TWI754638B - 用於將運輸容器填充流體之方法與填充裝置 - Google Patents

用於將運輸容器填充流體之方法與填充裝置 Download PDF

Info

Publication number
TWI754638B
TWI754638B TW106112620A TW106112620A TWI754638B TW I754638 B TWI754638 B TW I754638B TW 106112620 A TW106112620 A TW 106112620A TW 106112620 A TW106112620 A TW 106112620A TW I754638 B TWI754638 B TW I754638B
Authority
TW
Taiwan
Prior art keywords
fluid
purification
filling
contamination
container
Prior art date
Application number
TW106112620A
Other languages
English (en)
Other versions
TW201803800A (zh
Inventor
剛特 浩克
萊蒂亞 加西亞狄茲
維克 希拉雷斯
Original Assignee
德商麥克專利有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商麥克專利有限公司 filed Critical 德商麥克專利有限公司
Publication of TW201803800A publication Critical patent/TW201803800A/zh
Application granted granted Critical
Publication of TWI754638B publication Critical patent/TWI754638B/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/06Details or accessories
    • B67D7/76Arrangements of devices for purifying liquids to be transferred, e.g. of filters, of air or water separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/17559Cartridge manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0063Regulation, control including valves and floats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D36/00Filter circuits or combinations of filters with other separating devices
    • B01D36/001Filters in combination with devices for the removal of gas, air purge systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D37/00Processes of filtration
    • B01D37/04Controlling the filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/17506Refilling of the cartridge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Filling Of Jars Or Cans And Processes For Cleaning And Sealing Jars (AREA)
  • Loading And Unloading Of Fuel Tanks Or Ships (AREA)
  • Filtration Of Liquid (AREA)

Abstract

在用於將流體填充運輸容器(12)的方法例子中,將純化迴路(1)中的該流體多次傳送通過純化設備(7),以及藉由污染量測設備(15),測定該純化迴路(12)中的流體樣本量的主要污染指標,其中只有一旦該主要污染指標未達到第一閾值,則終止以該流體對該運輸容器(12)的填充程序。經提供用於測定該主要污染指標的該流體樣本量可自該純化迴路(1)轉向,饋入該污染量測設備(15),並且在測定該主要污染指標之後,返回該純化迴路(1)。在容器-純化步驟中,先前已被導入該運輸容器(12)的來自該純化迴路(1)之容器-流體量可再次自該運輸容器(12)被取出並且被送回該純化迴路(1)。藉由該污染量測設備(15)可測定已經自該運輸容器(12)取出的該容器-流體量的主要污染指標,並且只有一旦該主要污染指標未達到第三閾值,則可終止以該流體對該運輸容器(12)的該填充程序。

Description

用於將運輸容器填充流體之方法與填充裝置
本發明係關於一種用於將運輸容器填充流體之方法,其中該流體在被填充至該運輸容器之前係被傳送通過純化裝置。
近年來,已經開發出各種例如適合用於製造有機半導體組件以及特別用於製造有機發光二極體與個別顯示器的有機半導體材料。有多種可用以將已經溶解於合適溶劑中的有機半導體材料施於預定表面的列印技術特別適合用於處理有機半導體材料。以此方式,可使用實際上已知的噴墨列印裝置,列印大面積顯示器,例如由非常多數量之可由相互獨立方式啟動的有機發光二極體(organic light-emitting diodes,OLEDS)所組合的大面積顯示器。
目前已知的列印技術可快速製造組件,特別是有機半導體材料的顯示器,這在方法順序上是簡單的。然而,已經證實溶解的有機半導體材料幾乎無可避免被粒子與溶解 之氣體污染,這對於組件與顯示器的產品品質而言特別重要。儘管在有機半導體材料的製造和填充方面做出了很大努力,仍然難以避免受到外來粒子的污染。再者,溶解在溶劑中的有機半導體材料對於周圍空氣與濕氣非常敏感,因而已經與周圍空氣短暫接觸的有機半導體材料可吸收在量上會威脅產品的氣體與/或濕氣。
為使有機半導體材料達到進一步處理所需要的純度,溶解於合適有機溶劑中的半導體材料通常在多階段純化程序中經純化、過濾與除氣。而後,將來自溶解的有機半導體材料之經純化的流體填充至運輸容器中,並且從該有機半導體材料的製造位置移動至需要該有機半導體材料以製造個別組件或顯示器的生產位置。在本文中,該運輸容器在填充有機半導體材料之前亦經純化,以盡可能將填充至該運輸容器且於該運輸容器中運輸之流體的污染最小化。再者,當已經運輸到生產位置的運輸容器連接至生產裝置並且任選地亦在開始之前以及在生產裝置運作過程中,在個別組件與部件的生產位置亦做出重大的努力,以盡可能將包含有機半導體材料之流體的污染(contamination and pollution)最小化。
由於許多有機半導體材料的材料成本與製造付出心力非常高,因而在製造產品上必須嘗試盡可能有效率地使用有機半導體材料,並且同時盡可能將無法用於組件生產的個別運輸容器之流體的比例最小化。例如,藉由流體的純化,沒有過多比例的流體必須因後續生產而流失。再者, 用於純化流體及用於後續填充運輸容器之運輸容器或裝置中的連接器設備(connector installation)的無效體積(dead volume)應盡可能小,以盡可能將無法用於組件生產的流體比例最小化。
由於已經最少量的污染物和任選的污染個別粒子可能使得諸如大尺寸顯示器之類的產品(例如,已經使用相應之有機半導體材料所製造)的產品變得無用,因而分別對於有機半導體材料的製造與運輸至個別組件或顯示器的生產位置,通常設定非常高的要求。因此,實際上,在生產溶解的有機半導體材料過程中以及之後,以隨機樣本的方式進行溶解的有機半導體材料品質之量測與檢查,以可確認且保證流體之預定純度。與其相關,用於製造與檢查溶解的有機半導體材料及用於其運輸至個別產品之個別生產位置的付出心力是複雜且成本密集的。
因此,本發明的目的被認為是設計一種將運輸容器填充流體的方法,使得可用盡可能最少的心力達到運輸容器中流體之盡可能少的污染。
將純化迴路中流體純化步驟中的流體多次傳送通過純化設備,並且藉由污染量測設備測定該純化迴路中流體-樣本量的主要污染指標,以及只有一旦該主要污染指標未達到第一閾值,則終止以該流體對於該運輸容器的填充程序,以達成本發明之目的。該流體可在該純化迴路中循環 多次。該流體被傳送通過該純化設備,且在每個純化循環的情況下被純化。實務上已知的純化方法例如過濾或除氣,原則上且取決於個別實施係分別具有平均或最大的純化效率,因而在純化步驟過程中,可自該流體分離且移除個別比例(respective proportion)的污染物。藉由經驗,例如在許多情況下,在包含過濾設備或除氣設備的純化設備中一次性純化流體之後,仍可能分別無法達到或保證足夠的流體純度。藉由將污染量測設備整合到純化迴路中,其中流體通過純化設備被多次傳送,並且由於這一點,連續純化得更加強烈,可以隨時藉由污染量測設備偵測剩餘的污染,並分別根據進一步的處理順序或用純化的流體填充運輸容器而考量剩餘的污染。本文中的主要污染指標可以以規則或預定的時間間隔連續地建立,或者僅在需要時或在用戶查詢時才建立。建立重要污染指標的付出非常小。
藉由本發明的方法,對於每一個運輸容器,可分別建立填充在運輸容器中的流體之污染物含量或純度。相較於先前技術中已知的方法,其中以額外付出自個別且已經填充的運輸容器取得專用流體樣本,檢查這些流體樣本的污染,而藉由本發明的方法,可測試每個個別的運輸容器,並且可檢查已經填充於其中的流體之污染物含量而不需要任何顯著的額外付出。
在運輸容器的填充期間確定已經藉由污染量測設備建立的流體樣本量的主要污染指標顯示出令人不滿意的高污染,則可以例如再次取得已經填充至運輸容器的流體比 例,以便後續以更加強化純化的流體比例重新填充運輸容器。因此,填充程序亦可包含自運輸容器個別或多次取得已經填充的流體量。只有一旦已由污染量測設備所量測的主要污染指標未達到預定的閾值,則終止個別運輸容器的填充程序,因而以足夠可靠的方式,可達到且保證填充於運輸容器中的流體之理想純度。
本發明的方法可有利地用於填充分別與填充流體之純度或填充流體之盡可能少的污染相關的各種流體。根據本發明,該方法的應用領域之一係關於有機半導體材料,其被填充於運輸容器中分別成為溶液或成為液體墨水材料的組成部分,以於設想的消耗位置自該運輸容器再次被取出,並且可用於有機半導體建構元件的製造。本文中,有機半導體材料可用於例如製造電子或光電裝置,例如液體塗佈或印刷的電子、光電、光伏、感測或有機電致發光裝置,較佳為OLED,特佳為OLED顯示器。然而,其他可含有功能性組成或溶解的組成部分之流體,例如在使用之後其功能或效果,需要該流體盡可能不超過與最大允許污染相關的預定閾值,亦可經由本發明的填充方法有利地被純化且填充於運輸容器中。
根據本發明概念的一設計實施例,只有一旦主要污染指標未達到第二閾值,則開始以來自純化迴路之經純化的流體填充運輸容器。在許多情況下,對於待填充於純化迴路中的流體而言,有利的是初始經由純化設備而被多次傳送,並且因而在開始填充運輸容器之前被多次純化。然 而,例如,為了效率的原因,儘管尚未達到純化迴路之預定數量的完全灌注,在純化迴路中循環的流體量的一小部分轉向並填充至運輸容器中同樣可能是有利的。在此情況下,可在第一閾值之前先達到第二閾值。用已經越來越強烈純化的流體,填充此例子中的運輸容器,其中所得之該運輸容器的整個內容物的平均污染係低於預定閾值。
同樣可以想到的是第二閾值與第一閾值一致,並且只有一旦在純化迴路中循環的流體已經達到期望之純度程度,才開始填充運輸容器。在此情況下,可由已經填充於運輸容器中的流體量,專門監視填充程序,並且當已經填充該流體之預定填充量時,終止填充程序。
為了不以進行量測所需的污染量測設備中的流體的停留時間(dwell time)來限制純化迴路中的流體之循環,可為有利的是自純化迴路轉向用於測定主要污染指標的流體樣本量、該流體樣本量被饋入至污染量測設備,並且在測定主要污染指標後,返回到純化迴路。據此,純化迴路中的流體可以高流速循環,其任選地受限於純化設備預定之最大流速。自純化迴路轉向且饋入至污染量測設備中的流體樣本量可以獨立於純化迴路中預定的流速而停留在後者中,因而使得量測有足夠的精度與準確度。在本文中,假設循環於純化迴路中的流體被充分混合且為均質,因而流體樣本量所建立的主要污染指標為循環於純化迴路中的流體之污染特性。
根據本發明概念之一特別有利的設計實施例,在容器 -純化步驟中,再次自運輸容器取出來自純化迴路之已先被導入於運輸容器中的容器-流體量,並且返回至純化迴路。已經證實運輸容器中的流體污染不是完全由流體製造期間流體之不可避免的污染所引起的,而是原本仍空的、未填充的運輸容器之污染可能對於後續填充於該運輸容器之流體的污染有明顯程度的貢獻。運輸容器的專用純化是複雜且成本密集的。再者,在大多數情況下,在運輸容器的填充期間,無法偵測與考量空的運輸容器之無可避免的剩餘污染。因此,運輸容器可合併於純化迴路中,並且被流體灌注,因而運輸容器中的污染被流體吸收,並且在純化設備後續灌注於純化迴路過程中可被過濾。
藉由污染量測設備測定已經自運輸容器取出之容器-流體量的主要污染指標,以及只有一旦主要污染指標未達到第三閾值,終止以該流體對於運輸容器的填充程序,可達到填充於運輸容器中的流體之特別可靠的監視與純度之預定。在此方式中,可確保不僅已經填充於運輸容器中的流體以及後續自運輸容器取出的流體皆具有預定純度。據此,可分別偵測或監視以及亦藉由整合於純化迴路中的污染量測設備而預定在填充至容器之前之流體的污染程度或是純度程度以及位於運輸容器中的流體在被取出之後的純度程度。只要在運輸容器運輸至使用者的過程中不發生流體的後續污染,在自運輸容器取出流體之後所建立的純度程度最通常亦對應於流體使用者(例如在電子組件或顯示器的製造中)遇到的純度程度。這可藉由運輸容器之合適 的設計實施例而有最大限度的防止。
由於根據經驗,運輸容器之任何污染顯著更小於在流體製造過程中無可避免發生之流體本身的任何污染,因而根據本發明,提供只有一旦流體-純化步驟測定之在純化迴路中被傳送之流體的主要污染指標未達到第四閾值,才開始容器-純化步驟。因此,經提供用於填充運輸容器的流體可初始地循環於純化迴路中,例如,直到主要污染指標已經降至原始值的十分之一。接著,運輸容器可合併於純化迴路中,並且以循環的流體灌注,以排出存在於運輸容器中的污染物。在本文中,流體持續循環於純化迴路中,直到主要污染指標已經降至原始值的百分之一,並且確認循環於純化迴路中且經過運輸容器之流體的足夠純度。
根據本發明概念的一設計實施例,通過至少一粒子過濾器且通過除氣設備,傳送流體-純化步驟中的流體。粒子過濾器與除氣設備的組合是方便且有利的,特別在於填充有機半導體材料的例子是有利的,其後續利用可能受到粒子污染物與氣體污染物的損害與限制。同樣可以想到具有一致過濾性質的複數個粒子過濾器可以彼此組合,以增加純化設備的效率。也可以組合具有不同過濾性質或不同過濾器分類的複數個粒子過濾器,並且例如可以依次設置能過濾越來越小粒徑的二個或三個粒子過濾器。多個除氣設備的組合也可為有利的,以過濾例如不同的氣體,或是在單次通過純化設備的情況下增加除氣效率。
根據本發明,有利的是主要污染指標由主要粒子含量指標與主要氣體含量指標組成,分別係由污染量測設備偵測。因此,以相互獨立的方式且藉由合適的閾值,可檢查粒子和氣體含量的污染,並且可以獲得且考慮順序及控制本發明的方法。同樣可以同時偵測複數個主要粒子含量指標,並考慮方法順序,使得例如以不同的粒徑範圍監視要填充的流體之個別的粒子含量,並且持續流體的純化直到所有相關粒徑範圍分別未達(undershot)或達到或維持預定的閾值。
本發明亦關於用於將運輸容器填充流體的填充裝置。根據本發明,該裝置具有由多個流體管線(fluid-line)部分形成的純化迴路,並且純化設備與污染量測設備位於該純化迴路中,以及可連接至該運輸容器用於填充的接合部與容器-填充管線係位於該純化迴路中。藉由本發明的填充裝置,可用簡單的方式將用於填充該運輸容器的該流體再循環,據此,多次導引通過位於該純化迴路中的該純化設備。藉由該污染量測設備,可同時檢查已經達到的純化效果。在純化迴路中充分純化流體之後,可以將通過連接物連接到純化迴路的運輸容器填充純化的流體。
根據本發明,匯合接合部與可連接至運輸容器用於清空運輸容器的容器返回管線係位於該純化迴路中。在此方式中,該運輸容器可結合在純化迴路中,因而在該純化迴路中循環的流體亦可被導引通過該運輸容器。據此,位於運輸容器中的污染物可被該流體吸收並且自該運輸容器排 出。可以以這種方式進行運輸容器的附加純化,而不需任何明顯的額外付出,以避免任何已經填充到運輸容器中以供後續使用的流體被污染。
在本文中,運輸容器可完全合併於純化迴路中,並且以在純化迴路中再循環的全部流體量灌注。可以想像的是運輸容器藉由分流管線(bypass line)連接至純化迴路,並且僅以在純化迴路中循環之流體的預定部分量灌注運輸容器。
純化迴路可有利地具有儲存器-連接器設備(reservoir-connector installation),藉以使得用於該流體的儲存容器可連接至該純化迴路。可以構想純化迴路,使得一個儲存容器中預定的全部流體量可持續循環通過純化迴路。若需要且需要時,此實施例中的複數個運輸容器可連續或任意地同時連接至純化迴路,並且以純化流體填充。可能僅有被提供用於填充運輸容器的流體量被注入至純化迴路中並且在該處被純化,因而使得盡可能快速純化被提供用於填充運輸容器的該流體量。
純化設備適宜地具有至少一個粒子過濾器與一個除氣設備。在許多例子中,有利的是可有至少一個第一粒子過濾器在流動方向中位於除氣設備之前,以及至少一個第二粒子過濾器在除氣設備之後。同樣可以構想結合複數個粒子過濾器,它們具有一致過濾效果,或是具有在流動方向中變小的網格尺寸(mesh size)或孔徑。以同樣的方式,複數個相同型式或不同型式的除氣設備亦可彼此結合,或用 以分別與粒子過濾器交錯。
流動方向中的污染量測設備適宜地位於純化設備之後,因而純化設備造成的純化效果可能已經被污染量測設備偵測。
為了亦可偵測由灌注流體之連接的運輸容器任意造成的污染並且為了可在該方法的進一步控制中考量該污染,在流動方向中的容器返回管線的匯合接合部係位在污染量測設備之前。
依照各個實施例中使用的污染量測設備之量測方法與量測裝置,根據本發明,對於可以通過污染量測設備傳送流體的分流管線部分(bypass-line portion)可能是有利的,使得僅可預定的流體樣本量被傳送通過位於純化迴路中的污染量測設備。在許多實施例中,偵測主要污染指標所需要的量測期間係顯著大於灌注純化設備而被純化的該流體所需要的時間期間。為了實現盡可能大的生產量(throughput)以及在純化迴路中循環的流體的快速純化,因此,在污染測量設備中只需要檢查和評估小的流體樣本量可為有利的,同時循環流體的主要比例可以被傳送通過污染測量設備,並且已經再次饋送(infed)到純化設備。
1‧‧‧純化迴路
2‧‧‧流體管線部分
3‧‧‧流體管線部分
4‧‧‧流體管線部分
5‧‧‧儲存容器
6‧‧‧幫浦設備
7‧‧‧純化設備
8‧‧‧粒子過濾器
9‧‧‧除氣設備
10‧‧‧第一接合部
11‧‧‧容器填充管線
12‧‧‧運輸容器
13‧‧‧容器返回管線
14‧‧‧第二接合部
15‧‧‧污染量測設備
16‧‧‧閥
17‧‧‧氧氣探測器
18‧‧‧第二粒子過濾器
19‧‧‧閥
20‧‧‧分流管線部分
21‧‧‧接合部
22‧‧‧流通量測設備
N2‧‧‧氮氣
以下更詳細地以示例性方式說明圖式中示意性繪示之本發明概念的例示實施例。
圖1示意性說明本發明的填充裝置,該填充裝置具有 純化迴路、具有位於該純化迴路中且具有污染量測設備的純化設備、以及具有接合部與容器填充管線。
圖2說明示意性說明偏差設計(deviating design)的填充裝置。
圖1以例示說明方式所示之填充裝置具有純化迴路1,其係由複數個流體管線部分2、3、4組合而成。流體管線部分2係連接至儲存容器5,儲存容器5例如可容納10公升或30公升,使得位在儲存容器5中的流體可藉由幫浦設備6而自儲存容器5被傳送至純化設備7。純化設備7具有粒子過濾器8,例如膜型式過濾器(membrane-type filter),其具有1微米(μm)的孔徑。流體中的氣體含量可藉由除氣設備9而減少,除氣設備9係在流動方向中且位於粒子過濾器8之後。
流體管線部分3與流體管線部分2相鄰。在流體管線部分3中,提供第一接合部10連接至容器填充管線11。容器填充管線11可釋放地連接至用於填充的運輸容器12。運輸容器12的容量可為例如200ml或是1公升,取決於經設計作為裝運包(shipment pack)或作為印表機墨水盒(printer cartridge)之應用目的。容器返回管線13從運輸容器12返回到流體管線部分3,使得來自運輸容器12的流體藉由第二連接物14可以被傳送回到流體管線部分3中,並且因此被返回到用於流體的純化迴路1中。
隨後將流體引導通過流體管線部分4,污染物測量裝設備15位於該流體管線部分4中。藉由污染量測設備15,可建立用於灌注流體的主要污染指標。流體管線部分4再次開放至儲存容器5中,因而關閉純化迴路1。
根據本發明,各種方法順序是可能的,以便從儲存容器5中取出流體量,並且在純化迴路1中充分純化之後,填充到運輸容器12中。
流體可在純化迴路1中循環,並且在純化設備7中連續且逐漸地被純化,直到已由污染測量設備15建立的主要污染指標未達最大允許污染物含量的第一閾值。而後,可將運輸容器12填充純化的流體並且與填充裝置分離。
流體亦可初始循環於純化迴路1中,而未連接運輸容器12,並且運輸容器未灌注流體。污染量測設備15持續建立主要污染指標,並且流體重新循環且循環於純化迴路1中,直到分別達到或是未達污染物含量之預定第二閾值。接著,運輸容器12藉由切換閥門(valve)16而合併於純化迴路1中,並且被已經純化的流體灌注。位在運輸容器12中的任何潛在污染物在此處係被流體吸收,最初在污染量測設備15中被偵測,並且藉由該流體在純化設備7的後續灌注中被過濾掉。流體通過運輸容器12的循環可持續,直到污染量測設備15中建立的主要污染指標未達第三閾值。第三閾值可對應於前述且用於例示實施例中的第一閾值。由於可以排除已經純化的運輸容器12的任何污染物,因而亦可預定從其偏離的閾值,以便例如為了由污染測量設備15 預定的運輸容器12純化後之較不嚴格的污染物含量。
運輸容器12同樣可能被連接合併並且由已經通過純化迴路1之第一循環的流體灌注。
在所有情況下可實現對於實際上已經被填充在運輸容器12中的流體量而言,在填充程序終止且自填充裝置分離且取出填充的運輸容器12之前,已經檢查污染物並且已經將污染物降低至小於預定閾值。不再需要後續的檢查量測。
圖2以例示方式示意性說明偏差設計的填充裝置。除了除氣設備9之外,純化設備7具有氧氣探測器(oxygen probe)17。在流動方向中的第一粒子過濾器8係位於除氣設備9與氧氣探測器17之前。在流動方向中的第二粒子過濾器18係位在氧氣探測器17之後。第一粒子過濾器8具有孔徑為0.1微米的膜型式過濾器(membrane-type filter)。第二粒子過濾器18具有孔徑為0.05微米的膜型式過濾器(membrane-type filter)。
運輸容器12也可藉由閥門16而合併至純化迴路1中。藉由其他閥門19提供用於流體循環的附加控制可能性(controlling potential)。
污染量測設備15係位於分流管線部分20中,其藉由接合部21而連接至流體管線部分4。在每一種情況中,僅有少量的流體樣本量灌注污染量測設備15,該少量的流體樣本量僅代表在純化迴路1中循環的流體之一小比例。藉由流通量測設備(throughflow-measurement installation)22, 可分別偵測或檢查灌注分流管線部分20與流體管線部分4之流體量的個別比例,流體管線部分4係與分流管線部分20平行配置。
分別獨立於填充裝置的個別設計實施例或圖1與圖2所示之示例性實施例,可撓式運輸容器(flexible transportation container)(例如,其可為袋子或是可撓式塑膠材料容器)可被用以取代堅硬運輸容器(rigid transportation container)12(例如,其可為瓶子或金屬容器)。若是當運輸容器12連接合併於純化迴路1中時,在堅硬運輸容器12的例子中,藉由個別的吹管(lance)或壓力閥門,幾乎任意的流體量可以被取得或疊起(top up),其中運輸容器12中一直保有可變比例的流體。特別是在可撓式運輸容器的情況下,在每種情況下,可撓式運輸容器可以相繼完全填充並隨後完全清空也是有利的。
以下將以示例性方式描述藉由本發明的填充裝置以說明性方式進行的一些填充程序。
流體包含有機半導體材料,例如OLED材料,以及任選地其他添加物。根據重量表,將流體的成分分別放入具有預先施加溶劑或溶劑混合物之容器中。該等材料而後於滾筒攪拌機中混合與溶解。
在示例性實施例中使用的流體是Merck KGaA的市售產品。
例示性實施例 實施例1:
藉由氣體壓力,以純化的氮氣傳送混合流體至填充裝置的儲存容器5中,該填充裝置實質對應於圖2所示之填充裝置。作為傳送之用的氮氣已先由氣體過濾器過濾。根據圖1,儲存容器5分別連接至幫浦6(Levitronix)、膜型式除氣單元9、以及孔徑分別為0.1微米與0.05微米的兩個PTFE過濾器8、18(Entegris)。根據本發明,純化程序的進行方式為流體初始藉由幫浦6循環於光學粒子計數器中、循環於過濾設備7、以及循環於污染量測設備,並且分別比較所期望的或是預定的目標參數與所量測的主要污染指標。流體(分別為墨水,或僅為溶劑)在通過污染量測設備15之後返回儲存容器5,並且與位於其中的流體混合。流體於純化迴路中再循環,直到達到所要的純化效果,並且藉由污染量測設備15證實所要的純化效果。
以下重現的表1與表2係說明藉由污染測量裝置15對溶劑和墨水的各種尺寸粒子在各種循環時間量測的粒子含量之總結。個別流體需要不同的純化時間,直到達到目標值。雖然儲存清潔溶劑(Reserver Cleaning Solvent)與MRE墨水需要30分鐘至1小時的循環時間,但是為了分別達到預定的目標值或未達污染物含量的相應閾值,其它流體需要大約2至6小時。
Figure 106112620-A0202-12-0017-1
Figure 106112620-A0202-12-0018-2
實施例2:
一旦實施例1的個別流體以純化的方式存在於純化迴路中,則開始填充程序。此處的運輸容器12合併於純化迴路1中。自運輸容器12取得的流體量而後藉由閥門16與接合部14而再次被返回至純化循環中。流通量測設備與污染量測設備15係位於到儲存容器5的返回管線中,可藉由流通量測設備與污染量測設備15偵測溶解氣體的總含量且特別是氧氣含量。使用已經純化的流體淋洗(rinse)運輸容器 12,直到在來自運輸容器12的返回流中達到目標參數。例如,以「儲存清潔溶劑」流體填充作為運輸容器12的複數個150ml瓶子(純化的Merck棕色玻璃瓶)。此處的瓶子合併至純化迴路1中,直到達到目標參數。瓶子F1、F2、F3與F6的各種粒子尺寸的粒子量測總結在表3中。雖然在瓶子F1、F2與F6的情況中需要1至2小時之間以達到目標值,然而瓶子F3僅需要10分鐘。
Figure 106112620-A0202-12-0019-3
實施例3:
一旦實施例1之期望流體以純化的方式存在於純化迴路中,則開始填充程序。在此實施例中,描述填充至運輸容器12中,該運輸容器12係經配置為墨水匣。為此,填充裝置包含使用已經純化的流體藉由交替填充和清空以淋洗運輸容器12的附加功能。多次重複此交替操作,直到達到期望的污染濃度並且未達主要污染指標的預定閾值。為此,在清空運輸容器12期間,容器返回管線13連接至流體管線部分3並且隨後連接至污染物量測設備15,以便建立主要污染指標。流體在通過污染量測設備15後再次返回至儲存容器5,並且與位於後者中的流體再次混合。
將先前實施例1已經純化的產物MBL3-6282填充至兩個印表機匣(printer cartridge)中。這些印表機匣進行多次沖洗循環(flushing cycle),每個沖洗循環包括填充與隨後清空運輸容器12。表4說明關於印表機匣1與2之不同尺寸的粒子資料。雖然需要四次沖洗循環以達到印表機匣1例子中的期望值,然而在印表機匣2的例子僅在兩次循環之後即達到目標值。
Figure 106112620-A0202-12-0021-4
1‧‧‧純化迴路
2‧‧‧流體管線部分
3‧‧‧流體管線部分
4‧‧‧流體管線部分
5‧‧‧儲存容器
6‧‧‧幫浦設備
7‧‧‧純化設備
8‧‧‧粒子過濾器
9‧‧‧除氣設備
10‧‧‧第一接合部
11‧‧‧容器填充管線
12‧‧‧運輸容器
13‧‧‧容器返回管線
14‧‧‧第二接合部
15‧‧‧污染量測設備
16‧‧‧閥

Claims (14)

  1. 一種用於將運輸容器(12)填充流體的方法,其中該流體在被填充至該運輸容器(12)之前係被傳送通過純化設備(7),其特徵在於:將純化迴路(purification circuit)(1)中流體純化步驟中的該流體多次傳送通過該純化設備(7),並且藉由污染量測設備(15)測定該純化迴路(1)中的流體樣本量的主要污染指標;只有一旦該主要污染指標未達到第一閾值,則終止以該流體對於該運輸容器(12)的填充程序;以及在容器-純化步驟(container-purification step)中,將先前已經被導入該運輸容器(12)中的來自該純化迴路(1)之容器-流體量(container-fluid quantity)再次自該運輸容器(12)取出並且返回至該純化迴路(1)。
  2. 如申請專利範圍第1項之方法,其中只有一旦該主要污染指標未達到第二閾值,則開始用來自該純化迴路(1)的經純化的流體填充該運輸容器(12)。
  3. 如申請專利範圍第1項之方法,其中被提供用於測定該主要污染指標的流體樣本量係自該純化迴路(1)轉向,饋入該污染量測設備(15),並且在測定該主要污染指標之後,返回至該純化迴路(1)。
  4. 如申請專利範圍第1項之方法,其中藉由該污染量測 設備(15)測定已被從該運輸容器(12)取出的該容器-流體量的主要污染指標,以及只有一旦該主要污染指標未達到第三閾值,則終止以該流體對於該運輸容器(12)的該填充程序。
  5. 如申請專利範圍第4項之方法,其中只有一旦被傳送至該純化迴路(1)的該流體在該流體純化步驟中被測定的主要污染指標未達到第四閾值,則開始該容器-純化步驟。
  6. 如申請專利範圍第1至4項中任一項之方法,其中該流體純化步驟中的該流體係被傳送通過至少一個粒子過濾器(8)並通過一除氣設備(9)。
  7. 如申請專利範圍第1至4項中任一項之方法,其中該主要污染指標是由主要粒子內容物指標與主要氣體內容物指標構成,其各自由該污染量測設備(15)偵測。
  8. 一種用於將運輸容器(12)填充流體的填充裝置,其中該裝置具有由流體管線部分(2、3、4)形成的純化迴路(1),且純化設備(7)與污染量測設備(15)係位於該純化迴路(1)中,並且,具有容器填充管線的接合部(10)係位於該純化迴路(1)中,該容器填充管線為了填充而可被連接到該運輸容器(12),其中該純化迴路(1)具有儲存器-連接器設 備(reservoir-connector installation),藉以使得用於該流體的儲存容器(5)可連接至該純化迴路(1)。
  9. 如申請專利範圍第8項之填充裝置,其中具有容器返回管線(13)的匯合接合部(14)係位於該純化迴路(1)中,該容器返回管線(13)為了清空該運輸容器(12)而可被連接至該運輸容器(12)。
  10. 如申請專利範圍第9項之填充裝置,其中該純化設備(7)具有至少一個粒子過濾器(8)與一個除氣設備(9)。
  11. 如申請專利範圍第10項之填充裝置,其中在流動方向中,至少一個第一粒子過濾器(8)位於該除氣設備(9)之前,且至少一個第二粒子過濾器(18)位於該除氣設備(9)之後。
  12. 如申請專利範圍第11項之填充裝置,其中在該流動方向中的該污染量測設備(15)係位於該純化設備(7)之後。
  13. 如申請專利範圍第11項之填充裝置,其中在該流動方向中的具有該容器返回管線(13)的該匯合接合部(14)係位於該污染量測設備(15)之前。
  14. 如申請專利範圍第8至11項中任一項之填充裝置,其 中一分流管線部分(bypass-line portion)(20)位於該純化迴路(1)中,該流體可經由該分流管線部分(20)被傳送通過該污染量測設備(15),使得僅可預定的流體樣本量被傳送通過該污染量測設備(15)。
TW106112620A 2016-04-19 2017-04-14 用於將運輸容器填充流體之方法與填充裝置 TWI754638B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016004612.0 2016-04-19
DE102016004612.0A DE102016004612A1 (de) 2016-04-19 2016-04-19 Verfahren und Befüllungsvorrichtung zum Befüllen eines Transportbehälters mit einem Fluid
??102016004612.0 2016-04-19

Publications (2)

Publication Number Publication Date
TW201803800A TW201803800A (zh) 2018-02-01
TWI754638B true TWI754638B (zh) 2022-02-11

Family

ID=58645019

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106112620A TWI754638B (zh) 2016-04-19 2017-04-14 用於將運輸容器填充流體之方法與填充裝置

Country Status (8)

Country Link
US (1) US10513427B2 (zh)
EP (1) EP3445705B1 (zh)
JP (1) JP6983809B2 (zh)
KR (1) KR102422327B1 (zh)
CN (1) CN109071204B (zh)
DE (1) DE102016004612A1 (zh)
TW (1) TWI754638B (zh)
WO (1) WO2017182419A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107584889A (zh) * 2017-10-25 2018-01-16 广东葵树生物科技股份有限公司 一种包装袋喷码系统
FR3081753B1 (fr) * 2018-05-30 2020-08-28 Kelenn Tech Systeme de depot matiere et procede associe
CN109693381B (zh) * 2018-12-25 2021-03-30 珠海赛纳三维科技有限公司 3d喷墨打印材料更换装置及打印设备
CN110901072B (zh) * 2019-12-20 2021-12-24 北京工业大学 用于并联臂三维打印机的反馈式自动调平方法
KR20220120325A (ko) 2021-02-23 2022-08-30 춘해보건대학교 산학협력단 상지 재활훈련용 장치
CN115432657B (zh) * 2022-09-28 2023-03-31 湖北兴福电子材料股份有限公司 一种电子级硫酸槽车灌装装置及使用方法
KR20240126581A (ko) 2023-02-14 2024-08-21 춘해보건대학교 산학협력단 상지 재활 훈련용 장치
KR20240126580A (ko) 2023-02-14 2024-08-21 춘해보건대학교 산학협력단 상지 재활 훈련용 교구

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804464A (en) * 1985-04-26 1989-02-14 Hmc Patents Patents Holding Co., Inc. System for in situ upgrading of the purity of a liquid and flushing a filtration system
JPH10286411A (ja) * 1997-04-15 1998-10-27 Mitsubishi Chem Corp 洗浄水の処理方法及び洗浄方法
US20040188352A1 (en) * 2003-03-28 2004-09-30 Avijit Dey Apparatus and method for continuous electrodeionization
US20120261339A1 (en) * 2009-10-08 2012-10-18 Highq-Factory Gmbh Recycling method and device for recycling waste water containing slurry from a semi-conductor treatment process, in particular from a chemico-mechanical polishing process
US20140028364A1 (en) * 2012-07-27 2014-01-30 Lsi Corporation Critical path monitor hardware architecture for closed loop adaptive voltage scaling and method of operation thereof
TW201534382A (zh) * 2013-08-13 2015-09-16 Merck Patent Gmbh 真空純化方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990260A (en) * 1988-01-28 1991-02-05 The Water Group, Inc. Method and apparatus for removing oxidizable contaminants in water to achieve high purity water for industrial use
DE3939502A1 (de) * 1989-11-30 1991-06-06 Fluid Team Automationstechnik Vorrichtung zur filtration von verunreinigten fluessigkeiten, insbesondere von wasser
KR100687361B1 (ko) * 1999-04-27 2007-02-27 쿠리타 고교 가부시키가이샤 오존 용해수의 제조장치
US6488037B1 (en) * 1999-08-31 2002-12-03 Texas Instruments Incorporated Programmable physical action during integrated circuit wafer cleanup
JP5008815B2 (ja) * 2000-07-31 2012-08-22 セレリティ・インコーポレーテッド プロセス材料を混合する方法及び装置
WO2003031034A1 (en) * 2001-10-05 2003-04-17 Ionics, Incorporated Control of water treatment system with low level boron detection
US7188644B2 (en) * 2002-05-03 2007-03-13 Advanced Technology Materials, Inc. Apparatus and method for minimizing the generation of particles in ultrapure liquids
JP2003334433A (ja) * 2002-05-16 2003-11-25 Kurita Water Ind Ltd 連続溶解装置、連続溶解方法及び気体溶解水供給装置
US7384548B2 (en) * 2002-07-01 2008-06-10 Terrien Richard J Manually controlled skimming of industrial oil contaminants
JP4228732B2 (ja) * 2003-03-14 2009-02-25 栗田工業株式会社 超純水製造システム
US7311847B2 (en) * 2003-07-21 2007-12-25 Akrion Technologies, Inc. System and method for point-of-use filtration and purification of fluids used in substrate processing
US6991733B2 (en) * 2004-05-25 2006-01-31 Industrial Technology Research Institute Process for removing organics from ultrapure water
US20070138096A1 (en) * 2004-11-05 2007-06-21 Tarr Ronald S Systems and methods for controlling contaminate levels of processed water and maintaining membranes
TWI372073B (en) * 2005-04-25 2012-09-11 Entegris Inc Method and apparatus for treating fluids to reduce microbubbles
JP5016201B2 (ja) * 2005-05-18 2012-09-05 日本化学工業株式会社 高純度リン酸の製造方法
CN103101867B (zh) * 2006-06-13 2017-07-28 恩特格里斯公司 流体分配系统及方法、连接器、微电子产品制造设备
US8545636B2 (en) * 2006-07-27 2013-10-01 Atmel Corporation Conductivity control of water content in solvent strip baths
JP5477375B2 (ja) * 2009-03-31 2014-04-23 栗田工業株式会社 エッチング液の処理装置及び処理方法
US20130313191A1 (en) * 2009-05-14 2013-11-28 Omni Water Solutions, Inc. Water treatment systems and methods
US9446331B2 (en) * 2013-03-15 2016-09-20 Taiwan Semiconductor Manufacturing Co., Ltd. System and method for dispensing photoresist
KR102027026B1 (ko) * 2013-07-24 2019-09-30 쿠리타 고교 가부시키가이샤 초순수 제조 시스템, 초순수 제조 공급 시스템 및 그 세정 방법
JP6013302B2 (ja) * 2013-10-04 2016-10-25 東京エレクトロン株式会社 気泡除去方法、気泡除去装置、脱気装置、及びコンピュータ読み取り可能な記録媒体
US10781122B2 (en) * 2015-12-15 2020-09-22 Kemco Systems Co. Llc Membrane filtration apparatus and process for reuse of industrial wastewater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804464A (en) * 1985-04-26 1989-02-14 Hmc Patents Patents Holding Co., Inc. System for in situ upgrading of the purity of a liquid and flushing a filtration system
JPH10286411A (ja) * 1997-04-15 1998-10-27 Mitsubishi Chem Corp 洗浄水の処理方法及び洗浄方法
US20040188352A1 (en) * 2003-03-28 2004-09-30 Avijit Dey Apparatus and method for continuous electrodeionization
US20120261339A1 (en) * 2009-10-08 2012-10-18 Highq-Factory Gmbh Recycling method and device for recycling waste water containing slurry from a semi-conductor treatment process, in particular from a chemico-mechanical polishing process
US20140028364A1 (en) * 2012-07-27 2014-01-30 Lsi Corporation Critical path monitor hardware architecture for closed loop adaptive voltage scaling and method of operation thereof
TW201534382A (zh) * 2013-08-13 2015-09-16 Merck Patent Gmbh 真空純化方法

Also Published As

Publication number Publication date
EP3445705B1 (de) 2022-09-21
TW201803800A (zh) 2018-02-01
JP6983809B2 (ja) 2021-12-17
WO2017182419A1 (de) 2017-10-26
CN109071204A (zh) 2018-12-21
CN109071204B (zh) 2021-03-30
KR20180132881A (ko) 2018-12-12
US20190127211A1 (en) 2019-05-02
EP3445705A1 (de) 2019-02-27
US10513427B2 (en) 2019-12-24
DE102016004612A1 (de) 2017-10-19
JP2019523734A (ja) 2019-08-29
KR102422327B1 (ko) 2022-07-18

Similar Documents

Publication Publication Date Title
TWI754638B (zh) 用於將運輸容器填充流體之方法與填充裝置
TWI735684B (zh) 操作印刷裝置的方法及印刷裝置
JP2006125900A5 (zh)
EP1501726A1 (en) Apparatus and method for minimizing the generation of particles in ultrapure liquids
KR20120095858A (ko) 반도체처리공정, 특히 화학적기계적연마공정에서 발생한 슬러리 함유 폐수를 재생하는 방법 및 장치
AR055769A1 (es) Sistema de circulacion de fluidos, para la fluidizacion de los polvos, y metodo para su realizacion
US4643825A (en) Bulk container system for high purity liquids
JP2009195804A (ja) 逆浸透膜モジュールの洗浄方法及び装置
AU2014278219B2 (en) Monitored release solid feed system
KR20170057541A (ko) 선박평형수의 총 잔류산화물 농도 측정 장치 및 측정 방법
JP4954105B2 (ja) 薬液の再利用システム
JP2009112929A (ja) 膜ろ過装置の移動式洗浄装置
CN111758020B (zh) 超低量程荧光计校准
JP2015036660A (ja) 液体混合装置
KR20230155035A (ko) 가스 누출 감지 기능이 구비된 수처리 장치 및 가스 누출 감지 방법
TWI484542B (zh) 溢飼裝置及方法
KR20170046013A (ko) Tro 센서 교정 시스템 및 방법
CN207828006U (zh) 一种化工废液处理装置
JP2004140066A (ja) 薬液供給装置
KR20170049825A (ko) 선박 평형수 처리 시스템
CN105486830A (zh) 一种在线水质项目交替式检测装置及其方法
KR20070031723A (ko) 약액 공급 장치
CN104764856A (zh) 反渗透阻垢剂动态模拟实验平台
JP2004212230A (ja) 膜濾過装置に於ける膜損傷探知システム
CN202460570U (zh) 一种半导体晶圆片清洗液生成装置