TWI749776B - 電壓隔離電路 - Google Patents

電壓隔離電路 Download PDF

Info

Publication number
TWI749776B
TWI749776B TW109132493A TW109132493A TWI749776B TW I749776 B TWI749776 B TW I749776B TW 109132493 A TW109132493 A TW 109132493A TW 109132493 A TW109132493 A TW 109132493A TW I749776 B TWI749776 B TW I749776B
Authority
TW
Taiwan
Prior art keywords
power supply
terminal
transistor
load device
isolation circuit
Prior art date
Application number
TW109132493A
Other languages
English (en)
Other versions
TW202213028A (zh
Inventor
陳泳麟
蘇嗣傑
洪連勝
鄭竣泰
蔡虩萍
葉思辛
Original Assignee
致茂電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 致茂電子股份有限公司 filed Critical 致茂電子股份有限公司
Priority to TW109132493A priority Critical patent/TWI749776B/zh
Priority to JP2021152648A priority patent/JP7374154B2/ja
Priority to US17/478,925 priority patent/US11695410B2/en
Application granted granted Critical
Publication of TWI749776B publication Critical patent/TWI749776B/zh
Publication of TW202213028A publication Critical patent/TW202213028A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/263Arrangements for using multiple switchable power supplies, e.g. battery and AC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/206Switches for connection of measuring instruments or electric motors to measuring loads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0084Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

本發明揭露了一種電壓隔離電路,電性連接於多個電源供應器,所述電壓隔離電路包含串聯開關組、並聯開關組以及第一高阻抗元件。串聯開關組受控於第一控制信號且包含電晶體,當串聯開關組導通時,所述多個電源供應器串聯地電性連接於第一電流迴路中。並聯開關組受控於第二控制信號,當並聯開關組導通時,所述多個電源供應器並聯地電性連接於第二電流迴路中。第一高阻抗元件並聯地電性連接所述電晶體。其中所述電晶體設置於第一電流迴路中,且第一高阻抗元件具有量測端點,量測端點到第一高阻抗元件的兩端的阻抗值相同。

Description

電壓隔離電路
本發明係關於一種電壓隔離電路,特別是關於一種連接於電源供應器與負載裝置之間的電壓隔離電路。
傳統上,為了測試製造完成的負載裝置(例如電池),經常會藉由電源供應器來提供測試用的電壓與電流,以量測負載裝置充電時的電性參數。較多功能型的電源供應器除了能向負載裝置提供電壓與電流之外,也可以反向地接收與量測來自負載裝置的電壓與電流,以量測負載裝置放電時的電性參數。然而,隨著各種電能儲存技術的高速發展,負載裝置的額定功率越來越高,單一台電源供應器很可能無法提供足夠的充電電壓與電流給負載裝置,也可能無法藉由單一台電源供應器量測負載裝置輸出的電壓與電流。
為了因應上述問題,目前經常將多個電源供應器串聯起來。請參考圖1,圖1係繪示傳統電源供應器和負載裝置的電路示意圖。如圖1所示,電源供應器91、電源供應器92以及電源供應器93例如是完全相同的機型,而為了提供更大的電壓給負載裝置DUT,電源供應器91、電源供應器92以及電源供應器93會串聯連接。為了隔離負載裝置DUT和電源供應器91~93,負載裝置DUT和電源供應器93之間通常還會設置一個開關單元94。實務上,雖然這樣子的串聯連接方式可以提供足夠大的電壓,當電源供應器91、電源供應器92以及電源供應器93要用於量測負載裝置DUT的電壓時,會發生電源供應器無法讀電壓值的問題。舉例來說,假設負載裝置DUT的跨電壓有1000伏特(V),以圖1的電路架構來說,由於開關單元94兩端的阻抗遠大於電源供應器91、電源供應器92以及電源供應器93的內部阻抗,致使這1000伏特幾乎都跨在開關單元94的兩端。顯然地,在電源供應器91、電源供應器92以及電源供應器93所承載的跨電壓極小的情況下,會導致電源供應器91、電源供應器92以及電源供應器93無法讀出正確的電壓值。
另外,如果電源供應器91、電源供應器92以及電源供應器93都是串聯起來的,於所屬技術領域具有通常知識者應可以理解,圖1的電路架構僅能提供高電壓給負載裝置DUT。如果負載裝置DUT需要用高電流進行測試,則不能再使用圖1的電路架構,這也降低了測試的效率。據此,業界需要一種新的電壓隔離電路,除了要能夠切換地提供高電壓與高電流,也要能讓電源供應器正確地讀出負載裝置DUT的跨電壓。
本發明提供一種電壓隔離電路,設置於電源供應器和負載裝置之間。當電源供應器要供電給負載裝置時,本發明的電壓隔離電路能夠切換地提供高電壓與高電流,而當電源供應器要量測負載裝置時,本發明的電壓隔離電路也能讓電源供應器正確地讀出負載裝置的跨電壓。
本發明提出一種電壓隔離電路,電性連接於第一電源供應器與第二電源供應器之間,所述電壓隔離電路包含第一電晶體、第二電晶體、第三電晶體以及第一高阻抗元件。第一電晶體分別電性連接第一電源供應器的負端與第二電源供應器的正端。第二電晶體分別電性連接第一電源供應器的正端與第二電源供應器的正端。第三電晶體分別電性連接第一電源供應器的負端與第二電源供應器的負端。第一高阻抗元件並聯地電性連接第一電晶體,具有量測端點,第一電源供應器的負端到量測端點的阻抗值相同於量測端點到第二電源供應器的正端的阻抗值。其中第一電晶體受控於第一控制信號,當第一電晶體導通時,第一電源供應器與第二電源供應器串聯地電性連接於第一電流迴路中。其中第二電晶體與第三電晶體受控於第二控制信號,當第二電晶體與第三電晶體導通時,第一電源供應器與第二電源供應器並聯地電性連接於第二電流迴路中。
於一些實施例中,電壓隔離電路可以包含第一端、第二端以及開關單元,第一電源供應器的正端連接第一端,第二電源供應器的負端連接第二端,第一端與第二端用以電性連接負載裝置,開關單元用以選擇性地導通第一端與第二端至第一電源供應器與第二電源供應器。在此,電壓隔離電路可以包含反接偵測迴路,當第一電源供應器與第二電源供應器操作於量測模式時,反接偵測迴路用以判斷負載裝置是否反接,當反接偵測迴路判斷負載裝置反接時,開關單元不導通第一端與第二端至第一電源供應器與第二電源供應器。此外,電壓隔離電路可以包含短路偵測迴路,當第一電源供應器與第二電源供應器操作於供電模式時,短路偵測迴路用以判斷第一端與第二端之間是否短路,其中當短路偵測迴路判斷第一端與第二端之間短路時,開關單元不導通第一端與第二端至第一電源供應器與第二電源供應器。
於一些實施例中,開關單元不導通第一端與第二端至第一電源供應器與第二電源供應器之後,第一電源供應器與第二電源供應器更停止供電,且當第一電源供應器與第二電源供應器各自的輸出電壓為零之後,第一電源供應器與第二電源供應器以定電流模式供電。
本發明還提出一種電壓隔離電路,電性連接於多個電源供應器,所述電壓隔離電路包含串聯開關組、並聯開關組以及第一高阻抗元件。串聯開關組受控於第一控制信號且包含電晶體,當串聯開關組導通時,所述多個電源供應器串聯地電性連接於第一電流迴路中。並聯開關組受控於第二控制信號,當並聯開關組導通時,所述多個電源供應器並聯地電性連接於第二電流迴路中。第一高阻抗元件並聯地電性連接所述電晶體,且第一高阻抗元件的兩端分別連接所述多個電源供應器其中之一。其中所述電晶體設置於第一電流迴路中,且電晶體的兩通道端分別連接電源供應器其中之一。其中第一高阻抗元件具有量測端點,量測端點到第一高阻抗元件的兩端的阻抗值相同。
於一些實施例中,電壓隔離電路更可以包含第一端與第二端,第一端連接其中一個電源供應器,第二端連接另一個電源供應器,且第一端與第二端電性連接負載裝置以取得負載裝置的外部電壓值。當所述多個電源供應器提供的總電壓值相同於外部電壓值時,處理單元提供第一控制信號,使所述多個電源供應器串聯地電性連接於第一電流迴路中。或者,當每一個電源供應器提供的個別電壓值相同於外部電壓值時,處理單元提供第二控制信號,使所述多個電源供應器並聯地電性連接於第二電流迴路中。
綜上所述,本發明提供的電壓隔離電路要供電給負載裝置時,能夠切換地提供高電壓與高電流,而要量測負載裝置時,也能讓電源供應器正確地讀出負載裝置的跨電壓。此外,本發明提供的電壓隔離電路還能夠偵測電源供應器和負載裝置的電壓差,從而避免在電壓差過大時導通電源供應器和負載裝置,減少發生危險的可能性。
下文將進一步揭露本發明之特徵、目的及功能。然而,以下所述者,僅為本發明之實施例,當不能以之限制本發明之範圍,即但凡依本發明申請專利範圍所作之均等變化及修飾,仍將不失為本發明之要意所在,亦不脫離本發明之精神和範圍,故應將視為本發明的進一步實施態樣。
請參閱圖2,圖2係繪示本發明一實施例之電壓隔離電路的電路示意圖。如圖2所示,電壓隔離電路1設置於電源供應器91(第一電源供應器)、電源供應器92(第二電源供應器)和負載裝置DUT之間。電壓隔離電路1包含串聯開關組10、並聯開關組12以及開關單元14,並且由第一端16a連接負載裝置DUT的正端,由第二端16b連接負載裝置DUT的負端。實務上,負載裝置DUT可以是大型電容或高容量的電池,本實施例在此不限制電容或電池的種類。此外,電源供應器91和電源供應器92可以具有供電模式與量測模式,所述供電模式表示由電源供應器91和電源供應器92提供電壓、電流給負載裝置DUT,而所述量測模式表示電源供應器91和電源供應器92可以量測來自負載裝置DUT的電壓、電流。另外,雖然圖2以兩個電源供應器為例子,但本實施例不限制電源供應器的數量。以下分別就電壓隔離電路1中的各個元件進行說明。
串聯開關組10中可以具有電晶體Q1(第一電晶體),並聯開關組12中可以具有電晶體Q3(第二電晶體)和電晶體Q5(第三電晶體)。在此,由於電晶體Q1、電晶體Q3和電晶體Q5做為開關使用,故圖2中繪示的電晶體Q1、電晶體Q3和電晶體Q5看似兩端的元件。但是,於所屬技術領域具有通常知識者應可以明白,圖2中繪示的電晶體Q1、電晶體Q3和電晶體Q5的兩端係為通道端,而電晶體Q1、電晶體Q3和電晶體Q5還更可以各自具有控制端(圖未示),用以接收對應的控制信號。於一個例子中,如果電晶體Q1是一種金氧半場效電晶體(MOSFET)時,電晶體Q1的兩個通道端即為源極(source)和汲極(drain)。電晶體Q1的控制端可以是閘極(gate)以接收第一控制信號,並藉著第一控制信號導通或截止電晶體Q1。於所屬技術領域具有通常知識者應可以理解,電晶體Q3和電晶體Q5的元件特性可以相同於電晶體Q1,並且電晶體Q3和電晶體Q5的控制端可以分別受控於第二控制信號和第三控制信號,使得電晶體Q3和電晶體Q5導通或截止,本實施例在此不予贅述。
開關單元14可以設置於電源供應器91、92以及負載裝置DUT之間。舉例來說,開關單元14可以由一個或多個繼電器組成。本實施例在此不限制開關單元14的內部電路架構,只要電源供應器91與電源供應器92可以利用開關單元14選擇性地電性連接負載裝置DUT,即應符合本實施例開關單元14的範疇。於一個例子中,開關單元14可以連接著電源供應器91的正端與電源供應器92的負端,並且可以選擇性地將電源供應器91的正端導通至第一端16a,以及/或者將電源供應器92的負端導通至第二端16b。值得一提的是,開關單元14並非電壓隔離電路1的必要元件,即本實施例的電壓隔離電路1不一定需要開關單元14也應能實現串聯多個電源供應器與並聯多個電源供應器的基本功能。
以圖2的電路來說,電晶體Q1的兩個通道端可以分別連接電源供應器91的負端與電源供應器92的正端。當串聯開關組10導通(也就是電晶體Q1被導通)時,電源供應器91可以串聯電源供應器92。此外,電晶體Q3的兩個通道端可以分別連接電源供應器91的正端與電源供應器92的正端,電晶體Q5的兩個通道端可以分別連接電源供應器91的負端與電源供應器92的負端。當並聯開關組12導通(也就是電晶體Q3和電晶體Q5同時被導通)時,電源供應器91便可以並聯電源供應器92。
實務上,使用者可以依據負載裝置DUT要測試的項目,來選擇要將電源供應器91和電源供應器92的操作模式,並選擇電源供應器91和電源供應器92是設定為串聯或並聯的連接方式。於一個例子中,假設使用者需要用大電壓測試負載裝置DUT,則使用者可以先將電源供應器91和電源供應器92設定操作於供電模式。接著,使用者可以藉由處理單元(例如電腦)控制電壓隔離電路1,使得串聯開關組10導通,而並聯開關組12截止。詳細來說,處理單元可以送出第一控制信號,使電晶體Q1被導通(此時電晶體Q3和電晶體Q5不導通),讓電源供應器91和電源供應器92可以形成串聯的電流迴路(第一電流迴路)。於所屬技術領域具有通常知識者應可以理解,由於電源供應器91和電源供應器92操作於供電模式,當電源供應器91串聯電源供應器92時,電源供應器91的正端與電源供應器92的負端之間可以有較大的跨電壓。為了方便說明,開關單元14可以設為導通狀態,從而第一端16a和第二端16b之間的跨壓是電源供應器91和電源供應器92輸出電壓的總和,故可以用較大的電壓測試負載裝置DUT。
另一方面,假設使用者需要用大電流測試負載裝置DUT,則使用者同樣可以設定電源供應器91和電源供應器92操作於供電模式。並且,使用者可以藉由處理單元(例如電腦)控制電壓隔離電路1,使得並聯開關組12導通,而串聯開關組10截止。換句話說,處理單元可以送出第二、第三控制信號,使電晶體Q3、電晶體Q5被同時導通(此時電晶體Q1不導通),讓電源供應器91和電源供應器92可以形成並聯的電流迴路(第二電流迴路)。於所屬技術領域具有通常知識者應可以理解,由於電源供應器91和電源供應器92操作於供電模式,當電源供應器91並聯電源供應器92時,電源供應器91與電源供應器92可以提供疊加的電流。同樣地,假設開關單元14是設為導通狀態,電源供應器91和電源供應器92輸出電流的總和可以從第一端16a饋入負載裝置DUT。
由上述可知,本實施例的電壓隔離電路1讓電源供應器91和電源供應器92可以任意切換串聯與並聯的連接方式。有別於圖1示範的傳統例子,本實施例提供的電壓隔離電路1不需要拆裝電源供應器91和電源供應器92的線路,同時具備輸出大電壓或大電流以測試負載裝置DUT的功能。當然,上述的例子係讓電源供應器91和電源供應器92操作在供電模式,電源供應器91和電源供應器92也可以操作在量測模式,以量測負載裝置DUT的跨電壓(外部電壓值)。由圖2可以看出,電壓隔離電路1還包含高阻抗元件Z(第一高阻抗元件),且高阻抗元件Z並聯地電性連接電晶體Q1。實務上,由於高阻抗元件Z具有很高的阻抗,大致上可以忽略流經高阻抗元件Z的電流。此外,高阻抗元件Z具有量測端點(圖未示),量測端點到高阻抗元件Z的兩端的阻抗值相同。於一個例子中,電源供應器91可以具有一個探針電性連接到高阻抗元件Z的量測端點,且具有另一個探針電性連接到本身(電源供應器91)的正端。類似地,電源供應器92可以具有一個探針電性連接到高阻抗元件Z的量測端點,且具有另一個探針電性連接到本身(電源供應器92)的負端。
以圖2示範的例子來說,假設使用者需要量測負載裝置DUT的跨電壓,使用者可以設定電源供應器91和電源供應器92操作於量測模式,並且串聯開關組10和並聯開關組12都設定成截止的狀態。依據上述的說明可知,假設開關單元14是設為導通狀態,於所屬技術領域具有通常知識者可以理解,負載裝置DUT的跨電壓幾乎全部跨在高阻抗元件Z上。此時,電源供應器91便可以量測本身的正端到高阻抗元件Z的量測端點之間的跨電壓,而電源供應器92便可以量測高阻抗元件Z的量測端點到本身的負端之間的跨電壓。隨後,再將電源供應器91與電源供應器92量到的跨電壓數值相加起來,便可以取得負載裝置DUT的跨電壓。
以實際的例子來說,假設電源供應器91和電源供應器92可以量測的電壓上限都是600V,當負載裝置DUT是大容量的電池(例如跨電壓是1000V),理論上任一個電源供應器都無法單獨量測負載裝置DUT的跨電壓。不過,由於本發明的電壓隔離電路1因為具有高阻抗元件Z,讓電源供應器91和電源供應器92各自量測到負載裝置DUT的一半跨電壓,也就是各自量測到500V(小於上限的600V)。最後再將電源供應器91和電源供應器92各自量測到的500V相加起來,便可以取得負載裝置DUT的跨電壓。由此可知,本實施例的電壓隔離電路1因為包含高阻抗元件Z,故可提高能夠量測負載裝置DUT的跨電壓的上限。
值得一提的是,測試負載裝置DUT時,負載裝置DUT有可能已經具備了一定程度的跨電壓。此時,如果將電源供應器91、電源供應器92和負載裝置DUT直接導通,不論是用串聯或並聯電源供應器91和電源供應器92的方式連接負載裝置DUT,實務上都可能產生火花與突波電流。為了處理上述問題,本實施例提出了一種將電壓隔離電路1預充電後再連接負載裝置DUT的機制。於一個例子中,電壓隔離電路1可以先用前述量測負載裝置DUT跨電壓(外部電壓值)的手段,偵測到負載裝置DUT的跨電壓。接著,如果要串聯電源供應器91和電源供應器92,則可以先預充電電源供應器91和電源供應器92,使電源供應器91和電源供應器92串聯起來的總電壓值相同於外部電壓值。當負載裝置DUT和電源供應器91~92之間不存在電壓差,再將串聯開關組10或開關單元14導通,便可以有效減少火花與突波電流。相似地,如果要並聯電源供應器91和電源供應器92,則可以先預充電電源供應器91和電源供應器92,使電源供應器91和電源供應器92本身的個別電壓值相同於外部電壓值。當負載裝置DUT和電源供應器91之間,以及負載裝置DUT和電源供應器92之間都不存在電壓差時,再將並聯開關組12或開關單元14導通,也會有效減少火花與突波電流。
實務上,本發明的的電壓隔離電路1並不以連接兩個電源供應器為限,例如接下來的本實施例會示範電壓隔離電路連接多個電源供應器的例子。請一併參閱圖2與圖3,圖3係繪示本發明另一實施例之電壓隔離電路的電路示意圖。如圖所示,電壓隔離電路2可以連接於電源供應器91、電源供應器92、電源供應器93以及負載裝置DUT之間。與圖2的實施例相同的是,電壓隔離電路2同樣包含串聯開關組20、並聯開關組22以及開關單元24,並且由第一端26a連接負載裝置DUT的正端,由第二端26b連接負載裝置DUT的負端。然而,與圖2的實施例有差異的是,串聯開關組20和並聯開關組22中的電晶體數量會隨著電源供應器數量而改變。例如,串聯開關組20中可以具有電晶體Q1、電晶體Q2,並聯開關組22中可以具有電晶體Q3、電晶體Q4、電晶體Q5和電晶體Q6。此外,高阻抗元件Z的數量也有不同,例如本實施例的電晶體Q1與電晶體Q2可以各自並聯一個高阻抗元件Z。
以實際的操作來說,假設使用者需要用大電壓測試負載裝置DUT,則使用者可以設定電源供應器91、電源供應器92和電源供應器93操作於供電模式。於前一實施例相同,讓串聯開關組20導通,而讓並聯開關組22截止。此時,電晶體Q1與電晶體Q2被導通,讓電源供應器91、電源供應器92和電源供應器93可以形成串聯的電流迴路。另一方面,假設使用者需要用大電流測試負載裝置DUT,則使用者同樣可以設定電源供應器91、電源供應器92和電源供應器93操作於供電模式。並且,讓並聯開關組22導通,而串聯開關組20截止。此時,電晶體Q3到Q6被導通,讓電源供應器91、電源供應器92和電源供應器93可以形成並聯的電流迴路。同樣地,本實施例的電壓隔離電路2示範了讓多個電源供應器任意切換串聯與並聯的連接方式,不需要拆裝多個電源供應器之間,同時具備輸出大電壓或大電流測試負載裝置DUT的功能。
此外,假設使用者需要量測負載裝置DUT的跨電壓,使用者可以設定電源供應器91、電源供應器92和電源供應器93操作於量測模式,並且串聯開關組20和並聯開關組22都設定成截止的狀態。與前一個實施例相類似,電源供應器91可以量測本身的正端到第一個高阻抗元件Z的量測端點之間的電壓,電源供應器92可以量測第一個高阻抗元件Z的量測端點到第二個高阻抗元件Z的量測端點之間的電壓,而電源供應器93可以量測第二個高阻抗元件Z的量測端點到本身的負端之間的電壓。本實施例同樣可以提高能夠量測負載裝置DUT的跨電壓的上限。另一方面,相比於圖1來說,因為圖1的負載裝置DUT的跨電壓(例如1000V)都落在開關單元94上,致使開關單元94需要耐壓到1000V。反之,因為電晶體Q1設置於電源供應器91和電源供應器92之間,電晶體Q2設置於電源供應器92和電源供應器93之間,電晶體Q1和電晶體Q2只需要承載一半的負載裝置DUT的跨電壓即可,例如500V。於所屬技術領域具有通常知識者可以理解,開關單元94所需的耐壓規格比本實施例的電晶體Q1和電晶體Q2高很多,顯見本實施例所示範的電壓隔離電路2可以有更低的成本。
另外,由於使用者在連接負載裝置DUT到電壓隔離電路時,可能不小心會有人為的誤操作,並且很可能對電源供應器造成損壞。為了避免上述的問題,本發明的電壓隔離電路還可以具備反接偵測與短路偵測功能。請一併參閱圖3與圖4,圖4係繪示本發明再一實施例之電壓隔離電路的電路示意圖。如圖所示,圖4的電壓隔離電路3與圖3的電壓隔離電路2相同的是,電壓隔離電路3同樣具有串聯開關組30、並聯開關組32以及開關單元34,並且由第一端36a連接負載裝置DUT的正端,由第二端36b連接負載裝置DUT的負端。並且,串聯開關組30中可以具有電晶體Q1、電晶體Q2,並聯開關組32中可以具有電晶體Q3、電晶體Q4、電晶體Q5和電晶體Q6,電晶體Q1與電晶體Q2也可以各自並聯一個高阻抗元件Z。
與圖3的電壓隔離電路2不相同的是,電壓隔離電路3還包含了二極體38a以及保護元件38b。於一個例子中,假設使用者需要量測負載裝置DUT的跨電壓,並將電源供應器91、電源供應器92和電源供應器93設定操作於量測模式。此時,使用者若誤將負載裝置DUT的正端連接到第二端36b,並將負載裝置DUT的負端連接到第一端36a,則會形成所謂反接負載裝置DUT的情況。由於負載裝置DUT的跨電壓非常大,反接負載裝置DUT很有可能瞬間有大電流從不正確的端點(例如第二端36b)灌入電源供應器和電壓隔離電路,造成嚴重的損壞。為了避免上述誤操作的情況,本實施例的二極體38a提供了由下往上(第二端36b往第一端36a)的電流路徑(反接偵測迴路)。當負載裝置DUT被反接時,從第二端36b進入的大電流可以經由二極體38a流向第一端36a,並回到負載裝置DUT,避免大電流破壞電壓隔離電路3的其他電路元件或電源供應器。
此外,本實施提供的保護元件38b可以是一種保險絲,當從第二端36b進入的電流過大,保護元件38b會自動燒毀以形成斷路,可以藉此保護電壓隔離電路3的其他電路元件或電源供應器。於一個例子中,電壓隔離電路3有可能是一種多電路板的結構,例如可以有一張母電路板,並插接有一個以上的子電路板。實務上,保護元件38b可以被設置於子電路板,而電壓隔離電路3中其他的電路元件可以位於母電路板。以上述保護元件38b燒毀的例子來說,由於母電路板的其他電路元件都正常運作,本實施例的電壓隔離電路3不需要整組拆下維修或替換,而是只需要更換新的子電路板(也就是更換新的保護元件38b)即可。
值得一提的是,保護元件38b不一定是必要元件,本實施例也可以藉由控制開關單元34達到相似的功能。舉例來說,電壓隔離電路3也有可能設置有偵測電流的元件,例如把霍爾感測器(圖未示)設置於反接偵測迴路中。當霍爾感測器偵測到的電流值超過一個門檻值時,可以判斷出負載裝置DUT被反接。此時,只要控制開關單元34形成斷路,也就是不導通第一端36a與第二端36b至多個電源供應器,也能夠保護電壓隔離電路3的其他電路元件或電源供應器。如此一來,保護元件38b的功能有可能被開關單元34所取代。另外,當霍爾感測器偵測到的電流值超過一個門檻值時,電壓隔離電路3也有可能發出警示,提示使用者負載裝置DUT有被反接的情況,本實施例在此不加以限制。
人為的誤操作並不限於發生在量測負載裝置DUT跨電壓的時候,例如將大電流饋入負載裝置DUT時也有可能發生。以實際的例子來說,當電源供應器91、電源供應器92和電源供應器93設定操作於供電模式,若不小心將第一端36a與第二端36b短路在一起,或者負載裝置DUT內部一時形成短路,也有可能產生火花或突波電流。針對上述負載裝置DUT發生短路的情況,本實施例也有對應的控制策略。於一個例子中,在第一端36a或第二端36b處可以設置有偵測電流的元件,例如前述的霍爾感測器(圖未示)。此時,若是第一端36a與第二端36b之間的負載裝置DUT發生短路,表示霍爾感測器量測到的電流值會超過一個門檻值,並可以判斷出負載裝置DUT是短路的。與前述反接負載裝置DUT的例子相似,只要控制開關單元34形成斷路,也就是不導通第一端36a與第二端36b至多個電源供應器,也能達到保護電壓隔離電路3的其他電路元件或電源供應器的效果。
承接上述的例子,本實施例還提供了一種將電壓隔離電路3重新電性連接負載裝置DUT的手段,特別是針對電壓隔離電路3重新接回發生短路的負載裝置DUT的情況。首先,在開關單元34形成斷路之後,處理單元(例如電腦)隨即會自動關閉電源供應器91、電源供應器92和電源供應器93,或自動將電源供應器91、電源供應器92和電源供應器93的輸出電壓都設定到零。接著,在電源供應器91、電源供應器92和電源供應器93的輸出電壓為零之後,處理單元會給出控制信號,讓開關單元34再次重新導通。由於此時的電源供應器91、電源供應器92和電源供應器93的輸出電壓為零,和短路的負載裝置DUT幾乎沒有電壓差,從而可以避免開關單元34重新導通時產生火花。此外,當負載裝置DUT脫離短路狀態後,電源供應器91、電源供應器92和電源供應器93可以用定電流模式對負載裝置DUT充電,以回復正常運作。值得一提的是,本實施例的開關單元34同樣是非必要元件,只要藉由控制串聯開關組30、並聯開關組32,應當也有相同的效果。
舉例來說,在沒有開關單元34的情況下,若是第一端36a與第二端36b之間的負載裝置DUT發生短路,串聯開關組30與並聯開關組32可以立刻被截止,以瞬間保護多個電源供應器。在多個電源供應器斷開負載裝置DUT之後,處理單元(例如電腦)隨即會自動關閉多個電源供應器,或自動將多個電源供應器的輸出電壓都設定到零。接著,處理單元會給出控制信號,讓串聯開關組30或並聯開關組32再次重新導通。同樣地,因為多個電源供應器和短路的負載裝置DUT幾乎沒有電壓差,從而可以避免串聯開關組30或並聯開關組32重新導通時產生火花。最後,當負載裝置DUT脫離短路狀態後,電源供應器91、電源供應器92和電源供應器93可以用定電流模式對負載裝置DUT充電,以回復正常運作。
綜上所述,本發明提供的電壓隔離電路要供電給負載裝置時,能夠切換地提供高電壓與高電流,而要量測負載裝置時,也能讓電源供應器正確地讀出負載裝置的跨電壓。此外,本發明提供的電壓隔離電路還能夠偵測電源供應器和負載裝置的電壓差,從而避免在電壓差過大時導通電源供應器和負載裝置,減少發生危險的可能性。
1、2、3:電壓隔離電路 10、20、30:串聯開關組 12、22、32:並聯開關組 14、24、34:開關單元 16a、26a、36a:第一端 16b、26b、36b:第二端 38a:二極體 38b:保護元件 91、92、93:電源供應器 94:開關單元 DUT:負載裝置 Q1~Q6:電晶體 Z:高阻抗元件
圖1係繪示傳統電源供應器和負載裝置的電路示意圖。
圖2係繪示本發明一實施例之電壓隔離電路的電路示意圖。
圖3係繪示本發明另一實施例之電壓隔離電路的電路示意圖。
圖4係繪示本發明再一實施例之電壓隔離電路的電路示意圖。
1:電壓隔離電路
10:串聯開關組
12:並聯開關組
14:開關單元
16a:第一端
16b:第二端
91、92:電源供應器
DUT:負載裝置
Q1、Q3、Q5:電晶體

Claims (9)

  1. 一種電壓隔離電路,電性連接於一第一電源供應器與一第二電源供應器之間,所述電壓隔離電路包含: 一第一電晶體,分別電性連接該第一電源供應器的負端與該第二電源供應器的正端; 一第二電晶體,分別電性連接該第一電源供應器的正端與該第二電源供應器的正端; 一第三電晶體,分別電性連接該第一電源供應器的負端與該第二電源供應器的負端;以及 一第一高阻抗元件,並聯地電性連接該第一電晶體,具有一量測端點,該第一電源供應器的負端到該量測端點的阻抗值相同於該量測端點到該第二電源供應器的正端的阻抗值; 其中該第一電晶體受控於一第一控制信號,當該第一電晶體導通時,該第一電源供應器與該第二電源供應器串聯地電性連接於一第一電流迴路中; 其中該第二電晶體與該第三電晶體受控於一第二控制信號,當該第二電晶體與該第三電晶體導通時,該第一電源供應器與該第二電源供應器並聯地電性連接於一第二電流迴路中。
  2. 如請求項1所述之電壓隔離電路,更包含一第一端、一第二端以及一開關單元,該第一電源供應器的正端連接該第一端,該第二電源供應器的負端連接該第二端,該第一端與該第二端用以電性連接一負載裝置,該開關單元用以選擇性地導通該第一端與該第二端至該第一電源供應器與該第二電源供應器。
  3. 如請求項2所述之電壓隔離電路,更包含一反接偵測迴路,當該第一電源供應器與該第二電源供應器操作於一量測模式時,該反接偵測迴路用以判斷該負載裝置是否反接,當該反接偵測迴路判斷該負載裝置反接時,該開關單元不導通該第一端與該第二端至該第一電源供應器與該第二電源供應器。
  4. 如請求項2所述之電壓隔離電路,更包含一短路偵測迴路,當該第一電源供應器與該第二電源供應器操作於一供電模式時,該短路偵測迴路用以判斷該第一端與該第二端之間是否短路,其中當該短路偵測迴路判斷該第一端與該第二端之間短路時,該開關單元不導通該第一端與該第二端至該第一電源供應器與該第二電源供應器。
  5. 如請求項4所述之電壓隔離電路,其中該開關單元不導通該第一端與該第二端至該第一電源供應器與該第二電源供應器之後,該第一電源供應器與該第二電源供應器更停止供電,且當該第一電源供應器與該第二電源供應器各自的輸出電壓為零之後,該第一電源供應器與該第二電源供應器以一定電流模式供電。
  6. 一種電壓隔離電路,電性連接於多個電源供應器,所述電壓隔離電路包含: 一串聯開關組,受控於一第一控制信號且包含一電晶體,當該串聯開關組導通時,該些電源供應器串聯地電性連接於一第一電流迴路中; 一並聯開關組,受控於一第二控制信號,當該並聯開關組導通時,該些電源供應器並聯地電性連接於一第二電流迴路中;以及 一第一高阻抗元件,並聯地電性連接該電晶體,且該第一高阻抗元件的兩端分別連接該些電源供應器其中之一; 其中該電晶體設置於該第一電流迴路中,且該電晶體的兩通道端分別連接該些電源供應器其中之一; 其中該第一高阻抗元件具有一量測端點,該量測端點到該第一高阻抗元件的兩端的阻抗值相同。
  7. 如請求項6所述之電壓隔離電路,更包含一第一端與一第二端,該第一端連接其中一該電源供應器,該第二端連接另一該電源供應器,且該第一端與該第二端電性連接一負載裝置以取得該負載裝置的一外部電壓值。
  8. 如請求項7所述之電壓隔離電路,其中當該些電源供應器提供的一總電壓值相同於該外部電壓值時,一處理單元提供該第一控制信號,使該些電源供應器串聯地電性連接於該第一電流迴路中。
  9. 如請求項7所述之電壓隔離電路,其中當每一該電源供應器提供的一個別電壓值相同於該外部電壓值時,一處理單元提供該第二控制信號,使該些電源供應器並聯地電性連接於該第二電流迴路中。
TW109132493A 2020-09-21 2020-09-21 電壓隔離電路 TWI749776B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW109132493A TWI749776B (zh) 2020-09-21 2020-09-21 電壓隔離電路
JP2021152648A JP7374154B2 (ja) 2020-09-21 2021-09-17 電圧分離回路
US17/478,925 US11695410B2 (en) 2020-09-21 2021-09-19 Voltage isolation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109132493A TWI749776B (zh) 2020-09-21 2020-09-21 電壓隔離電路

Publications (2)

Publication Number Publication Date
TWI749776B true TWI749776B (zh) 2021-12-11
TW202213028A TW202213028A (zh) 2022-04-01

Family

ID=80681094

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109132493A TWI749776B (zh) 2020-09-21 2020-09-21 電壓隔離電路

Country Status (3)

Country Link
US (1) US11695410B2 (zh)
JP (1) JP7374154B2 (zh)
TW (1) TWI749776B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201214095A (en) * 2010-09-27 2012-04-01 Pegatron Corp Computer system, power supply, and power management method thereof
TWM435648U (en) * 2012-01-17 2012-08-11 Green Solution Tech Co Ltd Dual power supply system and controller
US20160291682A1 (en) * 2015-03-31 2016-10-06 Infineon Technologies Austria Ag System and Method for a Switched-Mode Power Supply
US20180076731A1 (en) * 2015-04-02 2018-03-15 Telcodium Inc. Dual-input single-output power supply

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3529623B2 (ja) * 1998-05-18 2004-05-24 株式会社岡村研究所 直並列切換蓄電源の残量検出装置及び残量検出方法
EP2110921B1 (en) * 2008-04-14 2013-06-19 Stanley Black & Decker, Inc. Battery management system for a cordless tool
KR101077154B1 (ko) * 2008-04-22 2011-10-27 한국과학기술원 직렬연결 배터리 스트링을 위한 2단 전하 균일 방법 및장치
DE102010015312A1 (de) * 2010-04-17 2011-10-20 Audi Ag Hochvoltsystem für ein Kraftfahrzeug und Verfahren zur Diagnose eines Hochvoltsystems für ein Kraftfahrzeug
KR20130013340A (ko) * 2011-07-28 2013-02-06 현대모비스 주식회사 차량용 배터리시스템
US9755537B2 (en) * 2015-03-04 2017-09-05 Infineon Technologies Austria Ag Multi-cell power conversion method with failure detection and multi-cell power converter
JP7276252B2 (ja) * 2020-06-04 2023-05-18 株式会社デンソー 漏電検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201214095A (en) * 2010-09-27 2012-04-01 Pegatron Corp Computer system, power supply, and power management method thereof
TWM435648U (en) * 2012-01-17 2012-08-11 Green Solution Tech Co Ltd Dual power supply system and controller
US20160291682A1 (en) * 2015-03-31 2016-10-06 Infineon Technologies Austria Ag System and Method for a Switched-Mode Power Supply
US20180076731A1 (en) * 2015-04-02 2018-03-15 Telcodium Inc. Dual-input single-output power supply

Also Published As

Publication number Publication date
JP7374154B2 (ja) 2023-11-06
US11695410B2 (en) 2023-07-04
TW202213028A (zh) 2022-04-01
JP2022051714A (ja) 2022-04-01
US20220094354A1 (en) 2022-03-24

Similar Documents

Publication Publication Date Title
US7609080B2 (en) Voltage fault detection and protection
JP5819602B2 (ja) 地絡検出装置、地絡検出方法、太陽光発電システム、及び地絡検出プログラム
JP2004219414A (ja) 絶縁不良を検出する回路および方法
CN205355895U (zh) 电池保护电路
WO2017185311A1 (zh) 防短路检测装置及用户终端
JP2010210238A (ja) プローブカード、それを備えた半導体検査装置及びプローブカードのヒューズチェック方法
CN111313359B (zh) 一种服务器热插拔电路短路保护辅助装置
TWI749776B (zh) 電壓隔離電路
KR101724551B1 (ko) 반도체 테스트 디바이스 인터페이스 보드
KR100851147B1 (ko) 스마트 정션박스를 이용한 이중 전원시스템 및 그의 라인쇼트 감지방법
CN110958002B (zh) 固态功率开关器件
US11531044B2 (en) Battery pack, battery management system, and method therefor
CN114252690A (zh) 电压隔离电路
US6850083B2 (en) Burn in board having a remote current sensor
CN210742306U (zh) 一种防短路拼版测试装置
CN115792422A (zh) 可侦测飞跨电容短路的倍压开关式电容电路及其侦测方法
CN110676804B (zh) 检测电路与使用其的开关模块
CN110988433A (zh) 电流检测电路及电流检测方法
CN215343879U (zh) 一种电路系统及其电子保险丝电路
US10593927B2 (en) Battery output disable when unconnected
CN220273314U (zh) 电池保护电路、电池保护系统和供电设备
JP6038529B2 (ja) 測定装置
JP7237236B2 (ja) 複数の電流経路を含むバッテリーパック
KR100508566B1 (ko) 조립된 배터리 팩 상태에서의 보호 회로의 기능 검사 방법
CN112968419A (zh) 一种电路系统及其电子保险丝电路