TWI747266B - Rotor and motor - Google Patents
Rotor and motor Download PDFInfo
- Publication number
- TWI747266B TWI747266B TW109114764A TW109114764A TWI747266B TW I747266 B TWI747266 B TW I747266B TW 109114764 A TW109114764 A TW 109114764A TW 109114764 A TW109114764 A TW 109114764A TW I747266 B TWI747266 B TW I747266B
- Authority
- TW
- Taiwan
- Prior art keywords
- rotor
- adhesive layer
- fiber
- reinforced plastic
- item
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/278—Surface mounted magnets; Inset magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/02—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
- H02K15/03—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Manufacture Of Motors, Generators (AREA)
Abstract
Description
本發明係關於一種以纖維強化塑膠(Fiber Reinforced Plastic:FRP)來覆蓋接著於鐵心的永久磁鐵之表面的轉子(rotor)、馬達(motor)及轉子的製造方法。 The present invention relates to a method for manufacturing a rotor, a motor, and a rotor that uses a fiber reinforced plastic (FRP) to cover the surface of a permanent magnet attached to an iron core.
具有於表面配置有永久磁鐵的SPM(Surface Permanent Magnet;表面式永磁)馬達係具有下列特徵:可以有效率地利用永久磁鐵所具有之較強的磁力、馬達轉矩(motor torque)的直線性佳、以及控制性優異。另一方面,當使轉子高速旋轉時永久磁鐵就會依離心力而飛散。為此,被要求一種將永久磁鐵牢固地固定於轉子的固定方法。 The SPM (Surface Permanent Magnet) motor system with permanent magnets arranged on the surface has the following characteristics: it can efficiently use the strong magnetic force of the permanent magnets and the linearity of the motor torque (motor torque) Good and excellent controllability. On the other hand, when the rotor is rotated at a high speed, the permanent magnets will scatter due to centrifugal force. For this reason, a fixing method for firmly fixing the permanent magnet to the rotor is required.
在專利文獻1係揭示一種藉由下列方式所製造出的轉子:將永久磁鐵以接著劑固定於外表面後的鐵心,利用壓入或冷套來插入於用以緊固永久磁鐵的圓筒狀之纖維強化塑膠。 Patent Document 1 discloses a rotor manufactured by the following method: a permanent magnet is fixed on the outer surface of the iron core with an adhesive, and the iron core is inserted into the cylindrical shape used to fasten the permanent magnet by press-fitting or cold sleeve. The fiber reinforced plastic.
專利文獻1:日本特開2005-312250號公報 Patent Document 1: Japanese Patent Application Publication No. 2005-312250
然而,在專利文獻1所記載的技術中,恐有在轉子旋轉時圓筒狀之纖維強化塑膠達到破壞之前接著劑就斷裂之虞。在此情況下,會有下列的問題:永久磁鐵從鐵心剝落,轉子的旋轉失去平衡(balance),藉此轉子會遭受破壞。 However, in the technique described in Patent Document 1, there is a possibility that the adhesive may break before the cylindrical fiber-reinforced plastic is broken when the rotor rotates. In this case, there will be the following problems: the permanent magnet is peeled off from the iron core, and the rotation of the rotor is out of balance, whereby the rotor will be damaged.
本發明係有鑒於上述問題而開發完成的,其目的在於獲得一種可以在旋轉時將永久磁鐵接著於鐵心的接著劑斷裂之前將覆蓋永久磁鐵之表面的補強構件作為破壞之起點的轉子。 The present invention was developed in view of the above-mentioned problems, and its purpose is to obtain a rotor that can use the reinforcing member covering the surface of the permanent magnet as the starting point of failure before the adhesive that adheres the permanent magnet to the core during rotation is broken.
為了解決上述的課題且達成目的,本發明的轉子,係具備:鐵心;複數個永久磁鐵,係藉由接著層來接著於鐵心之與中心軸平行的側面;以及筒狀形狀之補強構件,係配置於接著於鐵心之側面的複數個永久磁鐵之外表面。補強構件,為一部分的纖維配向於筒狀形狀之周方向的纖維強化塑膠。配向於具有筒狀形狀的纖維強化塑膠之周方向的纖維之斷裂延伸率相對於接著層之斷裂延伸率的比,為接著層之厚度相對於轉子之外徑的二倍以下。 In order to solve the above-mentioned problems and achieve the objective, the rotor of the present invention is provided with: an iron core; a plurality of permanent magnets, which are adhered to the side surface of the iron core parallel to the central axis by bonding layers; and a cylindrical reinforcing member, which is It is arranged on the outer surface of a plurality of permanent magnets attached to the side of the iron core. The reinforcing member is a fiber-reinforced plastic in which a part of the fibers are aligned in the circumferential direction of the cylindrical shape. The ratio of the elongation at break of the fibers aligned in the circumferential direction of the fiber-reinforced plastic having a cylindrical shape to the elongation at break of the adhesive layer is less than twice the thickness of the adhesive layer relative to the outer diameter of the rotor.
依據本發明,則達成可以在旋轉時將永久磁鐵接著於鐵心的接著劑斷裂之前將覆蓋永久磁鐵之表面的補強構件作為破壞之起點的功效。 According to the present invention, it is possible to use the reinforcing member covering the surface of the permanent magnet as the starting point of damage before the adhesive of the permanent magnet is attached to the iron core during rotation.
1:馬達 1: Motor
10:定子 10: Stator
10a:齒 10a: tooth
12:線圈 12: Coil
20:轉子 20: Rotor
21:鐵心 21: iron core
21a:側面 21a: side
22:永久磁鐵 22: permanent magnet
22a:平坦面 22a: flat surface
22b:頂面 22b: Top surface
22c:側面 22c: side
23:接著層 23: Next layer
24:補強構件 24: Reinforcement member
A:區域 A: area
C:中心軸 C: Central axis
D:外徑 D: Outer diameter
t:厚度 t: thickness
εa:接著層之斷裂延伸率 ε a : The elongation at break of the adhesive layer
εr:纖維之斷裂延伸率 ε r : the elongation at break of the fiber
第1圖係顯示實施型態的馬達的構成之一例的剖視圖。 Fig. 1 is a cross-sectional view showing an example of the configuration of the motor of the embodiment.
第2圖係顯示實施型態的轉子的構成之一例的剖視圖。 Fig. 2 is a cross-sectional view showing an example of the configuration of the rotor of the embodiment.
第3圖係包含第2圖的鐵心、永久磁鐵及補強構件之區域的放大圖。 Figure 3 is an enlarged view of the area including the iron core, permanent magnets, and reinforcing members of Figure 2.
第4圖係顯示實施型態的轉子之製造方法的順序之一例的流程圖(flowchart)。 Fig. 4 is a flow chart showing an example of the sequence of the manufacturing method of the rotor of the implementation type.
以下,基於圖式來詳細地說明本發明之實施形態的轉子、馬達及轉子的製造方法。再者,本發明並非由該實施型態所限定。 Hereinafter, the rotor, the motor, and the method of manufacturing the rotor according to the embodiment of the present invention will be described in detail based on the drawings. Furthermore, the present invention is not limited by this embodiment.
[實施型態] [Implementation Type]
第1圖係顯示實施型態的馬達的構成之一例的剖視圖。馬達1係具備定子(stator)10及轉子20,該定子10係具有筒狀形狀,該轉子20係設置於定子10的內側並以定子10之中心軸C為中心進行旋轉。換句話說,定子10之中心軸與轉子20之中心軸係一致,以下係將定子10及轉子20之中心軸標記為C。
Fig. 1 is a cross-sectional view showing an example of the configuration of the motor of the embodiment. The motor 1 includes a
定子10係具有:朝向內側突出的複數個齒(teeth)10a;以及盤繞於齒10a的線圈12。轉子20係具有沿著中心軸C延伸的圓柱形狀。轉子20係在與定子10之間設置間隙所配置。
The
第2圖係顯示實施型態的馬達的構成之一例的剖視圖。第3圖係包含第2圖的鐵心、永久磁鐵及補強構件之區域的放大圖。在第3圖中係放大顯示第2圖的區域A之部分。轉子20係具有:多角柱狀之鐵心21;永久磁鐵22,係配置於與中心軸C平行的鐵心21之各個側面21a;接著層23,係使永久磁鐵22接著於鐵心21之各個側面21a;以及補強構件24,係覆蓋接著於鐵心21的永久磁鐵22之外表面。再者,鐵心21之中心軸係與轉子20之中心軸C一致。以下,鐵心21之中心軸亦標記為C。
Fig. 2 is a cross-sectional view showing an example of the configuration of the motor of the embodiment. Figure 3 is an enlarged view of the area including the iron core, permanent magnets, and reinforcing members of Figure 2. In Figure 3, the area A of Figure 2 is enlarged and displayed. The
鐵心21係具有沿著轉子20之中心軸C延伸的多角柱狀。與中心軸C垂直的鐵心21之剖面,較佳是具有正多角形,以便可以在轉子20旋轉時不發生不平衡(unbalance)地穩定旋轉。在第2圖之例中,雖然與中心軸C垂直的鐵心21之剖面係具有正六角形,但是可以設為任意的多角形。再者,此為一例,鐵心21之形狀係能適當地設定成可以獲得作為轉子20所需的磁力並可以保持強度的形狀。
The
永久磁鐵22係具有:平坦面22a,係配置於鐵心21側;頂面22b,係朝向鐵心21之徑向的外側成為凸狀;以及側面22c,係連結平坦面22a及頂面22b。永久磁鐵22係沿著轉子20之周方向等間隔地配置於鐵心21之側面21a。在第2圖之例中,將被黏著於鐵心21之各個側面21a的永久磁鐵22之外側表面予以連結的輪廓係成為正圓形狀。換句話說,永久磁鐵22之頂面22b係具有朝向徑向之外側成為凸狀的圓弧狀,與中心軸C垂直的永久磁鐵22之剖面係具有D型。藉此,在轉子20旋轉時,會成為轉子20的永久磁鐵22之頂面22b與定子10之間的距離不變化的構成。再者,永久磁鐵22之形狀並非被限定於第2圖所示的形狀,而
只要是獲得在使馬達1動作之方面所需要的磁力之形狀,則能夠做適當設定。
The
接著層23係接著於永久磁鐵22的平坦面22a與鐵心21的側面21a之間,且將永久磁鐵22固定於鐵心21。接著層23係選擇具有比補強構件24更大之斷裂延伸率且比補強構件24更低之彈性模數(elastic modulus)的材料。
The
補強構件24係覆蓋接著於鐵心21之側面21a的永久磁鐵22之外表面,且具有筒狀形狀。補強構件24係藉由具有比接著層23更小之斷裂延伸率且比接著層23更高之彈性模數的材料所構成。在第2圖之例中,雖然補強構件24係與永久磁鐵22之頂面22b相接所設置,但是亦可將補強構件24相對於永久磁鐵22之頂面22b設置間隔來配置。但是,為了使呈現更大的補強效果,較佳是在靜止狀態中,以補強構件24與永久磁鐵22之頂面22b接觸的方式所設置。
The reinforcing
補強構件24之一例,是成形為圓筒形且至少纖維之一部分配向於圓筒形之周方向的纖維強化塑膠。纖維強化塑膠係由纖維及樹脂所構成,亦可適當地調配有填料(filler)或添加劑。使纖維之一部分配向於圓筒形之周方向的纖維強化塑膠之周方向的彈性模數,係成為比圓筒形的塑膠之周方向的彈性模數更高。因此,在轉子20旋轉時,即便離心力朝向徑向之外側作用於永久磁鐵22,仍會藉由在纖維強化塑膠之周方向產生的拉伸應力,而產生將永久磁鐵22壓入於徑向的內側之力,而可以將永久磁鐵22固定於鐵心21。
An example of the reinforcing
本實施型態的轉子20係成為下列的構成:永久磁鐵22以平坦面22a來與鐵心21接著,且補強構件24覆蓋永久磁鐵22之外側,該補強構件24係由纖維之一部分配向於圓筒形之周方向的纖維強化塑膠所構成。為此,相對於轉子20之旋轉加速或減速時產生的慣性力矩,即便不需要接著力仍可以將永久磁鐵22固定於轉子20。
The
其次,針對本實施型態中所使用的接著層23及纖維強化塑膠之材料加以說明。
Next, the materials of the
如上所述,補強構件24係藉由使纖維之至少一部分配向於圓筒形之周方向的纖維強化塑膠所構成。具體而言,作為纖維係使用拉伸彈性模數比不鏽鋼更大且斷裂延伸率比所使用之接著層23更小的纖維。不鏽鋼之拉伸彈性模數為180GPa至220GPa。由於作為接著層23來使用的材料之斷裂延伸率的最小值為10%左右,所以較佳是使用斷裂延伸率未滿10%的纖維。如此的纖維之一例,為玻璃纖維、碳纖維、SiC(碳化矽)纖維、醯胺纖維(aramid fiber)、硼纖維(boron fiber)。即便在此中較佳仍是使用可以實現更高彈性的碳纖維來作為纖維,且即便在碳纖維之中,較佳仍為彈性模數更高且斷裂延伸率更小。例如,可以使用拉伸彈性模數為620GPa、斷裂延伸率為0.6%、拉伸強度為3430MPa的異向性瀝青基碳纖維(anisotropic pitch-based carbon fiber)來作為纖維。更且,當纖維強化塑膠的纖維之至少一半以上為異向性瀝青基碳纖維時,就可以實現高強度及低斷裂延伸率。將如此的異向性瀝青基碳纖維作為纖維的纖維強化塑膠,由於其拉伸彈性模數為400GPa以上,斷裂延伸率為0.6%,拉伸強度為1800MPa以上,且具有高彈性模數,所以適合在轉子20旋轉時將永久磁
鐵22緊壓於徑向的內側。又,藉由使纖維配向於圓筒形之周方向,就可以實現在圓筒形之周方向上具有較高之機械特性且特別具有較高之彈性模數的纖維強化塑膠。
As described above, the reinforcing
有關纖維的形態,較佳是使用纖維長度為1mm以上的纖維。在使用纖維長度為1mm以上且30mm以下之所謂短纖(chopped fiber)的情況下,纖維強化塑膠之破壞係不取決於樹脂而是由纖維之強度所支配。在使用纖維長形地連接於周方向之所謂連續纖維的情況下,由於可以提高纖維強化塑膠之強度及彈性模數所以較佳。作為一例,纖維之長度,較佳為與中心軸C垂直之剖面中之接著於鐵心21的永久磁鐵22之外表面的輪廓之長度以上。再者,纖維長度未滿1mm的纖維,由於無法將圓筒形的纖維強化塑膠之周方向上的拉伸彈性模數形成比不鏽鋼更大,或無法將斷裂延伸率形成比接著層23更小,所以不佳。
Regarding the form of the fiber, it is preferable to use fibers having a fiber length of 1 mm or more. In the case of using so-called chopped fibers with a fiber length of 1 mm or more and 30 mm or less, the destruction of fiber reinforced plastics does not depend on the resin but is dominated by the strength of the fiber. In the case of using so-called continuous fibers in which the fibers are elongated in the circumferential direction, it is preferable because the strength and elastic modulus of the fiber-reinforced plastic can be improved. As an example, the length of the fiber is preferably greater than the length of the contour of the outer surface of the
有關纖維之配向方向,較佳是纖維配向於圓筒形之周方向。一般而言,「周方向」係指相對於轉子20之中心軸C為90度或者-90度之方向。但是,在本實施型態中,並不僅是指相對於中心軸C為90度或者-90度之方向的情況,在不妨礙生產性的範圍內即便纖維從相對於中心軸C為90度或者-90度之方向傾斜仍是作為配向於周方向來處理。在一例中,即便纖維是在相對於中心軸C為80度至90度之範圍內或者-80度至-90度之範圍內進行配向的情況下,仍是作為被配置於周方向來處理。此是由於在製造轉子20時,纖維較多的情況是在相對於中心軸C為80度至90度之範圍內或者-80度至-90度之範圍內以交叉之方式來配置之故。又,此是由於即便是在相對於轉子20之中心軸C為80度至90度之範圍內或者-80
度至-90度之範圍內以交叉之方式將纖維配置於永久磁鐵22之外表面,仍會與將纖維配置於相對於中心軸C為90度或者-90度之方向的情況同樣,可以提高周方向之彈性模數之故。例如,在繞絲製胚法(filament winding method)等的以固定之饋孔距(feed pitch)將連續纖維予以盤繞的製造方法中,係在相對於中心軸C為80度至90度之範圍內或者-80度至-90度之範圍內以交叉之方式來配置纖維。
Regarding the orientation direction of the fibers, it is preferable that the fibers are aligned in the circumferential direction of the cylinder. Generally speaking, the “circumferential direction” refers to a direction that is 90 degrees or -90 degrees with respect to the central axis C of the
又,纖維亦可以具有配向於圓筒形之周方向的纖維、以及配向於與周方向交叉之其他方向的纖維之方式配向於複數個方向。與周方向交叉的方向之一例,為中心軸C之方向、或者相對於中心軸C傾斜45度後的方向。但是,在使纖維配向於複數個方向的情況下,纖維之配向方向係以纖維強化塑膠之周方向的拉伸彈性模數成為比不鏽鋼之拉伸彈性模數更大的方式來設定。在一例中,使整體的纖維之一半以上配向於圓筒形之周方向,藉此纖維強化塑膠之周方向的拉伸彈性模數就會成為比不鏽鋼的拉伸彈性模數更大,且獲得在補強構件24為不鏽鋼製的情況所無法實現的永久磁鐵22之補強效果。又,由於纖維亦配向於周方向以外的方向,所以即便相對於周方向以外的應力仍會獲得機械特性優異的纖維強化塑膠。
In addition, the fibers may be aligned in a plurality of directions so that fibers aligned in the circumferential direction of the cylindrical shape and fibers aligned in other directions crossing the circumferential direction. An example of the direction intersecting the circumferential direction is the direction of the central axis C or the direction inclined by 45 degrees with respect to the central axis C. However, when the fibers are aligned in multiple directions, the orientation direction of the fibers is set in such a way that the tensile elastic modulus of the fiber reinforced plastic in the circumferential direction becomes larger than the tensile elastic modulus of stainless steel. In one example, by aligning more than half of the entire fiber in the circumferential direction of the cylinder, the circumferential tensile modulus of the fiber-reinforced plastic becomes larger than the tensile modulus of stainless steel. The reinforcing effect of the
在本實施型態中係求得在轉子20旋轉時能夠保持永久磁鐵22的周方向之機械特性。於此,列舉纖維全部為異向性瀝青基碳纖維,且以纖維配向於相對於轉子20之中心軸C為+88度或者-88度之方向的纖維強化塑膠來構成補強構件24的情況為例。如此,由於將具有高彈性且斷裂延伸率較小的纖維全部特意地朝向周方向,所以即便是在周方向之彈性模
數及強度會變得更高,且永久磁鐵22之移動量更少的情況下,仍可以藉由補強構件24使永久磁鐵22保持於鐵心21。
In this embodiment, the mechanical characteristics that can maintain the circumferential direction of the
又,在上述之說明中,雖然已例示使用了一種類之纖維的纖維強化塑膠,但是亦可組合複數個纖維例如碳纖維及玻璃纖維來作為纖維強化塑膠。 In addition, in the above description, although a fiber reinforced plastic using one type of fiber has been exemplified, it is also possible to combine a plurality of fibers such as carbon fiber and glass fiber as the fiber reinforced plastic.
有關纖維強化塑膠之樹脂係以賦予預定之性能的方式來選擇材質。樹脂係從環氧樹脂(epoxy resin)、乙烯基酯(vinylester)、不飽和聚酯(unsaturated polyester)、呋喃(furan)、聚胺基甲酸乙酯(polyurethane)、聚醯亞胺(polyimide)、聚醯胺(polyamide)、聚醚醚酮(polyetheretherketone)、聚醚碸(polyether sulfone)、聚丙烯(polypropylene)、聚酯、聚碳酸酯(polycarbonate)、丙烯腈-苯乙烯(acrylonitrile-styrene)、丙烯腈-苯乙烯(acrylonitrile-styrene)、丙烯腈-丁二烯-苯乙烯(acrylonitrile-butadiene-styrene)及變性聚苯醚(modified polyphenylene ether)之群組中選擇。從補強構件24所求得的強度及剛性之觀點來看,樹脂較佳為環氧樹脂。又,亦可以對補強構件24賦予預定之性能的方式,在樹脂中摻入添加劑或者填料。
The resin of the fiber reinforced plastic is selected in a way that imparts a predetermined performance. The resin is from epoxy resin, vinyl ester, unsaturated polyester, furan, polyurethane, polyimide, Polyamide, polyetheretherketone, polyether sulfone, polypropylene, polyester, polycarbonate, acrylonitrile-styrene, Choose from the group of acrylonitrile-styrene, acrylonitrile-butadiene-styrene and modified polyphenylene ether. From the viewpoint of the strength and rigidity obtained by the reinforcing
接著層23係使塗布於鐵心21與永久磁鐵22之間的接著劑硬化所得。接著層23係選擇斷裂延伸率比纖維強化塑膠更大且彈性模數比纖維強化塑膠更低的材料。作為如此的接著層23,較佳為以丙烯酸樹脂(acrylic resin)作為主成分的接著層23或者彈性體(elastomer)系的接著層23。以丙烯酸樹脂作為主成分的接著層23,係可以實現10%以上且50%以下之斷裂延伸率。彈性體系的接著層23,係可以比以丙烯酸樹脂作為主
成分的接著層23更增大斷裂延伸率。根據此等,由於接著層23係具有10%以上的斷裂延伸率,所以纖維強化塑膠的斷裂延伸率較佳為未滿10%。再者,即便在彈性體系的接著層23之中,熱硬化性樹脂系彈性體仍可以加強與永久磁鐵22及鐵心21之接著力。
The
作為熱硬化性樹脂系彈性體,係例示以胺基甲酸乙酯樹脂、氟樹脂、變性矽氧樹脂或矽氧樹脂(silicone resin)作為主成分的彈性體。矽氧樹脂係具有良好的耐熱性及耐藥品性,且可以實現100%至690%之斷裂延伸率。與其他的樹脂相較,矽氧樹脂,為在耐藥品性及氧化劣化之觀點來看較優異,並且可以加大斷裂延伸率的材料。 As the thermosetting resin-based elastomer, an elastomer having a urethane resin, a fluororesin, a modified silicone resin, or a silicone resin as a main component is exemplified. Silicone resin has good heat resistance and chemical resistance, and can achieve 100% to 690% elongation at break. Compared with other resins, silicone resin is a material that is superior in terms of chemical resistance and oxidative degradation, and can increase the elongation at break.
再者,以斷裂延伸率未滿10%之環氧樹脂作為主成分的接著層23,係在纖維強化塑膠到達破壞之前接著層23會斷裂。例如在第2圖的轉子20旋轉中,當六個永久磁鐵22之內的一個永久磁鐵22之接著層23斷裂時,就會發生不平衡,且轉子20會遭受破壞。為此,較佳是使用斷裂延伸率有10%以上的接著層23。
Furthermore, the
再者,只要具有上述之主成分且加大斷裂延伸率,具體而言只要保持比纖維強化塑膠更大的斷裂延伸率之值,亦可使用摻入有或分散有其他成分的接著層23。作為一例,藉由使用使環氧樹脂分散於變性矽氧樹脂的接著劑,就可以獲得界面之接著強度上升後的接著層23。又,即便藉由將接著層23形成多孔狀(porous shape),仍可以加大斷裂延伸率。
Furthermore, as long as it has the above-mentioned main components and increases the elongation at break, specifically, as long as the elongation at break is larger than that of the fiber reinforced plastic, the
當形成為使用如此的材料之接著層23將永久磁鐵22接著於鐵心21,且以纖維強化塑膠來覆蓋永久磁鐵22之外表面的構造時,直至斷裂延伸率較小的纖維強化塑膠破壞為止接著層23不會斷裂。換句話
說,轉子20之破壞就不會取決於接著層23之強度較弱的部分,而是可以有效地利用纖維強化塑膠之周方向較高的強度,以將永久磁鐵22固定於鐵心21。在轉子20旋轉時,永久磁鐵22會朝依向轉子20之徑向的外側並作用於永久磁鐵22的離心力而朝向圓筒形之徑向均等地微小位移。此時,具有比纖維強化塑膠更大之斷裂延伸率的接著層23不會破壞,而永久磁鐵22會緊壓於纖維強化塑膠。然後,藉由在纖維強化塑膠之周方向產生的拉伸應力,而產生壓入於徑向的內側之力,藉此永久磁鐵22就會由纖維強化塑膠所固定。為此,永久磁鐵22,與其說是由接著層23之強度所保持,不如說是由纖維強化塑膠之較高的強度所保持。換句話說,藉由接著層23所為的永久磁鐵22之保持,係藉由纖維強化塑膠所補強。
When the
其次,針對接著層23之厚度加以說明。接著層23之厚度越厚,直至纖維強化塑膠破壞為止接著層23就越不會破壞。即便永久磁鐵22接受離心力朝向圓筒形之徑向的外側移動,產生於接著層23之徑向的拉伸應變(tensile strain)仍會被抑制得較低,且迴避接著層23之破壞。又,藉由將接著層23之厚度設為事先所決定的厚度以上,耐衝擊性就會附加於接著層23。具體而言,當將接著層23之厚度設為0.05mm以上時,接著層23就具有耐衝擊性。
Next, the thickness of the
另一方面,當減薄接著層23之厚度時,就會提升接著面之剪切強度(shear strength)。具體而言,已知當將接著層23之厚度設為0.5mm以下時,就會提生剪切強度。
On the other hand, when the thickness of the
轉子20之外徑係因應目標的馬達1或者發電機而設定。例如,在從小型的馬達1至大型的發電機之間使用各種大小的轉子20,該小
型的馬達1係使用於具備具有直徑10mm左右之外徑的轉子20之吸塵器或者玩具,該大型的發電機係使用於具備具有直徑4.6m左右之外徑的轉子20之發電廠(power plant)。在此等之間的外徑之轉子中,例如有:使用於汽車的啟動馬達(starter motor)之25mm以上且160mm以下的轉子20、使用於電動汽車的驅動馬達之80mm以上且400mm以下的轉子20、使用於NC(Numerical Control;數值控制)加工機的主軸馬達之80mm以上且200以下的轉子20、使用於風力發電用發電機之120mm以上且3m以下的轉子20等。
The outer diameter of the
在本實施型態中,配向於具有筒狀形狀的纖維強化塑膠之周方向的纖維之斷裂延伸率相對於接著層23之斷裂延伸率的比,係成為接著層23之厚度相對於轉子20之外徑的二倍以下。換句話說,接著層23的斷裂延伸率εa、與已配向於纖維強化塑膠之周方向的纖維之斷裂延伸率εf的關係,係使用轉子20之外徑D及接著層23之厚度t來求得滿足以下數學式(1)。
In this embodiment, the ratio of the elongation at break of the fibers aligned in the circumferential direction of the fiber-reinforced plastic having a cylindrical shape to the elongation at break of the
當εf/εa超過上限時,雖然永久磁鐵22就會依作用於永久磁鐵22的離心力而欲朝向徑向之外側移動,但是直至作為補強構件24的纖維強化塑膠破壞為止,接著層23不會破壞。為此,纖維強化塑膠會支配旋轉時之破壞。在以下數學式(2)的範圍內獲得藉由纖維強化塑膠來保持永久磁鐵22時的補強效果。
When ε f /ε a exceeds the upper limit, although the
更佳是在εf/εa滿足以下數學式(3)時獲得藉由纖維強化塑膠所致的補強效果。 It is better to obtain the reinforcing effect by the fiber reinforced plastic when ε f /ε a satisfies the following mathematical formula (3).
另一方面,在εf/εa低於下限的情況下,係無法藉由繞絲製胚法來生產本實施型態的轉子20。斷裂延伸率εf為0.3%以上且2.4%以下的碳纖維係在產業用途上被實用化(例如,FRP構造設計便覽,植村益次等,社團法人強化塑膠協會,1994年,p.6-12)。特別是,較佳為可以將配向於纖維強化塑膠的圓筒形之周方向的纖維之斷裂延伸率εf在0.3%以上且1.1%以下之範圍內予以實現的異向性瀝青基碳纖維。在此,係列舉斷裂延伸率εf為0.3%的異向性瀝青基纖維之情況為例。
On the other hand, when ε f /ε a is lower than the lower limit, the
由於接著劑之斷裂延伸率為各式各樣,所以使用各種的接著劑來調查εf/εa之下限值。實施下列的成形試驗:以下述之A、B、C、D、E、F、G的接著劑來將永久磁鐵22接著於鐵心21,且將浸漬於樹脂的異向性瀝青基碳纖維藉由繞絲製胚法來盤繞於接著於鐵心21的永久磁鐵22之外表面。
Since the elongation at break of the adhesive varies, various adhesives are used to investigate the lower limit of ε f /ε a. The following forming test was performed: the
A:斷裂延伸率εa為5%的環氧樹脂接著劑 A: Epoxy resin adhesive with elongation at break ε a of 5%
B:斷裂延伸率εa為10%的丙烯酸樹脂接著劑 B: Acrylic resin adhesive with elongation at break ε a of 10%
C:斷裂延伸率εa為50%的丙烯酸樹脂接著劑 C: Acrylic resin adhesive with 50% elongation at break ε a
D:斷裂延伸率εa為100%的矽氧樹脂接著劑 D: Silicone resin adhesive with 100% elongation at break ε a
E:斷裂延伸率εa為350%的變性矽氧樹脂接著劑 E: Modified silicone resin adhesive with elongation at break ε a of 350%
F:斷裂延伸率εa為690%之含有氣泡的多孔狀之變性矽氧樹脂接著劑 F: The elongation at break ε a is 690% porous modified silicone resin adhesive containing bubbles
G:斷裂延伸率εa為750%之含有氣泡的多孔狀之變性矽氧樹脂接著劑 G: The elongation at break ε a is 750% porous modified silicone resin adhesive containing bubbles
成形試驗的結果,在以A、B、C、D、E、F的接著劑來接著永久磁鐵22後的情況下,係可以用繞絲製胚法來優異地成形轉子20。相對於此,在以G的接著劑來接著永久磁鐵22後的情況下,永久磁鐵22會因盤繞纖維時之力從鐵心21脫落,且無法用繞絲製胚法來成形轉子20。根據以上的情形,εf為0.3%且εa為690%時會成為臨界值。換句話說,在滿足以下數學式(4)的εf/εa時,能夠用繞絲製胚法來成形本實施型態的轉子20。然後,藉由數學式(2)及數學式(4)來導出數學式(1)。
As a result of the molding test, when the
當接著層23之厚度t過度厚時,在轉子20之旋轉速度加減速時產生的軸跳動(shaft runout)就會變大,且有可能招來與定子10的接觸。具體而言,將轉子20中的接著層23之厚度t與轉子20之外徑D的比事先設為1/150以下,藉此就不會發生更嚴重的軸跳動,再者,由於朝向徑向延伸的直線係與轉子20之外周在二個部位相交,所以接著層23也會與該直線在二個部位相交。換句話說,在轉子20的外徑之中係包含有二個
接著層23之厚度。為此,被導出如以下數學式(5)的關係。藉此,可以縮窄馬達1中的轉子20與定子10之間隙(gap)。
When the thickness t of the
藉由數學式(1)及數學式(5)來獲得以下數學式(6)。亦即,在接著層23之斷裂延伸率εa、配向於纖維強化塑膠之周方向的纖維織斷裂延伸率εf、接著層23之厚度t及轉子20之外徑D滿足數學式(6)之關係的情況下,可以用上述之纖維強化塑膠及接著層23的構成來迴避接著層23在纖維強化塑膠破壞之前遭受斷裂。
The following mathematical formula (6) is obtained by mathematical formula (1) and mathematical formula (5). That is, the elongation at break ε a of the adhesive layer 23, the elongation at break ε f of the fiber weave aligned in the circumferential direction of the fiber reinforced plastic, the thickness t of the
再者,為了接著層23之厚度t與轉子20之外徑D的關係滿足數學式(6),只要使具有成為轉子20之外徑D的1/4600以上且1/150以下之平均粒徑的填料分散於接著層23之中即可。藉此,接著層23之厚度t就可以成為轉子20之外徑D的1/4600以上且1/150以下。
Furthermore, in order for the relationship between the thickness t of the
其次,針對上述的轉子20之製造方法加以說明。第4圖係顯示實施型態的轉子之製造方法的順序之一例的流程圖。
Next, the manufacturing method of the
首先,隔著接著層23將永久磁鐵22接著於與中心軸C平行的鐵心21之側面21a(步驟S11)。具體而言,與中心軸C平行的鐵心21之側面21a與永久磁鐵22的平坦面22a是由接著劑所接著,且使接著劑硬化以形成接著層23。藉此,永久磁體22會接著於與中心軸C平行的鐵心
21之側面21a。又,沿著轉子20之周方向,在鐵心21之側面21a等間隔地配置有永久磁鐵22。如第2圖所示,由於永久磁鐵22之頂面22b係具有圓弧狀,所以在與中心軸C垂直的剖面中,藉由已接著於鐵心21之全部的永久磁鐵22所構成的外表面之輪廓係具有正圓形狀。此時較佳是使用分散有平均粒徑成為目標之厚度的填料之接著劑,以便接著層23之厚度成為目標之厚度。如數學式(6)所示,目標之厚度係在轉子20之外徑D的1/4600以上且1/150以下的範圍內。
First, the
在一例中,作為接著劑係使用以丙烯酸樹脂作為主成分的接著劑,或者使用彈性體系的接著劑。作為彈性體系的接著劑係使用以胺基甲酸乙酯樹脂、氟樹脂、變性矽氧樹脂或者矽氧樹脂作為主成分的接著劑。 In one example, as the adhesive system, an adhesive having an acrylic resin as a main component is used, or an adhesive of an elastic system is used. As the adhesive of the elastic system, an adhesive mainly composed of urethane resin, fluororesin, modified silicone resin or silicone resin is used.
接著,使未硬化的樹脂浸漬於纖維中(步驟S12)。該纖維,亦可由紮束所構成。在一例中,作為纖維係使用玻璃纖維、碳纖維、SiC纖維、醯胺纖維、硼纖維。又,在一例中,樹脂係使用從環氧樹脂、乙烯基酯、不飽和聚酯、呋喃、聚胺基甲酸乙酯、聚醯亞胺、聚醯胺、聚醚醚酮、聚醚碸、聚丙烯、聚酯、聚碳酸酯、丙烯腈-苯乙烯、丙烯腈-苯乙烯、丙烯腈-丁二烯-苯乙烯及變性聚苯醚之群組中選擇。 Next, the fiber is impregnated with uncured resin (step S12). The fiber may also be composed of bundles. In one example, glass fiber, carbon fiber, SiC fiber, amide fiber, and boron fiber are used as the fiber system. Also, in one example, the resin system used is from epoxy resin, vinyl ester, unsaturated polyester, furan, polyurethane, polyimide, polyamide, polyether ether ketone, polyether stubble, Choose from the group of polypropylene, polyester, polycarbonate, acrylonitrile-styrene, acrylonitrile-styrene, acrylonitrile-butadiene-styrene and denatured polyphenylene ether.
之後,將使未硬化之樹脂浸漬後的纖維,直接盤繞及於接著於鐵心21的永久鐵心22之外表面的整體(步驟S13)。接著,使浸漬於盤繞於永久磁鐵22之纖維後的樹脂硬化(步驟S14)。在一例中,將接著有永久磁鐵22進而纖維已盤繞於永久磁鐵22之外表面的鐵心21,以烤箱(oven)等的加熱裝置進行加熱,而使樹脂硬化。藉此,如第2圖所示,以由纖維
強化塑膠所構成的圓筒狀之補強構件24覆蓋永久磁鐵22之外表面的方式所形成。藉由以上來製造轉子20。
After that, the fiber impregnated with uncured resin is directly wound around the entire outer surface of the
再者,在上述之工序中,亦可設置因應目標的形狀來加工已接著有永久磁鐵22的鐵心21之外形的工序。又,在專利文獻1所記載的技術中,係藉由壓入或者冷套來將接著有永久磁鐵22的鐵心21嵌入於筒狀形狀之纖維強化塑膠。在壓入方面恐有轉子20因壓入力而損傷之虞,在冷套方面恐有轉子20因熱震(heat shock)而損傷之虞。但是,依據上述的本實施型態之製造方法,可以減低轉子20損傷的可能性。換句話說,可以提供一種生產性優異的轉子20之製造方法。
Furthermore, in the above-mentioned process, a process of processing the outer shape of the
(實施例) (Example)
其次針對實施例加以說明。轉子20之外徑D為40mm。使用藉由斷裂延伸率εa為160%、拉伸彈性模數為45.8MPa的矽氧樹脂所構成的接著劑。在接著劑中,係分散有平均粒徑為100μm、標準偏差為5μm的玻璃製之珠粒(beads)來作為填料。填料係以2wt.%之比例分散於接著劑。藉由使用該接著劑,接著層23之厚度t就會控制在100μm。使用該接著劑來將永久磁鐵22接著於鐵心21之與中心軸C平行的側面21a。接著有永久磁鐵22的鐵心21係具有圓柱形狀。
Next, the embodiment will be described. The outer diameter D of the
成為補強構件24的纖維強化塑膠之纖維為一種類,且為異向性瀝青基碳纖維之連續纖維。纖維之斷裂延伸率εf為0.6%,拉伸彈性模數為600GPa。將該纖維形成為1束3000根。又,使未硬化之樹脂浸漬於該已形成束的纖維,該未硬化之樹脂係將雙酚(bisphenol)A型環氧與酸酐以預定之調配予以混合所得。然後,使用繞絲製胚法將該纖維直接盤繞於
以接著層23接著於鐵心21後的永久磁鐵22之外表面。纏繞之饋孔距係每一圈之盤繞設為3mm。之後,以烘箱來加熱,使樹脂硬化,藉此成形由圓筒形狀之纖維強化塑膠所構成的補強構件24。纖維之配向角度係相對於轉子20之中心軸C成為+89度或者-89度。纖維強化塑膠之厚度為1mm。
The fiber-reinforced plastic fiber used as the reinforcing
在此情況下,接著層23之斷裂延伸率εa、與配向於圓筒形狀的纖維強化塑膠之周方向的前述纖維之斷裂延伸率εf的關係,係藉由以下數學式(7)所表示。 In this case, the relationship between the elongation at break ε a of the adhesive layer 23 and the elongation at break ε f of the aforementioned fibers aligned in the circumferential direction of the cylindrical fiber reinforced plastic is expressed by the following formula (7) Express.
又,轉子20之外徑D與接著層23之厚度t的比係由以下數學式(8)所表示。再者,因與轉子20之中心軸C垂直的剖面之徑向的直線係與二個接著層23相交,故而數學式(8)會成為以下數學式(9)。
In addition, the ratio of the outer diameter D of the
以數學式(7)所獲得的εf/εa、與數學式(9)所獲得的2t/D,係都滿足上述之數學式(6)的關係。換句話說,因纖維強化塑膠成為轉子20旋轉時之破壞的起點,故而會獲得藉由纖維強化塑膠使永久磁鐵22保持於鐵心21之外周的補強效果。同時,在以繞絲製胚法來製造轉子20的情況
下永久磁鐵22不會脫落,可以實現第2圖所示的構造。又,由於使具有所期望之平均粒徑的填料分散於接著層23,所以可以輕易地控制接著層23之厚度。以繞絲製胚法來製造,藉此就不需要壓入或者冷套的工序,可以藉由生產性優異的製造方法來製造轉子20。
The ε f /ε a obtained by the mathematical formula (7) and the 2t/D obtained by the mathematical formula (9) all satisfy the relationship of the above-mentioned mathematical formula (6). In other words, since the fiber reinforced plastic becomes the starting point of damage when the
正當使如此所製造出的轉子20在大氣壓中且在23℃下進行旋轉,並以1000rpm/min來掃描旋轉數時,直至92000rpm為止會沒有損傷地進行旋轉,而在已達到93000rpm時纖維強化塑膠才會破壞掉。
When the
藉由該製造方法所製造出的轉子20,雖然在靜止狀態中會接受成形時的熱應力,但是纖維強化塑膠並不會如以壓入或者冷套來製造的情況般地因特意性的壓力而被拉伸。為此,圓筒形狀之纖維強化塑膠的表面之周方向的拉伸應變之絕對值會成為300με以下。再者,在圓筒形狀之纖維強化塑膠的表面之周方向的拉伸應變之絕對值比300με更大的情況下,係可認為會如以壓入或者冷套來製造的情況般地在成形時接受熱應力。換句話說,周方向的拉伸應變之絕對值成為300με以下的圓筒形狀之纖維強化塑膠,係無法以壓入或者冷套來製造。
Although the
在本實施型態中,接著層23之斷裂延伸率εa係以JIS(Japanese Industrial Standards;日本工業標準)K7161-1994(ISO:International Organization for Standardization;國際標準化組織)527-1)或者JIS K7127-1999為依據所求出。在無法以上述規格為依據的尺寸來製作作為試驗片的接著層23之情況下,即便使用相似形之試驗片來測量,仍可認為與此同等。
In this embodiment, the elongation at break ε a of the
又,在本實施型態中,纖維之斷裂延伸率εf係以JIS R 7606-2000之方法為依據所求出。即便是在有必要從纖維強化塑膠取出纖維的情況下,仍只要以JIS K 7075-1991之「7.碳纖維之質量的測量」中有記載的燃燒法、硝酸分解法、硫酸分解法之中不損傷纖維的其中任一個方法之原理來抽出纖維即可。即便是在纖維之長度無法以上述規格為依據之尺寸來製作的情況下,仍可使用相似形之試驗片來測量。 Furthermore, in this embodiment, the elongation at break ε f of the fiber is determined based on the method of JIS R 7606-2000. Even if it is necessary to take out the fiber from the fiber reinforced plastic, it is only necessary to follow the combustion method, the nitric acid decomposition method, and the sulfuric acid decomposition method described in JIS K 7075-1991 "7. Measurement of the quality of carbon fiber". The principle of any one of the methods of damaging the fiber is to extract the fiber. Even if the length of the fiber cannot be made according to the size based on the above specifications, it can still be measured with a test piece of similar shape.
在此所稱的接著層23之斷裂延伸率εa及纖維之斷裂延伸率εf,係指以轉子20運轉時的環境溫度所測量,或是在無法得知該環境溫度的情況下以23℃之溫度所測量者。
The adhesive layer referred to rupture elongation ε a and 23 fibers of elongation ε f, refers to the ambient temperature during operation of the
依據實施型態,轉子20係具有下列的構成:鐵心21與永久磁鐵22之間由斷裂延伸率成為εa的接著層23所接著,又,在接著於鐵心21的永久磁鐵22之外表面盤繞有具有斷裂延伸率成為εf之纖維的圓筒形之纖維強化塑膠。纖維強化塑膠係至少一部分的纖維配向於圓筒形之周方向。在將轉子20之外徑設為D且將接著層23之厚度設為t時,使用滿足數學式(2)的接著層23及纖維強化塑膠。藉此,在轉子20旋轉時接著層23斷裂之前纖維強化塑膠會遭受破壞。亦即,破壞之起點會成為纖維強化塑膠。為此,纖維強化塑膠遭受破壞為止的期間,係可以獲得以纖維強化塑膠使永久磁鐵22牢固地保持於鐵心21的補強效果。
According to the embodiment, the
又,藉由使用滿足數學式(4)的接著層23及纖維強化塑膠,就可以在轉子20製造中,以繞絲製胚法使永久磁鐵22不會脫落地將纖維盤繞於永久磁鐵22之周圍。
In addition, by using the
更且,亦可使用可以實現比纖維強化塑膠之斷裂延伸率εf更大10%以上之斷裂延伸率εa的彈性體之接著層23。又,亦可使用斷裂延伸率εa為100%以上且690%以下的接著層23。藉由設為此等的構成,就可以在轉子20旋轉中,以纖維強化塑膠牢固地使永久磁鐵22固定於鐵心21,又可以將纖維強化塑膠作為破壞之起點。同時,可以在轉子20製造中永久磁鐵22不會脫落地將纖維盤繞於永久磁鐵22之外表面。
And more, it can also be used to implement than the fiber-reinforced plastic elongation ε f of greater than 10% of the elongation at break ε a of the
又,藉由使用使平均粒徑為轉子20之外徑D的1/4600以上且1/150以下的填料分散後的接著劑,就可以將接著層23之厚度t控制在所期望之厚度。
In addition, by using an adhesive in which a filler having an average particle diameter of 1/4600 or more and 1/150 or less of the outer diameter D of the
更且,作為纖維強化塑膠,亦可使用纖維之一半以上為異向性瀝青基碳纖維的碳纖維強化塑膠。或是,亦可使用纖維之一半以上具有配向於圓筒形之周方向的碳纖維的碳纖維強化塑膠。藉此,可以將已配向於纖維強化塑膠之周方向的纖維之斷裂延伸率εf在0.3%以上且1.1%以下之範圍內實現。結果,碳纖維強化塑膠會成為旋轉時的破壞之起點,且獲得永久磁鐵22藉由碳纖維強化塑膠被固定於鐵心21的補強效果。
Furthermore, as fiber-reinforced plastic, carbon fiber-reinforced plastic in which more than half of the fiber is anisotropic pitch-based carbon fiber can also be used. Alternatively, a carbon fiber reinforced plastic in which more than one half of the fiber has carbon fibers aligned in the circumferential direction of the cylinder can also be used. With this, the elongation at break ε f of the fibers aligned in the circumferential direction of the fiber reinforced plastic can be achieved within the range of 0.3% or more and 1.1% or less. As a result, the carbon fiber reinforced plastic will become the starting point of destruction during rotation, and the reinforcing effect of the
又,在本實施型態中,係以斷裂延伸率成為εa的接著層23將永久磁鐵22接著於鐵心21,使已讓樹脂浸漬之斷裂延伸率成為εf的樹脂浸漬後的纖維盤繞於永久磁鐵22之表面,且使樹脂硬化以製造轉子20。藉此,比起使用壓入或者冷套之方法將圓筒形之纖維強化塑膠嵌入於黏著有永久磁鐵22的鐵心21之情況,更可以抑制轉子20在製造時的損傷。結果,比起藉由壓入或者冷套將圓筒形之纖維強化塑膠嵌入於黏著有永久磁鐵22的鐵心21之情況,更可以使製造轉子20的生產性提升。
Further, in the present embodiment patterns, the system to be the elongation at break ε a of
再者,在上述的實施型態中,雖然已列舉馬達1的轉子20為例,但是本實施型態並非被限定於馬達1,亦可應用於發電機的轉子20。在此情況下,亦可以以同樣的構成來獲得同樣的功效。
Furthermore, in the foregoing embodiment, although the
以上之實施型態所示的構成,係顯示本發明的內容之一例,其既能夠與其他的公知技術組合,又能夠在不脫離本發明之要旨的範圍內將構成之一部分予以省略、變更。 The configuration shown in the above embodiment is an example of the content of the present invention, which can be combined with other known technologies, and part of the configuration can be omitted or changed without departing from the gist of the present invention.
20:轉子 20: Rotor
21:鐵心 21: iron core
21a:側面 21a: side
22:永久磁鐵 22: permanent magnet
22a:平坦面 22a: flat surface
22b:頂面 22b: Top surface
22c:側面 22c: side
23:接著層 23: Next layer
24:補強構件 24: Reinforcement member
A:區域 A: area
C:中心軸 C: Central axis
D:外徑 D: Outer diameter
t:厚度 t: thickness
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
WOPCT/JP2019/027478 | 2019-07-11 | ||
PCT/JP2019/027478 WO2021005774A1 (en) | 2019-07-11 | 2019-07-11 | Rotor, motor and method for producing rotor |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202103409A TW202103409A (en) | 2021-01-16 |
TWI747266B true TWI747266B (en) | 2021-11-21 |
Family
ID=69320898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109114764A TWI747266B (en) | 2019-07-11 | 2020-05-04 | Rotor and motor |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6639761B1 (en) |
CN (1) | CN114072989A (en) |
DE (1) | DE112019007538T5 (en) |
TW (1) | TWI747266B (en) |
WO (1) | WO2021005774A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11689074B2 (en) * | 2020-10-29 | 2023-06-27 | GM Global Technology Operations LLC | Rotary electric machine with adhesive-reinforced rotor |
CA3234486A1 (en) * | 2021-11-29 | 2023-06-01 | Toray Industries, Inc. | Manufacturing device and molding method for rotary-component reinforcement carbon fiber reinforced plastic |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6353275B1 (en) * | 1997-10-13 | 2002-03-05 | Noriyoshi Nishiyama | Rotor with adhesive filled grooves fastening interior permanent magnets |
CN104685764A (en) * | 2012-09-28 | 2015-06-03 | 大金工业株式会社 | Rotor and rotary electric machine |
TW201614935A (en) * | 2014-10-02 | 2016-04-16 | Mitsubishi Electric Corp | Rotor of rotary electric machine and method for making the rotor of rotary electric machine |
US20160285326A1 (en) * | 2013-03-25 | 2016-09-29 | Panasonic Intellectual Property Management Co., Ltd. | Permanent-magnet-embedded electric motor and method for manufacturing same |
TW201717524A (en) * | 2015-09-16 | 2017-05-16 | 三菱電機股份有限公司 | Rotor for rotary electric machine, and rotary electric machine |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS611246A (en) * | 1984-06-11 | 1986-01-07 | Matsushita Electric Ind Co Ltd | Permanent magnet rotor |
JP2005312250A (en) | 2004-04-26 | 2005-11-04 | Meidensha Corp | Magnet fixing method of permanent magnet type rotating electric machine |
JP4622402B2 (en) * | 2004-09-13 | 2011-02-02 | 株式会社安川電機 | Magnet adhesion device to rotor surface |
JP4736028B2 (en) * | 2005-07-01 | 2011-07-27 | 株式会社安川電機 | Rotor, method of manufacturing the same, and electric motor |
JP5963479B2 (en) * | 2012-03-07 | 2016-08-03 | 三菱電機株式会社 | Magnet mounted rotor |
JP2013230047A (en) * | 2012-04-26 | 2013-11-07 | Ichinomiya Denki:Kk | Rotor for motor, and motor |
CN104917312B (en) * | 2014-03-12 | 2018-05-08 | 精工爱普生株式会社 | Coil rack, rotor, motor and robot |
CN104158325B (en) * | 2014-08-21 | 2017-06-27 | 江西工埠机械有限责任公司 | The permanent magnetism mounting structure of external rotor electric machine |
JP6969988B2 (en) * | 2017-10-05 | 2021-11-24 | ファナック株式会社 | Rotor and rotating machine |
CN109546775A (en) * | 2018-12-26 | 2019-03-29 | 河南森源重工有限公司 | Embedded no magnetic bridge rotor and magneto |
-
2019
- 2019-07-11 CN CN201980098250.4A patent/CN114072989A/en active Pending
- 2019-07-11 WO PCT/JP2019/027478 patent/WO2021005774A1/en active Application Filing
- 2019-07-11 JP JP2019558650A patent/JP6639761B1/en active Active
- 2019-07-11 DE DE112019007538.1T patent/DE112019007538T5/en active Pending
-
2020
- 2020-05-04 TW TW109114764A patent/TWI747266B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6353275B1 (en) * | 1997-10-13 | 2002-03-05 | Noriyoshi Nishiyama | Rotor with adhesive filled grooves fastening interior permanent magnets |
CN104685764A (en) * | 2012-09-28 | 2015-06-03 | 大金工业株式会社 | Rotor and rotary electric machine |
US20160285326A1 (en) * | 2013-03-25 | 2016-09-29 | Panasonic Intellectual Property Management Co., Ltd. | Permanent-magnet-embedded electric motor and method for manufacturing same |
TW201614935A (en) * | 2014-10-02 | 2016-04-16 | Mitsubishi Electric Corp | Rotor of rotary electric machine and method for making the rotor of rotary electric machine |
TW201717524A (en) * | 2015-09-16 | 2017-05-16 | 三菱電機股份有限公司 | Rotor for rotary electric machine, and rotary electric machine |
Also Published As
Publication number | Publication date |
---|---|
TW202103409A (en) | 2021-01-16 |
JPWO2021005774A1 (en) | 2021-09-13 |
JP6639761B1 (en) | 2020-02-05 |
WO2021005774A1 (en) | 2021-01-14 |
CN114072989A (en) | 2022-02-18 |
DE112019007538T5 (en) | 2022-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI747266B (en) | Rotor and motor | |
EP2974852A1 (en) | Gear and manufacturing method thereof | |
JP6592230B2 (en) | Magnet floating and scattering prevention member and rotor | |
US10312758B2 (en) | Holding member, rotor of a rotating electrical machine comprising the same, and a rotating electrical machine comprising the rotor | |
US4080845A (en) | Shaped disc flywheel | |
JPH0919093A (en) | Permanent magnet of rotor | |
CN114977581A (en) | Motor rotor sleeve | |
EP2619777B1 (en) | A reinforced magnet | |
JP6800323B2 (en) | SPM motor rotor and its manufacturing method | |
US10012289B2 (en) | Flywheels for energy storage and methods of manufacture thereof | |
EP3022462B1 (en) | Flywheels for energy storage and methods of manufacture thereof | |
JP2007271079A (en) | Torque transmission shaft | |
EP3901484A1 (en) | Yielding couplings with wires as intermediate members | |
JP2020005451A (en) | Rotor and manufacturing method of the same | |
JPH08103965A (en) | Frp cylinder and manufacture thereof | |
JP3191528B2 (en) | Propeller shaft and method of manufacturing the same | |
JP7120503B1 (en) | Motor rotor and motor using this rotor | |
WO2023007888A1 (en) | Rotor and dynamo-electric machine | |
JP7311556B2 (en) | Rotor assembly for vacuum pump, method of manufacturing vacuum pump and rotor assembly | |
JP7554727B2 (en) | Rotor, rotating electric machine, and method for manufacturing rotor | |
JP2011190931A (en) | Propeller shaft | |
WO2023190854A1 (en) | Rotor and rotor manufacturing method | |
CN114977574A (en) | Motor rotor sleeve | |
JPH06346916A (en) | High speed revolution body and its manufacture | |
JP2007177811A (en) | Propeller shaft and its manufacturing method |