TW202004196A - 用於非接觸式電壓測量裝置之多感測器掃描器組態 - Google Patents

用於非接觸式電壓測量裝置之多感測器掃描器組態 Download PDF

Info

Publication number
TW202004196A
TW202004196A TW108115397A TW108115397A TW202004196A TW 202004196 A TW202004196 A TW 202004196A TW 108115397 A TW108115397 A TW 108115397A TW 108115397 A TW108115397 A TW 108115397A TW 202004196 A TW202004196 A TW 202004196A
Authority
TW
Taiwan
Prior art keywords
sensor
current
signal
signal conditioning
sensor elements
Prior art date
Application number
TW108115397A
Other languages
English (en)
Other versions
TWI780327B (zh
Inventor
朗諾 史都爾
雷卡多 羅椎庫
Original Assignee
美商富克有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商富克有限公司 filed Critical 美商富克有限公司
Publication of TW202004196A publication Critical patent/TW202004196A/zh
Application granted granted Critical
Publication of TWI780327B publication Critical patent/TWI780327B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2506Arrangements for conditioning or analysing measured signals, e.g. for indicating peak values ; Details concerning sampling, digitizing or waveform capturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/22Tong testers acting as secondary windings of current transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/12Circuits for multi-testers, i.e. multimeters, e.g. for measuring voltage, current, or impedance at will
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/16Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using capacitive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0084Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/145Indicating the presence of current or voltage
    • G01R19/155Indicating the presence of voltage

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

提供用於測量絕緣導體之AC電壓的系統及方法,而無須導體與測試電極之間的流電連接。一種非流電接觸式電壓測量系統包括感測器子系統、內部接地防護件、及參考屏蔽。共同模式參考電壓源係電耦合在內部接地防護件與參考屏蔽之間以產生AC參考電壓,該AC參考電壓使參考電流通行通過導電感測器。控制電路系統接收指示由於AC參考電壓及絕緣導體中之AC電壓而使電流流動通過感測器子系統之信號,並且至少部分地基於所接收信號來判定絕緣導體中之AC電壓。感測器子系統包括複數個感測器,該複數個感測器經輪詢以在允許測量該導體之實體特性的同時補償導體位置。

Description

用於非接觸式電壓測量裝置之多感測器掃描器組態
本揭露大致上係關於電壓測量裝置,並且更具體地係關於用於電壓測量裝置之感測器。
伏特計係用於測量電路中電壓的儀器。測量超過一個電特性的儀器稱為萬用表或數位萬用表(digital multimeter, DMM),並且操作以測量大致上用於維修、故障排除及維護應用所需要的數個參數。此類參數一般包括交流(alternating current, AC)電壓及電流、直流(direct current, DC)電壓及電流、以及電阻或連續性(continuity)。亦可測量其他參數,諸如功率特性、頻率、電容及溫度以滿足特定應用的要求。
運用測量AC電壓的習知伏特計或萬用表,需要使至少兩個測量電極或探針與導體流電接觸(galvanic contact),這通常需要切斷絕緣導線之絕緣部分,或預先提供用於測量之終端。除了需要用於流電接觸的暴露導線或終端之外,使伏特計探針觸碰裸導線或終端的步驟亦會因為電擊或觸電風險而相對危險。「非接觸式」電壓測量裝置可用於偵測交流(AC)電壓之存在,而不需要與電路流電接觸。當偵測到電壓時,藉由指示(諸如光、蜂鳴器、或振動馬達)來警示使用者。然而,此等非接觸式電壓偵測器僅提供AC電壓之存在或不存在的指示,且不提供AC電壓之實際量值(例如,RMS值)的指示。
因此,需要一種AC電壓測量系統,其提供方便的且準確的電壓測量而不需要與受測電路流電接觸。
一種用於測量一絕緣導體中之交流(AC)的裝置可係概述成包括:一殼體;一感測器子系統,其實體耦合至該殼體,該感測器子系統可選擇性地定位成鄰近該絕緣導體而不流電接觸該導體,其中該感測器子系統與該絕緣導體電容耦合,該感測器子系統包括複數個感測器元件;一導電內部接地防護件,其至少部分地圍繞該感測器子系統並從該感測器子系統流電隔離,該內部接地防護件經定大小及尺寸以屏蔽該感測器子系統免於雜散電流;一導電參考屏蔽,其環繞該殼體的至少一部分並與該內部接地防護件流電絕緣,該導電參考屏蔽經定大小及尺寸以減少該內部接地防護件與一外部接地之間的電流;一共同模式參考電壓源,其在操作時產生具有一參考頻率的一交流(AC)參考電壓,該共同模式參考電壓源電耦合在該內部接地防護件及該導電參考屏蔽之間;信號調節電路系統,其在操作時產生指示傳導通過該感測器子系統之電流的一感測器電流信號;複數個可控制開關,該複數個開關之各者操作以選擇性電耦合該等感測器元件之一各別者至該信號調節電路系統;及控制電路系統,其通訊地耦合至該複數個開關及該信號調節電路系統,其中該控制電路系統在操作時:控制該複數個可控制開關以使該等感測器元件之一者電耦合至該信號調節電路系統;自該信號調節電路系統接收一感測器電流信號;及至少部分基於所接收之該感測器電流信號、該AC參考電壓、及該參考頻率判定該絕緣導體中之該AC電壓。
該複數個可控制開關之各者可係可控制至一第一狀態及一第二狀態中,其中該開關在該第一狀態中可電耦合該等感測器元件之一各別者至該信號調節電路系統,且該開關在該第二狀態中可電耦合該等感測器元件之一各別者至該內部接地防護件。該控制電路系統:針對該複數個感測器元件之各者:可控制電耦合至該感測器元件之該可控制開關將該感測器元件耦合至該信號調節電路系統;可控制其餘之該等可控制開關將其餘之該等感測器元件與該信號調節電路系統電性解耦;及可自該信號調節電路系統接收該感測器元件之一感測器電流信號;及可判定該複數個感測器元件之何者產生具有最大量值之一感測器電流信號,其中為了控制該複數個可控制開關以使該等感測器元件之一者電耦合至該信號調節電路系統,該控制電路系統可控制該複數個可控制開關以使經判定產生具有該最大量值之一感測器電流信號之該感測器元件電耦合至該信號調節電路系統。該控制電路系統:針對該複數個感測器元件之各者:可控制電耦合至該感測器元件之該可控制開關將該感測器元件耦合至該信號調節電路系統;可控制其餘之該等可控制開關將其餘之該等感測器元件與該信號調節電路系統電性解耦;及可自該信號調節電路系統接收該感測器元件之一感測器電流信號;及可至少部分基於該等感測器元件之各者之所接收之該等感測器電流信號來判定受測試之該導體之一實體特性。該實體特性可包括下列至少一者:受測試之該導體之一實體尺寸、或受測試之該導體之一實體位置。該控制電路系統可經由該等感測器元件之各者的所接收之該等感測器電流信號之一分布之分析來判定受測試之該導體之一實體特性。該信號調節電路系統可包括一放大器、一濾波器、或一類比轉數位轉換器之至少一者。該感測器子系統及該內部接地防護件形狀可各係非平面的。該控制電路系統:可將所接收之該感測器電流信號轉換成一數位信號;及可處理該數位信號以獲得該感測器電流信號之一頻域表示。該控制電路系統可實施一快速傅立葉變換(fast Fourier transform, FFT)以獲得該感測器電流信號之該頻域表示。該共同模式參考電壓源可產生與該控制電路系統實施之該FFT之一窗同相之該AC參考電壓。該控制電路系統可處理該感測器電流信號以判定一絕緣導體電流分量與一參考電流分量,該絕緣導體電流分量指示由於該絕緣導體中之該電壓而傳導通過該感測器元件之該電流,且該參考電流分量指示由於該共同模式參考電壓源之該電壓而傳導通過該感測器元件傳導之該電流。該控制電路系統可判定該感測器電流信號之所判定之該絕緣導體電流分量的該頻率。該控制電路系統可基於該絕緣導體電流分量判定該絕緣導體中之該AC電壓、該參考電流分量、該絕緣導體電流分量之該頻率、該參考頻率、及該AC參考電壓。
一種操作一裝置以測量在一絕緣導體中之交流(AC)電壓之方法可係概述成包括:一殼體;一感測器子系統,其實體耦合至該殼體,該感測器子系統可選擇性地定位成鄰近該絕緣導體而不流電接觸該導體,其中該感測器子系統與該絕緣導體電容耦合,該感測器子系統包括複數個感測器元件;一導電內部接地防護件,其至少部分地圍繞該感測器子系統並從該感測器子系統流電隔離,該內部接地防護件經定大小及尺寸以屏蔽該感測器子系統免於雜散電流;及一導電參考屏蔽,其環繞該殼體的至少一部分並與該內部接地防護件流電絕緣,該導電參考屏蔽經定大小及尺寸以減少該內部接地防護件與一外部接地之間的電流;該方法進一步包括:使一共同模式參考電壓源產生具有一參考頻率的一交流(AC)參考電壓,該共同模式參考電壓源電耦合在該內部接地防護件及該導電參考屏蔽之間;控制複數個可控制開關以使該等感測器元件之一者電耦合至該信號調節電路系統;自該信號調節電路系統接收一感測器電流信號;及至少部分基於所接收之該感測器電流信號、該AC參考電壓、及該參考頻率判定該絕緣導體中之該AC電壓。
該方法可進一步包括:針對該複數個感測器元件之各者:控制電耦合至該感測器元件之該可控制開關將該感測器元件耦合至該信號調節電路系統;控制其餘之該等可控制開關將其餘之該等感測器元件與該信號調節電路系統電性解耦;及自該信號調節電路系統接收該感測器元件之一感測器電流信號;及判定該複數個感測器元件之何者產生具有最大量值之一感測器電流信號,其中控制該複數個可控制開關以使該等感測器元件之一者電耦合至該信號調節電路系統可包括控制該複數個可控制開關以使經判定產生具有該最大量值之一感測器電流信號之該感測器元件電耦合至該信號調節電路系統。該方法可進一步包括:針對該複數個感測器元件之各者:控制電耦合至該感測器元件之該可控制開關將該感測器元件耦合至該信號調節電路系統;控制其餘之該等可控制開關將其餘之該等感測器元件與該信號調節電路系統電性解耦;及自該信號調節電路系統接收該感測器元件之一感測器電流信號;及至少部分基於該等感測器元件之各者之所接收之該等感測器電流信號來判定受測試之該導體之一實體特性。判定一實體特性可包括判定下列至少一者:該絕緣導體之一實體尺寸、或該絕緣導體之一實體位置。判定該絕緣導體之一實體特性可包括分析該等感測器元件之各者的所接收之該等感測器電流信號之一分布。
一種用於測量一絕緣導體中之交流(AC)的裝置可係概述成包括:一感測器子系統,其可選擇性地定位成鄰近該絕緣導體而不流電接觸該導體,其中該感測器子系統與該絕緣導體電容耦合,該感測器子系統包括複數個感測器元件;信號調節電路系統,其在操作時產生指示傳導通過該感測器子系統之電流的一感測器電流信號;及複數個可控制開關,該複數個開關之各者操作以選擇性電耦合該等感測器元件之一各別者至該信號調節電路系統。
該裝置可進一步包括:控制電路系統,其通訊地耦合至該信號調節電路系統及該等可控制開關,其中該控制電路系統在操作時:可控制該複數個可控制開關以使該等感測器元件之一者電耦合至該信號調節電路系統;可自該信號調節電路系統接收一感測器電流信號;及可至少部分基於所接收之該感測器電流信號判定該絕緣導體中之一AC電壓。該複數個可控制開關之各者可係可控制至一第一狀態及一第二狀態中,其中該開關在該第一狀態中可電耦合該等感測器元件之一各別者至該信號調節電路系統,且該開關在該第二狀態中可電耦合該等感測器元件之一各別者至該內部接地防護件。
本揭露之一或多個實施方案係有關用於測量絕緣或裸未絕緣導體(例如,絕緣導線)的交流(AC)電壓而不需要導體與測試電極或探針之間之流電連接之系統及方法。一般而言,提供非流電接觸式(或「非接觸式」)電壓測量系統,其使用電容感測器相對於接地來測量絕緣導體中之AC電壓信號。在本文中,不需要流電連接之此類系統稱為「非接觸式」。如本文所用,除非另外指明,「電耦合(electrically coupled)」包括直接及間接電耦合。如下文參考圖5至圖7進一步討論者,於至少一些實施方案中,一感測器子系統可包括複數個感測器,該複數個感測器經輪詢或掃描以提供具有補償受測試導體之位置之改善測量。
在下文描述中,提出某些具體細節以提供對各種所揭露實施方案的透徹理解。然而,所屬技術領域中具通常知識者將瞭解,可在沒有這些具體細節之一或多者的情況中實踐實施方案,或運用其他方法、組件、材料等實踐實施方案。在其他情況中,未展示或詳細描述與電腦系統、伺服器電腦及/或通訊網路相關聯之熟知結構,以避免不必要地模糊實施方案之說明。
除非上下文另外要求,否則在整個說明書及申請專利範圍中,用詞「包含(comprising)」與「包括(including)」同義,並且係內含或係開放式的(即,不排除額外、未列舉之元件或方法動作)。
在本說明書通篇中提及「一個實施方案(one implementation)」或「一實施方案(an implementation)」意指關聯於該實施方案描述之一特定特徵、結構或特性被包括在至少一個實施方案中。因此,在本說明書通篇各處,出現的片語「在一個實施方案中」或「在一實施方案中」不一定都是指相同實施方案。此外,可在一或多個實施方案中以任何合適方式來組合特定特徵、結構或特性。
如本說明書與隨附之申請專利範圍中所使用者,單數形式「一(a/an)」與「該(the)」皆包括複數的指涉,除非上下文另有明確指定。亦應注意,除非上下文明確另有所指定,否則用語「或(or)」在使用時通常包括「及/或(and/or)」之意涵。
在此提供的本揭露之標題及摘要僅為方便起見,並且不應解讀為實施方案之範疇或含義。
下文論述提供用於測量絕緣(例如,絕緣導線)或裸未絕緣導體(例如,匯流排(bus bar))的交流(AC)電壓而不需要介於導體與測試電極或探針之間之流電連接之系統及方法的實例。本文所揭露之實施方案可在本文中稱為「參考信號類型電壓感測器」或系統。一般而言,提供非流電觸點式(或「非接觸式」)電壓測量裝置,其使用電容感測器相對於接地來測量絕緣導體中之AC電壓信號。在本文中,不需要流電連接之此類系統稱為「非接觸式」。如本文所用,除非另外指明,「電耦合」包括直接及間接電耦合。
圖1A係根據一闡釋性實施例之一環境100的繪圖,其中可由一操作者104使用包括一參考信號類型電壓感測器或系統的一非接觸式電壓測量裝置102以測量存在於一絕緣導線106中之AC電壓,而不需要介於該非接觸式電壓測量裝置與導線106之間的流電接觸。圖1B係圖1A之非接觸式電壓測量裝置102的俯視平面圖,展示在操作期間非接觸式電壓測量裝置的各種電氣特性。非接觸式電壓測量裝置102包括一殼體或主體108,該殼體或主體包括一抓握部分或端部110及一探針部分或端部112,在本文亦稱為與抓握部分相對的前端。殼體108也可包括促進使用者與非接觸式電壓測量裝置102之互動的使用者介面114。使用者介面114可包括任意數目個輸入(例如,按鈕、撥號盤、開關、觸控感測器)及任何數目個輸出(例如,顯示器、LED、揚聲器、蜂鳴器)。非接觸式電壓測量裝置102也可包括一或多個有線及/或無線通訊介面(例如,USB、Wi-Fi® 、藍牙(Bluetooth)® )。
在至少一些實施方案中,如圖1B所最佳地展示的,探針部分112可包括由第一延伸部分118及第二延伸部分120界定的凹入部分116。凹入部分116接收絕緣導線106(參見圖1A)。絕緣導線106包括一導體122及圍繞導體122的一絕緣體124。凹入部分116可包括一感測器或電極126,當絕緣導線定位在非接觸式電壓測量裝置102之凹入部分116內時,該感測器或電極擱置在絕緣導線106之絕緣體124附近。雖然為清楚起見而未展示,但感測器126可設置在殼體108內,以防止感測器與其他物體之間的實體及電接觸。
如圖1A所展示,在使用中,操作者104可抓住殼體108之抓握部分110且置放探針部分112靠近在絕緣導線106,使得非接觸式電壓測量裝置102可準確地測量相對於接地(earth ground)(或另一個參考節點)存在於導線中之AC電壓。儘管探針端部112展示為具有凹入部分116,但在其他實施方案中,探針部分112可經不同地組態。例如,在至少一些實施方案中,探針部分112可包括一可選擇性移動式夾鉗、一鉤、包括感測器之一平坦或弓形表面、或允許非接觸式電壓測量裝置102之一感測器被定位靠近絕緣導線106的其他類型介面。下文參考圖5至圖7論述各種探針部分及感測器的實例。
僅在一些實施方案中操作者身體可作為接地(earth/ground)之參考。替代地,可使用經由一測試引線139與接地128的直接連接。本文所論述之非接觸測量功能不限於僅用於相對於接地進行測量的應用。外部參考可電容耦合或直接耦合至任何其他電位。例如,若外部參考電容耦合至三相系統中之另一相,則測量相間電壓(phase-to-phase voltage)。一般而言,本文所論述之概念不限於僅使用連接至參考電壓及任何其他參考電位的體電容耦合的接地參考。
如下文進一步論述,在至少一些實施方案中,在AC電壓測量期間,非接觸式電壓測量裝置102可利用介於操作者104與接地128之間的體電容(CB )。雖然術語接地用於節點128,但節點不一定是接地,而是可藉由電容耦合而依流電隔離方式連接至任何其他參考電位。
下文參考圖2至圖4論述由非接觸式電壓測量裝置102使用以測量AC電壓的特定系統及方法。
圖2展示亦在圖1A及圖1B中展示之非接觸式電壓測量裝置102之各種內部組件的示意圖。在此實例中,非接觸式電壓測量裝置102之導電感測器126係實質「V形」的且定位成鄰近受測試絕緣導線106,且與絕緣導線106之導體122電容耦合,形成感測器耦合電容器(CO )。處置非接觸式電壓測量裝置102之操作者104具有接地的體電容(CB )。再者,如圖1A及圖1B中所展示,可使用藉由一導線(例如,測試引線139)之直接導電接地耦合。因此,如圖1B及圖2所展示,透過串聯連接之耦合電容器(CO )及體電容(CB ),在導線122中之AC電壓信號(VO )產生一絕緣導體電流分量或「信號電流」(IO )。在一些實施方案中,體電容(CB )亦可包括流電隔離之測試引線,該測試引線產生對地電容或任何其他參考電位。
待測量之導線122中之AC電壓(VO )具有至外部接地128(例如,中性線(neutral))的連接。當操作者104(圖1)將非接觸式電壓測量裝置固持於其手中時,非接觸式電壓測量裝置102本身也具有主要由體電容(CB )組成的對接地128之電容。電容CO 及CB 兩者產生導電環路,且該環路內的電壓產生信號電流(IO )。信號電流(IO )係由電容耦合至導電感測器126的AC電壓信號(VO )所產生,且通過非接觸式電壓測量裝置之殼體108及對接地128的體電容器(CB )而迴歸至外部接地128。電流信號(IO )取決於非接觸式電壓測量裝置102之導電感測器126與受測試絕緣導線106之間的距離、導電感測器126之特定形狀、及導體122中之大小及電壓位準(VO )。
為了補償直接影響信號電流(IO )的距離變異且因此補償耦合電容器(CO )變異,非接觸式電壓測量裝置102包括共同模式參考電壓源130,該共同模式參考電壓源產生具有與信號電壓頻率(fO )不同之參考頻率(fR )的AC參考電壓(VR )。
為了減少或避免雜散電流,非接觸式電壓測量裝置102之至少一部分可被導電內部接地防護件或網屏132圍繞,該導電內部接地防護件或網屏使得大部分電流通過導電感測器126,該導電感測器與絕緣導線106之導體122形成耦合電容器(CO )。內部接地防護件132可由任何合適之導電材料(例如,銅)形成,且可係實心(例如,箔)或具有一或多個開口(例如,網格)。
另外,為了避免內部接地防護件132與外部接地128之間的電流,非接觸式電壓測量裝置102包括一導電參考屏蔽134。參考屏蔽134可由任何合適之導電材料(例如,銅)所形成,並且可係實心(例如,片金屬、塑料殼體內側之濺鍍金屬)、可撓(例如,箔)、或具有一或多個開口(例如,網格)。共同模式參考電壓源130電耦合在參考屏蔽134與內部接地防護件132之間,而產生具有用於非接觸式電壓測量裝置102之參考電壓(VR )及參考頻率(fR )的共同模式電壓或參考信號。此類AC參考電壓(VR )驅動額外參考電流(IR )通過耦合電容器(CO )及體電容器(CB )。
圍繞導電感測器126之至少一部分的內部接地防護件132保護導電感測器免於AC參考電壓(VR )之的直接影響而避免導電感測器126與參考屏蔽134之間之參考電流(IR )的非所要偏移。如上所述,內部接地防護件132係用於非接觸式電壓測量裝置102的內部電子接地138。在至少一些實施方案中,內部接地防護件132也圍繞非接觸式電壓測量裝置102的一些或全部的電子器件,以避免AC參考電壓(VR )耦合至電子器件中。
如上文所述,參考屏蔽134用於將參考信號注入至輸入AC電壓信號(VO )上,且其第二功能是最小化防護件132至接地128電容。在至少一些實施方案中,參考屏蔽134圍繞非接觸式電壓測量裝置102之殼體108之一些或全部。在此類實施方案中,一些或全部的電子器件看到參考共同模式信號,該參考共同模式信號也在導電感測器126與絕緣導線106中的導體122之間產生參考電流(IR )。在至少一些實施方案中,參考屏蔽134中之唯一間隙可係用於導電感測器126之開口,該開口允許在非接觸式電壓測量裝置102之操作期間定位導電感測器靠近絕緣導線106。
內部接地防護件132及參考屏蔽134可在非接觸式電壓測量裝置102之殼體108(參見圖1A及圖1B)周圍提供雙層網屏。參考屏蔽134可設置在殼體108之外表面上,且內部接地防護件132可作用為內部屏蔽或防護件。導電感測器126藉由防護件132而對參考屏蔽134屏蔽,使得任何參考電流流動均由導電感測器126與受測試導體122之間的耦合電容器(CO )產生。感測器126周圍之防護件132亦減少靠近感測器的相鄰導線的雜散影響。
如圖2所展示,非接觸式電壓測量裝置102可包括操作為反相電流轉電壓轉換器的一輸入放大器136。輸入放大器136具有電耦合至內部接地防護件132的一非反相終端,該內部接地防護件作用為非接觸式電壓測量裝置102之內部接地138。輸入放大器136之一反相終端可電耦合至導電感測器126。回授電路系統137(例如,回授電阻器)亦可耦合在輸入放大器136之反相終端與輸出終端之間,以提供用於輸入信號調節的回授及適當增益。
輸入放大器136接收來自導電感測器126的信號電流(IO )及參考電流(IR )且將所接收電流轉換成感測器電流電壓信號,該感測器電流電壓信號指示在輸入放大器之輸出終端處的導電感測器電流。感測器電流電壓信號可係例如一類比電壓。類比電壓可饋送至信號處理模組140,如下文進一步討論的,該信號處理模組處理感測器電流電壓信號以判定絕緣導線106之導體122中之AC電壓(VO )。信號處理模組140可包括數位電路系統及/或類比電路系統之任何組合。
非接觸式電壓測量裝置102也可包括通訊地耦合至信號處理模組140的使用者介面142(例如,顯示器),以將所判定之AC電壓(VO )呈現或藉由介面傳達給非接觸式電壓測量裝置之操作者104。
圖3係非接觸式電壓測量裝置300的方塊圖,展示非接觸式電壓測量裝置之各種信號處理組件。圖4係圖3之非接觸式電壓測量裝置300的更詳細圖。
非接觸式電壓測量裝置300可類似或相同於上文論述之非接觸式電壓測量裝置102。因此,用相同的參考符號來標記類似或相同之組件。如所示,輸入放大器136將來自導電感測器126的輸入電流(IO + IR )轉換成指示輸入電流的感測器電流電壓信號。使用類比轉數位轉換器(ADC) 302將感測器電流電壓信號轉換成數位形式。
藉由方程式(1)使導線122中之AC電壓(VO )與AC參考電壓(VR )相關:
Figure 02_image001
其中(IO )係由於導體122中之AC電壓(VO )而通過導電感測器126之信號電流,(IR )係由於AC參考電壓(VR )而通過導電感測器126之參考電流,(fO )係正被測量之AC電壓(VO )之頻率,且(fR )係參考AC電壓(VR )之頻率。
與AC電壓(VO )相關之具有下標「O」之信號所具有之特性(如頻率)不同於與共同模式參考電壓源130相關之具有下標「R」之信號之特性。在圖4之實施中,諸如實作快速傅立葉變換(FFT)演算法306之電路系統的數位處理可用於分離不同頻率之信號量值。在其他實施方案中,類比電子濾波器亦可用於將「O」信號特性(例如,量值、頻率)與「R」信號特性分開。
由於耦合電容器(CO ),電流(IO )及(IR )分別取決於頻率(fO )及(fR )。流動通過耦合電容器(CO )及體電容(CB )的電流與頻率成比例,且因此,需要測量受測試導體122中之AC電壓(VO )之頻率(fO ),以判定參考頻率(fR )對信號頻率(fO )的比率(其已利用在上文列出之方程式(1)中),或參考頻率係已知的(此係因為其係由系統本身產生)。
在輸入電流(IO + IR )已被輸入放大器136調節並被ADC 302數位化之後,可藉由使用FFT 306在頻域中表示信號來判定數位感測器電流電壓信號之頻率分量。當已測量頻率(fO )及(fR )二者時,可判定頻率頻格(frequency bin)以從FFT 306計算電流(IO )及(IR )之基本量值。
電流(IR )及/或電流(IO )之量值可根據參考信號感測器或電極(例如,電極126)與絕緣導線106之導體122之間的距離而變動。因此,系統可比較所測量電流(IR )及/或電流(IO )及預期各別電流,以判定參考信號感測器或電極與導體122之間的距離。
接下來,如圖3之方塊308所指示者,電流(IR )及(IO )之基本諧波(分別標示為IR ,1 及IO ,1 )的比率可藉由所判定之頻率(fO )及(fR )校正,且此因數可藉由相加導線122中之諧波(VO )(係藉由計算平方諧波和之平方根而完成)而用以計算所測量原始基本或RMS電壓,且可在顯示器312上呈現給使用者。
例如,取決於絕緣導體106與導電感測器126之間的距離,以及感測器126之特定形狀及尺寸,耦合電容器(CO )通常可具有在約0.02 pF至1 pF之範圍中的電容值。例如,體電容(CB )可具有大約20 pF至200 pF之電容值。
從上文之方程式(1)可看出,由共同模式參考電壓源130產生之AC參考電壓(VR )不需要在與導體122中之AC電壓(VO )相同的範圍中以達成信號電流(IO )及參考電流(IR )的類似電流量值。藉由選擇相對高的參考頻率(fR ),AC參考電壓(VR )可相對低(例如,小於5 V)。作為一實例,參考頻率(fR )可選擇成3 kHz,其比具有60 Hz之信號頻率(fO )的典型120 VRMS AC電壓(VO )高50倍。在此類情況中,可將AC參考電壓(VR )選擇成僅2.4 V(即,120 V ÷ 50)以產生相同的參考電流(IR )作為信號電流(IO )。一般而言,設定參考頻率(fR )為信號頻率(fO )之N倍允許AC參考電壓(VR )具有在導線122中之AC電壓(VO )的(1/N)倍之值以產生彼此在相同範圍中的電流(IR )及(IO ),以達成IR 及IO 的類似不確定性。
可使用任何合適之信號產生器產生具有參考頻率(fR )之AC參考電壓(VR )。在圖3繪示之實例中,使用Sigma-Delta數位轉類比轉換器(Σ-Δ DAC) 310。Σ-Δ DAC 310使用位元串流以產生具有經定義參考頻率(fR )及AC參考電壓(VR )的波形(例如,正弦波形)信號。在至少一些實施方案中,Σ-Δ DAC 310可產生與FFT 306之窗同相之波形以減小抖動。可使用任何其他參考電壓產生器,諸如PWM,其可使用低於Σ-Δ DAC的運算能力。
在至少一些實施方案中,ADC 302可具有14個位元之解析度。在操作中,針對標稱50 Hz輸入信號,ADC 302可依10.24 kHz取樣頻率下取樣來自輸入放大器136之輸出,以在100 ms提供2n 個樣本(1024)(用於FFT 306之10 Hz頻格),該等樣本準備好供FFT 306處理。對於60 Hz輸入信號,取樣頻率可係12.288 kHz,例如,以獲得每循環相同數目個樣本。ADC 302之取樣頻率可與參考頻率(fR )之全數目個循環同步。輸入信號頻率可在例如40 Hz至70 Hz之範圍內。取決於AC電壓(VO )之所測量頻率,用於AC電壓(VO )的頻格可使用FFT 306判定並使用漢尼視窗(Hanning window)函數用於進一步計算,以抑制由彙總間隔中擷取之不完整信號循環所造成之相移抖動。
在一實例中,共同模式參考電壓源130產生具有2419 Hz之參考頻率(fR )的AC參考電壓(VR )。對於60 Hz信號,此頻率在第40諧波與第41諧波之間,對於50 Hz信號,此頻率在第48諧波與第49諧波之間。藉由提供具有不是所預期之AC電壓(VO )之諧波的參考頻率(fR )的AC參考電壓(VR ),AC電壓(VO )不太可能影響參考電流(IR )之測量。
在至少一些實施方案中,將共同模式參考電壓源130之參考頻率(fR )選擇成最不可能由受測試導體122中之AC電壓(VO )之諧波影響的頻率。作為一實例,當參考電流(IR )超過限制時,可斷開共同模式參考電壓源130,其可指示導電感測器126正在接近受測試導體122。可在斷開共同模式參考電壓源130之情況中進行測量(例如,100 ms測量),以偵測數個(例如,三個、五個)候選參考頻率之信號諧波。然後,可在數個候選參考頻率判定AC電壓(VO )中之信號諧波之量值,以識別哪些候選參考頻率最不可能被AC電壓(VO )之信號諧波影響。然後,可將參考頻率(fR )設定成所識別之候選參考頻率。參考頻率之此切換可避免或減少信號頻譜中之可能參考頻率分量的影響,這會增加所測量參考信號並降低準確度,並且可產生不穩定結果。除了2419 Hz以外之具有相同特性之其他頻率包括例如2344 Hz及2679 Hz。
如上文所討論者,受測試導體之位置對於在感測器與受測試導體之間提供良好電容耦合可係重要的。在一些實施方案中,電壓測量裝置之機械外殼可經設計以限制受測試導體之位置以確保導體係定位成鄰近感測器。
在下文參考圖5至圖7論述之一或多個實施方案中,可使用多個感測器或感測器元件之一陣列,其中該等感測器經輪詢或掃描以判定陣列中之該等感測器之何者具有最大信號強度,且該感測器係用以獲得測量,如上文所論述者。在至少一些實施方案中,全部其他「非選取」感測器可係連接至防護件以在用於特定測量之陣列中提供該作用中感測器的額外屏蔽。因此,在此類實施方案中,該感測器相對於受測試導體之機械定位係藉由選擇最靠近受測試導體之複數個間隔開的感測器之一者來「電子地」完成。
在至少一些實施方案中,來自複數個感測器之信號強度可係用以判定關於受測試導體之各種資訊,諸如導體之實體特性,包括導體之實體大小(例如直徑)、導體相對於測量裝置之實體位置等。
圖5係包括感測器或感測器元件402之陣列401之感測器子系統400的示意圖。感測器402之陣列401可係相似於上文所論述之圖1B及圖2所示之感測器126而定位及操作。感測器402之陣列401形狀可係平面的(如所示)或可係非平面的(如U形、V形),如圖6所示及下文所論述者。在至少一些實施方案中,複數個感測器402之各者係呈矩形形狀伸長(如圖5之實例所示),雖然可使用其他形狀。
複數個感測器元件402中之各者耦合至各別可控制開關404,該等可控制開關受控於耦合至該等開關的開關控制器410(例如處理器、控制電路系統)。開關控制器410係可操作以控制開關404以選擇性耦合感測器元件402之各者至一輸入節點408(該輸入節點被饋送至信號調節或處理電路系統412之輸入),或耦合至導電防護節點406(例如,上文論述之防護件132),該導電防護節點係電耦合至一內部接地防護件。信號調節或處理電路系統412可包括ADC、濾波電路系統、放大電路系統等之一或多者。
在至少一些實施方案中,可在測量之前測試來自感測器陣列401中之感測器402之各者的個別感測器電流,以識別產生最大參考電流IR 的感測器,並且僅將此所識別感測器用於測量。此特徵可描述為使用輪詢或掃描程序以電子方式找出最接近受測試導線的一個(或複數個)感測器402,然後使用該感測器進行測量。如上所述,在至少一些實施方案中,其餘未使用的感測器可經由開關404耦合至防護節點406,使得其他感測器在測量期間充當防護件。在圖5所示的所繪示實例中,感測器402x係耦合至信號調節或處理電路系統412,且感測器陣列401中的其他感測器402係耦合至防護節點406(例如接地)。測量本身可類似於或相同於上文所描述之一個感測器配置而操作。
在其他實施方案中,測量可使用至多所有並聯的感測器402,其中感測器陣列401中之感測器402之各者具有至信號處理電子器件(例如,ADC等)的分開連接,而非感測器402經多工且在一時刻感測器陣列400之僅一個感測器處於作用中。在此類實施方案中,一或多個感測器電流之一組合(例如,一線性加權組合、一指數加權組合、一未加權組合)可用於該測量以提供該ADC輸入範圍之良好驅動且增加具有所用之感測器數目的靈敏度,並因此增加總動態測量範圍。例如,一或多個可控制開關可操作以選擇性電耦合該等感測器元件之各種組合至該信號調節電路系統。感測器元件之各種組合可包括複數個(例如,二個、四個、十個)相鄰感測器元件。感測器元件之組合可額外地或替代地下列至少一者:一單一感測器元件、複數個相鄰感測器元件、複數個感測器元件、該複數個感測器元件之至少兩者不相鄰、或所有感測器元件。
圖6係包括與圖5所示之感測器子系統400相似或相同之一感測器子系統624的非接觸式電壓測量裝置600之前端或探針部分612的繪圖。探針部分612可包括由第一延伸部分618及第二延伸部分620界定的凹入部分616。凹入部分616在其中接收一絕緣導線。在所示的實例中,為了解釋的目的,三個絕緣導線630、632、及634係示於凹入部分616中。絕緣導線630、632、及634之各者可包括一導體及圍繞該導體之一絕緣體,如上文所論述者。凹入部分116可包括感測器陣列626,該感測器陣列包括複數個感測器元件626-1至626-N,該複數個感測器元件經設置成鄰近由第一延伸部分618與第二延伸部分620形成之非接觸式測量裝置600之探針部分612的U形壁628。感測器陣列624可係設置在非接觸式電壓測量裝置600之殼體內部以防止感測器626與受測試導體或其他物體之間的實體及電接觸。在操作時,開關可用以選擇性地耦合感測器元件626之各者至信號調節電路系統(例如ADC)以獲得測量,如上文所論述者。
圖7係繪示圖6之感測器子系統624之複數個感測器626-1至626-N各者的所測量感測器電流的圖形700。圖形700展示較大之受測試導體630(圖6)的感測器電流曲線702及較小之受測試導體632的感測器電流曲線704。如所示,相對大之導體630之曲線702的寬度大於相對小之導體632之曲線704的寬度,此係因為相對於較小之導體632,較大之導體630較靠近較大數目之感測器626。因此,受測試導體之複數個感測器626之感測器電流曲線702及704的分布或特定形狀可用以判定導體之大小。此類大小資訊可用於測量計算中以例如基於所判定或獲得之校準資料提供更準確的測量。作為另一實例,該導體大小資訊可經儲存、傳輸、及/或提供給使用者(例如經由使用者介面)以用於任何所欲目的。
額外地或替代地,由感測器626測量之感測器電流之分布及/或形狀可用以判定受測試導體之位置。例如,圖6所示之導體634可係設置成鄰近凹入部分616內部之左延伸部分618之上端(如所示)。在此類組態中,感測器626-1(相鄰於導體634)之感測器電流將大於遠離導體634之感測器(諸如感測器626-N)之感測器電流。因此,在至少一些實施方案中,該裝置可分析由感測器626測量之感測器電流之量值以判定受測試導體之位置。例如,該位置資訊可用於測量計算中以例如基於所判定或獲得之校準資料提供更準確的測量。作為另一實例,該位置資訊可用以提供視覺或聽覺反饋給使用者以引導使用者移動導體之位置至較佳位置以獲得更準確的測量。該位置資訊可經儲存、傳輸、及/或提供給使用者(例如經由使用者介面)以用於任何所欲目的。
在本文所論述之電壓測量裝置之至少一些實施方案中,參考電壓(VR )可具有多個頻率,以減少由信號電壓(VO )之較高頻率分量所引起的所測量參考電流(IR )之信號諧波或間諧波影響。例如,可週期性地斷開參考電壓源(例如,圖2之參考電壓源130),並且多個參考頻率周圍的FFT頻格可比對相對極限制被分析且進行檢查。最低值可用於定義受到信號電壓(VO )或其他影響因素最小干擾的一所選擇參考頻率(fR )。
在至少一些實施方案中,斷開參考電壓源不一定會在測量流中產生間隙。例如,當參考電壓源斷開時,仍可測量信號電流(IO ),並且在先前間隔期間所測量的參考電流(IR )可用於估計參考電壓源斷開之間隔的參考電流。
除了上文所論述之參考頻率切換之外,亦可使用參考信號的其他專用信號特性。實例包括振幅或頻率調變、同步或偽隨機切換、正交調變、相位切換等。
作為使用調變信號的實例,可利用調變頻率fm 來調變參考信號。在至少一些實施方案中,調變頻率fm 可經選擇為精確位於整數數目個FFT頻格處。例如,對於100 ms FFT間隔,此類頻率將係10 Hz、20 Hz、30 Hz等之頻率。在載波或參考頻率(fR )處沒有雜訊的情況中,這導致兩個對稱側頻帶,一個側頻帶在參考頻率之各側。
若兩個側頻帶中之兩者不具有相同量值,則可判定參考信號受(例如,信號電壓(VO ))干擾。這是相對簡單之識別程序,不需要斷開參考電壓源。若發現參考信號被干擾,則系統可藉由使參考頻率移位Δf量,並且再次檢查側頻帶是否對稱,直到識別到合適之(未干擾)參考頻率。
為了進一步加速程序,在至少一些實施方案中,可同時使用多個參考頻率。此頻率混合可藉由例如預定表及位元串流(例如,ΣΔ DAC位元串流)或藉由類比相加脈衝寬度調變器(PWM)之經低通濾波輸出而產生。若使用PWM,則一對PWM可提供一參考頻率及一調變頻率,並且可使用多對PWM來提供多個參考頻率及多個對應調變頻率。
前述實施方式已經由使用方塊圖、示意圖及實例來闡述裝置及/或程序的各種實施方案。在此類方塊圖、示意圖及實例含有一或多個功能及/或操作的情況下,所屬技術領域中具有通常知識者將理解,可藉由多種硬體、軟體、韌體或其等之幾乎任何組合來個別地或統合地實施在此類方塊圖、流程圖或實例中之各功能及/或操作。在一實施方案中,本發明標的可經由特殊應用積體電路(ASIC)來實施。然而,所屬技術領域中具通常知識者將瞭解,本文所揭露之實施方案可整體地或部分地等效地在標準積體電路中實施為:在一或多個電腦上執行的一或多個電腦程式(例如,在一或多個電腦系統上執行的一或多個程式);在一或多個控制器(例如,微控制器)上執行的一或多個程式;在一或多個處理器(例如,微處理器)上執行的一或多個程式;韌體;或其等之幾乎任何組合,並且將瞭解,設計電路系統及/或撰寫用於軟體及/或韌體之程式碼是在參酌本揭露的所屬技術領域中具有通常知識者的技術內。
所屬技術領域中具通常知識者將瞭解,本文所述之許多方法或演算法可採用額外動作、可省略某些動作、及/或可依不同於指定之順序來執行動作。
此外,所屬技術領域中具通常知識者將明白,本文所教導之機制能夠以多種形式散佈為程式產品,並且將明白,實例性實施方案同等地適用,無論用於實際執行散佈的特定類型之信號承載媒體為何。信號承載媒體之實例包括但不限於可記錄類型媒體,例如軟碟、硬碟機、CD ROM、數位磁帶及電腦記憶體。
可組合上述各種實施方案以提供進一步實施方案。若需要,可修改實施方案之態樣,以採用各種專利、申請案及公開案之系統、電路及概念來提供更進一步之實施方案。
參酌上文實施方式,可對實施方案進行這些及其他變化。一般而言,在下文申請專利範圍中,所用術語不應被解釋為將申請專利範圍限於本說明書及申請專利範圍中揭露的具體實施方案,而是應理解為包括所有可能的實施方案連同此申請專利範圍享有的均等物之全部範疇。因此,申請專利範圍不受限於本揭露。
100‧‧‧環境 102‧‧‧非接觸式電壓測量裝置 104‧‧‧操作者 106‧‧‧絕緣導線/絕緣導體 108‧‧‧殼體或主體 110‧‧‧抓握部分或端部 112‧‧‧探針部分或端部 114‧‧‧使用者介面 116‧‧‧凹入部分 118‧‧‧第一延伸部分 120‧‧‧第二延伸部分 122‧‧‧導體/導線 124‧‧‧絕緣體 126‧‧‧感測器或電極 128‧‧‧接地/節點 130‧‧‧參考電壓源 132‧‧‧防護件或網屏 134‧‧‧參考屏蔽 136‧‧‧輸入放大器 137‧‧‧回授電路系統 138‧‧‧接地 139‧‧‧測試引線 140‧‧‧信號處理模組 142‧‧‧使用者介面 300‧‧‧非接觸式電壓測量裝置 302‧‧‧類比轉數位轉換器/ADC 306‧‧‧快速傅立葉變換演算法/FFT 308‧‧‧方塊 310‧‧‧Sigma-Delta數位轉類比轉換器/Σ-Δ DAC 312‧‧‧顯示器 400‧‧‧感測器子系統/感測器陣列 401‧‧‧陣列 402‧‧‧感測器或感測器元件 402x‧‧‧感測器 404‧‧‧開關 406‧‧‧防護節點 408‧‧‧輸入節點 410‧‧‧開關控制器 412‧‧‧信號調節或處理電路系統 600‧‧‧非接觸式電壓測量裝置/非接觸式測量裝置 612‧‧‧前端或探針部分 616‧‧‧凹入部分 618‧‧‧延伸部分 620‧‧‧延伸部分 624‧‧‧感測器子系統/感測器陣列 626‧‧‧感測器陣列/感測器元件/感測器 626-1‧‧‧感測器元件/感測器 626-N‧‧‧感測器元件/感測器 628‧‧‧U形壁 630‧‧‧絕緣導線/導體 632‧‧‧絕緣導線/導體 634‧‧‧絕緣導線/導體 700‧‧‧圖形 702‧‧‧曲線 704‧‧‧曲線 CB‧‧‧體電容/體電容器/電容 CO‧‧‧耦合電容器/電容 fO‧‧‧頻率 fR‧‧‧頻率 IO‧‧‧信號電流/電流信號/電流 IO,1‧‧‧諧波 IR‧‧‧參考電流/電流 IR,1‧‧‧諧波 VO‧‧‧AC電壓信號/AC電壓/電壓位準/諧波/信號電壓 VR‧‧‧參考電壓/AC電壓
在附圖中,相同參考標號標識類似元件或動作。附圖中元件之尺寸及相對位置未必按比例繪製。例如,各種元件之形狀及角度未必按比例繪製,並且這些元件中之一些可被任意放大及定位以改善圖式易讀性。此外,所繪製之元件之特定形狀不一定意欲傳達關於特定元件之實際形狀的任何資訊,並且可僅是為了便於在附圖中辨識而選擇。 圖1A係根據一闡釋性實施例之一環境的繪圖,其中可由操作者使用包括參考信號類型電壓感測器的非接觸式電壓測量裝置以測量存在於絕緣導線中之AC電壓,而不需要與導線流電接觸。 圖1B係根據一闡釋性實施例之圖1A之非接觸式電壓測量裝置的俯視圖,其展示介於絕緣導線與非接觸式電壓測量裝置的導電感測器之間形成的耦合電容、絕緣導體電流組件及介於非接觸式電壓測量裝置與操作者之間的體電容(body capacitance)。 圖2係根據一闡釋性實施方案之非接觸式電壓測量裝置之各種內部組件的示意方塊圖。 圖3係展示根據一闡釋性實施方案之非接觸式電壓測量裝置之各種信號處理組件的方塊圖。 圖4係根據一闡釋性實施方案之實作快速傅立葉變換(FFT)之非接觸式電壓測量裝置的示意圖。 圖5係根據一闡釋性實施方案之用於非接觸式電壓測量裝置之感測器子系統的示意圖,其中該感測器子系統包括在操作時經輪詢之複數個感測器元件。 圖6係根據一非限制之闡釋性實施方案之包括與圖5所示之感測器子系統相似或相同之一感測器子系統的非接觸式電壓測量裝置之前端的繪圖。 圖7係繪示感測器子系統之複數個感測器之各者之感測器電流之圖形,其展示相對小的受測試導體及相對大的受測試導體之曲線。
400‧‧‧感測器子系統/感測器陣列
401‧‧‧陣列
402‧‧‧感測器或感測器元件
402x‧‧‧感測器
404‧‧‧開關
406‧‧‧防護節點
408‧‧‧輸入節點
410‧‧‧開關控制器
412‧‧‧信號調節或處理電路系統

Claims (25)

  1. 一種用於測量一絕緣導體中之交流(alternating current, AC)的裝置,該裝置包含: 一殼體; 一感測器子系統,其實體耦合至該殼體,該感測器子系統可選擇性地定位成鄰近該絕緣導體而不流電接觸該導體,其中該感測器子系統與該絕緣導體電容耦合,該感測器子系統包含複數個感測器元件; 一導電內部接地防護件,其至少部分地圍繞該感測器子系統並從該感測器子系統流電隔離,該內部接地防護件經定大小及尺寸以屏蔽該感測器子系統免於雜散電流; 一導電參考屏蔽,其環繞該殼體的至少一部分並與該內部接地防護件流電絕緣,該導電參考屏蔽經定大小及尺寸以減少該內部接地防護件與一外部接地之間的電流; 一共同模式參考電壓源,其在操作時產生具有一參考頻率的一交流(AC)參考電壓,該共同模式參考電壓源電耦合在該內部接地防護件及該導電參考屏蔽之間; 信號調節電路系統,其在操作時產生指示傳導通過該感測器子系統之電流的一感測器電流信號; 複數個可控制開關,該複數個開關之各者操作以選擇性電耦合該等感測器元件之一各別者至該信號調節電路系統;及 控制電路系統,其通訊地耦合至該複數個開關及該信號調節電路系統,其中該控制電路系統在操作時: 控制該複數個可控制開關以使該等感測器元件之一者電耦合至該信號調節電路系統; 自該信號調節電路系統接收一感測器電流信號;及 至少部分基於所接收之該感測器電流信號、該AC參考電壓、及該參考頻率判定該絕緣導體中之該AC電壓。
  2. 如請求項1之裝置,其中該複數個可控制開關之各者可控制至一第一狀態及一第二狀態中,其中該開關在該第一狀態中電耦合該等感測器元件之一各別者至該信號調節電路系統,且該開關在該第二狀態中電耦合該等感測器元件之一各別者至該內部接地防護件。
  3. 如請求項1之裝置,其中該控制電路系統在操作時: 針對該複數個感測器元件之各者: 控制電耦合至該感測器元件之該可控制開關將該感測器元件耦合至該信號調節電路系統; 控制其餘之該等可控制開關將其餘之該等感測器元件與該信號調節電路系統電性解耦;及 自該信號調節電路系統接收該感測器元件之一感測器電流信號;及 判定該複數個感測器元件之何者產生具有最大量值之一感測器電流信號, 其中為了控制該複數個可控制開關以使該等感測器元件之一者電耦合至該信號調節電路系統,該控制電路系統控制該複數個可控制開關以使經判定產生具有該最大量值之一感測器電流信號之該感測器元件電耦合至該信號調節電路系統。
  4. 如請求項1之裝置,其中該控制電路系統在操作時: 針對該複數個感測器元件之各者: 控制電耦合至該感測器元件之該可控制開關將該感測器元件耦合至該信號調節電路系統; 控制其餘之該等可控制開關將其餘之該等感測器元件與該信號調節電路系統電性解耦;及 自該信號調節電路系統接收該感測器元件之一感測器電流信號;及 至少部分基於該等感測器元件之各者之所接收之該等感測器電流信號來判定受測試之該導體之一實體特性。
  5. 如請求項4之裝置,其中該實體特性包含下列至少一者:受測試之該導體之一實體尺寸、或受測試之該導體之一實體位置。
  6. 如請求項4之裝置,其中該控制電路系統在操作時經由該等感測器元件之各者的所接收之該等感測器電流信號之一分布之分析來判定受測試之該導體之一實體特性。
  7. 如請求項1之裝置,其中該信號調節電路系統包含一放大器、一濾波器、或一類比轉數位轉換器中之至少一者。
  8. 如請求項1之裝置,其中該感測器子系統及該內部接地防護件形狀各係非平面的。
  9. 如請求項1之裝置,其中該控制電路系統在操作時: 將所接收之該感測器電流信號轉換成一數位信號;及 處理該數位信號以獲得該感測器電流信號之一頻域表示。
  10. 如請求項9之裝置,其中該控制電路系統實施一快速傅立葉變換(fast Fourier transform, FFT)以獲得該感測器電流信號之該頻域表示。
  11. 如請求項10之裝置,其中該共同模式參考電壓源產生與該控制電路系統實施之該FFT之一窗同相之該AC參考電壓。
  12. 如請求項1之裝置,其中該控制電路系統處理該感測器電流信號以判定一絕緣導體電流分量與一參考電流分量,該絕緣導體電流分量指示由於該絕緣導體中之該電壓而傳導通過該感測器元件之該電流,且該參考電流分量指示由於該共同模式參考電壓源之該電壓而傳導通過該感測器元件傳導之該電流。
  13. 如請求項12之裝置,其中該控制電路系統判定該感測器電流信號之所判定之該絕緣導體電流分量的該頻率。
  14. 如請求項13之裝置,其中該控制電路系統基於該絕緣導體電流分量判定該絕緣導體中之該AC電壓、該參考電流分量、該絕緣導體電流分量之該頻率、該參考頻率、及該AC參考電壓。
  15. 一種操作一裝置以測量在一絕緣導體中之交流(AC)電壓之方法,該裝置包含:一殼體;一感測器子系統,其實體耦合至該殼體,該感測器子系統可選擇性地定位成鄰近該絕緣導體而不流電接觸該導體,其中該感測器子系統與該絕緣導體電容耦合,該感測器子系統包含複數個感測器元件;一導電內部接地防護件,其至少部分地圍繞該感測器子系統並從該感測器子系統流電隔離,該內部接地防護件經定大小及尺寸以屏蔽該感測器子系統免於雜散電流;及一導電參考屏蔽,其環繞該殼體的至少一部分並與該內部接地防護件流電絕緣,該導電參考屏蔽經定大小及尺寸以減少該內部接地防護件與一外部接地之間的電流,該方法包含: 使一共同模式參考電壓源產生具有一參考頻率的一交流(AC)參考電壓,該共同模式參考電壓源電耦合在該內部接地防護件及該導電參考屏蔽之間; 控制複數個可控制開關以使該等感測器元件之一者電耦合至該信號調節電路系統; 自該信號調節電路系統接收一感測器電流信號;及 至少部分基於所接收之該感測器電流信號、該AC參考電壓、及該參考頻率判定該絕緣導體中之該AC電壓。
  16. 如請求項15之方法,其進一步包含: 針對該複數個感測器元件之各者: 控制電耦合至該感測器元件之該可控制開關將該感測器元件耦合至該信號調節電路系統; 控制其餘之該等可控制開關將其餘之該等感測器元件與該信號調節電路系統電性解耦;及 自該信號調節電路系統接收該感測器元件之一感測器電流信號;及 判定該複數個感測器元件之何者產生具有最大量值之一感測器電流信號,其中控制該複數個可控制開關以使該等感測器元件之一者電耦合至該信號調節電路系統包含控制該複數個可控制開關以使經判定產生具有該最大量值之一感測器電流信號之該感測器元件電耦合至該信號調節電路系統。
  17. 如請求項15之方法,其進一步包含: 針對該複數個感測器元件之各者: 控制電耦合至該感測器元件之該可控制開關將該感測器元件耦合至該信號調節電路系統; 控制其餘之該等可控制開關將其餘之該等感測器元件與該信號調節電路系統電性解耦;及 自該信號調節電路系統接收該感測器元件之一感測器電流信號;及 至少部分基於該等感測器元件之各者之所接收之該等感測器電流信號來判定受測試之該導體之一實體特性。
  18. 如請求項17之方法,其中判定一實體特性包含判定下列至少一者:該絕緣導體之一實體尺寸、或該絕緣導體之一實體位置。
  19. 如請求項17之方法,其中判定該絕緣導體之一實體特性包含分析該等感測器元件之各者的所接收之該等感測器電流信號之一分布。
  20. 一種用於測量一絕緣導體中之交流(AC)的裝置,該裝置包含: 一感測器子系統,其可選擇性地定位成鄰近該絕緣導體而不流電接觸該導體,其中該感測器子系統與該絕緣導體電容耦合,該感測器子系統包含複數個感測器元件; 信號調節電路系統,其在操作時產生指示傳導通過該感測器子系統之電流的一感測器電流信號;及 複數個可控制開關,該複數個開關之各者操作以選擇性電耦合該等感測器元件之一各別者至該信號調節電路系統。
  21. 如請求項20之裝置,其進一步包含: 控制電路系統,其通訊地耦合至該信號調節電路系統及該等可控制開關,其中該控制電路系統在操作時: 控制該複數個可控制開關以使該等感測器元件之一者電耦合至該信號調節電路系統; 自該信號調節電路系統接收一感測器電流信號;及 至少部分基於所接收之該感測器電流信號判定該絕緣導體中之一AC電壓。
  22. 如請求項21之裝置,其中該複數個可控制開關之各者可控制至一第一狀態及一第二狀態中,其中該開關在該第一狀態中電耦合該等感測器元件之一各別者至該信號調節電路系統,且該開關在該第二狀態中電耦合該等感測器元件之一各別者至該內部接地防護件。
  23. 一種用於測量一絕緣導體中之交流(AC)的裝置,該裝置包含: 一殼體; 一感測器子系統,其實體耦合至該殼體,該感測器子系統可選擇性地定位成鄰近該絕緣導體而不流電接觸該導體,其中該感測器子系統與該絕緣導體電容耦合,該感測器子系統包含複數個感測器元件; 一導電內部接地防護件,其至少部分地圍繞該感測器子系統並從該感測器子系統流電隔離,該內部接地防護件經定大小及尺寸以屏蔽該感測器子系統免於雜散電流; 一導電參考屏蔽,其環繞該殼體的至少一部分並與該內部接地防護件流電絕緣,該導電參考屏蔽經定大小及尺寸以減少該內部接地防護件與一外部接地之間的電流; 一共同模式參考電壓源,其在操作時產生具有一參考頻率的一交流(AC)參考電壓,該共同模式參考電壓源電耦合在該內部接地防護件及該導電參考屏蔽之間; 信號調節電路系統,其在操作時產生指示傳導通過該感測器子系統之電流的一感測器電流信號; 複數個可控制開關,該複數個開關操作以選擇性電耦合該等感測器元件之各種組合至該信號調節電路系統;及 控制電路系統,其通訊地耦合至該複數個開關及該信號調節電路系統,其中該控制電路系統在操作時: 控制該複數個可控制開關以使該等感測器元件之一組合電耦合至該信號調節電路系統,感測器元件之該組合包含該複數個感測器元件之一或多者; 自該信號調節電路系統接收至少一感測器電流信號;及 至少部分基於所接收之該至少一感測器電流信號、該AC參考電壓、及該參考頻率判定該絕緣導體中之該AC電壓。
  24. 如請求項23之裝置,其中該等感測器元件之該組合包含複數個相鄰感測器元件。
  25. 如請求項23之裝置,其中該等感測器元件之該組合包含下列之至少一者:一單一感測器元件、複數個相鄰感測器元件、複數個感測器元件、該複數個感測器元件之至少兩者不相鄰、或所有感測器元件。
TW108115397A 2018-05-09 2019-05-03 用於非接觸式電壓測量裝置之多感測器掃描器組態 TWI780327B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/974,994 2018-05-09
US15/974,994 US10557875B2 (en) 2018-05-09 2018-05-09 Multi-sensor scanner configuration for non-contact voltage measurement devices

Publications (2)

Publication Number Publication Date
TW202004196A true TW202004196A (zh) 2020-01-16
TWI780327B TWI780327B (zh) 2022-10-11

Family

ID=66476570

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108115397A TWI780327B (zh) 2018-05-09 2019-05-03 用於非接觸式電壓測量裝置之多感測器掃描器組態

Country Status (5)

Country Link
US (1) US10557875B2 (zh)
EP (1) EP3567383B1 (zh)
JP (2) JP7219668B2 (zh)
CN (1) CN110470877A (zh)
TW (1) TWI780327B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023541200A (ja) 2020-09-15 2023-09-28 フルークコーポレイション 径方向デュアル取り付けセンサを備える非接触電気パラメータ測定装置
FR3115878B1 (fr) * 2020-11-05 2023-07-21 Electricite De France Système et procédé d’estimation de consommation d’un chauffe-eau électrique
KR102283940B1 (ko) * 2021-05-28 2021-07-30 주식회사 호연 상하 슬라이드 유동에 기반한 모터검사장치
CN113341204B (zh) * 2021-06-11 2022-03-08 南方电网数字电网研究院有限公司 电压检测装置和方法

Family Cites Families (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4837506A (en) * 1986-10-02 1989-06-06 Ultraprobe, Inc. Apparatus including a focused UV light source for non-contact measuremenht and alteration of electrical properties of conductors
US5473244A (en) 1992-09-17 1995-12-05 Libove; Joel M. Apparatus for measuring voltages and currents using non-contacting sensors
JPH06222087A (ja) 1993-01-27 1994-08-12 Hamamatsu Photonics Kk 電圧検出装置
US5973501A (en) 1993-10-18 1999-10-26 Metropolitan Industries, Inc. Current and voltage probe for measuring harmonic distortion
JPH09184866A (ja) 1995-12-28 1997-07-15 Sumitomo Electric Ind Ltd ケーブルの活線下劣化診断方法
US6043640A (en) 1997-10-29 2000-03-28 Fluke Corporation Multimeter with current sensor
US6118270A (en) 1998-02-17 2000-09-12 Singer; Jerome R. Apparatus for fast measurements of current and power with scaleable wand-like sensor
IL127699A0 (en) 1998-12-23 1999-10-28 Bar Dov Aharon Method and device for non contact detection of external electric or magnetic fields
US6812685B2 (en) 2001-03-22 2004-11-02 Actuant Corporation Auto-selecting, auto-ranging contact/noncontact voltage and continuity tester
JP3761470B2 (ja) 2001-04-04 2006-03-29 北斗電子工業株式会社 非接触電圧計測方法及び装置並びに検出プローブ
US6644636B1 (en) 2001-10-26 2003-11-11 M. Terry Ryan Clamp adapter
CN2639905Y (zh) 2003-07-25 2004-09-08 深圳市纳米电子有限公司 一种钳形表校验仪
CA2552044C (en) * 2004-01-07 2014-05-27 Suparules Limited Voltage measuring device
US7256588B2 (en) 2004-04-16 2007-08-14 General Electric Company Capacitive sensor and method for non-contacting gap and dielectric medium measurement
DE102004063249A1 (de) 2004-12-23 2006-07-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sensorsystem und Verfahren zur kapazitiven Messung elektromagnetischer Signale biologischen Ursprungs
JP4611774B2 (ja) 2005-03-04 2011-01-12 東日本電信電話株式会社 非接触型電圧検出方法及び非接触型電圧検出装置
US7466145B2 (en) 2005-10-12 2008-12-16 Hioki Denki Kabushiki Kaisha Voltage measuring apparatus and power measuring apparatus
JP4607753B2 (ja) 2005-12-16 2011-01-05 日置電機株式会社 電圧測定装置および電力測定装置
JP4607752B2 (ja) 2005-12-16 2011-01-05 日置電機株式会社 可変容量回路、電圧測定装置および電力測定装置
JP4713358B2 (ja) 2006-02-08 2011-06-29 日置電機株式会社 電圧検出装置
JP4648228B2 (ja) 2006-03-24 2011-03-09 日置電機株式会社 電圧検出装置および初期化方法
JP5106798B2 (ja) 2006-06-22 2012-12-26 日置電機株式会社 電圧測定装置
JP4726722B2 (ja) 2006-07-03 2011-07-20 日置電機株式会社 電圧測定装置
JP4726721B2 (ja) 2006-07-03 2011-07-20 日置電機株式会社 電圧測定装置
JP4629625B2 (ja) 2006-07-12 2011-02-09 日置電機株式会社 電圧測定装置
GB0614261D0 (en) 2006-07-18 2006-08-30 Univ Sussex The Electric Potential Sensor
JP5106909B2 (ja) 2007-04-10 2012-12-26 日置電機株式会社 線間電圧測定装置
JP4927632B2 (ja) 2007-04-13 2012-05-09 日置電機株式会社 電圧測定装置
JP5144110B2 (ja) 2007-04-13 2013-02-13 日置電機株式会社 電圧測定装置
JP5069978B2 (ja) 2007-08-31 2012-11-07 株式会社ダイヘン 電流・電圧検出用プリント基板および電流・電圧検出器
JP5160248B2 (ja) 2008-01-18 2013-03-13 日置電機株式会社 電圧検出装置
US20100090682A1 (en) 2008-02-14 2010-04-15 Armstrong Eric A Multi-Meter Test Lead Probe For Hands-Free Electrical Measurement of Control Panel Industrial Terminal Blocks
US8222886B2 (en) 2008-06-18 2012-07-17 Hioki Denki Kabushiki Kaisha Voltage detecting apparatus and line voltage detecting apparatus having a detection electrode disposed facing a detected object
JP5389389B2 (ja) 2008-07-22 2014-01-15 日置電機株式会社 線間電圧測定装置およびプログラム
CN101881791B (zh) 2009-04-30 2015-08-05 日置电机株式会社 电压检测装置
JP2011053201A (ja) * 2009-04-30 2011-03-17 Hioki Ee Corp 電圧検出装置および線間電圧検出装置
JP5340817B2 (ja) 2009-06-11 2013-11-13 日置電機株式会社 電圧検出装置
JP5420387B2 (ja) 2009-12-09 2014-02-19 日置電機株式会社 電圧検出装置
CN101852823B (zh) * 2010-02-08 2012-04-18 广东电网公司电力科学研究院 无接触式电压测量装置及无接触式电压测量方法
JP5650940B2 (ja) 2010-06-30 2015-01-07 株式会社日立アイイ−システム 電流センサ内蔵端子台
JP5474707B2 (ja) 2010-08-30 2014-04-16 日置電機株式会社 電圧検出装置用の検出回路および電圧検出装置
US9063184B2 (en) * 2011-02-09 2015-06-23 International Business Machines Corporation Non-contact current-sensing and voltage-sensing clamp
US8680845B2 (en) 2011-02-09 2014-03-25 International Business Machines Corporation Non-contact current and voltage sensor
JP5834663B2 (ja) * 2011-04-06 2015-12-24 富士通株式会社 交流電力測定装置
JP5834292B2 (ja) 2011-05-09 2015-12-16 アルプス・グリーンデバイス株式会社 電流センサ
BR112014002634B1 (pt) 2011-08-03 2021-06-15 Fluke Corporation Método de obtenção e manutenção de registro de manutenção,sistema para obtenção e manutenção de registros de manutenção e meio de armazenamento legível por computador.
TWI436083B (zh) 2011-11-02 2014-05-01 Ind Tech Res Inst 近接式電流感測裝置與方法
US8754636B2 (en) * 2011-12-07 2014-06-17 Brymen Technology Corporation Clamp meter with multipoint measurement
US20140035607A1 (en) 2012-08-03 2014-02-06 Fluke Corporation Handheld Devices, Systems, and Methods for Measuring Parameters
JP5981270B2 (ja) 2012-08-28 2016-08-31 日置電機株式会社 電圧測定用センサおよび電圧測定装置
US9007077B2 (en) 2012-08-28 2015-04-14 International Business Machines Corporation Flexible current and voltage sensor
JP5981271B2 (ja) 2012-08-28 2016-08-31 日置電機株式会社 電圧測定用センサおよび電圧測定装置
US9651584B2 (en) * 2012-12-05 2017-05-16 Schneider Electric USA, Inc. Isolated and self-calibrating voltage measurement sensor
US9297836B2 (en) * 2013-03-08 2016-03-29 Deere & Company Method and sensor for sensing current in a conductor
WO2014179221A2 (en) 2013-04-29 2014-11-06 Massachusetts Institute Of Technology Non-intrusive monitoring
US9625535B2 (en) 2013-08-07 2017-04-18 Allegro Microsystems, Llc Systems and methods for computing a position of a magnetic target
JP5855070B2 (ja) 2013-10-25 2016-02-09 三菱電機株式会社 計測装置及び電流トランスの設置状態判定方法
JP6260329B2 (ja) 2014-02-17 2018-01-17 オムロン株式会社 電流測定装置、その制御方法、制御プログラム、並びに記録媒体、および電力測定装置
JP6459188B2 (ja) * 2014-03-13 2019-01-30 オムロン株式会社 非接触電圧計測装置
US9678115B2 (en) * 2014-05-13 2017-06-13 General Electric Company Contactless voltage sensing devices
JP6210938B2 (ja) 2014-06-18 2017-10-11 日置電機株式会社 非接触型電圧検出装置
US9689903B2 (en) * 2014-08-12 2017-06-27 Analog Devices, Inc. Apparatus and methods for measuring current
US10602082B2 (en) 2014-09-17 2020-03-24 Fluke Corporation Triggered operation and/or recording of test and measurement or imaging tools
TWI649568B (zh) 2014-10-17 2019-02-01 日商日置電機股份有限公司 Voltage detecting device
WO2016065261A1 (en) 2014-10-24 2016-04-28 Fluke Corporation Imaging system employing fixed, modular mobile, and portable infrared cameras with ability to receive, communicate, and display data and images with proximity detection
US9733281B2 (en) * 2014-12-29 2017-08-15 Eaton Corporation Voltage sensor system
WO2016175142A1 (ja) * 2015-04-28 2016-11-03 アルプス・グリーンデバイス株式会社 非接触電圧計測装置
WO2016175123A1 (ja) * 2015-04-28 2016-11-03 アルプス・グリーンデバイス株式会社 非接触電圧計測装置
US10605832B2 (en) * 2016-11-11 2020-03-31 Fluke Corporation Sensor subsystems for non-contact voltage measurement devices
US10352967B2 (en) * 2016-11-11 2019-07-16 Fluke Corporation Non-contact electrical parameter measurement systems
US10139435B2 (en) * 2016-11-11 2018-11-27 Fluke Corporation Non-contact voltage measurement system using reference signal
US10502807B2 (en) * 2017-09-05 2019-12-10 Fluke Corporation Calibration system for voltage measurement devices

Also Published As

Publication number Publication date
EP3567383A1 (en) 2019-11-13
US20190346494A1 (en) 2019-11-14
JP2019215331A (ja) 2019-12-19
US10557875B2 (en) 2020-02-11
CN110470877A (zh) 2019-11-19
EP3567383B1 (en) 2023-08-23
JP7219668B2 (ja) 2023-02-08
TWI780327B (zh) 2022-10-11
JP7483068B2 (ja) 2024-05-14
JP2023052672A (ja) 2023-04-11

Similar Documents

Publication Publication Date Title
TWI790244B (zh) 用於電壓測量裝置之校準系統
EP3567380B1 (en) Non-contact dc voltage measurement device with oscillating sensor
TWI744409B (zh) 使用參考信號的非接觸式電壓測量系統
TWI780327B (zh) 用於非接觸式電壓測量裝置之多感測器掃描器組態
TWI790376B (zh) 用於非接觸式電壓測量裝置之多感測器組態
US10605832B2 (en) Sensor subsystems for non-contact voltage measurement devices
EP3567394B1 (en) Position dependent non-contact voltage and current measurement

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent