JP4902381B2 - Polymer of polymerizable compound - Google Patents

Polymer of polymerizable compound Download PDF

Info

Publication number
JP4902381B2
JP4902381B2 JP2007027557A JP2007027557A JP4902381B2 JP 4902381 B2 JP4902381 B2 JP 4902381B2 JP 2007027557 A JP2007027557 A JP 2007027557A JP 2007027557 A JP2007027557 A JP 2007027557A JP 4902381 B2 JP4902381 B2 JP 4902381B2
Authority
JP
Japan
Prior art keywords
group
ppy
formula
polymerizable compound
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007027557A
Other languages
Japanese (ja)
Other versions
JP2007211243A (en
Inventor
良明 高橋
浩朗 白根
元昭 蒲池
直子 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2007027557A priority Critical patent/JP4902381B2/en
Publication of JP2007211243A publication Critical patent/JP2007211243A/en
Application granted granted Critical
Publication of JP4902381B2 publication Critical patent/JP4902381B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、平面表示パネルやこれに用いられるバックライト用の有機発光素子(OLED)に用いられる高分子系発光材料の前駆体である重合性化合物の重合体に関するものである。   The present invention relates to a polymer of a polymerizable compound which is a precursor of a polymer light emitting material used in a flat display panel or an organic light emitting device (OLED) for a backlight used therein.

有機発光素子は、1987年にコダック社のC.W.Tangらにより高輝度の発光が示されて(非特許文献1参照。)以来、材料開発、素子構造の改良が急速に進み、最近になってカーオーディオや携帯電話用のディスプレイなどから実用化が始まった。この有機EL(エレクトロルミネッッセンス)の用途を更に拡大するために、発光効率向上、耐久性向上のための材料開発、フルカラー表示の開発などが現在活発に行われている。特に、中型パネルや大型パネル、あるいは照明用途への展開を考える上では発光効率の向上による更なる高輝度化と、大面積化に適した量産方法の確立が必要である。   The organic light-emitting device was manufactured by Kodak C.I. W. Since Tang et al. Showed high-luminance light emission (see Non-Patent Document 1), material development and device structure improvements have rapidly progressed, and recently they have been put into practical use from displays for car audio and mobile phones. Was started. In order to further expand the applications of this organic EL (electroluminescence), development of materials for improving luminous efficiency and durability, development of full-color display, and the like are being actively carried out. In particular, when considering expansion to medium-sized panels, large-sized panels, or lighting applications, it is necessary to establish a mass production method suitable for further increase in luminance and increase in area by improving luminous efficiency.

先ず、発光効率に関しては、現在の発光材料で利用されているのは励起一重項状態からの発光、すなわち蛍光であり、非特許文献2によれば、電気的励起における励起一重項状態と励起三重項状態の励起子の生成比が1:3であることから、有機ELにおける発光の内部量子効率は25%が上限である。   First, regarding light emission efficiency, light emission from an excited singlet state, that is, fluorescence is used in the present light emitting material. According to Non-Patent Document 2, the excited singlet state and excited triplet in electrical excitation are used. Since the generation ratio of the excitons in the term state is 1: 3, the upper limit of the internal quantum efficiency of light emission in the organic EL is 25%.

これに対し、M.A.Baldoらは励起三重項状態から燐光発光するイリジウム錯体を用いることにより外部量子効率7.5%を得、これは外部取り出し効率を20%と仮定すると内部量子効率37.5%に相当し、蛍光色素を利用した場合の上限値である25%という値を上回ることが可能なことを示した(非特許文献3、特許文献1参照。)。   In contrast, M.M. A. Baldo et al. Obtained an external quantum efficiency of 7.5% by using an iridium complex that emits phosphorescence from an excited triplet state, which corresponds to an internal quantum efficiency of 37.5% assuming an external extraction efficiency of 20%. It was shown that it is possible to exceed the upper limit of 25% when a dye is used (see Non-Patent Document 3 and Patent Document 1).

次に、パネルの量産方法に関しては、従来から真空蒸着法が用いられてきた。しかし、この方法は真空設備を必要とする点、大面積になるほど有機薄膜を均一の厚さに成膜することが困難になる点などの問題点を有しており、必ずしも大面積パネルの量産に適した方法とは言えない。   Next, as a mass production method for panels, a vacuum deposition method has been conventionally used. However, this method has problems such as requiring vacuum equipment and the difficulty of forming an organic thin film with a uniform thickness as the area becomes larger. This is not a suitable method.

これに対し、大面積化が容易な方法として高分子系発光材料を用いた製造方法、すなわちインクジェット法や印刷法が開発されている。特に、印刷法は連続して長尺の成膜が行え、大面積化と量産性に優れている。   On the other hand, a manufacturing method using a polymer light emitting material, that is, an ink jet method or a printing method has been developed as a method for easily increasing the area. In particular, the printing method can continuously form a long film and is excellent in large area and mass productivity.

上記のように、発光効率が高くかつ大面積の有機発光素子を得るためには、燐光発光性の高分子材料が必要となる。このような燐光発光性の高分子材料としては、ルテニウム錯体を高分子の主鎖または側鎖に組み込んだものがある(非特許文献4参照。)。しかし、これらはイオン性化合物であるため、電圧を印加した場合に電極での酸化還元反応による電気化学発光が起こる。これは応答速度が分オーダーと極めて遅く、通常のディスプレイパネルとしては使用できない。
また、厳密な意味では高分子材料とは言えないが、ポリ(N−ビニルカルバゾール)に燐光発光性の低分子化合物であるイリジウム錯体を混合したものがある(非特許文献5参照。)。しかし、これは均質な高分子材料に較べて熱安定性が劣り、相分離や偏析を起こす可能性がある。
As described above, in order to obtain an organic light emitting device with high luminous efficiency and a large area, a phosphorescent polymer material is required. As such a phosphorescent polymer material, there is a material in which a ruthenium complex is incorporated in a main chain or a side chain of a polymer (see Non-Patent Document 4). However, since these are ionic compounds, electrochemiluminescence due to an oxidation-reduction reaction at the electrode occurs when a voltage is applied. This is a very slow response speed on the order of minutes and cannot be used as a normal display panel.
In a strict sense, although it cannot be said to be a polymer material, there is a material in which poly (N-vinylcarbazole) is mixed with an iridium complex which is a phosphorescent low-molecular compound (see Non-Patent Document 5). However, this is inferior in thermal stability to a homogeneous polymer material and may cause phase separation or segregation.

「アプライド フィジカル レター(Applied Physical Letter)」,1987年,第51巻,p.913“Applied Physical Letter”, 1987, Vol. 51, p. 913 「月刊ディスプレイ「有機ELディスプレイ」」,1998年,10月号別冊,p.58“Monthly Display“ Organic EL Display ””, October 1998, separate volume, p. 58 「アプライド フィジカル レター(Applied Physical Letter)」,1999年,第75巻,p.4“Applied Physical Letter”, 1999, Vol. 75, p. 4 「ポリマー プレプリンツ(Polymer Preprints)」,1999年,第40巻,第2号,p.1212“Polymer Preprints”, 1999, Vol. 40, No. 2, p. 1212 「ポリマー プレプリンツ(Polymer Preprints)」,2000年,第41巻,第1号,p.770“Polymer Preprints”, 2000, Vol. 41, No. 1, p. 770 国際公開第00/70655号International Publication No. 00/70655

上記のように、発光効率が高くかつ大面積の有機発光素子を量産するために必要とされる実用的な高分子系の燐光発光性材料は未だ存在しない。そこで、本発明は上記のような従来技術の問題点を解決し、高発光効率で大面積化が可能であり、かつ量産可能な有機発光素子を得るための高分子系発光材料を提供することを課題とする。   As described above, there is no practical high-molecular phosphorescent material required for mass-producing organic light-emitting devices having high luminous efficiency and a large area. Accordingly, the present invention provides a polymer light-emitting material for solving the problems of the prior art as described above, and for obtaining an organic light-emitting device capable of large area production with high luminous efficiency and mass production. Is an issue.

本発明者らは、上記の課題を解決すべく種々検討した結果、有機発光素子の発光材料として有用なイリジウム錯体部分を有する重合性化合物を得ることに成功し、本発明を完成するに至った。   As a result of various studies to solve the above problems, the present inventors have succeeded in obtaining a polymerizable compound having an iridium complex portion useful as a light-emitting material of an organic light-emitting device, and completed the present invention. .

すなわち、本発明は以下の[1]〜[42]で示される新規化合物である重合性化合物とこれら重合性化合物の合成に必要な新規化合物である中間体、及びこれら重合性化合物の製造方法に関する。   That is, the present invention relates to a polymerizable compound which is a novel compound represented by the following [1] to [42], an intermediate which is a novel compound necessary for the synthesis of these polymerizable compounds, and a method for producing these polymerizable compounds. .

[1] 式(1)で示される重合性化合物。

Figure 0004902381
〔式中、X1、Y1、Z1の少なくとも1つは重合性官能基を有する置換基を表し、X1、Y1、Z1のうちの残りはそれぞれ独立に水素原子ヘテロ原子を有してもよい炭素数1〜20の有機基を表す。R1〜R12はそれぞれ独立に水素原子、ハロゲン原子、ニトロ基、アミノ基、スルホン酸基、スルホン酸エステル基またはヘテロ原子を有してもよい炭素数1〜20の有機基を表す。〕 [1] A polymerizable compound represented by the formula (1).
Figure 0004902381
Wherein, X 1, Y 1, at least one of Z 1 represents a substituent having a polymerizable functional group, have the X 1, Y 1, each remaining independently a hydrogen atom hetero atoms of the Z 1 It represents an organic group having 1 to 20 carbon atoms. R 1 to R 12 each independently represents a hydrogen atom, a halogen atom, a nitro group, an amino group, a sulfonic acid group, a sulfonic acid ester group or an organic group having 1 to 20 carbon atoms which may have a hetero atom. ]

[2] 前記式(1)におけるX1またはZ1のいずれか一方が重合性官能基を有する置換基である[1]に記載の重合性化合物。 [2] The polymerizable compound according to [1], wherein either X 1 or Z 1 in the formula (1) is a substituent having a polymerizable functional group.

[3]式(2)で示される重合性化合物。

Figure 0004902381
〔式中、X1は重合性官能基を有する置換基を表し、Q1およびQ2はそれぞれ独立に水素原子またはヘテロ原子を有してもよい炭素数1〜20の有機基を表す。〕 [3] A polymerizable compound represented by the formula (2).
Figure 0004902381
[Wherein, X 1 represents a substituent having a polymerizable functional group, and Q 1 and Q 2 each independently represents a C 1-20 organic group which may have a hydrogen atom or a hetero atom. ]

[4] 重合性官能基が炭素−炭素二重結合である[1]〜[3]のいずれか一つに記載の重合性化合物。 [4] The polymerizable compound according to any one of [1] to [3], wherein the polymerizable functional group is a carbon-carbon double bond.

[5] 式(3)で示される重合性化合物。

Figure 0004902381
[5] A polymerizable compound represented by the formula (3).
Figure 0004902381

[6] 重合性官能基がスチリル基である[1]〜[3]のいずれか一つに記載の重合性化合物。 [6] The polymerizable compound according to any one of [1] to [3], wherein the polymerizable functional group is a styryl group.

[7] 式(4)で示される重合性化合物。

Figure 0004902381
[7] A polymerizable compound represented by the formula (4).
Figure 0004902381

[8] 重合性官能基がアクリレート基またはメタクリレート基である[1]〜[3]のいずれか一つに記載の重合性化合物。 [8] The polymerizable compound according to any one of [1] to [3], wherein the polymerizable functional group is an acrylate group or a methacrylate group.

[9] 式(5)で示される重合性化合物。

Figure 0004902381
〔式中、Rは水素原子またはメチル基を表す。〕 [9] A polymerizable compound represented by the formula (5).
Figure 0004902381
[Wherein, R represents a hydrogen atom or a methyl group. ]

[10] 式(6)で示される重合性化合物。

Figure 0004902381
〔式中、Rは水素原子またはメチル基を表す。〕 [10] A polymerizable compound represented by the formula (6).
Figure 0004902381
[Wherein, R represents a hydrogen atom or a methyl group. ]

[11] 式(7)で示される重合性化合物。

Figure 0004902381
〔式中、Rは水素原子またはメチル基を表す。〕 [11] A polymerizable compound represented by the formula (7).
Figure 0004902381
[Wherein, R represents a hydrogen atom or a methyl group. ]

[12]式(8)で示される重合性化合物。

Figure 0004902381
〔式中、Rは水素原子またはメチル基を表す。〕 [12] A polymerizable compound represented by the formula (8).
Figure 0004902381
[Wherein, R represents a hydrogen atom or a methyl group. ]

[13] 式(9)で示される重合性化合物。

Figure 0004902381
〔式中、Rは水素原子またはメチル基を表す。〕 [13] A polymerizable compound represented by the formula (9).
Figure 0004902381
[Wherein, R represents a hydrogen atom or a methyl group. ]

[14] 式(10)で示される重合性化合物。

Figure 0004902381
〔式中、Rは水素原子またはメチル基を表す。〕 [14] A polymerizable compound represented by the formula (10).
Figure 0004902381
[Wherein, R represents a hydrogen atom or a methyl group. ]

[15] 式(11)で示される重合性化合物。

Figure 0004902381
〔式中、Rは水素原子またはメチル基を表す。〕 [15] A polymerizable compound represented by the formula (11).
Figure 0004902381
[Wherein, R represents a hydrogen atom or a methyl group. ]

[16] 式(12)で示される重合性化合物。

Figure 0004902381
〔式中、Rは水素原子またはメチル基を表す。〕 [16] A polymerizable compound represented by the formula (12).
Figure 0004902381
[Wherein, R represents a hydrogen atom or a methyl group. ]

[17] 式(13)で示される重合性化合物。

Figure 0004902381
[17] A polymerizable compound represented by the formula (13).
Figure 0004902381

[18] 前記式(1)におけるY1が重合性官能基を有する置換基である[1]に記載の重合性化合物。 [18] The polymerizable compound according to [1], wherein Y 1 in the formula (1) is a substituent having a polymerizable functional group.

[19] 式(14)で示される重合性化合物。

Figure 0004902381
〔式中、Y1は重合性官能基を有する置換基を表し、Q2およびQ3はそれぞれ独立に水素原子またはヘテロ原子を有してもよい炭素数1〜20の有機基を表す。〕 [19] A polymerizable compound represented by the formula (14).
Figure 0004902381
[Wherein Y 1 represents a substituent having a polymerizable functional group, and Q 2 and Q 3 each independently represent a hydrogen atom or a C 1-20 organic group that may have a hetero atom. ]

[20] 重合性官能基が炭素−炭素二重結合である[18]または[19]に記載の重合性化合物。
[21] 重合性官能基がスチリル基である[18]または[19]に記載の重合性化合物。
[22] 重合性官能基がアクリレート基またはメタクリレート基である[18]または[19]に記載の重合性化合物。
[20] The polymerizable compound according to [18] or [19], wherein the polymerizable functional group is a carbon-carbon double bond.
[21] The polymerizable compound according to [18] or [19], wherein the polymerizable functional group is a styryl group.
[22] The polymerizable compound according to [18] or [19], wherein the polymerizable functional group is an acrylate group or a methacrylate group.

[23] 式(15)で示される重合性化合物。

Figure 0004902381
〔式中、Rは水素原子またはメチル基を表す。〕 [23] A polymerizable compound represented by the formula (15).
Figure 0004902381
[Wherein, R represents a hydrogen atom or a methyl group. ]

[24] 式(16)で示される重合性化合物。

Figure 0004902381
〔式中、Rは水素原子またはメチル基を表す。〕 [24] A polymerizable compound represented by the formula (16).
Figure 0004902381
[Wherein, R represents a hydrogen atom or a methyl group. ]

[25] 式(17)で示されるイリジウム二核錯体と式(18)で示される重合性官能基を有する化合物を反応させることを特徴とする単核イリジウム錯体部分を含む重合性化合物の製造方法。

Figure 0004902381
〔式中、R1〜R24はそれぞれ独立に水素原子、ハロゲン原子、ニトロ基、アミノ基、スルホン酸基、スルホン酸エステル基またはヘテロ原子を有してもよい炭素数1〜20の有機基を表す。〕
Figure 0004902381
〔式中、X1、Y1、Z1の少なくとも1つは重合性官能基を有する置換基、X1、Y1、Z1のうちの残りはそれぞれ独立に水素原子またはヘテロ原子を有してもよい炭素数1〜20の有機基を表す。〕 [25] A method for producing a polymerizable compound containing a mononuclear iridium complex part, comprising reacting an iridium binuclear complex represented by formula (17) with a compound having a polymerizable functional group represented by formula (18) .
Figure 0004902381
[Wherein, R 1 to R 24 are each independently a hydrogen atom, a halogen atom, a nitro group, an amino group, a sulfonic acid group, a sulfonic acid ester group or a hetero atom, and an organic group having 1 to 20 carbon atoms. Represents. ]
Figure 0004902381
[Wherein, at least one of X 1 , Y 1 and Z 1 is a substituent having a polymerizable functional group, and the remainder of X 1 , Y 1 and Z 1 each independently has a hydrogen atom or a hetero atom. It represents an organic group having 1 to 20 carbon atoms. ]

[26] 前記式(18)におけるX1またはZ1が重合性官能基を有する置換基である[25]に記載の単核イリジウム錯体部分を含む重合性化合物の製造方法。
[27] 前記式(18)におけるY1が重合性官能基を有する置換基である[25]に記載の単核イリジウム錯体部分を含む重合性化合物の製造方法。
[26] The method for producing a polymerizable compound containing a mononuclear iridium complex moiety according to [25], wherein X 1 or Z 1 in the formula (18) is a substituent having a polymerizable functional group.
[27] The method for producing a polymerizable compound containing a mononuclear iridium complex moiety according to [25], wherein Y 1 in the formula (18) is a substituent having a polymerizable functional group.

[28] 式(17)で示されるイリジウム二核錯体と式(19)で示される反応性置換基を有する化合物を反応させた後、得られた単核イリジウム錯体の反応性置換基と重合性官能基を有する化合物を反応させることを特徴とする単核イリジウム錯体部分を含む重合性化合物の製造方法。

Figure 0004902381
〔式中、R1〜R24はそれぞれ独立に水素原子、ハロゲン原子、ニトロ基、アミノ基、スルホン酸基、スルホン酸エステル基またはヘテロ原子を有してもよい炭素数1〜20の有機基を表す。〕
Figure 0004902381
〔式中、X2、Y2、Z2の少なくとも1つは反応性置換基、X2、Y2、Z2のうちの残りはそれぞれ独立に水素原子またはヘテロ原子を有してもよい炭素数1〜20の有機基を表す。〕 [28] After reacting the iridium binuclear complex represented by formula (17) with the compound having the reactive substituent represented by formula (19), the reactive substituent and polymerizability of the resulting mononuclear iridium complex The manufacturing method of the polymeric compound containing the mononuclear iridium complex part characterized by making the compound which has a functional group react.
Figure 0004902381
[Wherein, R 1 to R 24 are each independently a hydrogen atom, a halogen atom, a nitro group, an amino group, a sulfonic acid group, a sulfonic acid ester group or a hetero atom, and an organic group having 1 to 20 carbon atoms. Represents. ]
Figure 0004902381
[Wherein, at least one of X 2 , Y 2 and Z 2 is a reactive substituent, and the remainder of X 2 , Y 2 and Z 2 may each independently have a hydrogen atom or a hetero atom. The organic group of number 1-20 is represented. ]

[29] 式(19)におけるX2またはY2が水酸基を有する置換基である[28]に記載の単核イリジウム錯体部分を含む重合性化合物の製造方法。
[30] 式(19)におけるY2が水酸基を有する置換基である請求項28に記載の単核イリジウム錯体部分を含む重合性化合物の製造方法。
[29] The method for producing a polymerizable compound containing a mononuclear iridium complex moiety according to [28], wherein X 2 or Y 2 in formula (19) is a substituent having a hydroxyl group.
[30] The method for producing a polymerizable compound containing a mononuclear iridium complex moiety according to claim 28, wherein Y 2 in formula (19) is a substituent having a hydroxyl group.

[31] 式(20)で示される化合物。

Figure 0004902381
〔式中、X2、Y2、Z2の少なくとも1つは水酸基を有する置換基を表し、X2、Y2、Z2のうちの残りはそれぞれ独立に水素原子またはヘテロ原子を有してもよい炭素数1〜20の有機基を表す。R1〜R12はそれぞれ独立に水素原子、ハロゲン原子、ニトロ基、アミノ基、スルホン酸基、スルホン酸エステル基またはヘテロ原子を有してもよい炭素数1〜20の有機基を表す。〕
[32] 式(20)におけるX2またはZ2が水酸基を有する置換基である[31]に記載の化合物。 [31] The compound represented by the formula (20).
Figure 0004902381
Wherein, X 2, Y 2, at least one of Z 2 represents a substituent having a hydroxyl group, with a X 2, Y 2, each remaining independently a hydrogen atom or a heteroatom of Z 2 Or an organic group having 1 to 20 carbon atoms. R 1 to R 12 each independently represents a hydrogen atom, a halogen atom, a nitro group, an amino group, a sulfonic acid group, a sulfonic acid ester group or an organic group having 1 to 20 carbon atoms which may have a hetero atom. ]
[32] The compound according to [31], wherein X 2 or Z 2 in formula (20) is a substituent having a hydroxyl group.

[33] 式(21)で示される化合物。

Figure 0004902381
〔式中、nは0〜20の整数を表し、Q1およびQ2はそれぞれ独立に水素原子またはヘテロ原子を有してもよい炭素数1〜20の有機基を表す。〕 [33] A compound represented by the formula (21).
Figure 0004902381
[Wherein, n represents an integer of 0 to 20, and Q 1 and Q 2 each independently represent a C 1-20 organic group which may have a hydrogen atom or a hetero atom. ]

[34]式(22)で示される化合物。

Figure 0004902381
〔式中、nは0〜20の整数を表し、Q1およびQ2はそれぞれ独立に水素原子またはヘテロ原子を有してもよい炭素数1〜20の有機基を表す。〕
[35] 式(20)におけるY2が水酸基を有する置換基である[31]に記載の化合物。 [34] A compound represented by formula (22).
Figure 0004902381
[Wherein, n represents an integer of 0 to 20, and Q 1 and Q 2 each independently represent a C 1-20 organic group which may have a hydrogen atom or a hetero atom. ]
[35] The compound according to [31], wherein Y 2 in formula (20) is a substituent having a hydroxyl group.

[36] 式(23)で示される化合物。

Figure 0004902381
〔式中、nは0〜20の整数を表し、Q2およびQ3はそれぞれ独立に水素原子またはヘテロ原子を有してもよい炭素数1〜20の有機基を表す。〕 [36] A compound represented by formula (23).
Figure 0004902381
Wherein, n represents an integer of 0 to 20, represents an organic group of Q 2 and Q 3 are each independently a hydrogen atom or a carbon atoms which may have a heteroatom 1-20. ]

[37] [1]〜[24]のいずれか一つに記載の重合性化合物の重合体。
[38] [1]〜[24]のいずれか一つに記載の重合性化合物を1種以上含む組成物を重合してなる重合体。
[39] [1]〜[24]のいずれか一つに記載の重合性化合物を含むことを特徴とする発光材料。
[40] [1]〜[24]のいずれか一つに記載の重合性化合物を重合してなる発光材料。
[41] [1]〜[24]のいずれか一つに記載の重合性化合物を1種以上含む組成物を重合してなる発光材料。
[42] [1]〜[24]のいずれか一つに記載の発光材料を用いた有機発光素子。
[37] A polymer of the polymerizable compound according to any one of [1] to [24].
[38] A polymer obtained by polymerizing a composition containing one or more polymerizable compounds according to any one of [1] to [24].
[39] A light-emitting material comprising the polymerizable compound according to any one of [1] to [24].
[40] A light emitting material obtained by polymerizing the polymerizable compound according to any one of [1] to [24].
[41] A light-emitting material obtained by polymerizing a composition containing one or more polymerizable compounds according to any one of [1] to [24].
[42] An organic light emitting device using the light emitting material according to any one of [1] to [24].

本発明の新規な重合性化合物はイリジウム錯体部分を含む新規な重合体を与え、これを有機発光素子の発光材料として使用することにより励起三重項状態から高効率で発光し、かつ大面積化が可能で量産に適した有機発光素子を提供することができる。
The novel polymerizable compound of the present invention gives a novel polymer containing an iridium complex portion, and by using this as a luminescent material of an organic light-emitting device, it emits light from an excited triplet state with high efficiency and has a large area. An organic light-emitting element that is possible and suitable for mass production can be provided.

以下、本発明を具体的に説明する。
本発明により式(1)

Figure 0004902381
〔式中、X1、Y1、Z1の少なくとも1つは重合性官能基を有する置換基を表し、X1、Y1、Z1のうちの残りはそれぞれ独立に水素原子またはヘテロ原子を有してもよい炭素数1〜20の有機基を表す。R1〜R12はそれぞれ独立に水素原子、ハロゲン原子、ニトロ基、アミノ基、スルホン酸基、スルホン酸エステル基またはヘテロ原子を有してもよい炭素数1〜20の有機基を表す。〕で表される重合性化合物が提供される。 Hereinafter, the present invention will be specifically described.
According to the invention, the formula (1)
Figure 0004902381
Wherein, X 1, Y 1, at least one of Z 1 represents a substituent having a polymerizable functional group, the X 1, Y 1, each remaining independently a hydrogen atom or a heteroatom of Z 1 The C1-C20 organic group which may have is represented. R 1 to R 12 each independently represents a hydrogen atom, a halogen atom, a nitro group, an amino group, a sulfonic acid group, a sulfonic acid ester group or an organic group having 1 to 20 carbon atoms which may have a hetero atom. The polymerizable compound represented by this is provided.

式(1)におけるX1、Y1、Z1のうちの重合性官能基を有する置換基は、ラジカル重合性、カチオン重合性、アニオン重合性、付加重合性、縮合重合性のいずれであってもよいが、ラジカル重合性の官能基が好ましい。この重合性官能基としては、ビニル基、アリル基、アルケニル基、アクリレート基、メタクリレート基、メタクリロイルオキシエチルカルバメート基等のウレタン(メタ)アクリレート基、スチリル基及びその誘導体、ビニルアシド基及びその誘導体などを有する置換基を挙げることができる。これらの重合性官能基の中で、その重合性という観点から、アクリレート基、メタアクリレート基、ウレタン(メタ)アクリレート基が好ましい。 The substituent having a polymerizable functional group among X 1 , Y 1 , and Z 1 in formula (1) is any of radical polymerizable, cationic polymerizable, anionic polymerizable, addition polymerizable, and condensation polymerizable. However, a radical polymerizable functional group is preferable. Examples of the polymerizable functional group include a vinyl (ally) group, an alkenyl group, an acrylate group, a methacrylate group, a urethane (meth) acrylate group such as a methacryloyloxyethyl carbamate group, a styryl group and a derivative thereof, a vinyl acid group and a derivative thereof, and the like. The substituent which it has can be mentioned. Among these polymerizable functional groups, an acrylate group, a methacrylate group, and a urethane (meth) acrylate group are preferable from the viewpoint of polymerizability.

各式におけるX1、Y1、Z1のうちの重合性官能基を有しない置換基、Q1〜Q3としては水素原子、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、ターシャリーブチル、アミル、ヘキシル等のアルキル基、またメトキシ、エトキシ、プロポキシ、イソブトキシ、ターシャリーブトキシ等のアルコキシ基、アセトキシ基、プロポキシカルボニル基などのエステル基、アリール基等の有機基を挙げることができる。 Substituents having no polymerizable functional group among X 1 , Y 1 and Z 1 in each formula, Q 1 to Q 3 are a hydrogen atom, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tertiary butyl, Examples thereof include alkyl groups such as amyl and hexyl, alkoxy groups such as methoxy, ethoxy, propoxy, isobutoxy and tertiary butoxy, ester groups such as acetoxy group and propoxycarbonyl group, and organic groups such as aryl group.

各式におけるR1〜R12およびR13〜R24としては水素原子、ハロゲン原子、ニトロ基、アミノ基、スルホン酸基、スルホン酸メチル等のスルホン酸エステル基、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、ターシャリーブチル、アミル、ヘキシル等のアルキル基、またメトキシ、エトキシ、プロポキシ、イソブトキシ、ターシャリーブトキシ等のアルコキシ基、アセトキシ基、プロポキシカルボニル基などのエステル基、アリール基等の有機基を挙げることができる。また、これらの有機基は、更にハロゲン原子、ニトロ基、アミノ基等の置換基を有していてもよい。 R 1 to R 12 and R 13 to R 24 in each formula are hydrogen atom, halogen atom, nitro group, amino group, sulfonic acid group, sulfonic acid ester group such as methyl sulfonate, methyl, ethyl, propyl, isopropyl Organic groups such as alkyl groups such as butyl, isobutyl, tertiary butyl, amyl, hexyl, etc., alkoxy groups such as methoxy, ethoxy, propoxy, isobutoxy, tertiary butoxy, ester groups such as acetoxy group, propoxycarbonyl group, and aryl groups Can be mentioned. Further, these organic groups may further have a substituent such as a halogen atom, a nitro group, or an amino group.

次に、本発明による重合性化合物の合成方法の例を以下に挙げるが、本発明は何らこれらに限定されるものではない。   Next, although the example of the synthesis | combining method of the polymeric compound by this invention is given below, this invention is not limited to these at all.

その第1の合成方法は、式(17)で示されるイリジウムの二核錯体と式(18)で示される重合性置換基を有する化合物を反応させることにより単核イリジウム錯体部分を含む重合性化合物を得る方法である。

Figure 0004902381
〔式中、R1〜R24はそれぞれ独立に水素原子、ハロゲン原子、ニトロ基、アミノ基、スルホン酸基、スルホン酸エステル基またはヘテロ原子を有してもよい炭素数1〜20の有機基を表す。〕
Figure 0004902381
〔式中、X1、Y1、Z1の少なくとも1つは重合性官能基を有する置換基、X1、Y1、Z1のうちの残りはそれぞれ独立に水素原子またはヘテロ原子を有してもよい炭素数1〜20の有機基を表す。〕 The first synthesis method is a polymerizable compound containing a mononuclear iridium complex portion by reacting a binuclear complex of iridium represented by formula (17) with a compound having a polymerizable substituent represented by formula (18). Is the way to get.
Figure 0004902381
[Wherein, R 1 to R 24 are each independently a hydrogen atom, a halogen atom, a nitro group, an amino group, a sulfonic acid group, a sulfonic acid ester group or a hetero atom, and an organic group having 1 to 20 carbon atoms. Represents. ]
Figure 0004902381
[Wherein, at least one of X 1 , Y 1 and Z 1 is a substituent having a polymerizable functional group, and the remainder of X 1 , Y 1 and Z 1 each independently has a hydrogen atom or a hetero atom. It represents an organic group having 1 to 20 carbon atoms. ]

式(17)のイリジウムの二核錯体は公知の方法(S. Lamansky et al., Inorganic Chemistry, 40, 1704 (2001))により合成することができる。式(17)のR1〜R24としては水素原子、ハロゲン原子、ニトロ基、アミノ基、スルホン酸基、スルホン酸メチル等のスルホン酸エステル基、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、ターシャリーブチル、アミル、ヘキシル等のアルキル基、またメトキシ、エトキシ、プロポキシ、イソブトキシ、ターシャリーブトキシ等のアルコキシ基、更にはアセトキシ基、プロポキシカルボニル基などのエステル基等の有機基を挙げることができる。また、これらの有機基は、更にハロゲン原子、ニトロ基、アミノ基等の置換基を有していてもよい。 The binuclear complex of iridium of formula (17) can be synthesized by a known method (S. Lamansky et al., Inorganic Chemistry, 40, 1704 (2001)). R 1 to R 24 in the formula (17) are hydrogen atom, halogen atom, nitro group, amino group, sulfonic acid group, sulfonic acid ester group such as methyl sulfonate, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, Examples include alkyl groups such as tertiary butyl, amyl, and hexyl; alkoxy groups such as methoxy, ethoxy, propoxy, isobutoxy, and tertiary butoxy; and organic groups such as ester groups such as acetoxy and propoxycarbonyl groups. . Further, these organic groups may further have a substituent such as a halogen atom, a nitro group, or an amino group.

式(18)で示される化合物の置換基X1、Y1、Z1の少なくとも1つは重合性官能基を有する置換基であり、式(1)の説明と同じものを意味する。また、式(18)で示される化合物の置換基X1、Y1、Z1のうちの重合性官能基を有しない置換基も式(1)の場合と同様である。 At least one of the substituents X 1 , Y 1 , and Z 1 of the compound represented by the formula (18) is a substituent having a polymerizable functional group, and means the same as the description of the formula (1). Moreover, the substituent which does not have a polymerizable functional group among the substituents X 1 , Y 1 and Z 1 of the compound represented by the formula (18) is the same as in the case of the formula (1).

本発明による重合性化合物の第2の合成方法は、式(17)で示されるイリジウムの二核錯体と式(19)で示される反応性置換基を有する化合物を反応させることにより反応性置換基を有する単核のイリジウム錯体を中間体として得、この中間体の反応性置換基と重合性置換基を有する化合物を反応させることにより単核イリジウム錯体部分を含む重合性化合物を得る方法である。

Figure 0004902381
〔式中、R1〜R24はそれぞれ独立に水素原子、ハロゲン原子、ニトロ基、アミノ基、スルホン酸基、スルホン酸エステル基またはヘテロ原子を有してもよい炭素数1〜20の有機基を表す。〕
Figure 0004902381
〔式中、X2、Y2、Z2の少なくとも1つは反応性置換基、X2、Y2、Z2のうちの残りはそれぞれ独立に水素原子またはヘテロ原子を有してもよい炭素数1〜20の有機基を表す。〕 The second synthesis method of the polymerizable compound according to the present invention comprises reacting a dinuclear complex of iridium represented by the formula (17) with a compound having a reactive substituent represented by the formula (19). In this method, a mononuclear iridium complex having a mononuclear iridium complex is obtained by reacting a reactive substituent of this intermediate with a compound having a polymerizable substituent.
Figure 0004902381
[Wherein, R 1 to R 24 are each independently a hydrogen atom, a halogen atom, a nitro group, an amino group, a sulfonic acid group, a sulfonic acid ester group or a hetero atom, and an organic group having 1 to 20 carbon atoms. Represents. ]
Figure 0004902381
[Wherein, at least one of X 2 , Y 2 and Z 2 is a reactive substituent, and the remainder of X 2 , Y 2 and Z 2 may each independently have a hydrogen atom or a hetero atom. The organic group of number 1-20 is represented. ]

式(19)のX2、Y2、Z2の少なくとも1つは反応性置換基であり、水酸基などの官能基を有する。官能基としては水酸基、アミノ基、カルボキシル基などを例示することができるが、何らこれに限定されるものではない。これら官能基を有する反応性置換基としては水酸基、ヒドロキシアルキル基、ヒドロキシフェニル基などが挙げられる。 At least one of X 2 , Y 2 and Z 2 in the formula (19) is a reactive substituent and has a functional group such as a hydroxyl group. Examples of the functional group include a hydroxyl group, an amino group, and a carboxyl group, but the functional group is not limited thereto. Examples of the reactive substituent having these functional groups include a hydroxyl group, a hydroxyalkyl group, and a hydroxyphenyl group.

また、この反応性置換基は保護基で保護されていてもよい。尚、この場合は保護基により保護されたまま反応を行って単核イリジウム錯体を得た後、脱保護により反応性置換基を有する単核イリジウム錯体を中間体として得る。その後、この中間体の反応性置換基と重合性官能基を有する化合物と反応させることにより、単核イリジウム錯体部分を含む重合性化合物を得る。なお、これら反応性置換基の官能基としては前述の重合性官能基は除かれる。   Moreover, this reactive substituent may be protected with a protecting group. In this case, the mononuclear iridium complex having a reactive substituent is obtained as an intermediate by deprotection after carrying out the reaction while being protected by the protective group to obtain a mononuclear iridium complex. Then, the polymeric compound containing a mononuclear iridium complex part is obtained by making it react with the compound which has the reactive substituent of this intermediate body, and a polymeric functional group. In addition, the above-mentioned polymerizable functional group is excluded as a functional group of these reactive substituents.

式(19)で示される化合物の置換基X2、Y2、Z2のうちの反応性置換基でない置換基としては水素原子、ハロゲン原子、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、ターシャリーブチル、アミル、ヘキシル等のアルキル基、またメトキシ、エトキシ、プロポキシ、イソブトキシ、ターシャリーブトキシ等のアルコキシ基、アセトキシ基、プロポキシカルボニル基などのエステル基、アリール基等の有機基を挙げることができる。また、これらの有機基は、更にハロゲン原子等の置換基を有していてもよい。 Of the substituents X 2 , Y 2 , and Z 2 of the compound represented by the formula (19), examples of the substituent that is not a reactive substituent include a hydrogen atom, a halogen atom, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, and tarsia. Examples include alkyl groups such as butyl, amyl, and hexyl; alkoxy groups such as methoxy, ethoxy, propoxy, isobutoxy, and tertiary butoxy; ester groups such as acetoxy and propoxycarbonyl groups; and organic groups such as aryl groups. . Further, these organic groups may further have a substituent such as a halogen atom.

イリジウム二核錯体と反応性置換基を有する式(19)で示される化合物との反応で得られる反応性置換基を有する単核イリジウム錯体と反応させる重合性官能基を有する化合物は重合性の基以外に式(19)の反応性置換基X2、Y2、Y3と反応する基を有する官能基を有して必要がある。本発明による重合性化合物の第2の合成法による場合には式(17)のR1〜R24は上記の単核イリジウム錯体と反応させる重合性官能基を有する化合物と反応しない基を選択しておく必要がある。 A compound having a polymerizable functional group to be reacted with a mononuclear iridium complex having a reactive substituent obtained by reacting an iridium dinuclear complex with a compound represented by the formula (19) having a reactive substituent is a polymerizable group. In addition, it is necessary to have a functional group having a group that reacts with the reactive substituents X 2 , Y 2 , and Y 3 of formula (19). In the second synthesis method of the polymerizable compound according to the present invention, R 1 to R 24 in the formula (17) are selected from groups that do not react with the compound having a polymerizable functional group to be reacted with the mononuclear iridium complex. It is necessary to keep.

上記単核イリジウム錯体と反応させる重合性官能基を有する化合物としては重合性酸塩化物や重合性イソシアネートを例示することができるが、何らこれらに限定されるものではない。これらの化合物における重合性官能基は、ラジカル重合性、カチオン重合性、アニオン重合性、付加重合性、縮合重合性のいずれであってもよいが、ラジカル重合性の官能基が好ましい。この重合性官能基としてはビニル基、アリル基、アルケニル基、アクリレート基、メタクリレート基、メタクリロイルオキシエチルカルバメート基等のウレタン(メタ)アクリレート基、スチリル基及びその誘導体、ビニルアシド基及びその誘導体など有するものを挙げることができる。これらの重合性官能基の中で、その重合性という観点から、アクリレート基、メタアクリレート基、ウレタン(メタ)アクリレート基が好ましい。具体的には、重合性酸塩化物としてはアクリル酸クロライド、メタクリル酸クロライド等が挙げられ、重合性イソシアネートとしてはメタクリロイルイソシアネート、メタクリロイルオキシエチルイソシアネート等が挙げられる。
なお、本発明の化合物を示す式(1)などの化学式は金属錯体構造を表し、O−C−C−Oは共鳴構造を表すが、化学的に許容される構造を含むことは言うまでもない。
Examples of the compound having a polymerizable functional group to be reacted with the mononuclear iridium complex include polymerizable acid chlorides and polymerizable isocyanates, but are not limited thereto. The polymerizable functional group in these compounds may be any of radical polymerizable, cationic polymerizable, anionic polymerizable, addition polymerizable, and condensation polymerizable, but is preferably a radical polymerizable functional group. This polymerizable functional group has a urethane (meth) acrylate group such as vinyl group, allyl group, alkenyl group, acrylate group, methacrylate group, methacryloyloxyethyl carbamate group, styryl group and its derivatives, vinyl acid group and its derivatives, etc. Can be mentioned. Among these polymerizable functional groups, an acrylate group, a methacrylate group, and a urethane (meth) acrylate group are preferable from the viewpoint of polymerizability. Specifically, examples of the polymerizable acid chloride include acrylic acid chloride and methacrylic acid chloride, and examples of the polymerizable isocyanate include methacryloyl isocyanate and methacryloyloxyethyl isocyanate.
In addition, although chemical formulas, such as Formula (1) which show the compound of this invention represent a metal complex structure and O-C-C-O represents a resonance structure, it cannot be overemphasized that the structure accept | permitted chemically is included.

以下に本発明について代表的な例を示し、更に具体的に説明する。尚、これらは説明のための単なる例示であって、本発明は何らこれらに限定されるものではない。   The present invention will be described in more detail below with typical examples. Note that these are merely illustrative examples, and the present invention is not limited to these.

<測定装置等>
1)1H−NMR
日本電子(株)製 JNM EX270
270Mz 溶媒:重クロロホルムまたは重ジメチルスルホシキド
2)元素分析装置
REC0社製 CHNS−932型
<Measurement equipment, etc.>
1) 1H-NMR
JNM EX270 manufactured by JEOL Ltd.
270Mz Solvent: deuterated chloroform or deuterated dimethyl sulfoxide 2) CHNS-932 type manufactured by elemental analyzer REC0

<試薬類>
特に断らない限り、市販品(特級)を精製することなく使用した。
<Reagents>
Unless otherwise noted, commercial products (special grade) were used without purification.

(実施例1)重合性化合物:(8−ノネン−2,4−ジオナート)ビス(2−フェニルピリジン)イリジウム(III)(以下Ir(ppy)2(1−Bu−acac)と略す)の合成
スキーム(1A)に示すように、常法に従い合成したビス(μ−クロロ)テトラキス(2−フェニルピリジン)ジイリジウム(III)(以下[Ir(ppy)2Cl]2と略す)と、公知の方法(H. Gerlach et al.,
Helv. Chim. Acta, 60, 638 (1977))により合成した8−ノネン−2,4−ジオンを反応させてIr(ppy)2(1−Bu−acac)を合成した。即ち、[Ir(ppy)2Cl]2 261mg(0.24mmol)を30mlの窒素ガスで脱気したメタノール中に懸濁させ、8−ノネン−2,4−ジオン87mg(0.56mmol)とトリエチルアミン76mg(0.75mmol)を加えて油浴上で3時間加熱還流させた。得られた薄黄色の反応液を室温にまで冷却し、ロータリーエバポレータで濃縮した。次に希塩酸水溶液200mlとクロロホルム50mlを加えて激しく攪拌し、クロロホルム層を分取して硫酸マグネシウムで乾燥後、減圧して溶媒を留去した。得られた黄色の残渣をジクロロメタンに溶解し、ジクロロメタンを溶出液とするシリカゲルカラムクロマトグラフィーで薄黄色の主生成物を分取した。この溶液を減圧して濃縮後、少量のヘキサンを加えて−20℃に冷却し、目的とするIr(ppy)2(1−Bu−acac)270mg(0.41mmol)を薄黄色結晶として得た(収率85%)。同定はCHN元素分析、1H−NMRで行った。
(Example 1) Synthesis of polymerizable compound: (8-nonene-2,4-dionato) bis (2-phenylpyridine) iridium (III) (hereinafter abbreviated as Ir (ppy) 2 (1-Bu-acac)) As shown in Scheme (1A), bis (μ-chloro) tetrakis (2-phenylpyridine) diiridium (III) (hereinafter abbreviated as [Ir (ppy) 2 Cl] 2 ) synthesized according to a conventional method, Method (H. Gerlach et al.,
Ir (ppy) 2 (1-Bu-acac) was synthesized by reacting 8-nonene-2,4-dione synthesized by Helv. Chim. Acta, 60, 638 (1977). That is, 261 mg (0.24 mmol) of [Ir (ppy) 2 Cl] 2 was suspended in methanol degassed with 30 ml of nitrogen gas, and 87 mg (0.56 mmol) of 8-nonene-2,4-dione and triethylamine were suspended. 76 mg (0.75 mmol) was added, and the mixture was heated to reflux on an oil bath for 3 hours. The obtained pale yellow reaction liquid was cooled to room temperature and concentrated by a rotary evaporator. Next, 200 ml of dilute hydrochloric acid solution and 50 ml of chloroform were added and stirred vigorously. The chloroform layer was separated, dried over magnesium sulfate, and the solvent was distilled off under reduced pressure. The obtained yellow residue was dissolved in dichloromethane, and a light yellow main product was fractionated by silica gel column chromatography using dichloromethane as an eluent. The solution was concentrated under reduced pressure, a small amount of hexane was added, and the mixture was cooled to −20 ° C. to obtain 270 mg (0.41 mmol) of target Ir (ppy) 2 (1-Bu-acac) as light yellow crystals. (Yield 85%). Identification was performed by CHN elemental analysis and 1 H-NMR.

1H NMR (CDCl3): d 8.49 (d, J = 5.7 Hz, 2 H,
ppy), 7.83 (t, J = 7.8 Hz, 2 H, ppy), 7.70 (m, 2 H, ppy), 7.54 (t, J = 6.8 Hz,
2 H, ppy), 7.10 (m, 2 H, ppy), 6.80 (t, J = 7.3 Hz, 2 H, ppy), 6.68 (m, 2 H,
ppy), 6.35 (d, J = 6.2 Hz, 1 H, ppy), 6.25 (d, J = 6.2 Hz, 1 H, ppy), 5.61 (m,
1 H, -CH=CH2), 5.19 (s, 1
H, diketonate-methine), 4.86 (m, 2 H, -CH=CH2), 1.99 (t, J = 7.3 Hz, 2 H, methylene), 1.79 (s, 3 H, CH3), 1.72 (m, 2 H, methylene), 1.38
(m, 2 H, methylene). E.A.: Calcd for C31H29IrN2O2: C, 56.95; H, 4.47; N, 4.28. Found: C, 55.84; H,
4.32; N, 3.97.
1 H NMR (CDCl 3 ): d 8.49 (d, J = 5.7 Hz, 2 H,
ppy), 7.83 (t, J = 7.8 Hz, 2 H, ppy), 7.70 (m, 2 H, ppy), 7.54 (t, J = 6.8 Hz,
2 H, ppy), 7.10 (m, 2 H, ppy), 6.80 (t, J = 7.3 Hz, 2 H, ppy), 6.68 (m, 2 H,
ppy), 6.35 (d, J = 6.2 Hz, 1 H, ppy), 6.25 (d, J = 6.2 Hz, 1 H, ppy), 5.61 (m,
1 H, -CH = CH 2 ), 5.19 (s, 1
H, diketonate-methine), 4.86 (m, 2 H, -CH = CH 2 ), 1.99 (t, J = 7.3 Hz, 2 H, methylene), 1.79 (s, 3 H, CH 3 ), 1.72 (m , 2 H, methylene), 1.38
(m, 2 H, methylene). EA: Calcd for C 31 H 29 IrN 2 O 2 : C, 56.95; H, 4.47; N, 4.28. Found: C, 55.84; H,
4.32; N, 3.97.

Figure 0004902381
Figure 0004902381

(実施例2)重合性化合物:[6−(4−ビニルフェニル)−2,4−ヘキサンジオナート]ビス(2−フェニルピリジン)イリジウム(III)(以下Ir(ppy)2[1−(St−Me)−acac]と略す)の合成
スキーム(2A)に示すように、アセチルアセトンと4−ビニルベンジルクロライドを反応させて6−(4−ビニルフェニル)−2,4−ヘキサジオンを合成した。即ち、水素化ナトリウム1.23g(60% in oil)(31mmol)を窒素雰囲気下で秤量し、これに乾燥テトラヒドロフラン(以下THFと略す)60mlを加えて氷浴で0℃に冷却した。この懸濁液にアセチルアセトン2.5g(24mmol)とヘキサメチルホスホリックトリアミド1mlの混合溶液を滴下すると無色の沈殿が生成した。0℃で10分間攪拌した後、n−ブチルリチウムのヘキサン溶液(1.6M)17.5ml(28mmol)を滴下すると沈殿が溶解し、更に0℃で20分間攪拌した。得られた薄黄色の溶液に4−ビニルベンジルクロライド4.0g(26mmol)を滴下し、反応液を室温に戻して20分間攪拌後、希塩酸を加えて水層を酸性にした。有機層を飽和塩化ナトリウム水溶液で洗浄し、硫酸マグネシウムで乾燥した後、ロータリーエバポレータで溶媒を留去した。得られた反応混合物をシリカゲルカラムに加えてヘキサン/ジクロロメタンの1:1(体積比)混合溶媒で展開し、主生成物を分取した。得られた溶液から減圧で溶媒を留去することにより、目的とする6−(4−ビニルフェニル)−2,4−ヘキサジオン3.0g(14mmol)を褐色の液体として得た。収率56%。同定はCHN元素分析、1H−NMRで行った。
(Example 2) Polymerizable compound: [6- (4-vinylphenyl) -2,4-hexanedionate] bis (2-phenylpyridine) iridium (III) (hereinafter Ir (ppy) 2 [1- (St Synthesis of -Me) -acac]) As shown in the scheme (2A), acetylacetone and 4-vinylbenzyl chloride were reacted to synthesize 6- (4-vinylphenyl) -2,4-hexadione. That is, 1.23 g (60% in oil) (31 mmol) of sodium hydride was weighed under a nitrogen atmosphere, 60 ml of dry tetrahydrofuran (hereinafter abbreviated as THF) was added thereto, and the mixture was cooled to 0 ° C. in an ice bath. When a mixed solution of 2.5 g (24 mmol) of acetylacetone and 1 ml of hexamethylphosphoric triamide was added dropwise to this suspension, a colorless precipitate was formed. After stirring at 0 ° C. for 10 minutes, 17.5 ml (28 mmol) of n-butyllithium in hexane (1.6M) was added dropwise to dissolve the precipitate, and the mixture was further stirred at 0 ° C. for 20 minutes. To the obtained pale yellow solution, 4.0 g (26 mmol) of 4-vinylbenzyl chloride was added dropwise, the reaction solution was returned to room temperature and stirred for 20 minutes, and diluted hydrochloric acid was added to acidify the aqueous layer. The organic layer was washed with a saturated aqueous sodium chloride solution and dried over magnesium sulfate, and then the solvent was distilled off with a rotary evaporator. The obtained reaction mixture was added to a silica gel column and developed with a 1: 1 (volume ratio) mixed solvent of hexane / dichloromethane to fractionate the main product. The solvent was distilled off from the resulting solution under reduced pressure to obtain 3.0 g (14 mmol) of the intended 6- (4-vinylphenyl) -2,4-hexadione as a brown liquid. Yield 56%. Identification was performed by CHN elemental analysis and 1 H-NMR.

1H NMR (CDCl3): enol; d 7.33 (d, J = 8.1 Hz, 2 H,
aromatic), 7.14 (d, J = 8.4 Hz, 2 H, aromatic), 6.68 (dd, J = 8.1 Hz, 1 H,
vinylic), 5.70 (d, J = 17.0 Hz, 1 H, vinylic), 5.46 (s, 1 H,
diketonate-methine), 5.20 (d, J = 11.1 Hz, 1 H, vinylic), 2.91 (t, J = 5.7 Hz,
2 H, methylene), 2.58 (t, J = 7.3 Hz, 2 H, methylene), 2.03 (s, 3 H,
methyl). keto; d 7.33 (d, J = 8.1 Hz, 2 H, aromatic), 7.14 (d, J = 8.4 Hz, 2 H,
aromatic), 6.68 (dd, J = 8.1 Hz, 1 H, vinylic), 5.70 (d, J = 17.0 Hz, 1 H,
vinylic), 5.20 (d, J = 11.1 Hz, 1 H, vinylic), 3.53 (s, 2 H, C(=O)CH2C(=O)), 2.89 (m, 4 H, ethylene),
2.19 (s, 3 H, methyl). enol : keto = 6 : 1. E.A.: Calcd for C14H9O2:
C, 77.75; H, 7.46. Found: C, 77.49; H, 7.52.
1 H NMR (CDCl 3 ): enol; d 7.33 (d, J = 8.1 Hz, 2 H,
aromatic), 7.14 (d, J = 8.4 Hz, 2 H, aromatic), 6.68 (dd, J = 8.1 Hz, 1 H,
vinylic), 5.70 (d, J = 17.0 Hz, 1 H, vinylic), 5.46 (s, 1 H,
diketonate-methine), 5.20 (d, J = 11.1 Hz, 1 H, vinylic), 2.91 (t, J = 5.7 Hz,
2 H, methylene), 2.58 (t, J = 7.3 Hz, 2 H, methylene), 2.03 (s, 3 H,
methyl) .keto; d 7.33 (d, J = 8.1 Hz, 2 H, aromatic), 7.14 (d, J = 8.4 Hz, 2 H,
aromatic), 6.68 (dd, J = 8.1 Hz, 1 H, vinylic), 5.70 (d, J = 17.0 Hz, 1 H,
vinylic), 5.20 (d, J = 11.1 Hz, 1 H, vinylic), 3.53 (s, 2 H, C (= O) CH 2 C (= O)), 2.89 (m, 4 H, ethylene),
2.19 (s, 3 H, methyl) .enol: keto = 6: 1.EA: Calcd for C 14 H 9 O 2 :
C, 77.75; H, 7.46. Found: C, 77.49; H, 7.52.

Figure 0004902381
Figure 0004902381

次いで、スキーム(2B)に示すように、この6−(4−ビニルフェニル)−2,4−ヘキサンジオンと常法に従い合成した[Ir(ppy)2Cl]2を反応させてIr(ppy)2[1−(St−Me)−acac]を合成した。即ち、[Ir(ppy)2Cl]2342mg(0.32mmol)、炭酸ナトリウム158mg(1.5mmol)および2,6−ジ−tert−ブチル−4−メチルフェノール5mg(0.023mmol)を5 mlのN,N−ジメチルホルムアミド(以下DMFと略す)に溶解し、これに6−(4−ビニルフェニル)−2,4−ヘキサンジオン210mg(0.97mmol)を加えて65℃で1時間加熱攪拌した。次に室温まで冷却した反応溶液に希塩酸水溶液を加えた後、薄黄色の成分をクロロホルムで抽出した。ロータリーエバポレータを用いて溶媒を留去後、残渣を少量のジクロロメタンに溶解し、シリカゲルカラムクロマトグラフィー(展開液:ジクロロメタン)で黄色の主生成物を分取した。この溶液を減圧乾固し、ジクロロメタン−ヘキサン混合溶液を加えて−20℃で再結晶を行い、目的とするIr(ppy)2[1−(St−Me)−acac]354mg(0.49mmol)を薄黄色結晶として得た。収率78%。同定はCHN元素分析、1H−NMRで行った。 Next, as shown in Scheme (2B), this 6- (4-vinylphenyl) -2,4-hexanedione was reacted with [Ir (ppy) 2 Cl] 2 synthesized according to a conventional method to give Ir (ppy) 2 [1- (St-Me) -acac] was synthesized. That is, 5 ml of [Ir (ppy) 2 Cl] 2 342 mg (0.32 mmol), sodium carbonate 158 mg (1.5 mmol) and 2,6-di-tert-butyl-4-methylphenol 5 mg (0.023 mmol) Was dissolved in N, N-dimethylformamide (hereinafter abbreviated as DMF), 210 mg (0.97 mmol) of 6- (4-vinylphenyl) -2,4-hexanedione was added thereto, and the mixture was heated and stirred at 65 ° C. for 1 hour. did. Next, a diluted hydrochloric acid aqueous solution was added to the reaction solution cooled to room temperature, and the light yellow component was extracted with chloroform. After distilling off the solvent using a rotary evaporator, the residue was dissolved in a small amount of dichloromethane, and the yellow main product was fractionated by silica gel column chromatography (developing solution: dichloromethane). This solution was dried under reduced pressure, a dichloromethane-hexane mixed solution was added, and recrystallization was performed at −20 ° C. to obtain 354 mg (0.49 mmol) of target Ir (ppy) 2 [1- (St-Me) -acac]. Was obtained as pale yellow crystals. Yield 78%. Identification was performed by CHN elemental analysis and 1 H-NMR.

1H NMR (CDCl3): d 8.47 (d, J = 5.7 Hz, 1 H,
ppy), 8.21 (d, J = 5.7 Hz, 1 H, ppy), 7.9 &#8211; 7.5 (m, 6 H, ppy), 7.18
(d, J = 8.1 Hz, 2 H, stylyl-aromatic), 7.00 (m, 2 H, ppy), 6.89 (d, J = 8.1 Hz,
2 H, stylyl-aromatic), 6.75 (m, 5 H, ppy and vinylic), 6.28 (t, J = 7.3 Hz, 2
H, ppy), 7.67 (d, J = 17.6 Hz, 1 H, vinylic), 5.19 (d, J = 9.5 Hz, 1 H,
vinylic), 5.17 (s, 1 H, diketonate-methine), 2.60 (t, J = 7.3 Hz, 2 H,
ethylene), 2.36 (m, 2 H, ethylene), 1.75 (s, 3 H, methyl). E.A.: Calcd for C36H31IrN2O2: C, 60.40; H, 4.36; N, 3.91.
Found: C, 61.35; H, 4.34; N, 3.83.
1 H NMR (CDCl 3 ): d 8.47 (d, J = 5.7 Hz, 1 H,
ppy), 8.21 (d, J = 5.7 Hz, 1 H, ppy), 7.9 &#8211; 7.5 (m, 6 H, ppy), 7.18
(d, J = 8.1 Hz, 2 H, stylyl-aromatic), 7.00 (m, 2 H, ppy), 6.89 (d, J = 8.1 Hz,
2 H, stylyl-aromatic), 6.75 (m, 5 H, ppy and vinylic), 6.28 (t, J = 7.3 Hz, 2
H, ppy), 7.67 (d, J = 17.6 Hz, 1 H, vinylic), 5.19 (d, J = 9.5 Hz, 1 H,
vinylic), 5.17 (s, 1 H, diketonate-methine), 2.60 (t, J = 7.3 Hz, 2 H,
ethylene), 2.36 (m, 2 H, ethylene), 1.75 (s, 3 H, methyl) .EA: Calcd for C 36 H 31 IrN 2 O 2 : C, 60.40; H, 4.36; N, 3.91.
Found: C, 61.35; H, 4.34; N, 3.83.

Figure 0004902381
Figure 0004902381

(実施例3)重合性化合物:(9−アクリロイルオキシ−2,4−ノナンジオナート)ビス(2−フェニルピリジン)イリジウム(III)(以下Ir(ppy)2[1−(A−Bu)−acac]と略す)の合成
スキーム(3A)に示すように、常法に従い、(9−ヒドロキシ−2,4−ノナンジオナート)ビス(2−フェニルピリジン)イリジウム(以下Ir(ppy)2[1−(OH−Bu)−acac]と略す)を合成した。即ち、実施例1と同様にして合成したIr(ppy)2(1−Bu−acac)167mg(0.26mmol)をTHF10mlに溶解し、これに9−ボラビシクロ[3.3.1]ノナン(以下9−BBNと略す)の0.5M THF溶液1.0ml(0.5mmol)を滴下した。この溶液を25分間加熱還流した後、得られた反応混合物に3M
NaOH水溶液0.2ml(0.60mmol)と35%H22溶液0.060ml(0.62mmol)を順に加えて室温で12時間攪拌した。次に20mlの水を加えてロータリーエバポレータで濃縮し、クロロホルムを加えてよく振盪した後、有機層を減圧乾固した。得られた黄色固体を少量のジクロロメタンに溶解してシリカゲルカラムに加え、まずジクロロメタンを流して溶出した不純物を除いた。引き続きジクロロメタン/酢酸エチルの1:1(体積比)混合溶媒を流すと薄黄色の錯体が溶出した。これを回収して減圧乾燥し、ジクロロメタン/ヘキサン混合溶液から−20℃で再結晶することによりIr(ppy)2[1−(OH−Bu)−acac] 23mg(0.034mmol)を薄黄色の固体として得た。収率13%。同定はCHN元素分析、1H−NMRで行った。
(Example 3) Polymerizable compound: (9-acryloyloxy-2,4-nonandionate) bis (2-phenylpyridine) iridium (III) (hereinafter Ir (ppy) 2 [1- (A-Bu) -acac] As shown in scheme (3A), (9-hydroxy-2,4-nonandionato) bis (2-phenylpyridine) iridium (hereinafter referred to as Ir (ppy) 2 [1- (OH— (Bu) -acac]) was synthesized. That is, 167 mg (0.26 mmol) of Ir (ppy) 2 (1-Bu-acac) synthesized in the same manner as in Example 1 was dissolved in 10 ml of THF, and 9-borabicyclo [3.3.1] nonane (hereinafter referred to as “nonane”). 1.0 ml (0.5 mmol) of 0.5 M THF solution of 9-BBN) was added dropwise. The solution was heated to reflux for 25 minutes and then the resulting reaction mixture was added to 3M.
Aqueous NaOH (0.2 ml, 0.60 mmol) and 35% H 2 O 2 solution (0.060 ml, 0.62 mmol) were sequentially added, followed by stirring at room temperature for 12 hours. Next, 20 ml of water was added and concentrated with a rotary evaporator. After adding chloroform and shaking well, the organic layer was dried under reduced pressure. The obtained yellow solid was dissolved in a small amount of dichloromethane and added to a silica gel column. First, dichloromethane was flowed to remove the eluted impurities. Subsequently, when a mixed solvent of dichloromethane / ethyl acetate 1: 1 (volume ratio) was passed, a light yellow complex was eluted. This was recovered, dried under reduced pressure, and recrystallized from a dichloromethane / hexane mixed solution at −20 ° C. to obtain 23 mg (0.034 mmol) of Ir (ppy) 2 [1- (OH-Bu) -acac] as a pale yellow Obtained as a solid. Yield 13%. Identification was performed by CHN elemental analysis and 1 H-NMR.

1H NMR (CDCl3): d 8.50 (d, J = 5.9 Hz, 2 H,
ppy), 7.82 (t, J = 7.0 Hz, 2 H, ppy), 7.72 (t, J = 7.3 Hz, 2 H, ppy), 7.55 (t,
J = 7.0 Hz, 2 H, ppy), 7.12 (t, J = 5.9 Hz, 2 H, ppy), 6.81 (t, J = 7.6 Hz, 2
H, ppy), 6.69 (t, J = 7.3 Hz, 2 H, ppy), 6.31 (d, J = 5.9 Hz, 1 H, ppy), 6.26
(d, J = 5.9 Hz, 1 H, ppy), 5.19 (s, 1 H, diketonate-methine), 3.44 (t, J = 7.0
Hz, 2 H, CH2OH), 1.98 (t,
J = 7.0 Hz, 2 H, methylene), 1.79 (s, 3 H, methyl), 1.34 (m, 4 H, methylene),
1.05 (m, 2 H, methylene). E.A.: Calcd for C31H31IrN2O3: C, 55.42; H, 4.65; N, 4.17. Found: C, 55.76; H,
4.71; N, 4.19.
1 H NMR (CDCl 3 ): d 8.50 (d, J = 5.9 Hz, 2 H,
ppy), 7.82 (t, J = 7.0 Hz, 2 H, ppy), 7.72 (t, J = 7.3 Hz, 2 H, ppy), 7.55 (t,
J = 7.0 Hz, 2 H, ppy), 7.12 (t, J = 5.9 Hz, 2 H, ppy), 6.81 (t, J = 7.6 Hz, 2
H, ppy), 6.69 (t, J = 7.3 Hz, 2 H, ppy), 6.31 (d, J = 5.9 Hz, 1 H, ppy), 6.26
(d, J = 5.9 Hz, 1 H, ppy), 5.19 (s, 1 H, diketonate-methine), 3.44 (t, J = 7.0
Hz, 2 H, CH 2 OH), 1.98 (t,
J = 7.0 Hz, 2 H, methylene), 1.79 (s, 3 H, methyl), 1.34 (m, 4 H, methylene),
1.05 (m, 2 H, methylene). EA: Calcd for C 31 H 31 IrN 2 O 3 : C, 55.42; H, 4.65; N, 4.17. Found: C, 55.76; H,
4.71; N, 4.19.

Figure 0004902381
Figure 0004902381

次いで、スキーム(3B)に示すように、このIr(ppy)2[1−(OH−Bu)−acac]とアクリル酸クロライドを反応させることによりIr(ppy)2[1−(A−Bu)−acac]を合成した。即ち、Ir(ppy)2[1−(OH−Bu)−acac] 95mg(0.14mmol)をジクロロメタン10mlに溶解し、これにトリエチルアミン0.10ml(0.72mmol)を加えた。この溶液にアクリル酸クロライド0.060ml(0.74mmol)を加えて室温で30分間攪拌した。次にメタノール1mlを加えた後、減圧下、溶媒を留去した。残渣をシリカゲルカラムに通して(展開液:ジクロロメタン)最初に溶出した黄色の溶液を分取して減圧乾固し、ジクロロメタン−ヘキサン混合溶液から−20℃で再結晶することにより目的とするIr(ppy)2[1−(A−Bu)−acac] 99mg(0.14mmol)を
薄黄色の固体として得た。収率96%。同定はCHN元素分析、1H−NMRで行った。
Next, as shown in Scheme (3B), Ir (ppy) 2 [1- (OH-Bu) -acac] is reacted with acrylic acid chloride to react with Ir (ppy) 2 [1- (A-Bu). -Acac] was synthesized. That is, 95 mg (0.14 mmol) of Ir (ppy) 2 [1- (OH-Bu) -acac] was dissolved in 10 ml of dichloromethane, and 0.10 ml (0.72 mmol) of triethylamine was added thereto. To this solution, 0.060 ml (0.74 mmol) of acrylic acid chloride was added and stirred at room temperature for 30 minutes. Next, 1 ml of methanol was added, and then the solvent was distilled off under reduced pressure. The residue was passed through a silica gel column (developing solution: dichloromethane), the yellow solution eluted first was separated, dried under reduced pressure, and recrystallized from a dichloromethane-hexane mixed solution at −20 ° C. to obtain the target Ir ( ppy) 2 [1- (A-Bu) -acac] 99 mg (0.14 mmol) was obtained as a pale yellow solid. Yield 96%. Identification was performed by CHN elemental analysis and 1 H-NMR.

1H NMR (CDCl3): d 8.50 (d, J = 5.9 Hz, 2 H,
ppy), 7.80 (m, 4 H, ppy), 7.51 (t, J = 7.3 Hz, 2 H, ppy), 7.18 (t, J = 5.9 Hz,
2 H, ppy), 6.84 (t, J = 7.3 Hz, 2 H, ppy), 6.70 (t, J = 7.6 Hz, 2 H, ppy), 6.25
(m, 3 H, ppy + vinylic), 6.12 (dd, J = 15.6, 9.3 Hz, 1 H, vinylic), 5.75 (d, J
= 9.3 Hz, 1 H, vinylic), 5.17 (s, 1 H, diketonate-methine), 4.05 (t, J = 7.0
Hz, 2 H, -COOCH2-), 1.84
(t, J = 7.0 Hz, 2 H, methylene), 1.80 (s, 3 H, methyl), 1.34 (m, 4 H,
methylene), 1.06 (m, 2 H, methylene). E.A.: Calcd for C34H33IrN2O4: C, 56.26; H, 4.58; N, 3.86.
Found: C, 56.55; H, 4.53; N, 3.60.
1 H NMR (CDCl 3 ): d 8.50 (d, J = 5.9 Hz, 2 H,
ppy), 7.80 (m, 4 H, ppy), 7.51 (t, J = 7.3 Hz, 2 H, ppy), 7.18 (t, J = 5.9 Hz,
2 H, ppy), 6.84 (t, J = 7.3 Hz, 2 H, ppy), 6.70 (t, J = 7.6 Hz, 2 H, ppy), 6.25
(m, 3 H, ppy + vinylic), 6.12 (dd, J = 15.6, 9.3 Hz, 1 H, vinylic), 5.75 (d, J
= 9.3 Hz, 1 H, vinylic), 5.17 (s, 1 H, diketonate-methine), 4.05 (t, J = 7.0
Hz, 2 H, -COOCH 2- ), 1.84
(t, J = 7.0 Hz, 2 H, methylene), 1.80 (s, 3 H, methyl), 1.34 (m, 4 H,
methylene), 1.06 (m, 2 H, methylene) .EA: Calcd for C 34 H 33 IrN 2 O 4 : C, 56.26; H, 4.58; N, 3.86.
Found: C, 56.55; H, 4.53; N, 3.60.

Figure 0004902381
Figure 0004902381

(実施例4)
重合性化合物:{1−[4−(2−メタクリロイルオキシ)カルバモイルオキシフェニル]−3−フェニル−1,3−プロパンジオナート}ビス(2−フェニルピリジン)イリジウム(III)(以下Ir(ppy)2(MOI−Ph−acac)と略す)の合成
スキーム(4A)に示すように、常法に従い合成したビス(μ−クロロ)テトラキス(2−フェニルピリジン)ジイリジウム(III)([Ir(ppy)2Cl]2)と、公知の方法(M. Cushman
et al., Tetrahedron Lett., 31, 6497 (1990))を参考に合成したp−ヒドロキシ−ジベンゾイルメタンを反応させて[1−(4−ヒドロキシフェニル)−3−フェニル−1,3−プロパンジオナート]ビス(2−フェニルピリジン)イリジウム(III)(以下Ir(ppy)2(OH−Ph−acac)と略す)を合成した。即ち、[Ir(ppy)2Cl]2 112mg(0.10mmol)と炭酸ナトリウム64mg(0.60mmol)およびp−ヒドロキシ−ジベンゾイルメタン76mg(0.32mmol)をDMF10mlに溶解し、60℃で0.5時間加熱攪拌した。得られた反応溶液を100mlの希塩酸水溶液中に注ぎ、クロロホルムでイリジウム錯体を抽出した。ロータリーエバポレータを用いてクロロホルムを留去し、残渣を少量のジクロロメタンに溶解してシリカゲルカラムに加えた。ジクロロメタン/アセトンの30:10(体積比)混合溶媒で展開するとオレンジ色の成分が溶出してくるため、これを回収して減圧乾固した。得られた固体を少量のジエチルエーテルに溶解し、ヘキサンを加えて析出した錯体沈殿物を濾取して減圧乾燥することにより、目的とするIr(ppy)2(OH−Ph−acac)111mg(0.15mmol)をオレンジ色の固体として得た。収率72%。同定はCHN元素分析、1H−NMRで行った。
Example 4
Polymerizable compound: {1- [4- (2-methacryloyloxy) carbamoyloxyphenyl] -3-phenyl-1,3-propanedionate} bis (2-phenylpyridine) iridium (III) (hereinafter referred to as Ir (ppy)) 2 (abbreviated as MOI-Ph-acac)) As shown in Scheme (4A), bis (μ-chloro) tetrakis (2-phenylpyridine) diiridium (III) ([Ir (ppy) ) 2 Cl] 2 ) and known methods (M. Cushman
et al., Tetrahedron Lett., 31, 6497 (1990)) was reacted with p-hydroxy-dibenzoylmethane to produce [1- (4-hydroxyphenyl) -3-phenyl-1,3-propane. Dionate] bis (2-phenylpyridine) iridium (III) (hereinafter abbreviated as Ir (ppy) 2 (OH-Ph-acac)) was synthesized. That is, 112 mg (0.10 mmol) of [Ir (ppy) 2 Cl] 2, 64 mg (0.60 mmol) of sodium carbonate and 76 mg (0.32 mmol) of p-hydroxy-dibenzoylmethane were dissolved in 10 ml of DMF, and 0 ° C. at 60 ° C. The mixture was heated and stirred for 5 hours. The obtained reaction solution was poured into 100 ml of dilute hydrochloric acid aqueous solution, and the iridium complex was extracted with chloroform. Chloroform was distilled off using a rotary evaporator, and the residue was dissolved in a small amount of dichloromethane and added to a silica gel column. When developed with a 30:10 (volume ratio) mixed solvent of dichloromethane / acetone, an orange component was eluted, and this was collected and dried under reduced pressure. The obtained solid was dissolved in a small amount of diethyl ether, and the complex precipitate deposited by adding hexane was collected by filtration and dried under reduced pressure to obtain 111 mg of the desired Ir (ppy) 2 (OH-Ph-acac) ( 0.15 mmol) was obtained as an orange solid. Yield 72%. Identification was performed by CHN elemental analysis and 1 H-NMR.

1H NMR (CDCl3): d 8.58 (d, 2 H, ppy), 7.9 &#8211; 6.7 (m, 21 H,
ppy + phenyl), 6.52 (s, 1 H, diketonate-methine), 6.37 (d, 2 H, ppy), 4.91 (s,
1 H, OH). E.A.: Calcd for C37H27IrN2O3:
C, 60.07; H, 3.68; N, 3.79. Found: C, 60.77; H, 3.75; N, 3.62.
1 H NMR (CDCl 3 ): d 8.58 (d, 2 H, ppy), 7.9 &#8211; 6.7 (m, 21 H,
ppy + phenyl), 6.52 (s, 1 H, diketonate-methine), 6.37 (d, 2 H, ppy), 4.91 (s,
1 H, OH). EA: Calcd for C 37 H 27 IrN 2 O 3 :
C, 60.07; H, 3.68; N, 3.79. Found: C, 60.77; H, 3.75; N, 3.62.

Figure 0004902381
Figure 0004902381

次いで、スキーム(4B)に示すように、このIr(ppy)2(OH−Ph−acac)とメタクリロイルオキシエチルイソシアネート(商品名:MOI、昭和電工製)を反応させることによりIr(ppy)2(MOI−Ph−acac)を合成した。即ち、Ir(ppy)2(OH−Ph−acac)110mg(0.15mmol)をトルエン50mlに溶解し、これに2,6−ジ−tert−ブチル−4−メチルフェノール(以下BHTと略す)5mg(0.023mmol)、ジブチル錫(IV)ジラウレート(以下DBTLと略す)32mg(0.051mmol)及びMOI 121mg(0.78mmol)を加えて70℃で6時間加熱攪拌した。得られた反応混合物を室温にまで空冷してシリカゲルカラムに加え、ジクロロメタン/アセトンの20:1(体積比)混合溶媒で展開すると橙色の化合物が溶出した。この溶液をロータリーエバポレータで減圧乾固し、得られた固体を少量のジクロロメタンに溶解してヘキサンを少しずつ加えると橙色の沈殿が析出した。これを濾取して減圧乾燥することにより、目的とするIr(ppy)2(MOI−Ph−acac)100mg(0.11mmol)を橙色の固体として得た。収率75%。同定はCHN元素分析、1H−NMRで行った。 Next, as shown in Scheme (4B), Ir (ppy) 2 (OH-Ph-acac) is reacted with methacryloyloxyethyl isocyanate (trade name: MOI, manufactured by Showa Denko) to give Ir (ppy) 2 ( MOI-Ph-acac) was synthesized. Specifically, 110 mg (0.15 mmol) of Ir (ppy) 2 (OH-Ph-acac) was dissolved in 50 ml of toluene, and 5 mg of 2,6-di-tert-butyl-4-methylphenol (hereinafter abbreviated as BHT) was dissolved therein. (0.023 mmol), dibutyltin (IV) dilaurate (hereinafter abbreviated as DBTL) 32 mg (0.051 mmol) and MOI 121 mg (0.78 mmol) were added, and the mixture was heated and stirred at 70 ° C. for 6 hours. The obtained reaction mixture was air-cooled to room temperature, added to a silica gel column, and developed with a 20: 1 (volume ratio) mixed solvent of dichloromethane / acetone to elute an orange compound. This solution was dried under reduced pressure using a rotary evaporator. The obtained solid was dissolved in a small amount of dichloromethane, and hexane was added little by little to precipitate an orange precipitate. This was collected by filtration and dried under reduced pressure to obtain 100 mg (0.11 mmol) of the target Ir (ppy) 2 (MOI-Ph-acac) as an orange solid. Yield 75%. Identification was performed by CHN elemental analysis and 1 H-NMR.

1H NMR (CDCl3): d 8.60 (d, 2 H, ppy), 7.9 &#8211; 6.7 (m, 21 H,
ppy and phenyl), 6.56 (s, 1 H, diketonate-methine), 6.39 (d, 2 H, ppy), 6.18
(s, 1 H, olefinic), 5.65 (s, 1 H, olefinic), 5.29 (s, 1 H, NH), 4.31 (t, 2 H,
ethylene), 3.59 (t, 2 H, ethylene), 2.00 (s, 3 H, methyl). E.A.: Calcd for C44H36IrN3O6: C, 59.05; H, 4.05; N, 4.70.
Found: C, 59.79; H, 4.05; N, 4.64.
1 H NMR (CDCl 3 ): d 8.60 (d, 2 H, ppy), 7.9 &#8211; 6.7 (m, 21 H,
ppy and phenyl), 6.56 (s, 1 H, diketonate-methine), 6.39 (d, 2 H, ppy), 6.18
(s, 1 H, olefinic), 5.65 (s, 1 H, olefinic), 5.29 (s, 1 H, NH), 4.31 (t, 2 H,
ethylene), 3.59 (t, 2 H, ethylene), 2.00 (s, 3 H, methyl) .EA: Calcd for C 44 H 36 IrN 3 O 6 : C, 59.05; H, 4.05; N, 4.70.
Found: C, 59.79; H, 4.05; N, 4.64.

Figure 0004902381
Figure 0004902381

(実施例5)重合性化合物:[6−(4−メタクリロイルオキシフェニル)−2,4−ヘキサンジオナート]ビス(2−フェニルピリジン)イリジウム(III)(以下Ir(ppy)2[1−(MA−Ph−Me)−acac]と略す)の合成
スキーム(5A)に示すように、アセチルアセトンと、公知の方法(C. Cativiela, et al., J. Org. Chem., 60, 3074 (1995))により合成した4−ベンジルオキシベンジルイオダイドを反応させて6−(ベンジルオキシフェニル)−2,4−ヘキサンジオンを合成した。即ち、水素化ナトリウム(60% in oil)0.30g(7.5mmol)を窒素雰囲気下で秤量し、これにTHF20mlを加えて水浴で0℃に冷却した。この懸濁液にアセチルアセトン0.75g(7.5mmol)とヘキサメチルホスホリックトリアミド0.5mlの混合溶液を滴下すると無色の沈殿が生成した。0℃で10分間攪拌後、n−ブチルリチウムのヘキサン溶液(1.6M)4.6ml(7.5mmol)を滴下し、更に0℃で20分間攪拌した。得られた薄黄色の透明な溶液に、4−ベンジルオキシベンジルイオダイド2.28g(7.0mmol)をTHF10mlに溶かした溶液を滴下した。反応溶液を室温で1時間攪拌し、再び0℃に冷却した後、希塩酸を加えて中和した。有機層を飽和塩化ナトリウム水溶液で洗浄後、ロータリーエバポレータで溶媒を留去した。残渣をシリカゲルカラムに通し(展開液:ジクロロメタン/ヘキサンの1:1(体積比)混合溶媒)、主生成物を分取して減圧乾固することにより、目的とする6−(ベンジルオキシフェニル)−2,4−ヘキサンジオン1.31g(4.4mmol)を薄黄色の固体として得た。収率63%。同定はCHN元素分析、1H−NMRで行った。
Example 5 Polymerizable Compound: [6- (4-Methacryloyloxyphenyl) -2,4-hexanedionate] bis (2-phenylpyridine) iridium (III) (hereinafter Ir (ppy) 2 [1- ( Synthesis of MA-Ph-Me) -acac]) As shown in Scheme (5A), acetylacetone and a known method (C. Cativiela, et al., J. Org. Chem., 60, 3074 (1995) 4-benzyloxybenzyl iodide synthesized by)) was reacted to synthesize 6- (benzyloxyphenyl) -2,4-hexanedione. That is, 0.30 g (7.5 mmol) of sodium hydride (60% in oil) was weighed under a nitrogen atmosphere, 20 ml of THF was added thereto, and the mixture was cooled to 0 ° C. in a water bath. When a mixed solution of 0.75 g (7.5 mmol) of acetylacetone and 0.5 ml of hexamethylphosphoric triamide was added dropwise to this suspension, a colorless precipitate was formed. After stirring at 0 ° C. for 10 minutes, 4.6 ml (7.5 mmol) of a n-butyllithium hexane solution (1.6 M) was added dropwise, and the mixture was further stirred at 0 ° C. for 20 minutes. To the obtained pale yellow transparent solution, a solution of 2.28 g (7.0 mmol) of 4-benzyloxybenzyl iodide in 10 ml of THF was added dropwise. The reaction solution was stirred at room temperature for 1 hour, cooled again to 0 ° C., and neutralized with dilute hydrochloric acid. The organic layer was washed with a saturated aqueous sodium chloride solution, and then the solvent was distilled off with a rotary evaporator. The residue is passed through a silica gel column (developing solution: dichloromethane / hexane 1: 1 (volume ratio) mixed solvent), the main product is separated and dried under reduced pressure to give the desired 6- (benzyloxyphenyl) Obtained 1.31 g (4.4 mmol) of -2,4-hexanedione as a pale yellow solid. Yield 63%. Identification was performed by CHN elemental analysis and 1 H-NMR.

1H NMR (CDCl3): enol; d 7.5 &#8211; 6.8 (m, 9 H,
aromatic), 5.46 (s, 1 H, enol-methine), 5.04 (s, 2 H, -O-CH2-), 2.88 (t, J = 7.6 Hz, 2 H,
ethylene), 2.55 (t, J = 8.4 Hz, 2 H, ethylene), 2.04 (s, 3 H, methyl).
keto; d 7.5 &#8211; 6.8 (m, 9 H, aromatic), 5.04 (s, 2 H, -O-CH2-), 3.53 (s, 2 H, C(=O)CH2C(=O)), 2.84 (m, 4 H, ethylene),
2.19 (s, 3 H, methyl). enol : keto = 5 : 1. E.A.: Calcd for C19H20O3:
C, 77.00; H, 6.86. Found: C, 77.46; H, 6.77.
1 H NMR (CDCl 3 ): enol; d 7.5 &#8211; 6.8 (m, 9 H,
aromatic), 5.46 (s, 1 H, enol-methine), 5.04 (s, 2 H, -O-CH 2- ), 2.88 (t, J = 7.6 Hz, 2 H,
ethylene), 2.55 (t, J = 8.4 Hz, 2 H, ethylene), 2.04 (s, 3 H, methyl).
keto; d 7.5 &#8211; 6.8 (m, 9 H, aromatic), 5.04 (s, 2 H, -O-CH 2- ), 3.53 (s, 2 H, C (= O) CH 2 C (= O)), 2.84 (m, 4 H, ethylene),
2.19 (s, 3 H, methyl) .enol: keto = 5: 1.EA: Calcd for C 19 H 20 O 3 :
C, 77.00; H, 6.86. Found: C, 77.46; H, 6.77.

Figure 0004902381
Figure 0004902381

次いで、スキーム(5B)に示すように、この6−(ベンジルオキシフェニル)−2,4−ヘキサンジオンを水素化することにより6−(ヒドロキシフェニル)−2,4−ヘキサンジオンを生成した。即ち、窒素雰囲気下でPd−活性炭(10%)1.5gを秤量し、ジクロロメタン20mlと6−(ベンジルオキシフェニル)−2,4−ヘキサンジオン1.31g(4.4mmol)を加えた。反応系内を1気圧の水素で置換し、室温で11時間攪拌した。得られた反応溶液を濾過して不溶物を除き、減圧で溶媒を留去した。残渣をシリカゲルカラムに加えてまずジクロロメタンで展開し、副生成物を除いた。続いてアセトン/ヘキサンの1:1(体積比)混合溶媒で溶出した化合物を含む溶液を減圧乾燥することにより目的とする6−(ヒドロキシフェニル)−2,4−ヘキサンジオン0.70g(3.4mmol)を薄黄色の固体として得た。収率77%。同定はCHN元素分析、1H−NMRで行った。 Then, as shown in Scheme (5B), 6- (hydroxyphenyl) -2,4-hexanedione was produced by hydrogenating the 6- (benzyloxyphenyl) -2,4-hexanedione. That is, 1.5 g of Pd-activated carbon (10%) was weighed under a nitrogen atmosphere, and 20 ml of dichloromethane and 1.31 g (4.4 mmol) of 6- (benzyloxyphenyl) -2,4-hexanedione were added. The reaction system was replaced with 1 atm of hydrogen and stirred at room temperature for 11 hours. The obtained reaction solution was filtered to remove insoluble matters, and the solvent was distilled off under reduced pressure. The residue was added to a silica gel column and first developed with dichloromethane to remove by-products. Subsequently, a solution containing the compound eluted with a 1: 1 (volume ratio) mixed solvent of acetone / hexane is dried under reduced pressure to obtain 0.70 g (3. 4 mmol) was obtained as a pale yellow solid. Yield 77%. Identification was performed by CHN elemental analysis and 1 H-NMR.

1H NMR (CDCl3): enol; d 7.04 (d, J = 8.4 Hz, 2 H,
aromatic), 6.65 (d, J = 8.4 Hz, 2 H, aromatic), 5.55 (br, 1 H, OH), 5.47 (s, 1
H, enol-methine), 2.86 (t, J = 7.3 Hz, 2 H, ethylene), 2.55 (t, J = 7.3 Hz, 2
H, ethylene), 2.04 (s, 3 H, methyl). keto; d 7.04 (d, J = 8.4 Hz, 2 H,
aromatic), 6.65 (d, J = 8.4 Hz, 2 H, aromatic), 5.55 (br, 1 H, OH), 3.55 (s, 2
H, C(=O)CH2C(=O)), 2.83
(m, 4 H, ethylene), 2.19 (s, 3 H, methyl). enol : keto = 5 : 1.
E.A.: Calcd for C12H14O3: C, 69.88; H, 6.84. Found: C, 69.67; H, 6.79.
1 H NMR (CDCl 3 ): enol; d 7.04 (d, J = 8.4 Hz, 2 H,
aromatic), 6.65 (d, J = 8.4 Hz, 2 H, aromatic), 5.55 (br, 1 H, OH), 5.47 (s, 1
H, enol-methine), 2.86 (t, J = 7.3 Hz, 2 H, ethylene), 2.55 (t, J = 7.3 Hz, 2
H, ethylene), 2.04 (s, 3 H, methyl) .keto; d 7.04 (d, J = 8.4 Hz, 2 H,
aromatic), 6.65 (d, J = 8.4 Hz, 2 H, aromatic), 5.55 (br, 1 H, OH), 3.55 (s, 2
H, C (= O) CH 2 C (= O)), 2.83
(m, 4 H, ethylene), 2.19 (s, 3 H, methyl) .enol: keto = 5: 1.
EA: Calcd for C 12 H 14 O 3 : C, 69.88; H, 6.84. Found: C, 69.67; H, 6.79.

Figure 0004902381
Figure 0004902381

スキーム(5C)に示すように、この6−(4−ヒドロキシフェニル)−2,4−ヘキサンジオンと、常法に従い合成したビス(μ−クロロ)テトラキス(2−フェニルピリジン)ジイリジウム(III)([Ir(ppy)2Cl]2)を反応させて[6−(4−ヒドロキシフェニル)−2,4−ヘキサンジオナート]ビス(2−フェニルピリジン)イリジウム(III)(以下Ir(ppy)2[1−(OH−Ph−Me)−acac]と略す)を合成した。即ち、[Ir(ppy)2Cl]2)71mg(0.066mmol)と炭酸ナトリウム47mg(0.44mmol)の混合物に、6−(4−ヒドロキシフェニル)−2,4−ヘキサンジオン41mg(0.20mmol)をDMF5mlに溶かした溶液を加えて65℃で1時間加熱攪拌した。得られた反応溶液に希塩酸とクロロホルムを加えてよく振盪し、分離した有機層を硫酸マグネシウムで乾燥して減圧下溶媒留去した。残渣をシリカゲルカラムに通し(展開液:ヘキサン/酢酸エチルの1:1(体積比)混合溶媒)、少量の薄黄色の副生成物の次に溶出した薄黄色の溶液を回収して減圧乾固した。得られた固体を少量のジクロロメタンに溶解し、ヘキサンを加えて−20℃に冷却することにより、目的とするIr(ppy)2[1−(OH−Ph−Me)−acac]86mg(0.12mmol)を薄黄色の固体として得た。収率92%。同定はCHN元素分析、1H−NMRで行った。 As shown in Scheme (5C), this 6- (4-hydroxyphenyl) -2,4-hexanedione and bis (μ-chloro) tetrakis (2-phenylpyridine) diiridium (III) synthesized according to a conventional method ([Ir (ppy) 2 Cl] 2 ) is reacted to produce [6- (4-hydroxyphenyl) -2,4-hexanedionate] bis (2-phenylpyridine) iridium (III) (hereinafter Ir (ppy) 2 [abbreviated as 1- (OH-Ph-Me) -acac]). That is, to a mixture of [Ir (ppy) 2 Cl] 2 ) 71 mg (0.066 mmol) and sodium carbonate 47 mg (0.44 mmol), 6- (4-hydroxyphenyl) -2,4-hexanedione 41 mg (0. 20 mmol) in 5 ml of DMF was added and stirred at 65 ° C. for 1 hour. Diluted hydrochloric acid and chloroform were added to the obtained reaction solution and shaken well. The separated organic layer was dried over magnesium sulfate and the solvent was distilled off under reduced pressure. The residue was passed through a silica gel column (developing solution: 1: 1 (volume ratio) mixed solvent of hexane / ethyl acetate), and a light yellow solution eluted after a small amount of light yellow by-product was recovered and dried under reduced pressure. did. The obtained solid was dissolved in a small amount of dichloromethane, hexane was added, and the mixture was cooled to −20 ° C., whereby 86 mg (0. 0) of the target Ir (ppy) 2 [1- (OH-Ph-Me) -acac] was obtained. 12 mmol) was obtained as a pale yellow solid. Yield 92%. Identification was performed by CHN elemental analysis and 1 H-NMR.

1H NMR (CDCl3): d 8.48 (d, J = 6.2 Hz, 1 H,
ppy), 8.23 (d, J = 5.9 Hz, 1 H, ppy), 7.9 &#8211; 7.6 (m, 4 H, ppy), 7.53
(t, J = 7.3 Hz, 2 H, ppy), 7.11 (t, J = 7.0 Hz, 1 H, ppy), 6.99 (t, J = 7.0 Hz,
1 H, ppy), 6.8 &#8211; 6.4 (m, 8 H, ppy + C6H4OH), 6.27 (t, J = 8.1 Hz, 2 H, ppy),
5.18 (s, 1 H, diketonate-methine), 5.10 (br, 1 H, OH), 2.54 (t, J = 7.0 Hz, 2
H, methylene), 2.31 (m, 2 H, methylene), 1.75 (s, 3 H, methyl). E.A.:
Calcd for C34H29IrN2O3:
C, 57.86; H, 4.14; N, 3.97. Found: C, 58.03; H, 4.11; N, 3.86.
1 H NMR (CDCl 3 ): d 8.48 (d, J = 6.2 Hz, 1 H,
ppy), 8.23 (d, J = 5.9 Hz, 1 H, ppy), 7.9 &#8211; 7.6 (m, 4 H, ppy), 7.53
(t, J = 7.3 Hz, 2 H, ppy), 7.11 (t, J = 7.0 Hz, 1 H, ppy), 6.99 (t, J = 7.0 Hz,
1 H, ppy), 6.8 &#8211; 6.4 (m, 8 H, ppy + C 6 H 4 OH), 6.27 (t, J = 8.1 Hz, 2 H, ppy),
5.18 (s, 1 H, diketonate-methine), 5.10 (br, 1 H, OH), 2.54 (t, J = 7.0 Hz, 2
H, methylene), 2.31 (m, 2 H, methylene), 1.75 (s, 3 H, methyl). EA:
Calcd for C 34 H 29 IrN 2 O 3 :
C, 57.86; H, 4.14; N, 3.97. Found: C, 58.03; H, 4.11; N, 3.86.

Figure 0004902381
Figure 0004902381

次いで、スキーム(5D)に示すように、このIr(ppy)2[1−(OH−Ph−Me)−acac]とメタクリル酸クロライドを反応させることによりIr(ppy)2[1−(MA−Ph−Me)−acac]を合成した。即ち、窒素雰囲気下でIr(ppy)2[1−(OH−Ph−Me)−acac]169mg(0.24mmol)をジクロロメタン10mlに溶解し、トリエチルアミン0.30ml(2.2mmol)を加えた。この溶液にメタクリル酸クロライド0.060ml(0.61mmol)を加えると速やかに生成物を生じた。更に少量のメタノールを加えた後、減圧で溶媒を留去した。残渣をヘキサン/ジクロロメタン/アセトンの混合溶媒(10:10:1(体積比))を用いてシリカゲルカラムに通し、黄色の主生成物を分取した。減圧で溶媒留去後、ジクロロメタン−ヘキサン混合溶液から再結晶することにより目的とするIr(ppy)2[1−(MA−Ph−Me)−acac]141mg(0.18mmol)を黄色の固体として得た。収率76%。同定はCHN元素分析、1H−NMRで行った。 Next, as shown in Scheme (5D), Ir (ppy) 2 [1- (OH-Ph-Me) -acac] is reacted with methacrylic acid chloride to react with Ir (ppy) 2 [1- (MA- Ph-Me) -acac] was synthesized. Specifically, 169 mg (0.24 mmol) of Ir (ppy) 2 [1- (OH-Ph-Me) -acac] was dissolved in 10 ml of dichloromethane under a nitrogen atmosphere, and 0.30 ml (2.2 mmol) of triethylamine was added. When 0.060 ml (0.61 mmol) of methacrylic acid chloride was added to this solution, a product was rapidly formed. After adding a small amount of methanol, the solvent was distilled off under reduced pressure. The residue was passed through a silica gel column using a mixed solvent of hexane / dichloromethane / acetone (10: 10: 1 (volume ratio)) to fractionate a yellow main product. After distilling off the solvent under reduced pressure, recrystallization from a dichloromethane-hexane mixed solution gave 141 mg (0.18 mmol) of the target Ir (ppy) 2 [1- (MA-Ph-Me) -acac] as a yellow solid. Obtained. Yield 76%. Identification was performed by CHN elemental analysis and 1 H-NMR.

1H NMR (CDCl3): d 8.48 (d, J = 5.1 Hz, 1 H,
ppy), 8.27 (d, J = 5.9 Hz, 1 H, ppy), 7.9 &#8211; 7.5 (m, 6 H, ppy), 7.12
(t, J = 7.0 Hz, 1 H, ppy), 7.04 (t, J = 7.0 Hz, 1 H, ppy), 6.9 &#8211; 6.6 (m, 8 H,
aromatic), 6.33 (s, 1 H, olefinic), 6.27 (d, J = 7.6 Hz, 2 H, ppy), 5.74 (s, 1
H, olefinic), 5.17 (s, 1 H, diketonate-methine), 2.61 (t, J = 7.0 Hz, 2 H,
ethylene), 2.34 (m, 2 H, ethylene), 2.07 (s, 3 H, methacryl-methyl), 1.76 (s, 3
H, diketonate-methyl). E.A.: Calcd for C38H33IrN2O4: C, 58.98; H, 4.30; N, 3.62. Found: C, 58.69; H,
4.17; N, 3.81.
1 H NMR (CDCl 3 ): d 8.48 (d, J = 5.1 Hz, 1 H,
ppy), 8.27 (d, J = 5.9 Hz, 1 H, ppy), 7.9 &#8211; 7.5 (m, 6 H, ppy), 7.12
(t, J = 7.0 Hz, 1 H, ppy), 7.04 (t, J = 7.0 Hz, 1 H, ppy), 6.9 &#8211; 6.6 (m, 8 H,
aromatic), 6.33 (s, 1 H, olefinic), 6.27 (d, J = 7.6 Hz, 2 H, ppy), 5.74 (s, 1
H, olefinic), 5.17 (s, 1 H, diketonate-methine), 2.61 (t, J = 7.0 Hz, 2 H,
ethylene), 2.34 (m, 2 H, ethylene), 2.07 (s, 3 H, methacryl-methyl), 1.76 (s, 3
H, diketonate-methyl) .EA: Calcd for C 38 H 33 IrN 2 O 4 : C, 58.98; H, 4.30; N, 3.62. Found: C, 58.69; H,
4.17; N, 3.81.

Figure 0004902381
Figure 0004902381

(実施例6)重合性化合物:(1−メタクリロイルオキシ−2,4−ペンタンジオナート)ビス(2−フェニルピリジン)イリジウム(III)(以下Ir(ppy)2(1−MA−acac)と略す)の合成
スキーム(6A)に示すように、常法に従い合成したビス(μ−クロロ)テトラキス(2−フェニルピリジン)ジイリジウム(III)([Ir(ppy)2Cl]2)と、公知の方法(欧州特許EP0514217)を参考に合成した1−(tert−ブチルジメチルシリルオキシ)−2,4−ペンタジオンを反応させて(1−ヒドロキシ−2,4−ペンタンジオナート)ビス(2−フェニルピリジン)イリジウム(III)(以下Ir(ppy)2(1−OH−acac)と略す)を合成した。即ち、[Ir(ppy)2Cl]2492mg(0.46mmol)と炭酸ナトリウム139mg(1.31mmol)をDMF10ml中に溶解し、1−(tert−ブチルジメチルシリルオキシ)−2,4−ペンタジオン(1−TBDMSO−2,4−ペンタジオン)321mg(1.39mmol)を加えて70℃で1時間加熱撹拌した。得られた反応混合物を室温にまで冷却した後、100mlの飽和塩化アンモニウム水溶液および50mlのクロロホルムを加えてよく振盪した。有機層を硫酸マグネシウムで乾燥して減圧で溶媒留去し、残渣をジクロロメタンを溶出液とするシリカゲルカラムに通し黄色の溶液を得た。これを減圧乾燥した後に得られた黄色の固体をTHF20ml中に溶解し、テトラ−n−ブチルアンモニウムフルオライド(以下Bun 4NFと略す)の1.0M THF溶液0.46ml(0.46mmol)を激しく撹拌しながら滴下した。この反応溶液を室温で0.5時間撹拌後、減圧で溶媒留去した。残渣をシリカゲルカラムに通し(溶出液:ヘキサン/ジクロロメタン/アセトンの1:3:1(体積比)の混合溶媒)、溶出した黄色の主生成物を回収して減圧乾燥した。得られた粗生成物をジクロロメタン/ヘキサン混合溶液から再結晶することにより、目的とするIr(ppy)2(1−OH−acac)389mg(0.63mmol)を黄色の固体として得た。収率69%。同定はCHN元素分析、1H−NMRで行った。
(Example 6) Polymerizable compound: (1-methacryloyloxy-2,4-pentanedionate) bis (2-phenylpyridine) iridium (III) (hereinafter abbreviated as Ir (ppy) 2 (1-MA-acac)) As shown in Scheme (6A), bis (μ-chloro) tetrakis (2-phenylpyridine) diiridium (III) ([Ir (ppy) 2 Cl] 2 ) synthesized according to a conventional method, 1- (tert-Butyldimethylsilyloxy) -2,4-pentadione synthesized by referring to the method (European Patent EP0514217) was reacted to give (1-hydroxy-2,4-pentanedionate) bis (2-phenylpyridine) ) Iridium (III) (hereinafter abbreviated as Ir (ppy) 2 (1-OH-acac)) was synthesized. Specifically, 492 mg (0.46 mmol) of [Ir (ppy) 2 Cl] 2 and 139 mg (1.31 mmol) of sodium carbonate were dissolved in 10 ml of DMF, and 1- (tert-butyldimethylsilyloxy) -2,4-pentadione ( 321 mg (1.39 mmol) of 1-TBDDMSO-2,4-pentadione) was added, and the mixture was heated and stirred at 70 ° C. for 1 hour. After cooling the resulting reaction mixture to room temperature, 100 ml of saturated aqueous ammonium chloride solution and 50 ml of chloroform were added and shaken well. The organic layer was dried over magnesium sulfate, the solvent was distilled off under reduced pressure, and the residue was passed through a silica gel column using dichloromethane as an eluent to obtain a yellow solution. The yellow solid obtained after drying this under reduced pressure was dissolved in 20 ml of THF, and 0.46 ml (0.46 mmol) of 1.0 M THF solution of tetra-n-butylammonium fluoride (hereinafter abbreviated as Bu n 4 NF). Was added dropwise with vigorous stirring. The reaction solution was stirred at room temperature for 0.5 hour, and the solvent was distilled off under reduced pressure. The residue was passed through a silica gel column (eluent: mixed solvent of hexane / dichloromethane / acetone 1: 3: 1 (volume ratio)), and the eluted yellow main product was collected and dried under reduced pressure. The obtained crude product was recrystallized from a dichloromethane / hexane mixed solution to obtain 389 mg (0.63 mmol) of target Ir (ppy) 2 (1-OH-acac) as a yellow solid. Yield 69%. Identification was performed by CHN elemental analysis and 1 H-NMR.

1H NMR (CDCl3): d 8.48 (d, J = 5.7 Hz, 1 H,
ppy), 8.42 (d, J = 5.7 Hz, 1 H, ppy), 7.86 (m, 2 H, ppy), 7.74 (t, J = 7.6 Hz,
2 H, ppy), 7.54 (t, J = 5.9 Hz, 2 H, ppy), 7.14 (t, J = 5.9 Hz, 2 H, ppy), 6.82
(t, J = 7.3 Hz, 2 H, ppy), 6.69 (m, 2 H, ppy), 6.28 (d, J = 6.8 Hz, 1 H, ppy),
6.23 (d, J = 6.5 Hz, 1 H, ppy), 5.17 (s, 1 H, diketonate-methine), 3.88 (dd, J
= 8.1, 5.4 Hz, 1 H, -CHH’-O-), 3.78 (dd, J = 8.1, 4.3 Hz, 1 H, -CHH’-O-), 3.10 (t, J = 4.6 Hz,
1 H, OH), 1.82 (s, 3 H, methyl). E.A.: Calcd for C27H23IrN2O3: C, 52.67; H, 3.77; N, 4.55.
Found: C, 52.45; H, 3.68; N, 4.79.
1 H NMR (CDCl 3 ): d 8.48 (d, J = 5.7 Hz, 1 H,
ppy), 8.42 (d, J = 5.7 Hz, 1 H, ppy), 7.86 (m, 2 H, ppy), 7.74 (t, J = 7.6 Hz,
2 H, ppy), 7.54 (t, J = 5.9 Hz, 2 H, ppy), 7.14 (t, J = 5.9 Hz, 2 H, ppy), 6.82
(t, J = 7.3 Hz, 2 H, ppy), 6.69 (m, 2 H, ppy), 6.28 (d, J = 6.8 Hz, 1 H, ppy),
6.23 (d, J = 6.5 Hz, 1 H, ppy), 5.17 (s, 1 H, diketonate-methine), 3.88 (dd, J
= 8.1, 5.4 Hz, 1 H, -CHH'-O-), 3.78 (dd, J = 8.1, 4.3 Hz, 1 H, -CHH'-O-), 3.10 (t, J = 4.6 Hz,
1 H, OH), 1.82 (s, 3 H, methyl) .EA: Calcd for C 27 H 23 IrN 2 O 3 : C, 52.67; H, 3.77; N, 4.55.
Found: C, 52.45; H, 3.68; N, 4.79.

Figure 0004902381
Figure 0004902381

次いで、スキーム(6B)に示すように、このIr(ppy)2(1−OH−acac)とメタクリル酸クロライドを反応させることによりIr(ppy)2(1−MA−acac)を合成した。即ち、Ir(ppy)2(1−OH−acac)200mg(0.32mmol)を乾燥ジクロロメタン15mlに溶解し、トリエチルアミン0.25ml(1.8mmol)と0.20mlのメタクリル酸クロライド0.20ml(2.0mmol)を加えて室温で1時間撹拌した。次に反応溶液を炭酸ナトリウム水溶液20mlで洗浄し、減圧で溶媒を留去した。残渣を再びジクロロメタンに溶解してシリカゲルカラム上部に加え、ヘキサン/ジクロロメタン/アセトンの2:4:1(体積比)の混合溶媒で展開した。最初に得られる黄色溶液を回収して減圧で乾燥することにより、目的とするIr(ppy)2(1−MA−acac)165mg(0.24mmol)を黄色の固体として得た。収率74%。同定はCHN元素分析、1H−NMRで行った。 Next, as shown in Scheme (6B), Ir (ppy) 2 (1-OH-acac) was reacted with methacrylic acid chloride to synthesize Ir (ppy) 2 (1-MA-acac). That is, 200 mg (0.32 mmol) of Ir (ppy) 2 (1-OH-acac) was dissolved in 15 ml of dry dichloromethane, and 0.25 ml (1.8 mmol) of triethylamine and 0.20 ml of 0.20 ml of methacrylic acid chloride (2 0.0 mmol) was added and stirred at room temperature for 1 hour. Next, the reaction solution was washed with 20 ml of an aqueous sodium carbonate solution, and the solvent was distilled off under reduced pressure. The residue was dissolved again in dichloromethane, added to the top of the silica gel column, and developed with a mixed solvent of hexane / dichloromethane / acetone 2: 4: 1 (volume ratio). The initially obtained yellow solution was collected and dried under reduced pressure to obtain 165 mg (0.24 mmol) of the target Ir (ppy) 2 (1-MA-acac) as a yellow solid. Yield 74%. Identification was performed by CHN elemental analysis and 1 H-NMR.

1H NMR (CDCl3): d 8.53 (d, J = 5.7 Hz, 1 H,
ppy), 8.48 (d, J = 5.4 Hz, 1 H, ppy), 7.84 (d, J = 7.8 Hz, 2 H, ppy), 7.73 (t,
J = 7.0 Hz, 2 H, ppy), 7.53 (t, J = 6.8 Hz, 2 H, ppy), 5.14 (m, 2 H, ppy), 6.79
(m, 2 H, ppy), 6.69 (m, 2 H, ppy), 6.29 (d, J = 7.6 Hz, 1 H, ppy), 6.23 (d, J =
7.6 Hz, 1 H, ppy), 6.04 (s, 1 H, olefinic), 5.51 (s, 1 H, olefinic), 5.31 (s, 1
H, diketonate-methine), 4.38 (d, J = 15.4 Hz, 1 H, -CHH&cent;-OC(=O)-), 4.27 (d, J =
14.9 Hz, 1 H, -CHH&cent;-OC(=O)-), 1.87 (s, 3 H, methacryl-methyl), 1.82 (s, 3 H,
diketonate-methyl). E.A.: Calcd for C31H27IrN2O4: C, 54.45; H, 3.98; N, 4.10. Found: C, 54.18; H,
3.96; N, 4.33.
1 H NMR (CDCl 3 ): d 8.53 (d, J = 5.7 Hz, 1 H,
ppy), 8.48 (d, J = 5.4 Hz, 1 H, ppy), 7.84 (d, J = 7.8 Hz, 2 H, ppy), 7.73 (t,
J = 7.0 Hz, 2 H, ppy), 7.53 (t, J = 6.8 Hz, 2 H, ppy), 5.14 (m, 2 H, ppy), 6.79
(m, 2 H, ppy), 6.69 (m, 2 H, ppy), 6.29 (d, J = 7.6 Hz, 1 H, ppy), 6.23 (d, J =
7.6 Hz, 1 H, ppy), 6.04 (s, 1 H, olefinic), 5.51 (s, 1 H, olefinic), 5.31 (s, 1
H, diketonate-methine), 4.38 (d, J = 15.4 Hz, 1 H, -CHH &cent; -OC (= O)-), 4.27 (d, J =
14.9 Hz, 1 H, -CHH &cent; -OC (= O)-), 1.87 (s, 3 H, methacryl-methyl), 1.82 (s, 3 H,
diketonate-methyl). EA: Calcd for C 31 H 27 IrN 2 O 4 : C, 54.45; H, 3.98; N, 4.10. Found: C, 54.18; H,
3.96; N, 4.33.

Figure 0004902381
Figure 0004902381

(実施例7)重合性化合物:[6−(4−ビニルフェニル)−2,4−ヘキサンジオナート]ビス[2−(2,4−ジフルオロフェニル)ピリジン]イリジウム(III)(以下Ir(2,4−F−ppy)2[1−(St−Me)acac]と略す)の合成
スキーム(7A)に示すように、常法に従い2−(2,4−ジフルオロフェニル)ピリジンを合成した。即ち、アルゴン気流下において2−ブロモピリジン8.69g(55.0mmol)を脱水テトラヒドロフラン200mlに溶解して−78℃まで冷却し、1.6M n−ブチルリチウムのヘキサン溶液38.7ml(61.9mmol)を30分かけて滴下した。滴下後、さらに塩化亜鉛7.5g(55.0mmol)を脱水テトラヒドロフラン50mlに溶解した溶液を30分かけて滴下した。滴下後、0℃までゆっくりと昇温し、1−ブロモ−2,4−ジフルオロベンゼン9.65g(55.0mmol)とテトラキス(トリフェニルホスフィン)パラジウム(0) 2.31g(2.0mmol)を加え、還流下に6時間攪拌した後、反応液に飽和食塩水200mlを加えジエチルエーテルで抽出した。抽出液を乾燥後、濃縮し、カラムクロマトグラフィー(シリカゲル;クロロホルム/ヘキサン(1/1:体積比))で精製することにより、2−(2,4−ジフルオロフェニル)ピリジン6.00g(31.4mmol)を無色透明のオイルとして得た。収率63%。同定は1H NMRとCHN元素分析で行った。
(Example 7) Polymerizable compound: [6- (4-vinylphenyl) -2,4-hexanedionate] bis [2- (2,4-difluorophenyl) pyridine] iridium (III) (hereinafter referred to as Ir (2) , 4-F-ppy) 2 [abbreviated as 1- (St-Me) acac]) As shown in scheme (7A), 2- (2,4-difluorophenyl) pyridine was synthesized according to a conventional method. That is, 8.69 g (55.0 mmol) of 2-bromopyridine was dissolved in 200 ml of dehydrated tetrahydrofuran under an argon stream, cooled to −78 ° C., and 38.7 ml (61.9 mmol) of a 1.6 M n-butyllithium hexane solution. ) Was added dropwise over 30 minutes. After the dropwise addition, a solution in which 7.5 g (55.0 mmol) of zinc chloride was dissolved in 50 ml of dehydrated tetrahydrofuran was further added dropwise over 30 minutes. After the dropwise addition, the temperature was slowly raised to 0 ° C., and 9.65 g (55.0 mmol) of 1-bromo-2,4-difluorobenzene and 2.31 g (2.0 mmol) of tetrakis (triphenylphosphine) palladium (0) were added. After stirring for 6 hours under reflux, 200 ml of saturated brine was added to the reaction solution, and the mixture was extracted with diethyl ether. The extract is dried, concentrated, and purified by column chromatography (silica gel; chloroform / hexane (1/1: volume ratio)) to give 6.00 g (31. 2) of 2- (2,4-difluorophenyl) pyridine. 4 mmol) was obtained as a clear colorless oil. Yield 63%. Identification was performed by 1 H NMR and CHN elemental analysis.

1H NMR(270 MHz, CDCl3), ppm: 8.71(d, 1H, J 4.6 Hz),
8.00(td, 1H, J 8.9, 6.5 Hz), 7.8 - 7.7(m, 2H), 7.3 - 7.2(over wrapped with CHCl3, 1H), 7.1 - 6.8(m, 2H). E. A.
: Found: C 68.98, H 3.80, N 7.31. Calcd: C 69.11, H 3.69, N 7.33.
1 H NMR (270 MHz, CDCl 3 ), ppm: 8.71 (d, 1H, J 4.6 Hz),
8.00 (td, 1H, J 8.9, 6.5 Hz), 7.8-7.7 (m, 2H), 7.3-7.2 (over wrapped with CHCl 3 , 1H), 7.1-6.8 (m, 2H) .EA
: Found: C 68.98, H 3.80, N 7.31.Calcd: C 69.11, H 3.69, N 7.33.

Figure 0004902381
Figure 0004902381

次いで、スキーム(7B)に示すように、この2−(2,4−ジフルオロフェニル)ピリジンとヘキサクロロイリジウム(III)酸ナトリウムn水和物を反応させることによりビス(μ−クロロ)テトラキス[2−(2,4−ジフルオロフェニル)ピリジン]ジイリジウム(III)(以下[Ir(2,4−F−ppy)2Cl]2と略す)を合成した。即ち、2−(2,4−ジフルオロフェニル)ピリジン0.96g(5.0mmol)とヘキサクロロイリジウム(III)酸ナトリウムn水和物1.00gを2−エトキシエタノール:水=3:1(体積比)の混合溶媒40mlに溶解し、30分間アルゴンガスを吹き込んだ後、還流下に5時間攪拌した。生じた沈殿を濾取し、エタノールと少量のアセトンで洗浄し、真空下で5時間乾燥することにより、目的とする[Ir(2,4−F−ppy)2Cl]20.79g(0.65mmol)を黄色粉末として得た。収率86%。同定は1H NMRとCHN元素分析で行った。 Next, as shown in Scheme (7B), this 2- (2,4-difluorophenyl) pyridine is reacted with sodium hexachloroiridium (III) n-hydrate to give bis (μ-chloro) tetrakis [2- (2,4-Difluorophenyl) pyridine] diiridium (III) (hereinafter abbreviated as [Ir (2,4-F-ppy) 2 Cl] 2 ) was synthesized. Namely, 0.96 g (5.0 mmol) of 2- (2,4-difluorophenyl) pyridine and 1.00 g of sodium hexachloroiridium (III) n-hydrate were mixed with 2-ethoxyethanol: water = 3: 1 (volume ratio). ) Was dissolved in 40 ml of a mixed solvent, and argon gas was blown in for 30 minutes, followed by stirring under reflux for 5 hours. The resulting precipitate was collected by filtration, washed with ethanol and a small amount of acetone, and dried under vacuum for 5 hours to obtain 0.79 g (0) of the desired [Ir (2,4-F-ppy) 2 Cl] 2. .65 mmol) as a yellow powder. Yield 86%. Identification was performed by 1 H NMR and CHN elemental analysis.

1H NMR(270 MHz, CDCl3), ppm: 9.12(d, 4H, J = 5.7 Hz),
8.31(d, 4H, J = 8.6 Hz), 7.83(dd, 4H, J = 7.6, 7.6 Hz), 6.82(dd, 4H, J = 7.3, 7.3 Hz), 6.34(ddd, 4H, J =
11.6, 10.0, 2.4 Hz), 5.29(dd, 4H, J = 9.5, 2.4 Hz). Anal. Found: C 43.39, H 2.03,
N 4.55. Calcd: C 43.46, H 1.99, N 4.61.
1 H NMR (270 MHz, CDCl 3 ), ppm: 9.12 (d, 4H, J = 5.7 Hz),
8.31 (d, 4H, J = 8.6 Hz), 7.83 (dd, 4H, J = 7.6, 7.6 Hz), 6.82 (dd, 4H, J = 7.3, 7.3 Hz), 6.34 (ddd, 4H, J =
11.6, 10.0, 2.4 Hz), 5.29 (dd, 4H, J = 9.5, 2.4 Hz). Anal. Found: C 43.39, H 2.03,
N 4.55.Calcd: C 43.46, H 1.99, N 4.61.

Figure 0004902381
Figure 0004902381

次いで、スキーム(7C)に示すように、この[Ir(2,4−F−ppy)2Cl]2と6−(4−ビニルフェニル)−2,4−ヘキサジオンを反応させることによりIr(2,4−F−PPy)2[1−(ST−Me)acac]を合成した。即ち、[Ir(2,4−F−ppy)2Cl]2 243mg(0.20mmol)、炭酸ナトリウム212mg(2.00mmol)、2,6−ジ−tert−ブチル−4−メチルフェノール1.3mg、実施例2と同様に合成した6−(4−ビニルフェニル)−2,4−ヘキサジオン130mg(0.60mmol)をアルゴン気流下にDMF20mlに溶解し、80℃で2時間攪拌した後、反応液に水を加え、クロロホルムで抽出した。抽出液を乾燥後、濃縮し、カラムクロマトグラフィー(シリカゲル;クロロホルム)で精製し、さらにクロロホルム/ヘキサン溶液から再結晶することにより、Ir(2,4−F−PPy)2[1−(ST−Me)acac]261mg(0.33mmol)を黄色結晶として得た。収率83%。同定はCHN元素分析、1H−NMRで行った。 Next, as shown in scheme (7C), Ir [2 (2-F-ppy) 2 Cl] 2 is reacted with 6 (4-vinylphenyl) -2,4-hexadione to give Ir (2 , 4-F-PPy) 2 [1- (ST-Me) acac] was synthesized. That is, [Ir (2,4-F-ppy) 2 Cl] 2 243 mg (0.20 mmol), sodium carbonate 212 mg (2.00 mmol), 2,6-di-tert-butyl-4-methylphenol 1.3 mg Then, 130 mg (0.60 mmol) of 6- (4-vinylphenyl) -2,4-hexadione synthesized in the same manner as in Example 2 was dissolved in 20 ml of DMF under an argon stream and stirred at 80 ° C. for 2 hours. Water was added to and extracted with chloroform. The extract was dried, concentrated, purified by column chromatography (silica gel; chloroform), and recrystallized from a chloroform / hexane solution to give Ir (2,4-F-PPy) 2 [1- (ST- Me) acac] 261 mg (0.33 mmol) was obtained as yellow crystals. Yield 83%. Identification was performed by CHN elemental analysis and 1 H-NMR.

1H NMR(270 MHz, CDCl3), ppm: 8.39(d, 1H, J = 5.7 Hz), 8.3
- 8.2(m, 2H), 8.04(d, 1H, J = 5.7 Hz), 7.8 - 7.7(m, 2H), 7.19(d, 2H, J = 7.8
Hz), 7.15(dd, 1H, J = 6.6, 6.6 Hz), 6.97(dd, 1H, J = 6.6, 6.6 Hz), 6.89(d, 2H,
J = 7.8 Hz), 6.67(dd, 1H, J = 17.6, 10.8 Hz), .6.4 - 6.2(m, 2H), 5.7 - 5.6(m,
3H), 5.22(s, 1H), 5.21(d, 1H, J = 11.1 Hz), 2.62(t, 2H, J = 7.0 Hz), 2.39(m,
2H), 1.78(s, 3H). Anal. Found: C 54.82, H 3.50, N 3.49. Calcd: C 54.88, H
3.45, N 3.56.
1 H NMR (270 MHz, CDCl 3 ), ppm: 8.39 (d, 1H, J = 5.7 Hz), 8.3
-8.2 (m, 2H), 8.04 (d, 1H, J = 5.7 Hz), 7.8-7.7 (m, 2H), 7.19 (d, 2H, J = 7.8
Hz), 7.15 (dd, 1H, J = 6.6, 6.6 Hz), 6.97 (dd, 1H, J = 6.6, 6.6 Hz), 6.89 (d, 2H,
J = 7.8 Hz), 6.67 (dd, 1H, J = 17.6, 10.8 Hz), .6.4-6.2 (m, 2H), 5.7-5.6 (m,
3H), 5.22 (s, 1H), 5.21 (d, 1H, J = 11.1 Hz), 2.62 (t, 2H, J = 7.0 Hz), 2.39 (m,
2H), 1.78 (s, 3H). Anal. Found: C 54.82, H 3.50, N 3.49.Calcd: C 54.88, H
3.45, N 3.56.

Figure 0004902381
Figure 0004902381

(実施例8)重合性化合物:{3−[4−(2−メタクリロイルオキシエチル)カルバモイルオキシフェニルメチル]−2,4−ペンタンジオナート}ビス(2−フェニルピリジン)イリジウム(III)(以下Ir(ppy)2[3−(MOI−Ph−Me)−acac]と略す)の合成
スキーム(8A)に示すように、常法に従い合成したビス(μ−クロロ)テトラキス(2−フェニルピリジン)ジイリジウム(III)([Ir(ppy)2Cl]2)と3−(4−ヒドロキシフェニルメチル)−2,4−ペンタンジオンを反応させて[3−(4−ヒドロキシフェニルメチル)−2,4−ペンタンジオナート]ビス(2−フェニルピリジン)イリジウム(III)(以下Ir(ppy)2[1−(OH−Ph−Me)−acac]と略す)を合成した。即ち、[Ir(ppy)2Cl]2)56mg(0.052mmol)および炭酸ナトリウム44mg(0.42mmol)をDMF5mlに溶解した。この溶液に、公知の方法(C. Cativiela et al., J. Org. Chem., 60, 3074 (1995))により合成した3−(4−ヒドロキシフェニルメチル)−2,4−ペンタンジオン30mg(0.15mmol)をDMF5mlに溶解した溶液を加えて80℃で1.5時間加熱攪拌した。次に、室温にまで冷却した反応溶液に希塩酸とクロロホルムを加えてよく振とうし、有機層を分取してロータリーエバポレータで溶媒を留去した。残渣をヘキサン/酢酸エチルの1:1(体積比)混合溶媒を展開液とするシリカゲルカラムに通し、主生成物のバンドを分取した。得られた薄黄色の溶液から減圧で溶媒を留去し、ジクロロメタン/ヘキサンの混合溶液から再結晶することによりIr(ppy)2[1−(OH−Ph−Me)−acac]34mg(0.048mmol)を薄黄色の固体として得た。収率46%。同定はCHN元素分析、1H−NMRで行った。
Example 8 Polymerizable Compound: {3- [4- (2-Methacryloyloxyethyl) carbamoyloxyphenylmethyl] -2,4-pentanedionate} bis (2-phenylpyridine) iridium (III) (hereinafter Ir Synthesis of (ppy) 2 [abbreviated as 3- (MOI-Ph-Me) -acac]) As shown in Scheme (8A), bis (μ-chloro) tetrakis (2-phenylpyridine) di synthesized according to a conventional method Iridium (III) ([Ir (ppy) 2 Cl] 2 ) and 3- (4-hydroxyphenylmethyl) -2,4-pentanedione are reacted to produce [3- (4-hydroxyphenylmethyl) -2,4 - pentanedionate] bis (2-phenylpyridine) iridium (III) (hereinafter Ir (ppy) 2 [1- ( OH-Ph-Me) -acac] substantially ) Was synthesized. That is, [Ir (ppy) 2 Cl] 2 ) 56 mg (0.052 mmol) and sodium carbonate 44 mg (0.42 mmol) were dissolved in 5 ml of DMF. To this solution, 30 mg of 3- (4-hydroxyphenylmethyl) -2,4-pentanedione synthesized by a known method (C. Cativiela et al., J. Org. Chem., 60, 3074 (1995)) ( 0.15 mmol) dissolved in 5 ml of DMF was added and stirred with heating at 80 ° C. for 1.5 hours. Next, dilute hydrochloric acid and chloroform were added to the reaction solution cooled to room temperature and shaken well. The organic layer was separated, and the solvent was distilled off with a rotary evaporator. The residue was passed through a silica gel column using a 1: 1 (volume ratio) mixed solvent of hexane / ethyl acetate as a developing solution to separate the main product band. The solvent was distilled off from the obtained pale yellow solution under reduced pressure, and recrystallization from a mixed solution of dichloromethane / hexane gave Ir (ppy) 2 [1- (OH-Ph-Me) -acac] 34 mg (0. 048 mmol) was obtained as a pale yellow solid. Yield 46%. Identification was performed by CHN elemental analysis and 1 H-NMR.

1H NMR (CDCl3): d 8.58 (d, J = 5.9 Hz, 2 H,
ppy), 7.84 (d, J = 7.8 Hz, 2 H, ppy), 7.73 (t, J = 6.5 Hz, 2 H, ppy), 7.55 (d,
J = 7.6 Hz, 2 H, ppy), 7.1 &#8211; 6.6 (m, 10 H, aromatic), 6.27 (d, J = 7.6 Hz, 2 H, ppy), 4.86
(br-s, 1 H, OH), 3.62 (s, 2 H, benzyl), 1.80 (s, 6 H, methyl). E.A.: Calcd
for C34H29IrN2O3:
C, 57.86; H, 4.14; N, 3.97. Found: C, 57.97; H, 4.22; N, 4.15.
1 H NMR (CDCl 3 ): d 8.58 (d, J = 5.9 Hz, 2 H,
ppy), 7.84 (d, J = 7.8 Hz, 2 H, ppy), 7.73 (t, J = 6.5 Hz, 2 H, ppy), 7.55 (d,
J = 7.6 Hz, 2 H, ppy), 7.1 &#8211; 6.6 (m, 10 H, aromatic), 6.27 (d, J = 7.6 Hz, 2 H, ppy), 4.86
(br-s, 1 H, OH), 3.62 (s, 2 H, benzyl), 1.80 (s, 6 H, methyl). EA: Calcd
for C 34 H 29 IrN 2 O 3 :
C, 57.86; H, 4.14; N, 3.97. Found: C, 57.97; H, 4.22; N, 4.15.

Figure 0004902381
Figure 0004902381

次いで、スキーム(8B)に示すように、このIr(ppy)2[1−(OH−Ph−Me)−acac]とメタクリロイルオキシエチルイソシアネート(MOI:商品名、昭和電工製)を反応させることによりIr(ppy)2[1−(MOI−Ph−Me)−acac]を合成した。即ち、Ir(ppy)2[1−(OH−Ph−Me)−acac]71mg(0.10mmol)と2,6−ジ−tert−ブチル−4−メチルフェノール3mg(0.014mmol)、ジブチル錫(IV)ジラウレート27mg(0.12mmol)及びMOI 55mg(0.35mmol)をTHF10mlに溶解し、70℃で2時間加熱攪拌した。得られた反応混合物をロータリーエバポレータで減圧乾固し、残渣をヘキサン/酢酸エチルの1:1(体積比)混合溶媒を展開液とするシリカゲルカラムに通した。最初に溶出する薄黄色の副生成物の次に溶出する薄黄色の溶液を回収して減圧乾固した。得られた固体を少量のジクロロメタンに溶解し、ヘキサンを加えて生成した沈殿を濾取して減圧で乾燥することにより目的とするIr(ppy)2[3−(MOI−Ph−Me)−acac]59mg(0.069mmol)を薄黄色の固体として得た。収率68%。同定はCHN元素分析、1H−NMRで行った。1H NMR
(CDCl3): d 8.58 (d, J =
5.9 Hz, 2 H, ppy), 7.88 (d, J = 7.8 Hz, 2 H, ppy), 7.76 (t, J = 6.5 Hz, 2 H,
ppy), 7.57 (d, J = 7.6 Hz, 2 H, ppy), 7.2 &#8211; 6.6 (m, 10 H, aromatic),
6.27 (d, J = 7.6 Hz, 2 H, ppy), 6.16 (s, 1 H, olefinic), 5.63 (s, 1 H,
olefinic), 5.31 (br-s, 1 H, NH), 4.31 (m, 2 H, ethylene), 3.69 (s, 2 H,
benzyl), 3.59 (m, 2 H, ethylene), 1.98 (s, 3 H, methacryl-methyl), 1.80 (s, 6
H, diketonate-methyl). E.A.: Calcd for C41H38IrN3O6:
C, 57.20; H, 4.45; N, 4.88. Found: C, 57.36; H, 4.43; N, 4.91.
Next, as shown in Scheme (8B), this Ir (ppy) 2 [1- (OH-Ph-Me) -acac] is reacted with methacryloyloxyethyl isocyanate (MOI: trade name, manufactured by Showa Denko). Ir (ppy) 2 [1- (MOI-Ph-Me) -acac] was synthesized. That is, Ir (ppy) 2 [1- (OH-Ph-Me) -acac] 71 mg (0.10 mmol), 2,6-di-tert-butyl-4-methylphenol 3 mg (0.014 mmol), dibutyltin (IV) 27 mg (0.12 mmol) of dilaurate and 55 mg (0.35 mmol) of MOI were dissolved in 10 ml of THF and heated and stirred at 70 ° C. for 2 hours. The obtained reaction mixture was dried under reduced pressure using a rotary evaporator, and the residue was passed through a silica gel column using a 1: 1 (volume ratio) mixed solvent of hexane / ethyl acetate as a developing solution. The pale yellow solution eluting after the first pale yellow by-product was collected and evaporated to dryness. The obtained solid is dissolved in a small amount of dichloromethane, hexane is added, and the resulting precipitate is collected by filtration and dried under reduced pressure to give the desired Ir (ppy) 2 [3- (MOI-Ph-Me) -acac. ] 59 mg (0.069 mmol) were obtained as a pale yellow solid. Yield 68%. Identification was performed by CHN elemental analysis and 1 H-NMR. 1 H NMR
(CDCl 3 ): d 8.58 (d, J =
5.9 Hz, 2 H, ppy), 7.88 (d, J = 7.8 Hz, 2 H, ppy), 7.76 (t, J = 6.5 Hz, 2 H,
ppy), 7.57 (d, J = 7.6 Hz, 2 H, ppy), 7.2 &#8211; 6.6 (m, 10 H, aromatic),
6.27 (d, J = 7.6 Hz, 2 H, ppy), 6.16 (s, 1 H, olefinic), 5.63 (s, 1 H,
olefinic), 5.31 (br-s, 1 H, NH), 4.31 (m, 2 H, ethylene), 3.69 (s, 2 H,
benzyl), 3.59 (m, 2 H, ethylene), 1.98 (s, 3 H, methacryl-methyl), 1.80 (s, 6
H, diketonate-methyl) .EA: Calcd for C 41 H 38 IrN 3 O 6 :
C, 57.20; H, 4.45; N, 4.88. Found: C, 57.36; H, 4.43; N, 4.91.

Figure 0004902381
Figure 0004902381

Claims (17)

式(1)で示される重合性化合物の重合体。
Figure 0004902381
〔式中、X1、Y1、Z1の少なくとも1つは重性官能基を有する置換基を表し、前記重合性官能基はアクリレート基またはメタクリレート基であり、1、Y1、Z1のうちの残りはそれぞれ独立に水素原子またはヘテロ原子を有してもよい炭素数1〜20の有機基を表す。R1〜R12はそれぞれ独立に水素原子、ハロゲン原子、ニトロ基、アミノ基、スルホン酸基、スルホン酸エステル基またはヘテロ原子を有してもよい炭素数1〜20の有機基を表す。〕
A polymer of a polymerizable compound represented by the formula (1 ) .
Figure 0004902381
Wherein, X 1, Y 1, at least one of Z 1 represents a substituent having Polymerization of government functional group, the polymerizable functional group is an acrylate group or methacrylate group, X 1, Y 1, the remaining of the Z 1 each independently represent a hydrogen atom or a heteroatom optionally organic group having 1 to 20 carbon atoms which may have a. R 1 to R 12 each independently represents a hydrogen atom, a halogen atom, a nitro group, an amino group, a sulfonic acid group, a sulfonic acid ester group or an organic group having 1 to 20 carbon atoms which may have a hetero atom. ]
前記式(1)におけるX1またはZ1のいずれか一方が重性官能基を有する置換基であり、前記重合性官能基がアクリレート基またはメタクリレート基である請求項1に記載の重合性化合物の重合体。 Either one of X 1 or Z 1 in Formula (1) is Ri substituent der having Polymerization of government functional group, the polymerizable functional group is according to claim 1 Ru der acrylate or methacrylate groups Polymer of a polymerizable compound. 式(3)で示される重合性化合物の重合体。
Figure 0004902381
A polymer of a polymerizable compound represented by the formula (3).
Figure 0004902381
式(4)で示される重合性化合物の重合体。
Figure 0004902381
A polymer of a polymerizable compound represented by formula (4).
Figure 0004902381
式(5)で示される重合性化合物の重合体。
Figure 0004902381
〔式中、Rは水素原子またはメチル基を表す。〕
A polymer of a polymerizable compound represented by formula (5).
Figure 0004902381
[Wherein, R represents a hydrogen atom or a methyl group. ]
式(8)で示される重合性化合物の重合体。
Figure 0004902381
〔式中、Rは水素原子またはメチル基を表す。〕
A polymer of a polymerizable compound represented by formula (8).
Figure 0004902381
[Wherein, R represents a hydrogen atom or a methyl group. ]
式(9)で示される重合性化合物の重合体。
Figure 0004902381
〔式中、Rは水素原子またはメチル基を表す。〕
A polymer of a polymerizable compound represented by formula (9).
Figure 0004902381
[Wherein, R represents a hydrogen atom or a methyl group. ]
式(10)で示される重合性化合物の重合体。
Figure 0004902381
〔式中、Rは水素原子またはメチル基を表す。〕
A polymer of a polymerizable compound represented by formula (10).
Figure 0004902381
[Wherein, R represents a hydrogen atom or a methyl group. ]
式(11)で示される重合性化合物の重合体。
Figure 0004902381
〔式中、Rは水素原子またはメチル基を表す。〕
A polymer of a polymerizable compound represented by the formula (11).
Figure 0004902381
[Wherein, R represents a hydrogen atom or a methyl group. ]
式(13)で示される重合性化合物の重合体。
Figure 0004902381
A polymer of a polymerizable compound represented by formula (13).
Figure 0004902381
式(1)で示される重合性化合物の重合体。A polymer of a polymerizable compound represented by the formula (1).
Figure 0004902381
Figure 0004902381
〔式中、X[Where X 11 、Y, Y 11 、Z, Z 11 の少なくとも1つは重合性官能基を有する置換基を表し、このうちYAt least one of these represents a substituent having a polymerizable functional group, of which Y 11 は重合性官能基を有する置換基であり、前記重合性官能基はスチリル基であり、XIs a substituent having a polymerizable functional group, the polymerizable functional group is a styryl group, and X 11 、Y, Y 11 、Z, Z 11 のうちの残りはそれぞれ独立に水素原子またはヘテロ原子を有してもよい炭素数1〜20の有機基を表す。RThe remainder of each independently represents a C1-C20 organic group which may have a hydrogen atom or a hetero atom. R 11 〜R~ R 1212 はそれぞれ独立に水素原子、ハロゲン原子、ニトロ基、アミノ基、スルホン酸基、スルホン酸エステル基またはヘテロ原子を有してもよい炭素数1〜20の有機基を表す。〕Each independently represents a hydrogen atom, a halogen atom, a nitro group, an amino group, a sulfonic acid group, a sulfonic acid ester group or an organic group having 1 to 20 carbon atoms which may have a hetero atom. ]
式(1)で示される重合性化合物の重合体。A polymer of a polymerizable compound represented by the formula (1).
Figure 0004902381
Figure 0004902381
〔式中、X[Where X 11 、Y, Y 11 、Z, Z 11 の少なくとも1つは重合性官能基を有する置換基を表し、このうちYAt least one of these represents a substituent having a polymerizable functional group, of which Y 11 は重合性官能基を有する置換基であり、前記重合性官能基はアクリレート基またはメタクリレート基であり、XIs a substituent having a polymerizable functional group, and the polymerizable functional group is an acrylate group or a methacrylate group, and X 11 、Y, Y 11 、Z, Z 11 のうちの残りはそれぞれ独立に水素原子またはヘテロ原子を有してもよい炭素数1〜20の有機基を表す。RThe remainder of each independently represents a C1-C20 organic group which may have a hydrogen atom or a hetero atom. R 11 〜R~ R 1212 はそれぞれ独立に水素原子、ハロゲン原子、ニトロ基、アミノ基、スルホン酸基、スルホン酸エステル基またはヘテロ原子を有してもよい炭素数1〜20の有機基を表す。〕Each independently represents a hydrogen atom, a halogen atom, a nitro group, an amino group, a sulfonic acid group, a sulfonic acid ester group or an organic group having 1 to 20 carbon atoms which may have a hetero atom. ]
式(14)で示される重合性化合物の重合体。
Figure 0004902381
〔式中、Y1はラジカル重合性の官能基を有する置換基を表し、前記ラジカル重合性の官能基はスチリル基であり、2およびQ3はそれぞれ独立に水素原子またはヘテロ原子を有してもよい炭素数1〜20の有機基を表す。〕
A polymer of a polymerizable compound represented by formula (14).
Figure 0004902381
[ Wherein Y 1 represents a substituent having a radical polymerizable functional group, the radical polymerizable functional group is a styryl group, and Q 2 and Q 3 each independently have a hydrogen atom or a hetero atom. It represents an organic group having 1 to 20 carbon atoms. ]
式(14)で示される重合性化合物の重合体。
Figure 0004902381
〔式中、Y1はラジカル重合性の官能基を有する置換基を表し、前記ラジカル重合性の官能基はアクリレート基またはメタクリレート基であり、2およびQ3はそれぞれ独立に水素原子またはヘテロ原子を有してもよい炭素数1〜20の有機基を表す。〕
A polymer of a polymerizable compound represented by formula (14).
Figure 0004902381
[ Wherein Y 1 represents a substituent having a radical polymerizable functional group, the radical polymerizable functional group is an acrylate group or a methacrylate group, and Q 2 and Q 3 are each independently a hydrogen atom or a hetero atom. Represents an organic group having 1 to 20 carbon atoms which may have ]
式(16)で示される重合性化合物の重合体。
Figure 0004902381
〔式中、Rは水素原子またはメチル基を表す。〕
A polymer of a polymerizable compound represented by formula (16).
Figure 0004902381
[Wherein, R represents a hydrogen atom or a methyl group. ]
請求項1〜15のいずれか一つに記載の重合性化合物の重合体を含むことを特徴とする発光材料。 A light emitting material comprising the polymer of the polymerizable compound according to any one of claims 1 to 15 . 請求項16に記載の発光材料を用いた有機発光素子。 The organic light emitting element using the luminescent material of Claim 16 .
JP2007027557A 2007-02-07 2007-02-07 Polymer of polymerizable compound Expired - Lifetime JP4902381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007027557A JP4902381B2 (en) 2007-02-07 2007-02-07 Polymer of polymerizable compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007027557A JP4902381B2 (en) 2007-02-07 2007-02-07 Polymer of polymerizable compound

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001306282A Division JP4035976B2 (en) 2001-06-20 2001-10-02 Polymerizable compound and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007211243A JP2007211243A (en) 2007-08-23
JP4902381B2 true JP4902381B2 (en) 2012-03-21

Family

ID=38489949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007027557A Expired - Lifetime JP4902381B2 (en) 2007-02-07 2007-02-07 Polymer of polymerizable compound

Country Status (1)

Country Link
JP (1) JP4902381B2 (en)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2517275B1 (en) 2009-12-22 2018-11-07 Merck Patent GmbH Formulations comprising phase-separated functional materials
WO2011076326A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent functional surfactants
EP2517278B1 (en) 2009-12-22 2019-07-17 Merck Patent GmbH Electroluminescent formulations
DE102010009193B4 (en) 2010-02-24 2022-05-19 MERCK Patent Gesellschaft mit beschränkter Haftung Composition containing fluorine-fluorine associates, processes for their production, their use and organic electronic devices containing them
JP2013522816A (en) 2010-03-11 2013-06-13 メルク パテント ゲーエムベーハー Light emitting fiber
JP6246468B2 (en) 2010-03-11 2017-12-13 メルク パテント ゲーエムベーハー Fiber in therapy and cosmetics
US10190043B2 (en) 2010-05-27 2019-01-29 Merck Patent Gmbh Compositions comprising quantum dots
JP6312433B2 (en) 2010-05-27 2018-04-18 メルク パテント ゲーエムベーハー Apparatus comprising an array comprising a photoluminescent compound
DE102010055901A1 (en) 2010-12-23 2012-06-28 Merck Patent Gmbh Organic electroluminescent device
KR20140036279A (en) 2011-06-01 2014-03-25 메르크 파텐트 게엠베하 Hybrid ambipolar tfts
WO2013013754A1 (en) 2011-07-25 2013-01-31 Merck Patent Gmbh Copolymers with functionalized side chains
JP2016525781A (en) 2013-07-29 2016-08-25 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH Electro-optic element and use thereof
WO2016034262A1 (en) 2014-09-05 2016-03-10 Merck Patent Gmbh Formulations and electronic devices
US10323180B2 (en) 2014-12-04 2019-06-18 Guangzhou Chinaray Optoelectronic Materials Ltd. Deuterated organic compound, mixture and composition containing said compound, and organic electronic device
CN107001336A (en) 2014-12-11 2017-08-01 广州华睿光电材料有限公司 A kind of organometallic complex, the polymer comprising it, mixture, composition, organic electronic device and application
EP3241248A1 (en) 2014-12-30 2017-11-08 Merck Patent GmbH Formulations and electronic devices
CN107108862B (en) 2015-01-13 2019-08-02 广州华睿光电材料有限公司 Conjugated polymer, the mixture comprising it, composition, organic electronic device and its application of the crosslinked group containing acetenyl
US10651382B2 (en) 2015-03-30 2020-05-12 Merck Patent Gmbh Formulation of an organic functional material comprising a siloxane solvent
US10808170B2 (en) 2015-06-12 2020-10-20 Merck Patent Gmbh Esters containing non-aromatic cycles as solvents for OLED formulations
EP3341981B1 (en) 2015-08-28 2020-08-19 Merck Patent GmbH Formulation of an organic functional material comprising an epoxy group containing solvent
WO2017080326A1 (en) 2015-11-12 2017-05-18 广州华睿光电材料有限公司 Printing composition, electronic device comprising same and preparation method for functional material thin film
CN108368361A (en) 2015-12-10 2018-08-03 默克专利有限公司 Preparation containing the ketone comprising non-aromatic ring
JP7051684B2 (en) 2015-12-15 2022-04-11 メルク パテント ゲーエムベーハー Esters containing aromatic groups as solvents for organic electronic formulations
KR20180095028A (en) 2015-12-16 2018-08-24 메르크 파텐트 게엠베하 A formulation containing a mixture of two or more different solvents
US10840448B2 (en) 2016-02-17 2020-11-17 Merck Patent Gmbh Formulation of an organic functional material
DE102016003104A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Container comprising a formulation containing at least one organic semiconductor
WO2017216129A1 (en) 2016-06-16 2017-12-21 Merck Patent Gmbh Formulation of an organic functional material
CN109312183A (en) 2016-06-17 2019-02-05 默克专利有限公司 The preparation of organic functional material
TW201815998A (en) 2016-06-28 2018-05-01 德商麥克專利有限公司 Formulation of an organic functional material
WO2018024719A1 (en) 2016-08-04 2018-02-08 Merck Patent Gmbh Formulation of an organic functional material
EP3532565B1 (en) 2016-10-31 2021-04-21 Merck Patent GmbH Formulation of an organic functional material
JP7013459B2 (en) 2016-10-31 2022-01-31 メルク パテント ゲーエムベーハー Formulation of organic functional materials
EP3546532B1 (en) 2016-11-23 2021-06-02 Guangzhou Chinaray Optoelectronic Materials Ltd. Printing ink composition, preparation method therefor, and uses thereof
US10892414B2 (en) 2016-12-06 2021-01-12 Merck Patent Gmbh Process for making electronic device
JP7091337B2 (en) 2016-12-13 2022-06-27 メルク パテント ゲーエムベーハー Formulation of organic functional materials
TWI763772B (en) 2017-01-30 2022-05-11 德商麥克專利有限公司 Method for forming an organic element of an electronic device
CN110446611B (en) 2017-03-31 2021-05-25 默克专利有限公司 Printing method for Organic Light Emitting Diodes (OLEDs)
WO2019016184A1 (en) 2017-07-18 2019-01-24 Merck Patent Gmbh Formulation of an organic functional material
KR102666621B1 (en) 2017-12-15 2024-05-16 메르크 파텐트 게엠베하 Formulation of organic functional materials
CN111712551A (en) 2018-02-26 2020-09-25 默克专利有限公司 Preparation of organic functional material
CN112236488A (en) 2018-06-15 2021-01-15 默克专利有限公司 Preparation of organic functional material
KR20210083347A (en) 2018-11-06 2021-07-06 메르크 파텐트 게엠베하 Method of Forming Organic Elements of Electronic Devices
KR20230002860A (en) 2020-04-21 2023-01-05 메르크 파텐트 게엠베하 Emulsion containing organic functional materials
EP4139408A1 (en) 2020-04-21 2023-03-01 Merck Patent GmbH Formulation of an organic functional material
KR20230114756A (en) 2020-12-08 2023-08-01 메르크 파텐트 게엠베하 Ink Systems and Methods for Inkjet Printing
JP2024515366A (en) 2021-04-23 2024-04-09 メルク パテント ゲーエムベーハー Organic functional materials formulations
CN117730638A (en) 2021-08-02 2024-03-19 默克专利有限公司 Printing method by combining inks
TW202349760A (en) 2021-10-05 2023-12-16 德商麥克專利有限公司 Method for forming an organic element of an electronic device
TW202411366A (en) 2022-06-07 2024-03-16 德商麥克專利有限公司 Method of printing a functional layer of an electronic device by combining inks
WO2024126635A1 (en) 2022-12-16 2024-06-20 Merck Patent Gmbh Formulation of an organic functional material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL154960A0 (en) * 2000-10-10 2003-10-31 Du Pont Polymers having attached luminescent metal complexes and devices made with sych polymers
GB0104700D0 (en) * 2001-02-26 2001-04-11 Isis Innovation Luminescent polymers
JP2003073479A (en) * 2001-09-04 2003-03-12 Canon Inc Polymer compound and organic light emitting element

Also Published As

Publication number Publication date
JP2007211243A (en) 2007-08-23

Similar Documents

Publication Publication Date Title
JP4902381B2 (en) Polymer of polymerizable compound
JP4035976B2 (en) Polymerizable compound and method for producing the same
JP4986004B2 (en) Polymerizable iridium complex, polymer thereof and production method thereof
JP5281270B2 (en) Iridium complex compound, organic electroluminescence device using the same, and use thereof
KR100676965B1 (en) Novel iridium complex and organic electroluminescence device using the same
JP5198856B2 (en) Metal complex
JP2007045742A (en) Manufacturing method of transition metal complex and transition metal complex
WO2005033090A1 (en) Aromatic compound
EP2627731A1 (en) Novel spirobifluorene compounds
CN111788212A (en) Spiro-containing platinum (II) emitters with tunable emission energy and synthesis thereof
WO2006016684A1 (en) Method for synthesis of aromatic amine
US8293898B2 (en) Luminophores
JP5586000B2 (en) Indacene derivative and method for producing the same, carbon bridged p-phenylene vinylene derivative and method for producing the same
CN102325781A (en) Organic metal complexes for use in optoelectronic devices
JP5034157B2 (en) Aromatic compounds
JP4468343B2 (en) Intermediate of polymerizable compound and method for producing the same
JP2002356473A (en) Viologen derivative having chemical structure close to liquid crystal compound, applicable as el element having electron transport property
JP4539183B2 (en) Carbazole compound and method for producing the same
KR100521662B1 (en) 9,10-Bis(styryl)anthracene derivatives and manufacturing method thereof
KR100464972B1 (en) Novel Preparing Method of 9,10-bis[4-(2,2-diphenylvinyl)phenyl]anthracene (DPVA) for Blue Luminescence Material
JP3763001B2 (en) Asymmetric selenophosphinic acid chloride and process for producing the same
KR100497023B1 (en) Novel Preparing Method of 9,10-bis[4-(2,2-diphenylvinyl)phenyl]anthracene (DPVA) for Blue Luminescence Material Using Phosphonium Halide Compound
KR100688030B1 (en) Novel luminescent Ir(Ⅲ)-chelated dendritic complexes containing aryl ether-typed dendrons and their synthetic methods
KR100580815B1 (en) Electroluminescence iridium compound and display device adopting as light-emitting dopant
JP4775227B2 (en) Polymerizable compound and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110203

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111228

R150 Certificate of patent or registration of utility model

Ref document number: 4902381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250