JP5963479B2 - Magnet mounted rotor - Google Patents

Magnet mounted rotor Download PDF

Info

Publication number
JP5963479B2
JP5963479B2 JP2012050853A JP2012050853A JP5963479B2 JP 5963479 B2 JP5963479 B2 JP 5963479B2 JP 2012050853 A JP2012050853 A JP 2012050853A JP 2012050853 A JP2012050853 A JP 2012050853A JP 5963479 B2 JP5963479 B2 JP 5963479B2
Authority
JP
Japan
Prior art keywords
magnet
shaped
permanent magnet
rotor
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012050853A
Other languages
Japanese (ja)
Other versions
JP2013188005A (en
Inventor
澤井 章能
章能 澤井
道雄 小川
道雄 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012050853A priority Critical patent/JP5963479B2/en
Priority to CN201210247926.1A priority patent/CN103312062B/en
Publication of JP2013188005A publication Critical patent/JP2013188005A/en
Application granted granted Critical
Publication of JP5963479B2 publication Critical patent/JP5963479B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、回転電機の回転子の外周面に永久磁石を取付けた磁石取付型回転子に関する。   The present invention relates to a magnet-mounted rotor in which a permanent magnet is mounted on the outer peripheral surface of a rotor of a rotating electrical machine.

従来、回転子ヨークの外周面上に複数個の界磁永久磁石を等間隔に載置した永久磁石回転子において、前記界磁永久磁石の外周表面を、伸縮自在な網目状で、かつ筒状の保護ネットで覆った永久磁石回転子の保護構造が開示されている(例えば、特許文献1参照)。前記保護ネットは、ガラス繊維、樹脂や接着剤などの含浸が可能な繊維、金属繊維、あるいは表面に樹脂または接着剤を塗布した金属繊維などからなる。   Conventionally, in a permanent magnet rotor in which a plurality of field permanent magnets are placed at equal intervals on the outer peripheral surface of the rotor yoke, the outer peripheral surface of the field permanent magnet is a stretchable mesh-like and cylindrical shape A protective structure for a permanent magnet rotor covered with a protective net is disclosed (for example, see Patent Document 1). The protective net is made of glass fiber, fiber that can be impregnated with resin or adhesive, metal fiber, or metal fiber with a resin or adhesive applied to the surface.

特開2001−231200号公報JP 2001-231200 A

しかしながら、上記従来の技術によれば、筒状の保護ネットを用いている。そのため、筒状の保護ネットを引き伸ばし、中に回転子を挿入するのが難しい、という問題がある。また、筒状の保護ネットが金属繊維やガラス繊維などの硬い素材である場合、回転子の挿入時に磁石表面が傷付く、という問題がある。磁石表面に生じた傷は、湿気環境下で錆を発生させ、磁石の磁気特性を劣化させたり、錆による外形異常により固定子と干渉したりする。   However, according to the conventional technique, a cylindrical protective net is used. Therefore, there is a problem that it is difficult to stretch the cylindrical protective net and insert the rotor therein. Further, when the cylindrical protective net is a hard material such as metal fiber or glass fiber, there is a problem that the magnet surface is damaged when the rotor is inserted. Scratches generated on the surface of the magnet generate rust in a humid environment, thereby deteriorating the magnetic properties of the magnet, and interfering with the stator due to external abnormalities caused by rust.

本発明は、上記に鑑みてなされたものであって、永久磁石の保護部材の装着が容易で、保護部材の装着時に永久磁石の表面に傷を付けることのない磁石取付型回転子を得ることを目的とする。   The present invention has been made in view of the above, and obtains a magnet-mounted rotor that is easy to mount a permanent magnet protection member and does not damage the surface of the permanent magnet when the protection member is mounted. With the goal.

上述した課題を解決し、目的を達成するために、本発明は、外周部から周方向に等間隔に放射状に突出する複数の鉤形突起を有する円形の積層鋼板を複数枚積層して外周面に複数列の軸方向の鉤形突起列を形成した回転子鉄心と、外面が凸形曲面に形成され、接着面が前記外周面に沿う凹形曲面に形成され、かつ、中央部が側部よりも厚く形成され、前記回転子鉄心の鉤形突起列間の外周面に接着剤により接着された永久磁石と、前記永久磁石の外面に張力をかけながら巻付けられ、前記鉤形突起に網目を係止させた帯状の金属メッシュと、を備えることを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention provides an outer peripheral surface by laminating a plurality of circular laminated steel plates having a plurality of hook-shaped protrusions protruding radially from the outer peripheral portion at equal intervals in the circumferential direction. A rotor core having a plurality of rows of saddle-shaped projections in the axial direction, an outer surface formed into a convex curved surface, an adhesive surface formed into a concave curved surface along the outer peripheral surface, and a central portion as a side portion A permanent magnet that is formed thicker and is bonded to the outer peripheral surface between the row of protrusions of the rotor core with an adhesive, and is wound while applying tension to the outer surface of the permanent magnet. And a band-shaped metal mesh that is locked.

本発明によれば、永久磁石の保護部材としての金属メッシュの装着が容易で、金属メッシュの装着時に永久磁石の表面に傷を付けることのない磁石取付型回転子が得られる、という効果を奏する。   According to the present invention, it is easy to attach a metal mesh as a protective member for a permanent magnet, and it is possible to obtain a magnet-attached rotor that does not damage the surface of the permanent magnet when the metal mesh is attached. .

図1は、本発明に係る磁石取付型回転子の実施の形態1の積層鋼板を示す正面図である。FIG. 1 is a front view showing a laminated steel sheet according to Embodiment 1 of a magnet-mounted rotor according to the present invention. 図2は、実施の形態1の回転子鉄心を示す斜視図である。FIG. 2 is a perspective view showing the rotor core of the first embodiment. 図3は、実施の形態1の磁石取付型回転子を示す正面図である。FIG. 3 is a front view showing the magnet-mounted rotor of the first embodiment. 図4は、実施の形態1の磁石取付型回転子の金属メッシュの装着前を示す斜視図である。FIG. 4 is a perspective view showing the magnet-mounted rotor according to the first embodiment before the metal mesh is attached. 図5は、実施の形態1の磁石取付型回転子の金属メッシュの装着後を示す斜視図である。FIG. 5 is a perspective view showing the magnet-mounted rotor of the first embodiment after the metal mesh is mounted. 図6は、本発明に係る磁石取付型回転子の実施の形態2の積層鋼板を示す正面図である。FIG. 6 is a front view showing a laminated steel sheet according to Embodiment 2 of the magnet-mounted rotor according to the present invention. 図7は、実施の形態2の磁石取付型回転子を示す正面図である。FIG. 7 is a front view showing the magnet-mounted rotor of the second embodiment. 図8は、実施の形態3の磁石取付型回転子を示す正面図である。FIG. 8 is a front view showing the magnet-mounted rotor of the third embodiment. 図9は、実施の形態4の磁石取付型回転子を示す斜視図である。FIG. 9 is a perspective view showing a magnet-mounted rotor according to the fourth embodiment.

以下に、本発明に係る磁石取付型回転子の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, embodiments of a magnet-mounted rotor according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1は、本発明に係る磁石取付型回転子の実施の形態1の積層鋼板を示す正面図であり、図2は、実施の形態1の回転子鉄心を示す斜視図であり、図3は、実施の形態1の磁石取付型回転子を示す正面図であり、図4は、実施の形態1の磁石取付型回転子の金属メッシュの装着前を示す斜視図であり、図5は、実施の形態1の磁石取付型回転子の金属メッシュの装着後を示す斜視図である。
Embodiment 1 FIG.
FIG. 1 is a front view showing a laminated steel sheet of Embodiment 1 of a magnet-attached rotor according to the present invention, FIG. 2 is a perspective view showing a rotor core of Embodiment 1, and FIG. FIG. 4 is a front view showing the magnet-mounted rotor of the first embodiment, FIG. 4 is a perspective view showing the magnet-mounted rotor of the first embodiment before the metal mesh is mounted, and FIG. It is a perspective view which shows after mounting | wearing with the metal mesh of the magnet attachment type rotor of the form 1 of.

図1に示すように、実施の形態1の積層鋼板1は、冷間圧延鋼板(SPCC)などの積層用鋼板を金型で打抜き加工して成形されている。積層鋼板1の板厚は、0.35mm、0.5mm又は1.0mmが用いられる。積層鋼板1には、中心部に、図示しない回転軸が嵌合される軸孔1cが設けられている。   As shown in FIG. 1, the laminated steel plate 1 of Embodiment 1 is formed by punching a laminated steel plate such as a cold rolled steel plate (SPCC) with a die. The plate thickness of the laminated steel plate 1 is 0.35 mm, 0.5 mm, or 1.0 mm. The laminated steel plate 1 is provided with a shaft hole 1c into which a rotation shaft (not shown) is fitted at the center.

実施の形態1の積層鋼板1は、外周部が円形に形成され、外周部から周方向に等間隔に放射状に突出する4つの鉤形突起1aを有している。従って周方向に隣合う鉤形突起1a間の角度は90°となっている。鉤形突起1a及び軸孔1cは、積層鋼板1の金型打抜き加工時に成形される。実施の形態1の積層鋼板1の鉤形突起1aは、L字形に形成されているが、T字形又は錨形としてもよい。また、実施の形態1の積層鋼板1では、鉤形突起1aを周方向に等間隔に4本設けたが、鉤形突起1aの数は、3本又は5本以上としてもよい。   The laminated steel sheet 1 according to the first embodiment has an outer peripheral portion formed in a circular shape, and has four hook-shaped protrusions 1a protruding radially from the outer peripheral portion at equal intervals in the circumferential direction. Therefore, the angle between the hook-shaped protrusions 1a adjacent in the circumferential direction is 90 °. The saddle-shaped protrusion 1a and the shaft hole 1c are formed when the laminated steel sheet 1 is punched. Although the bowl-shaped protrusion 1a of the laminated steel sheet 1 according to the first embodiment is formed in an L shape, it may be T-shaped or bowl-shaped. Moreover, in the laminated steel plate 1 of Embodiment 1, although the four hook-shaped protrusions 1a were provided at equal intervals in the circumferential direction, the number of the hook-shaped protrusions 1a may be three or five or more.

図2に示すように、実施の形態1の回転子鉄心2は、複数枚の積層鋼板1を積層して形成されている。図2では、図を簡略化して、鉤形突起1aの鉤部の図示を省略している。実施の形態1の回転子鉄心2は、積層鋼板1を、複数枚(2枚)毎に、周方向に45°(周方向に隣合う鉤形突起1a間の角度の1/2の角度)位相をずらして積層することにより、外周面に8列(積層鋼板1に設けられた鉤形突起1aの数の2倍)の鉤形突起1a列を形成している。1列中の鉤形突起1aは、積層鋼板1の複数枚(2枚)の厚さ分づつ離間して配置される。   As shown in FIG. 2, the rotor core 2 of the first embodiment is formed by laminating a plurality of laminated steel plates 1. In FIG. 2, the drawing is simplified, and the illustration of the hook portion of the hook-shaped protrusion 1 a is omitted. In the rotor core 2 of the first embodiment, a plurality of (two) laminated steel plates 1 are each 45 ° in the circumferential direction (an angle ½ of the angle between the saddle-shaped protrusions 1a adjacent in the circumferential direction). By laminating with the phases shifted, eight rows of saddle-shaped projections 1a (two times the number of saddle-like projections 1a provided on the laminated steel plate 1) are formed on the outer peripheral surface. The saddle-shaped protrusions 1a in one row are spaced apart from each other by the thickness of a plurality (two) of the laminated steel plates 1.

図3、図4及び図5に示すように、回転子鉄心2の鉤形突起1a列間の外周面には、永久磁石3が取付けられる。永久磁石3は、接着剤4により外周面に接着される。永久磁石3は、周方向に交互にN極とS極に磁化されている。永久磁石3が取付けられた回転子鉄心2は、磁石取付型回転子81となる。   As shown in FIGS. 3, 4, and 5, the permanent magnet 3 is attached to the outer peripheral surface between the rows of saddle-shaped protrusions 1 a of the rotor core 2. The permanent magnet 3 is bonded to the outer peripheral surface by an adhesive 4. The permanent magnet 3 is magnetized alternately to the north and south poles in the circumferential direction. The rotor core 2 to which the permanent magnet 3 is attached becomes a magnet attachment type rotor 81.

実施の形態1の磁石取付型回転子81の磁極は8極であるが、例えば、図1に示す積層鋼板1を複数枚毎に、周方向に22.5°(周方向に隣合う鉤形突起1a間の角度の1/4の角度)位相をずらして積層すれば、外周面に16列(積層鋼板1に設けられた鉤形突起1aの数の4倍)の鉤形突起1a列を形成することができ、16極の磁極を有する磁石取付型回転子81が得られる。   The magnet mounting type rotor 81 of the first embodiment has eight magnetic poles. For example, the laminated steel sheet 1 shown in FIG. If the phase is shifted and the layers are shifted, 16 rows (four times the number of the saddle projections 1a provided on the laminated steel plate 1) are arranged on the outer peripheral surface. A magnet-mounted rotor 81 having 16 poles can be obtained.

また、別の例として、積層鋼板1に、外周部から周方向に等間隔(72°間隔)に放射状に突出する5つの鉤形突起1aを設け、積層鋼板1を、複数枚毎に周方向に36°位相をずらして積層すれば、外周面に10列の鉤形突起1a列が形成され、10極の磁極を有する磁石取付型回転子81が得られる。   As another example, the laminated steel sheet 1 is provided with five hook-shaped protrusions 1a that project radially from the outer peripheral portion at equal intervals (72 ° intervals) in the circumferential direction. Are laminated with a phase shift of 36 °, ten rows of saddle-shaped projections 1a are formed on the outer peripheral surface, and a magnet-mounted rotor 81 having 10 poles is obtained.

図3及び図5に示すように、実施の形態1の磁石取付型回転子91は、上記の磁石取付型回転子81の永久磁石3の外面に、帯状の金属メッシュ5を張力をかけながら巻付け、鉤形突起1aに金属メッシュ5の網目を係止させることにより形成される。帯状の金属メッシュ5は、伸縮性のあるシート状態であり、金属繊維を織って形成されている。金属繊維の素材は、ニッケル、黄銅、アルミニウム、鉄、銅及びSUSなどである。   As shown in FIGS. 3 and 5, the magnet-mounted rotor 91 of the first embodiment is wound around a belt-shaped metal mesh 5 while applying tension to the outer surface of the permanent magnet 3 of the magnet-mounted rotor 81. It is formed by attaching the mesh of the metal mesh 5 to the hook-shaped protrusion 1a. The band-shaped metal mesh 5 is in a stretchable sheet state and is formed by weaving metal fibers. Examples of the metal fiber material include nickel, brass, aluminum, iron, copper, and SUS.

図3及び図5に示すように、永久磁石3の形状は、外面が凸形曲面に形成され、接着面が回転子鉄心2の外周面に沿う凹形曲面形成された略弓形又は略三日月形であり、中央部が側部よりも厚く形成されている。永久磁石3の表面には、金属メッキ又は樹脂塗装が施されている。接着剤4としては、アクリル系接着剤、エポキシ系接着剤などを用いる。磁石取付型回転子91の軸孔1cには、図示しない回転軸が圧入されて嵌合される。   As shown in FIGS. 3 and 5, the permanent magnet 3 has a substantially arcuate or crescent shape in which the outer surface is formed into a convex curved surface and the adhesive surface is formed into a concave curved surface along the outer peripheral surface of the rotor core 2. And the central part is formed thicker than the side part. The surface of the permanent magnet 3 is subjected to metal plating or resin coating. As the adhesive 4, an acrylic adhesive, an epoxy adhesive, or the like is used. A rotating shaft (not shown) is press-fitted into the shaft hole 1c of the magnet-mounted rotor 91 and is fitted.

図3に示すように、鉤形突起1aの高さは、永久磁石3の中央部の厚さと接着剤4の厚さの和よりも低くなっている。磁石取付型回転子91の最大直径は、永久磁石3の中央部における直径であり、その直径は、回転子鉄心2の直径+接着剤4の厚さ×2+永久磁石3の中央部の厚さ×2+金属メッシュ5の厚さ×2となる。   As shown in FIG. 3, the height of the hook-shaped protrusion 1 a is lower than the sum of the thickness of the central portion of the permanent magnet 3 and the thickness of the adhesive 4. The maximum diameter of the magnet-mounted rotor 91 is the diameter at the central portion of the permanent magnet 3, and the diameter is the diameter of the rotor core 2 + the thickness of the adhesive 4 × 2 + the thickness of the central portion of the permanent magnet 3. X2 + thickness of metal mesh 5 * 2.

磁石取付型回転子91の最大直径と固定子とのエアーギャップは、1〜2mmであり、エアーギャップが小さい(永久磁石3表面と固定子の間の距離が短い)ほど、モータ特性(回転トルクなど)は良くなる。鉤形突起1aの高さを、永久磁石3の中央部の厚さと接着剤4の厚さの和よりも高くすると、エアーギャップを大きくせざるを得ず、モータ特性が犠牲になる。良好なモータ特性を得るために、鉤形突起1aの高さを、永久磁石3の中央部の厚さと接着剤4の厚さの和よりも低くする必要がある。   The air gap between the maximum diameter of the magnet-mounted rotor 91 and the stator is 1 to 2 mm, and the smaller the air gap (the shorter the distance between the surface of the permanent magnet 3 and the stator), the motor characteristics (rotational torque). Etc.) get better. If the height of the hook-shaped protrusion 1a is higher than the sum of the thickness of the central portion of the permanent magnet 3 and the thickness of the adhesive 4, the air gap must be increased, and the motor characteristics are sacrificed. In order to obtain good motor characteristics, the height of the hook-shaped protrusion 1 a needs to be lower than the sum of the thickness of the central portion of the permanent magnet 3 and the thickness of the adhesive 4.

また、鉤形突起1aの高さを、永久磁石3の中央部の厚さと接着剤4の厚さの和よりも低くする第2の理由として、金属メッシュ5に張力をかけながら鉤形突起1aに引っ掛けて(係止させて)巻き、その張力を維持することにより、永久磁石3を回転子鉄心2の外周面に保持する場合、鉤形突起1aの高さが、永久磁石3の中央部の厚さと接着剤4の厚さの和よりも低い方が好都合である。なぜならば、鉤形突起1aに引っ掛けられた金属メッシュ5には、磁極毎に、永久磁石3を回転子鉄心2の外周面に押圧する力が発生する。永久磁石3の両側に鉤形突起1aがある場合、磁極毎の永久磁石3の押圧が可能であり、磁石取付型回転子91の、回転運動により永久磁石3に作用する遠心力、及び、加減速により作用するせん断力を、接着剤4の接着力と金属メッシュ5の押圧力で分担することになり、接着剤4の負担が軽減される。   Further, as a second reason for making the height of the hook-shaped protrusion 1 a lower than the sum of the thickness of the central portion of the permanent magnet 3 and the thickness of the adhesive 4, the hook-shaped protrusion 1 a while applying tension to the metal mesh 5. When the permanent magnet 3 is held on the outer peripheral surface of the rotor core 2 by maintaining the tension by being hooked (locked), the height of the hook-shaped protrusion 1a is set at the center of the permanent magnet 3 Is less than the sum of the thickness of the adhesive 4 and the thickness of the adhesive 4. This is because a force that presses the permanent magnet 3 against the outer peripheral surface of the rotor core 2 is generated for each magnetic pole in the metal mesh 5 hooked on the hook-shaped protrusion 1a. When the hook-shaped protrusions 1 a are present on both sides of the permanent magnet 3, the permanent magnet 3 can be pressed for each magnetic pole, and the centrifugal force acting on the permanent magnet 3 by the rotational movement of the magnet-mounted rotor 91 and the applied force The shearing force acting by the deceleration is shared by the adhesive force of the adhesive 4 and the pressing force of the metal mesh 5, and the burden on the adhesive 4 is reduced.

磁石取付型回転子81に、帯状の金属メッシュ5を巻付けるときは、金属メッシュ5の巻始めと巻終わりを、鉤形突起1aに係止させるようにすれば、鉤形突起1aと金属メッシュ5を強固に接続することができ、金属メッシュ5が鉤形突起1aから外れるのを防止することができる。また、巻終わり部において、金属メッシュ5同士を接合しても、同様の効果が得られる。この接合は、接着、ろう付け又は溶接により行なうことができる。   When the belt-shaped metal mesh 5 is wound around the magnet-mounted rotor 81, the hook-shaped protrusion 1a and the metal mesh can be obtained by locking the winding start and end of the metal mesh 5 to the hook-shaped protrusion 1a. 5 can be firmly connected, and the metal mesh 5 can be prevented from coming off from the hook-shaped protrusion 1a. Moreover, even if the metal meshes 5 are joined to each other at the winding end portion, the same effect can be obtained. This joining can be done by gluing, brazing or welding.

接着剤としては、紫外線硬化型接着剤又は二液常温硬化型接着剤が適しているが、これ以外の熱硬化型接着剤も用いることができる。紫外線硬化型接着剤は、アクリル系やエポキシ系の材料からなり、紫外線を照射すると1分以内に硬化が完了する。二液常温硬化型接着剤は主剤と硬化剤を混合することにより硬化反応が開始される。アクリル系とエポキシ系があるが、アクリル系は5分以内で硬化するのに対し、エポキシ系は、1時間以上の放置が必要である。   As the adhesive, an ultraviolet curable adhesive or a two-component room temperature curable adhesive is suitable, but other thermosetting adhesives can also be used. The ultraviolet curable adhesive is made of an acrylic or epoxy material, and is cured within one minute when irradiated with ultraviolet rays. The two-component room-temperature curable adhesive starts a curing reaction by mixing the main agent and the curing agent. There are acrylic type and epoxy type, but acrylic type cures within 5 minutes, whereas epoxy type needs to be left for more than 1 hour.

ろう材としては、銅ろう又は黄銅ろうが適しているが、これ以外のろう材も用いることができる。酸化膜を除去するフラックスを付け、ろう材を熱源で溶融し、自然冷却により凝固させればろう付けが完了する。   As the brazing material, copper brazing or brass brazing is suitable, but other brazing materials can also be used. Brazing is completed by applying a flux for removing the oxide film, melting the brazing material with a heat source, and solidifying by natural cooling.

溶接の場合は、溶接ワイヤ(溶接棒)を溶融させ、溶融金属を鉤形突起1aになじませ、自然冷却により凝固させれば完了する。上記の、接着、ろう付け又は溶接の何れの場合も、硬化又は凝固した接合材料が、金属メッシュ5の網目と鉤形突起1aとに三次元的に絡み合うことにより、金属メッシュ5が鉤形突起1aから外れるのを防止する。   In the case of welding, the welding wire (welding rod) is melted, the molten metal is made to conform to the bowl-shaped protrusion 1a, and is solidified by natural cooling. In any of the above-described bonding, brazing, and welding, the cured or solidified joining material is entangled three-dimensionally with the mesh of the metal mesh 5 and the hook-shaped protrusion 1a, so that the metal mesh 5 is hooked. It prevents it from coming off from 1a.

以上説明したように、実施の形態1の磁石取付型回転子91は、永久磁石3の外面に、帯状の金属メッシュ5を張力をかけながら巻付け、鉤形突起1aに網目を係止させるので、永久磁石3の保護部材としての金属メッシュ5の装着が容易で、金属メッシュ5の装着時に永久磁石3の表面に傷を付けることはない。   As described above, the magnet-mounted rotor 91 of the first embodiment winds the belt-shaped metal mesh 5 around the outer surface of the permanent magnet 3 while applying tension, and locks the mesh on the hook-shaped protrusion 1a. The metal mesh 5 as a protective member for the permanent magnet 3 can be easily mounted, and the surface of the permanent magnet 3 is not damaged when the metal mesh 5 is mounted.

実施の形態2.
図6は、本発明に係る磁石取付型回転子の実施の形態2の積層鋼板を示す正面図であり、図7は、実施の形態2の磁石取付型回転子を示す正面図である。
Embodiment 2. FIG.
FIG. 6 is a front view showing a laminated steel sheet according to a second embodiment of the magnet-mounted rotor according to the present invention, and FIG. 7 is a front view showing the magnet-mounted rotor according to the second embodiment.

図6に示すように、実施の形態2の積層鋼板21は、外周部が多角形(八角形)に形成され、外周部から周方向に等間隔に放射状に突出する4つの鉤形突起21aを有している。従って周方向に隣合う鉤形突起21a間の角度は90°となっている。鉤形突起21a及び軸孔21cは、積層鋼板21の金型打抜き加工時に成形される。実施の形態2の積層鋼板21の鉤形突起21aは、L字形に形成されているが、T字形又は錨形としてもよい。また、実施の形態2の積層鋼板21では、鉤形突起21aを周方向に等間隔に4本設けたが、鉤形突起21aの数は、3本又は5本以上としてもよい。   As shown in FIG. 6, the laminated steel sheet 21 of the second embodiment has an outer peripheral portion formed in a polygon (octagon), and four saddle-shaped protrusions 21 a protruding radially from the outer peripheral portion at equal intervals in the circumferential direction. Have. Therefore, the angle between the hook-shaped protrusions 21a adjacent to each other in the circumferential direction is 90 °. The hook-shaped protrusion 21 a and the shaft hole 21 c are formed when the laminated steel sheet 21 is punched. Although the bowl-shaped protrusion 21a of the laminated steel plate 21 of Embodiment 2 is formed in an L shape, it may be a T-shape or a bowl shape. Moreover, in the laminated steel plate 21 of Embodiment 2, although the four hook-shaped protrusions 21a were provided at equal intervals in the circumferential direction, the number of the hook-shaped protrusions 21a may be three or five or more.

図7に示すように、回転子鉄心22の鉤形突起21a列間の外周面には、永久磁石23が取付けられる。永久磁石23は、接着剤4により外周面に接着される。永久磁石23は、周方向に交互にN極とS極に磁化されている。永久磁石23が取付けられた回転子鉄心22は、磁石取付型回転子82となる。   As shown in FIG. 7, permanent magnets 23 are attached to the outer peripheral surface between the rows of saddle-shaped protrusions 21 a of the rotor core 22. The permanent magnet 23 is bonded to the outer peripheral surface by the adhesive 4. The permanent magnet 23 is magnetized alternately in the N and S poles in the circumferential direction. The rotor core 22 to which the permanent magnet 23 is attached becomes a magnet attachment type rotor 82.

図7に示すように、実施の形態2の磁石取付型回転子92は、上記の磁石取付型回転子82の永久磁石23の外面に、帯状の金属メッシュ5を張力をかけながら巻付け、鉤形突起21aに金属メッシュ5の網目を係止させることにより形成される。帯状の金属メッシュ5は、伸縮性のあるシート状態であり、金属繊維を織って形成されている。金属繊維の素材は、ニッケル、黄銅、アルミニウム、鉄、銅及びSUSなどである。   As shown in FIG. 7, the magnet-attached rotor 92 of the second embodiment is wound around the outer surface of the permanent magnet 23 of the magnet-attached rotor 82 while applying a belt-like metal mesh 5 with tension. It is formed by locking the mesh of the metal mesh 5 to the shape protrusion 21a. The band-shaped metal mesh 5 is in a stretchable sheet state and is formed by weaving metal fibers. Examples of the metal fiber material include nickel, brass, aluminum, iron, copper, and SUS.

図7に示すように、永久磁石23の形状は、外面が凸形曲面に形成され、接着面が平面に形成されている。永久磁石23の表面には、金属メッキ又は樹脂塗装が施されている。接着剤4としては、アクリル系接着剤、エポキシ系接着剤などを用いる。磁石取付型回転子92の軸孔21cには、図示しない回転軸が圧入されて嵌合される。   As shown in FIG. 7, the permanent magnet 23 has an outer surface formed into a convex curved surface and an adhesive surface formed into a flat surface. The surface of the permanent magnet 23 is subjected to metal plating or resin coating. As the adhesive 4, an acrylic adhesive, an epoxy adhesive, or the like is used. A rotation shaft (not shown) is press-fitted into the shaft hole 21 c of the magnet-mounted rotor 92 and is fitted.

図7に示すように、積層鋼板21の中心から鉤形突起21aの先端までの距離は、積層鋼板21の中心から前記永久磁石23の外面中央部までの距離よりも短くなっている。磁石取付型回転子92の最大直径は、永久磁石23の中央部における直径であり、その直径は、多角形の回転子鉄心22の辺中央部の直径+接着剤4の厚さ×2+永久磁石23の中央部の厚さ×2+金属メッシュ5の厚さ×2となる。   As shown in FIG. 7, the distance from the center of the laminated steel plate 21 to the tip of the saddle-shaped protrusion 21 a is shorter than the distance from the center of the laminated steel plate 21 to the center of the outer surface of the permanent magnet 23. The maximum diameter of the magnet-mounted rotor 92 is the diameter at the center of the permanent magnet 23, and the diameter is the diameter of the side center of the polygonal rotor core 22 + the thickness of the adhesive 4 × 2 + the permanent magnet. The thickness of the central portion of 23 × 2 + the thickness of the metal mesh 5 × 2.

実施の形態2の磁石取付型回転子92は、磁極毎の永久磁石23の押圧が可能であり、磁石取付型回転子92の、回転運動により永久磁石23に作用する遠心力、及び、加減速により作用するせん断力を、接着剤4の接着力と金属メッシュ5の押圧力で分担することになり、接着剤4の負担が軽減される。   The magnet-attached rotor 92 of the second embodiment can press the permanent magnet 23 for each magnetic pole, and the centrifugal force acting on the permanent magnet 23 by the rotational movement of the magnet-attached rotor 92 and acceleration / deceleration. Thus, the shearing force acting by the pressure is shared by the adhesive force of the adhesive 4 and the pressing force of the metal mesh 5, and the burden on the adhesive 4 is reduced.

実施の形態3.
図8は、実施の形態3の磁石取付型回転子を示す正面図である。実施の形態3の磁石取付型回転子93の回転子鉄心は、実施の形態2の回転子鉄心22と同一である。
Embodiment 3 FIG.
FIG. 8 is a front view showing the magnet-mounted rotor of the third embodiment. The rotor core of the magnet-mounted rotor 93 of the third embodiment is the same as the rotor core 22 of the second embodiment.

図8に示すように、実施の形態3の回転子鉄心22の鉤形突起21a列間の外周面には、永久磁石33が取付けられる。永久磁石33は、接着剤4により外周面に接着される。永久磁石3は、周方向に交互にN極とS極に磁化されている。永久磁石33が取付けられた回転子鉄心22は、磁石取付型回転子83となる。   As shown in FIG. 8, permanent magnets 33 are attached to the outer peripheral surface between the rows of saddle-shaped protrusions 21a of the rotor core 22 of the third embodiment. The permanent magnet 33 is bonded to the outer peripheral surface by the adhesive 4. The permanent magnet 3 is magnetized alternately to the north and south poles in the circumferential direction. The rotor core 22 to which the permanent magnet 33 is attached serves as a magnet attachment type rotor 83.

図8に示すように、実施の形態3の磁石取付型回転子93は、上記の磁石取付型回転子83の永久磁石33の外面に、帯状の金属メッシュ5を張力をかけながら巻付け、鉤形突起21aに金属メッシュ5の網目を係止させることにより形成される。帯状の金属メッシュ5は、伸縮性のあるシート状態であり、金属繊維を織って形成されている。金属繊維の素材は、ニッケル、黄銅、アルミニウム、鉄、銅及びSUSなどである。   As shown in FIG. 8, the magnet-attached rotor 93 of the third embodiment is wound around the outer surface of the permanent magnet 33 of the magnet-attached rotor 83 while applying a belt-like metal mesh 5 with tension. It is formed by locking the mesh of the metal mesh 5 to the shape protrusion 21a. The band-shaped metal mesh 5 is in a stretchable sheet state and is formed by weaving metal fibers. Examples of the metal fiber material include nickel, brass, aluminum, iron, copper, and SUS.

図8に示すように、永久磁石33の形状は、外面及び接着面が平面に形成され、永久磁石33の表面には、金属メッキ又は樹脂塗装が施されている。接着剤4としては、アクリル系接着剤、エポキシ系接着剤などを用いる。磁石取付型回転子93の軸孔21cには、図示しない回転軸が圧入されて嵌合される。   As shown in FIG. 8, the shape of the permanent magnet 33 is such that the outer surface and the adhesive surface are flat, and the surface of the permanent magnet 33 is subjected to metal plating or resin coating. As the adhesive 4, an acrylic adhesive, an epoxy adhesive, or the like is used. A rotating shaft (not shown) is press-fitted into the shaft hole 21 c of the magnet-mounted rotor 93 and is fitted.

図8に示すように、積層鋼板21の中心から鉤形突起21a先端までの距離は、積層鋼板21の中心から永久磁石33の外面角部までの距離よりも短くなっている。磁石取付型回転子93の最大直径は、永久磁石3の外面角部における半径×2+金属メッシュ5の厚さ×2となる。   As shown in FIG. 8, the distance from the center of the laminated steel plate 21 to the tip of the saddle-shaped protrusion 21 a is shorter than the distance from the center of the laminated steel plate 21 to the outer corner of the permanent magnet 33. The maximum diameter of the magnet-mounted rotor 93 is radius x 2 at the outer surface corner of the permanent magnet 3 + thickness x 2 of the metal mesh 5.

実施の形態3の磁石取付型回転子93は、磁極毎の永久磁石33の押圧が可能であり、磁石取付型回転子93の、回転運動により永久磁石33に作用する遠心力、及び、加減速により作用するせん断力を、接着剤4の接着力と金属メッシュ5の押圧力で分担することになり、接着剤4の負担が軽減される。   The magnet-mounted rotor 93 of the third embodiment can press the permanent magnet 33 for each magnetic pole, and the centrifugal force acting on the permanent magnet 33 by the rotational motion of the magnet-mounted rotor 93 and acceleration / deceleration Thus, the shearing force acting by the pressure is shared by the adhesive force of the adhesive 4 and the pressing force of the metal mesh 5, and the burden on the adhesive 4 is reduced.

実施の形態4.
図9に示すように、実施の形態4の磁石取付型回転子94は、実施の形態1〜3の磁石取付型回転子81〜83、に、帯状の金属メッシュ5の替わりに、金属ワイヤ45を張力をかけながら巻付け、夫々の鉤形突起1a、21aに1回以上巻付けて係止させることにより形成される。金属ワイヤ45の素材は、ニッケル、黄銅、アルミニウム、鉄、銅及びSUSなどである。実施の形態4の磁石取付型回転子94は、金属メッシュ5に替えて金属ワイヤ45を用いたこと以外は、実施の形態1〜3の磁石取付型回転子91〜93と変わるところはない。
Embodiment 4 FIG.
As shown in FIG. 9, the magnet-attached rotor 94 of the fourth embodiment is different from the magnet-attached rotors 81 to 83 of the first to third embodiments in that a metal wire 45 is used instead of the strip-shaped metal mesh 5. Is wound while applying tension, and is wound around the hook-shaped protrusions 1a and 21a at least once to be locked. The material of the metal wire 45 is nickel, brass, aluminum, iron, copper, SUS, or the like. The magnet mounting type rotor 94 of the fourth embodiment is not different from the magnet mounting type rotors 91 to 93 of the first to third embodiments except that the metal wire 45 is used instead of the metal mesh 5.

実施の形態4の磁石取付型回転子94は、磁極毎の永久磁石3、23、33の押圧が可能であり、磁石取付型回転子94の、回転運動により永久磁石3、23、33に作用する遠心力、及び、加減速により作用するせん断力を、接着剤4の接着力と金属ワイヤ45の押圧力で分担することになり、接着剤4の負担が軽減される。   The magnet mounting type rotor 94 of the fourth embodiment can press the permanent magnets 3, 23, 33 for each magnetic pole, and acts on the permanent magnets 3, 23, 33 by the rotational movement of the magnet mounting type rotor 94. The centrifugal force to be applied and the shearing force acting by acceleration / deceleration are shared by the adhesive force of the adhesive 4 and the pressing force of the metal wire 45, and the burden on the adhesive 4 is reduced.

1、21 積層鋼板
1a、21a 鉤形突起
1c、21c 軸孔
2、22 回転子鉄心
3、23、33 永久磁石
4 接着剤
5 金属メッシュ
45 金属ワイヤ
81、82、83 磁石取付型回転子
91、92、93、94 磁石取付型回転子
1, 21 Laminated steel plate 1a, 21a Sponge projection 1c, 21c Shaft hole 2, 22 Rotor core 3, 23, 33 Permanent magnet 4 Adhesive 5 Metal mesh 45 Metal wire 81, 82, 83 Magnet mounting type rotor 91, 92, 93, 94 Magnet mounted rotor

Claims (10)

外周部から周方向に等間隔に放射状に突出する複数の鉤形突起を有する円形の積層鋼板を複数枚積層して外周面に複数列の軸方向の鉤形突起列を形成した回転子鉄心と、
外面が凸形曲面に形成され、接着面が前記外周面に沿う凹形曲面に形成され、かつ、中央部が側部よりも厚く形成され、前記回転子鉄心の鉤形突起列間の外周面に接着剤により接着された永久磁石と、
前記永久磁石の外面に張力をかけながら巻付けられ、前記鉤形突起に網目を係止させた帯状の金属メッシュと、
を備えることを特徴とする磁石取付型回転子。
A rotor core in which a plurality of circular laminated steel plates each having a plurality of hook-shaped protrusions protruding radially from the outer peripheral portion at equal intervals in the circumferential direction are stacked to form a plurality of rows of axial hook-shaped protrusion rows on the outer peripheral surface; ,
The outer surface is formed in a convex curved surface, the adhesive surface is formed in a concave curved surface along the outer peripheral surface, and the central portion is formed thicker than the side portion, and the outer peripheral surface between the saddle-shaped protrusion rows of the rotor core. A permanent magnet bonded with an adhesive to
A belt-shaped metal mesh wound around the outer surface of the permanent magnet while applying tension, and meshed with the hook-shaped protrusions;
A magnet-mounted rotor characterized by comprising:
前記鉤形突起の高さは、前記永久磁石の中央部の厚さと前記接着剤の厚さの和よりも低いことを特徴とする請求項1に記載の磁石取付型回転子。   2. The magnet-mounted rotor according to claim 1, wherein a height of the hook-shaped protrusion is lower than a sum of a thickness of a central portion of the permanent magnet and a thickness of the adhesive. 外周部から周方向に等間隔に放射状に突出する複数の鉤形突起を有する多角形の積層鋼板を複数枚積層して外周面に複数列の軸方向の鉤形突起列を形成した回転子鉄心と、
外面が凸形曲面に形成され、接着面が平面に形成され、前記回転子鉄心の鉤形突起列間の外周面に接着剤により接着された永久磁石と、
前記永久磁石の外面に張力をかけながら巻付けられ、前記鉤形突起に網目を係止させた帯状の金属メッシュと、
を備えることを特徴とする磁石取付型回転子。
A rotor core in which a plurality of polygonal laminated steel plates having a plurality of saddle-shaped projections projecting radially from the outer peripheral portion at equal intervals in the circumferential direction are stacked to form a plurality of axial saddle-projection rows on the outer peripheral surface. When,
A permanent magnet having an outer surface formed into a convex curved surface, an adhesive surface formed into a flat surface, and bonded to the outer peripheral surface between the saddle-shaped protrusion rows of the rotor core with an adhesive;
A belt-shaped metal mesh wound around the outer surface of the permanent magnet while applying tension, and meshed with the hook-shaped protrusions;
A magnet-mounted rotor characterized by comprising:
前記積層鋼板の中心から前記鉤形突起の先端までの距離は、前記積層鋼板の中心から前記永久磁石の外面中央部までの距離よりも短いことを特徴とする請求項3に記載の磁石取付型回転子。   4. The magnet mounting die according to claim 3, wherein a distance from the center of the laminated steel plate to the tip of the saddle-shaped protrusion is shorter than a distance from the center of the laminated steel plate to a central portion of the outer surface of the permanent magnet. Rotor. 外周部から周方向に等間隔に放射状に突出する複数の鉤形突起を有する多角形の積層鋼板を複数枚積層して外周面に複数列の軸方向の鉤形突起列を形成した回転子鉄心と、
外面及び接着面が平面に形成され、前記回転子鉄心の鉤形突起列間の外周面に接着剤により接着された永久磁石と、
前記永久磁石の外面に張力をかけながら巻付けられ、前記鉤形突起に網目を係止させた帯状の金属メッシュと、
を備えることを特徴とする磁石取付型回転子。
A rotor core in which a plurality of polygonal laminated steel plates having a plurality of saddle-shaped projections projecting radially from the outer peripheral portion at equal intervals in the circumferential direction are stacked to form a plurality of axial saddle-projection rows on the outer peripheral surface. When,
A permanent magnet having an outer surface and an adhesive surface formed into a flat surface and bonded to an outer peripheral surface between the ridge-shaped protrusion rows of the rotor core by an adhesive;
A belt-shaped metal mesh wound around the outer surface of the permanent magnet while applying tension, and meshed with the hook-shaped protrusions;
A magnet-mounted rotor characterized by comprising:
前記積層鋼板の中心から前記鉤形突起の先端までの距離は、前記積層鋼板の中心から前記永久磁石の外面角部までの距離よりも短いことを特徴とする請求項5に記載の磁石取付型回転子。   6. The magnet mounting die according to claim 5, wherein the distance from the center of the laminated steel plate to the tip of the saddle-shaped protrusion is shorter than the distance from the center of the laminated steel plate to the outer corner of the permanent magnet. Rotor. 前記回転子鉄心は、前記積層鋼板を、複数枚毎に、周方向に隣合う鉤形突起間の角度の1/2又は1/4の角度づつ位相をずらして積層することにより、外周面に、前記積層鋼板に設けた鉤形突起数の2倍又は4倍の鉤形突起列を形成することを特徴とする請求項1〜6のいずれか1つに記載の磁石取付型回転子。   The rotor iron core is laminated on the outer circumferential surface by laminating the laminated steel sheets with a phase shifted by 1/2 or 1/4 of the angle between the saddle-shaped protrusions adjacent in the circumferential direction. The magnet-attached rotor according to any one of claims 1 to 6, wherein a row of hook-shaped protrusions that is twice or four times the number of hook-shaped protrusions provided on the laminated steel sheet is formed. 前記鉤形突起は、L字形又はT字形であり、前記積層鋼板の外周部に4個以上設けられていることを特徴とする請求項1〜6のいずれか1つに記載の磁石取付型回転子。   The magnet-attached type rotation according to any one of claims 1 to 6, wherein the hook-shaped protrusions are L-shaped or T-shaped, and four or more are provided on an outer peripheral portion of the laminated steel sheet. Child. 前記金属メッシュは、前記鉤形突起に接合されたことを特徴とする請求項1〜6のいずれか1つに記載の磁石取付型回転子。 The magnet-attached rotor according to claim 1, wherein the metal mesh is joined to the hook-shaped protrusion. 外周部から周方向に等間隔に放射状に突出する複数の鉤形突起を有する積層鋼板を複数枚積層して外周面に複数列の軸方向の鉤形突起列を形成した回転子鉄心と、
前記回転子鉄心の鉤形突起列間の外周面に接着剤により接着された永久磁石と、
前記永久磁石の外面に張力をかけながら巻付けられ、前記鉤形突起に1巻以上巻かれた金属ワイヤと、
を備えることを特徴とする磁石取付型回転子。
A rotor core in which a plurality of laminated steel plates having a plurality of saddle-shaped projections projecting radially from the outer peripheral portion at equal intervals in the circumferential direction are laminated to form a plurality of rows of axial-shaped saddle-shaped projection rows on the outer peripheral surface;
A permanent magnet bonded to the outer peripheral surface between the saddle-shaped protrusion rows of the rotor core by an adhesive;
A metal wire wound while applying tension to the outer surface of the permanent magnet and wound around the hook-shaped protrusion by one or more turns;
A magnet-mounted rotor characterized by comprising:
JP2012050853A 2012-03-07 2012-03-07 Magnet mounted rotor Expired - Fee Related JP5963479B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012050853A JP5963479B2 (en) 2012-03-07 2012-03-07 Magnet mounted rotor
CN201210247926.1A CN103312062B (en) 2012-03-07 2012-07-17 Magnet installation type rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012050853A JP5963479B2 (en) 2012-03-07 2012-03-07 Magnet mounted rotor

Publications (2)

Publication Number Publication Date
JP2013188005A JP2013188005A (en) 2013-09-19
JP5963479B2 true JP5963479B2 (en) 2016-08-03

Family

ID=49136960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012050853A Expired - Fee Related JP5963479B2 (en) 2012-03-07 2012-03-07 Magnet mounted rotor

Country Status (2)

Country Link
JP (1) JP5963479B2 (en)
CN (1) CN103312062B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3402043A1 (en) * 2017-05-11 2018-11-14 Siemens Aktiengesellschaft Fixing a thread bandage for fixing permanent magnets
EP3402042A1 (en) * 2017-05-11 2018-11-14 Siemens Aktiengesellschaft Fixing a bandage thread for fixing and positioning permanent magnets
EP4050764A4 (en) * 2019-12-24 2023-11-29 Deepinfar Ocean Technology Inc. Permanent magnet rotor structure of underwater motor, underwater motor, and underwater device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6399806B2 (en) * 2014-05-23 2018-10-03 株式会社不二工機 Stator assembly and magnet rotor motor and pump provided with the stator assembly
WO2018012885A1 (en) * 2016-07-12 2018-01-18 엘지이노텍 주식회사 Rotor and motor comprising same
KR102625434B1 (en) * 2016-12-13 2024-01-16 엘지이노텍 주식회사 Rotor and Motor having the same
JP6525931B2 (en) * 2016-08-19 2019-06-05 ファナック株式会社 Synchronous motor having different types of synchronous motors and identical parts and method of manufacturing synchronous motor
GB201714242D0 (en) * 2017-09-05 2017-10-18 Rolls Royce Plc Electrical machine rotor
DE112019007538T5 (en) * 2019-07-11 2022-03-31 Mitsubishi Electric Corporation ROTOR, ENGINE AND METHOD OF MAKING A ROTOR
DE102021205740A1 (en) 2021-06-08 2022-12-08 Robert Bosch Gesellschaft mit beschränkter Haftung Rotor for an electrical machine, an electrical machine, and a method for producing such a rotor
JP2023003047A (en) * 2021-06-23 2023-01-11 トヨタ自動車株式会社 Tank and method of manufacturing the same
WO2023135730A1 (en) * 2022-01-14 2023-07-20 三菱電機株式会社 Rotating electric machine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60156846U (en) * 1984-03-29 1985-10-18 株式会社東芝 Permanent magnet rotating electric machine
JPH05292690A (en) * 1992-04-07 1993-11-05 Aichi Emerson Electric Co Ltd Rotor with permanent magnet
CN1079590A (en) * 1992-06-04 1993-12-15 北京市西城区新开通用试验厂 A kind of additional felloe type rare-earth magneto-electric machine rotor
JP3001621U (en) * 1994-03-02 1994-09-06 ロック建設株式会社 Overcast type rockfall prevention structure
JPH099539A (en) * 1995-06-23 1997-01-10 Meidensha Corp Rotor of permanent magnet rotary electric machine
JP2001231200A (en) * 2000-02-17 2001-08-24 Yaskawa Electric Corp Protective structure of permanent magnet rotor
CN100334795C (en) * 2001-12-11 2007-08-29 乐金电子(天津)电器有限公司 Reciprocating movable motor
JP3736457B2 (en) * 2001-12-28 2006-01-18 豊田工機株式会社 Brushless motor and assembling method thereof
JP4267309B2 (en) * 2002-12-03 2009-05-27 株式会社ジェイテクト Adhesive structure
DE102006049825B4 (en) * 2006-10-21 2012-10-25 Esw Gmbh Arrangement for mounting permanent magnets on high-speed rotating rotors of electric machines
JP5000262B2 (en) * 2006-10-23 2012-08-15 三菱電機株式会社 Rotating machine rotor
JP4890215B2 (en) * 2006-11-30 2012-03-07 三菱電機株式会社 Rotating machine rotor
JP4671997B2 (en) * 2007-10-23 2011-04-20 三菱電機株式会社 Rotor for rotating electrical machine and method for manufacturing the same
GB2468718A (en) * 2009-03-20 2010-09-22 Control Tech Dynamics Ltd Securing permanent magnets to a laminated rotor
JP2010239800A (en) * 2009-03-31 2010-10-21 Mitsubishi Electric Corp Rotor of rotary electric machine and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3402043A1 (en) * 2017-05-11 2018-11-14 Siemens Aktiengesellschaft Fixing a thread bandage for fixing permanent magnets
EP3402042A1 (en) * 2017-05-11 2018-11-14 Siemens Aktiengesellschaft Fixing a bandage thread for fixing and positioning permanent magnets
WO2018206232A1 (en) * 2017-05-11 2018-11-15 Siemens Aktiengesellschaft Fastening a thread bandage in order to fasten permanent magnets
WO2018206231A1 (en) * 2017-05-11 2018-11-15 Siemens Aktiengesellschaft Attaching a bandage thread for fixing and positioning permanent magnets
EP4050764A4 (en) * 2019-12-24 2023-11-29 Deepinfar Ocean Technology Inc. Permanent magnet rotor structure of underwater motor, underwater motor, and underwater device

Also Published As

Publication number Publication date
CN103312062B (en) 2016-01-20
CN103312062A (en) 2013-09-18
JP2013188005A (en) 2013-09-19

Similar Documents

Publication Publication Date Title
JP5963479B2 (en) Magnet mounted rotor
JP6940007B2 (en) Manufacturing method of laminated core, core block, rotary electric machine and core block
JP5502463B2 (en) Axial gap type rotating electric machine and rotor used therefor
JP4985770B2 (en) Electric motor
JP4674679B2 (en) Stator structure of variable reluctance resolver
JP2010104160A (en) Dual rotor motor and manufacturing method therefor
US8937417B2 (en) Rotating electric machine and wind power generation system
US20150372544A1 (en) Rotary Electric Machine
JP6864595B2 (en) Rotor core, rotor, rotary electric machine, electric auxiliary equipment system for automobiles
TW202030958A (en) Laminated core and rotating machine
KR20160075537A (en) Rotor for an electrical machine
JP4640373B2 (en) Rotating electric machine
JP2009106051A (en) Rotor
JP2006254561A (en) Rotary electric machine
JPWO2015049967A1 (en) Permanent magnet embedded rotary electric machine and method for manufacturing the same
JP7434089B2 (en) Axial gap type rotating electric machine and its manufacturing method
JP2014197948A (en) Permanent magnet motor
JP2012244671A (en) Rotor of axial gap motor
JP5382063B2 (en) Rotating electric machine and wind power generation system
JP2010093988A (en) Permanent magnet type rotating machine
JP2010148225A (en) Rotating electric machine
JP2009239988A (en) Permanent magnet type motor
JP6264409B1 (en) Rotating electric machine
TWI609554B (en) Electrical rotating machine
JP6428684B2 (en) Rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160628

R150 Certificate of patent or registration of utility model

Ref document number: 5963479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees