TWI753474B - 測定子宮內膜狀態的方法、檢測女性胚胎植入的子宮內膜容受性的方法、試劑組及用途 - Google Patents

測定子宮內膜狀態的方法、檢測女性胚胎植入的子宮內膜容受性的方法、試劑組及用途 Download PDF

Info

Publication number
TWI753474B
TWI753474B TW109122231A TW109122231A TWI753474B TW I753474 B TWI753474 B TW I753474B TW 109122231 A TW109122231 A TW 109122231A TW 109122231 A TW109122231 A TW 109122231A TW I753474 B TWI753474 B TW I753474B
Authority
TW
Taiwan
Prior art keywords
endometrial
receptivity
rna
hsa
humans
Prior art date
Application number
TW109122231A
Other languages
English (en)
Other versions
TW202108770A (zh
Inventor
康詩婷
陳偉銘
Original Assignee
奎克生技光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奎克生技光電股份有限公司 filed Critical 奎克生技光電股份有限公司
Publication of TW202108770A publication Critical patent/TW202108770A/zh
Application granted granted Critical
Publication of TWI753474B publication Critical patent/TWI753474B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/112Disease subtyping, staging or classification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Operations Research (AREA)
  • Probability & Statistics with Applications (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)

Abstract

本公開是關於一種測定子宮內膜狀態的方法、檢測女性 胚胎植入的子宮內膜容受性的方法、試劑組及用途,測定子宮內膜狀態的方法包括:(a)對來自女性的子宮內膜樣本執行分析以測定子宮內膜樣本的微小核糖核酸(miRNA)表現圖譜,其中miRNA表現圖譜包括多個miRNA,例如分別具有SEQ ID NO:1到SEQ ID NO:167的序列的167個miRNA的表現程度;和(b)使用例如電腦演算法分析miRNA表現圖譜以獲得容受性預測評分。

Description

測定子宮內膜狀態的方法、檢測女性胚胎植入 的子宮內膜容受性的方法、試劑組及用途
相關申請的交叉引用
本申請要求2019年7月2日提交的美國臨時專利申請第62/869,574號的權益,其全部內容以引用的方式併入本文中。
本公開是有關於一種測定女性的子宮內膜容受性的方法,所述方法使用(a)包括多個miRNA,例如167個miRNA的表現程度的微小核糖核酸(miRNA)表現圖譜;和(b)電腦演算法,所述電腦演算法基於miRNA表現圖譜對女性的子宮內膜狀態進行分類。本公開的另外方面是有關於適合執行所述方法的試劑組,以及使用試劑組於診斷和治療目的。在一些實施例中,所述方法和/或試劑組用於分類女性對體外受精(in vitro fertilization;IVF)療程的反應性。
輔助生殖技術(包含IVF)為具解決無法成功生殖的潛力方法。IVF能否成功的主要因素之一為子宮內膜的容受期狀態。子宮內膜接受胚胎著床的時期僅開放相對短的時間,所述時期稱為著床窗口期(window of implantation;WOI)。著床窗口期通常出現在大約月經週期的第19天到第21天。長期以來,著床窗口期大部分依賴日曆方法計算可能的受孕時間,但此方法往往不可靠,因此需要直接透過檢查子宮內膜本身以監測子宮內膜當下的狀態,以更可靠的方式預測胚胎植入的機會點。
人類子宮內膜為通過蛋白質和miRNA兩者週期性地調節的組織。人類基因組包括超過2500個miRNA,其中一些已被證實在生殖週期中具有調控作用。舉例來說,最近的文獻指出某些miRNA可以調控與著床窗口期發展過程有關的基因。
傳統上,組織學和影像方法可用於評估子宮內膜的狀態。然而,上述方法極為耗時,且通常無法清楚地區分子宮內膜的容受期狀態與非容受期狀態。市場上也陸續研發出利用特定基因表現程度檢測的方法,早期研究多集中於特定的生物標記基因。艾捷隆(Igenomix)開發出「子宮內膜容受性分析」(Endometrial Receptivity Analysis;ERA)檢測,其利用微陣列晶片分析與子宮內膜容受性有關的特定238個基因表現量。然而,基於微陣列晶片技術平台的ERA檢測具有某些缺點。舉例來說,眾所周知以微陣列晶片分析基因表現量需要較多的組織樣本。另外,相較於即時定量聚合酶連鎖反應(quantitative polymerase chain reaction; qPCR)技術,微陣列晶片技術平台通常具有較低的特異性。近期,ERA檢測也推出以次世代定序(next-generation sequencing;NGS)技術平台進行子宮內膜容受性分析,然而該技術平台也同樣需要較大量的檢體組織及以及完整性佳的RNA樣品品質進行分析。
綜上所述,目前市面上仍需要一種更可靠的子宮內膜容受性檢測方法,其可適用於較少量的檢體組織或是低品質、低質量樣品,以判定子宮內膜處於容受期狀態或非容受期狀態。
本公開是有關於使用來自女性的樣本,例如子宮內膜檢體來測定子宮內膜容受性的方法,所述方法包括:(a)對來自女性的子宮內膜樣本進行分析,以測定子宮內膜樣本的miRNA表現圖譜,其中miRNA表現圖譜包括多個miRNA,例如分別具有SEQ ID NO:1到SEQ ID NO:167的序列的167個miRNA的表現程度;以及(b)分析miRNA表現圖譜以獲得容受性預測評分,其中容受性預測評分用以判斷女性的子宮內膜容受性狀態。本公開的另外方面是有關於適合於執行所述方法的試劑組,以及所述試劑組用於測定女性的子宮內膜狀態。
本公開的某些實施例概括於以下段落中。本列舉僅為示範性的且不詳列本公開所提供的所有實施例。
實施例1.一種測定子宮內膜狀態的方法,其包括:(a)對來自女性的子宮內膜樣本進行分析,以測定子宮內膜樣本的 miRNA表現圖譜,其中miRNA表現圖譜包括多個miRNA的表現程度;和(b)分析miRNA表現圖譜以獲得容受性預測評分,其中容受性預測評分對女性的子宮內膜狀態進行分類,且其中子宮內膜狀態包括容受期前、容受期或容受期後,且其中多個miRNA包括至少50個、75個、100個、125個、150個或200個miRNA,且優先選擇分別具有SEQ ID NO:1到SEQ ID NO:167的序列的至少167個miRNA。
實施例2.根據實施例1所述的測定子宮內膜狀態的方法,其中子宮內膜樣本取自女性的子宮腔。
實施例3.根據實施例1或實施例2所述的測定子宮內膜狀態的方法,其中子宮內膜樣本包括子宮內膜檢體、子宮內膜灌洗液或其組合。
實施例4.根據實施例1至實施例3中的任一項所述的測定子宮內膜狀態的方法,其中子宮內膜樣本(i)在女性內源性促黃體激素(luteinizing hormone;LH)遽增之後七天或(ii)在女性孕酮(progesterone)投藥之後五天取樣。
實施例5.根據實施例1至實施例4中的任一項所述的測定子宮內膜狀態的方法,其中miRNA表現圖譜通過qPCR、定序、微陣列晶片或RNA-DNA雜交捕獲技術來測定。
實施例6.根據實施例5所述的測定子宮內膜狀態的方法,其中miRNA表現圖譜通過對由子宮內膜樣本中的miRNA合成的cDNA進行qPCR來測定。
實施例7.根據實施例6所述的測定子宮內膜狀態的方法,其中cDNA合成使用具有由以下通式表示的核苷酸序列的通用逆轉錄引子執行:5'-R-(dT)nVN-3',其中R包括SEQ ID NO:168,(dT)n為n個連續胸腺嘧啶殘基,其中n為19,V為腺嘌呤殘基、鳥嘌呤殘基或胞嘧啶殘基,且N為腺嘌呤殘基、鳥嘌呤殘基、胞嘧啶殘基或胸腺嘧啶殘基。
實施例8.根據實施例1至實施例7中的任一項所述的測定子宮內膜狀態的方法,其中容受性預測評分為通過電腦演算法產生且使用算式MIRA score=f(X
Figure 109122231-A0305-02-0007-180
eq(C))=Xβ+ε所計算的數值,β為係數向量,且ε為誤差。
實施例9.根據實施例8所述的測定子宮內膜狀態的方法,其中電腦演算法通過執行以下一或多個步驟來建立:數據正規化(data normalization)、數據縮放(data scaling)、數據轉換(data transformation)、預測建模(prediction modeling)以及交叉驗證(cross-validation)。
實施例10.根據實施例8或實施例9所述的測定子宮內膜狀態的方法,其中容受性預測評分大於1係指容受期前,容受性預測評分小於-1係指容受期後,且容受性預測評分介於-1到1係指容受期。
實施例11.根據實施例1至實施例10中的任一項所述的測定子宮內膜狀態的方法,其中若子宮內膜狀態被測定為處於容受期前或容受期後,則所述方法進一步包括:重複步驟(a)和(b) 至少一次或直到子宮內膜狀態被測定為處於容受期。
實施例12.根據實施例1至實施例11中的任一項所述的測定子宮內膜狀態的方法,其中女性遭受或曾遭受胚胎植入失敗。
實施例13.根據實施例1至實施例12中的任一項所述的測定子宮內膜狀態的方法,其中女性進行IVF療程。
實施例14.根據實施例13所述的測定子宮內膜狀態的方法,其中容受性預測評分進一步分類女性對IVF療程的反應性。
實施例15.一種檢測女性胚胎植入之子宮內膜容受性的方法,其包括:(a)對來自女性的子宮內膜樣本執行分析以測定子宮內膜樣本的miRNA表現圖譜,其中miRNA表現圖譜包括多個miRNA的表現程度;和(b)分析所述miRNA表現圖譜以獲得容受性預測評分,其中容受性預測評分用以判定女性子宮內膜是否具有適合胚胎植入的容受性狀態,且其中多個miRNA包括至少50個、75個、100個、125個、150個或200個miRNA,且優先選擇分別具有SEQ ID NO:1到SEQ ID NO:167的序列的至少167個miRNA。
實施例16.根據實施例15所述的檢測女性胚胎植入之子宮內膜容受性的方法,其中子宮內膜樣本獲自女性的子宮腔。
實施例17.根據實施例15或實施例16所述的檢測女性胚胎植入之子宮內膜容受性的方法,其中子宮內膜樣本包括子宮內膜檢體、子宮內膜灌洗液或其組合。
實施例18.根據實施例15至實施例17中的任一項所述的 檢測女性胚胎植入之子宮內膜容受性的方法,其中子宮內膜樣本(i)在女性內源性促黃體激素遽增之後七天或(ii)在女性孕酮投藥之後五天獲得。
實施例19.根據實施例15至實施例18中的任一項所述的檢測女性胚胎植入之子宮內膜容受性的方法,其中miRNA表現圖譜通過qPCR、定序、微陣列晶片或RNA-DNA雜交捕獲技術來測定。
實施例20.根據實施例19所述的檢測女性胚胎植入之子宮內膜容受性的方法,其中miRNA表現圖譜通過對由子宮內膜樣本中的miRNA合成的cDNA進行qPCR來測定。
實施例21.根據實施例20所述的檢測女性胚胎植入之子宮內膜容受性的方法,其中cDNA合成使用具有由以下通式表示的核苷酸序列的通用逆轉錄引子執行:5'-R-(dT)nVN-3',其中R包括SEQ ID NO:168,(dT)n為n個連續胸腺嘧啶殘基,n為19,V為腺嘌呤殘基、鳥嘌呤殘基或胞嘧啶殘基,且N為腺嘌呤殘基、鳥嘌呤殘基、胞嘧啶殘基或胸腺嘧啶殘基。
實施例22.根據實施例15至實施例21中的任一項所述的檢測女性胚胎植入之子宮內膜容受性的方法,其中容受性預測評分為通過電腦演算法產生且使用算式MIRA score=f(X
Figure 109122231-A0305-02-0009-181
eq(C))=Xβ+ε所計算的數值,β為係數向量,且ε為誤差。
實施例23.根據實施例22所述的檢測女性胚胎植入之子宮內膜容受性的方法,其中電腦演算法通過執行以下一或多個步 驟中來建立:數據正規化、數據縮放、數據轉換、預測建模以及交叉驗證。
實施例24.根據實施例22或實施例23所述的檢測女性胚胎植入之子宮內膜容受性的方法,其中容受性預測評分介於-1到1係指女性子宮內膜具有適合胚胎植入的容受性狀態。
實施例25.根據實施例15至實施例24中的任一項所述的檢測女性胚胎植入之子宮內膜容受性的方法,其中女性遭受或曾遭受胚胎植入失敗。
實施例26.一種試劑組,其包括:(a)一或多個針對多個miRNA的miRNA表現圖譜分析晶片,和(b)關於(i)任選地使用一或多個miRNA表現圖譜分析晶片測定來自女性的子宮內膜樣本的miRNA表現圖譜和(ii)基於miRNA表現圖譜使用電腦演算法獲得容受性預測評分的使用說明,其中多個miRNA包括至少50個、75個、100個、125個、150個或200個miRNA,且優先選擇分別具有SEQ ID NO:1到SEQ ID NO:167之序列的至少167個miRNA。
實施例27.根據實施例26所述的試劑組,其中一或多個miRNA表現圖譜分析晶片包括用於檢測多個miRNA的表現程度的引子。
實施例28.根據實施例27所述的試劑組,其中miRNA表現圖譜分析晶片適合於進行即時定量PCR(qPCR)、定序、微陣列晶片或RNA-DNA雜交捕獲分析,優先選擇qPCR,以檢測多個 miRNA的表現程度。
實施例29.一種根據實施例27或實施例28所述的試劑組的用途,其用於測定女性的子宮內膜狀態。
實施例30.根據實施例29所述的試劑組的用途,其中女性遭受或曾遭受胚胎植入失敗和/或進行體外受精(IVF)療程。
本公開提供一種更可靠的子宮內膜容受性檢測方法,其可適用於較少量的檢體組織或是低品質、低質量樣品,具有更高靈敏性和特異性,可較佳判定子宮內膜處於容受期狀態或非容受期狀態,以提高胚胎植入和/或體外授精療程的成功率。
圖1描繪在自然週期或荷爾蒙替代治療週期中女性的子宮內膜狀態。LH+5:在女性內源性促黃體激素(LH)遽增之後五天;LH+7:在女性內源性LH遽增之後七天;且LH+9:在女性內源性LH遽增之後九天。P+3:在女性孕酮投藥之後三天;P+5:在女性孕酮投藥之後五天;且P+7:在女性孕酮投藥之後七天。
圖2描繪根據本公開使用特定167個miRNA的MIRA PanelChip的子宮內膜容受性檢測的工作流程。
圖3描繪電腦演算法(MIRA模型)如何建構且MIRA模型如何產生檢測結果的過程。
圖4A繪示子宮內膜容受性的示範性分析,其將子宮內膜狀 態分類為以下三種狀態中的一種:容受期前狀態、容受期狀態或容受期後狀態。
圖4B繪示分類為三種容受期狀態的示範性女性胚胎植入結果。
圖5繪示使用183個子宮內膜樣本所得之具167個miRNA表現程度的miRNA表現圖譜的10折(10-fold)交叉驗證和妊娠率。SEN:靈敏性=真陽性/(真陽性+假陰性);SPE:特異性=真陰性/(真陰性+假陽性);PPV:精確性或陽性預測值=真陽性/(真陽性+假陽性);且NPV:陰性預測值=真陰性/(真陰性+假陰性)。P+6:在女性孕酮投藥之後六天胚胎植入,所述女性的子宮內膜先前被測定為處於容受期前狀態;P+5:在女性孕酮投藥之後五天胚胎植入,所述女性的子宮內膜先前被測定為處於容受期狀態;且P+4.5:在女性孕酮投藥之後4.5天(即108個小時)胚胎植入,所述女性的子宮內膜先前被測定為處於容受期後狀態。
圖6繪示MIRA評分系統,其根據容受性預測評分的值而將子宮內膜樣本分類為以下三種狀態中的一種:容受期前狀態、容受期狀態或容受期後狀態。
本文所闡述的公開內容和實施例將被理解為僅為示範性的且並不限制本發明的範圍。雖然本文採用特定術語,除非另外指出,否則所述術語僅在通用意義和描述性意義上使用且不用於 限制目的。
定義
除非上下文另外清楚地指示,否則如本文所用,單數形式「一(a/an)」和“所述(the)”意圖同樣包含複數形式。
術語“cDNA”是指通過使用逆轉錄酶對RNA進行逆轉錄而產生的互補DNA。在一些實施例中,RNA含有自子宮內膜組織樣本提取的miRNA。參看實例1。
術語「包括」、「具有」以及「包含」是開放的連系動詞。這些動詞中的一或多個的任何形式或時態,例如「包括(comprises/comprising)」、「具有(has/having)」以及「包含(includes/including)」也是開放的。舉例來說,「包括」、「具有」或「包含」一或多個步驟的任何方法不限於僅具有那些一或多個步驟,且也可涵蓋其它未列出的步驟。類似地,「包括」、「具有」或「包含」一個或多個特徵的任何組合物或試劑組不限於僅具有那些一個或多個特徵,且可涵蓋其它未列出的特徵。除非另外要求,否則關於本文的某些實施例提供的任何和所有實例或示範性語言(例如,「如」)的使用僅意圖更好地闡明本公開,且不對本公開的範圍構成限制。
術語「表現」是指生物樣本,例如女性的子宮內膜組織樣本中的RNA分子的轉錄和/或積累。在此上下文中,術語「miRNA表現」是指生物樣本中的一或多個miRNA的數量,且可通過使用所屬領域中已知的合適方法來檢測miRNA表現。參看,例如,實 例1。
術語「微小核糖核酸」(“microRNA”或“miRNA”)是指從內源基因衍生的一類長度為大約18個到25個核苷酸的非編碼RNA。miRNA通過與其目標mRNA的3'非轉譯區(UTR)進行鹼基配對來作為基因表現的轉錄後調控因子,以用於mRNA降解或轉譯抑制。
術語「核酸」、「核苷酸」以及「多核苷酸」可互換地使用且是指呈單鏈或雙鏈形式的DNA或RNA的聚合物。除非另外指出,否則這些術語涵蓋含有天然核苷酸的已知類似物的多核苷酸,所述多核苷酸具有與參考核酸相似的結合特性且以與天然存在的核苷酸相似的方式進行代謝。
術語「引子」是指寡核苷酸,當在誘導引子延伸產物的合成的條件下,例如在核苷酸和聚合誘導劑(如DNA或核糖核酸聚合酶)的存在下且在合適溫度、pH、金屬離子濃度以及鹽濃度下放置所述寡核苷酸時,所述寡核苷酸用以引發互補核酸鏈的合成。
術語「探針」是指包括多核苷酸的結構,其含有與存在於目標核酸分析物(例如,核酸擴增產物)中的核酸序列互補的核酸序列。探針的多核苷酸區可由DNA和/或RNA和/或合成核苷酸類似物構成。探針的長度通常與其用於專一性檢測目標核酸的所有或部分目標序列相容。
術語「即時定量PCR」(“qPCR”)是指使用聚合酶鏈反應以同時擴增且定量目標DNA和/或RNA的實驗方法。定量使用多 種化學物質(包含例如SYBR® Green的螢光染料或塔克曼(Taqman)探針的螢光報導子寡核苷酸探針)執行,且即時定量通過測量在一或多個擴增週期之後反應中的擴增DNA和/或RNA來執行。
術語「標靶」(targeting)是指選擇與所關注核酸序列雜交的合適核苷酸序列。在一些實施例中,所關注核酸序列包含具有SEQ ID NO:1到SEQ ID NO:167中的任一個的序列的miRNA。參看實例1。
用於測定子宮內膜狀態的方法之概述
子宮內膜容受性是指女性的子宮內膜準備用於胚胎植入的狀態。此發生在稱為著床窗口期(WOI)的時間段內的所有月經週期中。如圖1所示,在自然週期內,排卵在LH遽增之後發生,且WOI為LH遽增之後大約七天(LH+7)。在荷爾蒙替代治療週期中,WOI在孕酮投藥之後大約五天(P+5)。這些估計給出了關於子宮內膜容受性的可能資訊。然而,子宮內膜狀態的最終答案只可通過檢查子宮內膜本身來提供。
為此,子宮內膜樣本可在荷爾蒙替代治療週期中孕酮投藥之後五天(P+5)或在自然週期中內源性LH遽增之後七天(LH+7)從女性的子宮腔採集。隨後樣本以分子診斷工具分析子宮內膜容受性狀態。在根據本公開的測定子宮內膜狀態的方法中,分子診斷工具分析子宮內膜樣本的miRNA表現圖譜。
如圖2中所示,本公開提供測定子宮內膜狀態的方法, 其包括:(a)對子宮內膜樣本執行分析以測定子宮內膜樣本的miRNA表現圖譜,其中miRNA表現圖譜包括多個miRNA,例如分別具有SEQ ID NO:1到SEQ ID NO:167的序列的167個miRNA的表現程度;和(b)用電腦演算法分析miRNA表現圖譜以獲得容受性預測評分,其中容受性預測評分將子宮內膜狀態分類為容受期前狀態、容受期狀態或容受期後狀態。
容受期前狀態係指子宮內膜尚未準備好接受胚胎且此時胚胎植入可能過早。容受期狀態(WOI)係指子宮內膜處於胚胎植入的最佳時間。容受期後狀態係指子宮內膜已經過了胚胎植入的最佳階段。
分析miRNA表現圖譜以測定子宮內膜容受性
本公開測定子宮內膜樣本的miRNA表現圖譜。在一些實施例中,miRNA表現圖譜包括多個miRNA,例如至少10個、25個、50個、75個、100個、125個、150個或200個miRNA的表現程度,其全部可能涉及子宮內膜容受性的調控作用。在優先選擇的實施例中,本公開提供167個miRNA的選擇,其表現程度涉及子宮內膜容受性的調控。參看實例1。通過首先從Human Disease Ontology資料庫中識別與生殖疾病有關的基因,且隨後使用miRTARBase、TargetScan以及miRDB選擇潛在的調控因子miRNA來選出這167個miRNA。
為測定子宮內膜狀態,根據本公開的方法包括執行分析以測定子宮內膜樣本的miRNA表現圖譜,其中miRNA表現圖譜 包括表1中所示的167個miRNA的表現程度。
Figure 109122231-A0305-02-0017-1
Figure 109122231-A0305-02-0018-2
Figure 109122231-A0305-02-0019-3
Figure 109122231-A0305-02-0020-4
Figure 109122231-A0305-02-0021-5
可用所屬領域中已知的定量方法來分析miRNA的表現程度。在一些實施例中,為促進分析,一或多個以167個miRNA為標靶的miRNA表現圖譜分析晶片可作為使用。舉例來說,在實例1中,兩個miRNA表現圖譜分析晶片被設計開發以用於分析167個miRNA的表現程度。在一些實施例中,一或多個晶片另外以可作為miRNA表現分析的內源性對照的某些RNA序列為標靶,例如18s rRNA。參看實例1。
本公開提供測定子宮內膜樣本的miRNA表現圖譜的方法。所述方法通常包括(i)獲得或已獲得來自女性子宮腔的子宮內膜樣本,(ii)進行分析以測定子宮內膜樣本的miRNA表現圖譜,其中miRNA表現圖譜包括多個miRNA,例如分別具有SEQ ID NO:1到SEQ ID NO:167的序列的167個miRNA的表現程度。
在一些實施例中,子宮內膜樣本可通過侵入性方法,例如通過獲取來自子宮內膜的小量檢體來獲得。參看實例1。在一些實施例中,子宮內膜樣本可通過較不具侵入性的方法,例如通過收集存在於子宮灌洗液中的脫落細胞來獲得。不希望因此受任何理論束縛,相信相較於基於微陣列晶片的mRNA表現圖譜分析方法,所主張的基於qPCR的miRNA表現圖譜方法提供更高的特異性和靈敏性,使得在根據本公開的方法中可能僅需要顯著較少量的子宮內膜樣本。參看王(Wang)等人,“Large scale real-time PCR validation on gene expression measurements from two commercial long-oligonucleotide microarrays”,BMC Genomics,2006,7:59-75。
在一些實施例中,子宮內膜樣本在女性的內源性LH遽增之後七天(LH+7)獲得。在一些實施例中,子宮內膜樣本在女性孕酮投藥五天之後(P+5)獲得。
使用所屬領域中已知的方法可提取且富集子宮內膜樣本中的miRNA。舉例來說,可遵循製造商的說明書使用miRNeasy Micro Kit(凱傑(QIAGEN))從子宮內膜組織提取miRNA。參看實例1。富集的miRNA可在-80℃下儲存。可使用所屬領域中已知的方法來分析miRNA的數量和品質。舉例來說,可使用商購的安捷倫生物分析儀(Agilent bioanalyzer)來分析miRNA。
可通過所屬領域中已知的方法,包含qPCR、定序、微陣列晶片或RNA-DNA雜交捕獲技術來定量各miRNA的表現程度。在一些實施例中,根據本公開的方法使用qPCR反應,其通常具有比北方印跡雜交和/或微陣列基因晶片分析更高的靈敏性和特異性。為此,cDNA可由逆轉錄反應中所提取和富集的miRNA合成,且可執行qPCR反應以定量miRNA的表現程度。因此,在一些實施例中,通過qPCR,任選地使用本文中所公開的一或多個miRNA表現圖譜分析晶片來測定miRNA表現圖譜。參看實例1。
目前,qPCR分析可分成兩種類型。第一種類型使用莖-環(stem-loop)逆轉錄引子進行cDNA合成,且使用miRNA特異性探針或通用探針來定量miRNA。第二種方法使用線性通用逆轉錄 引子進行cDNA合成,且使用miRNA特異性正向引子、具逆轉錄引子特異性的反向引子和雙股DNA嵌入染料來定量miRNA。
在一些實施例中,使用如美國專利第10,590,478號中所公開的通用逆轉錄引子來進行cDNA合成,其以引用的方式併入本文中。在一些實施例中,使用具有由以下通式表示的核苷酸序列的通用逆轉錄引子進行cDNA合成:5'-R-(dT)nVN-3',其中R包括CAACTCAGGTCGTAGGCAATTCGT的序列(SEQ ID NO:168),(dT)n為n個連續胸腺嘧啶殘基,其中n為19,V為腺嘌呤殘基、鳥嘌呤殘基或胞嘧啶殘基,且N為腺嘌呤殘基、鳥嘌呤殘基、胞嘧啶殘基或胸腺嘧啶殘基。
為降低成本且易於使用,在一些實施例中,可使用根據本公開的以所有167個miRNA為標靶的一或多個miRNA表現圖譜分析晶片來進行qPCR反應。參看實例1。在一些實施例中,每一個miRNA表現圖譜分析晶片預載有合適的引子和/或探針,所述引子和/或探針能夠同時分析至少20個、30個、40個、50個、60個、70個、80個、90個、95個、96個、97個、98個、99個、100個、110個、120個、130個、140個、150個、160個、170個、180個、190個或200個miRNA的表現。在一些實施例中,miRNA表現圖譜分析晶片含有如美國專利第9,724,692號、專利第No.10,415,084號、申請第16/191,451號以及申請第16/233,121號中所公開的多工試片(multiplex slide plate),其以引用的方式併入本文中。
可使用所屬領域中已知的方法執行qPCR反應。在一些實施例中,可使用如美國專利第9,168,533號和申請第16/559,642號中所公開的熱循環儀裝置來進行qPCR反應,其以引用的方式併入本文中。同樣參看實例1。
miRNA分析演算法和其用於測定子宮內膜容受性的用途
根據本公開的方法,miRNA表現圖譜可用於運用電腦miRNA分析演算法產生容受性預測評分。容受性預測評分將子宮內膜狀態分類為以下三種狀態中的一種:容受期前狀態、容受期狀態或容受期後狀態。
電腦miRNA分析演算法為數學預測分類器,其使用miRNA表現數據且根據不同容受性狀態學習區分類別。
為建構演算法,將關於miRNA表現程度的原始數據分成訓練組和驗證組。訓練組用於訓練預測分類器且驗證組用於評估並改善預測分類器的性能。如圖3中所示,執行以下一或多個步驟來建構且驗證演算法:數據正規化、數據縮放、數據轉換、預測建模以及交叉驗證。
為使在統計特性中分佈相同,數據可通過百分位正規化(Quantile Normalization)來正規化,如博爾斯塔(Bolstad)等人,於“A comparison of normalization methods for high density oligonucleotide array data based on variance and bias”,(Bioinformatics,2003,19(2):185-193中所描述。此外,為確保目標函數恰當地起作用,可標準化數據的數值範圍以使數據具有 零均值(zero-mean)和單位變異數(unit-variance)。
出於數據簡化(data reduction)和特徵擷取(feature extraction)的原因,主成分分析(principal component analysis;PCA)可用於壓縮來自大量原始變數的資訊且通過線性地組合原始變數來產生一小組新特徵。
PCA轉換的數據可用於進一步建構具有彈性網正則化(elastic net regularization)的廣義線性模型,其為線性地結合lasso和ridge方法的L1和L2懲罰的正則化回歸法,如鄒(Zou)等人,“Regularization and variable selection via the elastic net”J.R.Statist.Soc.B,2005,67,part 2,301-320中所描述。關於glmnet的額外資訊為已知且可在glmnet.stanford.edu獲得。
k折交叉驗證方法(例如,10折交叉驗證)可用於評估電腦miRNA分析演算法在最終完成之前的預測值。參看圖5。在k折交叉驗證中,將原始樣本隨機地分割成k等分的子樣本。在k個子樣本中,其中一個子樣本保留作為測試模型的驗證數據以用於,且將其餘k-1個子樣本用作訓練數據。隨後重複進行交叉驗證過程k次(折),其中k個子樣本中的每一個都剛好使用一次作為驗證數據。來自等分數的k個結果隨後可被平均化(或以其它方式結合)以產生單一估算值。
妊娠率可用於評估電腦miRNA分析演算法的預測值。參看實例2。
在驗證及優化之後,產出電腦miRNA分析演算法。運行 演算法產生容受性預測評分,所述評分將女性的子宮內膜狀態分類成如下三種狀態中的一個:若評分大於1,則女性的子宮內膜處於容受期前狀態;若評分小於-1,則女性的子宮內膜處於容受期後狀態;若評分介於-1到1,則女性的子宮內膜處於容受期狀態。參見圖6。
根據本公開的方法的應用
本公開提供一種使用樣本,例如子宮內膜檢體以測定子宮內膜狀態的方法,所述方法包括:(a)對女性的子宮內膜樣本進行分析以測定子宮內膜樣本的miRNA表現圖譜,其中miRNA表現圖譜包括多個miRNA,例如分別具有SEQ ID NO:1到SEQ ID NO:167的序列的167個miRNA的表現程度;和(b)使用例如電腦演算法來分析miRNA表現圖譜以獲得容受性預測評分。
本公開的方法可用於各種診斷和治療目的,包含(但不限於)IVF療程。舉例來說,在一些實施例中,基於子宮內膜的結果,可進一步包含在女性體內植入胚胎或向遭受或曾遭受胚胎植入失敗的女性投予一或多種療程的方法。在一些實施例中,本公開提供檢測胚胎植入之子宮內膜容受性的方法,其包括:(a)對女性的子宮內膜樣本進行分析以測定子宮內膜樣本的miRNA表現圖譜,其中miRNA表現圖譜包括多個miRNA例如分別具有SEQ ID NO:1到SEQ ID NO:167的序列的167個miRNA的表現程度,(b)分析miRNA表現圖譜以獲得容受性預測評分,其中容受性預測評分判定女性是否具有子宮內膜容受性,以及(c)將胚胎轉 移至被測定具有子宮內膜容受性的女性之子宮內膜。
在一些實施例中,測定子宮內膜狀態的方法可用於判定女性胚胎植入的時機。在一些實施例中,若子宮內膜狀態處於容受期狀態,則認為女性適合胚胎植入。若子宮內膜狀態處於容受期前或容受期後狀態,則認為女性不適合胚胎植入。在一些實施例中,當子宮內膜狀態被判定為處於容受期前狀態或容受期後狀態時,本公開提供基於子宮內膜狀態的資訊之胚胎植入的方法。舉例來說,若子宮內膜狀態被判定為處於容受期前狀態,則在下一週期期間,可在孕酮投藥之後的5.5天到7.5天之間,例如5.5天、6天、6.5天、7天或7.5天進行胚胎植入。或者,若子宮內膜狀態被判定為處於容受期後狀態,則在下一週期期間,可在孕酮投藥之後的2.5天到4.5天之間,例如2.5天、3天、3.5天、4天或4.5天進行胚胎植入。
在取樣時子宮內膜顯示非容受期狀態的情況下,所獲得資訊為具指導性的,使得所述方法可通過在另一時間點獲取子宮內膜樣本來重複進行,以根據首次判定結果進行修改。借助於實例,若子宮內膜狀態處於容受期前狀態,則獲取子宮內膜樣本的下一個時間點可在內源性LH遽增之後超過七天或在孕酮投藥之後超過五天。舉例來說,獲取子宮內膜樣本的下一個時點可在內源性LH遽增之後7.5天到10.5天之間,例如7.5天、8天、8.5天、9天、9.5天、10天、或10.5天,或在孕酮投藥之後5.5天到7.5天之間,例如5.5天、6天、6.5天、7天或7.5天。或者,若 子宮內膜狀態處於容受期後狀態,則獲取子宮內膜樣本的下一個時間點可在內源性LH遽增之後少於七天或在孕酮投藥之後少於五天。舉例來說,獲取子宮內膜樣本的下一個時點可在內源性LH遽增之後3.5天到6.5天之間,例如3.5天、4天、4.5天、5天、5.5天、6天或6.5天,或在孕酮投藥之後2.5天到4.5天之間,例如2.5天、3天、3.5天、4天或4.5天。通過遵循這些程序,可得出容受期狀態,且可提高IVF療程的成功率。對於這些用途中的任何一種,女性遭受或曾遭受胚胎植入失敗。在一些實施例中,女性進行IVF療程。
在一些實施例中,若子宮內膜狀態被判定為處於容受期前狀態或容受期後狀態,則可將測定子宮內膜狀態的方法重複至少一次或直到子宮內膜狀態被判定為處於容受期狀態。
在一些實施例中,根據本公開的測定子宮內膜狀態的方法可用於判定女性的WOI。在一些實施例中,根據本公開的方法可用於分類女性對IVF治療的反應性。對於這些用途中的任何一種,在一些實施例中,女性遭受或曾遭受胚胎植入失敗。在一些實施例中,女性進行IVF療程。
在一些實施例中,根據本公開的測定子宮內膜狀態的方法可作為探討妊娠藥物對女性子宮內膜影響的有用工具。在這些實施例中,女性遭受或曾遭受胚胎植入失敗。在一些實施例中,使女性進行IVF療程。
試劑組
本公開的另一方面是有關於用於實施測定子宮內膜狀態方法的試劑組。在一些實施例中,試劑組包括適合於檢測多個miRNA,例如分別具有SEQ ID NO:1到SEQ ID NO:167的序列的167個miRNA的表現程度的引子和/或探針。參看實例1。在一些實施例中,引子和/或探針適合於進行qPCR反應以檢測167個miRNA的表現程度。在一些實施例中,試劑組包括一或多個以167個miRNA為標靶的miRNA表現圖譜分析晶片。在一些實施例中,一或多個晶片另外以可作為miRNA表現分析的內源性對照的RNA序列為標靶,例如18s rRNA。
試劑組可另外含有關於(i)任選地使用一或多個miRNA表現圖譜分析晶片測定來自女性子宮內膜樣本的miRNA表現圖譜,和/或(ii)基於miRNA表現圖譜使用電腦演算法獲得容受性預測評分的使用說明。在一些實施例中,試劑組含有關於如何解釋且運用容受性預測評分的指示說明。
在一些實施例中,試劑組有助於診斷和治療目的,包含但不限於IVF療程。
實例
實例1:產出miRNA表現圖譜的材料和方法。
子宮內膜檢體。在荷爾蒙替代治療週期中孕酮給藥之後五天(P+5)或在自然週期中內源性促黃體激素遽增之後七天(LH+7),使用Pipelle子宮內膜吸引刮匙(庫柏外科公司(Cooper Surgical,Inc.))從女性子宮腔採集子宮內膜檢體。緊接著將子宮 內膜組織儲存於RNAlater中。
RNA提取和miRNA富集。遵循製造商的說明書使用miRNeasy Micro Kit(凱傑(QIAGEN))從子宮內膜組織分離總RNA。簡要來說,將五毫克子宮內膜組織用電動機和研杵破碎且在液氮中均質化。將700微升QIAzol Lysis Reagent添加到均質化組織中,且將所得樣本在室溫下培育五分鐘以促進核蛋白複合物的分解。每700微升QIAzol Lysis Reagent添加140微升三氯甲烷到試管中,且手動劇烈搖晃試管15秒並在室溫下培育2分鐘到3分鐘。將樣本在4℃下以12,000克離心15分鐘。在離心之後,將上部水相轉移到新試管,將一體積的70%乙醇添加到試管中,且充分地渦動試管。將樣本轉移到RNeasy MinElute旋轉柱且在室溫下以8,000克離心15秒。將流過物移液到2毫升試管內,將0.65體積的100%乙醇添加到流過物中,且充分地渦動所得樣本。隨後將樣本轉移到RNeasy MinElute旋轉柱內且在室溫下以8,000克離心15秒。丟棄流過物,將700微升緩衝液RWT添加到RNeasy MinElute旋轉柱中,且將柱以8000克離心15秒以洗滌柱。丟棄流過物,將500微升緩衝液RPE添加到RNeasy MinElute旋轉柱內,且將柱以8,000克離心15秒以洗滌柱。丟棄流過物,將500微升的80%乙醇添加到RNeasy MinElute旋轉柱內,且將柱以8,000克離心2分鐘以乾燥旋轉柱膜片。將RNeasy MinElute旋轉柱放置於新的2毫升收集試管內且以8,000克離心5分鐘。將RNeasy MinElute旋轉柱放置於1.5毫升收集試管內,將14微升到20微升 的無核酸酶水添加到旋轉柱膜片上,且將柱以8,000克離心1分鐘以洗脫富集miRNA的級分。在-80℃下儲存富集miRNA的級分。
cDNA合成。在20微升逆轉錄反應中,來自子宮內膜組織的
Figure 109122231-A0305-02-0031-182
2納克富集miRNA的級分用於合成cDNA。遵循製造商的說明書使用QuarkBio microRNA Universal RT Kit(奎克生技光電股份有限公司(Quark Biosciences Taiwan,Inc.))進行逆轉錄。簡要來說,使用poly-A聚合酶將poly-A尾部添加到miRNA,之後進行cDNA合成。隨後使用以下程式執行cDNA合成:42℃持續60分鐘和95℃持續5分鐘,且然後4℃直到程式完成。在-20℃下儲存合成的cDNA。
使用NextAmp分析系統和MIRA PanelChip組進行miRNA表現圖譜分析。MIRA PanelChip組含有總共167個miRNA分析。167個miRNA的序列列示於表1中。另外,RNU6B、RNU43以及18s rRNA均作為內源性對照。三個外源性插入對照用於監測miRNA提取、cDNA合成以及qPCR效能(奎克生技光電股份有限公司)。使用MIRA PanelChip組分析cDNA。將cDNA(等同於0.1納克富集miRNA的級分)添加到含有30微升2×SYBR Master Mix的混合物中(奎克生技光電股份有限公司),且將無核酸酶的水添加到混合物中以獲得60微升的最終體積。將混合物手動充分地混合且短暫地快速離心以收集底部的液體。使用Pipetman將60微升混合物沿晶片邊緣分配且隨後通過用玻璃載片進行刮擦動作將混合物施加在MIRA PanelChip的整個表面上。隨後將每個晶片 浸沒到含有Channeling Solution(奎克生技光電股份有限公司)的托盤內,其中使反應孔面向托盤的底部。然後將每個托盤放入到Q Station,其為MIRA PanelChip應用的熱循環儀(參看圖2中的PanelStation)且包含內建的樣本管理資料庫和分析平台,使得MIRA PanelChip檢測和資料分析可便利且快速地進行。其後根據以下程式執行MIRA PanelChip分析:95℃持續36秒和60℃持續72秒,持續40個週期。
實例2:電腦miRNA分析演算法和其用途。
如圖3中所示,電腦miRNA分析演算法(MIRA)通過執行以下一或多個步驟來建構:數據正規化、數據縮放、數據轉換、預測建模以及交叉驗證。
數據正規化。為使在統計特性中分佈相同,通過百分位正規化來正規化數據。參看圖3中的等式(A);也參看博爾斯塔(Bolstad)等人,“A comparison of normalization methods for high density oligonucleotide array data based on variance and bias”,Bioinformatics,2003,19(2):185-193。
數據縮放。為確保目標函數恰當地作用,可標準化數據的數值範圍以使數據具有零均值和單位變異數。參看圖3中的等式(B)。
數據轉換。出於數據簡化和特徵擷取的原因,PCA壓縮來自大量原始變數的資訊且通過線性地組合原始變數來產生一小組新特徵。請參照圖3中的等式(C)。
建模。PCA轉換的數據用於進一步建構具有彈性網正則化的廣義線性模型,其為線性地結合lasso和ridge方法的L1和L2懲罰的正則化回歸法。參看圖3中的等式(D);也參看鄒等人(Zou),“Regularization and variable selection via the elastic net”,J.R.Statist.Soc.B,2005,67,part 2,301-320。
在完成MIRA模型之前進行交叉驗證以評估電腦miRNA分析演算法的預測值。如圖4A所示,使用含有具有表1中所示的SEQ ID NO:1到SEQ ID NO:167的序列的167個miRNA的表現程度的miRNA表現圖譜,MIRA模型能夠成功地將臨床樣本分類成以下三種狀態組中的一種:容受期前狀態、容受期狀態、容受期後狀態。此外,如圖4B所示,初步驗證顯示分類為容受期狀態的女性(測試組)的妊娠率為100%。
將來自183位女性的數據分成10個子集以達到模型評估的10折交叉驗證。圖5繪示使用183個子宮內膜樣本所得的具167個miRNA表現程度的miRNA表現圖譜之10折交叉驗證和妊娠率。在這些測試中,於第一週期中,測定每位女性的子宮內膜狀態。若女性的子宮內膜被判定為處於容受期前狀態,則在下一週期孕酮投藥之後六天進行胚胎植入(P+6組;35位女性)。若女性的子宮內膜被判定為處於容受期狀態,則在下一週期孕酮投藥之後五天進行胚胎植入(P+5組;142位女性)。若女性的子宮內膜被判定為處於容受期後狀態,則在下一週期孕酮投藥之後4.5天進行胚胎植入(P+4.5組;6位女性)。另外,圖5繪示靈敏性、特 異性、PPV、NPV和10折交叉驗證結果的總體一致率。
在三個組當中,檢測到137件妊娠事件,其中22件事件來自P+6組,113件事件來自P+5組以及2件事件來自P+4.5組。參看圖5,關於電腦miRNA分析演算法的預測評估,在所有137件妊娠事件當中,2分之1來自P+4.5組、113分之107來自P+5組以及22分之17來自P+6組,顯示出可通過演算法判定正確的胚胎植入時間調整且產生91.24%的妊娠率(125/137)。參看圖5。
MIRA模型。考慮描述於此實例中的所有參數(參看圖3,eq(A-D)且隨後根據交叉驗證微調其參數),產出將所有樣本分類成三種不同子宮內膜狀態的預測模型。運行MIRA產生容受性預測評分(MIRA評分),其使用以下算式計算:MIRA score=f(X
Figure 109122231-A0305-02-0034-183
eq(C))=Xβ+ε,其中β為係數向量,且ε為誤差,均通過交叉驗證由glmnet產出(圖3)。這個模型可適用於子宮內膜的任何qPCR圖譜分析以預測子宮內膜狀態。
如圖6所示,運行電腦miRNA分析演算法產出容受性預測評分,其將女性的子宮內膜狀態分類成如下三種狀態中的一種:若評分大於1,則女性的子宮內膜處於容受期前狀態;若評分小於-1,則女性的子宮內膜處於容受期後狀態;若評分介於-1到1,則女性的子宮內膜處於容受期狀態(WOI)。
儘管本公開已參照具體實施方式進行特定呈現和描述,所屬領域的技術人員應理解在不脫離本公開的精神和範圍的情況下,可對各種形式和細節做出改變。
參考文獻
安布羅斯(Ambros) , “微小核糖核酸:具有大潛能的微小調節子(microRNAs:tiny regulators with great potential)” , 《細胞(Cell)》 , 2001, 107(7):823-826。
巴特爾(Bartel) , “微小核糖核酸:基因組學、生物合成、機制以及功能(MicroRNAs: genomics, biogenesis, mechanis, and function)” , 《細胞(Cell)》 , 2004, 116(2): 81-97。
李(Lee)等人,“秀麗隱杆線蟲異時基因lin-4編碼與lin-14具有反義互補性的小RNA(The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14)” , 《細胞(Cell)》 , 1993, 75(5):843-854。
帕斯奎內利(Pasquinelli)等人,“let-7異時調節RNA的序列保守性和暫態表現(Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA)” , 《自然(Nature)》 , 2000, 408(6808):86-89。
懷特曼(Wightman)等人,“lin-4對異時基因lin-14的轉錄後調節介導秀麗隱杆線蟲的暫態模式形成(Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans)” , 《細胞(Cell)》 , 1993, 75(5):855-862。
納沃特(Navot)等人,“胚胎移植的窗口期和人類體外受孕的功效(The window of embryo transfer and the efficiency of human conception in vitro)” , 《生育與不孕(Fertil Steril)》, 1991, 55(1):114-118。
哈珀(Harper), “植入窗口期(The implantation window)” , 《貝利勒臨床婦產科(Baillieres Clin Obstet Gynaecol)》 , 1992, 6(2):351-371。
赫爾(Hull)等人,“組織和迴圈微小核糖核酸影響子宮內膜疾病的生殖功能(Tissue and circulating microRNA influence reproductive function in endometrial disease)” , 《生殖生物醫學線上(Reprod Biomed Online)》 , 2013, 27(5):515-529。
加利亞諾(Galliano)等人,“微小核糖核酸和植入(MicroRNA and implantation)” , 《生育與不孕(Fertil Steril)》 , 2014, 101(6):1531-1544。
劉(Liu)等人,“微小核糖核酸和胚胎植入(MicroRNA and Embryo Implantation)” , 《美國生殖免疫學雜誌(Am J Reprod Immunol)》 , 2016, 75(3):263-271。
史(Shi)等人,“植入窗口期間的子宮內膜微小核糖核酸標籤在反復植入失敗的患者中發生改變(Endometrial MicroRNA Signature during the Window of Implantation Changed in Patients with Implantation Failure)” , 《新英格蘭醫學雜誌(Chin Med J (Engl))》,2017, 130(5):566-573。
克瑞斯威克(Kresowik)等人,“微小核糖核酸-31在植入窗口期間在人類子宮內膜和血清中顯著地升高:最優容受性的潛 在生物標記物(MicroRNA-31 is significantly elevated in both human endometrium and serum during the window of implantation : a potential biomarker for optimum receptivity)” , 《生殖生物學(Biol Reprod)》 , 2014, 91(1):17。
李(Li)等人,“微小核糖核酸-30a-3p調節上皮間葉細胞躍遷以通過靶向Snai2dagger來影響胚胎植入(MicroRNA-30a-3p regulates epithelial-mesenchymal transition to affect embryo implantation by targeting Snai2dagger)” , 《生殖生物學(Biol Reprod)》 , 2019, 100(5):1171-1179。
梁(Liang)等人,“微小核糖核酸在胚胎植入中的作用(Role of microRNAs in embryo implantation)” , 《生殖生物學和內分泌學(Reprod Biol Endocrinol)》 , 2017, 15(1):90。
保羅(Paul)等人,“微小核糖核酸在人類胚胎植入中的作用:綜述(The role of microRNAs in human embryo implantation:a review)” , 《輔助生殖技術和遺傳學雜誌(J Assist Reprod Genet)》, 2019, 36(2):179-187。
維萊納(Vilella)等人,“通過人類子宮內膜分泌的Hsa-miR-30d由植入前胚胎吸收且可能修改其轉錄物組(Hsa-miR-30d, secreted by the human endometrium, is taken up by the pre-implantation embryo and might modify its transcriptome)” , 《發育(Development)》 , 2015, 142(18):3210-3221。
鄭(Zheng)等人,“微小核糖核酸-200c通過靶向FUT4 和α 1,3-岩藻糖基化損害子宮容受性形成(MicroRNA-200c impairs uterine receptivity formation by targeting FUT4 and α1,3-fucosylation)” , 《細胞死亡與分化(Cell Death Differ)》, 2017, 24(12):2161-2172。
博爾斯塔(Bolstad)等人,“基於房差和偏差的高密度寡核苷酸陣列歸一化方法的比較(A comparison of normalization methods for high density oligonucleotide array data based on variance and bias)” , 《生物資訊(Bioinformatics)》 , 2003, 19(2):185-193。
鄒(Zou)等人,“通過彈性網進行正則化和變數選擇(Regularization and variable selection via the elastic net)” , 《皇家統計學會雜誌系列B (J. R. Statist. Soc. B)》 , 2005, 67,第2部分,301-320。
施裡姆兒(Schriml)等人,“人類疾病本體2018更新:分類、內容以及工作流程擴展(Human Disease Ontology 2018 update: classification, content and workflow expansion)” , 《核酸研究(Nucleic Acids Res)》 , 2019, 47:D955-D62。
黃(Huang)等人,“miRTarBase 2020:實驗上地驗證的微小核糖核酸-靶向交互資料庫的更新(miRTarBase 2020:updates to the experimentally validated microRNA-target interaction database)” , 《核酸研究(Nucleic Acids Res)》 , 2020, 48: D148-D54。
阿加瓦爾(Agarwal)等人,“預測哺乳動物mRNA中的有效微小核糖核酸靶向部位(Predicting effective microRNA target sites in mammalian mRNAs)” , 2015, 《Elife》 , 4。
陳(Chen)等人,“miRDB:用於預測功能性微小核糖核酸目標的線上資料庫(miRDB:an online database for prediction of functional microRNA targets)” , 《核酸研究(Nucleic Acids Res)》, 48:D127-D31。
王(Wang)等人,“關於來自兩種商業長寡核苷酸微陣列的基因表現測量的大規模即時PCR驗證(Large scale real-time PCR validation on gene expression measurements from two commercial long-oligonucleotide microarrays)” , 《BMC基因組學(BMC Genomics)》 , 2006, 7:59-75。
<110> 奎克生技光電股份有限公司
<120> 測定子宮內膜狀態的方法、檢測女性胚胎植入的子宮內膜容受性的方法、試劑組及用途
<130> 15448.0001-00000
<140>
<141>
<150> 62/869,574
<151> 2019-07-02
<160> 168
<170> PatentIn version 3.5
<210> 1
<211> 24
<212> RNA
<213> 人類
<220>
<223> hsa-miR-155-5p
<400> 1
Figure 109122231-A0305-02-0040-6
<210> 2
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-145-5p
<400> 2
Figure 109122231-A0305-02-0040-7
<210> 3
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-34a-5p
<400> 3
Figure 109122231-A0305-02-0041-8
<210> 4
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-21-5p
<400> 4
Figure 109122231-A0305-02-0041-9
<210> 5
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-125b-5p
<400> 5
Figure 109122231-A0305-02-0041-11
<210> 6
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-29a-3p
<400> 6
Figure 109122231-A0305-02-0041-12
<210> 7
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-29b-3p
<400> 7
Figure 109122231-A0305-02-0042-13
<210> 8
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-200c-3p
<400> 8
Figure 109122231-A0305-02-0042-14
<210> 9
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-24-3p
<400> 9
Figure 109122231-A0305-02-0042-15
<210> 10
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-9-5p
<400> 10
Figure 109122231-A0305-02-0042-16
<210> 11
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-146a-5p
<400> 11
Figure 109122231-A0305-02-0042-17
<210> 12
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-26a-5p
<400> 12
Figure 109122231-A0305-02-0043-18
<210> 13
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-17-5p
<400> 13
Figure 109122231-A0305-02-0043-19
<210> 14
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-200b-3p
<400> 14
Figure 109122231-A0305-02-0043-20
<210> 15
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-221-3p
<400> 15
Figure 109122231-A0305-02-0043-21
<210> 16
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-181a-5p
<400> 16
Figure 109122231-A0305-02-0044-22
<210> 17
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-122-5p
<400> 17
Figure 109122231-A0305-02-0044-23
<210> 18
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-199a-5p
<400> 18
Figure 109122231-A0305-02-0044-24
<210> 19
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-29c-3p
<400> 19
Figure 109122231-A0305-02-0044-25
<210> 20
<211> 21
<212> RNA
<213> 人類
<220>
<223> hsa-miR-31-5p
<400> 20
Figure 109122231-A0305-02-0045-26
<210> 21
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-1-3p
<400> 21
Figure 109122231-A0305-02-0045-27
<210> 22
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-20a-5p
<400> 22
Figure 109122231-A0305-02-0045-28
<210> 23
<211> 21
<212> RNA
<213> 人類
<220>
<223> hsa-miR-27a-3p
<400> 23
Figure 109122231-A0305-02-0045-29
<210> 24
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-203a-3p
<400> 24
Figure 109122231-A0305-02-0046-30
<210> 25
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-141-3p
<400> 25
Figure 109122231-A0305-02-0046-31
<210> 26
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-200a-3p
<400> 26
Figure 109122231-A0305-02-0046-32
<210> 27
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-22-3p
<400> 27
Figure 109122231-A0305-02-0046-33
<210> 28
<211> 21
<212> RNA
<213> 人類
<220>
<223> hsa-miR-101-3p
<400> 28
Figure 109122231-A0305-02-0047-34
<210> 29
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-16-5p
<400> 29
Figure 109122231-A0305-02-0047-35
<210> 30
<211> 24
<212> RNA
<213> 人類
<220>
<223> hsa-miR-182-5p
<400> 30
Figure 109122231-A0305-02-0047-36
<210> 31
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-210-3p
<400> 31
Figure 109122231-A0305-02-0047-37
<210> 32
<211> 24
<212> RNA
<213> 人類
<220>
<223> hsa-miR-125a-5p
<400> 32
Figure 109122231-A0305-02-0048-38
<210> 33
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-let-7a-5p
<400> 33
Figure 109122231-A0305-02-0048-39
<210> 34
<211> 21
<212> RNA
<213> 人類
<220>
<223> hsa-miR-23a-3p
<400> 34
Figure 109122231-A0305-02-0048-40
<210> 35
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-19a-3p
<400> 35
Figure 109122231-A0305-02-0048-41
<210> 36
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-223-3p
<400> 36
Figure 109122231-A0305-02-0048-42
<210> 37
<211> 21
<212> RNA
<213> 人類
<220>
<223> hsa-miR-143-3p
<400> 37
Figure 109122231-A0305-02-0049-43
<210> 38
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-205-5p
<400> 38
Figure 109122231-A0305-02-0049-44
<210> 39
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-30a-5p
<400> 39
Figure 109122231-A0305-02-0049-45
<210> 40
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-133a-3p
<400> 40
Figure 109122231-A0305-02-0049-46
<210> 41
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-126-3p
<400> 41
Figure 109122231-A0305-02-0050-47
<210> 42
<211> 21
<212> RNA
<213> 人類
<220>
<223> hsa-miR-128-3p
<400> 42
Figure 109122231-A0305-02-0050-48
<210> 43
<211> 21
<212> RNA
<213> 人類
<220>
<223> hsa-miR-222-3p
<400> 43
Figure 109122231-A0305-02-0050-49
<210> 44
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-214-3p
<400> 44
Figure 109122231-A0305-02-0050-50
<210> 45
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-133b
<400> 45
Figure 109122231-A0305-02-0051-51
<210> 46
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-181b-5p
<400> 46
Figure 109122231-A0305-02-0051-52
<210> 47
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-15a-5p
<400> 47
Figure 109122231-A0305-02-0051-53
<210> 48
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-106a-5p
<400> 48
Figure 109122231-A0305-02-0051-54
<210> 49
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-429
<400> 49
Figure 109122231-A0305-02-0052-55
<210> 50
<211> 24
<212> RNA
<213> 人類
<220>
<223> hsa-miR-7-5p
<400> 50
Figure 109122231-A0305-02-0052-56
<210> 51
<211> 21
<212> RNA
<213> 人類
<220>
<223> hsa-miR-106b-5p
<400> 51
Figure 109122231-A0305-02-0052-57
<210> 52
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-10b-5p
<400> 52
Figure 109122231-A0305-02-0052-58
<210> 53
<211> 21
<212> RNA
<213> 人類
<220>
<223> hsa-miR-192-5p
<400> 53
Figure 109122231-A0305-02-0053-60
<210> 54
<211> 21
<212> RNA
<213> 人類
<220>
<223> hsa-miR-195-5p
<400> 54
Figure 109122231-A0305-02-0053-61
<210> 55
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-30c-5p
<400> 55
Figure 109122231-A0305-02-0053-62
<210> 56
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-335-5p
<400> 56
Figure 109122231-A0305-02-0053-63
<210> 57
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-let-7b-5p
<400> 57
Figure 109122231-A0305-02-0054-64
<210> 58
<211> 25
<212> RNA
<213> 人類
<220>
<223> hsa-miR-224-5p
<400> 58
Figure 109122231-A0305-02-0054-65
<210> 59
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-135a-5p
<400> 59
Figure 109122231-A0305-02-0054-66
<210> 60
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-206
<400> 60
Figure 109122231-A0305-02-0054-67
<210> 61
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-92a-3p
<400> 61
Figure 109122231-A0305-02-0054-68
<210> 62
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-150-5p
<400> 62
Figure 109122231-A0305-02-0055-69
<210> 63
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-15b-5p
<400> 63
Figure 109122231-A0305-02-0055-70
<210> 64
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-130a-3p
<400> 64
Figure 109122231-A0305-02-0055-71
<210> 65
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-130b-3p
<400> 65
Figure 109122231-A0305-02-0055-72
<210> 66
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-140-5p
<400> 66
Figure 109122231-A0305-02-0056-73
<210> 67
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-18a-5p
<400> 67
Figure 109122231-A0305-02-0056-74
<210> 68
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-let-7c-5p
<400> 68
Figure 109122231-A0305-02-0056-75
<210> 69
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-196a-5p
<400> 69
Figure 109122231-A0305-02-0056-76
<210> 70
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-199a-3p
<400> 70
Figure 109122231-A0305-02-0057-77
<210> 71
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-103a-3p
<400> 71
Figure 109122231-A0305-02-0057-78
<210> 72
<211> 21
<212> RNA
<213> 人類
<220>
<223> hsa-miR-129-5p
<400> 72
Figure 109122231-A0305-02-0057-79
<210> 73
<211> 21
<212> RNA
<213> 人類
<220>
<223> hsa-miR-152-3p
<400> 73
Figure 109122231-A0305-02-0057-80
<210> 74
<211> 20
<212> RNA
<213> 人類
<220>
<223> hsa-miR-144-3p
<400> 74
Figure 109122231-A0305-02-0058-81
<210> 75
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-183-5p
<400> 75
Figure 109122231-A0305-02-0058-82
<210> 76
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-93-5p
<400> 76
Figure 109122231-A0305-02-0058-83
<210> 77
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-100-5p
<400> 77
Figure 109122231-A0305-02-0058-84
<210> 78
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-19b-3p
<400> 78
Figure 109122231-A0305-02-0059-85
<210> 79
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-30b-5p
<400> 79
Figure 109122231-A0305-02-0059-86
<210> 80
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-373-3p
<400> 80
Figure 109122231-A0305-02-0059-87
<210> 81
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-451a
<400> 81
Figure 109122231-A0305-02-0059-88
<210> 82
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-142-3p
<400> 82
Figure 109122231-A0305-02-0060-89
<210> 83
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-20b-5p
<400> 83
Figure 109122231-A0305-02-0060-90
<210> 84
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-30d-5p
<400> 84
Figure 109122231-A0305-02-0060-91
<210> 85
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-372-3p
<400> 85
Figure 109122231-A0305-02-0060-92
<210> 86
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-135b-5p
<400> 86
Figure 109122231-A0305-02-0060-93
<210> 87
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-193a-3p
<400> 87
Figure 109122231-A0305-02-0061-94
<210> 88
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-409-3p
<400> 88
Figure 109122231-A0305-02-0061-95
<210> 89
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-let-7g-5p
<400> 89
Figure 109122231-A0305-02-0061-96
<210> 90
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-10a-5p
<400> 90
Figure 109122231-A0305-02-0061-97
<210> 91
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-191-5p
<400> 91
Figure 109122231-A0305-02-0062-98
<210> 92
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-let-7f-5p
<400> 92
Figure 109122231-A0305-02-0062-99
<210> 93
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-134-5p
<400> 93
Figure 109122231-A0305-02-0062-100
<210> 94
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-146b-5p
<400> 94
Figure 109122231-A0305-02-0062-101
<210> 95
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-127-3p
<400> 95
Figure 109122231-A0305-02-0063-102
<210> 96
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-196b-5p
<400> 96
Figure 109122231-A0305-02-0063-103
<210> 97
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-302d-3p
<400> 97
Figure 109122231-A0305-02-0063-104
<210> 98
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-663a
<400> 98
Figure 109122231-A0305-02-0063-105
<210> 99
<211> 20
<212> RNA
<213> 人類
<220>
<223> hsa-miR-326
<400> 99
Figure 109122231-A0305-02-0064-106
<210> 100
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-486-5p
<400> 100
Figure 109122231-A0305-02-0064-107
<210> 101
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-17-3p
<400> 101
Figure 109122231-A0305-02-0064-108
<210> 102
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-30e-5p
<400> 102
Figure 109122231-A0305-02-0064-109
<210> 103
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-let-7d-5p
<400> 103
Figure 109122231-A0305-02-0065-110
<210> 104
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-193b-3p
<400> 104
Figure 109122231-A0305-02-0065-111
<210> 105
<211> 20
<212> RNA
<213> 人類
<220>
<223> hsa-miR-202-3p
<400> 105
Figure 109122231-A0305-02-0065-112
<210> 106
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-216a-5p
<400> 106
Figure 109122231-A0305-02-0065-113
<210> 107
<211> 21
<212> RNA
<213> 人類
<220>
<223> hsa-miR-376c-3p
<400> 107
Figure 109122231-A0305-02-0066-114
<210> 108
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-198
<400> 108
Figure 109122231-A0305-02-0066-115
<210> 109
<211> 21
<212> RNA
<213> 人類
<220>
<223> hsa-miR-215-5p
<400> 109
Figure 109122231-A0305-02-0066-116
<210> 110
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-197-3p
<400> 110
Figure 109122231-A0305-02-0066-117
<210> 111
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-29a-5p
<400> 111
Figure 109122231-A0305-02-0066-118
<210> 112
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-425-5p
<400> 112
Figure 109122231-A0305-02-0067-119
<210> 113
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-574-3p
<400> 113
Figure 109122231-A0305-02-0067-120
<210> 114
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-18b-5p
<400> 114
Figure 109122231-A0305-02-0067-121
<210> 115
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-483-5p
<400> 115
Figure 109122231-A0305-02-0067-122
<210> 116
<211> 21
<212> RNA
<213> 人類
<220>
<223> hsa-miR-625-5p
<400> 116
Figure 109122231-A0305-02-0068-123
<210> 117
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-338-5p
<400> 117
Figure 109122231-A0305-02-0068-124
<210> 118
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-539-5p
<400> 118
Figure 109122231-A0305-02-0068-125
<210> 119
<211> 21
<212> RNA
<213> 人類
<220>
<223> hsa-miR-151a-3p
<400> 119
Figure 109122231-A0305-02-0068-126
<210> 120
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-208b-3p
<400> 120
Figure 109122231-A0305-02-0069-127
<210> 121
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-330-5p
<400> 121
Figure 109122231-A0305-02-0069-128
<210> 122
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-382-5p
<400> 122
Figure 109122231-A0305-02-0069-129
<210> 123
<211> 21
<212> RNA
<213> 人類
<220>
<223> hsa-miR-499a-5p
<400> 123
Figure 109122231-A0305-02-0069-130
<210> 124
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-223-5p
<400> 124
Figure 109122231-A0305-02-0070-131
<210> 125
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-31-3p
<400> 125
Figure 109122231-A0305-02-0070-132
<210> 126
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-361-5p
<400> 126
Figure 109122231-A0305-02-0070-133
<210> 127
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-423-3p
<400> 127
Figure 109122231-A0305-02-0070-134
<210> 128
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-885-5p
<400> 128
Figure 109122231-A0305-02-0071-135
<210> 129
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-95-3p
<400> 129
Figure 109122231-A0305-02-0071-138
<210> 130
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-99b-5p
<400> 130
Figure 109122231-A0305-02-0071-137
<210> 131
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-299-5p
<400> 131
Figure 109122231-A0305-02-0071-139
<210> 132
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-378a-5p
<400> 132
Figure 109122231-A0305-02-0072-140
<210> 133
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-500a-5p
<400> 133
Figure 109122231-A0305-02-0072-141
<210> 134
<211> 20
<212> RNA
<213> 人類
<220>
<223> hsa-miR-518a-5p
<400> 134
Figure 109122231-A0305-02-0072-142
<210> 135
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-589-5p
<400> 135
Figure 109122231-A0305-02-0072-143
<210> 136
<211> 21
<212> RNA
<213> 人類
<220>
<223> hsa-miR-718
<400> 136
Figure 109122231-A0305-02-0072-144
<210> 137
<211> 21
<212> RNA
<213> 人類
<220>
<223> hsa-miR-940
<400> 137
Figure 109122231-A0305-02-0073-145
<210> 138
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-28-3p
<400> 138
Figure 109122231-A0305-02-0073-146
<210> 139
<211> 21
<212> RNA
<213> 人類
<220>
<223> hsa-miR-411-5p
<400> 139
Figure 109122231-A0305-02-0073-147
<210> 140
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-423-5p
<400> 140
Figure 109122231-A0305-02-0073-148
<210> 141
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-450a-5p
<400> 141
Figure 109122231-A0305-02-0074-149
<210> 142
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-484
<400> 142
Figure 109122231-A0305-02-0074-150
<210> 143
<211> 25
<212> RNA
<213> 人類
<220>
<223> hsa-miR-593-5p
<400> 143
Figure 109122231-A0305-02-0074-151
<210> 144
<211> 21
<212> RNA
<213> 人類
<220>
<223> hsa-miR-652-3p
<400> 144
Figure 109122231-A0305-02-0074-152
<210> 145
<211> 20
<212> RNA
<213> 人類
<220>
<223> hsa-miR-760
<400> 145
Figure 109122231-A0305-02-0075-153
<210> 146
<211> 21
<212> RNA
<213> 人類
<220>
<223> hsa-miR-1228-5p
<400> 146
Figure 109122231-A0305-02-0075-155
<210> 147
<211> 24
<212> RNA
<213> 人類
<220>
<223> hsa-miR-1254
<400> 147
Figure 109122231-A0305-02-0075-156
<210> 148
<211> 19
<212> RNA
<213> 人類
<220>
<223> hsa-miR-1290
<400> 148
Figure 109122231-A0305-02-0075-157
<210> 149
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-574-5p
<400> 149
Figure 109122231-A0305-02-0076-158
<210> 150
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-579-3p
<400> 150
Figure 109122231-A0305-02-0076-159
<210> 151
<211> 21
<212> RNA
<213> 人類
<220>
<223> hsa-miR-596
<400> 151
Figure 109122231-A0305-02-0076-160
<210> 152
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-601
<400> 152
Figure 109122231-A0305-02-0076-161
<210> 153
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-660-5p
<400> 153
Figure 109122231-A0305-02-0077-162
<210> 154
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-let-7d-3p
<400> 154
Figure 109122231-A0305-02-0077-163
<210> 155
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-1225-3p
<400> 155
Figure 109122231-A0305-02-0077-164
<210> 156
<211> 27
<212> RNA
<213> 人類
<220>
<223> hsa-miR-1248
<400> 156
Figure 109122231-A0305-02-0077-165
<210> 157
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-1972
<400> 157
Figure 109122231-A0305-02-0078-166
<210> 158
<211> 19
<212> RNA
<213> 人類
<220>
<223> hsa-miR-1973
<400> 158
Figure 109122231-A0305-02-0078-167
<210> 159
<211> 21
<212> RNA
<213> 人類
<220>
<223> hsa-miR-2114-3p
<400> 159
Figure 109122231-A0305-02-0078-168
<210> 160
<211> 23
<212> RNA
<213> 人類
<220>
<223> hsa-miR-217-5p
<400> 160
Figure 109122231-A0305-02-0078-169
<210> 161
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-320a-3p
<400> 161
Figure 109122231-A0305-02-0078-170
<210> 162
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-375-3p
<400> 162
Figure 109122231-A0305-02-0079-171
<210> 163
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-425-3p
<400> 163
Figure 109122231-A0305-02-0079-172
<210> 164
<211> 17
<212> RNA
<213> 人類
<220>
<223> hsa-miR-4306
<400> 164
Figure 109122231-A0305-02-0079-173
<210> 165
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-452-3p
<400> 165
Figure 109122231-A0305-02-0079-174
<210> 166
<211> 22
<212> RNA
<213> 人類
<220>
<223> hsa-miR-4772-3p
<400> 166
Figure 109122231-A0305-02-0080-175
<210> 167
<211> 21
<212> RNA
<213> 人類
<220>
<223> hsa-miR-520b-3P
<400> 167
Figure 109122231-A0305-02-0080-176
<210> 168
<211> 24
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<400> 168
Figure 109122231-A0305-02-0080-177

Claims (30)

  1. 一種測定子宮內膜狀態的方法,包括:(a)對來自女性的子宮內膜樣本進行分析,以測定所述子宮內膜樣本的miRNA表現圖譜,其中所述miRNA表現圖譜包括多個miRNA的表現程度,且所述多個miRNA包括分別具有SEQ ID NO:1到SEQ ID NO:167的序列的至少167個miRNA;以及(b)分析所述miRNA表現圖譜以獲得容受性預測評分,其中所述容受性預測評分對所述女性的子宮內膜狀態進行分類,所述子宮內膜狀態包括容受期前狀態、容受期狀態或容受期後狀態。
  2. 如請求項1所述的測定子宮內膜狀態的方法,其中所述子宮內膜樣本取自所述女性的子宮腔。
  3. 如請求項1或2所述的測定子宮內膜狀態的方法,其中所述子宮內膜樣本包括子宮內膜檢體、子宮內膜灌洗液或其組合。
  4. 如請求項1所述的測定子宮內膜狀態的方法,其中所述子宮內膜樣本(i)在所述女性的內源性促黃體激素(luteinizing hormone;LH)遽增之後七天或(ii)在所述女性的孕酮投藥之後五天獲取。
  5. 如請求項1所述的測定子宮內膜狀態的方法,其中所述miRNA表現圖譜通過qPCR、定序、微陣列晶片或RNA-DNA雜交捕獲技術來測定。
  6. 如請求項5所述的測定子宮內膜狀態的方法,其中所述miRNA表現圖譜通過對由所述子宮內膜樣本中的miRNA所合成的cDNA進行qPCR來測定。
  7. 如請求項6所述的測定子宮內膜狀態的方法,其中cDNA合成使用具有由以下通式表示之核苷酸序列的通用逆轉錄引子進行:5'-R-(dT)nVN-3',其中R包括SEQ ID NO:168,(dT)n為n個連續胸腺嘧啶殘基,其中n為19,V為腺嘌呤殘基、鳥嘌呤殘基或胞嘧啶殘基,且N為腺嘌呤殘基、鳥嘌呤殘基、胞嘧啶殘基或胸腺嘧啶殘基。
  8. 如請求項1所述的測定子宮內膜狀態的方法,其中所述容受性預測評分為通過電腦演算法產出且使用算式MIRA score=f(X
    Figure 109122231-A0305-02-0082-185
    eq(C))=Xβ+ε所計算的數值,其中β為係數向量,且ε為誤差。
  9. 如請求項8所述的測定子宮內膜狀態的方法,其中電腦演算法通過進行以下一或多個步驟來建立:數據正規化、數據縮放、數據轉換、預測建模以及交叉驗證。
  10. 如請求項8或9所述的測定子宮內膜狀態的方法,其中所述容受性預測評分大於1係指容受期前狀態,所述容受性預測評分小於-1係指容受期後狀態,所述容受性預測評分介於-1到1係指容受期狀態。
  11. 如請求項1所述的測定子宮內膜狀態的方法,其中若所述子宮內膜狀態被判定為處於容受期前狀態或容受期後狀 態,則所述測定子宮內膜狀態的方法另外包括:重複步驟(a)和(b)至少一次或直到所述子宮內膜狀態被判定為處於容受期狀態。
  12. 如請求項1所述的測定子宮內膜狀態的方法,其中所述女性遭受或曾遭受胚胎植入失敗。
  13. 如請求項1所述的測定子宮內膜狀態的方法,其中使所述女性進行體外受精療程。
  14. 如請求項13所述的測定子宮內膜狀態的方法,其中所述容受性預測評分進一步分類所述女性對體外授精療程的反應性。
  15. 一種檢測女性胚胎植入之子宮內膜容受性的方法,包括:(a)對來自所述女性的子宮內膜樣本進行分析,以測定所述子宮內膜樣本的miRNA表現圖譜,其中所述miRNA表現圖譜包括多個miRNA的表現程度,且所述多個miRNA包括分別具有SEQ ID NO:1到SEQ ID NO:167的序列的至少167個miRNA;以及b)分析所述miRNA表現圖譜以獲得容受性預測評分,其中所述容受性預測評分判定所述女性是否具有胚胎植入的子宮內膜容受性。
  16. 如請求項15所述的檢測女性胚胎植入之子宮內膜容受性的方法,其中所述子宮內膜樣本取自所述女性的子宮腔。
  17. 如請求項15或16所述的檢測女性胚胎植入之子宮內膜容受性的方法,其中所述子宮內膜樣本包括子宮內膜檢體、子宮內膜灌洗液或其組合。
  18. 如請求項15所述的檢測女性胚胎植入之子宮內膜容受性的方法,其中所述子宮內膜樣本(i)在所述女性內源性促黃體激素(LH)遽增之後七天或(ii)在所述女性孕酮投藥之後五天獲取。
  19. 如請求項15所述的檢測女性胚胎植入之子宮內膜容受性的方法,其中所述miRNA表現圖譜通過qPCR、定序、微陣列晶片或RNA-DNA雜交捕獲技術來測定。
  20. 如請求項19所述的檢測女性胚胎植入之子宮內膜容受性的方法,其中所述miRNA表現圖譜通過對由所述子宮內膜樣本中的miRNA所合成的cDNA進行qPCR來測定。
  21. 如請求項20所述的檢測女性胚胎植入之子宮內膜容受性的方法,其中cDNA合成使用具有由以下通式表示之核苷酸序列的通用逆轉錄引子進行:5'-R-(dT)nVN-3',其中R包括SEQ ID NO:168,(dT)n為n個連續胸腺嘧啶殘基,n為19,V為腺嘌呤殘基、鳥嘌呤殘基或胞嘧啶殘基且N為腺嘌呤殘基、鳥嘌呤殘基、胞嘧啶殘基或胸腺嘧啶殘基。
  22. 如請求項15所述的檢測女性胚胎植入之子宮內膜容受性的方法,其中所述容受性預測評分為通過電腦演算法產 出且使用算式MIRA score=f(X
    Figure 109122231-A0305-02-0085-186
    eq(C))=Xβ+ε所計算的數值,其中β為係數向量,且ε為誤差。
  23. 如請求項22所述的檢測女性胚胎植入之子宮內膜容受性的方法,其中電腦演算法通過進行以下一或多個步驟來建立:數據正規化、數據縮放、數據轉換、預測建模以及交叉驗證。
  24. 如請求項22或23所述的檢測女性胚胎植入之子宮內膜容受性的方法,其中所述容受性預測評分介於-1到1係指所述女性具有胚胎植入的子宮內膜容受性。
  25. 如請求項15所述的檢測女性胚胎植入之子宮內膜容受性的方法,其中所述女性遭受或曾遭受胚胎植入失敗。
  26. 一種試劑組,包括:(a)一或多個以多個miRNA為標靶的miRNA表現圖譜分析晶片,且所述多個miRNA包括分別具有SEQ ID NO:1到SEQ ID NO:167的序列的至少167個miRNA;以及(b)關於(i)任選地使用一或多個所述miRNA表現圖譜分析晶片測定女性子宮內膜樣本的miRNA表現圖譜及(ii)基於所述miRNA表現圖譜使用電腦演算法獲取容受性預測評分的使用說明。
  27. 如請求項26所述的試劑組,其中一或多個所述miRNA表現圖譜分析晶片包括用於檢測所述多個miRNA的表現程度的引子。
  28. 如請求項27所述的試劑組,其中所述miRNA表現圖譜分析晶片適合於進行qPCR、定序、微陣列晶片或RNA-DNA雜交捕獲分析,以檢測所述多個miRNA的表現程度。
  29. 一種試劑組的用途,所述試劑組為如請求項26至28中任一項所述的試劑組,用於測定女性的子宮內膜狀態。
  30. 如請求項29所述的試劑組的用途,其中所述女性遭受或曾遭受胚胎植入失敗和/或進行體外受精療程。
TW109122231A 2019-07-02 2020-07-01 測定子宮內膜狀態的方法、檢測女性胚胎植入的子宮內膜容受性的方法、試劑組及用途 TWI753474B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962869574P 2019-07-02 2019-07-02
US62/869,574 2019-07-02

Publications (2)

Publication Number Publication Date
TW202108770A TW202108770A (zh) 2021-03-01
TWI753474B true TWI753474B (zh) 2022-01-21

Family

ID=74066350

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109122231A TWI753474B (zh) 2019-07-02 2020-07-01 測定子宮內膜狀態的方法、檢測女性胚胎植入的子宮內膜容受性的方法、試劑組及用途

Country Status (6)

Country Link
US (1) US20210002698A1 (zh)
EP (1) EP3999657A4 (zh)
JP (2) JP2022539037A (zh)
CN (1) CN112469836B (zh)
TW (1) TWI753474B (zh)
WO (1) WO2021000893A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210007275A (ko) * 2019-07-10 2021-01-20 삼성전자주식회사 오버레이 보정 방법, 및 그 보정 방법을 기초로 한 포토리소그라피 방법, 반도체 소자 제조방법 및 스캐너 시스템
CN112662758B (zh) * 2021-02-07 2021-08-06 成都西囡妇科医院有限公司 一种与子宫内膜容受性辅助诊断相关的miRNA标志物及其应用
EP4183888A1 (en) * 2021-11-22 2023-05-24 Asociación Centro de Investigación Cooperativa en Biociencias - CIC bioGUNE Mirna signature for identification of the receptive endometrium
WO2023202612A1 (en) * 2022-04-19 2023-10-26 The Chinese University Of Hong Kong The identification of endometrial immune cell densities and clustering analysis in the mid-luteal phase as predictor for pregnancy outcomes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014062442A1 (en) * 2012-10-15 2014-04-24 University Of Iowa Research Foundation Use of microrna for assessing fertility in a female patient

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012500389A (ja) * 2008-08-12 2012-01-05 ジ・オハイオ・ステイト・ユニバーシティ・リサーチ・ファウンデイション 多発性脊髄腫の診断、予後および治療のためのマイクロrnaに基づく組成物および方法
TWI676679B (zh) * 2015-06-02 2019-11-11 奎克生技光電股份有限公司 核苷酸序列、通用反向引子、通用反轉錄引子、引子設計方法及miRNA檢測方法
EP3601613B1 (en) * 2017-03-29 2021-12-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for assessing pregnancy outcome

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014062442A1 (en) * 2012-10-15 2014-04-24 University Of Iowa Research Foundation Use of microrna for assessing fertility in a female patient

Also Published As

Publication number Publication date
CN112469836A (zh) 2021-03-09
EP3999657A4 (en) 2023-07-05
JP2023139115A (ja) 2023-10-03
CN112469836B (zh) 2024-03-22
TW202108770A (zh) 2021-03-01
JP2022539037A (ja) 2022-09-07
WO2021000893A1 (en) 2021-01-07
US20210002698A1 (en) 2021-01-07
EP3999657A1 (en) 2022-05-25

Similar Documents

Publication Publication Date Title
TWI753474B (zh) 測定子宮內膜狀態的方法、檢測女性胚胎植入的子宮內膜容受性的方法、試劑組及用途
US10260104B2 (en) Method for using gene expression to determine prognosis of prostate cancer
US11111541B2 (en) Diagnostic MiRNA markers for Parkinson&#39;s disease
Zhao et al. Diagnostic potential for miRNAs as biomarkers for pregnancy-specific diseases
US11667974B2 (en) Diagnostic, prognostic and therapeutic uses of long noncoding RNAs for pathologies and toxicities inducing heart disorders
US20180327856A1 (en) Diagnostic mirnas for differential diagnosis of incidental pancreatic cystic lesions
WO2010069129A1 (zh) 非小细胞肺癌标记物及其检测方法、试剂盒和生物芯片
EP2834372B1 (en) Complex sets of mirnas as non-invasive biomarkers for early diagnosis of acute myocardial infarction
Chen et al. A novel platform for discovery of differentially expressed microRNAs in patients with repeated implantation failure
CN107338324B (zh) 用于诊断不明原因复发性流产的血清lncRNA标志物、引物组及应用和试剂盒
US20180066316A1 (en) Methods and compositions involving mir-135b for distinguishing pancreatic cancer from benign pancreatic disease
JPWO2020168118A5 (zh)
US10457988B2 (en) MiRNAs as diagnostic markers
CN110747269A (zh) 用于pcos诊断的颗粒细胞生物标志物及其筛选方法和诊断试剂盒
Pan et al. Sequencing the miRNAs in maternal plasma from women before and after parturition
CN107299129B (zh) 循环核酸作为乳腺癌生物标志物的应用
CN113755570B (zh) 用于预测不明原因复发性流产的生物标志物及应用
CN113755571B (zh) 用于胚胎着床成功率检测的生物标志物及应用
TW202223103A (zh) 泛癌症早篩預測方法
CN112899358A (zh) 一种无创产前胎儿染色体非整倍体的检测方法及其试剂盒
KR101746600B1 (ko) 복수의 miRNA의 정량적 동시 검출 방법
EP4311862A1 (en) Methods for detection of embryo implantation failure of endometrial origen
Yukseloglu RNA-Approached technology applications in forensic genetics
CN118291603A (zh) 一种个体生物学年龄预测的方法及检测试剂、试剂盒
CN113817818A (zh) 用于诊断过敏性气道炎症的工具