TWI751219B - 非接觸式電流測量系統 - Google Patents

非接觸式電流測量系統 Download PDF

Info

Publication number
TWI751219B
TWI751219B TW106138276A TW106138276A TWI751219B TW I751219 B TWI751219 B TW I751219B TW 106138276 A TW106138276 A TW 106138276A TW 106138276 A TW106138276 A TW 106138276A TW I751219 B TWI751219 B TW I751219B
Authority
TW
Taiwan
Prior art keywords
insulated wire
sensor
current
measurement system
clamping
Prior art date
Application number
TW106138276A
Other languages
English (en)
Other versions
TW201830034A (zh
Inventor
雷卡多 羅椎庫
大衛 艾普森
朗諾 史都爾
傑佛瑞 瓦容斯
Original Assignee
美商富克有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商富克有限公司 filed Critical 美商富克有限公司
Publication of TW201830034A publication Critical patent/TW201830034A/zh
Application granted granted Critical
Publication of TWI751219B publication Critical patent/TWI751219B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/22Tong testers acting as secondary windings of current transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/146Measuring arrangements for current not covered by other subgroups of G01R15/14, e.g. using current dividers, shunts, or measuring a voltage drop
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/146Measuring arrangements for current not covered by other subgroups of G01R15/14, e.g. using current dividers, shunts, or measuring a voltage drop
    • G01R15/148Measuring arrangements for current not covered by other subgroups of G01R15/14, e.g. using current dividers, shunts, or measuring a voltage drop involving the measuring of a magnetic field or electric field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0046Arrangements for measuring currents or voltages or for indicating presence or sign thereof characterised by a specific application or detail not covered by any other subgroup of G01R19/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

本發明題為“非接觸式電流測量系統”。本發明提供了系統和方法,所述系統和方法提供非接觸式電流測量系統,所述非接觸式電流測量系統用於測量流過絕緣線的交流,而不需要與所述絕緣線電流接觸。所述測量系統可包括磁場傳感器,所述磁場傳感器可選擇性地被定位成接近待測絕緣線。所述磁場傳感器在操作中檢測由所述絕緣線中流動的所述電流産生的磁場。通過使用可調節夾持組件,測量系統提供對所述絕緣線相對於所述磁場傳感器的機械定位的控制以確保一致的測量。非接觸式電流測量系統可確定與所述絕緣線的物理尺寸(例如,直徑)相關的信息。通過使用所檢測的磁場、已知的機械定位以及所確定的與所述絕緣線的所述物理尺寸相關的信息,所述測量系統在沒有電流接觸的情况下準確地確定流過所述絕緣線的所述電流的大小。

Description

非接觸式電流測量系統
本公開整體涉及電特性的測量,並且更具體地,涉及電路中的交流(AC)的非接觸式測量。
相關領域的說明
電流錶是用於測量電子電路中電流的儀器。測量多於一種電特性的儀器稱為萬用表或數字萬用表(DMM),並且用於測量服務、故障診斷和維護應用通常所需的許多參數。此類參數通常包括交流(AC)電壓和電流、直流(DC)電壓和電流以及電阻或導通性。還可以測量其他參數,諸如功率特性、頻率、電容和溫度,以滿足特定應用的要求。
為了用通用萬用表測量電流,必須在電流通路中插入具有已知電阻的內附電流分流器,從而需要斷開載流導體。然後測量跨電流分流器的電壓降,以確定電流通路中的電流。由於萬用表測試導線和電路的載流能力,採用內附電流分流器的通用萬用表的可測量電流很有限,通常不 超過幾安培。此外,為了安全原因和防止損壞萬用表兩者,萬用表通常必須用內附熔絲進行保護,以防止過大的電流流過萬用表。
對於測量AC電流的常規電流錶或萬用表,可能需要使至少一個測量電極或探頭與導體電流接觸,這通常需要斷開電路和/或切除絕緣電線的一部分絕緣體,或提前提供測量端子。除了需要暴露的線或端子用於電流接觸之外,由於具有被電擊或觸電的風險,將探頭接觸到剝離的線或端子的步驟可能是相當危險的。
非接觸式電流測量系統可以總結為包括:可調節夾持組件,該可調節夾持組件選擇性地夾持絕緣線並且可將該線定位在限定位置;位置反饋傳感器,該位置反饋傳感器在操作中生成指示被夾持在可調節夾持組件中的絕緣線的直徑的位置反饋傳感器信號;磁場傳感器,該磁場傳感器被定位成接近可調節夾持組件,其中該磁場傳感器在操作中生成磁場傳感器信號,該磁場傳感器信號指示流過被夾持在可調節夾持組件中的絕緣線的電流的至少一個特性;以及至少一個處理器,該至少一個處理器通信地耦接到位置反饋傳感器和磁場傳感器,其中該至少一個處理器在操作中:從位置反饋傳感器接收位置反饋傳感器信號;從磁場傳感器接收磁場傳感器信號;並且至少部分地基於所接收的位置反饋傳感器信號和磁場傳感器信號來確定流過絕 緣線的電流的至少一個特性。
可調節夾持組件可包括第一夾持表面和第二夾持表面,第二夾持表面可面向第一夾持表面,並且第一夾持表面和第二夾持表面(例如,“夾爪”)中的至少一者可在朝向和遠離第一夾持表面和第二夾持表面中的另一者的方向上移動,以將絕緣線選擇性地夾持在第一夾持表面和第二夾持表面之間的限定位置處。第一夾持表面可包括非接觸式電流測量系統的外殼的前端的前端表面,並且第二夾持表面可設置在可相對於前端表面選擇性地移動的夾持構件上。磁場傳感器可被定位成接近外殼前端的前端表面。可調節夾持組件可包括滑塊夾持組件,並且位置反饋傳感器可包括線性位置反饋傳感器,該線性位置反饋傳感器生成指示滑塊夾持組件的線性位置的位置反饋信號。可調節夾持組件可包括具有第一夾持表面的第一夾持部分和具有面向第一夾持表面的第二夾持表面的第二夾持部分,並且偏置構件可將第一夾持部分朝向第二夾持部分偏置。非接觸式電流測量系統還可包括操作性地耦接到至少一個處理器的用戶界面,其中該至少一個處理器在操作中使用戶界面顯示所確定的流過絕緣線的電流的至少一個特性。流過絕緣線的電流的至少一個特性可包括流過絕緣線的電流的大小。位置反饋傳感器可包括電阻傳感器、磁阻傳感器、霍爾效應傳感器或光學傳感器。非接觸式電流測量系統還可以包括:電壓參考信號型傳感器,該電壓參考信號型傳感器在操作中感測絕緣線中的參考信號而不與絕緣線電流接 觸,其中至少一個處理器接收參考信號,並且至少部分地基於所接收的參考信號來確定由參考電壓驅動而流過絕緣線的電流的至少一個特性。至少一個處理器可至少部分地基於所接收的參考信號來進一步確定絕緣線內側導體的至少一個物理尺寸。至少一個處理器可至少部分地基於所接收的參考信號和所接收的位置反饋傳感器信號來進一步確定絕緣線內側導體的至少一個物理尺寸,所接收的位置反饋傳感器信號提供絕緣線的導體的外徑。
測量絕緣線中的電流而不與絕緣線中的導體電流接觸的方法可以總結為包括:經由可調節夾持組件將絕緣線夾持在第一夾持表面和第二夾持表面之間;確定第一夾持表面和第二夾持表面之間的夾持距離,其中該夾持距離指示被夾持在第一夾持表面和第二夾持表面之間的絕緣線的直徑;經由被定位成接近被夾持在第一夾持表面和第二夾持表面之間的絕緣線的磁場傳感器,感測由流過絕緣線的電流產生的磁場;以及至少部分地基於所確定的夾持距離和所感測的由流過絕緣線的電流生成的磁場,經由至少一個處理器確定流過絕緣線的電流的至少一個特性。
第一夾持表面可包括外殼的前端的前端表面,並且第二夾持表面可包括可調節夾持組件的夾持構件表面,該表面可相對於前端表面移動,並且將絕緣線夾持在第一夾持表面和第二夾持表面之間可包括將絕緣線夾持在前端表面和夾持構件表面之間。感測由流過絕緣線的電流產生的磁場可包括經由磁場傳感器感測磁場,並且該磁場傳感器可 被定位成接近外殼的前端的前端表面。將絕緣線夾持在第一夾持表面和第二夾持表面之間可包括將絕緣線夾持在滑塊夾持組件的第一夾持表面和第二夾持表面之間,並且確定夾持距離可包括確定滑塊夾持組件的線性位置。除滑塊之外的任何其他夾持機構也可用於提供位置。另一個示例是晾衣夾式夾持件,其中線徑與旋轉夾持件的開口角度成比例。第一夾持表面可定位在第一夾持部分上,並且第二夾持表面可定位在第二夾持部分上,並且該方法還可以包括將第一夾持部分朝向第二夾持部分偏置。該方法還可以包括:經由用戶界面顯示所確定的流過絕緣線的電流的至少一個特性。確定流過絕緣線的電流的至少一個特性可包括確定流過絕緣線的電流的大小。申請專利範圍所述的方法還可以包括:經由定位在外殼中的參考信號型傳感器感測絕緣線中的參考信號,而不與絕緣線電流接觸;以及至少部分地基於所感測的參考信號,經由至少一個處理器確定流過絕緣線的電流的至少一個特性。該方法還可以包括至少部分地基於所接收的參考信號,經由至少一個處理器確定絕緣線內側導體的至少一個物理尺寸。該方法還可以包括至少部分地基於所接收的參考信號和所接收的位置反饋傳感器信號,經由至少一個處理器確定絕緣線內側導體的至少一個物理尺寸。參考方法還可以提供線的位置,並且可以單獨地或一起使用機械夾持或參考信號兩種方法來確定線徑。
非接觸式電流測量系統可以總結為包括:外殼,該外 殼包括具有前端表面的前端部分;夾持構件,該夾持構件具有面向前端表面的夾持構件表面,其中該夾持構件可相對於前端表面移動,以將絕緣線選擇性地夾持在前端表面和夾持構件表面之間;位置反饋傳感器,該位置反饋傳感器生成指示夾持構件的位置的位置反饋傳感器信號;電流傳感器,該電流傳感器被定位成接近外殼的前端表面,其中該電流傳感器在操作中生成電流傳感器信號,該電流傳感器信號指示流過被夾持在前端表面和夾持構件表面之間的絕緣線的電流的至少一個特性;以及至少一個處理器,該至少一個處理器通信地耦接到位置反饋傳感器和電流傳感器,其中該至少一個處理器在操作中:從位置反饋傳感器接收位置反饋傳感器信號;從電流傳感器接收電流傳感器信號;並且至少部分地基於所接收的位置反饋信號和電流傳感器信號來確定流過絕緣線的電流的至少一個特性。
電流傳感器可包括磁場傳感器。非接觸式電流測量系統還可以包括操作性地耦接到至少一個處理器的顯示器,其中該至少一個處理器在操作中使該顯示器呈現流過絕緣線的電流的大小。位置反饋傳感器可包括電阻傳感器、磁阻傳感器、霍爾效應傳感器、電容傳感器、感應傳感器或光學傳感器。
100:環境
102:非接觸式電流測量系統
104:技術人員
106:絕緣線
108:外殼/主體
110:握持部分/端部
112:探頭部分/端部
114:用戶界面
116:磁場傳感器
118:頂表面
124:絕緣體
126:可調節夾持組件
128:位置反饋傳感器
130:夾持構件
132:夾持表面
134:夾具開口
P1:第一位置
P2:第二位置
P3:第三位置
136:偏置構件
300:非接觸式電流測量系統
302:外殼
304:前端
306:握持部分/端部
308:用戶界面
312:電流傳感器
313:參考信號傳感器
314:可伸縮夾爪/夾持構件
316:前端表面
318:夾持表面
320:位置反饋傳感器
322:偏置構件
400:非接觸式電流測量系統
402:外殼
404:前端
406:握持部分/端部
408:用戶界面
412:電流傳感器
413:參考信號傳感器
414:可伸縮鈎/夾持構件
416:前端表面
418:夾持表面
420:位置反饋傳感器
422:偏置構件
500:非接觸式電流測量系統
502:外殼
504:前端
506:握持部分/端部
508:用戶界面
512:電流傳感器
513:參考信號傳感器
514:可伸縮鈎/夾持構件
516:前端表面
518:夾持表面
520:位置反饋傳感器
522:偏置構件
600:非接觸式電流測量系統
602:電流傳感器
604:處理器
606:可調節夾持組件
608:位置反饋傳感器
610:存儲器
612:用戶界面
613:輸入件
614:輸出件
616:有線和/或無線通信接口
618:電傳感器
700:環境
702:非接觸式測量系統
704:操作者
706:絕緣線
708:外殼/主體
710:握持部分/端部
712:探頭部分/端部
714:用戶界面
716:凹部
718:第一延伸部分
720:第二延伸部分
722:導體
724:絕緣體
726:參考信號傳感器/電極
728:接地端/外部接地端
730:共模參考電壓源
732:內部接地保護件/屏幕
734:導電參考屏蔽件
736:輸入放大器
737:反饋電路
738:內部電子接地端
740:信號處理模塊
742:用戶界面
CB:體電容
CO:耦合電容器
VO:AC電壓信號
IO:信號電流
fo:信號電壓頻率
VR:AC參考電壓
fR:參考頻率
900:非接觸式測量系統
902:模數轉換器/ADC
906:快速傅里葉變換(FFT)算法電路/FFT
908:框
910:Σ-△數模轉換器/Σ-△DAC
912:顯示器
1100:信號處理部分
1102:第一濾波器
1104:第一整流器
1106:第一ADC
1108:處理器
1110:第二濾波器
1112:第二整流器
1114:第二ADC
CG:電容
741:反相放大器
739:傳感器布置
739a:傳感器
739b:絕緣層
739c:內部接地保護件
739d:反向參考信號層
739e:絕緣層
739f:參考信號層
1600:傳感器和保護組件
1602:導電傳感器
1604:內部接地保護件
1606:隔離層
1700:探頭/前端
1702:外殼層
1704:絕緣線
1706:絕緣線
1708:凹部
1800:弓形前端
1802:凹部
1804:第一延伸部分
1806:第二延伸部分
1808:上部弓形部分
1810:絕緣線
1812:下部弓形部分
1814:絕緣線
1816:傳感器組件
1900:圓柱形前端/前端
1902:圓柱形內部接地保護件
1904:側壁
1906:前表面
1908:中心開口
1910:導電傳感器/傳感器
1912:圓柱形參考屏蔽件
1914:隔離層
2000:前端
2002:內部接地保護件
2004:前表面
2006:待測線
2007:邊緣
2008:開口
2010:導電傳感器
2012,2014:側壁
2016:導電保護環夾具
2016A:第一夾臂
2016B:第二夾臂
2018:手動或自動致動子系統/致動系統
在附圖中,相同的參考標號指示相似的元件或動作。附圖中的元件的尺寸和相對位置不一定按比例繪製。例 如,各種元件的形狀和角度不一定按比例繪製,並且這些元件中的一些可能被任意地放大和定位,以提高附圖的可讀性。此外,繪製的元件的特定形狀不一定意圖輸送關於特定元件的實際形狀的任何信息,並且可能僅為了便於在附圖中識別而被選擇。
圖1是根據一個例示的具體實施的環境的示意圖,在該環境中操作者可使用非接觸式電流測量系統來測量絕緣線中存在的AC電流,而不需要與絕緣線電流接觸。
圖2A是包括可調節夾持組件的非接觸式電流測量系統的前方正視圖,其中示出可調節夾持組件的夾持構件與絕緣線間隔開。
圖2B是圖2A的非接觸式電流測量系統的前方正視圖,其中示出絕緣線被可調節夾持組件的夾持構件夾持。
圖3是根據一個例示的具體實施的非接觸式電流測量系統的另一具體實施的前方正視圖。
圖4是根據一個例示的具體實施的非接觸式電流測量系統的另一具體實施的前方正視圖。
圖5是根據一個例示的具體實施的非接觸式電流測量系統的另一具體實施的前方正視圖。
圖6是根據一個例示的具體實施的非接觸式電流測量系統的示意性框圖。
圖7A是根據一個例示的具體實施的環境的示意圖,在該環境中操作者可使用包括參考信號型傳感器的非接觸式測量系統來測量絕緣線的絕緣體厚度,而不需要與該線電 流接觸。
圖7B是根據一個例示的具體實施的圖7A的非接觸式測量系統的俯視圖,示出了絕緣線和非接觸式測量系統的導電傳感器之間形成的耦合電容、絕緣導體電流分量以及非接觸式測量系統和操作者之間的體電容。
圖8是根據一個例示的具體實施的非接觸式測量系統的各種內部部件的示意圖。
圖9是根據一個例示的具體實施的示出非接觸式測量系統的各種信號處理部件的框圖。
圖10是根據一個例示的具體實施的實現快速傅里葉變換(FFT)的非接觸式測量系統的示意圖。
圖11是根據信號和參考信號分離的另一示例的實現模擬電子濾波器的非接觸式測量系統的框圖。
圖12是根據一個例示的具體實施的非接觸式測量系統的示意性電路圖。
圖13A是根據一個例示的具體實施的示出各種泄漏和雜散電容的非接觸式測量系統的示意圖。
圖13B是根據一個例示的具體實施的非接觸式測量系統的示意圖,示出了各種泄漏和雜散電容,並且包括對參考電流信號的補償。
圖13C示出了根據一個例示的具體實施的圖7B的系統的示例性傳感器布置。
圖14是根據一個例示的具體實施的非接觸式測量系統的示意性電路圖,示出了非接觸式測量系統的傳感器和外 部接地端之間的電容。
圖15A是根據一個例示的具體實施的非接觸式測量系統的示意性電路圖,示出了非接觸式測量系統的內部接地保護件和外部接地端之間的電容。
圖15B是根據一個例示的具體實施的非接觸式測量系統的示意性電路圖,示出了非接觸式測量系統的內部接地保護件和外部接地端之間的電容。
圖16是根據一個例示的具體實施的非接觸式測量系統的傳感器和內部接地保護組件的透視圖。
圖17是根據一個例示的具體實施的非接觸式測量系統的“U”形或“V”形傳感器前端的剖視圖。
圖18是根據一個例示的具體實施的非接觸式測量系統的弓形傳感器前端的正視圖。
圖19是根據一個例示的具體實施的非接觸式測量系統的圓柱形傳感器前端的透視圖。
圖20A是根據一個例示的具體實施的非接觸式測量系統的傳感器前端的俯視圖,其中內部接地保護件的保護環夾具處於閉合位置。
圖20B是根據一個例示的具體實施的圖20A所示的非接觸式測量系統的前端的俯視圖,其中內部接地保護件的保護環夾具處於打開位置。
圖21是根據一個例示的具體實施的圖20A的傳感器前端的一部分的透視圖,其中內部接地保護件的保護環夾具被移除。
本文所公開的系統和方法提供在不需要與絕緣線的導體電流接觸的情况下測量流過絕緣線的電流的非接觸式電流測量系統。在至少一些具體實施中,非接觸式電流測量系統包括可選擇性地定位成接近(例如,相鄰)待測絕緣線的磁場傳感器。磁場傳感器的非限制性示例包括各向異性磁阻(AMR)傳感器、巨磁電阻(GMR)傳感器、磁通門傳感器、超導量子干涉傳感器、光纖傳感器、光泵傳感器、核處理傳感器、搜索線圈傳感器、磁敏晶體管傳感器、磁敏二極管傳感器、磁光傳感器、霍爾效應傳感器、羅戈夫斯基線圈、電流變壓器或其他類型的磁場傳感器。磁場傳感器檢測由絕緣線中流動的電流產生的磁場。絕緣線的導體周圍的磁場的大小與流過絕緣線的導體的電流的大小相關(例如,成比例)。
除了檢測導體周圍的磁場之外,本公開的至少一些具體實施利用可調節夾持組件來提供對絕緣線相對於磁場傳感器的機械定位的控制。此外,在至少一些具體實施中,非接觸式電流測量系統確定與待測絕緣線的至少一個物理尺寸相關的信息,諸如絕緣線的絕緣體內側導體的外徑或線徑。使用所檢測的磁場、所控制的機械定位和所確定的物理尺寸信息,非接觸式電流測量系統準確地確定流過絕緣線的導體的電流的大小。
在下面的描述中,闡述了某些具體細節以便提供對所 公開的各種具體實施的徹底理解。然而,相關領域的技術人員將認識到,可以在沒有這些具體細節中的一個或多個具體細節的情况下,或者使用其他方法、部件、材料等的情况下實現這些具體實施。在其他實例中,沒有詳細示出或描述與計算機系統、服務器計算機和/或通信網絡相關聯的公知結構,以避免不必要地模糊這些具體實施的描述。
除非上下文另有要求,否則貫穿整個說明書和申請專利範圍,單詞“包含”與“包括”是同義的,並且是包容性的或開放式的(即,不排除額外的、未被引用的元件或方法動作)。
本說明書通篇對“一個具體實施”或“具體實施”的引用意指結合該具體實施描述的特定特徵、結構或特性包括在至少一個具體實施中。因此,本說明書通篇各個地方出現的短語“在一個具體實施中”或“在具體實施中”不一定全部指代相同的具體實施。此外,在一個或多個具體實施中,特定特徵、結構或特性可以任何合適的方式組合。
如本說明書和所附申請專利範圍所用,單數形式“一個”和“該”包括複數指示物,除非上下文另有明確指示。還應當指出的是,術語“或”通常用作在其意義上包括“和/或”,除非上下文另有明確指示。此外,本文所提供的標題和說明書摘要僅為了方便而提供,並且不解釋具體實施的範圍或含義。
圖1是環境100的示意圖,在該環境中技術人員104可 使用非接觸式電流測量系統102來測量絕緣線106中存在的AC電流,而不需要非接觸式電流測量系統和絕緣線106之間的電流接觸。圖2A和圖2B示出了非接觸式電流測量系統102的放大視圖。
非接觸式電流測量系統102包括外殼或主體108,該外殼或主體包括握持部分或端部110以及與該握持部分相對的前部或端部112。外殼108還可以包括便於用戶與非接觸式電流測量系統102交互的用戶界面114。用戶界面114可包括任何數量的輸入件(例如,按鈕、撥盤、開關、觸摸傳感器)和任何數量的輸出件(例如,顯示器、LED、揚聲器、蜂鳴器)。非接觸式電流測量系統102還可以包括一個或多個有線和/或無線通信接口(例如,USB、Wi-Fi®、Bluetooth®)。
如圖2A和圖2B中所示,磁場傳感器116(例如,各向異性磁阻(AMR)傳感器、巨磁電阻(GMR)傳感器、磁通門傳感器等)被定位成在前端112的頂表面118下方。磁場傳感器116用於檢測由在絕緣線106中流動的電流產生的磁場,該絕緣線包括由一層或多層絕緣體124圍繞的導體122。導體122周圍磁場的大小與流過該導體的電流的大小相關(例如,成比例)。通常,當滿足兩個參數時,可以由磁場傳感器116準確地確定在導體122中流動的電流的大小。第一參數是對絕緣線106相對於磁場傳感器116的機械定位的控制,該絕緣線在至少一些具體實施中由可調節夾持組件126控制。第二參數是絕緣線106的物理尺寸信息, 諸如其外徑或絕緣線的絕緣體內側導體的直徑(即,線徑),這可由操作性地耦接到可調節夾持組件126的位置反饋傳感器128確定或估計。下面進一步討論可調節夾持組件126和位置反饋傳感器128。
此外,在至少一些具體實施中,關於絕緣線106的線徑的物理尺寸信息可以另外地或另選地利用一個或多個參考信號傳感器獲得,該參考信號傳感器檢測傳感器和絕緣線106之間生成的參考信號(例如,參考電流信號)。下面參考圖7A至圖21討論實現用於檢測絕緣線的物理尺寸信息的此類“參考信號”方法的各種示例性非接觸式測量系統。例如,在至少一些具體實施中,可使用可調節夾持組件和位置反饋傳感器來確定絕緣線的總直徑,並且可使用參考信號方法來確定絕緣線的絕緣體的厚度。使用所確定的絕緣線的總直徑和所確定的絕緣體厚度,非接觸式電流測量系統可以自動地確定或估計絕緣線的絕緣體內側導體的直徑(例如,導體的直徑等於絕緣線的總直徑減去絕緣體厚度的兩倍)。所確定的導體直徑然後可與所檢測到的磁場一起使用,以準確地確定流過絕緣線的電流的大小。
在例示的具體實施中,絕緣線106的機械定位由可調節夾具或“滑塊”夾持組件126提供,該可調節夾具或“滑塊”夾持組件確保絕緣導體在測量期間與磁場傳感器116正確對準(例如,相鄰)。可調節夾持組件126包括耦接到外殼108的可選擇性地朝向和遠離前端112的頂表面118移動的夾持構件130。夾持構件130在本文中可被稱為第一夾 持部分,並且前端112在本文中可被稱為第二夾持部分。夾持構件130包括面向前端112的頂表面118並且與其大致平行的夾持表面132。夾持表面132和頂表面118一起限定了可變尺寸的夾具開口134,其大小和尺寸被設計成在其中接納絕緣線106的一部分。在例示的示例中,夾持構件130可選擇性地在夾持開口134相對較大的第一位置P1和夾持開口相對較小的第二位置P2之間移動。
如圖2A所示,當夾持構件130的夾持表面132與前端112的頂表面118間隔開足夠容易地允許絕緣線被移入夾具開口的量時,用戶可將絕緣線106定位在夾具開口134內。然後,如圖2B所示,用戶可將夾持構件130向下移動到第三位置P3,以將絕緣線106“夾持”在前端112的頂表面118和夾持表面132之間,使得頂表面和夾持表面在相對的兩側上均接觸絕緣線的絕緣層。如本文所用,術語“夾持”用於指絕緣線106在絕緣線的相對側上被頂表面118和夾持表面132接觸以保持該線相對於磁場傳感器116的位置。也就是說,該術語不指示頂表面118或夾持表面132必須在絕緣線106上施加任何特定量的力。
位置反饋傳感器128用於感測夾持構件130的位置(例如,線性位置),並且生成指示此位置的位置反饋傳感器信號(例如,線性位置反饋傳感器信號)。該位置反饋信號可以例如是數字或模擬信號。當絕緣線106被夾持在夾持表面132和前端112的頂表面118之間時,夾持構件130的感測位置可用於確定或估計絕緣線的直徑或線徑。例如, 位置反饋傳感器128可提供與夾持構件130的延伸成比例的位置反饋傳感器信號。位置反饋傳感器128可以是用於感測夾持構件130的延伸並確定絕緣線106的直徑的任何合適的傳感器。例如,位置反饋傳感器128可包括電阻傳感器、磁阻傳感器、霍爾效應傳感器、光學傳感器等。如下面進一步討論的,在至少一些具體實施中,可另外地或另選地使用“參考信號”方法來確定絕緣線106內側導體的直徑或尺寸,這可進一步允許系統102提供準確的電流測量。
在至少一些具體實施中,夾持構件130可由合適的偏置構件136朝向第二位置P2偏置。例如,夾持構件130可由被耦接在夾持構件和外殼108的一部分之間的彈簧朝向第二位置P2偏置。有利的是,偏置夾持構件130可允許夾持組件126將絕緣線106更好地保持在夾具開口134中,同時還提供絕緣線106的直徑的更均勻的測量。
由於磁通密度和電流之間的正交關係(例如,用於載流導體周圍的磁通量的“右手定則”),絕緣線106相對於磁場傳感器116的機械定位可能是重要的。此外,位置反饋傳感器128所提供的物理尺寸信息可能是重要的,因為對於相同的電流,與導體圓周相切的磁通密度在直徑較小的導體中比在直徑較大的導體中要高。因此,通過至少知道絕緣線的直徑的估計,非接觸式電流測量系統102可通過考慮該線的直徑對所感測的磁場與在該線中流動的電流之間的關係的影響而更準確地確定流過絕緣線的電流。
如下面參考圖6進一步討論的,使用來自磁場傳感器116的數據和來自位置反饋傳感器128和/或參考信號傳感器的直徑或線徑數據,非接觸式電流測量系統102的至少一個處理器可以準確地確定流過絕緣線106的電流的至少一個特性(例如,大小、頻率)。此類信息被存儲在非接觸式電流測量系統的非暫態處理器可讀存儲介質中,可經由用戶界面114的顯示器呈現給用戶和/或通過有線或無線通信接口被傳輸到獨立的裝置。
雖然所示非接觸式電流測量系統102包括磁場傳感器116,但是應當理解,在其他具體實施中,非接觸式電流測量系統可包括各種其他類型的磁場傳感器(例如,霍爾效應傳感器、羅戈夫斯基線圈、電流變壓器等),這些傳感器能夠感測由電流產生的磁場而不需要與待測線電流接觸。
如下面進一步討論的,在至少一些具體實施中,非接觸式測量系統102可在電流測量期間利用操作者104和接地端128之間的體電容(CB)。儘管術語“接地端”用於節點128,但是該節點不一定是地球/地面,而是可以通過電容耦合以電流隔離的方式連接到任何其他參考電位。
圖3示出了具有與非接觸式電流測量系統102不同的形狀因數的非接觸式電流測量系統300的前方正視圖。非接觸式電流測量系統300可在許多方面與上文所討論的非接觸式電流測量系統102相似或相同。因此,關於非接觸式電流測量系統102的特徵的上述討論中的一些或全部也可 應用於非接觸式電流測量系統300。
非接觸式電流測量系統300包括具有前端304和與該前端相對的握持部分或端部306的外殼302。外殼302包括被定位在外殼的表面上的用戶界面308(例如,顯示器、按鈕)。前端304包括電流傳感器312(例如,磁場傳感器)、可選的參考信號傳感器313以及用於抓握絕緣線(例如,圖1、圖2A和圖2B的絕緣線106)的可伸縮夾爪或夾持構件314。下面參考圖7A至圖21進一步討論各種參考信號傳感器的操作。前端304包括與電流傳感器312相鄰的前端表面316,並且夾持構件314包括與前端表面316相對的夾持表面318。為了進一步提高電流測量精度,在夾持構件314中可使用第二磁場傳感器。電流傳感器312和位於夾持構件314中的附加傳感器之間的平均信號可用於電流計算。另外,兩個傳感器之間超過極限的差可用於識別由外部雜散電流引起的不可靠情况,或被夾持在夾持構件314和316之間的不正確定位的線。在使用中,可將絕緣線夾持在前端表面316和夾持表面318之間,以將絕緣線定位成與電流傳感器312相鄰。夾持構件314以及本公開的其他夾持構件可以永久地附接到外殼302,或者可以選擇性地從外殼拆卸。非接觸式電流測量系統300還包括位置反饋傳感器320,並且可選地包括偏置構件322以將夾持構件314朝向外殼302偏置,以將絕緣線夾持在前端表面316和夾持表面318之間。關於圖6提供了適用於非接觸式電流測量系統300的電流傳感器和位置反饋傳感器的實施方案的 進一步討論。
圖4示出了具有與非接觸式電流測量系統102不同的形狀因數的非接觸式電流測量系統400的前方正視圖。非接觸式電流測量系統400可在許多方面與上文所討論的非接觸式電流測量系統相似或相同。因此,關於上述非接觸式電流測量系統的特徵的上述討論中的一些或全部也可以應用於非接觸式電流測量系統400。
非接觸式電流測量系統400包括具有前端404和與該前端相對的握持部分或端部406的外殼402。外殼402包括被定位在外殼的表面上的用戶界面408(例如,顯示器、按鈕、撥盤)。前端404包括電流傳感器412(例如,磁場傳感器)、可選的參考信號傳感器413以及用於抓握絕緣線(例如,圖1、圖2A和圖2B的絕緣線106)的可伸縮鈎或夾持構件414。前端404包括與電流傳感器412相鄰的前端表面416,並且夾持構件414包括與前端表面416相對的夾持表面418。在使用中,可將絕緣線夾持在前端表面416和夾持表面418之間,以將絕緣線定位成與電流傳感器412相鄰。夾持構件414可以永久地附接到外殼402,或者可以選擇性地從外殼拆卸。非接觸式電流測量系統400還包括位置反饋傳感器420,並且可選地包括偏置構件422以將夾持構件414朝向外殼402偏置,以將絕緣線夾持在前端表面416和夾持表面418之間。關於圖6提供可用於非接觸式電流測量系統400的電流傳感器和位置反饋傳感器的合適的實施方案。
圖5示出了具有與非接觸式電流測量系統102不同的形狀因數的非接觸式電流測量系統500的前方正視圖。非接觸式電流測量系統500可在許多方面與上文所討論的非接觸式電流測量系統相似或相同。因此,關於上述非接觸式電流測量系統的特徵的上述討論中的一些或全部也可以應用於非接觸式電流測量系統500。
非接觸式電流測量系統500包括具有前端504和與該前端相對的握持部分或端部506的外殼502。外殼502包括被定位在外殼的表面上的用戶界面508(例如,顯示器、按鈕、撥盤)。前端504包括電流傳感器512(例如,磁場傳感器)、可選的參考信號傳感器513以及用於握持絕緣線(例如,圖1、圖2A和圖2B的絕緣線106)的可伸縮鈎或夾持構件514。前端504包括與電流傳感器512相鄰的前端表面516,並且夾持構件514包括與前端表面516相對的夾持表面518。在使用中,可將絕緣線夾持在前端表面516和夾持表面518之間,以將絕緣線定位成與電流傳感器512相鄰。夾持構件514可以永久地附接到外殼502,或者可以選擇性地從外殼拆卸。非接觸式電流測量系統500還包括位置反饋傳感器520,並且可選地包括偏置構件522以將夾持構件514朝向外殼502偏置,以將絕緣線夾持在前端表面516和夾持表面518之間。下面的圖6提供適用於非接觸式電流測量系統500的電流傳感器和位置反饋傳感器的實施方案的額外討論。
圖6是提供非接觸式電流測量功能的非接觸式電流測 量系統或儀器600的示意性框圖。非接觸式電流測量系統600可與本文所討論的任何非接觸式電流測量系統相似或相同。
非接觸式電流測量系統600包括通信地耦接到處理器604的電流傳感器602(例如,磁場傳感器)。非接觸式電流測量系統600還包括可調節夾持組件606和操作性地耦接到可調節夾持組件和處理器604的位置反饋傳感器608。如上所述,位置反饋傳感器608生成指示可調節夾持組件606的位置的位置反饋傳感器信號,並且從所檢測到的位置確定被夾持在可調節夾持組件606中的絕緣線的直徑。處理器604從位置反饋傳感器608接收位置反饋傳感器信號。
電流傳感器602可以是任何合適的非接觸式電流傳感器,諸如磁場傳感器、霍爾效應傳感器等。電流傳感器602在操作中生成指示流過被夾持在可調節夾持組件606中的絕緣線的電流的至少一個特性的電流傳感器信號。例如,該至少一個特性可包括電流的大小或電流的頻率。在電流傳感器602是磁場傳感器的具體實施中,電流傳感器可生成磁場傳感器信號,該磁場傳感器信號指示由流過絕緣線的電流產生的磁場,該磁場可由處理器604分析以確定流過絕緣線的電流的至少一個特性。
可調節夾持組件606可與本文所討論的任何可調節夾持組件相似或相同。位置反饋傳感器608用於生成指示可調節夾持組件606的夾持位置的位置反饋傳感器信號,該位置反饋傳感器信號繼而指示由可調節夾持組件夾持的絕 緣線的直徑。位置反饋傳感器608可以是任何合適的位置傳感器,包括但不限於電阻傳感器、磁阻傳感器、霍爾效應傳感器、光學傳感器等。
處理器604可包括一個或多個邏輯處理單元,諸如一個或多個中央處理單元(CPU)、微處理器、數字信號處理器(DSP)、專用集成電路(ASIC)、現場可編程門陣列(FPGA)、微控制器、其他可編程電路、上述這些的組合等。通常,處理器604可通過支持指令的執行以及將數據讀取和寫入到一個或多個存儲裝置、I/O接口和通信系統來用作非接觸式電流測量系統600的計算中心。
非接觸式電流測量系統600還可以包括通信地耦接到存儲其上的指令或數據中的至少一者的處理器604的存儲器610。存儲器610可包括一個或多個固態存儲器,例如閃存存儲器或固態驅動器(SSD),所述一個或多個固態存儲器為非接觸式電流測量系統600提供計算機可讀指令、數據結構、程序模塊和其他數據的非易失性存儲。雖然未示出,但是非接觸式電流測量系統600可採用其他非暫態計算機或處理器可讀介質,例如硬盤驅動器、光盤驅動器或存儲卡介質驅動器。
非接觸式電流測量系統600可包括用戶界面612,該用戶界面可包括任何數量的輸入件613(例如,按鈕、撥盤、開關、觸摸傳感器、觸摸屏、觸發開關、選擇器、旋轉開關)和任何數量的輸出件614(例如,顯示器、LED、揚聲器、蜂鳴器)。顯示裝置的非限制性示例包括 液晶顯示器(LCD)裝置、發光二極管(LED)裝置和/或有機發光二極管(OLED)裝置。用戶界面612可包括觸摸屏,該觸摸屏可以是當前已知的或以後將開發的任何類型的觸摸屏。例如,觸摸屏可以是電容裝置、紅外裝置、電阻裝置或表面聲波(SAW)裝置。在非接觸式電流測量系統600包括顯示器的具體實施中,顯示器可呈現指示流過待測絕緣線的電流的至少一個特性(例如,大小、頻率)的讀數和/或波形。
在操作中,處理器604分別從位置反饋傳感器608和電流傳感器602接收傳感器信號,以獲得夾持位置和電流測量。如上所述,夾持位置測量指示待測絕緣線的直徑,並且電流傳感器信號可指示流過絕緣線的電流的至少一個特性(例如,大小)。如上所述,處理器604可利用此類測量來確定流過待測絕緣線的電流的至少一個特性,諸如流過絕緣線的電流的大小和/或頻率。
處理器604可提供所測量或所確定特性(例如,電流大小、電流頻率、絕緣線的直徑)中的一個或多個的讀數,並且可提供一個或多個特性的圖形表示。此類圖形表示可包括波形、諧波條形圖等。
為了與一個或多個基於處理器的外部裝置進行通信,非接觸式電流測量系統600可包括一個或多個有線和/或無線通信接口616。無線通信接口的非限制性示例包括Wi-Fi®、Bluetooth®、Bluetooth® Low Energy、ZigBee®、6LoWPAN®、Optical IR、Wireless HART等。有線通信接 口的非限制性示例包括USB®、以太網、PLC、HART、MODBUS、FireWire®、Thunderbolt®等。
除了向外部裝置發送數據之外,在至少一些具體實施中,非接觸式電流測量系統600可經由有線和/或無線通信接口616從外部裝置接收數據或指令(例如,控制指令)中的至少一者。
在至少一些具體實施中,非接觸式電流測量系統600可不包括顯示器,並且可以替代地用作傳感器以經由基於處理器的外部裝置遠程監控電氣設備。此類基於處理器的裝置可包括各種類型的裝置,諸如智能電話、平板電腦、膝上型計算機、可穿戴計算機、服務器、雲計算機等。基於處理器的外部裝置可包括顯示器,以呈現由非接觸式電流測量系統600在一段時間(例如,幾分鐘、幾小時、幾天、幾周)內採集到的數據。
在至少一些具體實施中,非接觸式電流測量系統可包括通信地耦接到處理器604的一個或多個附加電傳感器618。此類電傳感器618可包括能夠感測電壓的電壓傳感器、能夠感測電阻的電阻傳感器、能夠感測電容的電容傳感器等。在包括一個或多個附加傳感器618的此類具體實施中,非接觸式電流測量系統600可用作提供多種電特性(例如,電流、電壓、功率、電阻、電容)的萬用表。
在至少一些具體實施中,電傳感器618可包括參考信號傳感器,該參考信號傳感器用於檢測待測絕緣線的絕緣體的厚度。下面參考圖7-圖21進一步討論各種示例性參考 信號傳感器。在此類具體實施中,可調節夾持組件606和位置反饋傳感器608可用於確定絕緣導線的總直徑,並且參考信號傳感器618可利用下文進一步討論的參考信號方法來確定絕緣線的絕緣體的厚度。使用由可調節夾持組件606和位置反饋傳感器608確定的絕緣線的總直徑,以及由參考信號傳感器618確定的所確定的絕緣體厚度,非接觸式電流測量系統可以自動地確定絕緣線的導體的直徑,該直徑等於絕緣線的總直徑減去絕緣體厚度的兩倍。所確定的導體直徑然後可與所檢測的磁場一起使用,以確定流過絕緣線的電流的大小。
下面的討論提供了利用“參考信號”方法用於測量絕緣線的至少一個物理尺寸(例如,絕緣體厚度),而不需要絕緣線的導體和傳感器或電極(“參考信號傳感器”)之間的電流連接的系統和方法的示例。如上所述,在至少一些具體實施中,非接觸式電流測量系統可利用參考信號方法(具有或不具有機械位置反饋)來確定或估計絕緣線的一個或多個物理尺寸(例如,導體的直徑)。如下面所討論的,參考信號方法可以另外地或另選地用於測量絕緣導體或未絕緣的裸導體(例如,絕緣線)的交流(AC)電壓,而不需要導體和測試電極或探頭之間的電流連接。下面所公開的具體實施在本文中可稱為“參考信號型”傳感器或系統。
圖7A是環境700的示意圖,在該環境中包括參考信號型電壓傳感器或系統的非接觸式測量系統702可由操作者 704用於測量絕緣線706中存在的AC電流,而不需要非接觸式測量系統和線706之間的電流接觸。非接觸式測量702可包括上面所討論的非接觸式電流測量系統的部件和功能的一些或全部。圖7B是圖7A的非接觸式測量系統702的俯視圖,示出了非接觸式測量系統操作期間的各種電特性。非接觸式測量系統702包括外殼或主體708,該外殼或主體包括握持部分或端部710以及與該握持部分相對的探頭部分或端部712(在本文中也稱為前端)。外殼708還可以包括便於用戶與非接觸式測量系統702交互的用戶界面714。用戶界面714可包括任何數量的輸入件(例如,按鈕、撥盤、開關、觸摸傳感器)和任何數量的輸出件(例如,顯示器、LED、揚聲器、蜂鳴器)。非接觸式測量系統702還可以包括一個或多個有線和/或無線通信接口(例如,USB、Wi-Fi®、Bluetooth®)。
在至少一些具體實施中,如圖7B中最佳地示出,探頭部分712可包括由第一延伸部分和第二延伸部分718和720限定的凹部716。凹部716接納絕緣線706(參見圖7A)。絕緣線706包括導體722和圍繞導體722的絕緣體724。當絕緣線位於非接觸式測量系統702的凹部716內時,凹部716可包括接近絕緣線706的絕緣體724的參考信號傳感器或電極726。儘管為了清楚起見未示出,但傳感器726可設置在外殼708的內側,以防止傳感器和其他物體之間的物理接觸和電接觸。
如圖7A所示,在使用中,操作者704可抓握外殼708的 握持部分710並且將探頭部分712放置為接近絕緣線706,使得非接觸式測量系統702可準確測量該線中存在的電流,如上所述。雖然探頭端部712被示出為具有凹部716,但是在其他具體實施中,探頭部分712可被不同地配置。例如,在至少一些具體實施中,探頭部分712可包括可選擇性地可移動的夾具、鈎、包括傳感器的平坦或弓形表面、或允許非接觸式測量系統702的傳感器被定位成接近絕緣線706的其他類型的界面。上面參考圖1-圖6討論各種可調節夾持組件和位置反饋傳感器的示例。下面參考圖16-圖21討論各種探頭部分和傳感器的示例。
可能只在某些具體實施中使操作者的身體充當地面/接地參考。本文所討論的非接觸式測量功能不限於僅相對於地球測量的應用。外部參考可電容耦合至任何其他電位。例如,如果外部參考電容耦合至三相系統中的另一相,則測量相間電壓。一般來說,本文所討論的概念不限於僅使用連接到參考電壓和任何其他參考電位的體電容耦合來相對於地球為參考。
如下面進一步討論的,在至少一些具體實施中,非接觸式測量系統702可在測量期間利用操作者704和接地端728之間的體電容(CB)。儘管術語“接地端”用於節點728,但是該節點不一定是地球/地面,而是可以通過電容耦合以電流隔離的方式連接到任何其他參考電位。
下面參考圖8-圖21討論非接觸式測量系統702使用的特定系統和方法。
圖8示出了在圖7A和圖7B中也示出的非接觸式測量系統702的各種內部部件的示意圖。在該示例中,非接觸式測量系統702的導電傳感器726大體上為“V形”,並且被定位成接近待測絕緣線706且與絕緣線706的導體722電容耦合,從而形成傳感器耦合電容器(CO)。操控非接觸式測量系統702的操作者704具有對地體電容(CB)。因此,如圖7B和圖8所示,線722中的AC電壓信號(VO)通過串聯連接的耦合電容器(CO)和體電容(CB)生成絕緣導體電流分量或“信號電流”(IO)。在一些具體實施中,體電容(CB)還可以包括生成對地或對任何其他參考電位的電容的電流隔離的測試導線。
待測量的線722中的AC電壓(VO)具有與外部接地端728(例如,零線)的連接。非接觸式測量系統702本身也具有對接地端728的電容,該電容主要由當操作者704(圖7A)將非接觸式測量系統握在其手中時的體電容(CB)組成。電容CO和CB兩者形成導電迴路,並且該迴路中的電壓生成信號電流(IO)。信號電流(IO)由電容耦合至導電傳感器726的AC電壓信號(VO)生成,並且通過非接觸式測量系統的外殼708和對接地端728的體電容器(CB)回到外部接地端728。電流信號(IO)取决於非接觸式測量系統702的導電傳感器726和待測絕緣線706之間的距離、導電傳感器726的特定形狀,以及導體722的尺寸和電壓電平(VO)。
為了補償直接影響信號電流(IO)的距離方差和隨之而來的耦合電容(CO)方差,非接觸式測量系統702包括共模 參考電壓源730,該共模參考電壓源生成具有與信號電壓頻率(fo)不同的參考頻率(fR)的AC參考電壓(VR)。
為了減少或避免雜散電流,非接觸式測量系統702的至少一部分可由導電內部接地保護件或屏幕732圍繞,該導電內部接地保護件或屏幕使大部分電流流過與絕緣線706的導體722形成耦合電容器(CO)的導電傳感器726。內部接地保護件732可由任何合適的導電材料(例如,銅)形成,並且可以是實心的(例如,箔片)或者具有一個或多個開口(例如,網眼)。
此外,為了避免內部接地保護件732和外部接地端728之間的電流,非接觸式測量系統702包括導電參考屏蔽件734。參考屏蔽件734可由任何合適的導電材料(例如,銅)形成,並且可以是實心的(例如,箔片)或者具有一個或多個開口(例如,網眼)。共模參考電壓源730電耦合在參考屏蔽件734和內部接地保護件732之間,其產生用於非接觸式測量系統702的具有參考電壓(VR)和參考頻率(fR)的共模電壓。此類交流參考電壓(VR)驅動附加參考電流(IR)通過耦合電容器(CO)和體電容器(CB)。
圍繞導電傳感器726的至少一部分的內部接地保護件732保護導電傳感器免受AC參考電壓(VR)的直接影響,該直接影響會導致導電傳感器726和參考屏蔽件734之間的參考電流(IR)的不期望的偏移。如上所述,內部接地保護件732是用於非接觸式測量系統702的內部電子接地端738。在至少一些具體實施中,內部接地保護件732還圍繞非接 觸式測量系統702的電子器件中的一些或全部,以避免交流參考電壓(VR)耦合進電子器件。
如上所述,參考屏蔽件734用於將參考信號注入到輸入AC電壓信號(VO)上,並且作為第二功能,最小化保護件732對接地端728的電容。在至少一些具體實施中,參考屏蔽件734圍繞非接觸式測量系統702的外殼708中的一些或全部。在此類具體實施中,電子器件中的一些或全部參見參考共模信號,該信號還生成導電傳感器726和絕緣線706中的導體722之間的參考電流(IR)。在至少一些具體實施中,參考屏蔽件734中的唯一間隙可以是用於導電傳感器726的開口,該開口允許導電傳感器在非接觸式測量系統702的操作期間被定位成接近絕緣線706。
內部接地保護件732和參考屏蔽件734可提供圍繞非接觸式測量系統702的外殼708(見圖7A和圖7B)的雙層屏幕。參考屏蔽件734可設置在外殼708的外表面上,並且內部接地保護件732可用作內部屏蔽件或保護件。導電傳感器726通過保護件732屏蔽參考屏蔽件734,使得任何參考電流均由導電傳感器726和待測導體722之間的耦合電容器(CO)生成。
圍繞傳感器726的保護件732還減少了靠近傳感器的相鄰線的雜散影響。
如圖8所示,非接觸式測量系統702可包括作為反相電流-電壓轉換器工作的輸入放大器736。輸入放大器736具有同相端子,該同相端子電耦合至用作非接觸式測量系統 702的內部接地端738的內部接地保護件732。輸入放大器736的反相端子可以電耦合至導電傳感器726。反饋電路737(例如,反饋電阻器)還可以耦接在輸入放大器736的反相端子和輸出端子之間,以提供用於輸入信號調節的反饋和適當的增益。
輸入放大器736從導電傳感器726接收信號電流(IO)和參考電流(IR),並將所接收的電流轉換成指示輸入放大器的輸出端子處的導電傳感器電流的傳感器電流電壓信號。該傳感器電流電壓信號可例如是模擬電壓。該模擬電壓可被饋送到信號處理模塊740,如下文進一步討論的,該信號處理模塊處理傳感器電流電壓信號以估計或確定絕緣線706的絕緣層724的厚度和/或確定絕緣線706的導體722中的AC電壓(VO)。如上所述,絕緣線706的絕緣層724的所確定厚度可至少部分地用於估計或確定導體722的至少一個物理尺寸(例如,直徑),該至少一個物理尺寸可與磁場測量一起使用來確定流過絕緣線的導體722的電流。信號處理模塊740可包括數字和/或模擬電路的任何組合。
非接觸式測量系統702還可以包括通信地耦接到信號處理模塊740的用戶界面742(例如,顯示器),以呈現所確定的電流和/或所確定的電壓(VO)或者以通過界面與非接觸式測量系統的操作者704進行通信。
圖9是示出非接觸式測量系統的各種信號處理部件的非接觸式測量系統900的框圖。圖10是圖9的非接觸式測量系統900的更詳細的圖。
非接觸式測量系統900可與上述非接觸式測量系統702相似或相同。因此,相似或相同的部件用相同的附圖標號標記。如圖所示,輸入放大器736將來自導電傳感器726的輸入電流(IO+IR)轉換成指示輸入電流的傳感器電流電壓信號。使用模數轉換器(ADC)902將傳感器電流電壓信號轉換成數字形式。
線722中的AC電壓(VO)與AC參考電壓(VR)相關,如等式(1):
Figure 106138276-A0305-02-0034-1
其中(IO)是由於導體722中的AC電壓(VO)而通過導電傳感器726的信號電流、(IR)是由於AC參考電壓(VR)而通過導電傳感器726的參考電流、(fO)是正在測量的AC電壓(VO)的頻率,並且(fR)是參考AC電壓(VR)的頻率。
與AC電壓(VO)相關的標記為“O”的信號具有和與共模參考電壓源730相關的標記為“R”的信號不同的特性,如頻率。在圖10的具體實施中,數字處理諸如實現快速傅里葉變換(FFT)算法906的電路可用於分離具有不同頻率的信號大小。在下面所討論的圖11的具體實施中,還可以使用模擬電子濾波器將“O”信號特性(例如,大小、頻率)與“R”信號特性分開。
電流(IO)和(IR)由於耦合電容器(CO)分別取决於頻率(fO)和(fR)。流過耦合電容器(CO)和體電容(CB)的電流與頻 率成比例,並且因此可能需要測量待測導體722中AC電壓(VO)的頻率(fO),以確定參考頻率(fR)與信號頻率(fO)的比率,該參考頻率在上面列出的等式(1)中被使用或者參考頻率是已知的,因為參考頻率是由系統本身生成的。
在輸入電流(IO+IR)已由輸入放大器736調節並由ADC 902數字化之後,可通過使用FFT 906表示頻域中的信號來確定數字傳感器電流電壓信號的頻率分量。當測量了頻率(fO)和(fR)兩者時,可確定頻率窗口,以計算來自FFT 906的電流(IO)和(IR)的基本大小。
電流(IR)和/或電流(IO)的大小可作為參考信號傳感器或電極(例如,電極726)與絕緣線706的導體722之間的距離的函數而變化。因此,系統可將所測量的電流(IR)和/或電流(IO)與期望的各個電流進行比較,以確定參考信號傳感器或電極與導體722之間的距離。由於在測量期間,絕緣電線706可(例如,經由可調節夾持組件)被定位成與參考信號傳感器或電極相鄰,參考信號傳感器和絕緣電線706的導體722之間的距離約等於絕緣層724的厚度。如上所述,操作性地耦接到可調節夾持組件的位置反饋傳感器提供絕緣線706的總直徑。因此,使用所確定的絕緣線的總直徑和所確定的絕緣層724的厚度,系統可以準確地確定絕緣線706內側導體722的直徑或線徑。該信息以及由磁場傳感器(例如,傳感器116、312、412或512)測量的磁場可被系統用於準確地確定流過絕緣線706內側導體722的電流的大小。
如框908所示,分別指定為IR,1和IO,1的電流(IR)和(IO)的基波諧波的比率可以通過所確定的頻率(fO)和(fR)來校正,並且該因數可用於通過在線722中添加諧波(VO)來計算所測量的原始基波或RMS電壓,這通過計算平方諧波和的平方根來完成,並且在具體實施中可在顯示器912上呈現給用戶,其中非接觸式測量系統還確定絕緣線706中的AC電壓。
耦合電容器(CO)通常可具有約0.02pF至1pF的範圍內的電容值,例如,取决於絕緣導體706和導電傳感器726之間的距離以及傳感器726的特定形狀和尺寸。體電容(CB)可例如具有約20pF至200pF的電容值。
從上述等式(1)可以看出,由共模參考電壓源730生成的AC參考電壓(VR)不需要處於與導體722中的AC電壓(VO)相同的範圍來實現信號電流(IO)和參考電流(IR)類似的電流大小。通過選擇相對較高的參考頻率(fR),AC參考電壓(VR)可能相對較低(例如,小於5V)。例如,參考頻率(fR)可以被選擇為3kHz,這比具有60Hz的信號頻率(fO)的典型的120V VRMS AC電壓(VO)高50倍。在此類情况下,可將AC參考電壓(VR)選擇為僅2.4V(即,120V÷50),以生成與信號電流(IO)相同的參考電流(IR)。通常,將參考頻率(fR)設置為信號頻率(fO)的N倍允許AC參考電壓(VR)具有線722中的AC電壓(VO)的(1/N)倍的值,以產生與彼此處於相同範圍中的電流(IR)和(IO),以實現IR和IO的類似不確定性。
可使用任何合適的信號發生器來生成具有參考頻率 (fR)的AC參考電壓(VR)。在圖9所示的示例中,使用Σ-△數模轉換器(Σ-△DAC)910。Σ-△DAC 910使用比特流來產生具有限定的參考頻率(fR)和AC參考電壓(VR)的波形(例如,正弦波形)信號。在至少一些具體實施中,Σ-△DAC 910可生成與FFT 906的窗口同相的波形以減少抖動。
在至少一些具體實施中,ADC 902可具有14位的分辨率。在操作中,對於標稱的50Hz輸入信號,ADC 902可以10.24kHz的採樣頻率對輸入放大器736的輸出進行採樣,以在100ms(FFT 906的10Hz窗口)中提供2n個樣本(1024)以準備好由FFT 906進行處理。對於60Hz的輸入信號,採樣頻率可例如為12.288kHz,以在每個周期獲得相同數量的樣本。ADC 902的採樣頻率可與參考頻率(fR)的全數周期同步。例如,輸入信號頻率可在40Hz至70Hz的範圍內。根據所測量的AC電壓(VO)的頻率,可使用FFT 906來確定AC電壓(VO)的窗口,並使用漢寧窗函數進行進一步的計算,以抑制由在聚合間隔中捕獲的不完整信號周期引起的相移抖動。
在一個示例中,共模參考電壓源730生成具有2419Hz的參考頻率(fR)的AC參考電壓(VR)。對於60Hz的信號,該頻率介於第40個諧波和第41個諧波之間,並且對於50Hz的信號,該頻率介於第48個諧波和第49個諧波之間。通過提供具有不是預期AC電壓(VO)的諧波的參考頻率(fR)的AC參考電壓(VR),AC電壓(VO)不太可能影響參考電流(IR)的測量。
在至少一些具體實施中,共模參考電壓源730的參考頻率(fR)被選擇為最不可能受到待測導體722中的AC電壓(VO)的諧波的影響的頻率。例如,當參考電流(IR)超過極限時(這可指示導電傳感器726正在接近待測導體722),可以關斷共模參考電壓源730。可在共模參考電壓源730被關斷的情况下進行測量(例如,100ms測量),以檢測一定數量(例如,三、五)的候選參考頻率處的信號諧波。然後,可在該數量的候選參考頻率處確定AC電壓(VO)中的信號諧波的大小,以識別哪個候選參考頻率可能受AC電壓(VO)的信號諧波的影響最小。然後可將參考頻率(fR)設置為所識別的候選參考頻率。參考頻率的這種切換可避免或減少信號頻譜中可能的參考頻率分量的影響,這種影響可增加所測量的參考信號並降低準確度,並且可能產生不穩定的結果。具有相同特性的除2419Hz以外的其他頻率包括例如2344Hz和2679Hz。
圖11是實現電子濾波器的非接觸式測量系統的信號處理部分1100的框圖。信號處理部分1100可從電流測量子系統(例如,輸入放大器736)接收與導電傳感器726電流成比例的傳感器電流電壓信號(IO+IR)。
如上所述,信號電流(IO)具有與參考電流(IR)不同的頻率。為了將信號電流(IO)與參考電流(IR)隔離開,信號處理部分1100可包括第一濾波器1102,該第一濾波器用於使信號電流(IO)通過並且拒絕參考電流(IR)。經過濾波的信號然後可由第一整流器1104整流,並由第一ADC 1106數字 化。經過數字化的信號可被饋送到合適的處理器1108以用於計算,如上所述。類似地,為了將參考電流(IR)與信號電流(IO)隔離開,信號處理部分1100可包括第二濾波器1110,該第二濾波器用於使參考電流(IR)通過並且拒絕信號電流(IO)。經過濾波的信號然後可由第二整流器1112整流,並由第二ADC 1114數字化。經過數字化的信號可被饋送到合適的處理器1108以用於計算。第一濾波器和第二濾波器1102和1110可以是任何合適的模擬濾波器,並且每一者可包括多個分立部件(例如,電容器、電感器)。
圖12是非接觸式測量系統的部分的示意性電路圖,諸如上面討論的任何非接觸式測量系統,示出了由共模參考電壓源730、體電容(CB)、耦合電容器(CO)、線722、外部接地端728和內部接地端738形成的迴路。
圖13A是示出各種泄漏和雜散電容的非接觸式測量系統702的示意圖。通常,即使採用複雜的屏蔽技術,通過特殊的傳感器設計和屏蔽方法也不能完全消除通過系統(例如,傳感器726)看到的不同雜散電容器的影響。如上所述,本公開的具體實施利用共模參考電壓源730來生成具有與所測量的信號頻率(fO)不同的參考頻率(fR)的參考電壓,以補償通過系統看到的雜散電容。
具體地講,除了耦合電容器(CO)之外,圖13A示出了體電容(CB)、電容(CX)、電容(C傳感器-參考)和電容(CG)。體電容(CB)與耦合電容器(CO)串聯,並且在典型的應用中,體電容(CB)遠大於耦合電容器(CO)。因此,體電容(CB)僅 影響電流(IO+IR)的大小,但不影響電流的比值(IO/IR)。
如圖13A和圖14所示,電容(CX)是導電傳感器726和外部接地端728之間的傳感器電容。耦合電容器(CO)不是線722和傳感器726之間唯一的電容。傳感器726和外部接地端728之間還有電容(CX),特別是對於基本上不覆蓋傳感器726的區域的細線。電容(CX)對於信號電流(IO)具有電容分壓效應,並且可導致AC電壓(VO)的較低電壓測量。因此電容(CX)降低電流(IO+IR)的大小。然而,參考電流(IR)除以相同的比值,因此還補償雜散電容器(CX),因此比值(IO/IR)不受影響。還為了避免任何內部電流流到非接觸式測量系統之外,如上文至少在一些具體實施中所討論的,除了感測區域之外的整個測量系統可以被參考屏蔽件734與外部環境屏蔽,並且被連接到共模參考電壓源730的輸出端以產生參考電流(IR)。
如圖13A所示,電容(C傳感器-參考)是參考屏蔽件734與導電傳感器726之間的剩餘電容。電容(C傳感器-參考)導致傳感器電流(IO+IR)的偏移,即使不測量線706中的AC電壓(VO)也存在該傳感器電流。
如圖13A和圖15A所示,電容(CG)是內部接地端738與外部接地端728或參考電位之間的電容。電容(CG)是參考電流(IR)的並聯支路,並且減小參考電流。因此,電容(CG)導致線706中的AC電壓(VO)的計算結果的增大。參見圖15B,其示出了電容(CG)的影響。具體地講,電容(CG)對IR和IO有不同的影響,並且因此影響比值IO/IR
Figure 106138276-A0305-02-0041-2
Figure 106138276-A0305-02-0041-3
Figure 106138276-A0305-02-0041-4
Figure 106138276-A0305-02-0041-5
從上面的等式(2)-(5)可以看出,IO/IR的比值取决於CB/CG。當參考屏幕圍繞非接觸式測量系統702的整個殼體和傳感器時,電容CG小得多。
圖13B示出了通過使用反向參考信號(-VR)以及將該反向參考信號耦合到傳感器726的布置,提供補償參考電壓(VR)對傳感器726的影響的具體實施。圖13C示出了包括反向參考信號補償的示例性傳感器布置。
在圖13B中,可調節反相放大器741用於向傳感器726提供反向參考信號(-VR),以補償參考電壓(+VR)對傳感器的影響。這可通過被定位成接近傳感器726的電容耦合(CC)來實現。電容耦合(CC)可以是被定位成接近傳感器的線、屏幕、屏蔽件等的形式。當絕緣導體706具有相對較小的直徑時,補償可能是特別有利的,因為在此類情况下,來自參考屏蔽件734的參考電壓(VR)可能對傳感器726 具有最大的影響。
圖13C示出了用於提供上述參考信號補償的具體實施中的示例性傳感器布置739。傳感器布置739包括傳感器739a、絕緣層739b(例如,Kapton®帶)、內部接地保護件739c、反向參考信號層739d(-VR)、絕緣層739e,以及參考信號層739f(+VR)。
圖16是用於非接觸式測量系統(諸如,上述任何非接觸式測量系統)的示例性傳感器和保護組件1600的透視圖。在該示例中,傳感器和保護組件1600包括導電傳感器1602、內部接地保護件1604以及設置在傳感器和內部接地保護件之間的隔離層1606。通常,傳感器組件1600應當在傳感器1602和待測線之間提供良好的耦合電容(CO),並且應該抑制對其他相鄰導線的電容和對外部接地端的電容。傳感器組件1600還應該使傳感器1602和參考屏蔽件(例如,參考屏蔽件734)之間的電容(C傳感器-參考)最小化。
作為一個簡單的示例,傳感器1602、保護件1604和隔離層1606可各自包括一片箔。保護件1604可耦接到載體(參見圖17),隔離層1606(例如,Kapton®帶)可耦接到保護件,並且傳感器1602可耦接到隔離層。
圖17示出了非接觸式測量系統的探頭或前端1700的傳感器實現的示例的剖視圖,該非接觸式測量系統的探頭或前端包括覆蓋傳感器組件1600以避免傳感器組件和任何物體之間的直接電流接觸的外殼層1702(例如,塑料)。前端1700可與圖7A和圖7B中所示的非接觸式測量系統702的 前端712相似或相同。在該圖示中,包括傳感器1602、保護件1604和隔離層1606的傳感器組件1600的形狀為“U”或“V”形,以允許傳感器組件1600圍繞不同直徑的絕緣線,以增加耦合電容(CO),並且通過保護件更好地屏蔽相鄰的導電物體。
在圖17所示的示例中,傳感器組件1600成形為適應各種直徑的絕緣線,諸如具有相對較大直徑的絕緣線1704或具有相對較小直徑的絕緣線1706。在每種情况下,當線被定位在前端1700的凹部1708中時,傳感器組件1600基本上圍繞該線。限定凹部1708並且位於傳感器組件1600和待測線之間的前端1700的壁可相對較薄(例如,1mm),以提供電流隔離,同時仍允許適當的電容耦合。由於凹部1708具有“V”形,因此較粗的線1704比較細的線1706具有更大的距離,以減小耦合電容的寬度範圍以及還將環境電容減小為與線直徑的獨立性下降。
圖18示出了非接觸式測量系統的弓形前端1800的正視圖。前端1800包括由第一延伸部分和第二延伸部分1804和1806限定的凹部1802。凹部1802包括相對較大的上部弓形部分1808,其接納具有相對較大直徑的絕緣線1810。凹部1802還包括相對較小的下部弓形部分1812,在部分1808下方,其接納具有相對較小直徑的絕緣線1814。可類似於圖16所示傳感器組件1600並且被部分1808和部分1812覆蓋的傳感器組件1816,可具有與弓形部分1808和1812基本吻合的形狀,使得傳感器組件1816基本上圍繞具有相對較大直 徑的線(例如,線1810)和具有相對較小直徑的線(例如,線1814)。
圖19是非接觸式測量系統的圓柱形前端1900的透視圖。在該示例中,前端1900包括圓柱形內部接地保護件1902,該圓柱形內部接地保護件具有側壁1904和可被定位成接近待測線的前表面1906。內部接地保護件1902的前表面1906包括中心開口1908。與待測線一起形成耦合電容器(CO)的導電傳感器1910被凹入在內部接地保護件1902的開口1908的後面,以避免與相鄰物體的電容耦合。例如,傳感器1910可從內部接地保護件1902的前表面1906凹入一定距離(例如,3mm)。
內部接地保護件1902的側壁1904可被圓柱形參考屏蔽件1912包圍,該圓柱形參考屏蔽件通過隔離層1914與內部接地保護件隔離。共模參考電壓源(例如,電壓源730)可被連接在內部接地保護件1902和參考屏蔽件1912之間以提供上述功能。
圖20A和圖20B示出了非接觸式測量系統的前端2000的俯視圖,並且圖21示出了前端的一部分的透視圖。在該示例中,前端2000包括內部接地保護件2002,該內部接地保護件包括前表面2004,待測線2006(圖21)可抵靠該前表面定位。前表面2004包括邊緣2007,在這種情况下為矩形,該邊緣限定了前表面中的開口2008。該小而長的矩形開口容納從側面看也具有較長而細的形狀的線形狀。這再次減少了相鄰線的影響,並且還較大地降低了與傳感器相 關的環境電容。這導致獨立於線尺寸的高準確度。與待測線形成耦合電容器(CO)的導電傳感器2010在內部接地保護件2002的前表面2004的開口2008後方凹入一定距離(例如,3mm)。
內部接地保護件2002還包括從前表面2004的側邊緣向前(朝向待測線)延伸的側壁2012和2014。該側壁降低傳感器雜散電容和直接參考信號耦合。內部接地保護件2002還可包括導電保護環夾具2016,該導電保護環夾具包括第一夾臂2016A和第二夾臂2016B。夾臂2016A和2016B可以選擇性地移動到如圖20B所示的打開位置,以允許待測線被定位成與內部接地保護件2002的前表面2004相鄰。一旦導線處於正確的位置,夾臂2016A和2016B可被選擇性地移動到如圖20A所示的閉合位置,以提供圍繞傳感器2010的屏蔽件來屏蔽與外部環境(例如,相鄰導體,相鄰物體)的電容。當處於閉合位置時,保護環夾具2016可基本上為例如具有在傳感器2010上方和下方延伸的高度的圓柱形形狀。夾臂2016A和2016B可使用任何合適的手動或自動致動子系統2018選擇性地移動。例如,夾臂2016A和2016B可通過用作致動系統2018的彈簧或其他偏置機構朝向閉合位置(圖20A)偏置,該偏置可由操作者克服而將夾臂移動到打開位置(圖20B),使得待測線可被定位成靠近內部接地保護件2002的前表面2004。
前述具體實施方式已通過使用框圖、示意圖和示例闡述了裝置和/或過程的各種具體實施。在此類框圖、示意 圖和示例包含一個或多個功能和/或操作的情况下,本領域的技術人員將會理解,可通過廣泛的硬件、軟件、固件或幾乎其任何組合來單獨地和/或共同地實現此類框圖、流程圖或示例內的每個功能和/或操作。在一個具體實施中,本主題可經由專用集成電路(ASIC)來實現。然而,本領域的技術人員將認識到,本文公開的具體實施可全部或部分地在標準集成電路中被等同實現為在一個或多個計算機上運行一個或多個計算機程序(例如,在一個或多個計算機系統上運行一個或多個程序)、在一個或多個控制器(例如,微控制器)上運行一個或多個程序、在一個或多個處理器(例如,微處理器)上運行一個或多個程序、固件或幾乎其任何組合,並且鑒於本公開,為軟件和/或固件設計電路和/或編寫代碼將完全在本領域的普通技術人員的技能內。
本領域的技術人員將認識到,本文提出的方法或算法中的許多方法或算法可採用另外的動作,可省去某些動作,並且/或者可以與指定順序不同的順序來執行動作。例如,在至少一些具體實施中,非接觸式電流測量系統可以不利用處理器來執行指令。例如,非接觸式電流測量系統可以是硬線的,以提供本文討論的功能中的一些或全部功能。另外地,在至少一些具體實施中,非接觸式電流測量系統可以不利用處理器來引起或發起本文所討論的不同功能。
此外,本領域的技術人員將理解,本文示教的機構能 夠作為各種形式的程序產品分配,並且不管用於事實上實行分配的信號承載介質的特定類型如何,例示性具體實施同樣適用。信號承載介質的示例包括但不限於以下:可記錄型介質諸如軟盤、硬盤驅動器、CD ROM、數字磁帶和計算機存儲器。
600‧‧‧非接觸式電流測量系統
602‧‧‧電流傳感器
604‧‧‧處理器
606‧‧‧可調節夾持組件
608‧‧‧位置反饋傳感器
610‧‧‧存儲器
612‧‧‧用戶界面
613‧‧‧輸入件
614‧‧‧輸出件
616‧‧‧有線和/或無線通信接口
618‧‧‧電傳感器

Claims (30)

  1. 一種非接觸式電流測量系統,包括:滑塊夾持組件,所述滑塊夾持組件具有夾持構件和第一夾持表面,所述滑塊夾持組件可調節以選擇性地將絕緣線夾持並定位在所述夾持構件和所述第一夾持表面之間的限定位置處;位置反饋傳感器,所述位置反饋傳感器在操作中感測所述夾持構件的延伸,確定被夾持在所述滑塊夾持組件中的所述絕緣線的直徑,和生成指示所述絕緣線的所述直徑的位置反饋傳感器信號;磁場傳感器,所述磁場傳感器被定位成接近所述滑塊夾持組件,其中所述磁場傳感器在操作中檢測流過所述絕緣線的電流所生成的磁場,和生成磁場傳感器信號,所述磁場傳感器信號指示流過所述絕緣線的所述電流的至少一個特性;和至少一個處理器,所述至少一個處理器通信地耦接到所述位置反饋傳感器和所述磁場傳感器,其中所述至少一個處理器在操作中:從所述位置反饋傳感器接收所述位置反饋傳感器信號;基於所述位置反饋傳感器信號確定被夾持在所述滑塊夾持組件中的所述絕緣線的夾持位置,其中所述夾持位置指示所述絕緣線的所述直徑; 從所述磁場傳感器接收所述磁場傳感器信號;並且透過考慮所述絕緣線的所述直徑對所述磁場和在所述絕緣線中流過的所述電流之間的關係的影響,至少部分地基於所述位置反饋傳感器信號和所述磁場傳感器信號來確定流過所述絕緣線的所述電流的至少一個特性。
  2. 根據請求項1所述的非接觸式電流測量系統,其中所述滑塊夾持組件包括第二夾持表面,其中所述第二夾持表面面向所述第一夾持表面,並且所述第一夾持表面或所述第二夾持表面中的至少一者可在朝向和遠離所述第一夾持表面或所述第二夾持表面中的另一者的方向上移動,以將所述絕緣線選擇性地夾持在所述第一夾持表面和所述第二夾持表面之間的所述限定位置處。
  3. 根據請求項2所述的非接觸式電流測量系統,其中所述第一夾持表面包括所述非接觸式電流測量系統的外殼的前端的前端表面,並且所述第二夾持表面設置在所述夾持構件上。
  4. 根據請求項3所述的非接觸式電流測量系統,其中所述磁場傳感器被定位成接近所述外殼的所述前端的所述前端表面。
  5. 根據請求項1所述的非接觸式電流測量系統,其中所 述位置反饋傳感器生成指示所述滑塊夾持組件的線性位置的位置反饋信號。
  6. 根據請求項1所述的非接觸式電流測量系統,其中所述夾持構件是第一夾持部分,且所述滑塊夾持組件包括具有所述第一夾持表面的所述第一夾持部分和具有面向所述第一夾持表面的第二夾持表面的第二夾持部分,並且所述非接觸式電流測量系統還包括偏置構件將所述第一夾持部分朝向所述第二夾持部分偏置。
  7. 根據請求項6所述的非接觸式電流測量系統,其中所述第一夾持表面或所述第二夾持表面中的至少一者作為所述磁場傳感器的屏蔽件工作。
  8. 根據請求項1所述的非接觸式電流測量系統,還包括操作性地耦接到所述至少一個處理器的用戶界面,其中所述至少一個處理器在操作中使所述用戶界面顯示流過所述絕緣線的所述電流的所述至少一個特性。
  9. 根據請求項1所述的非接觸式電流測量系統,其中流過所述絕緣線的所述電流的所述至少一個特性包括流過所述絕緣線的所述電流的大小。
  10. 根據請求項1所述的非接觸式電流測量系統,其中所 述位置反饋傳感器包括電阻傳感器、磁阻傳感器、霍爾效應傳感器、電容傳感器、感應傳感器或光學傳感器。
  11. 根據請求項1所述的非接觸式電流測量系統,還包括:參考信號型傳感器,所述參考信號型傳感器在操作中感測所述絕緣線中的參考信號而不與所述絕緣線電流接觸,其中所述至少一個處理器在操作中接收所述參考信號,並且至少部分地基於所述參考信號來確定流過所述絕緣線的所述電流的所述至少一個特性。
  12. 根據請求項11所述的非接觸式電流測量系統,其中所述至少一個處理器在操作中至少部分地基於所述參考信號進一步確定所述絕緣線內側導體的至少一個物理尺寸,其中所述至少一個物理尺寸指示所述導體和所述磁場傳感器之間的距離。
  13. 根據請求項11所述的非接觸式電流測量系統,其中所述至少一個處理器在操作中至少部分地基於所述參考信號和所述位置反饋傳感器信號,進一步確定所述絕緣線內側導體的至少一個物理尺寸。
  14. 根據請求項1所述的非接觸式電流測量系統,其中流 過所述絕緣線的所述電流的所述至少一個特性包括流過所述絕緣線的所述電流的大小或頻率中的至少一個。
  15. 一種測量絕緣線中的電流而不與所述絕緣線中的導體電流接觸的方法,所述方法包括:經由滑塊夾持組件將所述絕緣線夾持在第一夾持表面和第二夾持表面之間;確定所述第一夾持表面和所述第二夾持表面之間的夾持距離,其中所述夾持距離指示被夾持在所述第一夾持表面和所述第二夾持表面之間的所述絕緣線的直徑;經由被定位成接近被夾持在所述第一夾持表面和所述第二夾持表面之間的所述絕緣線的磁場傳感器,感測由流過所述絕緣線的電流生成的磁場,所述磁場表示流過所述絕緣線的所述電流的至少一個特性;以及透過考慮所述絕緣線的所述直徑對所述磁場和在所述絕緣線中流過的所述電流之間的關係的影響,至少部分地基於所述夾持距離和由流過所述絕緣線的所述電流生成的所述磁場,經由至少一個處理器確定流過所述絕緣線的所述電流的所述至少一個特性。
  16. 根據請求項15所述的方法,其中所述第一夾持表面包括外殼的前端的前端表面,並且所述第二夾持表面包括所述滑塊夾持組件的相對於所述前端表面可移動的夾持構件的表面。
  17. 根據請求項16所述的方法,其中感測由流過所述絕緣線的所述電流產生的磁場包括經由所述磁場傳感器感測所述磁場,並且所述磁場傳感器被定位成接近所述外殼的所述前端的所述前端表面。
  18. 根據請求項15所述的方法,其中將確定所述夾持距離包括確定所述滑塊夾持組件的線性位置。
  19. 根據請求項15所述的方法,其中所述第一夾持表面被定位在第一夾持部分上,並且所述第二夾持表面被定位在第二夾持部分上,並且所述方法還包括將所述第一夾持部分朝向所述第二夾持部分偏置。
  20. 根據請求項15所述的方法,還包括:經由用戶界面顯示流過所述絕緣線的所述電流的所述至少一個特性。
  21. 根據請求項15所述的方法,其中確定流過所述絕緣線的所述電流的所述至少一個特性包括確定流過所述絕緣線的所述電流的大小。
  22. 根據請求項15所述的方法,還包括:經由被定位在外殼中的參考信號型傳感器感測所述絕 緣線中的參考信號,而不與所述絕緣線電流接觸;以及至少部分地基於所述參考信號,經由所述至少一個處理器確定流過所述絕緣線的所述電流的所述至少一個特性。
  23. 根據請求項22所述的方法,還包括:至少部分地基於所述參考信號,經由所述至少一個處理器進一步確定所述絕緣線內側導體的至少一個物理尺寸。
  24. 根據請求項22所述的方法,還包括:至少部分地基於所述參考信號和所述夾持距離,經由所述至少一個處理器進一步確定所述絕緣線內側導體的至少一個物理尺寸。
  25. 根據請求項15所述的方法,其中流過所述絕緣線的所述電流的所述至少一個特性包括流過所述絕緣線的所述電流的大小或頻率中的至少一個。
  26. 一種非接觸式電流測量系統,包括:外殼,所述外殼包括具有前端表面的前端部分;夾持構件,所述夾持構件具有面向所述前端表面的夾持構件表面,其中所述夾持構件可相對於所述前端表面延伸,以將絕緣線選擇性地夾持在所述前端表面和所述夾持 構件表面之間;位置反饋傳感器,所述位置反饋傳感器感測所述夾持構件的延伸,確定夾持在所述前端表面和所述夾持構件表面之間的所述絕緣線的直徑,且所述位置反饋傳感器生成指示所述夾持構件的位置的位置反饋傳感器信號;電流傳感器,所述電流傳感器被定位成接近所述外殼的所述前端表面,其中所述電流傳感器在操作中生成電流傳感器信號,所述電流傳感器信號指示流過被夾持在所述前端表面和所述夾持構件表面之間的所述絕緣線的電流的至少一個特性;和至少一個處理器,所述至少一個處理器通信地耦接到所述位置反饋傳感器和所述電流傳感器,其中所述至少一個處理器在操作中:從所述位置反饋傳感器接收所述位置反饋傳感器信號;基於所述位置反饋傳感器信號確定被夾持在前端表面和所述夾持構件表面之間的所述絕緣線的夾持位置,其中所述夾持位置指示所述絕緣線的所述直徑;從所述電流傳感器接收所述電流傳感器信號;以及透過考慮所述絕緣線的所述直徑對所述電流傳感器生成的所述電流傳感器信號與所述絕緣線中流過的所述電流之間的關係的影響,至少部分地基於所接收的位置反饋信號和所述電流傳感器信號來確定流過所述絕緣線的所述電流的所述至少一個特性。
  27. 根據請求項26所述的非接觸式電流測量系統,其中所述電流傳感器包括磁場傳感器。
  28. 根據請求項26所述的非接觸式電流測量系統,還包括操作性地耦接到所述至少一個處理器的顯示器,其中所述至少一個處理器在操作中使所述顯示器呈現流過所述絕緣線的所述電流的大小或頻率。
  29. 根據請求項26所述的非接觸式電流測量系統,其中所述位置反饋傳感器包括電阻傳感器、磁阻傳感器、霍爾效應傳感器或光學傳感器。
  30. 根據請求項26所述的非接觸式電流測量系統,其中流過所述絕緣線的所述電流的所述至少一個特性包括流過所述絕緣線的所述電流的大小或頻率中的至少一個。
TW106138276A 2016-11-11 2017-11-06 非接觸式電流測量系統 TWI751219B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662421124P 2016-11-11 2016-11-11
US62/421,124 2016-11-11
US15/604,320 US10591515B2 (en) 2016-11-11 2017-05-24 Non-contact current measurement system
US15/604,320 2017-05-24

Publications (2)

Publication Number Publication Date
TW201830034A TW201830034A (zh) 2018-08-16
TWI751219B true TWI751219B (zh) 2022-01-01

Family

ID=60301947

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106138276A TWI751219B (zh) 2016-11-11 2017-11-06 非接觸式電流測量系統

Country Status (5)

Country Link
US (2) US10591515B2 (zh)
EP (1) EP3321700B1 (zh)
JP (1) JP7166750B2 (zh)
CN (2) CN114545056A (zh)
TW (1) TWI751219B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10591515B2 (en) * 2016-11-11 2020-03-17 Fluke Corporation Non-contact current measurement system
US10742213B2 (en) * 2017-06-20 2020-08-11 Lumitex, Inc. Non-contact proximity sensor
US11067641B2 (en) 2019-07-22 2021-07-20 Fluke Corporation Measurement device and operating methods thereof for power disturbance indication
CN110596527B (zh) * 2019-08-05 2022-02-18 深圳华物信联科技有限公司 非接触式交流线监测装置及方法
US11112433B2 (en) * 2019-08-08 2021-09-07 Fluke Corporation Non-contact electrical parameter measurement device with clamp jaw assembly
EP3862761B1 (en) 2020-02-05 2024-04-24 Fluke Corporation Sensor probe with clamp having adjustable interior region for non-contact electrical measurement
CN113219231A (zh) 2020-02-05 2021-08-06 弗兰克公司 具有可调尺寸罗戈夫斯基线圈的非接触式电压测量
EP3896464B1 (en) * 2020-04-17 2024-06-12 Fluke Corporation Measurement devices with visual indication of detected electrical conditions
DE102020111411B4 (de) * 2020-04-27 2024-08-01 Arcus Elektrotechnik Alois Schiffmann Gmbh Kapazitiver spannungsprüfer
CN113899929B (zh) * 2021-10-12 2023-10-13 广西电网有限责任公司柳州供电局 一种用于长距离检测的安全万用表装置
CN114659540B (zh) * 2022-03-29 2024-02-06 电子科技大学 基于磁偏置结构的高灵敏度声表面波矢量磁场传感系统
WO2023195997A1 (en) * 2022-04-09 2023-10-12 Tim Suleymanov Sensor device and method for non-iinvasive monitoring of energy consumptiion usage
CN117706168A (zh) * 2023-12-25 2024-03-15 扬州市苏中电力设备有限公司 一种高压电流测试仪

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130147464A1 (en) * 2011-12-07 2013-06-13 Brymen Technology Corporation Clamp meter with multipoint measurement
CN103645369A (zh) * 2013-11-15 2014-03-19 无锡乐尔科技有限公司 一种电流传感装置
US20140103905A1 (en) * 2011-02-17 2014-04-17 Outsmart Power Systems, Llc Energy monitoring device
US20140132248A1 (en) * 2012-11-14 2014-05-15 Alps Green Devices Co., Ltd. Current sensor

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4709339A (en) 1983-04-13 1987-11-24 Fernandes Roosevelt A Electrical power line parameter measurement apparatus and systems, including compact, line-mounted modules
JPH03295409A (ja) * 1990-04-12 1991-12-26 Nippon Steel Corp 金属管表面塗膜の非接触式厚み測定方法
US5473244A (en) 1992-09-17 1995-12-05 Libove; Joel M. Apparatus for measuring voltages and currents using non-contacting sensors
JPH06222087A (ja) 1993-01-27 1994-08-12 Hamamatsu Photonics Kk 電圧検出装置
US5973501A (en) 1993-10-18 1999-10-26 Metropolitan Industries, Inc. Current and voltage probe for measuring harmonic distortion
GB2312043B (en) * 1996-04-12 2000-07-05 Beta Instr Co Thickness measuring device
JP3628487B2 (ja) * 1997-06-17 2005-03-09 住友電工スチールワイヤー株式会社 被覆より線の膜厚測定機
US6043640A (en) 1997-10-29 2000-03-28 Fluke Corporation Multimeter with current sensor
US6118270A (en) 1998-02-17 2000-09-12 Singer; Jerome R. Apparatus for fast measurements of current and power with scaleable wand-like sensor
IL127699A0 (en) 1998-12-23 1999-10-28 Bar Dov Aharon Method and device for non contact detection of external electric or magnetic fields
US6091237A (en) 1999-09-14 2000-07-18 Chen; Lee-Fei Three-phrase clamp-type power meter
JP3327899B2 (ja) * 2000-06-19 2002-09-24 共立電気計器株式會社 非接触式電流測定器
US6812685B2 (en) 2001-03-22 2004-11-02 Actuant Corporation Auto-selecting, auto-ranging contact/noncontact voltage and continuity tester
JP3761470B2 (ja) 2001-04-04 2006-03-29 北斗電子工業株式会社 非接触電圧計測方法及び装置並びに検出プローブ
EP1495284B1 (de) * 2002-04-08 2010-12-22 Zumbach Electronic Ag Beruehrungsloses system und verfahren zur messung von zentrizitaet und durchmesser
CN1450352A (zh) * 2003-04-21 2003-10-22 阮诚龙 钳形直流电流表
US7164263B2 (en) * 2004-01-16 2007-01-16 Fieldmetrics, Inc. Current sensor
US7256588B2 (en) 2004-04-16 2007-08-14 General Electric Company Capacitive sensor and method for non-contacting gap and dielectric medium measurement
JP4611774B2 (ja) 2005-03-04 2011-01-12 東日本電信電話株式会社 非接触型電圧検出方法及び非接触型電圧検出装置
US7466145B2 (en) 2005-10-12 2008-12-16 Hioki Denki Kabushiki Kaisha Voltage measuring apparatus and power measuring apparatus
JP4607753B2 (ja) 2005-12-16 2011-01-05 日置電機株式会社 電圧測定装置および電力測定装置
JP4607752B2 (ja) 2005-12-16 2011-01-05 日置電機株式会社 可変容量回路、電圧測定装置および電力測定装置
JP4713358B2 (ja) 2006-02-08 2011-06-29 日置電機株式会社 電圧検出装置
JP4648228B2 (ja) 2006-03-24 2011-03-09 日置電機株式会社 電圧検出装置および初期化方法
JP5106798B2 (ja) 2006-06-22 2012-12-26 日置電機株式会社 電圧測定装置
JP4726722B2 (ja) 2006-07-03 2011-07-20 日置電機株式会社 電圧測定装置
JP4726721B2 (ja) 2006-07-03 2011-07-20 日置電機株式会社 電圧測定装置
JP4629625B2 (ja) 2006-07-12 2011-02-09 日置電機株式会社 電圧測定装置
GB0614261D0 (en) 2006-07-18 2006-08-30 Univ Sussex The Electric Potential Sensor
JP2008215900A (ja) 2007-03-01 2008-09-18 Hitachi Mobile Co Ltd 非接触電流計及びその測定補助具
CN201007728Y (zh) * 2007-03-06 2008-01-16 吉林大学 阵列式巨磁阻抗效应电流传感器
JP5106909B2 (ja) 2007-04-10 2012-12-26 日置電機株式会社 線間電圧測定装置
JP4927632B2 (ja) 2007-04-13 2012-05-09 日置電機株式会社 電圧測定装置
JP5144110B2 (ja) 2007-04-13 2013-02-13 日置電機株式会社 電圧測定装置
US7461463B1 (en) * 2007-05-16 2008-12-09 Beta Lasermike, Inc. Eccentricity gauge for wire and cable and method for measuring concentricity
JP5160248B2 (ja) 2008-01-18 2013-03-13 日置電機株式会社 電圧検出装置
US20100090682A1 (en) 2008-02-14 2010-04-15 Armstrong Eric A Multi-Meter Test Lead Probe For Hands-Free Electrical Measurement of Control Panel Industrial Terminal Blocks
US8222886B2 (en) 2008-06-18 2012-07-17 Hioki Denki Kabushiki Kaisha Voltage detecting apparatus and line voltage detecting apparatus having a detection electrode disposed facing a detected object
JP5389389B2 (ja) 2008-07-22 2014-01-15 日置電機株式会社 線間電圧測定装置およびプログラム
US7746055B2 (en) * 2008-10-10 2010-06-29 Consolidated Edison Company Of New York, Inc. Current measuring device
US20100244868A1 (en) * 2009-03-26 2010-09-30 Tektronix, Inc. Wireless Clamp-on Current Probe
CN101881791B (zh) 2009-04-30 2015-08-05 日置电机株式会社 电压检测装置
JP5340817B2 (ja) 2009-06-11 2013-11-13 日置電機株式会社 電圧検出装置
US8330449B2 (en) 2009-07-20 2012-12-11 Fluke Corporation Clamp-on multimeters including a Rogowski coil for measuring alternating current in a conductor
CN102656471B (zh) * 2009-08-26 2015-04-01 松下电器产业株式会社 磁场传感器、使用其的磁场测定方法、电力测量装置及电力测量方法
JP5420387B2 (ja) 2009-12-09 2014-02-19 日置電機株式会社 電圧検出装置
WO2011090167A1 (ja) 2010-01-21 2011-07-28 パナソニック電工株式会社 通電情報計測装置
US8461824B2 (en) * 2010-06-07 2013-06-11 Infineon Technologies Ag Current sensor
JP5474707B2 (ja) 2010-08-30 2014-04-16 日置電機株式会社 電圧検出装置用の検出回路および電圧検出装置
US8680845B2 (en) 2011-02-09 2014-03-25 International Business Machines Corporation Non-contact current and voltage sensor
US9063184B2 (en) 2011-02-09 2015-06-23 International Business Machines Corporation Non-contact current-sensing and voltage-sensing clamp
JP5834663B2 (ja) 2011-04-06 2015-12-24 富士通株式会社 交流電力測定装置
JP5834292B2 (ja) 2011-05-09 2015-12-16 アルプス・グリーンデバイス株式会社 電流センサ
JP2013053903A (ja) * 2011-09-02 2013-03-21 Alps Green Devices Co Ltd 電流センサ
CN103134971B (zh) * 2011-11-29 2015-10-21 思源电气股份有限公司 导体电流测量装置
CN204214925U (zh) 2012-03-16 2015-03-18 菲力尔系统公司 电传感器和电传感器标签
EP2682762A1 (en) * 2012-07-06 2014-01-08 Senis AG Current transducer for measuring an electrical current, magnetic transducer and current leakage detection system and method
US20140035607A1 (en) 2012-08-03 2014-02-06 Fluke Corporation Handheld Devices, Systems, and Methods for Measuring Parameters
JP5981270B2 (ja) 2012-08-28 2016-08-31 日置電機株式会社 電圧測定用センサおよび電圧測定装置
JP5981271B2 (ja) 2012-08-28 2016-08-31 日置電機株式会社 電圧測定用センサおよび電圧測定装置
US9007077B2 (en) 2012-08-28 2015-04-14 International Business Machines Corporation Flexible current and voltage sensor
JP6104578B2 (ja) 2012-11-30 2017-03-29 日置電機株式会社 検査装置および検査方法
US9791397B2 (en) * 2013-03-21 2017-10-17 Schleuniger Holding Ag Device for detecting contact of an electrical conductor by a tool
US9625535B2 (en) 2013-08-07 2017-04-18 Allegro Microsystems, Llc Systems and methods for computing a position of a magnetic target
JP6210938B2 (ja) 2014-06-18 2017-10-11 日置電機株式会社 非接触型電圧検出装置
US9689903B2 (en) 2014-08-12 2017-06-27 Analog Devices, Inc. Apparatus and methods for measuring current
TWI649568B (zh) 2014-10-17 2019-02-01 日商日置電機股份有限公司 Voltage detecting device
US10085808B2 (en) * 2015-12-31 2018-10-02 Biosense Webster (Israel) Ltd. Adjustable tracking sensor suitable for different rigid tools
US9791479B2 (en) * 2016-02-15 2017-10-17 Universal Enterprises, Inc. Slide closure current tester
US10591515B2 (en) * 2016-11-11 2020-03-17 Fluke Corporation Non-contact current measurement system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140103905A1 (en) * 2011-02-17 2014-04-17 Outsmart Power Systems, Llc Energy monitoring device
US20130147464A1 (en) * 2011-12-07 2013-06-13 Brymen Technology Corporation Clamp meter with multipoint measurement
US20140132248A1 (en) * 2012-11-14 2014-05-15 Alps Green Devices Co., Ltd. Current sensor
CN103645369A (zh) * 2013-11-15 2014-03-19 无锡乐尔科技有限公司 一种电流传感装置

Also Published As

Publication number Publication date
EP3321700A1 (en) 2018-05-16
JP2018105849A (ja) 2018-07-05
US20180136260A1 (en) 2018-05-17
US10591515B2 (en) 2020-03-17
EP3321700B1 (en) 2019-06-26
CN108072780A (zh) 2018-05-25
JP7166750B2 (ja) 2022-11-08
US11237192B2 (en) 2022-02-01
CN108072780B (zh) 2022-03-11
TW201830034A (zh) 2018-08-16
CN114545056A (zh) 2022-05-27
US20200191836A1 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
TWI751219B (zh) 非接觸式電流測量系統
TWI764953B (zh) 非接觸式測量系統及其方法
TWI744409B (zh) 使用參考信號的非接觸式電壓測量系統
TW201913112A (zh) 用於電壓測量裝置之校準系統
CN108072788B (zh) 用于非接触式电压测量装置的传感器子系统
TWI785078B (zh) 多階段測量裝置
US11112433B2 (en) Non-contact electrical parameter measurement device with clamp jaw assembly
US20240230722A1 (en) Non-contact electrical parameter measurement device with radial dual mounted sensors
TWI790376B (zh) 用於非接觸式電壓測量裝置之多感測器組態
TW202004196A (zh) 用於非接觸式電壓測量裝置之多感測器掃描器組態