TWI750237B - 雙極板、胞框架、電池堆、及氧化還原液流電池 - Google Patents

雙極板、胞框架、電池堆、及氧化還原液流電池 Download PDF

Info

Publication number
TWI750237B
TWI750237B TW106134331A TW106134331A TWI750237B TW I750237 B TWI750237 B TW I750237B TW 106134331 A TW106134331 A TW 106134331A TW 106134331 A TW106134331 A TW 106134331A TW I750237 B TWI750237 B TW I750237B
Authority
TW
Taiwan
Prior art keywords
bipolar plate
groove portion
side walls
depth direction
electrolyte
Prior art date
Application number
TW106134331A
Other languages
English (en)
Other versions
TW201820680A (zh
Inventor
寒野毅
本井見二
Original Assignee
日商住友電氣工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商住友電氣工業股份有限公司 filed Critical 日商住友電氣工業股份有限公司
Publication of TW201820680A publication Critical patent/TW201820680A/zh
Application granted granted Critical
Publication of TWI750237B publication Critical patent/TWI750237B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2455Grouping of fuel cells, e.g. stacking of fuel cells with liquid, solid or electrolyte-charged reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

一種雙極板,係被配置於氧化還原液流電池之正極電極與負極電極之間,在對向於前述雙極板之前述正極電極及前述負極電極之至少一方的電極之面,具有電解液流通之至少1個溝部,前述溝部,在正交於前述電解液的流通方向的剖面,具有相互對向之一對側壁,前述溝部的深度方向之至少一部分,具有前述側壁的間隔於深度方向上變窄的狹窄部。

Description

雙極板、胞框架、電池堆、及氧化還原液流電池
[0001] 本發明係關於雙極板、胞框架、電池堆、及氧化還原液流電池。
[0002] 作為大容量蓄電池之一,已知有氧化還原液流電池(以下亦稱為「RF電池」)(參照專利文獻1~4)。於氧化還原液流電池,使用分別把胞框架、正極電極、隔膜、負極電極層積複數而成的電池堆。胞框架,具備被配置於正極電極與負極電極之間的雙極板,與設於雙極板的外周的框體。在電池堆,於鄰接的胞框架之雙極板之間,挾著隔膜被配置正負電極,形成1個胞(cell,單電池)。RF電池,在被配置電極的胞內使電解液循環流通進行充放電。   [0003] 於專利文獻1~4,揭示了以減低RF電池的內電阻之目的,藉由在對向於雙極板的電極之面形成構成電解液的流道之複數溝部,減低胞內之電解液的流通阻力導致的壓力損失之技術。 [先前技術文獻] [專利文獻]   [0004]   [專利文獻1] 日本特開2015-122230號公報   [專利文獻2] 日本特開2015-122231號公報   [專利文獻3] 日本特開2015-138771號公報   [專利文獻4] 日本特開2015-210849號公報
[0005] 本發明之雙極板,係被配置於氧化還原液流電池之正極電極與負極電極之間,在對向於前述雙極板之前述正極電極及前述負極電極之至少一方的電極之面,具有電解液流通之至少1個溝部,前述溝部,在正交於前述電解液的流通方向的剖面,具有相互對向之一對側壁,前述溝部的深度方向之至少一部分,具有前述側壁的間隔於深度方向上變窄的狹窄部。   [0006] 本發明之胞框架,具備本發明之雙極板,與設於前述雙極板的外周的框體。   [0007] 本發明之電池堆,具備本發明之胞框架。   [0008] 本發明之氧化還原液流電池,具備本發明之電池堆。
[0010] [本發明所欲解決之課題]   氧化還原液流電池的電池性能的更為提高是被期待的。   [0011] RF電池,會反覆處於運轉與待機狀態,運轉狀態在胞內使電解液流通進行充放電,待機狀態停止電解液的流通。RF電池在待機時停止電解液的流通的話,會因為被充電的電解液在胞內自己放電而使電解液發熱,而有伴隨著溫度上升而使析出物產生於電解液的情形,有招致電解液劣化等電池性能降低之虞。此外,由於電解液的溫度上升,也有藉由該熱使雙極板軟化變形等對雙極板(胞框架)造成損傷之虞。亦即,為了抑制胞內的電解液的溫度上升,期待著改善電解液的散熱。   [0012] 在此,本發明的目的之一在於提供可以減低胞內的電解液的壓力損失,同時可抑制電解液的溫度上升之雙極板、胞框架、及電池堆。此外,本發明的目的之一在於提供電池性能優異的氧化還原液流電池。   [0013] [本揭示之效果]   根據本發明,可提供可以減低胞內的電解液的壓力損失,同時可抑制電解液的溫度上升之雙極板、胞框架、及電池堆。此外,根據本發明,可提供電池性能優異的氧化還原液流電池。   [0014] [本發明的實施形態之說明]   本案發明人等,檢討了藉著在氧化還原液流電池,於對向於雙極板的電極的面,沿電解液的流通方向形成溝部構成流道,減少胞內的電解液的壓力損失。進而,本案發明人等,嘗試檢討在被形成電解液流通的溝部之雙極板,為了抑制胞內的電解液成分的析出,而可以改善電解液的散熱抑制電解液溫度上升之溝部的剖面形狀。「溝部的剖面形狀」,意味著正交於電解液流通方向的剖面的形狀,於該剖面,以構成溝部的壁面與開口部所包圍的封閉區域來表示。於以下的說明,在沒有特別說明的情況下,所謂「溝部的剖面」,意味著正交於電解液流通方向的剖面。   [0015] 於雙極板形成溝部的場合,於RF電池運轉時在胞內使電解液流通之際,電解液流通於溝部,於RF電池待機時停止電解液的流通之際,電解液滯留於溝部。由於自己放電而溫度上升之溝部內的電解液之熱,由電解液接觸的溝部的壁面來散熱、冷卻。因此,於溝部內的電解液,在接於溝部的壁面的部份會藉由熱傳導而使電解液的溫度變低,藉由溫度差產生電解液的對流。可以促進此對流的話,應可促進由溝部內之電解液往溝部壁面之熱移動,提高電解液的散熱效率。在此,本案發明人等針對可促進電解液的對流的溝部的剖面形狀進行了種種檢討。   [0016] 溝部的剖面形狀通常為約略正方形狀,是具有平行於雙極板的表面的底壁,與從雙極板的表面往對底壁垂直方向延伸,互為平行對向的一對側壁之形狀。在此場合,溝部,跨溝部的深度方向全體,側壁的間隔實質上為一定,側壁與底壁的夾角為直角(90°)。所謂「溝部的深度方向」,係在正交於電解液的流通方向之剖面,由溝部的開口部朝向底部對雙極板的表面垂直的方向(亦即,雙極板的厚度方向)。   [0017] 本案發明人,認為為了促進電解液的電流,可以使溝部的剖面形狀,具有側壁的間隔在深度方向上變窄的狹窄部的形狀。認為此溝部,於狹窄部側壁的至少一方對深度方向傾斜,在溝部內的電解液產生對流時促進沿著側壁移動的電解液的對流。亦即,可認為這樣的剖面形狀的溝部,與側壁相互對向且深度方向為平行的溝部相比,更促進電解液的對流,可以改善電解液的散熱,可以抑制電解液的溫度上升。   [0018] 本案發明人等,根據前述考量,終至完成本發明。首先,列記並說明本發明之實施形態之內容。   [0019] (1)相關於實施型態之雙極板,   係被配置於氧化還原液流電池之正極電極與負極電極之間的雙極板,   在對向於前述雙極板之前述正極電極及前述負極電極之至少一方的電極之面,具有電解液流通之至少1個溝部,   前述溝部,在正交於前述電解液的流通方向的剖面,具有相互對向之一對側壁,   前述溝部的深度方向之至少一部分,具有前述側壁的間隔於深度方向上變窄的狹窄部。   [0020] 根據前述雙極板,可以藉著在對向於電極的面具有溝部,而減少流通於胞內的電極的電解液之流通阻力,可減低在胞內的電解液的壓力損失。從而,可以減低起因於電解液的壓力損失之泵損失。此外,溝部於其剖面具有側壁的間隔往深度方向變窄的狹窄部,所以促進電解液的對流。具體而言,於狹窄部側壁的至少一方對深度方向傾斜,可以促進沿著此側壁的傾斜面移動的電解液的對流。結果,根據對流提高電解液的散熱效果,所以可改善電解液的散熱,可抑制電解液的溫度上升。從而,可抑制電解液成分的析出,可抑制電解液的劣化。此外,可以抑制電解液的熱的影響導致雙極板的軟化、變形。亦即,前述雙極板,可以減低胞內的電解液的壓力損失,同時可抑制電解液的溫度上升,可以提高氧化還原液流電池的電池性能。   [0021] 所謂「狹窄部」,是指側壁的間隔朝向溝部的深度方向(由開口部側往底部側)徐徐變窄的方式連續變化的部分。於狹窄部,只要側壁之至少一方對深度方向傾斜即可,一方側壁對深度方向傾斜而另一方側壁沿著深度方向亦可,雙方側壁都對深度方向傾斜亦可。所謂「沿著深度方向」意味著對深度方向為實質平行(總之,由開口部側朝向底部側對雙極板的表面為垂直)。所謂「雙極板的表面」,是對向而接於電極之面。此外,狹窄部,只要在溝部的深度方向之至少一部份即可,亦可在深度方向的一部分被形成狹窄部,其他部分側壁間隔實質為一定亦可。例如,由開口部起到深度方向的中途位置為止側壁間隔實質為一定,存在著與開口部的寬幅相同的部分亦可。狹窄部的數目可以是1個也可以是複數個。跨深度方向全體被形成狹窄部為佳。   [0022] (2)作為前述雙極板之一型態,可以舉出   前述溝部具有底壁,   前述底壁具有平行於前述雙極板的表面之平坦面。   [0023] 藉著底壁具有平行於雙極板表面的平坦面,與剖面為正方形狀的溝部相比,在溝部剖面積相同的場合,可以增加溝部的周長。增加溝部的周長的話,這部分造成與電解液接觸的面積增大,由電解液往溝部壁面的熱移動變多,所以根據熱傳導之電解液的散熱效果提高。從而,可更為改善電解液的散熱,更能抑制電解液的溫度上升。「溝部的周長」,意味著正交於電解液流通方向的剖面之周長,於該剖面,以構成溝部的壁面的周長(側壁及底壁的全長)與開口部的寬幅合計之長度來表示。   [0024] (3)作為前述(2)所記載的雙極板之一型態,可以舉出   至少一方之前述側壁與前述底壁之夾角為91°以上120°以下。   [0025] 如剖面為正方形狀的溝部那樣,側壁與底壁的夾角為直角(90°)的話,難以產生沿著側壁與底壁之角部的對流,於角部附近,難以促進根據對流之電解液的散熱。藉著使側壁與底壁的夾角為91°以上,於側壁與底壁之角部,電解液容易沿著側壁的傾斜面對流,促進在角部附近的電解液的散熱。藉著使側壁與底壁的夾角在120°以下,使溝部剖面積為一定的場合,溝部的周長不會變得太長,可以抑制電解液流通時的壓力損失過度變大。溝部的剖面積越大,或者溝部的周長越短,壓力損失就越小,所以剖面積相同的場合,周長較小可以減少壓力損失。其他方面,藉著使側壁與底壁的夾角為120°以下,溝部的深度不會過淺,容易形成溝部。溝部,例如,可以舉出與雙極板的成形一起形成,或是藉由切削加工形成。此外,側壁與底壁之夾角為120°以下的話,溝部的開口部的寬幅不會太寬,於雙極板並列形成複數溝部的場合,可以形成更多的溝部。側壁與底壁之夾角,例如為95°以上110°以下為佳。   [0026] (4)作為前述(2)或(3)所記載的雙極板之一型態,可以舉出   至少一方之前述側壁與前述底壁之角部被形成為曲面狀。   [0027] 藉著使側壁與底壁的角部被形成為曲面狀,電解液容易沿著角部對流,促進在角部附近的電解液的散熱。例如,角部的曲率半徑可以舉出0.1mm以上10mm以下,進而可為0.2mm以上5mm以下。   [0028] (5)作為前述雙極板之一型態,可以舉出   於前述狹窄部,前述側壁之至少一方,具有對深度方向傾斜的傾斜面,前述傾斜面為平面。   [0029] 藉著使狹窄部之側壁的傾斜面為平面,在藉由切削加工形成溝部的場合等,容易精度佳地形成。   [0030] (6)作為前述雙極板之一型態,可以舉出   於前述狹窄部,前述側壁之至少一方,具有對深度方向傾斜的傾斜面,前述傾斜面為曲面。   [0031] 藉著使狹窄部之側壁的傾斜面為曲面,沿著傾斜面移動的電解液的對流更容易促進,更為提高根據對流之電解液的散熱效率。   [0032] (7)作為前述雙極板之一型態,可以舉出   前述溝部具有底壁,   前述底壁具有突出於前述溝部的深度方向之曲面。   [0033] 藉著底壁具有往溝部的深度方向突出的曲面,電解液容易沿著底壁的曲面對流,促進在底壁附近的電解液的散熱。   [0034] (8)作為前述(7)所記載的雙極板之一型態,可以舉出   前述側壁與前述底壁之全面被形成為曲面狀。   [0035] 藉著側壁與底壁全面被形成為曲面狀,亦即溝部的壁面全體被形成為曲面,電解液容易沿著溝部的壁面(側壁及底壁)對流,更能提高對流導致的電解液之散熱效率。   [0036] (9)作為前述雙極板之一型態,可以舉出   前述溝部的深度方向之任意位置之前述側壁的間隔,相對於比該位置更靠開口部側之前述側壁的間隔,為同等或更小。   [0037] 在此場合,側壁的間隔,跨溝部的深度方向全體為開口部的寬幅以下,而且在開口部最寬,底部變得最窄。側壁的間隔,由開口部朝向底部變窄,在深度方向的途中沒有變寬的部分,所以容易形成溝部。例如,可以舉出由底部往溝部的深度之一半的位置之側壁的間隔變得比開口部更窄,或是由底部起在溝部深度的1/4的位置更靠底部側的部分使側壁間隔徐徐變窄。   [0038] (10)相關於實施型態之胞框架,具備前述(1)至(9)之任1之雙極板,與設於前述雙極板的外周的框體。   [0039] 根據前述胞框架的話,由於具備相關於前述實施型態之雙極板,可以減低胞內的電解液的壓力損失,同時可抑制電解液的溫度上升,可以提高氧化還原液流電池的電池性能。   [0040] (11)相關於實施型態之電池堆,具備前述(10)之胞框架。   [0041] 根據前述電池堆的話,由於具備相關於前述實施型態之胞框架,可以減低胞內的電解液的壓力損失,同時可抑制電解液的溫度上升,可以提高氧化還原液流電池的電池性能。   [0042] (12)相關於實施型態之氧化還原液流電池,具備前述(11)之電池堆。   [0043] 根據前述氧化還原液流電池的話,由於具備前述電池堆,可以減低胞內的電解液的壓力損失,同時可抑制電解液的溫度上升,電池性能優異。   [0044] [本發明的實施形態之詳細內容]   以下,參照圖式說明相關於本發明的實施型態之雙極板、胞框架、電池堆、及氧化還原液流電池(RF電池)之具體例。圖中相同的符號表示同一或相當部分。又,本發明並不限定於這些例示,本發明的範圍意圖包含申請專利範圍所示的,與申請專利範圍均等之意義以及在該範圍內的所有的變更。   [0045] 《RF電池》   參照圖1、圖2,說明相關於實施型態之氧化還原液流電池(以下稱為RF電池)之一例。RF電池1,是使用在正極電解液及負極電解液含有藉由氧化還原使價數改變的金屬離子作為活性物質之電解液,而利用包含於正極電解液的離子的氧化還原電位,與包含於負極電解液的離子的氧化還原電位之差而進行充放電的電池。在此,作為RF電池1之一例,顯示於正極電解液及負極電解液使用含有成為活性物質的釩(V)離子的釩電解液之釩系RF電池的場合。圖1中的胞100內的實線箭頭顯示充電反應,虛線箭頭顯示放電反應。RF電池1,例如可利用於負荷平準化用途、瞬間壓降補償或非常用途電源等用途、已進行大量導入的太陽光發電或風力發電等自然能源的輸出平滑化用途等。   [0046] RF電池1,具備以使氫離子透過的隔膜101分離為正極胞102與負極胞103的胞100。於正極胞102內藏正極電極104,且貯留正極電解液的正極電解液用槽106透過導管108、110連接著。於導管108,設有把正極電解液壓送至正極胞102的泵112,被構成藉由這些構件106、108、110、112使正極電解液循環之正極用循環機構100P。同樣地,於負極胞103內藏負極電極105,且貯留負極電解液的負極電解液用槽107透過導管109、111連接著。於導管109,設有把負極電解液壓送至負極胞103的泵113,被構成藉由這些構件107、109、111、113使負極電解液循環之負極用循環機構100N。被貯留於各槽106、107的各電解液,在進行充放電之運轉時,藉由泵112、113循環於胞100(正極胞102及負極胞103)內,在不進行充放電之待機時,泵112、113停止,不使電解液循環。   [0047] 《電池堆》   胞100,通常如圖2、圖3所是那樣,被形成於稱為電池堆2的構造體的內部。電池堆2,由兩側以2枚端板220挾入被稱為次電池堆200(參照圖3)的層積體,以夾緊機構230夾緊兩側的端板220而構成(在圖3所例示的構成,具備複數次電池堆200)。次電池堆200,係把胞框架3、正極電極104、隔膜101、及負極電極105層積複數而成,於該層積體的兩端被配置供排板210(參照圖3之下圖,在圖2省略)的構成。   [0048] 《胞框架》   胞框架3,如圖2、圖3所示,具備被配置於正極電極與負極電極之間的雙極板31,與設於雙極板31的外周的框體32。於雙極板31的一面側,以正極電極104接觸的方式被配置,於雙極板31的另一面側,以負極電極105接觸的方式被配置。在次電池堆200(電池堆2),於鄰接的各胞框架3的雙極板31之間分別被形成1個胞100。   [0049] 雙極板31,例如以塑膠碳等形成,框體32,例如以氯乙烯樹脂(PVC)、聚丙烯、聚乙烯、氟樹脂、環氧樹脂等之塑膠形成。雙極板31,例如藉由射出成形、沖壓成形、真空成形等習知的方法來成形。胞框架3,係在雙極板31的外周藉由框體32射出成形等而一體化。   [0050] 往胞100之電解液的流通,是中介著供排板210(參照圖3之下圖),藉由貫通圖3所示的胞框架3的框體32而設的供液歧管33、34及排液歧管35、36,與被形成於框體32的表面的供液狹縫33s,34s及排液狹縫35s,36s來進行(也請配合參照圖4)。在此例,正極電解液,由供液歧管33透過被形成於框體32的一面側(紙面表面側)的供液狹縫33s供給至正極電極104,中介著被形成於框體32的上部的排液狹縫35s往排液歧管35排出。同樣地,負極電解液,由供液歧管34透過被形成於框體32的另一面側(紙面背面側)的供液狹縫34s供給至負極電極105,中介著被形成於框體32的上部的排液狹縫36s往排液歧管36排出。於各胞框架3的框體32間,為了抑制電解液的洩漏,被配置O環或平墊片等環狀的密封構件37(參照圖2、圖3)。於框體32,被形成供配置密封構件37之用的封條溝38(參照圖4)。   [0051] 《雙極板》   主要參照圖4,說明相關於實施型態之雙極板31之一例。雙極板31,平面形狀為約略矩形狀,圖4所示的雙極板31之一面側(紙面表面側),為對向於正極電極104(參照圖3)的面,另一面側(紙面背面側)為對向於負極電極105(參照圖3)的面。此外,於圖4所示的雙極板31,連接於供液狹縫33s的下側的緣部為正極電解液之供給側,連接於排液狹縫35s的上側的緣部為正極電解液之排出側。總之,電解液由雙極板31的下側供給,電解液由雙極板31的上側排出,電解液從雙極板31的下側緣部朝向上側緣部流通。圖4中,紙面左側的箭頭,顯示雙極板31之電解液全體的電解液流通方向。   [0052] 雙極板31,如圖4所示,於其一面側,具備具有複數溝部400的流道40。在圖4,為了容易了解,未被形成流道40(溝部400)的部分被施以影線。各溝部400,沿著電解液的流通方向形成,等間隔地並列著。在此例,作為溝部400,一端連通於雙極板31的下側緣部,另一端連通至到上側緣部為止殘留一定長度而形成的導入側溝部410,以及,一端連通於雙極板31的上側緣部,另一端連通至到下側緣部為止殘留一定長度而形成的排出側溝部420,被交互排列設置。接著,作為流道40,被設置具有導入側溝部410的導入路徑41,與具有排出側溝部420的排出路徑42。此外,在此例,導入路徑41,具有沿著雙極板31的下側緣部形成的導入側整流溝部411,各導入側溝部410之一端連通於導入側整流溝部411。排出路徑42,具有沿著雙極板31的上側緣部形成的排出側整流溝部421,各排出側溝部420之一端連通於排出側整流溝部421。導入側整流溝部411,把由各供液狹縫33s供給的電解液分配至各導入側溝部410,排出側整流溝部421,把從各排出側溝部420排出的電解液聚集於排液狹縫35s。在此例,把導入側整流溝部411與排出側整流溝部421設於雙極板31,但導入側整流溝部411與排出側整流溝部421亦可設於框體32。   [0053] 在此例,各溝部400(導入側溝部410及排出側溝部420)的寬幅或深度為相同,其剖面形狀實質上相等於長度方向上為相同。溝部400的寬幅或深度、相鄰溝部400的間隔,可以因應於雙極板31的尺寸或厚度等而適當選擇,沒有特別限定。例如,相鄰的溝部400的間隔,可以舉出0.5mm以上30mm以下,進而可為1mm以上5mm以下。關於溝部400的寬幅(開口寬幅)或深度、剖面形狀將於稍後敘述。   [0054] 導入路徑41,是供對正極電極(參照圖3)供給正極電解液之流道,排出路徑42,是供排出正極電解液之流道,藉著具備這樣的導入路徑41與排出路徑42,容易使供給的正極電解液均勻地通過正極電極(參照圖3)的全面。由供液狹縫33s供給至雙極板31之一側面的正極電解液,透過導入路徑41的導入側整流溝部411流通於導入側溝部410,通過雙極板31的全面。流至導入側溝部410的正極電解液,滲透至被配置於雙極板31表面的正極電極(參照圖3),跨雙極板31的表面,流至相鄰於導入側溝部410的排出側溝部420。流至排出路徑42的排出側溝部420的正極電解液,透過排出側整流溝部421由排液狹縫35s排出。   [0055] 在此,僅圖示雙極板31的一面側,但在雙極板31的另一面側,被形成對負極電極105(參照圖3)供給負極電解液的導入路徑與排出負極電解液的排出路徑。雙極板31的另一面側的負極電解液用之導入路徑與排出路徑的構成,與圖4所說明的正極電解液用導入路徑41與排出路徑42同樣,所以省略其說明。   [0056] [實施型態1] (溝部的剖面形狀)   相關於實施型態之雙極板31的特徵之一,為溝部400的剖面形狀。圖5係顯示相關於實施型態1之雙極板31之溝部400的剖面形狀。溝部400,在正交於電解液的流通方向的剖面,具有相互對向之一對側壁51,於溝部400的深度方向的至少一部分,具有側壁51的間隔於深度方向上變窄的狹窄部510。以下,針對實施型態1之溝部400的剖面形狀更詳細地說明。   [0057] 實施型態1之溝部400,具有連接一對側壁51的下端(底部側)彼此之底壁52。此底壁52具有平行於雙極板31的表面之平坦面。一對側壁51,對深度方向傾斜著,側壁51的間隔為朝向深度方向(由開口部53往底壁52)徐徐變窄。各側壁51,由開口部53往底壁52全面呈傾斜面,傾斜面為平面。各側壁51(傾斜面)對深度方向之傾斜角度β為約略相等。亦即,在實施型態1的溝部400,跨深度方向全體被形成狹窄部510,溝部400的剖面形狀,係以開口部53為長邊,底壁52為短邊的梯形狀(具體為等角梯形)。   [0058] 此溝部400,於深度方向的任意位置之側壁51的間隔,相對於比該位置更靠開口部53側之側壁51的間隔,為同等或更小。總之,側壁51的間隔,跨深度方向全體為開口部53的寬幅以下,而且在開口部53最寬,在底壁52側最窄。   [0059] 於溝部400,側壁51與底壁52之夾角角度54之角度α,為超過90°但未滿180°,例如可以舉出91°以上120°以下,較佳為95°以上110°以下。側壁51(傾斜面)對深度方向之傾斜角度β,例如可以舉出1°以上45°以下,進而可為30°以下,較佳為5°以上20°以下。開口部53的寬幅w,例如可以舉出0.5mm以上10mm以下,進而可為1mm以上5mm以下。深度h(由開口部53到底壁52為止的深度方向之長度),例如可以舉出0.5mm以上10mm以下,進而可為1mm以上5mm以下。   [0060] {作用效果}   相關於實施型態1之雙極板31,藉著具有溝部400,可以使電解液沿著溝部400流通,所以可縮小電解液的流通阻力,減低電解液的壓力損失。此外,於溝部400的深度方向之至少一部份具有狹窄部510,可以促進沿著側壁51的傾斜面移動的電解液的對流。根據對流提高電解液的散熱效果,所以可改善溝部400內的電解液的散熱,可抑制電解液的溫度上升。結果,可抑制電解液成分的析出。特別是側壁51對深度方向傾斜,側壁51的全面成為傾斜面,跨深度方向全體被形成狹窄部510,所以電解液容易沿著側壁51對流,根據對流之電解液的散熱效果很高。進而,藉著使側壁51與底壁52的夾角α為91°以上120°以下,於角部54,電解液容易沿著側壁51的傾斜面對流,可促進在角部54附近的來自電解液的散熱。   [0061] 實施型態1的溝部400,剖面形狀為梯形(具體為等角梯形),與剖面形狀為正方形的溝部400相比,在剖面積相同的場合,溝部400的周長變長。因此,與電解液接觸的面積變大,根據熱傳導之電解液的散熱效果提高。   [0062] 此外,側壁51的間隔,由開口部53朝向底壁52變窄,在深度方向的途中沒有變寬的部分,所以容易形成溝部400。   [0063] [變形例]   在實施型態1,說明了溝部400的剖面形狀為等角梯形,構成狹窄部510的一對側壁51對深度方向相互傾斜,側壁51的間隔朝向深度方向變窄的型態。作為實施型態1的變形例,亦可使一對側壁51之中,一方側壁51對深度方向傾斜,另一方側壁51沿著深度方向。此外,各側壁51的傾斜角度β亦可不同。   [0064] 其次,根據圖6~圖9,說明溝部400的剖面形狀之其他型態例。以下,針對溝部400,對與前述實施型態1同樣的構成賦予相同符號而省略其說明,僅以與實施型態1不同之處進行說明。   [0065] [實施型態2]   在圖6所示的實施型態2,側壁51與底壁52之角部54被形成為曲面狀。   [0066] 實施型態2的溝部400,藉著使角部54被形成為曲面狀,電解液容易沿著角部54對流,促進在角部54附近的電解液的散熱。角部54的曲率半徑r,例如可以舉出0.1mm以上10mm以下,進而可為0.2mm以上5mm以下。   [0067] [實施型態3]   在圖7所示的實施型態3,構成狹窄部510的側壁51的傾斜面為曲面。   [0068] 實施型態3的溝部400,藉著使側壁51的傾斜面為曲面,沿著傾斜面移動的電解液的對流可更為促進,更為提高根據對流之電解液的散熱效率。曲面的形狀,例如可以舉出圓弧形狀、橢圓弧形狀等。   [0069] [實施型態4]   在圖8所示之實施型態4,底壁52具有突出往深度方向的曲面。   [0070] 實施型態4的溝部400,藉著底壁52具有曲面,電解液容易沿著底壁52的曲面對流,促進在底壁52附近的電解液的散熱。   [0071] [實施型態5]   在圖9所示的實施型態5,側壁51與底壁52之全面被形成為曲面狀。   [0072] 藉著側壁51與底壁52全面被形成為曲面狀,亦即溝部400的壁面全體被形成為曲面,電解液容易沿著壁面(側壁51及底壁52)對流,更能提高對流導致的電解液之散熱效率。作為溝部400的剖面形狀,可以舉出半圓形狀、半橢圓形狀等,圖9所示的溝部400的場合,為半橢圓形狀。   [0073] (其他)   在前述實施型態,說明了具有底壁52的型態,但不具有底壁的型態,例如溝部的剖面形狀為以底部為頂點,以開口部為底邊的三角形狀(具體例為二等邊三角形狀)亦可。   [0074] 在前述實施型態,說明了側壁51的全面為傾斜面,跨深度方向全體具有狹窄部510的型態,但亦可以是側壁51的一部分為傾斜面,於深度方向的一部分被形成狹窄部510,其他部分側壁51的間隔實質上為一定。例如,可以舉出如圖10(a)所示,側壁51的上端(開口部53側)傾斜,於開口部53側具有狹窄部510的型態,或如圖10(b)所示,側壁51的下端(底壁52側)傾斜,於底壁52側具有狹窄部510的型態。圖10(a)的場合,比起狹窄部510在底壁52側的部分側壁51的間隔為一定,在圖10(b)的場合,從開口部53到狹窄部510為止的部分,側壁51的間隔與開口部53的寬幅同等。此外,如圖10(c)所示,側壁51的中央傾斜,於深度方向的途中被形成狹窄部510亦可。   [0075] 進而,狹窄部510的數目不限於1個,也可以是複數個。例如,可以舉出如圖11所示,於開口部53側與底壁52側分別具有狹窄部510的型態。在此場合,各狹窄部510之側壁51(傾斜面)的傾斜角度可為相同,亦可為不同。   [0076] [試驗例1]   分別於雙極板之一面側與另一面側形成從雙極板的下側緣部跨到上側緣部連通的複數溝部,製作了具備縱溝構造的流道之雙極板。在此,如表1所示,製作了溝部的剖面形狀(開口部的寬幅w、深度h、側壁與底壁之夾角α,角部的曲率半徑r)相異的複數雙極板(參照圖5、圖6)。使用各雙極板製作胞框架,用彼組裝了複數之RF電池(試驗體A~I)。接著,充電各試驗體之RF電池後,停止泵使電解液自己放電。其後,解體RF電池,取出雙極板(胞框架),針對各試驗體確認並評估了電解液的析出狀態。其結果顯示於表1。表1所示之「有無析出」之評估,在無法確認析出的場合為「A」,有微小的析出但是溝部未閉塞的場合為「B」,析出稍多,但未到溝部閉塞的場合為「C」,析出很多,溝部閉塞住的場合為「D」。   [0077]
Figure 02_image001
[0078] 由表1所示的結果可以確認到寬幅w為1~5mm,深度h為1~5mm,角度α為95~110°,曲率半徑r為0.2~5mm的範圍內的試驗體A、B,沒有析出,為良好的結果。此外,寬幅w為0.5~10mm,深度h為0.5~10mm,角度α為91~120°,曲率半徑r為0.1~10mm的範圍內之試驗體C~F,雖有微小的析出,但沒有溝部的閉塞,為可以充分使用的結果。角度α為91°以上的試驗體G、H,析出稍多,但未到溝部閉塞的程度,為實用上不成問題的結果。
[0079]1‧‧‧氧化還原液流電池(RF電池)2‧‧‧電池堆3‧‧‧胞框架31‧‧‧雙極板32‧‧‧框體33、34‧‧‧供液歧管35、36‧‧‧排液歧管33s,34s‧‧‧供液狹縫35s,36s‧‧‧排液狹縫37‧‧‧密封構件38‧‧‧封條溝40‧‧‧流道41‧‧‧導入路徑42‧‧‧排出路徑400‧‧‧溝部410‧‧‧導入側溝部411‧‧‧導入側整流溝部420‧‧‧排出側溝部421‧‧‧排出側整流溝部51‧‧‧側壁510‧‧‧狹窄部52‧‧‧底壁53‧‧‧開口部54‧‧‧角部100‧‧‧胞101‧‧‧隔膜102‧‧‧正極胞103‧‧‧負極胞100P‧‧‧正極用循環機構100N‧‧‧負極用循環機構104‧‧‧正極電極105‧‧‧負極電極106‧‧‧正極電解液用槽107‧‧‧負極電解液用槽108、109、110、111‧‧‧導管112、113‧‧‧泵200‧‧‧次電池堆210‧‧‧供排板220‧‧‧端板230‧‧‧夾緊機構
[0009]   圖1係相關於實施形態之氧化還原液流電池的動作原理圖。   圖2係相關於實施形態之氧化還原液流電池的概略構成圖。   圖3係相關於實施形態之電池堆的概略構成圖。   圖4係由一面側所見之具備相關於實施型態的雙極板之胞框架的概略平面圖。   圖5係顯示相關於實施型態1之雙極板之溝部的剖面形狀之概略剖面圖。   圖6係顯示相關於實施型態2之雙極板之溝部的剖面形狀之概略剖面圖。   圖7係顯示相關於實施型態3之雙極板之溝部的剖面形狀之概略剖面圖。   圖8係顯示相關於實施型態4之雙極板之溝部的剖面形狀之概略剖面圖。   圖9係顯示相關於實施型態5之雙極板之溝部的剖面形狀之概略剖面圖。   圖10(a)係顯示溝部的剖面形狀的變形例之概略剖面圖。   圖10(b)係顯示溝部的剖面形狀的其他變形例之概略剖面圖。   圖10(c)係顯示溝部的剖面形狀的另外其他變形例之概略剖面圖。   圖11係顯示溝部的剖面形狀的其他變形例之概略剖面圖。
31‧‧‧雙極板
51‧‧‧側壁
52‧‧‧底壁
53‧‧‧開口部
54‧‧‧角部
400‧‧‧溝部

Claims (13)

  1. 一種雙極板,其特徵為被配置於氧化還原液流電池之正極電極與負極電極之間;在對向於前述雙極板之前述正極電極及前述負極電極之至少一方的電極之面,具有電解液流通之至少1個溝部,前述溝部,在正交於前述電解液的流通方向的剖面,具有相互對向之一對側壁,前述溝部的深度方向之至少一部分,具有前述側壁的間隔於深度方向上變窄的狹窄部;前述溝部具有底壁,前述底壁具有平行於前述雙極板的表面之平坦面;至少一方之前述側壁與前述底壁之夾角為91°以上120°以下。
  2. 一種雙極板,其特徵為被配置於氧化還原液流電池之正極電極與負極電極之間;在對向於前述雙極板之前述正極電極及前述負極電極之至少一方的電極之面,具有電解液流通之至少1個溝部,前述溝部,在正交於前述電解液的流通方向的剖面, 具有相互對向之一對側壁,前述溝部的深度方向之至少一部分,具有前述側壁的間隔於深度方向上變窄的狹窄部;前述溝部具有底壁,前述底壁具有突出於前述溝部的深度方向之曲面。
  3. 如申請專利範圍第1項之雙極板,其中至少一方之前述側壁與前述底壁之角部被形成為曲面狀。
  4. 如申請專利範圍第1或3項之雙極板,其中至少一方之前述側壁與前述底壁之角部被形成為曲面狀。
  5. 如申請專利範圍第1或3項之雙極板,其中於前述狹窄部,前述側壁之至少一方,具有對深度方向傾斜的傾斜面,前述傾斜面為平面。
  6. 如申請專利範圍第1或3項之雙極板,其中於前述狹窄部,前述側壁之至少一方,具有對深度方向傾斜的傾斜面,前述傾斜面為曲面。
  7. 如申請專利範圍第2項之雙極板,其中前述側壁與前述底壁之全面被形成為曲面狀。
  8. 如申請專利範圍第1、2或3項之雙極板,其中前述溝部的深度方向之任意位置之前述側壁的間隔,相對於比該位置更靠開口部側之前述側壁的間隔,為同等或更小。
  9. 如申請專利範圍第5項之雙極板,其中前述溝部的深度方向之任意位置之前述側壁的間隔,相對於比該位置更靠開口部側之前述側壁的間隔,為同等或更小。
  10. 如申請專利範圍第6項之雙極板,其中前述溝部的深度方向之任意位置之前述側壁的間隔,相對於比該位置更靠開口部側之前述側壁的間隔,為同等或更小。
  11. 一種胞框架,其特徵為具備申請專利範圍第1、2或3項之雙極板,與設於前述雙極板的外周的框體。
  12. 一種電池堆,其特徵為具備申請專利範圍第11項之胞框架。
  13. 一種氧化還原液流電池,其特徵為 具備申請專利範圍第12項之電池堆。
TW106134331A 2016-10-12 2017-10-05 雙極板、胞框架、電池堆、及氧化還原液流電池 TWI750237B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
WOPCT/JP2016/080270 2016-10-12
PCT/JP2016/080270 WO2018069996A1 (ja) 2016-10-12 2016-10-12 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
??PCT/JP2016/080270 2016-10-12

Publications (2)

Publication Number Publication Date
TW201820680A TW201820680A (zh) 2018-06-01
TWI750237B true TWI750237B (zh) 2021-12-21

Family

ID=61905262

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106134331A TWI750237B (zh) 2016-10-12 2017-10-05 雙極板、胞框架、電池堆、及氧化還原液流電池

Country Status (8)

Country Link
US (1) US20180375115A1 (zh)
EP (1) EP3528327B1 (zh)
JP (1) JP6730693B2 (zh)
KR (1) KR20190060724A (zh)
CN (1) CN108370056A (zh)
AU (1) AU2016426077A1 (zh)
TW (1) TWI750237B (zh)
WO (1) WO2018069996A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180020165A (ko) * 2015-06-23 2018-02-27 스미토모덴키고교가부시키가이샤 쌍극판, 셀 프레임 및 셀 스택, 및 레독스 플로우 전지
WO2020158625A1 (ja) * 2019-01-30 2020-08-06 住友電気工業株式会社 電池セル、セルスタック、及びレドックスフロー電池
WO2020158623A1 (ja) * 2019-01-30 2020-08-06 住友電気工業株式会社 電池セル、セルスタック、及びレドックスフロー電池
AU2020213783A1 (en) * 2019-01-30 2021-08-19 Sumitomo Electric Industries, Ltd. Battery cell, cell stack, and redox flow battery
CN113889640B (zh) * 2020-07-01 2023-10-20 中国科学院大连化学物理研究所 一种液流电池电堆
CN116505012B (zh) * 2023-06-27 2023-09-29 贵州大学 一种液冷型质子交换膜燃料电池

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150263358A1 (en) * 2011-12-20 2015-09-17 United Technologies Corporation Flow battery with mixed flow

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475661B1 (en) * 1998-01-28 2002-11-05 Squirrel Holdings Ltd Redox flow battery system and cell stack
US6096450A (en) * 1998-02-11 2000-08-01 Plug Power Inc. Fuel cell assembly fluid flow plate having conductive fibers and rigidizing material therein
DE10216306B4 (de) * 2002-04-14 2008-06-12 Sgl Carbon Ag Verfahren zur Herstellung einer Kontaktplatte für eine elektrochemische Zelle sowie deren Verwendungen
CN2862346Y (zh) * 2005-12-15 2007-01-24 武汉理工大学 燃料电池曲线型截面槽道双极板
EP2545608B1 (en) * 2010-03-08 2016-11-02 BDF IP Holdings Ltd Flow field plate for electrochemical fuel cells
GB2515994A (en) * 2013-04-08 2015-01-14 Acal Energy Ltd Fuel cells
EP3514873B1 (en) * 2013-09-23 2021-05-19 Lockheed Martin Energy, LLC Bipolar plate design with non-conductive picture frame
JP2015122230A (ja) 2013-12-24 2015-07-02 住友電気工業株式会社 レドックスフロー電池
JP2015122231A (ja) 2013-12-24 2015-07-02 住友電気工業株式会社 レドックスフロー電池
JP6103386B2 (ja) 2014-01-24 2017-03-29 住友電気工業株式会社 レドックスフロー電池
JP6201876B2 (ja) 2014-04-23 2017-09-27 住友電気工業株式会社 双極板、レドックスフロー電池、及び双極板の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150263358A1 (en) * 2011-12-20 2015-09-17 United Technologies Corporation Flow battery with mixed flow

Also Published As

Publication number Publication date
AU2016426077A1 (en) 2018-06-28
TW201820680A (zh) 2018-06-01
JPWO2018069996A1 (ja) 2019-08-15
EP3528327B1 (en) 2023-07-19
KR20190060724A (ko) 2019-06-03
WO2018069996A1 (ja) 2018-04-19
US20180375115A1 (en) 2018-12-27
EP3528327A1 (en) 2019-08-21
JP6730693B2 (ja) 2020-07-29
CN108370056A (zh) 2018-08-03
EP3528327A4 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
TWI750237B (zh) 雙極板、胞框架、電池堆、及氧化還原液流電池
TWI712207B (zh) 框體、氧化還原液流電池用單元框及氧化還原液流電池
TWI678020B (zh) 框體、氧化還原液流電池用單元框及氧化還原液流電池
JP6836723B2 (ja) セルフレーム、セルスタック、およびレドックスフロー電池
JP2017041418A (ja) 双極板、セルフレーム及びセルスタック、並びにレドックスフロー電池
CN108336377B (zh) 双极板、电池单元框架、电池单元堆和氧化还原液流电池
US10199664B2 (en) Frame body, cell frame, cell stack, and redox flow battery
WO2018134927A1 (ja) 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
US10431843B2 (en) Frame body, cell frame, cell stack, and redox flow battery
TW202046546A (zh) 電池單元、單元堆及氧化還原電池