝置適於例如作為LCD顯示器之背光或用於一般照明應用。   亦可能將複數個OLED彼此堆疊配置,使得進一步提高關於欲達成之光輸出(light yield)的效率。   為了改善光之耦合輸出,在OLED之光輸出側上的最終有機層亦可例如呈奈米發泡體形式,造成全反射之比例降低。   另外較佳者為其中一或多個層係藉由(其中材料係在壓力低於10-5 mbar,較佳係低於10-6 mbar,更佳係低於10-7 mbar之真空昇華單元中,藉由氣相沉積施加)昇華法之手段施加之有機電致發光裝置。   另外可提出的是根據本發明之電子裝置的一或多個層係藉由OVPD(有機氣相沉積)法之手段或借助於載體氣體昇華施加,其中該等材料係在10-5 mbar與1 bar之間的壓力施加。   另外可提出根據本發明之電子裝置的一或多個層係從溶液製造,諸如例如藉由旋塗,或利用任何所需之印刷法,諸如網版印刷、快乾印刷或套版印刷之手段,但特佳係LITI(光引發熱成像、熱轉印印刷)或噴墨印刷。   該裝置經常包含陰極及陽極(電極)。該等電極(陰極、陽極)係為了本發明目的,以其能帶能儘可能接近地對應於相鄰有機層的能帶能的方式予以選擇,以確保高效率電子或電洞注入。   陰極較佳包含金屬錯合物、具有低功函數之金屬、包含各種不同金屬(諸如例如鹼土金屬、鹼金屬、主族金屬或鑭系元素(例如Ca、Ba、Mg、Al、In、Mg、Yb、Sm等))之金屬合金或多層結構。在多層結構之情況中,除了該等金屬之外,亦可使用具有較高功函數之其他金屬,例如Ag及Ag奈米線(Ag NW),在該情況中,通常使用金屬之組合,例如Ca/Ag或Ba/Ag。亦較佳係在金屬陰極及有機半導體之間引入具有高介電常數之材料的薄中間層。適用於本目的者為例如鹼金屬或鹼土金屬氟化物,但亦可為對應之氧化物(例如LiF、Li2 O、BaF2 、MgO、NaF等)。該層之層厚度較佳係介於0.1與10 nm,更佳係介於0.2與8 nm,最佳係介於0.5與5 nm。   陽極較佳包含具有高功函數之材料。陽極較佳係具有相較於真空大於4.5 eV之電位。適用於該目的者一方面為具有高氧化還原電位之金屬,例如Ag、Pt或Au。另一方面,金屬/金屬氧化物電極(例如Al/Ni/NiOx 、Al/PtOx )亦可能較佳。就一些應用而言,電極中至少一者必須透明以促進有機材料之照射(O-SC)或光的耦合輸出(OLED/PLED、O-雷射)。較佳結構使用透明陽極。此處較佳之陽極材料為傳導性混合金屬氧化物。特佳者係銦錫氧化物(ITO)或銦鋅氧化物(IZO)。較佳者另外為傳導性經摻雜有機材料,特別是傳導性經摻雜聚合物,諸如例如聚(伸乙二氧基噻吩)(PEDOT)及聚苯胺(PANI)或此等聚合物之衍生物。另外較佳係將p-摻雜之電洞傳輸材料作為電洞注入層施加至陽極,其中適用之p-摻雜劑為金屬氧化物,例如MoO3 或WO3 ,或(全)氟化缺電子芳族化合物。其他適用之p-摻雜劑為HAT-CN (六氰基六吖聯伸三苯)或來自Novaled之化合物NDP9。該種類型之層簡化在具有低HOMO(即,具有大值之HOMO)的材料中之電洞注入。   通常,在其他層中可使用根據先前技術用於該等層的所有材料,且熟習本領域之人士將能在不需進步性步驟的情況下於電子裝置中組合此等材料各者與根據本發明之材料。   該裝置相應地以本身已知之方式建構,視應用而定,配備觸點且最後予以密封(由於此種裝置之使用壽命在水及/或空氣存在下會大幅縮短)。   根據本發明之調配物及可自彼獲得之電子裝置(特別是有機電致發光裝置)與先前技術之區分為下列令人意外的優點之一或多者:   1. 相較於使用傳統方法所獲得之電子裝置,可使用根據本發明之調配物獲得的電子裝置展現非常高之安定性及非常長的使用壽命。   2. 根據本發明之調配物可使用傳統方法加工,因此亦可從而獲致成本優點。   3. 於根據本發明之調配物中所使用的有機功能材料未受到任何特別限制,使得本發明方法能廣泛地使用。   4. 可使用本發明之調配物獲得的塗層展現優異品質,特別是關於塗層之均勻度。   上述優點不會伴隨損及其他電子性質。   應指出本發明中所述之實施態樣的變化係在本發明範圍內。除非明確排除,否則本發明中所揭示之各特徵可由用於相同或等效或相似目的之替代性特徵替代。因此,除非另外陳述,否則本發明中所揭示之各特徵應視為通用系列之實例或視為相等或類似特徵。   除非特定特徵及/或步驟相互排斥,否則本發明所有特徵可以任何方式彼此組合。此特別適用於本發明之較佳特徵。同樣地,可分開(且非組合)使用非基本組合之特徵。   此外應指出許多特徵,尤其是本發明較佳實施態樣之特徵,本身具有創新性而且不應僅視為本發明實施態樣中的一部分。就此等特徵而言,除了任何目前主張之各發明之外或作為其替代,應尋求獨立保護。   本發明揭示之技術性行動之教示可予以摘要及與其他實例組合。   下文係參考操作實例更詳細解釋本發明,但不因而受到限制。   熟習本領域之人士將能使用該等說明製造根據本發明之其他電子裝置,而不需要使用本發明技巧,因此可進行遍布所主張範圍之本發明。 操作實例 A) 膜形成   製作濃度7 g/L的21個電洞注入層(HIL)用印墨,如表5所示。該組成係與用於裝置實例(參見下面)的印墨相同。將印墨噴墨印刷且於乾燥後測量膜輪廓。溶劑3-苯氧基甲苯被選擇來作為參考並顯示出U-形膜輪廓,如可見於圖2。一般而言,藉由將含有氫鍵之溶劑(2-苯氧基乙醇)添加到1-乙基萘/戊基苯的混合物,膜輪廓顯示顯著改善,意謂可達成平坦膜。然而,實例1之膜稍微粗糙(中心區域的粗糙度為1.8nm)。為了減少粗糙度,添加額外溶劑,1-苯基萘(實例2至8)。如可見於表5,粗糙度改善到小於1nm。可藉由將1-苯基萘的比從0調整到5%而達成平坦的膜。當調配物中的1-苯基萘太多時(實施例8,有10%的1-苯基萘),膜輪廓變成W形。製備其他印墨,包含各種含有氫鍵之溶劑(參見表5中實例9至20)及1-乙基萘/戊基苯/1-苯基萘。所有這些膜輪廓顯著地改善並顯示與參考相比較高之平坦度。   使用KLA-Tencor Corporation的具有2 µm測針的輪廓儀Alpha-step D120來測量膜輪廓。平坦度係數藉由下式計算並用於判定平坦度:
Figure 02_image126
其中,
Figure 02_image128
為像素邊緣高度,而
Figure 02_image132
為像素中心高度,跨像素短軸測量。   當平坦度係數係等於或小於10%時,將膜視為平坦。   藉由下式,沿像素短軸在像素中心周圍10 μm的範圍內計算均方根粗糙度:
Figure 02_image136
其中,
Figure 02_image138
為於位置
Figure 02_image143
的高度值,而
Figure 02_image144
為於中心10 μm中高度值的平均。
Figure 02_image147
Figure 02_image149
Figure 02_image151
B) 裝置效能   為進一步確認印墨對裝置性能來說是否適合,選用數個來自表4之HIL印墨實例來製造裝置。裝置結構顯示於圖1中。 製造製程之說明   覆蓋有預先結構化之ITO及堤材料的玻璃基板係使用超音波在異丙醇中然後在去離子水中清潔,然後使用氣槍乾燥,隨後在230℃之熱板上退火2小時。   使用如PCT/EP2015/002476中所述之聚合物(例如,聚合物 P2)與鹽(例如,鹽D1)之組成物的電洞注入層(HIL)係噴墨印刷至該基板上,並在真空中乾燥。使用表5所述之溶劑混合物為各實例製備HIL印墨。然後該HIL在185℃於空氣中退火30分鐘。   在HIL頂部,噴墨印刷電洞傳輸層(HTL),在真空中乾燥,並在210℃於氮氣氛中退火30分鐘。使用溶解在3-苯氧基甲苯中且濃度為7 g/l之聚合物HTM-1作為電洞傳輸層之材料。聚合物HTM-1之結構如下:
Figure 02_image153
綠色發射層(G-EML)亦經噴墨印刷、真空乾燥及在160℃於氮氣氛中退火10分鐘。所有操作實例中,綠色發射層的印墨含有兩種主體材料(即,HM-1及HM-2)以及一種製備於3-苯氧基甲苯中且濃度為12 g/l之三重態發射體(EM-1)。該等材料係以下列比例使用:HM-1:HM-2:EM-1=40:40:20。材料之結構如下:
Figure 02_image155
Figure 02_image157
所有噴墨印刷製程均在黃光下且在周圍條件下完成。   然後將該等裝置轉移至真空沉積室,於該處使用熱蒸發完成共用電洞阻擋層(HBL)、電子傳輸層(ETL)、及陰極(Al)之沉積(見圖1)。然後該等裝置係在套手工作箱中示性。   在電洞阻擋層(HBL)中,使用ETM-1作為電洞阻擋材料。該材料具有下列結構:
Figure 02_image159
在電子傳輸層(ETL)中,使用ETM-1與LiQ之50:50混合物。LiQ為8-羥基喹啉酸根鋰。   最後,氣相沉積Al電極。該等裝置然後係在套手工作箱中封裝,並在周圍空氣中進行物理示性。圖1顯示裝置結構。   該裝置係藉由Keithley 230電壓源所提供之恆定電壓驅動。在該裝置上之電壓以及通過該裝置之電流係使用兩個Keithley 199 DMM萬用電表測量。該裝置之亮度係用SPL-025Y亮度感測器偵測,該SPL-025Y亮度感測器為光電二極體與濾光器(photonic filter)之組合。光電流係用Keithley 617靜電計測量。就該光譜而言,亮度感測器係由連接至光譜儀輸入之玻璃纖維置換。該裝置使用壽命係在給定電流下用初始耀度測量。然後,耀度係藉由經校正光電二極體隨著時間測量。 結果及討論   製備三個裝置,包括參考1(來自3-PT,U-形HIL輪廓),裝置實例1(3-溶劑系統,平坦HIL具有粗糙表面),裝置實例2(4-溶劑系統,平坦HIL具有平滑表面)。實例1之裝置所用溶劑為1-乙基萘:2-苯氧基乙醇:戊基苯(30:35:35)。實例2之裝置所用溶劑為1-乙基萘:2-苯氧基乙醇:戊基苯:1-苯基萘(40:40:17:3)。這3個裝置的電致發光(EL)影像顯示於圖23、24及25。圖24的照片清楚顯示某種表面紋理(由於HIL 層的3-溶劑混合物所創造高表面粗糙度所致)。此問題可藉由添加小量1-苯基萘解決,如圖25所示。表6總結於1000 cd/m2 之耀度效率及外部量子效率(EQE),以及於3000 cd/m2 之裝置壽命(LT80)。意外地,在有或沒有表面粗糙的裝置結果中沒有觀察到重大差異。壽命尤其表現出與參考一樣高的值。這些結果表明,新的4溶劑系統不會對設備造成損壞,並且極大地改善了膜輪廓。可以注意到,在具有平坦的膜輪廓的實例中,操作電壓較低。這指明電流和電壓均一地分佈在像素中,導致更好的操作條件和發射顏色。
Figure 02_image161
DESCRIPTION OF EMBODIMENTS The present invention relates to formulations containing at least one organic functional material and at least four different organic solvents: a first organic solvent A, a second organic solvent B, a third organic solvent C, and a fourth organic solvent The organic solvent D is characterized in that: the first organic solvent A contains a group capable of accepting or donating hydrogen bonding, the second organic solvent B has a boiling point in the range of 150 to 350°C, and the third organic solvent C has a boiling point in the range of 100 to 350°C. The range of 300 ° C, and the fourth organic solvent D has a boiling point in the range of 200 to 400 ° C, is present in a content of 0,01 to 15% by volume, and has a viscosity of ≥15 mPas, at least one organic functional material in the second organic solvent. The solubility in B and in the fourth organic solvent D is ≥5 g/l, the boiling point of the third organic solvent C is at least 10°C lower than the boiling point of the second organic solvent B, and the boiling point of the fourth organic solvent D is lower than that of the second organic solvent B The boiling point of the organic solvent B is at least 10°C higher. A clear definition of hydrogen-bonding donors/acceptors can be found in CRC Handbook of solubility parameters and other cohesion parameters, second edition, Allan F. M Barton, 1991. The following definition is mentioned: "Hydrogen bonding interactions are a special type of Lewis acid-base reaction in which the electron acceptor is a Brönsted acid. A convenient definition is that hydrogen bonding is carried out by covalently bound hydrogen A second bond formed from an atom to another atom. In the following scheme, atoms X and Y have a higher electronegative (relative tendency of the bonded atoms to attract electrons) than those of H, such as C, N, P, O, S, F, Cl, Br, or I:
Figure 02_image002
The classification of liquids by Pimentel and McClellan (The hydrogen Bond, WH Freeman, San Francisco, 1960), according to their hydrogen bonding properties, is also widely used: - proton donors, such as chloroform, - proton acceptors, Such as ketones, aldehydes, esters, ethers, tertiary amines, aromatic hydrocarbons, alkenes, - proton donors/acceptors such as alcohols, carboxylic acids, water, primary and secondary amines. Preferred Embodiments In preferred embodiments, the formulation is characterized in that the first organic solvent A comprises at least one, preferably one, group capable of imparting hydrogen bonding. In a more preferred embodiment, the formulation is characterized in that the at least one, preferably one, group capable of imparting hydrogen bonding of the first organic solvent A is an OH- or NH- group. In a preferred embodiment, the formulations of the invention are characterized in that the first organic solvent A is a solvent according to the general formula (I):
Figure 02_image004
wherein X is O or NR 4 , R 1 , R 2 and R 3 are the same or different at each occurrence, and are H, D, a straight-chain alkyl group having 1 to 12 carbon atoms, or a linear alkyl group having 3 to 12 carbon atoms. A branched or cyclic alkyl group of 1 carbon atoms, wherein one or more non-adjacent CH 2 groups may be via -O-, -S-, -NR 5 -, -CO-O-, -C=O-, -CH=CH- or -C≡C- substituted, and wherein one or more hydrogen atoms may be substituted with F or an aryl group having 4 to 14 carbon atoms which may be substituted with one or more non-aromatic R 5 groups or Heteroaryl substitutions, and multiple substituents R5 on the same ring or on two different rings may in turn form together a monocyclic or polycyclic aliphatic, aromatic or heteroaromatic ring system, which may be or two of R 1 , R 2 and R 3 may in turn be taken together to form a monocyclic or polycyclic aliphatic, aromatic or heteroaromatic ring system having 4 to 14 carbon atoms, It may be substituted with a plurality of substituents R 5 ; R 4 is H, straight chain alkyl having 1 to 12 carbon atoms, branched or cyclic alkyl having 3 to 12 carbon atoms, or 4 to 14 aryl or heteroaryl of 1 carbon atoms, which may be substituted with one or more non-aromatic R 5 groups, and R 5 is the same or different at each occurrence and is H, having 1 to 12 carbon atoms A straight-chain alkyl or alkoxy group or a branched or cyclic alkyl or alkoxy group with 3 to 20 carbon atoms, wherein one or more non-adjacent CH 2 groups can be replaced by -O-, -S- , -CO-O-, -C=O-, -CH=CH- or -C≡C- substitution. In a more preferred embodiment, the formulations of the invention are characterized in that the first organic solvent A is a solvent according to the general formula (II):
Figure 02_image006
Here, R 1 , R 2 and R 3 are as defined above. In another preferred embodiment, the formulations of the invention are characterized in that the first organic solvent A is a solvent according to the general formula (III):
Figure 02_image008
Here, R 1 , R 2 , R 3 and R 4 are as defined above. In a third and fourth preferred embodiment, the formulations of the invention are characterized in that the first organic solvent A is a solvent according to the general formula (II) or (III): wherein R 1 , R 2 and R 3 is the same or different at each occurrence and is a straight chain alkyl group of 1 to 8 carbon atoms or a branched or cyclic alkyl group of 3 to 8 carbon atoms in which one or more non-adjacent CH The 2 group may be replaced by -O-, -NH-, -CO-O-, -C=O-, -CH=CH- or -CºC-, and one or more of the hydrogen atoms may be replaced by F or having 4 to Aryl or heteroaryl of 10 carbon atoms and substituted with one or more non - aromatic R5 groups, and wherein R5 is as defined above. In a first more preferred embodiment, the formulations of the present invention are characterized in that the first organic solvent A is a solvent according to the general formula (I), wherein X is O and R3 is Ar1 - Y-, by It is exemplified by the following formula (IV):
Figure 02_image010
Wherein, R 1 and R 2 are the same or different at each occurrence, and are H or a straight-chain alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, and more preferably 1 carbon atom , Ar 1 is an aryl or heteroaryl group, which has 4 to 14 carbon atoms and may be substituted by one or more non-aromatic R 5 groups, which may be substituted by a plurality of substituents R 5 , R 5 in each Occurs the same or different and is H, straight-chain alkyl or alkoxy having 1 to 12 carbon atoms or branched or cyclic alkyl or alkoxy having 3 to 20 carbon atoms, one of which or more non-adjacent CH 2 groups may be substituted with -O-, -S-, -CO-O-, -C=O-, -CH=CH- or -C≡C-, and Y is linear or A branched -CnH2n- group, having n =1 to 10 carbon atoms, wherein one or more non-adjacent CH2 groups of the Y group may be replaced by -O-. In a second more preferred embodiment, the formulations of the invention are characterized in that the first organic solvent A is a solvent according to general formula (II), wherein R 1 , R 2 are the same or different at each occurrence, and is H or a straight chain alkyl group having 1 to 3, preferably 1 carbon atoms, and R is H, D, a straight chain alkyl group having 1 to 12 carbon atoms or a straight chain alkyl group having 3 to 12 carbon atoms The branched or cyclic alkyl group, wherein one or more non-adjacent CH 2 groups can be via -O-, -S-, -NR 5 -, -CO-O-, -C=O-, -CH= CH- or -CºC- replacement, and one or more of the hydrogen atoms may be replaced by F. In a preferred embodiment, the formulations of the invention are characterized in that the first organic solvent A is a solvent according to general formula (III), wherein R4 is H. In a preferred embodiment, the formulations of the invention are characterized in that the first organic solvent A is a solvent according to general formula (II) or (IV), wherein R 1 is H and R 2 is H or CH 3 . Examples of preferred first solvents and their boiling points (BP) and melting points (MP) are shown in Table 1 below.
Figure 02_image012
Figure 02_image014
Figure 02_image016
Figure 02_image018
Figure 02_image020
Preferably, the first organic solvent A has a surface tension of ≥20 mN/m. More preferably, the surface tension of the first organic solvent A is in the range of 25 to 50 mN/m, and most preferably in the range of 28 to 45 mN/m. Preferably, the first organic solvent A has a boiling point in the range of 150 to 350°C, more preferably in the range of 175 to 325°C, and most preferably in the range of 200 to 300°C. The content of the first solvent A is in the range of 5 to 60% by volume, preferably in the range of 10 to 60% by volume, more preferably in the range of 15 to 55% by volume, based on the total amount of solvent in the formulation, and The optimum is in the range of 20 to 50% by volume. The formulations of the present invention contain at least a second organic solvent B different from the first organic solvent A. The second organic solvent B is used together with the first organic solvent A. Suitable second organic solvents B are preferably organic solvents, which include especially ketones, ethers, esters, amides, such as di- C1-2 -alkylformamides, sulfur compounds, nitro compounds, hydrocarbons, halogenated hydrocarbons (eg, chlorinated hydrocarbons), aromatic or heteroaromatic hydrocarbons (eg, naphthalene derivatives), and halogenated aromatic or heteroaromatic hydrocarbons. Preferably, the second organic solvent B can be selected from one of the following groups: substituted and unsubstituted aromatic or linear ethers, such as 3-phenoxytoluene or anisole; substituted or unsubstituted Substituted arene derivatives; substituted or unsubstituted dihydroindene, such as hexamethyl-dihydroindene; substituted and unsubstituted aromatic or straight chain ketones; substituted and unsubstituted heterocycles , such as pyrrolidone, pyridine, pyrazine; other fluorinated or chlorinated aromatic hydrocarbons; substituted or unsubstituted naphthalenes, such as alkyl-substituted naphthalenes, such as 1-ethylnaphthalene. Particularly preferred second organic solvent B, such as 1-ethylnaphthalene, 2-ethylnaphthalene, 2-propylnaphthalene, 2-(1-methylethyl)naphthalene, 1-(1-methylethyl) Naphthalene, 2-butylnaphthalene, 1,6-dimethylnaphthalene, 2,2'-dimethylbiphenyl, 3,3'-dimethylbiphenyl, 1-acetylnaphthalene, 1,2, 3,4-Tetramethylbenzene, 1,2,3,5-Tetramethylbenzene, 1,2,3-Trimethylbenzene, 1,2,4,5-Tetramethylbenzene, 1,2, 4-Trichlorobenzene, 1,2,4-Trimethylbenzene, 1,2-Dihydronaphthalene, 1,2-Dimethylnaphthalene, 1,3-Benzodioxazole, 1,3-Diiso Propylbenzene, 1,3-Dimethylnaphthalene, 1,4-Benzodiethane, 1,4-Diisopropylbenzene, 1,4-Dimethylnaphthalene, 1,5-Dimethyltetramethylene Hydronaphthalene, 1-benzothiophene, thianaphthalene, 1-bromonaphthalene, 1-chloromethylnaphthalene, 1-methoxynaphthalene, 1-methylnaphthalene, 2,3-benzofuran, 2 ,3-Dihydrobenzofuran, 2,3-dimethylanisole, 2,4-dimethylanisole, 2,5-dimethylanisole, 2,6-dimethylbenzene Methyl ether, 2-bromo-3-bromomethylnaphthalene, 2-bromomethylnaphthalene, 2-bromonaphthalene, 2-ethoxynaphthalene, 2-isopropylanisole, 2-methylanisole, 2-methylindole, 3,4-dimethylanisole, 3,5-dimethylanisole, 3-methylanisole, 4-methylanisole, 5-methoxy Indene, 5-methoxyindole, 5-tert-butyl-m-xylene, 6-methylquinoline, 8-methylquinoline, acetophenone, anisole, benzonitrile, benzene Thiazole, benzyl acetate, bromobenzene, butylphenyl ether, cyclohexylbenzene, decalin, dimethoxytoluene, 3-phenoxytoluene, diphenyl ether, propiophenone, hexylbenzene, diphenyl ether Hydrogen indene, hexamethyldihydroindene, indene, iso
Figure 106137139-A0304-1
Sulfonium, cumene, m-Cumene, 1,3,5-trimethylbenzene, propylbenzene, o-dichlorobenzene, phenyl ethyl ether, ethoxybenzene, phenyl acetate, p-cymene , Propiophenone, 2-butylbenzene, 3-butylbenzene, veratrol, pyrrolidone, dimethylacetamide, and decalin. The second organic solvent B has a boiling point in the range of 150 to 350°C, preferably in the range of 175 to 325°C, and most preferably in the range of 200 to 300°C. The content of the second organic solvent B is in the range of 5 to 95% by volume, preferably in the range of 10 to 75% by volume, more preferably in the range of 15 to 70% by volume, based on the total amount of organic solvent in the formulation , and the optimal system is in the range of 20 to 65% by volume. The at least one organic functional material has a solubility in the second organic solvent B of ≥5 g/l, preferably ≥10 g/l and more preferably ≥15 g/l.
Figure 02_image022
Figure 02_image024
Figure 02_image026
Figure 02_image028
Figure 02_image030
Figure 02_image032
The formulation of the present invention contains at least a third organic solvent C different from the first organic solvent A and the second organic solvent B. The third organic solvent C is used together with the first organic solvent A and the second organic solvent B. The third organic solvent C has a boiling point in the range of 100 to 300°C, preferably in the range of 125 to 275°C, and most preferably in the range of 150 to 250°C. Furthermore, the boiling point of the third organic solvent C is at least 10°C lower than the boiling point of the second organic solvent B, preferably at least 20°C lower and more preferably at least 30°C lower. The content of the third organic solvent C is preferably in the range of 1 to 30% by volume, more preferably in the range of 3 to 25% by volume, and most preferably in the range of 5 to 20% by volume, based on the total amount of organic solvent in the formulation range.
Figure 02_image034
Figure 02_image036
The formulation of the present invention contains at least a fourth organic solvent D different from the first organic solvent A, the second organic solvent B, and the third organic solvent C. The fourth organic solvent D is used together with the first organic solvent A, the second organic solvent B, and the third organic solvent C. A suitable fourth organic solvent D is preferably an organic solvent, which includes in particular mono- or poly-substituted naphthalene derivatives, partially or fully hydrogenated mono- or poly-substituted naphthalene derivatives, mono- or poly-substituted dihydroindene derivatives, and fully hydrogenated anthracene derivatives. Particularly preferred fourth organic solvent D is, for example, 1-cyclohexylnaphthalene, 1-phenylnaphthalene, 1-cyclohexyldecalin, and 1-phenyl-1,2,3,4-tetrahydronaphthalene. The fourth organic solvent D has a boiling point in the range of 200 to 400°C, preferably in the range of 225 to 375°C, and most preferably in the range of 250 to 350°C. The content of the fourth organic solvent D is 0,01 to 15% by volume, preferably 0,1 to ≤ 15% by volume, based on the total amount of organic solvents in the formulation. The viscosity of the fourth organic solvent D is ≥15 mPas, preferably ≥20 mPas and most preferably ≥25 mPas. The at least one organic functional material has a solubility in the fourth organic solvent D, which is ≥5 g/l.
Figure 02_image038
Figure 02_image040
Figure 02_image042
The content of at least one organic functional material in the formulation is in the range of 0.001 to 20% by weight, preferably in the range of 0.01 to 10% by weight, more preferably in the range of 0.1 to 5% by weight, based on the total weight of the formulation range, and the optimum is in the range of 0.3 to 5% by weight. Furthermore, the formulations according to the present invention have a viscosity preferably in the range of 1 to 50 mPa.s , more preferably in the range of 2 to 40 mPa.s , and most preferably in the range of 2 to 20 mPa.s. The viscosities of formulations and solvents according to the invention were measured using a 1° cone-plate rotational rheometer of the type Discovery AR3 (Thermo Scientific). This device allows precise control of temperature and shear rate. Viscosity measurements were made at a temperature of 25.0°C (+/- 0.2°C) and a shear rate of 500 s −1 . Each sample was measured three times and the obtained measurements were averaged. Formulations according to the invention have surface tensions preferably in the range of 15 to 50 mN/m, more preferably in the range of 20 to 45 mN/m, and most preferably in the range of 25 to 40 mN/m. Preferably, the organic solvent blend comprises a surface tension in the range of 15 to 50 mN/m, preferably in the range of 20 to 45 mN/m, and most preferably in the range of 25 to 40 mN/m. Surface tension can be measured at 20°C using an FTA (First Ten Angstrom) 1000 contact angle goniometer. Details of this method are available from "Surface Tension Measurements Using the Drop Shape Method" published by First Ten Angstrom by Roger P. Woodward, Ph.D. Preferably, the surface tension can be measured using the pendant drop method. This measurement technique dispenses droplets from a needle in bulk liquid or gas phase. The shape of the droplet is formed by the relationship between surface tension, gravity and density differences. Using the pendant drop method, the surface tension is calculated from the shadow image of the pendant drop using: http://www.kruss.de/services/education-theory/glossary/drop-shape-analysis. A common and commercially available high accuracy drop shape analysis tool (in other words, FTA1000 from First Ten Ångstrom) was used to perform all surface tension measurements. Surface tension was measured by the software FTA1000. All measurements were performed at room temperature ranging between 20°C and 25°C. Standard operating procedures include measuring the surface tension of each formulation using a new disposable droplet dispensing system (syringe and needle). Sixty measurements were taken for each droplet train over a 1 minute duration, the measurements were averaged later. Three droplets were measured for each formulation. Final values are averaged from the measurements. The tool is regularly cross-checked against various liquids with well-known surface tensions. Formulations according to the present invention comprise at least one organic functional material for the fabrication of functional layers of electronic devices. Functional materials are typically organic materials introduced between the anode and cathode of an electronic device. The term organic functional material means in particular organic conductors, organic semiconductors, organic fluorescent compounds, organic phosphorescent compounds, organic light absorbing compounds, organic photosensitizing compounds, organic photosensitizers and other organic photoactive compounds. The term organic functional material additionally includes organometallic complexes of transition metals, rare earth metals, lanthanides and actinides. The organic functional material is selected from the group consisting of: fluorescent emitter, phosphorescent emitter, host material, host material, exciton blocking material, electron transport material, electron injection material, hole conductor material, hole injection material , n-dopants, p-dopants, wide bandgap materials, electron blocking materials and hole blocking materials. Preferred embodiments of organic functional materials are disclosed in detail in WO 2011/076314 A1, which is incorporated by reference into the present application. In preferred embodiments, the organic functional material is an organic semiconductor selected from the group consisting of hole injection, hole transport, emission, electron transport and electron injection materials. The organic functional material can be a compound, polymer, oligomer or dendrimer with low molecular weight, wherein the organic functional material can also be in the form of a mixture. Thus, formulations according to the present invention may comprise two or more different compounds with low molecular weight, one compound with low molecular weight and one polymer or two polymers (blend). Organic functional materials are often described through the properties of frontier orbitals, which are described in more detail below. The molecular orbitals of these materials, especially the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), their energy levels and the energy of the lowest triplet state T 1 or the energy of the lowest excited singlet state S 1 It can be estimated from quantum-chemical calculations. To calculate these properties of metal-free organic substances, first use "Ground State/Semi-empirical/Default Spin/AM1/Charge 0/ Spin Singlet)" method for geometry optimization. Energy calculations are then performed based on this optimized geometry. Here we use "TD-SCF/DFT/Default Spin/B3PW91(TD-SCF/DFT/Default Spin/B3PW91)" with "6-31G(d)" basis set (charge 0, spin singlet) Law. For metal-containing compounds, the geometry is determined by "Ground State/Hartree-Fock/Default Spin/LanL2MB/Charge 0/Spin Singlet State (Ground State/Hartree-Fock/Default Spin/LanL2MB/Charge 0 /Spin Singlet)" method optimization. The energy calculation is performed similarly to the method for organic substances described above, except that the "LanL2DZ" basis set is used for the metal atoms, and the "6-31G(d)" basis set is used for the ligands. The energy calculation obtains the HOMO energy level HEh or the LUMO energy level LEh in Hartley units. The HOMO and LUMO levels in electron voltmeter and corrected with reference to cyclic voltammetry measurements are determined as follows:
Figure 02_image044
For the purposes of this application, these values shall be considered to be the HOMO and LUMO levels of the material, respectively. The lowest triplet state Ti is defined as the energy of the triplet state with the lowest energy derived from the quantum-chemical calculation. The lowest excited singlet state S 1 is defined as the energy of the excited singlet state with the lowest energy derived from the quantum-chemical calculation. The method described here is independent of the software package used and always achieves the same results. Examples of programs frequently used for this purpose are "Gaussian09W" (Gaussian Inc.) and Q-Chem 4.1 (Q-Chem, Inc.). Compounds with hole-injecting properties (also referred to herein as hole-injecting materials) simplify or facilitate the transfer of holes (ie, positive charges) from the anode to the organic layer. Typically, the hole injecting material has a HOMO energy level in the range or higher than that of the anode, ie, typically at least -5.3 eV. Compounds with hole transport properties (also referred to herein as hole transport materials) are capable of transporting holes (ie, positive charges), which are typically injected from the anode or an adjacent layer (eg, a hole injection layer). Hole transport materials typically have high HOMO levels, preferably at least -5.4 eV. Depending on the structure of the electronic device, hole transport materials may also be used as hole injection materials. Preferred compounds with hole-injecting and/or hole-transporting properties include, for example, triarylamines, benzidines, tetraaryl-p-phenylenediamines, triarylphosphines, phenothiazine, phenhydrazine, dihydrophenazine , thianthene, dibenzo-p-dioxin, phenoxathiyne, carbazole, azulene, thiophene, pyrrole and furan and their derivatives, and others with high HOMO (HOMO = highest occupied molecular orbital) ) containing O, S or N-containing heterocycle. As compounds having hole injection and/or hole transport properties, mention may be made in particular of: phenylenediamine derivatives (US 3615404), arylamine derivatives (US 3567450), amino-substituted chalcone derivatives ( US 3526501), styryl anthracene derivatives (JP-A-56-46234), polycyclic aromatic compounds (EP 1009041), polyarylalkane derivatives (US 3615402), fentanone derivatives (JP-A- 54-110837), hydrazone derivatives (US 3717462), acylhydrazones, stilbene derivatives (JP-A-61-210363), silazane derivatives (US 4950950), polysilanes (JP-A-2-204996 ), aniline copolymer (JP-A-2-282263), thiophene oligomer (JP Heisei 1 (1989) 211399), polythiophene, poly(N-vinylcarbazole) (PVK), polypyrrole, polyaniline and other conductive macromolecules, porphyrin compounds (JP-A-63-2956965, US 4720432), aromatic dimethylidene-type compounds, carbazole compounds (such as for example CDBP, CBP, mCP), Aromatic tertiary amines and styrylamine compounds (US 4127412) such as, for example, benzidine-type triphenylamine, styrylamine-type triphenylamine, and diamine-type triphenylamine. It is also possible to use arylamine dendrimers (JP Heisei 8 (1996) 193191), monomeric triarylamines (US 3180730), triarylamines containing one or more vinyl groups and/or at least one functional group containing active hydrogen base amines (US 3567450 and US 3658520), tetraaryldiamines (two tertiary amine units are linked via an aryl group). More triarylamine groups may also be present in the molecule. Phthalocyanine derivatives, naphthalocyanine derivatives, butadiene derivatives and quinoline derivatives (such as, for example, dipyrazino[2,3-f:2',3'-h]quinoline hexacarbonitrile) are also Be applicable. Preferred are aromatic tertiary amines containing at least two tertiary amine units (US 2008/0102311 A1, US 4720432 and US 5061569), such as for example NPD (α-NPD=4,4'-bis[N-(1 -Naphthyl)-N-anilino]biphenyl) (US 5061569), TPD 232 (= N,N'-bis-(N,N'-diphenyl-4-aminophenyl)-N,N- Diphenyl-4,4'-diamino-1,1'-biphenyl) or MTDATA (MTDATA or m-MTDATA=4,4',4''-tris[3-tolyl)anilino]- Triphenylamine) (JP-A-4-308688), TBDB (=N,N,N',N'-tetrakis(4-biphenyl)-diaminobiphenyl), TAPC (= 1,1- Bis(4-di-p-tolylaminophenyl)cyclohexane), TAPPP (= 1,1-bis(4-di-p-tolylaminophenyl)-3-phenylpropane), BDTAPVB (= 1 ,4-bis[2-[4-[N,N-bis(p-tolyl)amino]phenyl]vinyl]benzene), TTB (= N,N,N',N'-tetra-p-toluene (4,4'-diaminobiphenyl), TPD (= 4,4'-bis[N-3-tolyl]-N-anilino)biphenyl), N,N,N',N'-Tetraphenyl-4,4'''-diamino-1,1',4',1'',4'',1'''-bitetraphenyl, and tertiary containing carbazole units Amines such as eg TCTA (=4-(9H-carbazol-9-yl)-N,N-bis[4-(9H-carbazol-9-yl)phenyl]aniline). Also preferred are hexaazabitriphenyl compounds and phthalocyanine derivatives according to US 2007/0092755 A1 (eg H 2 Pc, CuPc (=copper phthalocyanine), CoPc, NiPc, ZnPc, PdPc, FePc, MnPc, ClAlPc, ClGaPc, ClInPc, ClSnPc , Cl2SiPc, (HO)AlPc, (HO)GaPc, VOPc, TiOPc, MoOPc, GaPc-O-GaPc). Particularly preferred are triarylamine compounds of the following formulae (TA-1) to (TA-12), which are disclosed in EP 1162193 B1, EP 650 955 B1, Synth.Metals 1997, 91(1-3), 209 , DE 19646119 A1, WO 2006/122630 A1, EP 1 860 097 A1, EP 1834945 A1, JP 08053397 A, US 6251531 B1, US 2005/0221124, JP 08292586 A, US 7399537 B2, US 7399537 B2, US 5 A1, 20 661 888 and WO 2009/041635. The compounds of formulae (TA-1) to (TA-12) may also be substituted:
Figure 02_image046
Figure 02_image048
Figure 02_image050
Other compounds that can be used as hole injection materials are described in EP 0891121 A1 and EP 1029909 A1, and injection layers are generally described in US 2004/0174116 A1. These arylamines and heterocycles, which are generally useful as hole-injecting and/or hole-transporting materials, preferably form polymers with HOMOs greater than -5.8 eV (relative to the vacuum level), particularly preferably greater than -5.5 eV. Compounds with electron-injecting and/or electron-transporting properties are, for example, pyridine, pyrimidine, pyrazine, pyrazine, oxadiazole, quinoline, quinoline, anthracene, benzanthracene, pyrene, perylene, benzimidazole, triazine , ketones, phosphine oxides and phenazine and their derivatives, but also triarylboranes and other O-, S or N-containing heterocycles with low LUMO (LUMO=lowest unoccupied molecular orbital). Particularly suitable compounds for electron transport and electron injection layers are metal chelates of 8-hydroxyquinoline (eg LiQ, AlQ 3 , GaQ 3 , MgQ 2 , ZnQ 2 , InQ 3 , ZrQ 4 ), BAlQ, oxaloids Star Ga (Ga oxinoid) complex, 4-phenanthrene-5-ol-Be complex (US 5529853 A, reference formula ET-1), butadiene derivatives (US 4356429), heterocyclic optical brightening agents (US 4539507), benzimidazole derivatives (US 2007/0273272 A1), such as eg TPBI (US 5766779, reference formula ET-2), 1,3,5-triazine, eg spirobisinyltriazine derivatives compounds (for example according to DE 102008064200), pyrene, anthracene, fused tetraphenyls, pyrenes, spiro phenyls, dendrimers, fused tetraphenyls (eg rubrene derivatives), 1,10-phenanthroline derivatives (JP 2003- 115387, JP 2004-311184, JP 2001-267080, WO 02/043449), silacyclopentadiene derivatives (EP 1480280, EP 1478032, EP 1469533), borane derivatives such as, for example, Si-containing Triarylborane derivatives (US 2007/0087219 A1, reference formula ET-3), pyridine derivatives (JP 2004-200162), phenanthroline, especially 1,10-phenanthroline derivatives, such as for example BCP and Bphen, and several phenanthrolines linked via biphenyl or other aromatic groups (US 2007-0252517 A1) or phenanthrolines linked to anthracene (US 2007-0122656 A1, with reference to formulae ET-4 and ET-5).
Figure 02_image052
Figure 02_image054
Also suitable are heterocyclic organic compounds such as, for example, thiopyran dioxide, oxazole, triazole, imidazole or oxadiazole. The use of N-containing five-membered rings, such as, for example, oxazoles, preferably 1,3,4-oxadiazoles, such as compounds of formula ET-6, ET-7, ET-8 and ET-9, which are particularly disclosed In US 2007/0273272 A1; examples of thiazoles, oxadiazoles, thiadiazoles, triazoles are especially detailed in US 2008/0102311 A1 and YA Levin, MS Skorobogatova, Khimiya Geterotsiklicheskikh Soedinenii 1967 (2), 339-341, preferably It is a compound of formula ET-10, a silacyclopentadiene derivative. Preferred compounds are of the following formulae (ET-6) to (ET-10):
Figure 02_image056
Figure 02_image058
It is also possible to use organic compounds such as perylene, perylenetetracarbonic acid, anthraquinodimethane, diphenoquinone, anthrone and anthraquinonediethylenediamine and derivatives thereof. The preferred one is 2,9,10-substituted anthracene (substituted by 1- or 2-naphthyl and 4- or 3-biphenyl) or a molecule containing two anthracene units (US 2008/0193796 A1, reference formula ET-11). It is also very advantageous to link 9,10-substituted anthracene units to benzimidazole derivatives (US 2006/147747 A and EP 1551206 A1, reference formulae ET-12 and ET-13).
Figure 02_image060
Figure 02_image062
Compounds capable of producing electron injection and/or electron transport properties preferably result in LUMOs below -2.5 eV (relative to the vacuum level), particularly preferably below -2.7 eV. Formulations of the present invention may include emitters. The term emitter refers to a material that, after excitation, which can occur by any type of energy transfer, allows a radiative transition to a ground state and emits light. Generally, two classes of emitters are known, namely, fluorescent emitters and phosphorescent emitters. The term fluorescent emitter refers to a material or compound that undergoes a radiative transition from an excited singlet state to a ground state. The term phosphorescent emitter preferably refers to a transition metal-containing luminescent material or compound. Emitters are also often referred to as dopants if they cause the above properties in the system. A dopant in a system comprising a host material and a dopant means a component that is present in a smaller proportion in the mixture. Thus, the matrix material in a system comprising the matrix material and the dopant means the component which is present in a greater proportion in the mixture. Thus, the term phosphorescent emitter may also mean, for example, a phosphorescent dopant. Compounds capable of emitting light include, inter alia, fluorescent and phosphorescent emitters. These include in particular those containing stilbene, stilbeneamine, styrylamine, coumarin, rubrene, rose bengal, thiazole, thiadiazole, cyanine, thiophene, paraphenylene, perylene, phthalocyanine, porphyrin Compounds of phytoline, ketone, quinoline, imine, anthracene and/or pyrene structure. Particularly preferred are compounds that emit light from the triplet state with high efficiency, even at room temperature, ie, exhibit electrophosphorescence rather than electrofluorescence, which often results in increased energy efficiency. Suitable for this purpose are primarily compounds containing heavy atoms with an atomic number greater than 36. Preferred are d-transition metal or f-transition metal-containing compounds that satisfy the above conditions. Particularly preferred here are corresponding compounds containing elements of Groups 8 to 10 (Ru, Os, Rh, Ir, Pd, Pt). Suitable functional compounds here are the various complexes described, for example, in WO 02/068435 A1, WO 02/081488 A1, EP 1239526 A2 and WO 2004/026886 A2. Preferred compounds useful as fluorescent emitters are described below by way of example. Particularly preferred fluorescent emission systems are selected from the following classes: monostyrylamines, distyrylamines, tristyrylamines, tetrastyrylamines, styryl phosphines, styryl ethers and arylamines. Monostyrylamine means a compound containing one substituted or unsubstituted styryl group and at least one (preferably aromatic) amine. Distyrylamine means a compound containing two substituted or unsubstituted styryl groups and at least one (preferably aromatic) amine. Tristyrylamine means a compound containing three substituted or unsubstituted styryl groups and at least one (preferably aromatic) amine. Tetrastyrylamine means a compound containing four substituted or unsubstituted styryl groups and at least one (preferably aromatic) amine. The styryl group is particularly preferably stilbene, which may also be further substituted. The corresponding phosphines and ethers are defined analogously to amines. Arylamine or aromatic amine in the sense of the present invention means a compound containing three substituted or unsubstituted aromatic or heteroaromatic ring systems bonded directly to nitrogen. At least one of these aromatic or heteroaromatic ring systems is preferably a condensed ring system, preferably having at least 14 aromatic ring atoms. Preferred examples thereof are aromatic anthraceneamines, aromatic anthracene diamines, aromatic pyrene amines, aromatic pyrene diamines, aromatic pyrene amines or aromatic pyrene diamines. Aromatic anthraceneamine means a compound in which one diarylamine group is directly bonded to an anthracene group (preferably at the 9-position). Aromatic anthracenediamine means a compound in which two diarylamine groups are directly bonded to anthracene groups (preferably at the 2,6- or 9,10-position). Aromatic pyreneamines, pyrenediamines, pyreneamines and pyrenediamines are defined analogously, wherein the diarylamine group is preferably bonded to the pyrene at the 1-position or at the 1,6-position. Other preferred fluorescent emissive systems are selected from indenoindenamines or indenodiamines, which are particularly described in WO 2006/122630; benzoindenoindenamines or benzoindenediamines, which are particularly described in WO 2008 /006449; and dibenzoindenoindenamine or dibenzoindenoindenadiamine, which is described in particular in WO 2007/140847. Examples of compounds from the styrylamine class that can be used as fluorescent emitters are the substituted or unsubstituted ones described in WO 2006/000388, WO 2006/058737, WO 2006/000389, WO 2007/065549 and WO 2007/115610 Substituted tristilbeneamine or dopant. Distyrylbenzene and distyrylbiphenyl derivatives are described in US 5121029. Other styrylamines can be found in US 2007/0122656 A1. Particularly preferred styrylamine compounds are the compounds of formula EM-1 described in US 7250532 B2 and the compounds of formula EM-2 described in DE 10 2005 058557 A1:
Figure 02_image064
Particularly preferred triarylamine compounds are the formula EM disclosed in CN 1583691 A, JP 08/053397 A and US 6251531 B1, EP 1957606 A1, US 2008/0113101 A1, US 2006/210830 A, WO 2008/006449 and DE 102008035413 -3 to EM-15 compounds and their derivatives:
Figure 02_image066
Figure 02_image068
Figure 02_image070
Figure 02_image072
Other preferred compounds that can be used as fluorescent emitters are derivatives selected from the group consisting of: naphthalene, anthracene, condensed tetraphenylene, benzanthracene, triphenylene (DE 10 2009 005746), pyrene, allene and pyrene , periflanthene, indenoperylene, phenanthrene, perylene (US 2007/0252517 A1), pyrene, pyrene, decacyclene, coronine, tetraphenylcyclopentadiene, pentaphenylcyclopentadiene Diene, pycnogenol, spiro pycnogenol, rubrene, coumarin (US 4769292, US 6020078, US 2007/0252517 A1), piperane, oxazole, benzoxazole, benzothiazole, benzimidazole, pyrazine , cinnamates, diketopyrrolopyrroles, acridone and quinacridone (US 2007/0252517 A1). Among the anthracene compounds, particularly preferred are 9,10-substituted anthracenes such as, for example, 9,10-diphenylanthracene and 9,10-bis(phenylethynyl)anthracene. 1,4-Bis(9'-ethynylanthryl)benzene is also a preferred dopant. Preferred can also be rubrene, coumarin, rose bengal, quinacridone (such as, for example, DMQA (=N,N'-dimethylquinacridone)), dicyanomethylenepyran (such as, for example, DCM (= 4-(dicyanoethylidene)-6-(4-dimethylaminostyryl-2-methyl)-4H-pyran)), thiopyran, polymethine, Pyrylium and thiopyrylium salts, bisindenoperylene and derivatives of indenoperylene. The blue fluorescent emitters are preferably polyaromatics such as, for example, 9,10-bis(2-naphthalene anthracene) and other anthracene derivatives; derivatives of fused tetraphenyl, dibenzopyran, perylene, such as for example 2,5,8,11-Tetra-tert-butylperylene, phenylene, such as 4,4'-bis(9-ethyl-3-carbazolylvinyl)-1,1'-biphenyl, perylene , allene pyridine, aryl pyrene (US 2006/0222886 A1), aryl vinylidene (US 5121029, US 5130603), bis(azinyl) imine-boron compound (US 2007/0092753 A1), Bis (azinyl) methylene compounds and quinolone (carbostyryl) compounds. Other preferred blue fluorescent emitting systems are described in CH Chen et al: "Recent developments in organic electroluminescent materials" Macromol. Symp. 125, (1997) 1-48 and "Recent progress of molecular organic electroluminescent materials and devices" Mat. Sci. and Eng. R, 39 (2002), 143-222. Other preferred blue fluorescent emitters are the hydrocarbons disclosed in WO 2010/012328 A1, WO 2014/111269 A2 and PCT/EP2017/066712. Preferred compounds useful as phosphorescent emitters are described below by way of example. Examples of phosphorescent emitters are disclosed in WO 00/70655, WO 01/41512, WO 02/02714, WO 02/15645, EP 1191613, EP 1191612, EP 1191614 and WO 2005/033244. In general, all phosphorescent complexes as used according to the prior art of phosphorescent OLEDs and as known to those skilled in the art of organic electroluminescence are suitable, and those skilled in the art may use other phosphorescent complexes without progressive steps complex. The phosphorescent metal complex preferably contains Ir, Ru, Pd, Pt, Os or Re, more preferably Ir. Preferred ligands are 2-phenylpyridine derivatives, 7,8-benzoquinoline derivatives, 2-(2-thienyl)pyridine derivatives, 2-(1-naphthyl)pyridine derivatives, 1- - Phenylisoquinoline derivatives, 3-phenylisoquinoline derivatives or 2-phenylquinoline derivatives. All of these compounds may be substituted with, for example, fluoro, cyano and/or trioxymethyl substituents, for blue color. The auxiliary ligand is preferably acetylacetonate or 2-picolinate. In particular, complexes of Pt or Pd with tetradentate ligands of formula EM-16 are suitable
Figure 02_image074
The compound of formula EM-16 is described in more detail in US 2007/0087219 A1, wherein, for the explanation of the substituents and indices of the above formula, reference is made to this specification for disclosure purposes. In addition, Pt-porphyrin complexes with enlarged ring systems (US 2009/0061681 A1) and Ir complexes such as 2,3,7,8,12,13,17,18-octaethyl- 21H,23H-porphyrin-Pt(II), tetraphenyl-Pt(II) tetrabenzoporphyrin (US 2009/0061681 A1), cis-bis(2-phenylpyridine-N,C 2 ' )Pt(II), cis-bis(2-(2'-thienyl)pyridino-N,C 3 ')Pt(II), cis-bis(2-(2'-thienyl)quinoline Radix-N,C 5 ')Pt(II), (2-(4,6-difluorophenyl)pyridyl-N,C 2 ')Pt(II) (acetylpyruvate), or ginseng (2 - Phenylpyridino-N, C2 ')Ir(III) (=Ir(ppy) 3 , green), bis( 2 -phenylpyridino-N,C2)Ir(III)(acetylpyruvate ) (= Ir(ppy) 2 acetylpyruvate, green, US 2001/0053462 A1, Baldo, Thompson et al., Nature 403, (2000), 750-753), bis(1-phenylisoquinolinate- N,C2')( 2 -phenylpyridino-N,C2')iridium(III), bis( 2 -phenylpyridino-N, C2 ')(1-phenylisoquinolino- N,C 2 ')iridium(III), bis(2-(2'-benzothienyl)pyridine-N,C3')iridium( III ) (acetylpyruvate), bis(2-(4 ',6'-Difluorophenyl)pyridine-N,C2')iridium(II)( 2 -picolinate) (FIrpic, blue), bis(2-(4',6'-difluoro) Phenyl)pyridine-N, C2 ')Ir(III)(4(1-pyrazolyl)borate), gins(2-(biphenyl-3-yl)-4-tert-butylpyridine) Iridium(III), (ppz) 2 Ir(5phdpym) (US 2009/0061681 A1), (45ooppz) 2 Ir(5phdpym) (US 2009/0061681 A1), derivatives of 2-phenylpyridine-Ir complexes , such as, for example, PQIr (=bis( 2 -phenylquinolinyl-N,C2')acetylacetonide iridium(III)), ginseng(2-phenylisoquinolinyl-N,C)Ir(III) (red), bis(2-(2'-benzo[4,5-a]thienyl)pyridine - N,C3)Ir(acetylpyruvate) ([ Btp2Ir (acac)], red , Adachi et al., Appl. Phys. Lett. 78 (2001), 1622-1624). Also suitable are complexes of trivalent lanthanides such as, for example, Tb 3+ and Eu 3+ (J. Kido et al., Appl. Phys. Lett. 65 (1994), 2124; Kido et al., Chem. Lett. 657, 1990, US 2007/0252517 A1), or phosphorescent complexes of Pt(II), Ir(I), Rh(I) and maleonitrile dithiolate (Johnson et al., JACS 105, 1983, 1795), Re(I) tricarbonyl-diimine complexes (Wrighton, JACS 96, 1974, especially 998), with cyano ligands and bipyridyl or phenanthroline ligands The Os(II) complex (Ma et al., Synth. Metals 94, 1998, 245). Other phosphorescent emission systems with tridentate ligands are described in US 6824895 and US 10/729238. Red emitting phosphorescent complexes are found in US 6835469 and US 6830828. Particularly preferred compounds for use as phosphorescent dopants are in particular the formula EM described in US 2001/0053462 A1 and Inorg. Chem. 2001, 40(7), 1704-1711, JACS 2001, 123(18), 4304-4312 -17 Compounds and their derivatives.
Figure 02_image076
Derivative lines are described in US 7378162 B2, US 6835469 B2 and JP 2003/253145 A. Furthermore, compounds of formulae EM-18 to EM-21 and their derivatives described in US 7238437 B2, US 2009/008607 A1 and EP 1348711 and their derivatives can be used as emitters.
Figure 02_image078
Figure 02_image080
Quantum dots can also be used as emitters, these materials are disclosed in detail in WO 2011/076314 A1. Compounds used as host materials, especially with emissive compounds, include materials from a variety of different classes of substances. The host material typically has an energy bandgap between HOMO and LUMO that is larger than that of the emitter material used. Furthermore, preferred host materials exhibit the properties of a hole or electron transport material. Furthermore, the host material may have both electron and hole transport properties. The host material is also referred to in some cases as the host material, especially when the host material is used in conjunction with a phosphorescent emitter in an OLED. Especially when used with fluorescent dopants, preferred host or co-host materials are selected from the following classes: oligoarylene (eg according to EP 676461 2,2' , 7,7'-tetraphenylspirobispyridine or dinaphthalene anthracene), especially oligomeric arylidene groups containing condensed aromatic groups, such as, for example, anthracene, benzanthracene, triphenylene (DE 10 2009 005746, WO 2009/069566), phenanthrene, condensed tetraphenyl, coronene, fen, fenugreek, spiro, perylene, phthaloperylene, naphthaloperylene, decacycloene, rubrene; oligomeric arylene vinylene base (eg DPVBi=4,4'-bis(2,2-diphenylvinyl)-1,1'-biphenyl or spiro-DPVBi according to EP 676461); polypodal metal complexes ( For example according to WO 04/081017), in particular metal complexes of 8-hydroxyquinolines, such as AlQ 3 (=aluminum(III) sine(8-hydroxyquinolinate)) or bis(2-methyl-8- Hydroxyquinolate)-4-(phenylphenol)aluminum, and chelates with imidazole (US 2007/0092753 A1), and quinoline-metal complexes, aminoquinoline-metal complexes, benzene quinoline-metal complexes; hole-conducting compounds (eg according to WO 2004/058911); electron-conducting compounds, in particular ketones, phosphine oxides, thionite, etc. (eg according to WO 2005/084081 and WO 2005/084082) ; configurational isomers (eg according to WO 2006/048268); boronic acid derivatives (eg according to WO 2006/117052) or benzanthracenes (eg according to WO 2008/145239). Particularly preferred compounds that can be used as host or co-host materials are selected from the class of oligomeric arylenes, including anthracene, benzanthracene, and/or pyrene, or configurational isomers of these compounds. Oligomeric arylidene groups in the sense of the present invention are intended to mean compounds in which at least three aryl groups or arylidene groups are bonded to each other. The preferred host material is especially selected from the compound of formula (H-1),
Figure 02_image082
wherein Ar 4 , Ar 5 , Ar 6 at each occurrence are identically or differently an aryl or heteroaryl group having 5 to 30 aromatic ring atoms, which may be optionally substituted, and p represents between 1 and 5 an integer in the range of ; if p=1, the sum of the π electrons in Ar 4 , Ar 5 and Ar 6 is at least 30, and if p=2, the sum is at least 36, and if p=3, the sum The sum is at least 42. In the compound of formula (H-1), the group Ar 5 particularly preferably represents anthracene, and the groups Ar 4 and Ar 6 are bonded to the 9- and 10-positions, wherein these groups can also be optionally superseded. Most preferably, at least one of the groups Ar 4 and/or Ar 6 is selected from 1- or 2-naphthyl, 2-, 3- or 9-phenanthrenyl or 2-, 3-, 4-, 5- -, 6- or 7-benzoanthryl condensed aryl groups. Anthracene compounds are described in US 2007/0092753 A1 and US 2007/0252517 A1, such as 2-(4-methylphenyl)-9,10-bis-(2-naphthyl)anthracene, 9-(2-naphthyl) -10-(1,1'-biphenylanthracene and 9,10-bis[4-(2,2-diphenylvinyl)phenyl]anthracene, 9,10-diphenylanthracene, 9, 10-Bis(phenylethynyl)anthracene and 1,4-bis(9'-ethynylanthryl)benzene. The preferred one is also a compound containing two anthracene units (US 2008/0193796 A1), such as 10,10'-bis[1,1',4',1'']bitriphenyl-2-yl-9, 9'-bisanthryl. Other preferred compounds are derivatives of: arylamine, styrylamine, luciferin, diphenylbutadiene, tetraphenylbutadiene, cyclopentadiene, tetraphenylcyclopentadiene, penta- Phenylcyclopentadiene, coumarin, oxadiazole, bisbenzoxazoline, oxazole, pyridine, pyrazine, imine, benzothiazole, benzoxazole, benzimidazole (US 2007/0092753 A1), such as 2,2',2''-(1,3,5-phenylene)tris[1-phenyl-1H-benzimidazole], aldazine, stilbene, styrylylene Aryl derivatives such as 9,10-bis[4-(2,2-diphenylvinyl)phenyl]anthracene, and distyryl arylidene derivatives (US 5121029), stilbene, vinyl Anthracene, diaminocarbazole, pyran, thiopyran, diketopyrrolopyrrole, polymethine, cinnamate and fluorescent dyes. Particularly preferred are derivatives of arylamines and styrylamines, such as TNB (=4,4'-bis[N-(1-naphthyl)-N-(2-naphthyl)amino]biphenyl). Metal-oxinoid complexes such as LiQ or AlQ3 can be used as co-hosts. Preferred compounds with oligomeric arylidene groups as substrates are disclosed in US 2003/0027016 A1, US 7326371 B2, US 2006/043858 A, WO 2007/114358, WO 2008/145239, JP 3148176 B2, EP 1009044, US 2004 /018383, WO 2005/061656 A1, EP 0681019B1, WO 2004/013073A1, US 5077142, WO 2007/065678 and DE 102009005746, wherein particularly preferred compounds are described by formulae H-2 to H-8.
Figure 02_image084
Figure 02_image086
Figure 02_image088
In addition, compounds useful as hosts or hosts include materials used with phosphorescent emitters. Such compounds which may also be used as structural elements in polymers include CBP (N,N-biscarbazolyl biphenyl), carbazole derivatives (eg according to WO 2005/039246, US 2005/0069729, JP 2004/288381 , EP 1205527 or WO 2008/086851), azacarbazoles (eg according to EP 1617710, EP 1617711, EP 1731584 or JP 2005/347160), ketones (eg according to WO 2004/093207 or according to DE 102008033943), phosphine oxides, Silane and selenium (eg according to WO 2005/003253), oligomeric phenylenes, aromatic amines (eg according to US 2005/0069729), bipolar matrix materials (eg according to WO 2007/137725), silanes (eg according to WO 2005) /111172), 9,9-diarylperylene derivatives (eg according to DE 102008017591), azaborides or boronic esters (eg according to WO 2006/117052), triazine derivatives (eg according to DE 102008036982), indium Indocarbazole derivatives (eg according to WO 2007/063754 or WO 2008/056746), indenocarbazole derivatives (eg according to DE 102009023155 and DE 102009031021), diazaphosphole derivatives (eg according to DE 102009022858), triazole derivatives, oxazole and oxazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazole derivatives, distyrylpyrazine derivatives, thiopyrans Dioxide derivatives, phenylenediamine derivatives, tertiary aromatic amines, styrylamines, amine substituted chalcone derivatives, indole, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic Group dimethylene compounds, carbodiimide derivatives, metal complexes of 8-hydroxyquinoline derivatives, such as for example AlQ 3 , which may also contain triarylaminophenol ligands (US 2007/0134514 A1 ), metal complexes/polysilane compounds, and thiophene, benzothiophene and dibenzothiophene derivatives. A preferred example of a carbazole derivative is mCP (=1,3-N,N-dicarbazolylbenzene (=9,9'-(1,3-phenylene)bis-9H-carbazole)) ( Formula H-9), CDBP (= 9,9'-(2,2'-dimethyl[1,1'-biphenyl]-4,4'-diyl)bis-9H-carbazole), 1 ,3-bis(N,N'-dicarbazolyl)benzene (= 1,3-bis(carbazol-9-yl)benzene), PVK (polyvinylcarbazole), 3,5-bis(9H -carbazol-9-yl)biphenyl and CMTTP (formula H-10). Particularly preferred compounds are disclosed in US 2007/0128467 A1 and US 2005/0249976 A1 (formulas H-11 and H-13).
Figure 02_image090
Figure 02_image092
Preferred tetraaryl-Si compounds are disclosed, for example, in US 2004/0209115, US 2004/0209116, US 2007/0087219 A1 and in H. Gilman, EA Zuech, Chemistry & Industry (London, UK), 1960, 120. Particularly preferred tetraaryl-Si compounds are described by formulae H-14 to H-21.
Figure 02_image094
Figure 02_image096
Particularly preferred compounds from group 4 for the preparation of hosts for phosphorescent dopants are disclosed in DE 102009022858, DE 102009023155, EP 652273 B1, WO 2007/063754 and WO 2008/056746, wherein particularly preferred compounds are of the formula H- 22 to H-25 description.
Figure 02_image098
Figure 02_image100
Regarding the functional compounds that can be used according to the present invention and that can be used as host materials, particularly preferred are those containing at least one nitrogen atom. These preferably include aromatic amines, triazine derivatives and carbazole derivatives. As such, carbazole derivatives in particular exhibit surprisingly high efficiencies. Triazine derivatives result in surprisingly long lifetimes of electronic devices. It would also be preferred to use a plurality of different matrix materials in a mixture, in particular at least one electron-conducting matrix material and at least one hole-conducting matrix material. It is also preferred to use a mixture of charge transport matrix materials and electrically inert matrix materials that are not involved to a significant extent, if at all, in charge transport, eg as described in WO 2010/108579. It is also possible to use compounds that improve the transition from the singlet state to the triplet state and improve the phosphorescent properties of functional compounds with emitter properties when used to support such compounds. Suitable for this purpose are in particular carbazole and bridged carbazole dimer units, as described, for example, in WO 2004/070772 A2 and WO 2004/113468 A1. Also suitable for this purpose are ketones, phosphine oxides, selenium, sine, silane derivatives and similar compounds, as described, for example, in WO 2005/040302 A1. An n-dopant herein means a reducing agent, ie, an electron donor. Preferred examples of n-dopants are W(hpp) 4 and other electron-rich metal complexes according to WO 2005/086251 A2, P=N compounds (eg WO 2012/175535 A1, WO 2012/175219 A1 ), naphthylene carbodiimide (eg WO 2012/168358 A1), perylene (eg WO 2012/031735 A1), free radicals and diradicals (eg EP 1837926 A1, WO 2007/107306 A1), pyridine ( For example EP 2452946 A1, EP 2463927 A1), N-heterocyclic compounds (for example WO 2009/000237 A1) and acridine and phenazine (for example US 2007/145355 A1). In addition, such formulations may include wide bandgap materials as functional materials. By wide bandgap material is meant a material within the meaning of the disclosure of US 7,294,849. These systems exhibit particularly favorable performance data in electroluminescent devices. The compound used as the wide bandgap material may preferably have a bandgap of 2.5 eV or more, preferably 3.0 eV or more, and particularly preferably 3.5 eV or more. The energy band gap can be calculated by means of the energy levels of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) in particular. In addition, the formulations may include hole blocking materials (HBMs) as functional materials. A hole blocking material means a material that prevents or minimizes the transport of holes (positive charges) in a multilayer system, especially when the material is arranged in layers adjacent to an emissive or hole conducting layer. Typically, the hole blocking material has a lower HOMO level than the hole transport material of the adjacent layer. A hole blocking layer is often disposed between the light emitting layer and the electron transport layer in OLEDs. Essentially any known hole blocking material can be used. In addition to other hole blocking materials described elsewhere in this application, advantageous hole blocking materials are metal complexes (US 2003/0068528) such as, for example, bis(2-methyl-8-hydroxyquinolinate) (4-Phenylphenate)aluminum(III) (BAlQ). The face-para-para(1-phenylpyrazolate-N,C2)iridium(III) (Ir(ppz) 3 ) is also used for this purpose (US 2003/0175553 A1). Phthaloline derivatives such as eg BCP or phthalimides such as eg TMPP can likewise be used. Furthermore, advantageous hole blocking materials are described in WO 00/70655 A2, WO 01/41512 and WO 01/93642 A1. In addition, such formulations may include electron blocking materials (EBMs) as functional materials. By electron blocking material is meant a material that prevents or minimizes the transport of electrons in a multilayer system, especially when the material is arranged in a layer adjacent to an emissive or electron conducting layer. Typically, electron blocking materials have higher LUMO levels than electron transport materials in adjacent layers. Basically any known electron blocking material can be used. In addition to other electron blocking materials described elsewhere in this application, advantageous electron blocking materials are transition metal complexes such as, for example, Ir(ppz) 3 (US 2003/0175553). The electron blocking material may preferably be selected from amines, triarylamines and derivatives thereof. In addition, the functional compounds that can be used as organic functional materials in these formulations, if they are low molecular weight compounds, preferably have a molecular weight of ≤ 3,000 g/mol, more preferably ≤ 2,000 g/mol, and most preferably ≤ 1,000 g/mol. Of particular interest are other functional compounds known for their high glass transition temperatures. In this regard, particularly preferred functional compounds that can be used as organic functional materials in these formulations are those determined according to DIN 51005, having ≥70°C, preferably ≥100°C, more preferably ≥125°C and optimally The glass transition temperature of ≥150℃. These formulations may also include polymers as organic functional materials. Compounds such as those described above as organic functional materials, often having relatively low molecular weights, can also be mixed with the polymer. It is also possible to covalently incorporate these compounds into polymers. It is particularly possible to employ compounds substituted with reactive leaving groups such as bromine, iodine, chlorine, boronic acids or boronic esters, or substituted with reactive polymerizable groups such as olefins or oxetanes. They were found to be useful as monomers for making the corresponding oligomers, dendrimers or polymers. The oligomerization or polymerization here is preferably carried out via halogen functions or boronic acid functions, or via polymerizable groups. It is also possible to crosslink polymers via groups of this type. The compounds and polymers according to the invention can be used as crosslinked or uncrosslinked layers. Polymers useful as organic functional materials often contain units or structural elements that have been described in the context of the above-mentioned compounds, in particular those disclosed and extensively listed in WO 02/077060 A1, WO 2005/014689 A2 and WO 2011/076314 A1 . These patents are incorporated into this application by reference. Such functional materials can be derived, for example, from the following categories: Group 1: Structural elements capable of producing hole injection and/or hole transport properties; Group 2: Structural elements capable of producing electron injection and/or electron transport properties; Group 3: Combination of structural elements with regard to the properties described in groups 1 and 2; Group 4: Structural elements with luminescent properties, especially phosphorescent groups; Group 5: Improvement of the so-called singlet to triplet state Structural elements of transitions; Group 6: Structural elements affecting the morphology or emission color of the resulting polymer; Group 7: Structural elements commonly used as backbones. Structural elements here also have various functions, so explicit designation is not necessarily advantageous. For example, the structural elements of group 1 can also be used as the backbone. The polymer having a hole transport or hole injection property containing a structural element from Group 1 used as an organic functional material may preferably contain a unit corresponding to the above-mentioned hole transport or hole injection material. Other preferred structural elements of Group 1 are, for example, triarylamines, benzidines, tetraaryl-p-phenylenediamines, carbazoles, azulene, thiophenes, pyrroles and furans and their derivatives, and others with high O, S or N-containing heterocycle of HOMO. The arylamines and heterocycles preferably have a HOMO above -5.8 eV (relative to the vacuum level), particularly preferably above -5.5 eV. Particularly preferred are especially polymers having hole transport or hole injection properties containing at least one of the repeating units of the following formula HTP-1:
Figure 02_image102
The symbols therein have the following meanings: Ar 1 is identically or differently in each case for the different repeating units a single bond or a monocyclic or polycyclic aryl group, which may be optionally substituted; Ar 2 in each case for the different repeating units identically or differently a monocyclic or polycyclic aryl group, which may be optionally substituted; Ar 3 is identically or differently in each case for the different repeat units, a monocyclic or polycyclic aryl group, which may be optionally substituted; m is 1, 2 or 3. Particularly preferred are repeating units of formula HTP-1 selected from the group consisting of units of formula HTP-1A to HTP-1C:
Figure 02_image104
Figure 02_image106
where the symbols have the following meanings: Ra is the same or different at each occurrence as H, a substituted or unsubstituted aromatic or heteroaromatic group, an alkyl group, a cycloalkyl group, an alkoxy group, an aryl group Alkyl, aryloxy, arylthio, alkoxycarbonyl, silyl or carboxyl, halogen atom, cyano, nitro or hydroxyl; r is 0, 1, 2, 3 or 4, and s is 0, 1 , 2, 3, 4 or 5. Particularly preferred are especially polymers having hole transport or hole injection properties containing at least one of the repeating units of the following formula HTP-2:
Figure 02_image108
Wherein the symbols have the following meanings: T1 and T2 are independently selected from thiophene, selenophene, thieno[2,3 - b]thiophene, thieno[3,2 - b]thiophene, dithienothiophene, pyrrole and aniline, wherein these groups may be substituted with one or more R groups; R at each occurrence is independently selected from halogen, -CN, -NC, -NCO, -NCS, -OCN , -SCN , -C(=O)NR 0 R 00 , -C(=O)X, -C(=O)R 0 , -NH 2 , -NR 0 R 00 , -SH, -SR 0 , -SO 3 H , -SO 2 R 0 , -OH, -NO 2 , -CF 3 , -SF 5 , optionally substituted silicon group, carbon group or hydrocarbon group having 1 to 40 carbon atoms, which may be optionally substituted and may optionally contain one or more heteroatoms; R 0 and R 00 are each independently H or optionally substituted carbonyl or hydrocarbyl having 1 to 40 carbon atoms, which may optionally be substituted and may optionally contain a or more heteroatoms; Ar 7 and Ar 8 independently of each other represent a monocyclic or polycyclic aryl or heteroaryl group, which may be optionally substituted and optionally bonded to one of the adjacent thiophene or selenophene groups or the 2,3-bit of both; c and e independently of each other are 0, 1, 2, 3 or 4, where 1<c+e≤6; d and f are independently 0, 1, 2, 3 or 4. Preferred examples of polymers with hole transport or hole injection properties are described in particular in WO 2007/131582 A1 and WO 2008/009343 A1. The polymer having electron injection and/or electron transport properties containing structural elements from the second group used as the organic functional material may preferably contain units corresponding to the above-mentioned electron injection and/or electron transport materials. Other preferred Group 2 structural elements with electron-injecting and/or electron-transporting properties are derived from, for example, pyridine, pyrimidine, pyrazine, pyrazine, oxadiazole, quinoline, quinoline, and phenazine and their Derivatives, but can also be derived from triarylboranes or other O-, S- or N-containing heterocycles with low LUMO levels. These second group structural elements preferably have LUMOs below -2.7 eV (relative to the vacuum level), particularly preferably below -2.8 eV. The organic functional material may preferably be a polymer containing structural elements from group 3, wherein the structural elements improving hole and electron mobility (ie, structural elements from groups 1 and 2) are directly connected to each other. Some of these structural elements can be used here as emitters, where the emission color is shifted, eg, to green, red, or yellow. Thus, their use is advantageous, for example, for generating other emission colors or broadband emission from polymers that emit blue color originally. The polymer used as an organic functional material having light-emitting properties and containing a structural element from Group 4 may preferably contain a unit corresponding to the above-mentioned emitter material. Preferred here are polymers containing phosphorescent groups, especially the above-mentioned emissive metal complexes containing corresponding units from Groups 8 to 10 (Ru, Os, Rh, Ir, Pd, Pt). Polymers used as organic functional materials containing units of Group 5 that improve the so-called singlet to triplet transition are preferably used for the support of phosphorescent compounds, preferably polymers containing the structural elements of Group 4 above. A polymeric triplet matrix can be used here. Suitable for this purpose are in particular carbazole and linked carbazole dimer units, as described, for example, in DE 10304819 A1 and DE 10328627 A1. Also suitable for this purpose are ketones, phosphine oxides, sulfites, sine, silane derivatives and similar compounds, as described, for example, in DE 10349033 A1. In addition, preferred building blocks can be derived from the compounds described above with respect to host materials for use with phosphorescent compounds. Other organic functional materials are preferably polymers containing Group 6 units that affect the morphology and/or emission color of the polymer. In addition to the aforementioned polymers, these are those having at least one additional aromatic or other conjugated structure not included in the aforementioned groups. These groups thus have little or no effect on charge-carrier mobility, non-organometallic complexes or singlet-triplet transitions. Structural units of this type can affect the morphology and/or emission color of the resulting polymer. Depending on the structural unit, these polymers can thus also be used as emitters. In the case of fluorescent OLEDs, preferred are therefore aromatic building blocks with 6 to 40 C atoms, or also diphenylacetylene, stilbene or bis-styryl arylidene derivative units, each of which is modified by one or more base substitution. Particularly preferred here are groups derived from 1,4-phenylene, 1,4-naphthylene, 1,4- or 9,10-anthrylene, 1,6-, 2 ,7- or 4,9-pyrenyl, 3,9- or 3,10-perylene, 4,4'-biphenyl, 4,4''-triphenyl, 4,4 '-Bis-1,1'-naphthylene, 4,4'-tolanylene, 4,4'-stilbene or 4,4''-bisstyryl arylidene derivatives. The polymer used as the organic functional material preferably contains a unit of Group 7, which preferably contains an aromatic structure having 6 to 40 C atoms which is often used as the main chain. These include inter alia 4,5-dihydropyrene derivatives, 4,5,9,10-tetrahydropyrene derivatives, perylene derivatives, which are disclosed for example in US 5962631, WO 2006/052457 A2 and WO 2006/ 118345 A1; 9,9-spirobispyridine derivatives, which are disclosed, for example, in WO 2003/020790 A1; 9,10-phenanthrene derivatives, which are disclosed, for example, in WO 2005/104264 A1; Hydrophenanthrene derivatives, which are disclosed, for example, in WO 2005/014689 A2; 5,7-dihydrodibenzophenanthrene derivatives and cis- and trans-indenosine derivatives, which are disclosed, for example, in WO 2004 /041901 A1 and WO 2004/113412 A2; and binaphthalene derivatives, which are disclosed, for example, in WO 2006/063852 A1; /033174 A1, WO 2003/099901 A1 and other units of DE 102006003710. Particularly preferred are structural units selected from group 7 of the following: pyridine derivatives, which are disclosed in, for example, US 5,962,631, WO 2006/052457 A2 and WO 2006/118345 A1; spirobis-perylene derivatives, which are disclosed In e.g. WO 2003/020790 A1; benzophene, dibenzophene, benzothiophene and dibenzophenanyl and their derivatives, which are disclosed in e.g. WO 2005/056633 A1, EP 1344788 A1 and WO 2007/043495 A1. The structural elements of the preferred group 7 are represented by the general formula PB-1:
Figure 02_image110
The symbols and indices have the following meanings: A, B and B' each, also for different repeating units, are identically or differently a divalent group, preferably selected from -CR c R d -, -NR c -, -PR c -, -O-, -S-, -SO-, -SO 2 -, -CO-, -CS-, -CSe-, -P(=O)R c -, -P(=S) R c - and -SiR c R d -; R c and R d at each occurrence are independently selected from H, halogen, -CN, -NC, -NCO, -NCS, -OCN, -SCN, -C (=O)NR 0 R 00 , -C(=O)X, -C(=O)R 0 , -NH 2 , -NR 0 R 00 , -SH, -SR 0 , -SO 3 H, -SO 2 R 0 , -OH, -NO 2 , -CF 3 , -SF 5 , optionally substituted silicon group, carbon group or hydrocarbon group having 1 to 40 carbon atoms, which may optionally be substituted and may optionally contain One or more heteroatoms, wherein the groups R c and R d can optionally form a spiro group with the peryl group to which they are bonded; X is halogen; R 0 and R 00 are each independently H or optionally substituted The carbonyl group or hydrocarbyl group having 1 to 40 carbon atoms, which may be optionally substituted and may optionally contain one or more heteroatoms; g is independently 0 or 1 in each case, and h is independently in each case is 0 or 1, wherein the sum of g and h in the subunit is preferably 1; m is an integer ≥ 1; Ar 1 and Ar 2 independently of each other represent a monocyclic or polycyclic aryl or heteroaryl group, It may be optionally substituted and may optionally be bonded to the 7,8-position or the 8,9-position of the indenoindena group; and a and b are independently 0 or 1 of each other. If the groups R c and R d form a spiro group with the phenylene group to which they are bound, this group preferably represents a spirobiphenylene group. Particularly preferred are repeating units of formula PB-1 selected from the group consisting of units of formula PB-1A to PB-1E:
Figure 02_image112
Figure 02_image114
wherein R c has the meaning of the above formula PB-1, r is 0, 1, 2, 3 or 4, and Re has the same meaning as the R c group. R e is preferably -F, -Cl, -Br, -I, -CN, -NO 2 , -NCO, -NCS, -OCN, -SCN, -C(=O)NR 0 R 00 , -C ( =O)X, -C(=O)R 0 , -NR 0 R 00 , optionally substituted silyl, aryl or heteroaryl having 4 to 40, preferably 6 to 20 C atoms, or a linear, branched or cyclic alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy or alkylcarbonyloxy having 1 to 20, preferably 1 to 12 C atoms group in which one or more hydrogen atoms may be optionally substituted with F or Cl, and the groups R 0 , R 00 and X have the meanings described above in formula PB-1. Particularly preferred are repeating units of formula PB-1 selected from the group consisting of units of formula PB-1F to PB-1I:
Figure 02_image116
Figure 02_image118
where the symbols have the following meanings: L is H, halogen, or optionally fluorinated straight or branched chain alkyl or alkoxy having 1 to 12 C atoms, and preferably represents H, F, methyl, isopropyl, tert-butyl, n-pentyloxy or trifluoromethyl; and L' is an optionally fluorinated straight or branched chain alkyl or alkoxy group having 1 to 12 C atoms, and Preferably it represents n-octyl or n-octyloxy. In order to carry out the present invention, polymers containing more than one of the structural elements of Groups 1 to 7 above are preferred. Furthermore, polymers can be provided which preferably contain more than one of the structural elements from the above-mentioned group, ie, a mixture comprising structural elements selected from one group. Particularly preferred are in particular polymers containing, in addition to at least one structural element (preferably at least one phosphorescent group) having luminescent properties (group 4), additionally at least one other structural element of the above-mentioned groups 1 to 3, 5 or 6 wherein these structural elements are preferably selected from groups 1 to 3. If present in the polymer, the proportions of the various groups of classes can range widely, where such ranges are known to those skilled in the art. If the proportion of one class (in each case the structural elements selected from the above-mentioned groups 1 to 7) present in the polymer is preferably in each case ≥ 5 mol %, particularly preferably in each case For ≥10 mol%, surprising advantages can be obtained. The preparation of white emitting copolymers is described in particular in detail in DE 10343606 A1. To improve solubility, the polymers may contain corresponding groups. Preferably, the polymer containing substituents can be provided such that each repeating unit has an average of at least 2 non-aromatic carbon atoms, particularly preferably at least 4 and particularly preferably at least 8 non-aromatic carbon atoms, wherein the average It is about quantity averaging. Individual carbon atoms here can be replaced by, for example, O or S. However, in particular proportions, optionally all repeating units are free of substituents containing non-aromatic carbon atoms. Short-chain substituents are preferred here, since long-chain substituents can have a negative effect on the layers obtainable using organic functional materials. Such substituents preferably contain up to 12 carbon atoms, preferably up to 8 carbon atoms, and particularly preferably up to 6 carbon atoms in the straight chain. The polymers used as organic functional materials according to the present invention may be in the form of random, alternating or regioregular copolymers, block copolymers or a combination of these copolymers. In other embodiments, the polymer used as the organic functional material may be a non-conjugated polymer with side chains, wherein this embodiment is particularly important for polymer-based phosphorescent OLEDs. In general, phosphorescent polymers can be obtained by free-radical copolymerization of vinyl compounds containing at least one unit with a phosphorescent emitter and/or at least one charge transport unit, as described in particular in US 7250226 B2 reveal. Other phosphorescent polymers are described in particular in JP 2007/211243 A2, JP 2007/197574 A2, US 7250226 B2 and JP 2007/059939 A. In another preferred embodiment, the non-conjugated polymer contains backbone units that are connected to each other by spacer units. Examples of such triplet emitters based on non-conjugated polymers dominated by main chain units are disclosed, for example, in DE 102009023154. In another preferred embodiment, the non-conjugated polymer can be referred to as a fluorescent emitter. Preferred fluorescent emitters based on non-conjugated polymers with side chains contain anthracene or benzanthracene groups or derivatives of these groups in the side chains, wherein these polymers are disclosed for example in JP 2005/108556 , JP 2005/285661 and JP 2003/338375. These polymers are often used as electron- or hole-transporting materials, wherein these polymers are preferably referred to as non-conjugated polymers. Furthermore, in the case of polymeric compounds, the functional compound used as the organic functional material in the formulation preferably has a molecular weight Mw of ≥ 10,000 g/mol, more preferably ≥ 20,000 g/mol, and particularly preferably ≥ 40,000 g /mol. The molecular weight Mw of the polymers here is preferably in the range from 10,000 to 2,000,000 g/mol, particularly preferably in the range from 20,000 to 1,000,000 g/mol, and especially preferably in the range from 40,000 to 300,000 g/mol. The molecular weight Mw is determined by means of GPC (=gel permeation chromatography) for internal polystyrene standards. The disclosures cited above to describe functional compounds are incorporated herein by reference for disclosure purposes. The formulations according to the present invention may contain all organic functional materials necessary for the manufacture of the individual functional layers of the electronic device. If, for example, a hole transport, hole injection, electron transport or electron injection layer is precisely constructed from a functional compound, the formulation contains precisely this compound as an organic functional material. If the emissive layer comprises, for example, an emitter in combination with a matrix or host material, the formulation contains precisely a mixture of the emitter and the matrix or host material as the organic functional material, as described in more detail elsewhere in this application. In addition to the stated components, the formulations according to the invention may contain other additives and processing aids. These include inter alia surface-active substances (surfactants), lubricants and greases, additives to modify viscosity, additives to increase conductivity, dispersants, hydrophobic agents, adhesion promoters, flow improvers, defoamers, degassing agents agents, diluents, fillers, auxiliaries, processing aids, dyes, pigments, stabilizers, sensitizers, nanoparticles and inhibitors, which may be reactive or non-reactive. The present invention further relates to a process for preparing the formulations according to the invention, wherein at least one organic functional material useful in the manufacture of functional layers of electronic devices is mixed with at least four different organic solvents A, B, C and D. The formulations according to the present invention can be used to fabricate a layer or multi-layer structures in which organic functional materials are present in layers, depending on the requirements of the fabrication of preferred electronic or optoelectronic components such as OLEDs. The formulations of the present invention are preferably used to form functional layers on a substrate or one of the layers applied to the substrate. The substrates may or may not have bank structures. The invention also relates to a method for manufacturing electronic devices, wherein the formulation according to the invention is applied to a substrate and dried. The functional layer can be applied, for example, by flood coating, dip coating, spray coating, spin coating, screen printing, letterpress printing, gravure printing, rotary printing, roller coating, fast drying printing, overprint printing or Nozzle printing, preferably ink jet printing, is fabricated on a substrate or one of the layers applied to the substrate. After the formulation according to the invention has been applied to the substrate or the applied functional layer, a drying step can be carried out to remove the solvent from the continuous phase described above. Drying can preferably be performed at relatively low temperatures and for relatively long periods of time to avoid the formation of air bubbles and to obtain a uniform coating. Drying can preferably be performed at a temperature in the range of 80 to 300°C, more preferably 150 to 250°C, and most preferably 160 to 200°C. The drying here can preferably be carried out at a pressure in the range from 10-6 mbar to 2 bar, more preferably in the range from 10-2 mbar to 1 bar, and most preferably in the range from 10-1 mbar to 100 mbar. During the drying process, the temperature of the substrate may vary from -15°C to 250°C. The duration of drying depends on the degree of drying to be achieved, wherein small amounts of water can optionally be removed at relatively high temperatures in combination with sintering (which is preferably done). In addition, it may be proposed to repeat the method steps several times in order to form different or identical functional layers. Crosslinking of the functional layer formed here can take place to prevent its dissolution, as described, for example, in EP 0 637 899 A1. The invention also relates to an electronic device obtainable by the method for manufacturing an electronic device. The invention further relates to an electronic device having at least one functional layer comprising at least one organic functional material, obtainable by the above-described method for manufacturing an electronic device. By electronic device is meant a device comprising an anode, a cathode and at least one functional layer therebetween, wherein the functional layer comprises at least one organic or organometallic compound. The organic electronic device is preferably an organic electroluminescence device (OLED), a polymer electroluminescence device (PLED), an organic integrated circuit (O-IC), an organic field effect transistor (O-FET), an organic thin film electric device Crystal (O-TFT), organic light-emitting transistor (O-LET), organic solar cell (O-SC), organic photovoltaic (OPV) cell, organic photodetector, organic photoreceptor, organic field quenching (field quenching) -quench) devices (O-FQDs), organic electrical sensors, light emitting electrochemical cells (LECs) or organic laser diodes (O-lasers), more preferably organic electroluminescent devices (OLEDs) or polymers Electroluminescent Devices (PLEDs). Active components are typically organic or inorganic materials introduced between the anode and cathode, where the active components exert, maintain and/or improve the properties of the electronic device, such as its performance and/or its useful life, such as charge injection , charge transport or charge blocking materials, but especially emissive and host materials. Therefore, the organic functional material that can be used to manufacture the functional layer of the electronic device preferably contains the active component of the electronic device. An organic electroluminescent device is a preferred embodiment of the present invention. The organic electroluminescence device includes a cathode, an anode and at least one emission layer. It is also preferred to use a mixture of two or more triplet emitters together with the host. Triplet emitters with shorter wavelength emission spectra are used here as co-hosts for triplet emitters with longer wavelength emission spectra. In this case, the ratio of the host material in the emissive layer, for the fluorescent emissive layer, is preferably between 50 and 99.9% by volume, more preferably between 80 and 99.5% by volume, and most preferably between 92 and 99.5% by volume. 99.5% by volume, and between 85 and 97% by volume for the phosphorescent emissive layer. Therefore, the ratio of the dopant, for the fluorescent emitting layer, is preferably between 0.1 and 50 vol. %, more preferably between 0.5 and 20 vol. %, and most preferably between 0.5 and 8 vol. %, and For the phosphorescent emissive layer it is between 3 and 15 vol%. The emissive layer of an organic electroluminescent device may also include a system comprising a plurality of host materials (mixed matrix systems) and/or a plurality of dopants. In this case, too, the dopant is generally the material in the smaller proportion in the system, and the host material is the material in the larger proportion in the system. However, in individual cases, the proportion of individual host materials in the system will be less than the proportion of individual dopants. The mixed matrix system preferably comprises two or three different matrix materials, more preferably two different matrix materials. Here one of the two materials is preferably a material with hole transport properties and the other material is a material with electron transport properties. However, the desired electron transport and hole transport properties of the mixed matrix components may also be predominantly or completely combined in a single mixed matrix component, wherein the other mixed matrix components perform other functions. The two different matrix materials here may be in a ratio of 1:50 to 1:1, preferably 1:20 to 1:1, more preferably 1:10 to 1:1 and most preferably 1:4 to 1:1 exist. Mixed matrix systems are preferably used in phosphorescent organic electroluminescent devices. Further details on mixed matrix systems can be found, for example, in WO 2010/108579. In addition to these layers, the organic electroluminescent device may also comprise other layers, such as in each case one or more hole injection layers, hole transport layers, hole blocking layers, electron transport layers, electron injection layers, Exciton blocking layer, electron blocking layer, charge generating layer (IDMC 2003, Taiwan; Session 21 OLED (5), T. Matsumoto, T. Nakada, J. Endo, K. Mori, N. Kawamura, A. Yokoi, J. . Kido, Multiphoton Organic EL Device Having Charge Generation Layer) and/or organic or inorganic p/n junction. Here, one or more hole transport layers may be p-doped, for example with metal oxides such as MoO 3 or WO 3 , or with (per)fluorinated electron-deficient aromatic compounds, and/or a Or multiple electron transport layers may be n-doped. It is also possible to introduce an intermediate layer between the two emissive layers, which has an exciton blocking function and/or controls the charge balance in the electroluminescent device. It should be noted, however, that not all of these layers have to be present. Such layers may likewise be present when using the formulations according to the invention as previously defined. In other embodiments of the present invention, the device includes a plurality of layers. The formulations according to the invention are preferably used here for the manufacture of hole transport, hole injection, electron transport, electron injection and/or emissive layers. Thus, the present invention is also concerned with the inclusion of at least three layers, but in preferred embodiments all of said layers (from hole injection, hole transport, emission, electron transport, electron injection, charge blocking and/or charge generation) layers), and wherein at least one of the layers is an electronic device obtained from a formulation used in accordance with the present invention. The thickness of such layers (eg, hole transport and/or hole injection layers) may preferably be in the range of 1 to 500 nm, more preferably in the range of 2 to 200 nm. The device may further comprise layers composed from other low molecular weight compounds or polymers not applied by using the formulations according to the invention. These can also be produced by evaporating low molecular weight compounds under high vacuum. According to a preferred embodiment of the present invention, the device comprises an emissive layer applied by evaporating a low molecular weight compound. According to such an embodiment, any matrix material and emitter known to the state of the art for vacuum-applied emissive layers may be used. As triplet matrix material for this purpose, in particular the following materials can be used:
Figure 02_image120
Figure 02_image122
Figure 02_image124
These materials can also be used as hole transport materials in hole transport layers applied by vapor deposition. The synthesis of these compounds, if not specifically disclosed in the prior art, can be accomplished by those of ordinary skill in the art according to methods generally known in the prior art. For example, the synthesis of compound (22) can be accomplished as described in WO 2007/072952 for the synthesis of compound 3 of this application (see p. 32-33). It is also preferred to use the compounds not in pure form but in a mixture (blend) with any other desired type of polymeric, oligomeric, dendritic or low molecular weight species. They can, for example, improve electronic properties or self-luminescence. In preferred embodiments of the present invention, the formulations according to the present invention comprise organic functional materials used as host materials or matrix materials in the emissive layer. The formulations herein may also include the above-described emitters in addition to the host material or matrix material. The organic electroluminescent devices herein may include one or more emissive layers. If a plurality of emissive layers are present, preferably with a complex emission maximum between 380 nm and 750 nm, resulting in an overall white emission, ie, various emissive compounds that can fluoresce or phosphorescent are used for the emissive layer. The very best are three-layer systems in which the three layers exhibit blue, green and orange or red emission (for basic structure see eg WO 2005/011013). White emitting devices are suitable, for example, as backlights for LCD displays or for general lighting applications. It is also possible to arrange a plurality of OLEDs on top of each other, so that the efficiency with respect to the light yield to be achieved is further improved. In order to improve the outcoupling of light, the final organic layer on the light output side of the OLED can also be, for example, in the form of nanofoams, resulting in a reduced proportion of total reflection. Also preferred is a vacuum sublimation unit in which one or more layers are made by (wherein the material is at a pressure below 10-5 mbar, preferably below 10-6 mbar, more preferably below 10-7 mbar Among them, the organic electroluminescent device is applied by means of vapor deposition (applied) sublimation method. It can also be proposed that one or more layers of the electronic device according to the invention are applied by means of the OVPD (Organic Vapour Deposition) method or by means of sublimation of a carrier gas, wherein the materials are applied at 10 −5 mbar and 1 pressure between bars is applied. It may furthermore be provided that one or more layers of the electronic device according to the invention are produced from solution, such as for example by spin coating, or by means of any desired printing method, such as screen printing, quick-drying or overprinting , but the best ones are LITI (Light Initiated Thermal Imaging, Thermal Transfer Printing) or inkjet printing. The device often includes a cathode and an anode (electrode). The electrodes (cathode, anode) are chosen for the purposes of the present invention in such a way that their energy band corresponds as closely as possible to that of the adjacent organic layer to ensure efficient electron or hole injection. The cathode preferably comprises metal complexes, metals with low work function, comprising various metals such as, for example, alkaline earth metals, alkali metals, main group metals or lanthanides (eg Ca, Ba, Mg, Al, In, Mg, Yb, Sm, etc.)) metal alloy or multi-layer structure. In the case of multi-layer structures, in addition to these metals, other metals with higher work functions such as Ag and Ag nanowires (Ag NWs) can also be used, in which case a combination of metals is usually used, such as Ca/Ag or Ba/Ag. It is also preferred to introduce a thin interlayer of material with a high dielectric constant between the metal cathode and the organic semiconductor. Suitable for this purpose are, for example, alkali metal or alkaline earth metal fluorides, but also corresponding oxides (eg LiF, Li2O , BaF2, MgO, NaF , etc.). The layer thickness of this layer is preferably between 0.1 and 10 nm, more preferably between 0.2 and 8 nm, and most preferably between 0.5 and 5 nm. The anode preferably comprises a material with a high work function. The anode preferably has a potential greater than 4.5 eV compared to vacuum. Suitable for this purpose are, on the one hand, metals with a high redox potential, such as Ag, Pt or Au. On the other hand, metal/metal oxide electrodes (eg, Al/Ni/ NiOx , Al/ PtOx ) may also be preferred. For some applications, at least one of the electrodes must be transparent to facilitate illumination of organic materials (O-SC) or outcoupling of light (OLED/PLED, O-laser). A preferred structure uses a transparent anode. The preferred anode material here is a conductive mixed metal oxide. Particularly preferred are indium tin oxide (ITO) or indium zinc oxide (IZO). Preferred are additionally conductive doped organic materials, especially conductive doped polymers such as, for example, poly(ethylenedioxythiophene) (PEDOT) and polyaniline (PANI) or derivatives of these polymers thing. It is also preferred to apply a p-doped hole transport material as a hole injection layer to the anode, wherein suitable p-dopants are metal oxides such as MoO 3 or WO 3 , or (per)fluorinated vacancies Electron aromatics. Other suitable p-dopants are HAT-CN (hexacyanohexaaztriphenyl) or the compound NDP9 from Novaled. This type of layer simplifies hole injection in materials with low HOMO (ie, with large values of HOMO). In general, all materials used for these layers according to the prior art can be used in other layers, and those skilled in the art will be able to combine each of these materials in electronic devices without the need for progressive steps and according to the present invention material for invention. The device is accordingly constructed in a manner known per se, depending on the application, equipped with contacts and finally sealed (since the service life of such a device is considerably shortened in the presence of water and/or air). The formulations according to the invention and the electronic devices obtainable therefrom, in particular organic electroluminescent devices, are distinguished from the prior art by one or more of the following surprising advantages: 1. Compared to that obtained using conventional methods The electronic devices obtained, which can be obtained using the formulations according to the invention, exhibit very high stability and very long service life. 2. The formulations according to the invention can be processed using conventional methods, thus also resulting in cost advantages. 3. The organic functional materials used in the formulations according to the present invention are not subject to any particular limitation, so that the method of the present invention can be widely used. 4. The coatings obtainable using the formulations of the present invention exhibit excellent quality, especially with regard to the uniformity of the coating. The above advantages are not accompanied by loss of other electronic properties. It should be noted that variations of the embodiments described in the present invention are within the scope of the present invention. Unless expressly excluded, each feature disclosed in the present invention may be replaced by alternative features serving the same or equivalent or similar purpose. Accordingly, unless stated otherwise, each feature disclosed in this specification should be considered as an example of a generic series or as equivalent or similar features. All features of the present invention may be combined with each other in any way, unless specific features and/or steps are mutually exclusive. This applies in particular to the preferred features of the present invention. Likewise, features that are not fundamentally combined may be used separately (and not in combination). Furthermore, it should be pointed out that many of the features, especially those of the preferred embodiments of the present invention, are innovative in their own right and should not be considered merely part of the embodiments of the present invention. With regard to these features, independent protection should be sought in addition to or in lieu of any presently claimed inventions. The teachings of the technical actions disclosed herein can be summarized and combined with other examples. The invention is explained in more detail below with reference to working examples, without being thereby limited. Those skilled in the art will be able to use these instructions to fabricate other electronic devices in accordance with the present invention without using the techniques of the present invention, and thus can practice the present invention throughout the claimed scope. Working Example A) Film Formation A printing ink for 21 hole injection layers (HIL) with a concentration of 7 g/L was produced, as shown in Table 5. The composition is the same as the ink used for the device example (see below). The ink was ink jet printed and the film profile was measured after drying. The solvent 3-phenoxytoluene was chosen as a reference and exhibited a U-shaped film profile, as can be seen in FIG. 2 . In general, by adding a hydrogen bond-containing solvent (2-phenoxyethanol) to the 1-ethylnaphthalene/amylbenzene mixture, the film profile shows a significant improvement, meaning that a flat film can be achieved. However, the film of Example 1 was slightly rough (1.8 nm in the central region). To reduce roughness, an additional solvent, 1-phenylnaphthalene (Examples 2 to 8) was added. As can be seen in Table 5, the roughness improved to less than 1 nm. Flat films can be achieved by adjusting the ratio of 1-phenylnaphthalene from 0 to 5%. When there is too much 1-phenylnaphthalene in the formulation (Example 8, with 10% 1-phenylnaphthalene), the film profile becomes W-shaped. Additional inks were prepared containing various hydrogen-bonded solvents (see Examples 9 to 20 in Table 5) and 1-ethylnaphthalene/pentylbenzene/1-phenylnaphthalene. All of these film profiles were significantly improved and showed higher flatness compared to the reference. Film profiles were measured using a KLA-Tencor Corporation profiler Alpha-step D120 with a 2 μm stylus. The flatness coefficient is calculated and used to determine flatness by the following equation:
Figure 02_image126
in,
Figure 02_image128
is the pixel edge height, and
Figure 02_image132
is the pixel center height, measured across the short axis of the pixel. A film is considered flat when the flatness coefficient is equal to or less than 10%. Calculate the rms roughness along the short axis of the pixel within 10 μm around the center of the pixel by:
Figure 02_image136
in,
Figure 02_image138
for location
Figure 02_image143
the height value, while
Figure 02_image144
Average of height values in the central 10 μm.
Figure 02_image147
Figure 02_image149
Figure 02_image151
B) Device performance To further confirm whether the ink is suitable for device performance, several examples of HIL printing ink from Table 4 were selected to manufacture the device. The device structure is shown in FIG. 1 . Description of the Manufacturing Process Glass substrates covered with pre-structured ITO and bank materials were ultrasonically cleaned in isopropanol and then in deionized water, then air gun dried, and then annealed on a hot plate at 230°C for 2 hours. A hole injection layer (HIL) using a composition of a polymer (eg, polymer P2) and a salt (eg, salt D1 ) as described in PCT/EP2015/002476 is inkjet printed on the substrate and printed on the substrate. Dry in vacuo. HIL inks were prepared for each example using the solvent mixtures described in Table 5. The HIL was then annealed in air at 185°C for 30 minutes. On top of the HIL, a hole transport layer (HTL) was inkjet printed, dried in vacuum, and annealed at 210°C for 30 minutes in a nitrogen atmosphere. The polymer HTM-1 dissolved in 3-phenoxytoluene at a concentration of 7 g/l was used as the material for the hole transport layer. The structure of polymer HTM-1 is as follows:
Figure 02_image153
The green emissive layer (G-EML) was also inkjet printed, vacuum dried and annealed at 160°C for 10 minutes in a nitrogen atmosphere. In all working examples, the ink for the green emissive layer contained two host materials (ie, HM-1 and HM-2) and a triplet emitter prepared in 3-phenoxytoluene at a concentration of 12 g/l (EM-1). The materials were used in the following ratio: HM-1:HM-2:EM-1=40:40:20. The structure of the material is as follows:
Figure 02_image155
Figure 02_image157
All inkjet printing processes were done under yellow light and ambient conditions. The devices were then transferred to a vacuum deposition chamber where thermal evaporation was used to complete the deposition of the common hole blocking layer (HBL), electron transport layer (ETL), and cathode (Al) (see Figure 1). The devices are then shown in a glove box. In the hole blocking layer (HBL), ETM-1 was used as the hole blocking material. The material has the following structure:
Figure 02_image159
In the electron transport layer (ETL), a 50:50 mixture of ETM-1 and LiQ was used. LiQ is lithium quinolinate. Finally, the Al electrodes are vapor deposited. The devices were then packaged in a glove box and physically demonstrated in ambient air. Figure 1 shows the device structure. The device was driven by a constant voltage supplied by a Keithley 230 voltage source. The voltage on the device and the current through the device were measured using two Keithley 199 DMM multimeters. The brightness of the device is detected with an SPL-025Y brightness sensor, which is a combination of photodiodes and photonic filters. Photocurrent was measured with a Keithley 617 electrometer. For the spectrum, the brightness sensor was replaced by a glass fiber connected to the spectrometer input. The lifetime of the device is measured with initial brilliance at a given current. The luminosity is then measured over time by calibrated photodiodes. Results and Discussion Three devices were prepared, including Reference 1 (from 3-PT, U-shaped HIL profile), Device Example 1 (3-solvent system, flat HIL with rough surface), Device Example 2 (4-solvent system, flat HIL has a smooth surface). The solvent used in the apparatus of Example 1 was 1-ethylnaphthalene:2-phenoxyethanol:pentylbenzene (30:35:35). The solvent used in the apparatus of Example 2 was 1-ethylnaphthalene:2-phenoxyethanol:pentylbenzene:1-phenylnaphthalene (40:40:17:3). Electroluminescence (EL) images of these three devices are shown in Figures 23, 24 and 25. The photograph of Figure 24 clearly shows a certain surface texture (due to the high surface roughness created by the 3-solvent mixture of the HIL layer). This problem can be solved by adding a small amount of 1-phenylnaphthalene, as shown in Figure 25. Table 6 summarizes the luminous efficiency and external quantum efficiency (EQE) at 1000 cd/m 2 , and the device lifetime (LT80) at 3000 cd/m 2 . Unexpectedly, no major differences were observed in device results with or without surface roughness. The lifetime in particular exhibits values as high as the reference. These results show that the new 4-solvent system caused no damage to the device and greatly improved the membrane profile. It can be noted that in the example with a flat membrane profile, the operating voltage is lower. This indicates that the current and voltage are distributed uniformly in the pixel, resulting in better operating conditions and emission color.
Figure 02_image161

圖1顯示含有基板、ITO陽極、電洞注入層(HIL)、電洞傳輸層(HTL)、綠色發射層(G-EML)、電洞阻擋層(HBL)、電子傳輸層(ETL)及Al陰極之裝置的典型層結構。   圖2至22顯示參考實例中及操作實例1至20中製備之膜的膜輪廓。   圖23至25顯示參考1之裝置及實例1與2之裝置的電致發光(EL)影像。Figure 1 shows a substrate containing an ITO anode, a hole injection layer (HIL), a hole transport layer (HTL), a green emissive layer (G-EML), a hole blocking layer (HBL), an electron transport layer (ETL) and Al Typical layer structure of a cathode device. Figures 2 to 22 show the film profiles of the films prepared in Reference Examples and Operating Examples 1 to 20. Figures 23 to 25 show electroluminescence (EL) images of the device of Reference 1 and the devices of Examples 1 and 2.

Figure 106137139-A0101-11-0003-1
Figure 106137139-A0101-11-0003-1

Claims (25)

一種調配物,其含有至少一種有機功能材料及至少四種不同有機溶劑為第一有機溶劑A、第二有機溶劑B、第三有機溶劑C、及第四有機溶劑D,其特徵在於:- 該第一有機溶劑A包含能夠接收或給予氫鍵結之基團,- 該第二有機溶劑B具有沸點在150至350℃之範圍,- 該第三有機溶劑C具有沸點在100至300℃之範圍,以及- 該第四有機溶劑D具有沸點在200至400℃之範圍,以0.01至15體積%之含量存在且具有
Figure 106137139-A0305-02-0099-4
15mPas之黏度,- 該至少一種有機功能材料在該第二有機溶劑B中及在該第四有機溶劑D中之溶解度為
Figure 106137139-A0305-02-0099-5
5g/l,- 該第三有機溶劑C的該沸點比該第二有機溶劑B的該沸點低至少10℃,以及- 該第四有機溶劑D的該沸點比該第二有機溶劑B的該沸點高至少10℃,- 其中該第一有機溶劑A包含能夠給予氫鍵結之基團且該基團係OH-或NH-基團。
A formulation containing at least one organic functional material and at least four different organic solvents is a first organic solvent A, a second organic solvent B, a third organic solvent C, and a fourth organic solvent D, characterized in that:- the The first organic solvent A contains groups capable of accepting or donating hydrogen bonds, - the second organic solvent B has a boiling point in the range of 150 to 350°C, - the third organic solvent C has a boiling point in the range of 100 to 300°C , and - the fourth organic solvent D has a boiling point in the range of 200 to 400°C, is present in an amount of 0.01 to 15% by volume and has
Figure 106137139-A0305-02-0099-4
The viscosity of 15mPas, - the solubility of the at least one organic functional material in the second organic solvent B and in the fourth organic solvent D is
Figure 106137139-A0305-02-0099-5
5 g/l, - the boiling point of the third organic solvent C is at least 10°C lower than the boiling point of the second organic solvent B, and - the boiling point of the fourth organic solvent D is lower than the boiling point of the second organic solvent B at least 10°C higher, - wherein the first organic solvent A contains a group capable of donating hydrogen bonding and this group is an OH- or NH- group.
如請求項1之調配物,其中該第一有機溶劑A為根據通式(I)之溶劑:
Figure 106137139-A0305-02-0100-1
其中,X 為O或NR4,R1、R2及R3 在每次出現時係相同或不同,且為H、D、具有1至12個碳原子之直鏈烷基或具有3至12個碳原子之支鏈或環狀烷基,其中一或多個非相鄰CH2基可經-O-、-S-、-NR5-、-CO-O-、-C=O-、-CH=CH-或-C≡C-置換,且其中一或多個氫原子可經F或是具有4至14個碳原子且可經一或多個非芳族R5基取代的芳基或雜芳基置換,而且在同一環上或在兩個不同環上之複數個取代基R5可進而一起形成單環或多環、脂族、芳族或雜芳族環系統,其可經複數個取代基R5取代;或R1、R2及R3中之二者可進而一起形成具有4至14個碳原子之單環或多環之脂族、芳族或雜芳族環系統,其可經複數個取代基R5取代;R4 為H、具有1至12個碳原子之直鏈烷基、具有3至12個碳原子之支鏈或環狀烷基、或具有4至14個碳原子之芳基或雜芳基,其可經一或多個非芳族R5基取代,以及R5 在每次出現時係相同或不同,且為H、具有1至12個碳原子之直鏈烷基或烷氧基或具有3至20個碳 原子之支鏈或環狀烷基或烷氧基,其中一或多個非相鄰CH2基可經-O-、-S-、-CO-O-、-C=O-、-CH=CH-或-C≡C-置換。
The formulation of claim 1, wherein the first organic solvent A is a solvent according to general formula (I):
Figure 106137139-A0305-02-0100-1
wherein X is O or NR 4 , R 1 , R 2 and R 3 are the same or different at each occurrence, and are H, D, straight-chain alkyl having 1 to 12 carbon atoms, or 3 to 12 carbon atoms A branched or cyclic alkyl group of 1 carbon atoms, in which one or more non-adjacent CH 2 groups can be replaced by -O-, -S-, -NR 5 -, -CO-O-, -C=O-, -CH=CH- or -C≡C- substituted, and wherein one or more hydrogen atoms may be F or an aryl group having 4 to 14 carbon atoms that may be substituted with one or more non-aromatic R 5 groups or heteroaryl substitution, and multiple substituents R5 on the same ring or on two different rings may in turn form together a monocyclic or polycyclic, aliphatic, aromatic or heteroaromatic ring system, which may be Plural substituents R 5 are substituted; or two of R 1 , R 2 and R 3 may in turn form together a monocyclic or polycyclic aliphatic, aromatic or heteroaromatic ring system having 4 to 14 carbon atoms , which may be substituted by a plurality of substituents R 5 ; R 4 is H, a straight-chain alkyl group having 1 to 12 carbon atoms, a branched or cyclic alkyl group having 3 to 12 carbon atoms, or a Aryl or heteroaryl of 14 carbon atoms, which may be substituted with one or more non-aromatic R 5 groups, and R 5 is the same or different at each occurrence, and is H, having 1 to 12 carbons Atomic straight-chain alkyl or alkoxy or branched or cyclic alkyl or alkoxy having 3 to 20 carbon atoms, wherein one or more non-adjacent CH 2 groups may be replaced by -O-, -S -, -CO-O-, -C=O-, -CH=CH- or -C≡C- substitution.
如請求項2之調配物,其中該第一有機溶劑A為根據通式(II)之溶劑:
Figure 106137139-A0305-02-0101-2
其中,R1、R2及R3係如請求項2定義。
The formulation of claim 2, wherein the first organic solvent A is a solvent according to general formula (II):
Figure 106137139-A0305-02-0101-2
Wherein, R 1 , R 2 and R 3 are as defined in claim 2.
如請求項2之調配物,其中該第一有機溶劑A為根據通式(III)之溶劑:
Figure 106137139-A0305-02-0101-3
其中,R1、R2、R3及R4係如請求項2定義。
The formulation of claim 2, wherein the first organic solvent A is a solvent according to general formula (III):
Figure 106137139-A0305-02-0101-3
Wherein, R 1 , R 2 , R 3 and R 4 are as defined in claim 2.
如請求項3或4之調配物,其中該第一有機溶劑A為根據通式(II)或(III)之溶劑:其中,R1、R2及R3 在每次出現時係相同或不同,且為具有1至8個碳原子之直鏈烷基或具有3至8個碳原子之支鏈或環狀烷基,其中一或多個非相鄰CH2基可 經-O-、-NH-、-CO-O-、-C=O-、-CH=CH-或-C≡C-置換,且其中一或多個氫原子可經F或具有4至10個碳原子且可經一或多個非芳族R5基取代的芳基或雜芳基置換,而且其中R5係如請求項2定義。 A formulation as claimed in claim 3 or 4, wherein the first organic solvent A is a solvent according to general formula (II) or (III): wherein R 1 , R 2 and R 3 are the same or different at each occurrence , and is a straight-chain alkyl group with 1 to 8 carbon atoms or a branched or cyclic alkyl group with 3 to 8 carbon atoms, wherein one or more non-adjacent CH 2 groups can be replaced by -O-, - NH-, -CO-O-, -C=O-, -CH=CH- or -C≡C- substituted, and one or more of the hydrogen atoms can be replaced by F or have 4 to 10 carbon atoms and can be replaced by Aryl or heteroaryl substituted with one or more non-aromatic R 5 groups, and wherein R 5 is as defined in claim 2. 如請求項3或4之調配物,其中該第一有機溶劑A為根據通式(II)或(III)之溶劑,其中R1及/或R2為H。 A formulation as claimed in claim 3 or 4, wherein the first organic solvent A is a solvent according to general formula (II) or (III), wherein R 1 and/or R 2 are H. 如請求項4之調配物,其中該第一有機溶劑A為根據通式(III)之溶劑,其中R4為H。 The formulation of claim 4 , wherein the first organic solvent A is a solvent according to general formula (III), wherein R4 is H. 如請求項1之調配物,其中該第一有機溶劑A具有表面張力
Figure 106137139-A0305-02-0102-7
20mN/m。
The formulation of claim 1, wherein the first organic solvent A has surface tension
Figure 106137139-A0305-02-0102-7
20mN/m.
如請求項1之調配物,其中該第一有機溶劑A之含量以該調配物中溶劑的總量計係在5至60體積%之範圍。 The formulation of claim 1, wherein the content of the first organic solvent A is in the range of 5 to 60% by volume based on the total amount of solvents in the formulation. 如請求項1之調配物,其中該第一有機溶劑A具有沸點在150至350℃之範圍。 The formulation of claim 1, wherein the first organic solvent A has a boiling point in the range of 150 to 350°C. 如請求項1之調配物,其中該第二有機溶劑B之含量以該調配物中溶劑的總量計係在5至95體積%之範圍。 The formulation of claim 1, wherein the content of the second organic solvent B is in the range of 5 to 95% by volume based on the total amount of solvents in the formulation. 如請求項1之調配物,其中該第二有機溶劑B具有沸點在200至300℃之範圍。 The formulation of claim 1, wherein the second organic solvent B has a boiling point in the range of 200 to 300°C. 如請求項1之調配物,其中該第三有機溶劑C之含量以該調配物中溶劑的總量計係在1至30體積%之範圍。 The formulation of claim 1, wherein the content of the third organic solvent C is in the range of 1 to 30% by volume based on the total amount of solvents in the formulation. 如請求項1之調配物,其中該調配物具有表面張力在15至50mN/m之範圍。 The formulation of claim 1, wherein the formulation has a surface tension in the range of 15 to 50 mN/m. 如請求項1之調配物,其中該調配物具有黏度在1至50mPa.s之範圍。 The formulation of claim 1, wherein the formulation has a viscosity of 1 to 50 mPa. range of s. 如請求項1之調配物,其中該調配物中該至少一種有機功能材料的含量以該調配物之總重計係在0.001至20重量%之範圍。 The formulation of claim 1, wherein the content of the at least one organic functional material in the formulation is in the range of 0.001 to 20% by weight based on the total weight of the formulation. 如請求項1之調配物,其中該至少一種有機功能材料係選自由下列所組成之群組:有機導體、有機半導體、有機螢光化合物、有機磷光化合物、有機吸光性化合物、有機光敏性化合物、有機光敏化劑(photosensitisation agent)及其他有機光活性化合物,諸如過渡金屬、稀土金屬、鑭系元素及錒系元素之有機金屬錯合物。 The formulation of claim 1, wherein the at least one organic functional material is selected from the group consisting of: organic conductors, organic semiconductors, organic fluorescent compounds, organic phosphorescent compounds, organic light absorbing compounds, organic photosensitive compounds, Organic photosensitisation agents and other organic photoactive compounds, such as organometallic complexes of transition metals, rare earth metals, lanthanides and actinides. 如請求項17之調配物,其中該至少一種有機功能材料 係選自由下列所組成之群組:螢光發射體、磷光發射體、主體材料、基質材料、激子阻擋材料、電子傳輸材料、電子注入材料、電洞導體材料、電洞注入材料、n-摻雜劑、p-摻雜劑、寬能帶隙材料、電子阻擋材料及電洞阻擋材料。 The formulation of claim 17, wherein the at least one organic functional material is selected from the group consisting of: fluorescent emitters, phosphorescent emitters, host materials, host materials, exciton blocking materials, electron transport materials, electron injection materials, hole conductor materials, hole injection materials, n- Dopants, p-dopants, wide bandgap materials, electron blocking materials and hole blocking materials. 如請求項18之調配物,其中該至少一種有機功能材料為選自由下列所組成之群組的有機半導體:電洞注入、電洞傳輸、發射、電子傳輸及電子注入材料。 The formulation of claim 18, wherein the at least one organic functional material is an organic semiconductor selected from the group consisting of hole injection, hole transport, emission, electron transport and electron injection materials. 如請求項19之調配物,其中該至少一種有機半導體係選自由下列所組成之群組:電洞注入、電洞傳輸及發射材料。 The formulation of claim 19, wherein the at least one organic semiconductor is selected from the group consisting of hole injection, hole transport, and emissive materials. 如請求項19或20之調配物,其中該電洞注入及電洞傳輸材料為聚合化合物或聚合化合物與非聚合化合物之摻混物。 The formulation of claim 19 or 20, wherein the hole injection and hole transport material is a polymeric compound or a blend of a polymeric compound and a non-polymeric compound. 如請求項19或20之調配物,其中該至少一種發射材料為具有低分子量之二或更多種不同化合物的混合物。 The formulation of claim 19 or 20, wherein the at least one emissive material is a mixture of two or more different compounds having low molecular weights. 一種製備如請求項1至22中一或多項之調配物之方法,其特徵在於該至少一種有機功能材料係與該至少四種溶劑混合。 A method of preparing a formulation as claimed in one or more of claims 1 to 22, characterized in that the at least one organic functional material is mixed with the at least four solvents. 一種製備電致發光裝置之方法,其特徵在於該電致發光裝置之至少一層係製備如下:將請求項1至22中一或多項之調配物沉積在表面上以及隨後乾燥。 A method of producing an electroluminescent device, characterized in that at least one layer of the electroluminescent device is produced by depositing the formulation of one or more of claims 1 to 22 on a surface and subsequently drying. 一種電致發光裝置,其特徵在於至少一層係製備如下:將請求項1至22中一或多項之調配物沉積在表面上以及隨後乾燥。 An electroluminescent device, characterized in that at least one layer is prepared by depositing the formulation of one or more of claims 1 to 22 on a surface and subsequently drying.
TW106137139A 2016-10-31 2017-10-27 Formulation of an organic functional material TWI754691B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP16196589 2016-10-31
??16196589.2 2016-10-31
EP16196589.2 2016-10-31

Publications (2)

Publication Number Publication Date
TW201829658A TW201829658A (en) 2018-08-16
TWI754691B true TWI754691B (en) 2022-02-11

Family

ID=57286246

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106137139A TWI754691B (en) 2016-10-31 2017-10-27 Formulation of an organic functional material

Country Status (7)

Country Link
US (1) US11538992B2 (en)
EP (1) EP3532565B1 (en)
JP (1) JP7046938B2 (en)
KR (1) KR102451842B1 (en)
CN (1) CN109863223B (en)
TW (1) TWI754691B (en)
WO (1) WO2018077660A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102285565B1 (en) * 2017-12-12 2021-08-04 주식회사 엘지화학 Ink composition and method of manufacturing organic light emitting device
CN108948865B (en) * 2017-12-18 2020-07-10 广东聚华印刷显示技术有限公司 Electroluminescent material ink and electroluminescent device thereof
EP3807367B1 (en) * 2018-06-15 2023-07-19 Merck Patent GmbH Formulation of an organic functional material
KR20200132537A (en) 2019-05-17 2020-11-25 삼성전자주식회사 Photoelectric conversion device and organic sensor and electronic device
TW202214791A (en) * 2020-04-21 2022-04-16 德商麥克專利有限公司 Formulation of an organic functional material
CN116003817B (en) * 2022-12-31 2023-12-12 长江师范学院 Aggregate material based on perylene tetracarboxylic anhydride and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103262278A (en) * 2010-12-21 2013-08-21 E.I.内穆尔杜邦公司 Liquid composition for deposition of organic electroactive materials

Family Cites Families (211)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL250330A (en) 1959-04-09
US3526501A (en) 1967-02-03 1970-09-01 Eastman Kodak Co 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography
US3658520A (en) 1968-02-20 1972-04-25 Eastman Kodak Co Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups
US3567450A (en) 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3615404A (en) 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
US3717462A (en) 1969-07-28 1973-02-20 Canon Kk Heat treatment of an electrophotographic photosensitive member
BE756943A (en) 1969-10-01 1971-03-16 Eastman Kodak Co NEW PHOTOCONDUCTIVE COMPOSITIONS AND PRODUCTS CONTAINING THEM, USED IN PARTICULAR IN ELECTROPHOTOGRAPHY
US4127412A (en) 1975-12-09 1978-11-28 Eastman Kodak Company Photoconductive compositions and elements
JPS54110837A (en) 1978-02-17 1979-08-30 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5646234A (en) 1979-09-21 1981-04-27 Ricoh Co Ltd Electrophotographic receptor
US4356429A (en) 1980-07-17 1982-10-26 Eastman Kodak Company Organic electroluminescent cell
US4539507A (en) 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
JPS61210363A (en) 1985-03-15 1986-09-18 Canon Inc Electrophotographic sensitive body
US4720432A (en) 1987-02-11 1988-01-19 Eastman Kodak Company Electroluminescent device with organic luminescent medium
US4769292A (en) 1987-03-02 1988-09-06 Eastman Kodak Company Electroluminescent device with modified thin film luminescent zone
US5121029A (en) 1987-12-11 1992-06-09 Idemitsu Kosan Co., Ltd. Electroluminescence device having an organic electroluminescent element
JPH02282263A (en) 1988-12-09 1990-11-19 Nippon Oil Co Ltd Hole transferring material
JP2727620B2 (en) 1989-02-01 1998-03-11 日本電気株式会社 Organic thin film EL device
US5130603A (en) 1989-03-20 1992-07-14 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US5077142A (en) 1989-04-20 1991-12-31 Ricoh Company, Ltd. Electroluminescent devices
US4950950A (en) 1989-05-18 1990-08-21 Eastman Kodak Company Electroluminescent device with silazane-containing luminescent zone
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JP3016896B2 (en) 1991-04-08 2000-03-06 パイオニア株式会社 Organic electroluminescence device
US5529853A (en) 1993-03-17 1996-06-25 Sanyo Electric Co., Ltd. Organic electroluminescent element
DE4325885A1 (en) 1993-08-02 1995-02-09 Basf Ag Electroluminescent arrangement
JP3295088B2 (en) 1993-09-29 2002-06-24 出光興産株式会社 Organic electroluminescence device
DE69412567T2 (en) 1993-11-01 1999-02-04 Hodogaya Chemical Co Ltd Amine compound and electroluminescent device containing it
JPH07133483A (en) 1993-11-09 1995-05-23 Shinko Electric Ind Co Ltd Organic luminescent material for el element and el element
DE59510315D1 (en) 1994-04-07 2002-09-19 Covion Organic Semiconductors Spiro compounds and their use as electroluminescent materials
EP0681019B1 (en) 1994-04-26 1999-09-01 TDK Corporation Phenylanthracene derivative and organic EL element
JP2686418B2 (en) 1994-08-12 1997-12-08 東洋インキ製造株式会社 Diarylamine derivative, production method and use thereof
JP3306735B2 (en) 1995-01-19 2002-07-24 出光興産株式会社 Organic electroluminescent device and organic thin film
JPH08292586A (en) 1995-04-21 1996-11-05 Hodogaya Chem Co Ltd Electrophotographic photoreceptor
US5708130A (en) 1995-07-28 1998-01-13 The Dow Chemical Company 2,7-aryl-9-substituted fluorenes and 9-substituted fluorene oligomers and polymers
EP0765106B1 (en) 1995-09-25 2002-11-27 Toyo Ink Manufacturing Co., Ltd. Light-emitting material for organic electroluminescence device, and organic electroluminescence device for which the light-emitting material is adapted
US5766779A (en) 1996-08-20 1998-06-16 Eastman Kodak Company Electron transporting materials for organic electroluminescent devices
DE19646119A1 (en) 1996-11-08 1998-05-14 Hoechst Ag Electroluminescent device
JP3654909B2 (en) 1996-12-28 2005-06-02 Tdk株式会社 Organic EL device
JP3148176B2 (en) 1998-04-15 2001-03-19 日本電気株式会社 Organic electroluminescence device
JPH11211399A (en) 1998-01-29 1999-08-06 Tama Electric Co Ltd Electric igniter for gas generator
EP1029909A4 (en) 1998-09-09 2007-01-10 Idemitsu Kosan Co Organic electroluminescence device and phenylenediamine derivative
US6830828B2 (en) 1998-09-14 2004-12-14 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
US6465115B2 (en) 1998-12-09 2002-10-15 Eastman Kodak Company Electroluminescent device with anthracene derivatives hole transport layer
US6361886B2 (en) 1998-12-09 2002-03-26 Eastman Kodak Company Electroluminescent device with improved hole transport layer
US6020078A (en) 1998-12-18 2000-02-01 Eastman Kodak Company Green organic electroluminescent devices
ATE344532T1 (en) 1999-05-13 2006-11-15 Univ Princeton LIGHT-EMITTING ORGANIC ELECTROPHOSPHORESCENCE-BASED ARRANGEMENT WITH VERY HIGH QUANTUM YIELD
EP2278637B2 (en) 1999-12-01 2021-06-09 The Trustees of Princeton University Complexes of form L2MX
US6821645B2 (en) 1999-12-27 2004-11-23 Fuji Photo Film Co., Ltd. Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
JP4876311B2 (en) 2000-01-14 2012-02-15 東レ株式会社 Light emitting element
US6660410B2 (en) 2000-03-27 2003-12-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence element
JP4024009B2 (en) 2000-04-21 2007-12-19 Tdk株式会社 Organic EL device
JP4048521B2 (en) 2000-05-02 2008-02-20 富士フイルム株式会社 Light emitting element
US6645645B1 (en) 2000-05-30 2003-11-11 The Trustees Of Princeton University Phosphorescent organic light emitting devices
US20020121638A1 (en) 2000-06-30 2002-09-05 Vladimir Grushin Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
EP1325671B1 (en) 2000-08-11 2012-10-24 The Trustees Of Princeton University Organometallic compounds and emission-shifting organic electrophosphorescence
JP4154138B2 (en) 2000-09-26 2008-09-24 キヤノン株式会社 Light emitting element, display device and metal coordination compound
JP4154140B2 (en) 2000-09-26 2008-09-24 キヤノン株式会社 Metal coordination compounds
JP4154139B2 (en) 2000-09-26 2008-09-24 キヤノン株式会社 Light emitting element
EP2365735B1 (en) 2000-11-24 2013-08-28 Toray Industries Inc. Luminescent element material and luminescent element comprising the same
KR100825182B1 (en) 2000-11-30 2008-04-24 캐논 가부시끼가이샤 Luminescent Element and Display
DE10109027A1 (en) 2001-02-24 2002-09-05 Covion Organic Semiconductors Rhodium and iridium complexes
JP4438042B2 (en) 2001-03-08 2010-03-24 キヤノン株式会社 Metal coordination compound, electroluminescent element and display device
CN100379049C (en) 2001-03-14 2008-04-02 普林斯顿大学理事会 Materials and devices for blue phosphorescence based orgainc light emitting diodes
KR20030093240A (en) 2001-03-16 2003-12-06 이데미쓰 고산 가부시키가이샤 Method for producing aromatic amino compound
JP4259875B2 (en) 2001-03-24 2009-04-30 メルク パテント ゲーエムベーハー Conjugated polymers containing spirobifluorene units and fluorene units and uses thereof
DE10116962A1 (en) 2001-04-05 2002-10-10 Covion Organic Semiconductors Rhodium and iridium complexes
US7071615B2 (en) 2001-08-20 2006-07-04 Universal Display Corporation Transparent electrodes
KR100917347B1 (en) 2001-08-29 2009-09-16 더 트러스티즈 오브 프린스턴 유니버시티 Organic light emitting devices having carrier blocking layers comprising metal complexs
US7250226B2 (en) 2001-08-31 2007-07-31 Nippon Hoso Kyokai Phosphorescent compound, a phosphorescent composition and an organic light-emitting device
JP4629643B2 (en) 2001-08-31 2011-02-09 日本放送協会 Organic light emitting device and display device
DE10143353A1 (en) 2001-09-04 2003-03-20 Covion Organic Semiconductors Conjugated polymers containing spirobifluorene units and their use
JP2003115387A (en) 2001-10-04 2003-04-18 Junji Kido Organic light emitting element and its manufacturing method
US6835469B2 (en) 2001-10-17 2004-12-28 The University Of Southern California Phosphorescent compounds and devices comprising the same
US6863997B2 (en) 2001-12-28 2005-03-08 The Trustees Of Princeton University White light emitting OLEDs from combined monomer and aggregate emission
JP2003253145A (en) 2002-02-28 2003-09-10 Jsr Corp Light-emitting composition
JP4256182B2 (en) 2002-03-14 2009-04-22 Tdk株式会社 Organic EL device
SG128438A1 (en) 2002-03-15 2007-01-30 Sumitomo Chemical Co Polymer compound and polymer light emitting deviceusing the same
JP4316387B2 (en) 2002-03-22 2009-08-19 出光興産株式会社 Material for organic electroluminescence device and organic electroluminescence device using the same
TWI287570B (en) 2002-05-28 2007-10-01 Sumitomo Chemical Co Polymer compound and polymer luminescent element using the same
US7169482B2 (en) 2002-07-26 2007-01-30 Lg.Philips Lcd Co., Ltd. Display device with anthracene and triazine derivatives
JP4025137B2 (en) 2002-08-02 2007-12-19 出光興産株式会社 Anthracene derivative and organic electroluminescence device using the same
US7839074B2 (en) 2002-08-23 2010-11-23 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and anthracene derivative
DE10238903A1 (en) 2002-08-24 2004-03-04 Covion Organic Semiconductors Gmbh New heteroaromatic rhodium and iridium complexes, useful in electroluminescent and/or phosphorescent devices as the emission layer and for use in solar cells, photovoltaic devices and organic photodetectors
KR101016164B1 (en) 2002-10-09 2011-02-17 이데미쓰 고산 가부시키가이샤 Organic electroluminescent device
JP4142404B2 (en) 2002-11-06 2008-09-03 出光興産株式会社 Aromatic amine derivative and organic electroluminescence device using the same
GB0226010D0 (en) 2002-11-08 2002-12-18 Cambridge Display Tech Ltd Polymers for use in organic electroluminescent devices
JP2004200162A (en) 2002-12-05 2004-07-15 Toray Ind Inc Light emitting element
KR101030158B1 (en) 2002-12-23 2011-04-18 메르크 파텐트 게엠베하 Organic electroluminescent element
DE10304819A1 (en) 2003-02-06 2004-08-19 Covion Organic Semiconductors Gmbh Carbazole-containing conjugated polymers and blends, their preparation and use
DE10310887A1 (en) 2003-03-11 2004-09-30 Covion Organic Semiconductors Gmbh Matallkomplexe
US7851071B2 (en) 2003-03-13 2010-12-14 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocycle derivative and organic electroluminescent element using the same
JP4411851B2 (en) 2003-03-19 2010-02-10 コニカミノルタホールディングス株式会社 Organic electroluminescence device
JP2004311184A (en) 2003-04-04 2004-11-04 Junji Kido Electron transportation material formed of multinucleate phenanthroline derivative, charge control material, and organic luminescent element using them
KR20040089567A (en) 2003-04-14 2004-10-21 가부시키가이샤 도요다 지도숏키 Organic electroluminescent element that suppresses generation of ultraviolet light and lighting system that has organic electroluminescent element
EP1618170A2 (en) 2003-04-15 2006-01-25 Covion Organic Semiconductors GmbH Mixtures of matrix materials and organic semiconductors capable of emission, use of the same and electronic components containing said mixtures
US20040209115A1 (en) 2003-04-21 2004-10-21 Thompson Mark E. Organic light emitting devices with wide gap host materials
US20040209116A1 (en) 2003-04-21 2004-10-21 Xiaofan Ren Organic light emitting devices with wide gap host materials
EP1617711B1 (en) 2003-04-23 2016-08-17 Konica Minolta Holdings, Inc. Organic electroluminescent device and display
US7122958B2 (en) 2003-05-16 2006-10-17 Kabushiki Kaisha Toyota Jidoshokki Light-emitting apparatus and method for forming the same
JP2004349138A (en) 2003-05-23 2004-12-09 Toyota Industries Corp Organic electroluminescent element and its manufacturing method
EP1491568A1 (en) 2003-06-23 2004-12-29 Covion Organic Semiconductors GmbH Semiconductive Polymers
DE10328627A1 (en) 2003-06-26 2005-02-17 Covion Organic Semiconductors Gmbh New materials for electroluminescence
JP4773346B2 (en) 2003-07-07 2011-09-14 メルク パテント ゲーエムベーハー Mixtures of organic light emitting semiconductors and matrix materials, their use and electronic components comprising said materials.
DE10333232A1 (en) 2003-07-21 2007-10-11 Merck Patent Gmbh Organic electroluminescent element
DE10337346A1 (en) 2003-08-12 2005-03-31 Covion Organic Semiconductors Gmbh Conjugated polymers containing dihydrophenanthrene units and their use
DE10343606A1 (en) 2003-09-20 2005-04-14 Covion Organic Semiconductors Gmbh White-emitting copolymers, their preparation and use
JP2005108556A (en) 2003-09-29 2005-04-21 Tdk Corp Organic el element and organic el display
DE10345572A1 (en) 2003-09-29 2005-05-19 Covion Organic Semiconductors Gmbh metal complexes
US7795801B2 (en) 2003-09-30 2010-09-14 Konica Minolta Holdings, Inc. Organic electroluminescent element, illuminator, display and compound
CN1863838B (en) 2003-10-01 2010-12-22 住友化学株式会社 Polymeric light-emitting material and polymeric light-emitting element
WO2005040302A1 (en) 2003-10-22 2005-05-06 Merck Patent Gmbh New materials for electroluminescence and the utilization thereof
DE10349033A1 (en) 2003-10-22 2005-05-25 Covion Organic Semiconductors Gmbh Organic semiconductor, for use in organic LEDs and solar cells and laser diodes, contains a polymer and structural units which emit light from the triplet state and a triplet emitter
US6824895B1 (en) 2003-12-05 2004-11-30 Eastman Kodak Company Electroluminescent device containing organometallic compound with tridentate ligand
TW201235442A (en) 2003-12-12 2012-09-01 Sumitomo Chemical Co Polymer and light-emitting element using said polymer
EP2910619B1 (en) 2003-12-19 2016-07-20 Idemitsu Kosan Co., Ltd Light-emitting material for organic electroluminescent device, organic electroluminescent device using same, and material for organic electroluminescent device
ATE504639T1 (en) 2003-12-26 2011-04-15 Idemitsu Kosan Co MATERIAL FOR ORGANIC ELECTROLUMINESCENCE DEVICE AND ORGANIC ELECTROLUMINESCENCE DEVICE BASED THEREOF
DE102004007777A1 (en) * 2004-02-18 2005-09-08 Covion Organic Semiconductors Gmbh Solutions of organic semiconductors
DE102004008304A1 (en) 2004-02-20 2005-09-08 Covion Organic Semiconductors Gmbh Organic electronic devices
DE102004010954A1 (en) 2004-03-03 2005-10-06 Novaled Gmbh Use of a metal complex as an n-dopant for an organic semiconductive matrix material, organic semiconductor material and electronic component
US7326371B2 (en) 2004-03-25 2008-02-05 Eastman Kodak Company Electroluminescent device with anthracene derivative host
JP4466160B2 (en) 2004-03-30 2010-05-26 Tdk株式会社 Organic EL element and organic EL display
US7790890B2 (en) 2004-03-31 2010-09-07 Konica Minolta Holdings, Inc. Organic electroluminescence element material, organic electroluminescence element, display device and illumination device
KR100573137B1 (en) 2004-04-02 2006-04-24 삼성에스디아이 주식회사 Fluorene-based compound and organic electroluminescent display device using the same
KR100787425B1 (en) 2004-11-29 2007-12-26 삼성에스디아이 주식회사 Phenylcarbazole-based compound and Organic electroluminescence display employing the same
DE102004020298A1 (en) 2004-04-26 2005-11-10 Covion Organic Semiconductors Gmbh Electroluminescent polymers and their use
DE102004023277A1 (en) 2004-05-11 2005-12-01 Covion Organic Semiconductors Gmbh New material mixtures for electroluminescence
DE102004023276A1 (en) 2004-05-11 2005-12-01 Covion Organic Semiconductors Gmbh Solutions of organic semiconductors
JP4862248B2 (en) 2004-06-04 2012-01-25 コニカミノルタホールディングス株式会社 Organic electroluminescence element, lighting device and display device
CN100368363C (en) 2004-06-04 2008-02-13 友达光电股份有限公司 Anthracene compound and organic electroluminescent apparatus containing it
DE102004031000A1 (en) 2004-06-26 2006-01-12 Covion Organic Semiconductors Gmbh Organic electroluminescent devices
TW200613515A (en) 2004-06-26 2006-05-01 Merck Patent Gmbh Compounds for organic electronic devices
US20060094859A1 (en) 2004-11-03 2006-05-04 Marrocco Matthew L Iii Class of bridged biphenylene polymers
EP1655359A1 (en) 2004-11-06 2006-05-10 Covion Organic Semiconductors GmbH Organic electroluminescent device
TW200639140A (en) 2004-12-01 2006-11-16 Merck Patent Gmbh Compounds for organic electronic devices
TW200639193A (en) 2004-12-18 2006-11-16 Merck Patent Gmbh Electroluminescent polymers and their use
EP2371810A1 (en) 2005-01-05 2011-10-05 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using same
KR100803125B1 (en) 2005-03-08 2008-02-14 엘지전자 주식회사 Red phosphorescent compounds and organic electroluminescence devices using the same
JP4263700B2 (en) 2005-03-15 2009-05-13 出光興産株式会社 Aromatic amine derivative and organic electroluminescence device using the same
JP4358884B2 (en) 2005-03-18 2009-11-04 出光興産株式会社 Aromatic amine derivative and organic electroluminescence device using the same
US20060222886A1 (en) 2005-04-04 2006-10-05 Raymond Kwong Arylpyrene compounds
CN101184789B (en) 2005-04-28 2012-05-30 住友化学株式会社 High-molecular compound and high-molecular luminescent device using the same
US8674141B2 (en) 2005-05-03 2014-03-18 Merck Patent Gmbh Organic electroluminescent device and boric acid and borinic acid derivatives used therein
DE102005023437A1 (en) 2005-05-20 2006-11-30 Merck Patent Gmbh Connections for organic electronic devices
GB2445519B (en) 2005-10-07 2010-11-24 Sumitomo Chemical Co Copolymer and polymer light emitting device using the same
US7588839B2 (en) 2005-10-19 2009-09-15 Eastman Kodak Company Electroluminescent device
US20070092753A1 (en) 2005-10-26 2007-04-26 Eastman Kodak Company Organic element for low voltage electroluminescent devices
US20070092755A1 (en) 2005-10-26 2007-04-26 Eastman Kodak Company Organic element for low voltage electroluminescent devices
US7553558B2 (en) 2005-11-30 2009-06-30 Eastman Kodak Company Electroluminescent device containing an anthracene derivative
JP4593631B2 (en) 2005-12-01 2010-12-08 新日鐵化学株式会社 Compound for organic electroluminescence device and organic electroluminescence device
DE102005058543A1 (en) 2005-12-08 2007-06-14 Merck Patent Gmbh Organic electroluminescent devices
DE102005058557A1 (en) 2005-12-08 2007-06-14 Merck Patent Gmbh Organic electroluminescent device
US7709105B2 (en) 2005-12-14 2010-05-04 Global Oled Technology Llc Electroluminescent host material
JP5268247B2 (en) 2005-12-20 2013-08-21 キヤノン株式会社 4-aminofluorene compound and organic light-emitting device
US7919010B2 (en) 2005-12-22 2011-04-05 Novaled Ag Doped organic semiconductor material
DE102006003710A1 (en) 2006-01-26 2007-08-02 Merck Patent Gmbh New polymer containing an unit exhibiting electron injection and -conducting characteristics, useful for the preparation of a solution and formulation, and in an organic electronic devices, preferably organic optoelectronic device
JP4879591B2 (en) 2006-01-26 2012-02-22 昭和電工株式会社 Polymer light-emitting material, organic electroluminescence element, and display device
EP1837927A1 (en) 2006-03-22 2007-09-26 Novaled AG Use of heterocyclic radicals for doping of organic semiconductors
DE502006000749D1 (en) 2006-03-21 2008-06-19 Novaled Ag Heterocyclic radical or diradical, their dimers, oligomers, polymers, dispiro compounds and polycycles, their use, organic semiconducting material and electronic component
DE102006015183A1 (en) 2006-04-01 2007-10-04 Merck Patent Gmbh New benzocycloheptene compound useful in organic electronic devices e.g. organic electroluminescent device, polymer electroluminescent device and organic field-effect-transistors
JP4995475B2 (en) 2006-04-03 2012-08-08 出光興産株式会社 Benzanthracene derivative and organic electroluminescence device using the same
US20070252517A1 (en) 2006-04-27 2007-11-01 Eastman Kodak Company Electroluminescent device including an anthracene derivative
US8278394B2 (en) 2006-05-12 2012-10-02 MERCK Patent Gesellschaft mit beschränkter Haftung Indenofluorene polymer based organic semiconductor materials
DE102006025777A1 (en) 2006-05-31 2007-12-06 Merck Patent Gmbh New materials for organic electroluminescent devices
DE102006025846A1 (en) 2006-06-02 2007-12-06 Merck Patent Gmbh New materials for organic electroluminescent devices
DE102006031990A1 (en) 2006-07-11 2008-01-17 Merck Patent Gmbh New materials for organic electroluminescent devices
EP2044139B1 (en) 2006-07-21 2011-12-21 Merck Patent GmbH Copolymers of indenofluorene and thiophene
JPWO2008016018A1 (en) 2006-08-04 2009-12-24 出光興産株式会社 Material for organic electroluminescence device and organic electroluminescence device using the same
JP2008124156A (en) 2006-11-09 2008-05-29 Idemitsu Kosan Co Ltd Organic el material-containing solution, method for forming thin film of organic el material, thin film of organic el material, and organic el device
CN101511834B (en) 2006-11-09 2013-03-27 新日铁化学株式会社 Compound for organic electroluminescent device and organic electroluminescent device
US20080193796A1 (en) 2006-11-20 2008-08-14 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
DE102007002714A1 (en) 2007-01-18 2008-07-31 Merck Patent Gmbh New materials for organic electroluminescent devices
JP4902381B2 (en) 2007-02-07 2012-03-21 昭和電工株式会社 Polymer of polymerizable compound
DE102007024850A1 (en) 2007-05-29 2008-12-04 Merck Patent Gmbh New materials for organic electroluminescent devices
EP2009014B1 (en) 2007-06-22 2018-10-24 Novaled GmbH Application of a precursor of an n-dopant for doping an organic semi-conducting material, precursor and electronic or optoelectronic component
US8025815B2 (en) 2007-07-07 2011-09-27 Idemitsu Kosan Co., Ltd. Naphthalene derivative, material for organic electroluminescence device, and organic electroluminescence device using the same
US7645142B2 (en) 2007-09-05 2010-01-12 Vivant Medical, Inc. Electrical receptacle assembly
WO2009041635A1 (en) 2007-09-28 2009-04-02 Idemitsu Kosan Co., Ltd. Organic el device
KR101408504B1 (en) 2007-11-29 2014-06-17 이데미쓰 고산 가부시키가이샤 Benzophenanthrene derivative and organic electroluminescent device employing the same
DE102008017591A1 (en) 2008-04-07 2009-10-08 Merck Patent Gmbh New materials for organic electroluminescent devices
DE102008033943A1 (en) 2008-07-18 2010-01-21 Merck Patent Gmbh New materials for organic electroluminescent devices
DE102008035413A1 (en) 2008-07-29 2010-02-04 Merck Patent Gmbh Connections for organic electronic devices
DE102008036982A1 (en) 2008-08-08 2010-02-11 Merck Patent Gmbh Organic electroluminescent device
DE102009022858A1 (en) 2009-05-27 2011-12-15 Merck Patent Gmbh Organic electroluminescent devices
DE102008064200A1 (en) 2008-12-22 2010-07-01 Merck Patent Gmbh Organic electroluminescent device
GB2466842B (en) * 2009-01-12 2011-10-26 Cambridge Display Tech Ltd Interlayer formulation for flat films
DE102009005746A1 (en) 2009-01-23 2010-07-29 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102009014513A1 (en) 2009-03-23 2010-09-30 Merck Patent Gmbh Organic electroluminescent device
WO2010110280A1 (en) 2009-03-27 2010-09-30 富士フイルム株式会社 Coating solution for organic electroluminescent element
DE102009023155A1 (en) 2009-05-29 2010-12-02 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102009023154A1 (en) 2009-05-29 2011-06-16 Merck Patent Gmbh A composition comprising at least one emitter compound and at least one polymer having conjugation-interrupting units
DE102009031021A1 (en) 2009-06-30 2011-01-05 Merck Patent Gmbh Materials for organic electroluminescent devices
JP2011109016A (en) 2009-11-20 2011-06-02 Panasonic Corp Coating liquid composition for organic el element
WO2011076314A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent formulations
CN102859738B (en) 2010-04-12 2016-08-03 默克专利有限公司 There is the compositions of the performance of improvement
US8916066B2 (en) * 2010-05-27 2014-12-23 Corning Incorporated Polymeric fused thiophene semiconductor formulation
EP2590481B1 (en) 2010-07-01 2021-11-24 Joled Inc. Ink for organic light emitting element and method for manufacturing an organic light emitting element
JP2013541837A (en) 2010-09-10 2013-11-14 ノヴァレッド・アクチエンゲゼルシャフト Compound for organic photoelectric conversion device
US8841443B2 (en) * 2010-09-13 2014-09-23 Ocean's King Lighting & Science Technology Co., Ltd. Silafluorene metalloporphyrin-benzene organic semiconductor material and preparing method and uses thereof
EP2452946B1 (en) 2010-11-16 2014-05-07 Novaled AG Pyridylphosphinoxides for organic electronic device and organic electronic device
EP2463927B1 (en) 2010-12-08 2013-08-21 Novaled AG Material for organic electronic device and organic electronic device
EP2718978B1 (en) 2011-06-09 2018-05-16 Novaled GmbH Organic electronic device
EP3667752A1 (en) 2011-06-22 2020-06-17 Novaled GmbH Electronic device and compound
WO2012175535A1 (en) 2011-06-22 2012-12-27 Novaled Ag Organic electronic component
WO2013040468A1 (en) 2011-09-16 2013-03-21 Kateeva, Inc Film-forming formulations for substrate printing
JP6015073B2 (en) * 2012-04-02 2016-10-26 セイコーエプソン株式会社 Functional layer forming ink and light emitting device manufacturing method
JP6201538B2 (en) 2013-09-03 2017-09-27 セイコーエプソン株式会社 Method for producing functional layer forming ink, method for producing organic EL element
CN105636944B (en) 2013-10-14 2019-03-01 默克专利有限公司 Material for electronic device
KR102145424B1 (en) * 2013-11-11 2020-08-18 엘지디스플레이 주식회사 Ink for display device manufacturing and method for manufacturing of the same, method for manufacturing using the same
JP6578629B2 (en) * 2014-03-24 2019-09-25 セイコーエプソン株式会社 Functional layer forming ink and light emitting device manufacturing method
JP6531347B2 (en) 2014-03-28 2019-06-19 セイコーエプソン株式会社 Method for producing functional layer forming ink and light emitting device
JP6645132B2 (en) * 2015-11-13 2020-02-12 セイコーエプソン株式会社 Ink composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103262278A (en) * 2010-12-21 2013-08-21 E.I.内穆尔杜邦公司 Liquid composition for deposition of organic electroactive materials

Also Published As

Publication number Publication date
CN109863223A (en) 2019-06-07
US20200127203A1 (en) 2020-04-23
JP2020503640A (en) 2020-01-30
EP3532565B1 (en) 2021-04-21
KR102451842B1 (en) 2022-10-07
EP3532565A1 (en) 2019-09-04
CN109863223B (en) 2023-06-20
WO2018077660A1 (en) 2018-05-03
US11538992B2 (en) 2022-12-27
TW201829658A (en) 2018-08-16
KR20190077044A (en) 2019-07-02
JP7046938B2 (en) 2022-04-04

Similar Documents

Publication Publication Date Title
TWI775191B (en) Esters containing aromatic groups as solvents for organic electronic formulations
TWI754690B (en) Formulation of an organic functional material
TWI754691B (en) Formulation of an organic functional material
KR102427363B1 (en) Formulation of organic functional materials
KR102346774B1 (en) Formulation of organic functional materials
KR102570137B1 (en) Formulation of an organic functional material comprising a siloxane solvent
KR20180110125A (en) Formulation of organic functional material
KR102374183B1 (en) Formulation of organic functional materials
KR20200125660A (en) Formulation of organic functional materials
KR20190019138A (en) Formulation of organic functional material
KR102632027B1 (en) Formulation of organic functional materials
KR102486614B1 (en) Formulation of organic functional materials
JP7330898B2 (en) Formulation of organic functional material
KR20200030573A (en) Formulation of organic functional materials