JP2013228094A - Propeller shaft - Google Patents

Propeller shaft Download PDF

Info

Publication number
JP2013228094A
JP2013228094A JP2013044942A JP2013044942A JP2013228094A JP 2013228094 A JP2013228094 A JP 2013228094A JP 2013044942 A JP2013044942 A JP 2013044942A JP 2013044942 A JP2013044942 A JP 2013044942A JP 2013228094 A JP2013228094 A JP 2013228094A
Authority
JP
Japan
Prior art keywords
cylinder
frp
propeller shaft
resin
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013044942A
Other languages
Japanese (ja)
Inventor
Yasushi Iida
靖 飯田
Daisuke Nagamatsu
大介 永松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2013044942A priority Critical patent/JP2013228094A/en
Publication of JP2013228094A publication Critical patent/JP2013228094A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the conditions of resonance vibration and noise associated with bending vibration at low cost without using a special material by increasing the first-order bending resonance frequency and decreasing transfer function gain (vibration response), in a propeller shaft made of FRP which is used in an automobile or the like.SOLUTION: A propeller shaft includes an FRP cylinder body having: a body cylinder part 11 which is a spiral winding layer including a layer of a reinforced fiber and extending in a cylinder axis direction; and a circumferential direction winding layer 15 of the reinforced fiber on the inner peripheral surface of a cylinder axis direction end of the body cylinder part. In a part in the cylinder body excluding 200 mm from each end, the FRP cylinder body has a configuration whose thickness is the same as that of the spiral winding layer of a 200 mm length on both ends and which expands in the radial direction, and a vibration damping member 13 is arranged on the inner surface of the FRP cylinder body or within the FRP cylinder body.

Description

本発明は、自動車等の駆動力伝達軸として使用される繊維強化プラスチック(以下、FRPという)製のプロペラシャフトに関する。   The present invention relates to a propeller shaft made of fiber reinforced plastic (hereinafter referred to as FRP) used as a driving force transmission shaft of an automobile or the like.

自動車工業の分野では、車両重量を軽減して燃費節減を図るために、各種の部品をFRP材料で代替することが試みられている。各種部品のうち、FRP製のプロペラシャフト(推進軸とも呼ばれる)の場合には、FRP筒体の両端部に、駆動軸や従動軸と連結してエンジンのトルクを車輪へ伝達するためのトルク伝達継手を接合した構造になっている。   In the field of the automobile industry, attempts have been made to substitute various parts with FRP materials in order to reduce vehicle weight and reduce fuel consumption. Among the various parts, in the case of an FRP propeller shaft (also called a propulsion shaft), torque transmission for transmitting engine torque to the wheels by connecting to the drive shaft and driven shaft at both ends of the FRP cylinder. It has a structure in which joints are joined.

プロペラシャフトにおいては、トルク伝達時に、エンジン等の振動発生源やプロペラシャフト自身の回転により加振される各振動モードに対して、プロペラシャフトを共振に伴う大きな振動や不快な騒音現象から防止する必要がある。プロペラシャフトの振動のモードとしては、曲げ振動および膜振動が考えられる。曲げ1次共振周波数は、筒体の断面2次モーメント、縦弾性率、比重、長さにより決定されるため、スチール製のプロペラシャフトでは、その長さを分割することにより、曲げ1次共振周波数が使用域での振動範囲に入らないようにしているが、FRP筒体を用いたプロペラシャフトでは、FRP筒体の軸方向の弾性率を効果的に高めることにより、曲げ1次共振周波数が使用域での振動範囲に入ることを回避できる。また、FRP筒体内に制振構造体を設け、外部からの振動応答を低くするとともに、プロペラシャフト自体に振動減衰機能を付与する技術がある。   Propeller shafts must be prevented from large vibrations caused by resonance and unpleasant noise phenomena with respect to each vibration mode excited by the rotation of the vibration source of the engine or the propeller shaft itself during torque transmission. There is. As the vibration mode of the propeller shaft, bending vibration and membrane vibration can be considered. The bending primary resonance frequency is determined by the cross-sectional secondary moment, longitudinal elastic modulus, specific gravity, and length of the cylindrical body. Therefore, in a steel propeller shaft, the bending primary resonance frequency is divided by dividing the length. However, in the propeller shaft using the FRP cylinder, the primary resonance frequency of the bending is used by effectively increasing the elastic modulus in the axial direction of the FRP cylinder. It is possible to avoid entering the vibration range in the region. In addition, there is a technique in which a vibration damping structure is provided in the FRP cylinder so as to reduce external vibration response and to impart a vibration damping function to the propeller shaft itself.

そこで、特許文献1では、効果的にFRP筒体の軸方向の弾性率を高め、曲げ1次共振周波数を向上させるために高弾性率グレードの炭素繊維を使用する技術が提案されている。   Therefore, Patent Document 1 proposes a technique of using a high-modulus grade carbon fiber in order to effectively increase the elastic modulus in the axial direction of the FRP cylinder and improve the bending primary resonance frequency.

しかしながら、高弾性率グレードの炭素繊維は価格面において標準弾性率グレードの炭素繊維の数倍にものぼりFRP筒体自体の価格が大きく嵩むことになる。   However, the high elastic modulus grade carbon fiber is several times as expensive as the standard elastic modulus grade carbon fiber, and the price of the FRP cylinder itself increases greatly.

また、特許文献2ではFRP筒体の断面2次モーメントを高めるためフィラメントワインディング法で使用する金属円筒のマンドレルにFRP筒体内空間の膨らむ部位を形成する中子を取り付け、フィラメントワインディング法で強化繊維を巻き付けた後中子を除去することで必要最適な厚みを有しFRP筒体内空間が径方向に膨らむ形状を得る技術が提供されている。   In Patent Document 2, a core that forms a bulging portion of the space inside the FRP cylinder is attached to a mandrel of a metal cylinder used in the filament winding method in order to increase the secondary moment of the section of the FRP cylinder, and the reinforcing fiber is attached by the filament winding method. There has been provided a technique for obtaining a shape that has a necessary and optimum thickness by removing the core after being wound, and in which the FRP cylindrical space expands in the radial direction.

しかしながら、本方法ではFRP筒体内部から中子を水で溶融除去する工程が必要となり、煩雑さと工程追加による製造コスト上昇の問題がある。   However, this method requires a step of melting and removing the core with water from the inside of the FRP cylinder, and there is a problem of complexity and an increase in manufacturing cost due to the additional steps.

さらに、振動応答を低くする部材としてFRP筒体内部に厚紙を挿入することが良く知られているが、特許文献3には厚紙を複数回巻き付けて紙管を構成することにより厚紙が1層だけの紙管より復元力が大きくなるので、紙管とFRP筒体内面に密着力がより大きくなり、より高い制振機能が得られることが開示されている。   Further, it is well known that a cardboard is inserted into the FRP cylinder as a member for reducing the vibration response. However, in Patent Document 3, a cardboard is formed by winding a cardboard a plurality of times to form a paper tube. It is disclosed that since the restoring force is larger than that of the paper tube, the adhesion force between the paper tube and the inner surface of the FRP cylinder is increased, and a higher damping function can be obtained.

しかしながら、本方法では厚紙は大きな復元力が期待できる硬い紙が要求されるため複数回の巻き付け作業に時間がかかると共に、その巻き付け作業とFRP筒体内への挿入作業が追加され製造コスト上昇の問題がある。   However, this method requires a hard paper that can be expected to have a great restoring force, so that it takes a long time to perform a plurality of winding operations, and the winding operation and the insertion operation into the FRP cylinder are added, resulting in an increase in manufacturing cost. There is.

特開2008−82525号公報JP 2008-82525 A 特開2000−108210号公報JP 2000-108210 A 特開2006−220187号公報JP 2006-220187 A

本発明は、上記課題に鑑みてなされたもので、自動車などで用いられるFRP製プロペラシャフトにおいて、曲げ1次共振周波数を向上すると共に伝達関数ゲイン(振動応答)を低下し、曲げ振動に伴う共振振動、騒音を特殊な材料などを用いなくとも安価に向上することを目的とする。   The present invention has been made in view of the above problems, and in a FRP propeller shaft used in an automobile or the like, the bending resonance resonance frequency is improved and the transfer function gain (vibration response) is lowered, and resonance caused by bending vibration is achieved. The objective is to improve vibration and noise at low cost without using special materials.

かかる課題を解決するために、本発明は、次の構成からなる。すなわち、
(1)強化繊維の層を含み筒軸方向に延在する螺旋巻き層の本体筒部と本体筒部の筒軸方向端部の内周面に強化繊維の周方向巻き層を有するFRP筒体であって、その筒体における両端部から200mmを除いた拡径範囲に、FRP筒体が両端部200mmの螺旋巻き層と同一厚みで径方向に膨らむ拡径部を有するとともに、FRP筒体内面または
FRP筒体内部に制振部材が配置されていることを特徴とするプロペラシャフト。
(2)前記拡径部の厚みが1〜5mmである(1)に記載のプロペラシャフト。
(3)前記制振部材が厚み0.5〜1mmの紙材質で1重以上巻かれている(1)または(2)に記載のプロペラシャフト。
(4)周方向に巻回する強化繊維が、筒軸方向に対して±80〜90度の範囲内に巻かれる(1)〜(3)のいずれかに記載のプロペラシャフト。
(5)前記両端部にトルク伝達継手が接合されてなる(1)〜(4)のいずれかに記載のプロペラシャフト。
In order to solve this problem, the present invention has the following configuration. That is,
(1) An FRP cylinder having a main body cylinder portion of a spirally wound layer including a reinforcing fiber layer and extending in the cylinder axis direction, and a circumferential direction winding layer of reinforcing fibers on the inner peripheral surface of the cylinder axis direction end portion of the main body cylinder portion The FRP cylinder has a diameter-expanding portion that swells in the radial direction with the same thickness as the spiral wound layer of both ends 200 mm in the diameter expansion range excluding 200 mm from both ends of the cylinder, and the inner surface of the FRP cylinder Alternatively, the propeller shaft is characterized in that a damping member is disposed inside the FRP cylinder.
(2) The propeller shaft according to (1), wherein the diameter-expanded portion has a thickness of 1 to 5 mm.
(3) The propeller shaft according to (1) or (2), wherein the vibration damping member is wound one or more times by a paper material having a thickness of 0.5 to 1 mm.
(4) The propeller shaft according to any one of (1) to (3), wherein the reinforcing fiber wound in the circumferential direction is wound within a range of ± 80 to 90 degrees with respect to the cylinder axis direction.
(5) The propeller shaft according to any one of (1) to (4), wherein a torque transmission joint is joined to the both ends.

本発明によれば、FRP筒体内空間を径方向に膨らませることで断面2次モーメントを高め曲げ剛性を向上させ、且つ径方向膨らみ部位内面またはFRP筒体内部に制振部材をフィラメントワインディング法にて一体付与しているため、曲げ1次共振周波数を高めることできるばかりか、同時に、伝達関数ゲイン(振動応答)を低下し、曲げ振動に伴う共振振動、騒音を特殊な材料などを用いなくとも安価に向上することができる。   According to the present invention, the FRP cylinder space is expanded in the radial direction to increase the moment of inertia of the cross section to improve the bending rigidity, and the damping member is applied to the inner surface of the radially expanded area or inside the FRP cylinder by the filament winding method. Since the bending primary resonance frequency can be increased, the transfer function gain (vibration response) can be reduced at the same time, and the resonance vibration and noise associated with the bending vibration can be reduced without using a special material. It can be improved at low cost.

本発明の一実施形態である、FRP筒体の端部を除いた部位が端部と同一厚みで径方向に膨らみ、且つ内面に制振部材が一体成形されたプロペラシャフトを示す軸方向断面図である。1 is an axial cross-sectional view showing a propeller shaft according to an embodiment of the present invention, in which a portion excluding an end portion of an FRP cylindrical body swells in the radial direction with the same thickness as the end portion, and a damping member is integrally formed on the inner surface It is. 本発明の一実施形態である、FRP筒体の端部を除いた部位が端部と同一厚みで径方向に膨らみ、且つFRP筒体内部に制振部材が一体成形されたプロペラシャフトを示す軸方向断面図である。A shaft showing a propeller shaft in which a portion excluding an end of an FRP cylinder is radially expanded with the same thickness as the end and a damping member is integrally formed inside the FRP cylinder, which is an embodiment of the present invention FIG. 従来のFRP製プロペラシャフトを示す軸方向断面図である。It is an axial sectional view showing a conventional FRP propeller shaft. フィランメントワインディング成形前のマンドレル上に制振部材(紙)を巻付けた状態を示す斜視図である。It is a perspective view which shows the state which wound the damping member (paper) on the mandrel before filament winding. 本発明の一実施形態で用いられる制振部材(紙)を示す斜視図である。It is a perspective view which shows the damping member (paper) used by one Embodiment of this invention. プロペラシャフトの曲げモード共振周波数を測定する様子を示す概略図である。It is the schematic which shows a mode that the bending mode resonance frequency of a propeller shaft is measured.

図面を用いて、本発明をより詳細に説明する。図1、図2は本発明に係るプロペラシャフトの軸方向断面図であり、図3は従来のFRP製プロペラシャフトの軸方向断面図である。   The present invention will be described in more detail with reference to the drawings. 1 and 2 are axial sectional views of a propeller shaft according to the present invention, and FIG. 3 is an axial sectional view of a conventional FRP propeller shaft.

図1〜3において、本体筒部11,21,31は強化繊維の層を含み筒軸方向に延在してFRP筒体を構成しており、その両端部には、トルク伝達継手16、26、33が接合されている。本体筒部を構成する強化繊維の層は、捩り強度や曲げ1次共振周波数などを、プロペラシャフトに適したものとするためには、強化繊維の螺旋巻層とするのがよい。螺旋巻の巻角度は、通常、筒軸方向に対して±10〜±45度の範囲内である。また、FRP筒体は、本体筒部11,21、31の筒軸方向端部の内周面に、強化繊維の周方向巻層15,25,32を含んで構成されるのが良い。前記強化繊維の周方向巻層にトルク伝達軸を圧入接合すると、筒体該当部が周方向に強化されているため変形や螺旋巻層の損傷を防止することができ、好適なトルク伝達を得ることができる。なお、本発明において、周方向とは、通常、筒軸方向に対して±80〜90度の範囲内の方向であることを意味する。   1 to 3, main body cylinder portions 11, 21, 31 include a reinforcing fiber layer and extend in the cylinder axis direction to form an FRP cylinder, and torque transmission joints 16, 26 are provided at both ends thereof. , 33 are joined. The reinforcing fiber layer constituting the main body cylinder portion is preferably a spiral wound layer of reinforcing fibers in order to make the torsional strength, the bending primary resonance frequency, etc. suitable for the propeller shaft. The winding angle of the spiral winding is usually within a range of ± 10 to ± 45 degrees with respect to the cylinder axis direction. Further, the FRP cylinder may be configured to include circumferential winding layers 15, 25, 32 of reinforcing fibers on the inner peripheral surface of the end in the cylinder axis direction of the main body cylinders 11, 21, 31. When a torque transmission shaft is press-fitted and joined to the circumferentially wound layer of the reinforcing fiber, the corresponding portion of the cylindrical body is reinforced in the circumferential direction, so that deformation and damage to the spirally wound layer can be prevented, and suitable torque transmission is obtained be able to. In the present invention, the circumferential direction usually means a direction within a range of ± 80 to 90 degrees with respect to the cylinder axis direction.

ここで図1、2では、その筒体における両端部200mmを除いた部位にあたる拡径範囲12、22に、両端部200mmの螺旋巻き層と同一厚みで径方向に膨らむ形状からなる拡径部14、24を有し、かつFRP筒体内面またはFRP筒体内部に制振部材13、23が配置されている。ここで両端部200mmを除く理由は、トルク伝達継手16、26、33の圧入接合に必要な補強長さを確保するためのものである。   Here, in FIGS. 1 and 2, the diameter-enlarged portion 14 having a shape that swells in the radial direction with the same thickness as the spirally wound layer of the both-end portions 200 mm in the diameter-enlarged ranges 12 and 22 corresponding to the portions excluding the both-end portions 200 mm in the cylindrical body. , 24 and the damping members 13 and 23 are disposed on the inner surface of the FRP cylinder or inside the FRP cylinder. Here, the reason for excluding both end portions of 200 mm is to secure a reinforcing length necessary for press-fitting of the torque transmission joints 16, 26, and 33.

FRP筒体における曲げ1次共振周波数はその断面2次モーメント(断面積起因)と長さによって影響を受けるが、その算出にはコンピュータでのFEM計算を使用することができる。すなわち、顧客の曲げ1次共振周波数仕様に対して径方向膨らみをいくらに設定するか、径方向膨らみを軸方向に対していくらの長さに設定するかはFEM計算を用いれば正確に算出することができる。FEM計算で算出された膨らみと長さによって使用する制振部材13、23の寸法、巻き数も決定される。   The bending primary resonance frequency in the FRP cylinder is affected by the moment of inertia of the cross section (due to the cross section) and the length, and FEM calculation with a computer can be used for the calculation. That is, how much the radial bulge is set with respect to the customer's bending primary resonance frequency specification or how long the radial bulge is set with respect to the axial direction is accurately calculated by using FEM calculation. be able to. The dimensions and the number of turns of the damping members 13 and 23 to be used are also determined by the bulge and length calculated by the FEM calculation.

FRP筒体に拡径部14、24が拡径範囲12、22にわたり配置されているので、図3の従来のFRP製プロペラシャフトに比べて強化繊維投入量を増やすこと無く曲げ1次共振周波数を向上することができる。さらにFRP筒体内面またはFRP筒体内部には制振部材13、23が配置されているので、同時に、伝達関数ゲイン(振動応答)、特に曲げ1次共振周波数ピーク時の伝達関数を低下させることができる。   Since the enlarged diameter portions 14 and 24 are arranged over the enlarged diameter ranges 12 and 22 in the FRP cylinder, the bending primary resonance frequency can be increased without increasing the amount of reinforcing fiber input compared to the conventional FRP propeller shaft in FIG. Can be improved. Furthermore, since the damping members 13 and 23 are disposed on the inner surface of the FRP cylinder or inside the FRP cylinder, the transfer function gain (vibration response), in particular, the transfer function at the bending primary resonance frequency peak is lowered. Can do.

拡径部14、24の膨らみは1〜5mmの範囲内にあることが好ましい。かかる膨らみが1mmより小さいと断面2次モーメントの効果が少なく曲げ1次共振周波数への寄与が低い。一方、5mmより大きくなると外径が大きくなり、プロペラシャフトを車両に搭載する時、周辺部品と干渉する可能性が発生する。   The bulges of the enlarged diameter portions 14 and 24 are preferably in the range of 1 to 5 mm. If the bulge is smaller than 1 mm, the effect of the secondary moment of the cross section is small, and the contribution to the bending primary resonance frequency is low. On the other hand, when it exceeds 5 mm, the outer diameter becomes large, and when the propeller shaft is mounted on the vehicle, there is a possibility of interference with peripheral parts.

また、制振部材13、23のシート厚みは0.5〜1mmの範囲内にあることが好ましい。かかるシート厚みが0.5mmより小さいと必要な径方向膨らみ代を確保するために巻き数をかなり増やすことになり煩雑な作業となる。一方1mmより大きくなると巻く作業に力を要し折れ曲がりが発生する可能性がある。   Moreover, it is preferable that the sheet | seat thickness of the damping members 13 and 23 exists in the range of 0.5-1 mm. If the sheet thickness is smaller than 0.5 mm, the number of windings is considerably increased in order to secure a necessary radial expansion allowance, which is a complicated operation. On the other hand, if it is larger than 1 mm, the winding work requires a force and bending may occur.

制振部材13、23の材質としては、紙、フイルム、不織布(フェルト)状が好ましく、目付は0.5〜1.5g/cm程度が好ましい。ただし、紙のうち、いわゆるダンボールは巻き付け作業が困難となるため好ましい態様ではない。また、制振部材13はマンドレル42に1重以上巻かれており、好ましくは2重以上、5重以下が良い。5重巻きより多く巻くと全体重量が重くなり、曲げ1次共振周波数に影響を及ぼす可能性がある。制振部材23はFRP筒体内部の層間に1重以上巻かれており、上記と同様、好ましくは2重以上、5重以下が良い。 The material of the damping members 13 and 23 is preferably paper, film, or nonwoven fabric (felt), and the basis weight is preferably about 0.5 to 1.5 g / cm 3 . However, among paper, so-called corrugated cardboard is not a preferable mode because the winding work becomes difficult. Further, the damping member 13 is wound around the mandrel 42 one or more times, preferably two or more and five or less. If it is wound more than five times, the overall weight becomes heavy, which may affect the bending primary resonance frequency. The damping member 23 is wound one or more layers between the layers inside the FRP cylinder, and is preferably double or more and five or less as described above.

本発明において、強化繊維としては、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、セラミック繊維等が使用され、この中でも危険回転数を考慮すると炭素繊維の使用が好ましい。また、強化繊維として炭素繊維を用いる場合には、炭素繊維以外の強化繊維は、プロペラシャフトに必要なねじり強度や危険回転数を考慮すると、強化繊維の全質量あたり40質量%以下とすることが好ましい。   In the present invention, carbon fibers, glass fibers, aramid fibers, boron fibers, ceramic fibers and the like are used as the reinforcing fibers, and among these, the use of carbon fibers is preferable in view of the critical rotational speed. When carbon fibers are used as the reinforcing fibers, the reinforcing fibers other than the carbon fibers may be 40% by mass or less based on the total mass of the reinforcing fibers in consideration of the torsional strength and the dangerous rotational speed necessary for the propeller shaft. preferable.

また、FRPとするために強化繊維に含浸させる樹脂、いわゆるマトリックス樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ビニルエステル樹脂などの熱硬化性樹脂、ポリ酢酸ビニル樹脂、ポリカーボネイト樹脂、ポリアセタール樹脂、ポリフェニレンオキシド樹脂、ポリフェニレンスルフィド樹脂、ポリアリレート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリアラミド樹脂、ポリベンゾイミダゾール樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、酢酸セルロース樹脂などの熱可塑性樹脂が好適に用いられるが、これらの中でも、良好な作業性と成形後の優れた機械特性という点を考慮すると熱硬化性樹脂が好ましく、中でも、エポキシ樹脂が特に好ましく用いられる。   In addition, the resin impregnated into the reinforcing fiber to form FRP, so-called matrix resin includes epoxy resin, unsaturated polyester resin, phenol resin, vinyl ester resin and other thermosetting resins, polyvinyl acetate resin, polycarbonate resin, polyacetal. Resin, polyphenylene oxide resin, polyphenylene sulfide resin, polyarylate resin, polyester resin, polyamide resin, polyamideimide resin, polyimide resin, polyetherimide resin, polysulfone resin, polyethersulfone resin, polyetheretherketone resin, polyaramid resin, poly Thermoplastic resins such as benzimidazole resin, polyethylene resin, polypropylene resin, and cellulose acetate resin are preferably used. Among these, good workability and after molding Preferably consideration and the thermosetting resin that excellent mechanical properties, among others, epoxy resin is particularly preferably used.

また、制振部材としては厚紙や熱可塑性樹脂シートが好ましい。熱可塑性樹脂シートとしてはポリ酢酸ビニル樹脂、ポリカーボネイト樹脂、ポリアセタール樹脂、ポリフェニレンオキシド樹脂、ポリフェニレンスルフィド樹脂、ポリアリレート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリアラミド樹脂、ポリベンゾイミダゾール樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、酢酸セルロース樹脂、ポリエチレンテレフタレート樹脂など熱可塑樹脂が好適に用いられるが、入手しやすさ、耐熱性等を考慮するとポリエチレンテレフタレート樹脂が特に好ましい。   Moreover, as the damping member, cardboard or a thermoplastic resin sheet is preferable. As the thermoplastic resin sheet, polyvinyl acetate resin, polycarbonate resin, polyacetal resin, polyphenylene oxide resin, polyphenylene sulfide resin, polyarylate resin, polyester resin, polyamide resin, polyamideimide resin, polyimide resin, polyetherimide resin, polysulfone resin, Thermoplastic resins such as polyethersulfone resin, polyetheretherketone resin, polyaramid resin, polybenzimidazole resin, polyethylene resin, polypropylene resin, cellulose acetate resin, and polyethylene terephthalate resin are preferably used. In view of the above, polyethylene terephthalate resin is particularly preferable.

次に、本発明のプロペラシャフトを製造するに好適な方法について説明する。   Next, a method suitable for producing the propeller shaft of the present invention will be described.

先ず、FRP筒体を、フィラメントワインディング(以下、FW)法やテープワインディング(以下、TW)法等により、マトリックス樹脂を含浸させた強化繊維を引きそろえ、所定の張力を付加しマンドレル42に巻き付けて賦形する。   First, the FRP cylindrical body is wound around the mandrel 42 by applying a predetermined tension to the reinforcing fibers impregnated with the matrix resin by a filament winding (hereinafter referred to as FW) method or a tape winding (hereinafter referred to as TW) method. Shape.

本発明においては、まずマンドレル42の上に制振部材51を必要な径方向膨らみ代を確保するために、複数回巻き重ねて配置する(41)。その後、本体筒部の筒軸方向端部となるべき位置に周方向巻きを実施し、両端部間も周方向巻きを形成することで制振部材41をマンドレル42の上にしっかり固定させる。本体筒部は、所望の捩り強度と曲げ1次共振周波数が得られるよう算出された巻角度で螺旋巻することにより、連続で一体に賦形することができる。FRP筒体内部に制振部材51を配置する場合は、制振部材51をマンドレル42の上に直接配置せず、(a)周方向巻き層の直上(螺旋巻きする直前)、(b)螺旋巻き層をある程度形成したところで一旦中断し、制振部材51を複数回巻き重ねた後、螺旋巻き層の形成を再開する、のいずれでもよい(23)。   In the present invention, first, the damping member 51 is placed on the mandrel 42 by being wound a plurality of times in order to secure the necessary radial expansion allowance (41). Thereafter, circumferential winding is performed at a position to be the cylindrical axial end portion of the main body cylindrical portion, and the circumferential direction winding is also formed between both end portions to firmly fix the vibration damping member 41 on the mandrel 42. The main body cylindrical portion can be formed continuously and integrally by spiral winding at a winding angle calculated so as to obtain a desired torsional strength and bending primary resonance frequency. When the damping member 51 is arranged inside the FRP cylinder, the damping member 51 is not arranged directly on the mandrel 42, but (a) directly above the circumferential winding layer (immediately before spiral winding), (b) spiral After the winding layer is formed to some extent, it may be interrupted once, and after the vibration damping member 51 is wound a plurality of times, the formation of the spiral winding layer may be resumed (23).

マトリックス樹脂として熱硬化性樹脂を用いる場合には、賦形終了後、硬化炉に投入し、所定の硬化条件にて硬化することにより成形体を得る。その後、成形体から脱芯機などを用いてマンドレルを引き抜き、切断機などを用いて所定の長さに切断し、FRP筒体を得る。   In the case where a thermosetting resin is used as the matrix resin, a molded body is obtained by putting it into a curing furnace after curing and curing it under predetermined curing conditions. Thereafter, the mandrel is pulled out from the molded body using a decentering machine or the like and cut into a predetermined length using a cutting machine or the like to obtain an FRP cylinder.

次に本発明のプロペラシャフトについて、実施例を用いて、より具体的に説明する。なお、本実施例において、曲げ1次共振周波数とそのピーク時の伝達関数ゲイン(音圧レベル)評価は次のようにして行った。   Next, the propeller shaft of the present invention will be described more specifically using examples. In this example, the bending primary resonance frequency and the peak transfer function gain (sound pressure level) evaluation were performed as follows.

[曲げ1次共振周波数とそのピーク時の伝達関数ゲイン(音圧レベル)]
曲げ1次共振周波数とそのピーク時の伝達関数ゲインはインパルス加振試験により測定する。図6はプロペラシャフトの曲げ1次共振周波数とそのピーク時の伝達関数ゲイン(音圧レベル)を測定する様子を示す概略図である。測定すべきFRP筒体60の中央部に加速度センサー61を取り付ける。この状態で、入力センサー62を内蔵したインパルスハンマー63にて加振し、入力センサー62と加速度センサー61の出力を入力チャンネルモジュール64(たとえば、(株)エー・アンド・デイ社製AD−3651)を介しホストコンピューター65に取り込み、FFT専用ソフト(たとえば、(株)エー・アンド・デイ社製 WCAMSA)にて伝達関数を求め、表示させることにより、曲げ1次共振周波数とそのピーク時の伝達関数ゲイン(音圧レベル)を得ることができる。
[Bending primary resonance frequency and peak transfer function gain (sound pressure level)]
The bending primary resonance frequency and the peak transfer function gain are measured by an impulse excitation test. FIG. 6 is a schematic view showing a state in which a primary bending resonance frequency of the propeller shaft and a transfer function gain (sound pressure level) at the peak thereof are measured. An acceleration sensor 61 is attached to the center of the FRP cylinder 60 to be measured. In this state, the impulse hammer 63 incorporating the input sensor 62 is vibrated, and the outputs of the input sensor 62 and the acceleration sensor 61 are input to the input channel module 64 (for example, AD-3651 manufactured by A & D Corporation). The bend primary resonance frequency and the transfer function at the peak are obtained by obtaining and displaying the transfer function with the dedicated software for FFT (for example, WCAMSA manufactured by A & D Co., Ltd.). Gain (sound pressure level) can be obtained.

(実施例)
FW法によってFRP製筒体を成形した。すなわち、外径80mm、長さ1,300mmのマンドレルを準備し、厚み1mm、長さ700mmの厚紙をマンドレル端から300mmの位置に3重巻きで配置し耐熱テープで固定した。その後、炭素繊維束(平均単糸径:7μm、単糸数:24,000本、引張強度4900MPa、引張弾性率:230GPa)を3本引き揃え、これを、硬化剤および硬化促進剤を含むビスフェノールA型エポキシ樹脂をマトリックス樹脂として含浸しながら、まず、その一端部100mmの部分に軸方向に対して±82°の角度で8層巻き付けて厚み2.5mmの部分層を形成した後、他端部に軸方向に対して±82°で巻きながら移動して同様に部分層を形成し、引き続きマンドレルの全長にわたって軸方向に対して±12°の角度で5層巻き付けて厚み2.5mmの主層を形成し、次いで、マンドレルの全長にわたって軸方向に対して−83゜で巻き付けた。
(Example)
An FRP cylinder was formed by the FW method. That is, a mandrel having an outer diameter of 80 mm and a length of 1,300 mm was prepared, and a cardboard having a thickness of 1 mm and a length of 700 mm was arranged in a triple roll at a position 300 mm from the end of the mandrel and fixed with heat-resistant tape. Thereafter, three carbon fiber bundles (average single yarn diameter: 7 μm, number of single yarns: 24,000, tensile strength 4900 MPa, tensile elastic modulus: 230 GPa) are drawn, and this is bisphenol A containing a curing agent and a curing accelerator. After impregnating the mold epoxy resin as a matrix resin, first, a portion of 100 mm at one end is wound around eight layers at an angle of ± 82 ° with respect to the axial direction to form a partial layer having a thickness of 2.5 mm. A partial layer is formed in the same manner by winding while winding at ± 82 ° with respect to the axial direction. Subsequently, a main layer having a thickness of 2.5 mm is wound by winding five layers at an angle of ± 12 ° with respect to the axial direction over the entire length of the mandrel. Was then wrapped around the entire length of the mandrel at -83 ° relative to the axial direction.

次に、マンドレルを回転させながら180℃で6時間加熱してエポキシ樹脂を硬化させ、マンドレルを引き抜いた後、各端部50mmの部分を切断、除去して、内径が80mm、両端部外径が90mm、両端部から250mmを除いた部位の外径が91mm、両端部から250mmを除いた部位の内面に厚み3mmの厚紙が配置されている長さが1,200mmのFRP筒体を得た。   Next, the epoxy resin is cured by heating at 180 ° C. for 6 hours while rotating the mandrel. After pulling out the mandrel, each end 50 mm is cut and removed, and the inner diameter is 80 mm and the outer diameters at both ends are An FRP cylinder having a length of 1,200 mm, in which 90 mm, an outer diameter of a portion excluding 250 mm from both ends, 91 mm, and a 3 mm thick cardboard on the inner surface of the portion excluding 250 mm from both ends, was obtained.

その後、上記FRP筒体の各端部に、トルク伝達継手16を圧入接合し、図1に示すようなFRP製プロペラシャフトを得た。   Thereafter, a torque transmission joint 16 was press-fitted and joined to each end of the FRP cylinder to obtain an FRP propeller shaft as shown in FIG.

得られたプロペラシャフトについて、曲げ1次共振周波数を測定したところ230Hzと後述する比較例よりも約10Hz向上(約5%向上)した。また、曲げ1次次共振周波数ピーク値における伝達関数ゲイン(音圧レベル)は20dBとなり比較例よりも約15dB低下(約40%低下)した。   When the bending primary resonance frequency of the obtained propeller shaft was measured, it was improved by about 10 Hz (about 5% improvement) to 230 Hz, compared to a comparative example described later. Further, the transfer function gain (sound pressure level) at the bending primary resonance frequency peak value was 20 dB, which was about 15 dB lower than the comparative example (about 40% lower).

このプロペラシャフトについて、高速回転仕様のスポーツカーに搭載したところ、危険回転数を高めることができ、また、高速回転領域での振動が軽減できた。   When this propeller shaft was installed in a sports car with a high-speed rotation specification, the number of dangerous rotations could be increased and vibration in the high-speed rotation area could be reduced.

(比較例)
厚紙をマンドレル上に巻き付けてFRP筒体内空間を径方向に膨らませること以外は実施例と同様にして、外径が85mm、内径が80mm、長さが1,200mmのFRP筒体を得た。得られたFRP筒体の各端部に、トルク伝達継手33を圧入接合し、図3に示すようなFRP製プロペラシャフトを得た。
(Comparative example)
An FRP cylinder having an outer diameter of 85 mm, an inner diameter of 80 mm, and a length of 1,200 mm was obtained in the same manner as in the example except that the cardboard was wound on a mandrel to swell the FRP cylinder space in the radial direction. A torque transmission joint 33 was press-fitted and joined to each end of the obtained FRP cylinder to obtain an FRP propeller shaft as shown in FIG.

得られたプロペラシャフトについて、曲げ1次共振周波数を測定したところ220Hzであった。また、曲げ1次次共振周波数ピーク値における伝達関数ゲイン(音圧レベル)は35dBであった。   With respect to the obtained propeller shaft, the bending primary resonance frequency was measured and found to be 220 Hz. The transfer function gain (sound pressure level) at the bending primary resonance frequency peak value was 35 dB.

本発明に係るプロペラシャフトは、あらゆるプロペラシャフトに適用でき、特に車両用プロペラシャフトに適用して好適なものである。   The propeller shaft according to the present invention can be applied to any propeller shaft, and is particularly suitable when applied to a vehicle propeller shaft.

11、21、31:本体筒部
12、22 :拡径範囲
14、24 :拡径部
15、25、32:周方向巻層
16、26、33:トルク伝達継手
13、23、41、51:制振部材
42 :マンドレル
60 :FRP筒体
61 :加速度センサー
62 :入力センサー
63 :インパルスハンマー
64 :入力チャンネルモジュール
65 :ホストコンピューター
11, 21, 31: Main body cylinder portions 12, 22: Diameter expansion ranges 14, 24: Diameter expansion portions 15, 25, 32: Circumferential winding layers 16, 26, 33: Torque transmission joints 13, 23, 41, 51: Damping member 42: Mandrel 60: FRP cylinder 61: Acceleration sensor 62: Input sensor 63: Impulse hammer 64: Input channel module 65: Host computer

Claims (5)

強化繊維の層を含み筒軸方向に延在する螺旋巻き層の本体筒部と本体筒部の筒軸方向端部の内周面に強化繊維の周方向巻き層を有するFRP筒体であって、その筒体における両端部から200mmを除いた拡径範囲に、FRP筒体が両端部200mmの螺旋巻き層と同一厚みで径方向に膨らむ拡径部を有するとともに、FRP筒体内面またはFRP筒体内部に制振部材が配置されていることを特徴とするプロペラシャフト。 A FRP cylinder including a main body cylinder portion of a spirally wound layer including a reinforcing fiber layer and extending in the cylinder axis direction and a circumferential winding layer of reinforcing fibers on an inner peripheral surface of a cylinder axis direction end portion of the main body cylinder portion. In addition, the FRP cylinder has an enlarged diameter portion that swells in the radial direction with the same thickness as the spirally wound layer of both ends 200 mm in the diameter expansion range excluding 200 mm from both ends of the cylinder, and the inner surface of the FRP cylinder or the FRP cylinder A propeller shaft characterized in that a damping member is arranged inside the body. 前記拡径部の厚みが1〜5mmである請求項1に記載のプロペラシャフト。 The propeller shaft according to claim 1, wherein a thickness of the enlarged diameter portion is 1 to 5 mm. 前記制振部材が厚み0.5〜1mmの紙材質で1重以上巻かれている請求項1または2に記載のプロペラシャフト。 The propeller shaft according to claim 1 or 2, wherein the vibration damping member is wound one or more times with a paper material having a thickness of 0.5 to 1 mm. 周方向に巻回する強化繊維が、筒軸方向に対して±80〜90度の範囲内に巻かれる請求項1〜3のいずれかに記載のプロペラシャフト。 The propeller shaft according to any one of claims 1 to 3, wherein the reinforcing fiber wound in the circumferential direction is wound within a range of ± 80 to 90 degrees with respect to the cylinder axis direction. 前記両端部にトルク伝達継手が接合されてなる請求項1〜4のいずれかに記載のプロペラシャフト。
The propeller shaft according to any one of claims 1 to 4, wherein a torque transmission joint is joined to the both ends.
JP2013044942A 2012-03-28 2013-03-07 Propeller shaft Pending JP2013228094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013044942A JP2013228094A (en) 2012-03-28 2013-03-07 Propeller shaft

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012073876 2012-03-28
JP2012073876 2012-03-28
JP2013044942A JP2013228094A (en) 2012-03-28 2013-03-07 Propeller shaft

Publications (1)

Publication Number Publication Date
JP2013228094A true JP2013228094A (en) 2013-11-07

Family

ID=49675898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013044942A Pending JP2013228094A (en) 2012-03-28 2013-03-07 Propeller shaft

Country Status (1)

Country Link
JP (1) JP2013228094A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016137770A (en) * 2015-01-26 2016-08-04 公益財団法人鉄道総合技術研究所 Connector and power transmission device
JP2018035927A (en) * 2016-09-02 2018-03-08 三菱ケミカル株式会社 Power transmission shaft for automobile
US10190652B2 (en) 2014-04-23 2019-01-29 Gkn Driveline North America, Inc. Damped automotive driveline component
CN112638689A (en) * 2019-02-27 2021-04-09 日立安斯泰莫株式会社 Pipe body for transmission shaft and transmission shaft
CN112638630A (en) * 2019-02-27 2021-04-09 日立安斯泰莫株式会社 Method for manufacturing pipe body for transmission shaft
US11053998B2 (en) 2014-04-23 2021-07-06 Gkn Driveline North America, Inc. Damped automotive driveline component

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10190652B2 (en) 2014-04-23 2019-01-29 Gkn Driveline North America, Inc. Damped automotive driveline component
US11053998B2 (en) 2014-04-23 2021-07-06 Gkn Driveline North America, Inc. Damped automotive driveline component
JP2016137770A (en) * 2015-01-26 2016-08-04 公益財団法人鉄道総合技術研究所 Connector and power transmission device
JP2018035927A (en) * 2016-09-02 2018-03-08 三菱ケミカル株式会社 Power transmission shaft for automobile
CN112638689A (en) * 2019-02-27 2021-04-09 日立安斯泰莫株式会社 Pipe body for transmission shaft and transmission shaft
CN112638630A (en) * 2019-02-27 2021-04-09 日立安斯泰莫株式会社 Method for manufacturing pipe body for transmission shaft
CN112638689B (en) * 2019-02-27 2024-03-19 日立安斯泰莫株式会社 Tube for a drive shaft and drive shaft

Similar Documents

Publication Publication Date Title
JP2013228094A (en) Propeller shaft
JP3453832B2 (en) Drive shaft made of fiber reinforced composite material and manufacturing method thereof
CA1130594A (en) Power transmission shaft
JP3296328B2 (en) Fiber reinforced plastic pipe
JP2002235726A (en) Fiber-reinforced resin pipe and power transmission shaft using the resin pipe
JP2008230031A (en) Device of manufacturing fiber-reinforced plastic made shaft and torque transmission shaft
JP4771209B2 (en) FRP cylinder and manufacturing method thereof
JP5699657B2 (en) Propeller shaft and manufacturing method thereof
WO2020174691A1 (en) Tube used in power transmission shaft and power transmission shaft
WO2020174701A1 (en) Tubular body used for power transmission shaft and power transmission shaft
JP6759878B2 (en) Power transmission shaft for automobiles
JPH08103965A (en) Frp cylinder and manufacture thereof
JP2008082525A (en) Propeller shaft and its manufacturing method
JP2007196681A (en) Propeller shaft and its manufacturing method
JP3183428B2 (en) Propeller shaft
JP2011226633A (en) Torque transmission shaft
JP2020138359A (en) Method for manufacturing tube body used for power transmission shaft
WO2020174692A1 (en) Tube for power transmission shaft and power transmission shaft
JP2010083253A (en) Propeller shaft
JP5786614B2 (en) Propeller shaft
JP2007177811A (en) Propeller shaft and its manufacturing method
JP6581739B1 (en) Mandrel
JP2020138366A (en) Manufacturing method of tube body used for power transmission shaft
JP4631428B2 (en) FRP cylinder, shaft-like component using the same, and propeller shaft
JP3433850B2 (en) FRP cylinder and manufacturing method thereof