JP2011190931A - Propeller shaft - Google Patents

Propeller shaft Download PDF

Info

Publication number
JP2011190931A
JP2011190931A JP2011025693A JP2011025693A JP2011190931A JP 2011190931 A JP2011190931 A JP 2011190931A JP 2011025693 A JP2011025693 A JP 2011025693A JP 2011025693 A JP2011025693 A JP 2011025693A JP 2011190931 A JP2011190931 A JP 2011190931A
Authority
JP
Japan
Prior art keywords
propeller shaft
cylinder
frp
membrane
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011025693A
Other languages
Japanese (ja)
Other versions
JP5699657B2 (en
Inventor
Yasushi Iida
靖 飯田
Hiroki Wakabayashi
宏樹 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2011025693A priority Critical patent/JP5699657B2/en
Publication of JP2011190931A publication Critical patent/JP2011190931A/en
Application granted granted Critical
Publication of JP5699657B2 publication Critical patent/JP5699657B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simply reduce radiation noises caused by film vibration without using a special material by controlling a primary resonant frequency of a film, a secondary resonant frequency of the film in a propeller shaft used for an automobile and made from fiber reinforced plastics (FRP). <P>SOLUTION: The propeller shaft includes an FRP cylindrical body having a body cylindrical section 11 containing reinforced fiber layers and extending in a cylinder axis direction, and projection members which are a nodal-point position 15 of the primary film resonance and a nodal-point position 16 of the secondary resonance on the cylindrical body and are brought into contact with the outside or the inside of the FRP cylindrical body to be arranged between the reinforced layers and are made from reinforced layers 14 wound in a peripheral direction with a reinforced fiber, FRP, or a resin rigid body. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、自動車等の駆動力伝達軸として使用される繊維強化プラスチック(以下、FRPという)製のプロペラシャフトに関する。   The present invention relates to a propeller shaft made of fiber reinforced plastic (hereinafter referred to as FRP) used as a driving force transmission shaft of an automobile or the like.

自動車工業の分野では、車両重量を軽減して燃費節減を図るために、各種の部品をFRP材料で代替することが試みられている。各種部品の内、FRP製のプロペラシャフト(推進軸とも呼ばれる)の場合には、FRP筒体の両端部に、駆動軸や従動軸と連結してエンジンのトルクを車輪へ伝達するためのトルク伝達継手を接合した構造になっている。   In the field of the automobile industry, attempts have been made to substitute various parts with FRP materials in order to reduce vehicle weight and reduce fuel consumption. In the case of FRP propeller shafts (also called propulsion shafts) among the various components, torque transmission for transmitting engine torque to the wheels by connecting the drive shaft and driven shaft to both ends of the FRP cylinder It has a structure in which joints are joined.

プロペラシャフトにおいては、トルク伝達時に、エンジン等の振動発生源やプロペラシャフト自身の回転により加振される各振動モードに対して、プロペラシャフトを共振現象から防止する必要がある。プロペラシャフトの振動のモードとしては、曲げ振動および膜振動が考えられる。曲げ1次共振周波数は、筒体の断面2次モーメント、縦弾性率、比重、長さにより決定されるため、スチール製のプロペラシャフトでは、その長さを分割することにより、曲げ1次共振周波数が使用域での振動範囲に入らないようにしているが、FRP筒体を用いたプロペラシャフトでは、FRP筒体の軸方向の弾性率を効果的に高めることにより、曲げ1次共振周波数が使用域での振動範囲に入ることを回避できる。   In the propeller shaft, it is necessary to prevent the propeller shaft from a resonance phenomenon with respect to each vibration mode that is vibrated by rotation of a vibration generation source such as an engine or the propeller shaft itself during torque transmission. As the vibration mode of the propeller shaft, bending vibration and membrane vibration can be considered. The bending primary resonance frequency is determined by the cross-sectional secondary moment, longitudinal elastic modulus, specific gravity, and length of the cylindrical body. Therefore, in a steel propeller shaft, the bending primary resonance frequency is divided by dividing the length. However, in the propeller shaft using the FRP cylinder, the primary resonance frequency of the bending is used by effectively increasing the elastic modulus in the axial direction of the FRP cylinder. It is possible to avoid entering the vibration range in the region.

又、プロペラシャフトの共振周波数は比弾性率(弾性率/比重)と長さ等をパラメータとして算出され、比弾性率に比例して高くなる。CFRPの比弾性率は対スチール比で約2.5倍であり、その結果、スチール製のプロペラシャフトの場合、分割構造にして筒体長さを短くしないと成立しないが、CFRP製のプロペラシャフトであれば、筒体1本による1ピース2ジョイント化の可能性が生まれ、より一層の軽量化が図れる。   The resonance frequency of the propeller shaft is calculated using the specific elastic modulus (elastic modulus / specific gravity), the length, and the like as parameters, and increases in proportion to the specific elastic modulus. The specific elastic modulus of CFRP is about 2.5 times the steel ratio. As a result, in the case of a steel propeller shaft, it cannot be established unless the cylinder length is shortened with a split structure, but with a CFRP propeller shaft, If it exists, the possibility of 1 piece 2 joint-izing by one cylinder arises, and the further weight reduction can be achieved.

ところが、FRP筒体をプロペラシャフトに用いるケースでは、上述したように曲げ1次振動の共振周波数が使用域での振動範囲に入ることを回避するために、軸方向の弾性率をできるだけ高くすることが有効であるが、そうすると異方性材料であるFRPの宿命として、必然的に円周方向の弾性率が著しく低下することになる。また、1ピース2ジョイント化で筒体の長さが長くなると、プロペラシャフトの膜振動による膜1次共振周波数や膜2次共振周波数も小さくなってきて自動車の使用域での振動範囲内に入ってくるようになり、自動車走行中にプロペラシャフト自身の共振が発生して不快な騒音を発生してしまうようになる。   However, in the case where the FRP cylinder is used for the propeller shaft, the elastic modulus in the axial direction is made as high as possible in order to avoid the resonance frequency of the bending primary vibration from entering the vibration range in the use range as described above. Is effective, but as a result of the fate of FRP, which is an anisotropic material, the elastic modulus in the circumferential direction inevitably decreases significantly. In addition, when the length of the cylinder is increased by using one piece and two joints, the membrane primary resonance frequency and membrane secondary resonance frequency due to membrane vibration of the propeller shaft also become smaller and enter the vibration range in the use range of the automobile. As a result, resonance of the propeller shaft itself occurs while the vehicle is running, and unpleasant noise is generated.

そこで、特許文献1では、膜1次共振に於ける減衰性能を向上させるため、FRP筒体の膜1次共振の振動モードの腹となる長手方向中央部のFRP筒体内部にポリウレタン等で構成される発泡体を充填する技術が提案されている。   Therefore, in Patent Document 1, in order to improve the damping performance in the membrane primary resonance, the inside of the FRP cylinder at the center in the longitudinal direction which becomes the antinode of the vibration mode of the membrane primary resonance of the FRP cylinder is made of polyurethane or the like. Techniques for filling the foam to be produced have been proposed.

しかしながら、特許文献1による技術では、プロペラシャフトの膜1次、膜2次共振周波数をずらすといった本質的な解決がなされないため、共振による騒音は残ってしまうばかりか、FRP筒体内部に発泡体のような特殊材料を充填するため、加工費、材料費が嵩むことになる。   However, the technique according to Patent Document 1 does not essentially solve the problem of shifting the primary and secondary resonance frequencies of the propeller shaft, so that not only the noise due to resonance remains but also the foam inside the FRP cylinder. Therefore, processing costs and material costs are increased.

特許第3183428号公報Japanese Patent No. 3183428

本発明は、上記課題に鑑みてなされたもので、自動車などで用いられるFRP製プロペラシャフトにおいて、膜1次共振周波数、膜2次共振周波数を制御するとともに伝達関数ゲイン(音圧レベル)を低下し、膜振動に伴う放射音を特殊な材料などを用いなくとも簡便に低減することを目的とする。   The present invention has been made in view of the above problems, and in a FRP propeller shaft used in an automobile or the like, controls a membrane primary resonance frequency and a membrane secondary resonance frequency and lowers a transfer function gain (sound pressure level). The object is to easily reduce the radiated sound accompanying the membrane vibration without using a special material or the like.

かかる課題を解決するために、本発明は、次の構成からなる。すなわち、強化繊維の層を含み筒軸方向に延在する本体筒部を有するFRP筒体と、その筒体における膜1次共振の節位置と膜2次共振の節位置であって、FRP筒体の外側または内側に接して、もしくは前記強化繊維の層間に配された、強化繊維の周方向巻きによる補強層、またはFRPもしくは樹脂製剛体からなる突起部材とを有することを特徴とするプロペラシャフトである。   In order to solve this problem, the present invention has the following configuration. That is, an FRP cylinder having a body cylinder portion including a reinforcing fiber layer and extending in the cylinder axis direction, a node position of the membrane primary resonance and a node position of the membrane secondary resonance in the cylinder, and the FRP cylinder A propeller shaft comprising a reinforcing layer formed by circumferential winding of reinforcing fibers, or a protruding member made of FRP or a rigid body made of resin, arranged in contact with the outside or inside of the body or between layers of the reinforcing fibers It is.

本発明によれば、FRP筒体の膜1次、膜2次共振の節位置を補強層や突起部材で補強しているため、膜1共振周波数と膜2次共振周波数の両方を自動車の使用域での振動範囲外となるよう高めることができるばかりか、FRP筒体の潰れ変形を抑制することにより伝達関数ゲイン(音圧レベル)が低下する。その結果、プロペラシャフト回転時に発生する膜振動に起因する放射音量を低減することができる。   According to the present invention, since the node positions of the membrane primary and membrane secondary resonances of the FRP cylinder are reinforced by the reinforcing layer and the protruding member, both the membrane 1 resonance frequency and the membrane secondary resonance frequency are used in the automobile. The transfer function gain (sound pressure level) can be reduced by suppressing the deformation of the FRP cylinders. As a result, it is possible to reduce the radiation volume caused by the membrane vibration generated when the propeller shaft rotates.

本発明の一実施形態である、FRP筒体の膜振動モードでの膜1次、膜2次の共振の節位置に外側補強層を配置したプロペラシャフトを示す軸方向断面図である。FIG. 3 is an axial sectional view showing a propeller shaft in which an outer reinforcing layer is disposed at a node position of resonance of the membrane primary and membrane secondary in the membrane vibration mode of the FRP cylinder, which is an embodiment of the present invention. 本発明の一実施形態である、FRP筒体の膜振動モードでの膜1次、膜2次の共振の節位置に内側補強層を配置したプロペラシャフトを示す軸方向断面図である。It is an axial sectional view showing a propeller shaft in which an inner reinforcing layer is arranged at a node position of resonance of the membrane primary and membrane secondary in the membrane vibration mode of the FRP cylinder, which is an embodiment of the present invention. 本発明の一実施形態である、FRP筒体の膜振動モードでの膜1次、膜2次の共振の節位置に中間補強層を配置したプロペラシャフトを示す軸方向断面図である。It is an axial sectional view showing a propeller shaft in which an intermediate reinforcing layer is arranged at a node position of resonance of the membrane primary and membrane secondary in the membrane vibration mode of the FRP cylinder, which is an embodiment of the present invention. 本発明の一実施形態である、FRP筒体の膜振動モードでの膜1次、膜2次の共振の節位置に筒体内面に突起部材を配置したプロペラシャフトを示す軸方向断面図である。FIG. 3 is an axial cross-sectional view showing a propeller shaft in which a protruding member is arranged on the inner surface of a cylinder at a resonance node position of the membrane primary and membrane secondary resonance in the membrane vibration mode of the FRP cylinder according to an embodiment of the present invention. . 本発明の一実施形態で用いられる円柱状突起部材を示す斜視図である。It is a perspective view which shows the column-shaped projection member used by one Embodiment of this invention. 本発明の一実施形態で用いられる十字状突起部材を示す斜視図である。It is a perspective view which shows the cross-shaped projection member used by one Embodiment of this invention. 従来のFRP製プロペラシャフトを示す軸方向断面図である。It is an axial sectional view showing a conventional FRP propeller shaft. プロペラシャフトの膜モード共振周波数を測定する様子を示す概略図である。It is the schematic which shows a mode that the film mode resonance frequency of a propeller shaft is measured.

図面を用いて、本発明をより詳細に説明する。図1〜4は、それぞれ本発明に係るプロペラシャフトの軸方向断面図であり、図7は従来のFRP製プロペラシャフトの軸方向断面図である。図1〜4および図7において、本体筒部11,21,31,41,71は強化繊維の層を含み筒軸方向に延在してFRP筒体を構成しており、その両端部には、トルク伝達継手17、27、37、47、75が接合されている。本体筒部を構成する強化繊維の層は、捩り強度や曲げ1次共振周波数などを、プロペラシャフトに適したものとするためには、強化繊維の螺旋巻層とするのがよい。螺旋巻の巻角度は、通常、筒軸方向に対して±10〜±45度の範囲内である。また、FRP筒体は、本体筒部11,21,31,41,71の筒軸方向端部の内周面に、強化繊維の周方向巻層12,22,32,42,72を含んで構成されるのが良い。前記強化繊維の周方向巻層にトルク伝達軸を圧入接合すると、筒体該当部が周方向に強化されているため変形や螺旋巻層の損傷を防止することができ、好適なトルク伝達を得ることができる。なお、本発明において、周方向とは、通常、筒軸方向に対して±80〜90度の範囲内の方向であることを意味する。   The present invention will be described in more detail with reference to the drawings. 1 to 4 are axial sectional views of a propeller shaft according to the present invention, respectively, and FIG. 7 is an axial sectional view of a conventional FRP propeller shaft. 1-4 and FIG. 7, the main body cylinder parts 11, 21, 31, 41, 71 include a reinforcing fiber layer and extend in the cylinder axis direction to form an FRP cylinder, The torque transmission joints 17, 27, 37, 47 and 75 are joined. The reinforcing fiber layer constituting the main body cylinder portion is preferably a spiral wound layer of reinforcing fibers in order to make the torsional strength, the bending primary resonance frequency, etc. suitable for the propeller shaft. The winding angle of the spiral winding is usually within a range of ± 10 to ± 45 degrees with respect to the cylinder axis direction. The FRP cylinder includes circumferential winding layers 12, 22, 32, 42, and 72 of reinforcing fibers on the inner peripheral surface of the cylindrical axial ends of the main body cylinder parts 11, 21, 31, 41, and 71. It is good to be configured. When a torque transmission shaft is press-fitted and joined to the circumferentially wound layer of the reinforcing fiber, the corresponding portion of the cylindrical body is reinforced in the circumferential direction, so that deformation and damage to the spirally wound layer can be prevented, and suitable torque transmission is obtained. be able to. In the present invention, the circumferential direction usually means a direction within a range of ± 80 to 90 degrees with respect to the cylinder axis direction.

ここで、図1では、その筒体における膜1次共振の節位置15と膜2次共振の節位置16に、FRP筒体の外側に接して、強化繊維の周方向巻きによる補強層14が配されており、図2では、その筒体における膜1次共振の節位置25と膜2次共振の節位置26に、FRP筒体の内側に接して、強化繊維の周方向巻きによる補強層24が配されている。図3では、その筒体における膜1次共振の節位置35と膜2次共振の節位置36に、FRP筒体を構成する強化繊維の螺旋巻層の中間(層間)に介在し、強化繊維の周方向巻きによる補強層34が配されている。   Here, in FIG. 1, the reinforcing layer 14 by the circumferential winding of the reinforcing fiber is in contact with the outside of the FRP cylinder at the node position 15 of the membrane primary resonance and the node position 16 of the membrane secondary resonance in the cylinder. In FIG. 2, the reinforcing layer formed by circumferential winding of reinforcing fibers is in contact with the inner side of the FRP cylinder at the node position 25 of the membrane primary resonance and the node position 26 of the membrane secondary resonance in the cylinder. 24 is arranged. In FIG. 3, the fiber primary resonance node position 35 and the film secondary resonance node position 36 in the cylindrical body are interposed in the middle (interlayer) of the spiral wound layer of the reinforcing fiber constituting the FRP cylinder, and the reinforcing fiber. A reinforcing layer 34 is disposed by circumferential winding.

また、図4では、その筒体における膜1次共振の節位置45と膜2次共振の節位置46に、FRP筒体の内側に接して、剛体からなる突起部材44が配されている。剛体は、プロペラシャフトの軽量化のため、FRPまたは樹脂製とされる。なお、図4では、突起部材は、FRP筒体の内側に接して配されているが、図1の場合と同様の形態で、FRP筒体の外側に接して配させても構わないし、図3の場合と同様の形態で、FRP筒体を構成する強化繊維の螺旋巻層の中間に配置しても構わない。なお、突起部材とは、FRP筒体を構成する強化繊維の層から筒体の外側または内側に突起するように配される部材をいう。   In FIG. 4, a protruding member 44 made of a rigid body is disposed in contact with the inner side of the FRP cylinder at the node position 45 of the film primary resonance and the node position 46 of the film secondary resonance in the cylinder. The rigid body is made of FRP or resin to reduce the weight of the propeller shaft. In FIG. 4, the protruding member is disposed in contact with the inside of the FRP cylinder, but may be disposed in contact with the outside of the FRP cylinder in the same form as in FIG. 3 may be arranged in the middle of the spiral wound layer of reinforcing fibers constituting the FRP cylinder in the same form as in the case of No. 3. The protruding member refers to a member that is arranged so as to protrude from the reinforcing fiber layer constituting the FRP cylinder to the outside or the inside of the cylinder.

FRP筒体における膜1次共振の節位置や、膜2次共振の節位置は、筒体の長さ、筒体の形状(外径や内径の軸方向での変動など)などによって影響を受けるが、コンピュータでのFEM計算を用いれば筒体端面からの位置を特定することができる。例えば、内径と外径とがいずれも軸方向に均一な円筒体であれば、膜1次の節位置は筒体の軸方向中央部、すなわち筒体の端部から軸方向に筒体全長の1/2の長さの位置にあり、膜2次の節位置は、軸方向1/4部と3/4部、すなわち、筒体の端部から軸方向に筒体全長の1/4の長さの位置と3/4の長さの位置となる。部分的に外径が大きい円筒体や、外径が軸方向にテーパ形状の場合などは膜2次共振の節位置は上記の位置からずれるが、FEM計算を用いれば正確に算出することができる。   The nodal position of the membrane primary resonance and the nodal position of the membrane secondary resonance in the FRP cylinder are affected by the length of the cylinder, the shape of the cylinder (the fluctuation of the outer diameter and inner diameter in the axial direction, etc.), etc. However, the position from the cylinder end face can be specified by using FEM calculation with a computer. For example, if both the inner diameter and the outer diameter are a cylindrical body that is uniform in the axial direction, the primary node position of the membrane is the axial center of the cylindrical body, that is, the entire length of the cylindrical body from the end of the cylindrical body. The position of the second layer of the membrane is 1/4 and 3/4 in the axial direction, that is, 1/4 of the total length of the cylinder in the axial direction from the end of the cylinder. It becomes the position of the length and the position of the length of 3/4. In the case of a cylindrical body having a partially large outer diameter, or when the outer diameter is tapered in the axial direction, the node position of the membrane secondary resonance deviates from the above position, but it can be accurately calculated using FEM calculation. .

FRP筒体に、膜1次共振の節位置15、25、35、45と、膜2次共振の節位置16、26、36、46とに、厚みを持った補強層や突起部材を筒体の外側または内側、もしくは強化繊維の螺旋巻層の層間に配しているため、膜モードの共振周波数を使用域での振動範囲から外れるよう大きくすることができる。更に、かかる補強層は強化繊維による周方向巻であり、突起部材はFRPまたは樹脂製の剛体でできているので、FRP筒体の潰れ変形を抑制することができる。   The FRP cylinder is provided with a reinforcing layer and a protruding member having a thickness at the node positions 15, 25, 35, 45 of the membrane primary resonance and the node positions 16, 26, 36, 46 of the membrane secondary resonance. Therefore, the resonance frequency of the membrane mode can be increased so as to deviate from the vibration range in the use range. Furthermore, since the reinforcing layer is a circumferential winding of reinforcing fibers and the protruding member is made of FRP or a resin rigid body, the FRP cylinder can be prevented from being crushed and deformed.

前記補強層14、24、34や前記突起部材44は軸方向の幅が3〜90mm、厚みが1〜5mmの範囲内にあることが好ましい。かかる幅が3mmより小さいと、膜1次、膜2次共振の節位置からのずれに対する許容代が小さく、僅かのずれで潰れることがあり、変形抑制効果が小さくなる。一方、かかる幅が90mmより大きくなると、強化繊維投入量が多くなり潰れ変形抑制に対するコストパフォーマンスが悪くなる。又、厚みが1mmより小さいと膜モードの共振周波数向上は小さく、5mmより厚いと必要以上に共振周波数が高くなると共に強化繊維投入量が多くなりこれもコストパフォーマンスが悪くなる。   The reinforcing layers 14, 24, and 34 and the protruding member 44 preferably have an axial width of 3 to 90 mm and a thickness of 1 to 5 mm. If the width is smaller than 3 mm, the allowance for deviation from the node position of the membrane primary and membrane secondary resonances is small, and the deformation may be crushed by a slight deviation, so that the deformation suppressing effect is reduced. On the other hand, when the width is larger than 90 mm, the amount of reinforcing fiber input is increased, and the cost performance for suppressing crushing deformation is deteriorated. On the other hand, if the thickness is less than 1 mm, the improvement in the resonance frequency of the membrane mode is small, and if it is more than 5 mm, the resonance frequency becomes higher than necessary and the amount of reinforcing fibers input increases, which also deteriorates the cost performance.

本発明において突起部材を用いる場合、FRP筒体の内径や外径が精度良く仕上がっていれば、突起部材の外周面や内周面だけを機械加工などすれば、容易に圧入もしくは接着で挿入固定することができる。筒体の端部外径が他の部分の外径より太い場合には、突起部材を端から圧入もしくは接着で挿入固定できないので、そのような場合には内側に接して配する態様を採用すればよい。また、本発明において、突起部材をFRP筒体の内側に配する場合、図4における突起部材44のような円筒体に代えて、図5に示すような円柱状突起部材51もしくは図6に示すような十字状突起部材61を用い、それら突起部材の端部をFRP筒体の内面に接するように配しても良い。なお、円柱状突起部材51や十字状突起部材61は軸方向の幅を3〜90mmとするのが好ましい。   In the present invention, when the protruding member is used, if the inner diameter and outer diameter of the FRP cylinder are finished with high accuracy, if only the outer peripheral surface or inner peripheral surface of the protruding member is machined, it can be easily inserted and fixed by press-fitting or bonding. can do. If the outer diameter of the end of the cylinder is thicker than the outer diameter of the other part, the protruding member cannot be inserted and fixed from the end by press-fitting or bonding. That's fine. Further, in the present invention, when the projecting member is arranged inside the FRP cylinder, the cylindrical projecting member 51 as shown in FIG. 5 or shown in FIG. 6 is used instead of the cylindrical body like the projecting member 44 in FIG. Such cross-shaped projecting members 61 may be used, and the ends of these projecting members may be arranged so as to contact the inner surface of the FRP cylinder. Note that the columnar protruding member 51 and the cross-shaped protruding member 61 preferably have an axial width of 3 to 90 mm.

本発明において、強化繊維としては、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、セラミック繊維等が使用され、この中でも危険回転数を考慮すると炭素繊維の使用が好ましい。また、強化繊維として炭素繊維を用いる場合には、炭素繊維以外の強化繊維は、プロペラシャフトに必要なねじり強度や危険回転数を考慮すると、強化繊維の全質量あたり40質量%以下とすることが好ましい。   In the present invention, carbon fibers, glass fibers, aramid fibers, boron fibers, ceramic fibers and the like are used as the reinforcing fibers, and among these, the use of carbon fibers is preferable in view of the critical rotational speed. When carbon fibers are used as the reinforcing fibers, the reinforcing fibers other than the carbon fibers may be 40% by mass or less based on the total mass of the reinforcing fibers in consideration of the torsional strength and the dangerous rotational speed necessary for the propeller shaft. preferable.

また、FRPとするために強化繊維に含浸させる樹脂、いわゆるマトリックス樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ビニルエステル樹脂などの熱硬化性樹脂、ポリ酢酸ビニル樹脂、ポリカーボネイト樹脂、ポリアセタール樹脂、ポリフェニレンオキシド樹脂、ポリフェニレンスルフィド樹脂、ポリアリレート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリアラミド樹脂、ポリベンゾイミダゾール樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、酢酸セルロース樹脂などの熱可塑性樹脂が好適に用いられるが、これらの中でも、良好な作業性と成形後の優れた機械特性という点を考慮すると熱硬化性樹脂が好ましく、中でも、エポキシ樹脂が特に好ましく用いられる。   In addition, the resin impregnated into the reinforcing fiber to form FRP, so-called matrix resin includes epoxy resin, unsaturated polyester resin, phenol resin, vinyl ester resin and other thermosetting resins, polyvinyl acetate resin, polycarbonate resin, polyacetal. Resin, polyphenylene oxide resin, polyphenylene sulfide resin, polyarylate resin, polyester resin, polyamide resin, polyamideimide resin, polyimide resin, polyetherimide resin, polysulfone resin, polyethersulfone resin, polyetheretherketone resin, polyaramid resin, poly Thermoplastic resins such as benzimidazole resin, polyethylene resin, polypropylene resin, and cellulose acetate resin are preferably used. Among these, good workability and after molding Preferably consideration and the thermosetting resin that excellent mechanical properties, among others, epoxy resin is particularly preferably used.

次に、本発明のプロペラシャフトを製造するに好適な方法について説明する。   Next, a method suitable for producing the propeller shaft of the present invention will be described.

先ず、FRP筒体を、フィラメントワインディング(以下、FW)法やテープワインディング(以下、TW)法等により、マトリックス樹脂を含浸させた強化繊維を引きそろえ、所定の張力を付加しマンドレルに巻き付けて賦形する。   First, the FRP cylinder is drawn by applying filament fibers (hereinafter referred to as FW) method, tape winding (hereinafter referred to as TW) method, reinforcing fibers impregnated with matrix resin, applying a predetermined tension and winding them around a mandrel. Shape.

補強層を形成する場合には、膜共振の節となるべき位置に周方向巻し、本体筒部の筒軸方向端部に周方向巻層を形成する場合には、本体筒部の筒軸方向端部となるべき位置に周方向巻すればよく、本体筒部は、所望の捩り強度と曲げ1次共振周波数が得られるよう算出された巻角度で螺旋巻することにより、連続で一体に賦形することができる。なお、補強層の周方向巻は、FW装置の数値制御を用いれば正確に配置させることができる。   When forming a reinforcing layer, it winds in the circumferential direction at a position to be a node of membrane resonance, and when forming a circumferential winding layer at the end of the main body cylindrical portion in the cylindrical axis direction, the cylindrical shaft of the main body cylindrical portion The main body tube portion may be wound continuously at a position where it should become a directional end, and the main body cylinder portion is continuously and integrally wound by spiral winding at a winding angle calculated so as to obtain a desired torsional strength and bending primary resonance frequency. Can be shaped. The circumferential winding of the reinforcing layer can be accurately arranged by using numerical control of the FW device.

マトリックス樹脂として熱硬化性樹脂を用いる場合には、賦形終了後、硬化炉に投入し、所定の硬化条件にて硬化することにより成形体を得る。その後、成形体から脱芯機などを用いてマンドレルを引き抜き、切断機などを用いて所定の長さに切断し、FRP筒体を得る。   In the case where a thermosetting resin is used as the matrix resin, a molded body is obtained by putting it into a curing furnace after curing and curing it under predetermined curing conditions. Thereafter, the mandrel is pulled out from the molded body using a decentering machine or the like and cut into a predetermined length using a cutting machine or the like to obtain an FRP cylinder.

突起部材で補強する場合には、上記のようにして得られたFRP筒体の端部からFRP筒体の内側または外側に突起部材を挿入する。挿入は接着剤などを用いず圧入しても良いし、接着剤などを用いて挿入接着してもよい。   When reinforcing with the protruding member, the protruding member is inserted into the inside or outside of the FRP cylinder from the end of the FRP cylinder obtained as described above. The insertion may be press-fitted without using an adhesive or the like, or may be inserted and bonded using an adhesive or the like.

次に本発明のプロペラシャフトについて、実施例を用いて、より具体的に説明する。なお、本実施例において、伝達関数ゲイン(音圧レベル)と膜モード共振周波数、騒音の評価は次のようにして行った。   Next, the propeller shaft of the present invention will be described more specifically using examples. In this example, the transfer function gain (sound pressure level), the membrane mode resonance frequency, and the noise were evaluated as follows.

[伝達関数ゲイン(音圧レベル)と膜モード共振周波数]
伝達関数ゲイン(音圧レベル)と膜モード共振周波数はインパルス加振試験により測定する。図8はプロペラシャフトの伝達関数ゲイン(音圧レベル)と膜モード共振周波数を測定する様子を示す概略図である。測定すべきFRP筒体80の中央部に加速度センサー81を取り付ける。この状態で、力センサー82を内蔵したインパルスハンマー83にて加振し、力センサー82と加速度センサー81の出力を入力チャンネルモジュール84(たとえば、(株)エー・アンド・デイ社製AD−3651)を介しホストコンピューター85に取り込み、FFT専用ソフト(たとえば、(株)エー・アンド・デイ社製 WCAMSA)にて伝達関数を求め、表示させることにより、伝達関数ゲイン(音圧レベル)と共振周波数を得ることができる。
[Transfer function gain (sound pressure level) and membrane mode resonance frequency]
The transfer function gain (sound pressure level) and the membrane mode resonance frequency are measured by an impulse excitation test. FIG. 8 is a schematic view showing how the transfer function gain (sound pressure level) and the membrane mode resonance frequency of the propeller shaft are measured. An acceleration sensor 81 is attached to the center of the FRP cylinder 80 to be measured. In this state, an impulse hammer 83 incorporating a force sensor 82 is vibrated, and the outputs of the force sensor 82 and the acceleration sensor 81 are input to the input channel module 84 (for example, AD-3651 manufactured by A & D Corporation). The transfer function gain (sound pressure level) and the resonance frequency are obtained by obtaining and displaying the transfer function using the FFT dedicated software (for example, WCAMSA manufactured by A & D Co., Ltd.). Obtainable.

[放射音の音量]
測定すべきプロペラシャフトを実車(セダン車)に搭載し、エンジン出力を介しプロペラシャフトを回転させ、騒音で問題となる約1100Hz領域でプロペラシャフトから発される放射音の音量を車内床下に騒音計測マイクを設置して測定する。
[Volume of radiated sound]
The propeller shaft to be measured is mounted on a real car (sedan car), and the propeller shaft is rotated via the engine output. Install a microphone and measure.

(実施例1)
FW法によってFRP製筒体を成形した。すなわち、炭素繊維束(平均単糸径:7μm、単糸数:24,000本、引張強度4900MPa、引張弾性率:230GPa)を3本引き揃え、これを、硬化剤および硬化促進剤を含むビスフェノールA型エポキシ樹脂をマトリックス樹脂として含浸しながら、外径80mm、長さ1,300mmのマンドレルに、まず、その一端部100mmの部分に軸方向に対して±82°の角度で8層巻き付けて厚み2.5mmの部分層を形成した後、他端部に移動して同様に部分層を形成し、引き続きマンドレルの全長にわたって軸方向に対して±12゜の角度で5層巻き付けて厚み2.5mmの主層を形成し、次いで、マンドレルの全長にわたって軸方向に対して−83゜で巻き付け、さらに、膜1次の節位置15と膜2次の節位置16を中心に幅60mmにわたり、±83°の角度で8層巻き付けて厚み2.5mmの補強層を形成した。なお、得られるFRP筒体について予めFEM計算を行い、膜1次の節位置が、その筒体の軸方向中央部に、膜2次の節位置が、その筒体の軸方向1/4部と3/4部から、それぞれ軸方向中央寄りに30mmづつ離れた位置にあることを特定しておいた。
Example 1
An FRP cylinder was formed by the FW method. That is, three carbon fiber bundles (average single yarn diameter: 7 μm, number of single yarns: 24,000, tensile strength 4900 MPa, tensile elastic modulus: 230 GPa) are aligned, and this is bisphenol A containing a curing agent and a curing accelerator. While impregnating a mold epoxy resin as a matrix resin, a mandrel having an outer diameter of 80 mm and a length of 1,300 mm is first wound around an end portion of 100 mm at eight layers at an angle of ± 82 ° with respect to the axial direction. After forming a partial layer of .5 mm, move to the other end to form a partial layer in the same manner, and then wrap five layers at an angle of ± 12 ° with respect to the axial direction over the entire length of the mandrel. The main layer is formed, and then wound around the entire length of the mandrel at −83 ° with respect to the axial direction. Further, the width is centered on the membrane primary node position 15 and the membrane secondary node position 16. Over 0 mm, to form a reinforcing layer having a thickness of 2.5mm by winding eight layers at an angle of ± 83 °. It should be noted that FEM calculation is performed in advance on the obtained FRP cylinder, and the primary node position of the film is in the axial center of the cylinder and the secondary node position of the film is 1/4 part in the axial direction of the cylinder. And 3/4 part, it has been specified that they are 30 mm apart from each other toward the center in the axial direction.

次に、マンドレルを回転させながら180℃で6時間加熱してエポキシ樹脂を硬化させ、マンドレルを引き抜いた後、各端部50mmの部分を切断、除去して、外径が85mm、内径が80mm、長さが1,200mmのFRP筒体を得た。   Next, the epoxy resin is cured by heating at 180 ° C. for 6 hours while rotating the mandrel, and after pulling out the mandrel, each end 50 mm is cut and removed, the outer diameter is 85 mm, the inner diameter is 80 mm, An FRP cylinder having a length of 1,200 mm was obtained.

その後、上記FRP筒体の各端部に、ヨーク17を圧入接合し、図1に示すようなFRP製プロペラシャフトを得た。   Thereafter, a yoke 17 was press-fitted and joined to each end of the FRP cylinder to obtain an FRP propeller shaft as shown in FIG.

得られたプロペラシャフトについて、膜モード共振周波数を測定したところ、膜1次共振周波数が1500Hz、膜2次共振周波数が1550Hzと、後述する比較例よりも25%向上した。又、伝達関数ゲイン(音圧レベル)は後述する比較例の膜1次共振周波数(1190Hz)の0.8領域(以降、裾野領域と呼ぶ)で105dBとなり、比較例より15%低減した。このプロペラシャフトについて、放射音の音量を測定したところ、約80dBであり、2ピース3ジョイントのスチール製プロペラシャフトとほぼ同等となった。   When the membrane mode resonance frequency of the obtained propeller shaft was measured, the membrane primary resonance frequency was 1500 Hz and the membrane secondary resonance frequency was 1550 Hz, which was 25% higher than the comparative example described later. The transfer function gain (sound pressure level) was 105 dB in the 0.8 region (hereinafter referred to as the skirt region) of the membrane primary resonance frequency (1190 Hz) of the comparative example described later, which was 15% lower than the comparative example. With respect to this propeller shaft, the volume of the radiated sound was measured and found to be about 80 dB, which was almost the same as that of a 2-piece 3-joint steel propeller shaft.

(実施例2)
補強層を形成しなかった以外は、実施例1と同様にして、外径が85mm、内径が80mm、長さが1,200mmのFRP筒体を得た。
(Example 2)
An FRP cylinder having an outer diameter of 85 mm, an inner diameter of 80 mm, and a length of 1,200 mm was obtained in the same manner as in Example 1 except that the reinforcing layer was not formed.

その後、FRPで作成した幅60mm、外径80mm、厚み2.5mmの円筒体44の外周面に接着剤を塗布し、膜1次の節位置(軸方向中央部)45と膜2次の節位置(FRP片側端面から軸方向に330mm部と870mm部)46を中心に円筒体44の中心が合うよう挿入し固定した。その後、上記FRP筒体の各端部に、ヨーク47を圧入接合し、図4に示すようなFRP製プロペラシャフトを得た。   Thereafter, an adhesive is applied to the outer peripheral surface of the cylindrical body 44 having a width of 60 mm, an outer diameter of 80 mm, and a thickness of 2.5 mm prepared by FRP, so that the primary node position (axial center) 45 of the membrane and the secondary node of the membrane are applied. The cylindrical body 44 was inserted and fixed so that the center of the position was centered on the position 46 (330 mm portion and 870 mm portion in the axial direction from one end face of the FRP). Thereafter, a yoke 47 was press-fitted and joined to each end of the FRP cylinder to obtain an FRP propeller shaft as shown in FIG.

得られたプロペラシャフトについて、膜モード共振周波数を測定したところ、膜1次共振周波数は1680Hz、膜2次共振周波数は1720Hzと、後述する比較例よりも40%向上し、実施例1よりも高い結果となった。このプロペラシャフトについて、放射音の音量を測定したところ、約80dBであり、2ピース3ジョイントのスチール製プロペラシャフトとほぼ同等となった。   When the membrane mode resonance frequency of the obtained propeller shaft was measured, the membrane primary resonance frequency was 1680 Hz, and the membrane secondary resonance frequency was 1720 Hz, which was 40% higher than the comparative example described later and higher than that of Example 1. As a result. With respect to this propeller shaft, the volume of the radiated sound was measured and found to be about 80 dB, which was almost the same as that of a 2-piece 3-joint steel propeller shaft.

(比較例)
補強層を形成しなかった以外は、実施例1と同様にして、外径が85mm、内径が80mm、長さが1,200mmのFRP筒体を得た。得られたFRP筒体の各端部に、ヨーク75を圧入接合し、図7に示すようなFRP製プロペラシャフトを得た。
(Comparative example)
An FRP cylinder having an outer diameter of 85 mm, an inner diameter of 80 mm, and a length of 1,200 mm was obtained in the same manner as in Example 1 except that the reinforcing layer was not formed. A yoke 75 was press-fitted and joined to each end of the obtained FRP cylinder to obtain an FRP propeller shaft as shown in FIG.

得られたプロペラシャフトについて、膜モード共振周波数を測定したところ、膜1次共振周波数が1190Hz、膜2次共振周波数が1280Hzであった。又、膜1次共振周波数の裾野領域における伝達関数ゲイン(音圧レベル)は125dBであった。このプロペラシャフトについて、放射音の音量を測定したところ、約90dBであり、2ピース3ジョイントのスチール製プロペラシャフトの約80dBより約10dB悪化した。   When the membrane mode resonance frequency of the obtained propeller shaft was measured, the membrane primary resonance frequency was 1190 Hz and the membrane secondary resonance frequency was 1280 Hz. The transfer function gain (sound pressure level) in the base region of the membrane primary resonance frequency was 125 dB. With respect to this propeller shaft, the volume of the radiated sound was measured and found to be about 90 dB, which was about 10 dB worse than about 80 dB of the 2-piece 3-joint steel propeller shaft.

本発明に係るプロペラシャフトは、あらゆるプロペラシャフトに適用でき、特に車両用プロペラシャフトに適用して好適なものである。   The propeller shaft according to the present invention can be applied to any propeller shaft, and is particularly suitable when applied to a vehicle propeller shaft.

11、21、31、41、71:本体筒部
12、22、32、42、72:周方向巻層
14、24、34 :補強層
15、25、35、45 :膜1次共振の節位置
16、26、36、46 :膜2次共振の節位置
17、27、37、47、75:トルク伝達継手
44 :円筒状突起部材
51 :円柱状突起部材
61 :十字状突起部材
80 :FRP筒体
81 :加速度センサー
82 :力センサー
83 :インパルスハンマー
84 :入力チャンネルモジュール
85 :ホストコンピューター
11, 21, 31, 41, 71: Main body cylindrical portions 12, 22, 32, 42, 72: Circumferential winding layers 14, 24, 34: Reinforcement layers 15, 25, 35, 45: Node positions of the membrane primary resonance 16, 26, 36, 46: Nodal positions 17, 27, 37, 47, 75 of membrane secondary resonance: Torque transmission joint 44: Cylindrical protruding member 51: Columnar protruding member 61: Cross-shaped protruding member 80: FRP cylinder Body 81: Acceleration sensor 82: Force sensor 83: Impulse hammer 84: Input channel module 85: Host computer

Claims (6)

強化繊維の層を含み筒軸方向に延在する本体筒部を有するFRP筒体と、その筒体における膜1次共振の節位置と膜2次共振の節位置であって、FRP筒体の外側または内側に接して、もしくは前記強化繊維の層の層間に配された、強化繊維の周方向巻きによる補強層、またはFRPもしくは樹脂製剛体からなる突起部材とを有することを特徴とするプロペラシャフト。 An FRP cylinder having a main body cylinder portion including a reinforcing fiber layer and extending in the cylinder axis direction; a nodal position of a membrane primary resonance and an nodal position of a membrane secondary resonance in the cylinder; A propeller shaft comprising a reinforcing layer formed by circumferential winding of reinforcing fibers, or a projecting member made of FRP or a resin rigid body, arranged in contact with the outside or inside or between layers of the reinforcing fibers. . 前記補強層および前記突起部材は、その形状が、幅3〜90mm、厚み1〜5mmである請求項1に記載のプロペラシャフト。 The propeller shaft according to claim 1, wherein the reinforcing layer and the protruding member have a width of 3 to 90 mm and a thickness of 1 to 5 mm. 前記突起部材が、幅3〜90mmの円柱状、または幅3〜90mmの十字状である請求項1に記載のプロペラシャフト。 2. The propeller shaft according to claim 1, wherein the protruding member has a cylindrical shape with a width of 3 to 90 mm or a cross shape with a width of 3 to 90 mm. 本体筒部を構成する強化繊維の層は、強化繊維の螺旋巻層であり、FRP筒体は、本体筒部の筒軸方向端部の内周面に、強化繊維の周方向巻層を含む請求項1〜3のいずれかに記載のプロペラシャフト。 The reinforcing fiber layer constituting the main body cylinder is a spiral wound layer of reinforcing fibers, and the FRP cylinder includes a circumferential winding layer of reinforcing fibers on the inner peripheral surface of the end of the main body cylinder in the cylinder axial direction. The propeller shaft according to any one of claims 1 to 3. 周方向が、筒軸方向に対して±80〜90度の範囲内の方向である請求項1〜4のいずれかに記載のプロペラシャフト。 The propeller shaft according to any one of claims 1 to 4, wherein the circumferential direction is a direction within a range of ± 80 to 90 degrees with respect to the cylinder axis direction. 両端部にはトルク伝達継手が接合されてなる請求項1〜4のいずれかに記載のプロペラシャフト。
The propeller shaft according to any one of claims 1 to 4, wherein torque transmission joints are joined to both ends.
JP2011025693A 2010-02-17 2011-02-09 Propeller shaft and manufacturing method thereof Expired - Fee Related JP5699657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011025693A JP5699657B2 (en) 2010-02-17 2011-02-09 Propeller shaft and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010032111 2010-02-17
JP2010032111 2010-02-17
JP2011025693A JP5699657B2 (en) 2010-02-17 2011-02-09 Propeller shaft and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011190931A true JP2011190931A (en) 2011-09-29
JP5699657B2 JP5699657B2 (en) 2015-04-15

Family

ID=44796060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011025693A Expired - Fee Related JP5699657B2 (en) 2010-02-17 2011-02-09 Propeller shaft and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5699657B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090056A (en) * 2014-11-05 2016-05-23 デーナ、オータモウティヴ、システィムズ、グループ、エルエルシー Tube yoke assembly and driveshaft assembly formed therewith
CN114576257A (en) * 2022-02-14 2022-06-03 武汉理工大学 Vibration reduction and isolation transmission shaft made of carbon fiber composite material based on periodic structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5378530A (en) * 1976-12-22 1978-07-12 Toray Ind Inc Automotive propeller shaft
JPH06123308A (en) * 1992-10-09 1994-05-06 Toray Ind Inc Propeller shaft
JP2006062354A (en) * 2004-07-28 2006-03-09 Toray Ind Inc Frp cylindrical body and its manufacturing method
JP2006183728A (en) * 2004-12-27 2006-07-13 Toray Ind Inc Propeller shaft

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5378530A (en) * 1976-12-22 1978-07-12 Toray Ind Inc Automotive propeller shaft
JPH06123308A (en) * 1992-10-09 1994-05-06 Toray Ind Inc Propeller shaft
JP2006062354A (en) * 2004-07-28 2006-03-09 Toray Ind Inc Frp cylindrical body and its manufacturing method
JP2006183728A (en) * 2004-12-27 2006-07-13 Toray Ind Inc Propeller shaft

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090056A (en) * 2014-11-05 2016-05-23 デーナ、オータモウティヴ、システィムズ、グループ、エルエルシー Tube yoke assembly and driveshaft assembly formed therewith
CN114576257A (en) * 2022-02-14 2022-06-03 武汉理工大学 Vibration reduction and isolation transmission shaft made of carbon fiber composite material based on periodic structure

Also Published As

Publication number Publication date
JP5699657B2 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
JP4846103B2 (en) Fiber reinforced resin pipe and power transmission shaft using the same
JPS6352251B2 (en)
JP2013228094A (en) Propeller shaft
JP2008230031A (en) Device of manufacturing fiber-reinforced plastic made shaft and torque transmission shaft
JP5699657B2 (en) Propeller shaft and manufacturing method thereof
JP2007271079A (en) Torque transmission shaft
JP5230835B1 (en) Method for manufacturing shaft used in badminton racket
JP2006062355A (en) Frp cylindrical body and its manufacturing method
KR101744705B1 (en) Hybrid Propeller Shaft and Method for Manufacturing Thereof
Shinde et al. Investigation on glass-epoxy composite drive shaft for light motor vehicle
JPH05106629A (en) Load transmitting shaft made of fiber reinforced plastics
JP2020139517A (en) Pipe body used in power transmission shaft, and power transmission shaft
JP3183428B2 (en) Propeller shaft
JPH08103965A (en) Frp cylinder and manufacture thereof
JP2020138343A (en) Method for manufacturing pipe body used in power transmission shaft
JP3339212B2 (en) FRP cylinder and method of manufacturing the same
WO2020174692A1 (en) Tube for power transmission shaft and power transmission shaft
JP2007196681A (en) Propeller shaft and its manufacturing method
JP6581739B1 (en) Mandrel
JP4261982B2 (en) Manufacturing method of drive transmission shaft
JP2008082525A (en) Propeller shaft and its manufacturing method
JP2011226633A (en) Torque transmission shaft
JP6917932B2 (en) Power transmission shaft
JP7324589B2 (en) Pipe body and power transmission shaft used for power transmission shaft
JP2020138366A (en) Manufacturing method of tube body used for power transmission shaft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150202

R151 Written notification of patent or utility model registration

Ref document number: 5699657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees