TWI745285B - 用於重組病毒粒子特徵化之分析性超速離心法 - Google Patents

用於重組病毒粒子特徵化之分析性超速離心法 Download PDF

Info

Publication number
TWI745285B
TWI745285B TW105101529A TW105101529A TWI745285B TW I745285 B TWI745285 B TW I745285B TW 105101529 A TW105101529 A TW 105101529A TW 105101529 A TW105101529 A TW 105101529A TW I745285 B TWI745285 B TW I745285B
Authority
TW
Taiwan
Prior art keywords
particles
capsid
recombinant
aav
recombinant aav
Prior art date
Application number
TW105101529A
Other languages
English (en)
Other versions
TW201639958A (zh
Inventor
凱薩琳 歐利歐登
布蘭達 布恩哈姆
Original Assignee
美商健臻公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55305080&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TWI745285(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 美商健臻公司 filed Critical 美商健臻公司
Publication of TW201639958A publication Critical patent/TW201639958A/zh
Application granted granted Critical
Publication of TWI745285B publication Critical patent/TWI745285B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/04Investigating sedimentation of particle suspensions
    • G01N15/042Investigating sedimentation of particle suspensions by centrifuging and investigating centrifugates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/405Concentrating samples by adsorption or absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10351Methods of production or purification of viral material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14151Methods of production or purification of viral material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • G01N2001/4083Concentrating samples by other techniques involving separation of suspended solids sedimentation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/04Investigating sedimentation of particle suspensions
    • G01N15/042Investigating sedimentation of particle suspensions by centrifuging and investigating centrifugates
    • G01N2015/045Investigating sedimentation of particle suspensions by centrifuging and investigating centrifugates by optical analysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Virology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本發明提供使用分析性超速離心來表徵重組病毒粒子製備物的方法。重組病毒粒子包括重組腺相關的病毒粒子(recombinant adeno-associated viral particles)、重組腺病毒粒子、重組慢病毒粒子和重組單純皰疹病毒粒子。可以對多種的重組病毒粒子進行定量,所述重組病毒粒子包括空衣殼和具有多種基因組(例如截短的基因組、聚集體(aggregates)、重組體)的重組病毒粒子。無論重組病毒的基因組序列或重組病毒衣殼的血清型如何,該方法均可用於表徵重組病毒粒子的製備物。

Description

用於重組病毒粒子特徵化之分析性超速離心法
本發明涉及用分析性超速離心法表徵重組病毒載體的方法;例如重組腺相關的病毒(adeno-associated viral,AAV)粒子、重組腺病毒(rAd)粒子、重組慢病毒粒子和重組單純皰疹病毒(rHSV)粒子。
重組病毒作為遞送治療性核酸的載體用於基因治療應用,顯示出極好的前途和實用性。一些不同的重組病毒被用於這些基因治療應用中,所述基因治療應用是基於一些因素,包括要遞送的核酸的大小、要遞送核酸的靶細胞或組織、對治療性核酸的短期或長期表現的需求、以及治療性核酸向接受體基因組中的整合。基因治療應用中使用的病毒的例子包括腺相關的病毒(AAV)、腺病毒、慢病毒和單純皰疹病毒(HSV)。
用於臨床的重組病毒載體的產生需要分析方法,所述分析方法監測有關於製造的同質性、純度和一致性(consistency)的產品質量,但迄今為止尚未建立支持這種表徵的方法。通常,重組病毒DNA病毒載體的DNA含量是通過使用序列特異性探針的南方印跡分析來測量的。病毒衣殼或包膜可以通過使用特異性結合至具體重組病毒的衣殼或包膜蛋白的抗體的免疫測定法來進行表徵。例如,Steinbach,S等,(1997)J.Gen.Virol.,78:1453-1462提供了用於rAAV血清型的免疫測定法。所需的是一種一般測定法,來表徵重組病毒製備物,無論重組病毒基因組的核酸序列或衣殼的血清型是如何。
此處所引用的所有參考文獻,包括專利申請和出版物,都通過提述以其整體併入。
在一些方面,本發明提供表徵重組病毒粒子製備物的方法,其包括a)在邊界沉降速度(boundary sedimentation velocity)條件下對所述製備物進行分析性超速離心,其中在時間間隔處監測重組病毒粒子的沉降,b)以差示(differential)沉降係數分佈值(C(s))對以Svedberg單位(S)表示的沉降係數進行繪圖,及c)對C(s)分佈中每個峰下的面積求積分以確定每個峰的相對濃度,其中每個峰代表一種重組病毒粒子。
在一些方面,本發明提供評估重組病毒粒子製備物中的重組病毒粒子的載體基因組完整性的方法,其包括:a)在邊界沉降速度條件下對所述製備物進行分析性超速離心,其中在時間間隔處監測重組病毒粒子的沉降,b)以差示沉降係數分佈值(C(s))對以Svedberg單位(S)表示的沉降係數進行繪圖,及c)通過圖上存在的相對於S值的峰來鑒定製備物中的重組病毒粒子的種,其中具體種的重組病毒粒子的基因組大小通過比較所述種的S值與標準曲線來計算,所述標準曲線由包含有衣殼包被的已知核酸大小的病毒基因組的重組病毒粒子的S值產生。在一些實施方案中,該方法還包括對C(s)分佈中每個峰下的面積求積分以確定每個重組病毒粒子種的相對濃度。
在一些方面,本發明提供確定重組病毒粒子製備物中空衣殼或包含不同大小的重組病毒基因組的衣殼粒子的存在的方法,其包括如下步驟:a)在邊界沉降速度條件下對所述製備物進行分析性超速離心,其中在時間間隔處監測重組病毒粒子的沉降,及b)以差示沉降係數分佈值(C(s))對以Svedberg單位(S)表示的沉降係數進行繪圖,其中除含有完整重組病毒基因組的完全衣殼粒子的峰以外的一個或多個峰的存在指示存在包含不同大小的基因組的衣殼粒子和/或空衣殼。
在一些方面,本發明提供測量重組病毒粒子製備物中相對量空衣殼的方法,其包括如下步驟:a)在邊界沉降速度條件下對所述製備物進行分析性超速離心,其中在時間間隔處監測重組病毒粒子的沉降,b)以差示沉降係數分佈值(C(s))對以Svedberg單位(S)表示的沉降係數進行繪圖,c)對C(s)分佈中每個峰下的面積求積分以確定每個重組病毒粒子種的相對濃度,及d)將具有對應於空衣殼粒子的S值的重組病毒粒子的量與具有對應於包含完整病毒基因組的重組病毒粒子的S值的重組病毒粒子的量或製備物中重組病毒粒子的總量進行比較。
在一些方面,本發明提供測量重組病毒粒子製備物中的包含不同的重組病毒基因組的衣殼粒子或空病毒衣殼粒子的相對量的方法,其包括如下步驟:a)在邊界沉降速度條件下對所述製備物進行分析性超速離心,其中在時間間隔處監測重組病毒粒子的沉降,b)以差示沉降係數分佈值(C(s))對以Svedberg單位(S)表示的沉降係數進行繪圖,c)對C(s)分佈中每個峰下的面積求積分以確定每個重組病毒粒子種的相對濃度,d)將具有不對應於包含完整病毒基因組的重組病毒粒子的S值的重組病毒粒子的量與具有對應於包含完整病毒基因組的重組病毒粒子的S值的重組病毒粒子的量或製備物中重組病毒粒子的總量進行比較。
在一些方面,本發明提供測量重組病毒粒子製備物中包含多種重組病毒基因組的衣殼粒子的相對量的方法,其包括:a)在邊界沉降速度條件下對所述製備物進行分析性超速離心,其中在時間間隔處監測重組病毒粒子的沉降,b)以差示沉降係數分佈值(C(s))對以Svedberg單位(S)表示的沉降係數進行繪圖,c)對C(s)分佈中每個峰下的面積求積分以確定每個重組病毒粒子種的相對濃度,d)將具有不對應於包含完整病毒基因組的重組病毒粒子或空衣殼的S值的重組病毒粒子的量與製備物中重組病毒粒子的總量進行比較。
在一些方面,本發明提供測量重組病毒粒子製備物中包含完整病毒基因組的重組病毒粒子的相對量的方法,其包括:a)在邊界沉降速度條件下 對所述製備物進行分析性超速離心,其中在時間間隔處監測重組病毒粒子的沉降,b)以差示沉降係數分佈值(C(s))對以Svedberg單位(S)表示的沉降係數進行繪圖,c)對C(s)分佈中每個峰下的面積求積分以確定每個重組病毒粒子種的相對濃度,d)將具有對應於包含完整病毒基因組的重組病毒粒子的S值的重組病毒粒子的量與具有對應於空衣殼粒子的S值的重組病毒粒子的量、與包含不同重組病毒基因組的衣殼粒子、和/或與製備物中重組病毒粒子的總量進行比較。
在一些方面,本發明提供在重組病毒粒子製備物的純化過程中監測空衣殼和/或包含不同重組病毒基因組的衣殼粒子的去除的方法,該方法包括在純化過程的一個或多個步驟後從所述製備物移出重組病毒粒子的樣品,和根據請求項5-8任一項的方法分析樣品的空衣殼和/或包含不同重組病毒基因組的衣殼粒子的相對量,其中空衣殼和/或包含不同基因組的衣殼粒子與完全衣殼相比的相對量的降低指示空衣殼從重組病毒粒子製備物的去除。在一些實施方案中,對應於空衣殼的S值的峰的存在指示存在空衣殼粒子。在一些實施方案中,除含有完整重組病毒基因組的完全衣殼粒子或空衣殼粒子的峰以外的一個或多個峰的存在指示存在包含不同大小的基因組的衣殼粒子。在一些實施方案中,所述包含不同大小的基因組的衣殼粒子包含截短的基因組、聚集體(aggregates)、重組體和/或DNA雜質(impurities)。
在一些方面,本發明提供確定重組病毒粒子製備物中重組病毒粒子的異質性的方法,其包括如下步驟:a)在邊界沉降速度條件下對所述製備物進行分析性超速離心,其中在時間間隔處監測重組病毒粒子的沉降,b)以差示沉降係數分佈值(C(s))對以Svedberg單位(S)表示的沉降係數進行繪圖,其中除代表含有完整重組病毒基因組的衣殼的峰以外的峰的存在指示製備物中重組粒子的異質性。在一些實施方案中,所述額外峰的存在指示存在空衣殼粒子和/或包含不同基因組的重組病毒粒子。在一些實施方案中,所述不同基因組是截短的病毒基因組、聚集體、重組體和/或DNA雜質。在一些實施方案中,所述方法進一步包括對C(s)分佈中每個峰下的面積求積 分以確定每個重組病毒粒子種的相對濃度。
在一些方面,本發明提供在重組病毒粒子製備物的純化過程中監測重組病毒粒子的同質性的方法,該方法包括在純化過程的一個或多個步驟後從所述製備物移出重組病毒粒子的樣品,和根據上述方法確定所述重組病毒粒子的異質性,其中包含完整病毒基因組的重組病毒粒子的相對量增加指示重組病毒粒子製備物中的完全病毒粒子的同質性增加。
在上述方面的一些實施方案中,通過吸光度來監測重組病毒粒子的沉降。在一些實施方案中,所述吸光度是約230nm、260mn或280nm。在一些實施方案中,所述吸光度是約260nm。在一些實施方案中,通過干涉(interference)來監測重組病毒粒子的沉降。在一些實施方案中,所述干涉是Rayleigh干涉。
在上述方面的一些實施方案中,所述製備物是水溶液。在進一步的實施方案中,所述水溶液包含藥物製劑。在一些實施方案中,所述水溶液包含緩衝劑。在一些實施方案中,緩衝劑處於生理學pH。在一些實施方案中,所述緩衝劑處於生理學滲透壓濃度。在一些實施方案中,所述藥物製劑包含磷酸鹽緩衝鹽水(PBS)。在一些實施方案中,所述PBS的pH是約7.2且滲透壓濃度是約300mOsm/L。在一些實施方案中,所述監測進一步包括與參考樣品比較,其中所述參考樣品包含無重組病毒粒子的水溶液。
在上述方面的一些實施方案中,所述C(S)值通過包含Lamm方程解(Lamm equation solutions)的算法來確定。在一些實施方案中,所述算法是SEDFIT算法。在一些實施方案中,監測沉降直至最低密度的重組病毒粒子沉降至超速離心機的扇區底部。在一些實施方案中,所述超速離心利用包含超速離心速度小室(ultracentrifuge velocity cell)的超速離心機。在一些實施方案中,對沉降進行監測直至重組病毒粒子沉降至超速離心速度小室的底部。在一些實施方案中,對沉降進行監測直至密度最低的重組病毒粒子沉降並且通過(clears)光學窗口。
在一些實施方案中,在至少約0.5小時、0.75小時、1.0小時、1.5小時、 2.0小時、3.0小時、4.0小時、或5.0小時的任一項記錄徑向濃度(radial concentration)。在一些實施方案中,在約1.2小時記錄徑向濃度。在一些實施方案中,從約0.5小時至約2.0小時記錄徑向濃度。在一些實施方案中,從約1.0小時至約2.0小時記錄徑向濃度。
在一些實施方案中,用至少30次掃描來監測重組病毒粒子的沉降。在一些實施方案中,用約30次掃描來監測重組病毒粒子的沉降。在一些實施方案中,用約30至約75次掃描來監測重組病毒粒子的沉降。在一些實施方案中,在一些實施方案中,用約30至約50次掃描來監測重組病毒粒子的沉降。在一些實施方案中,用約50至約75次掃描來監測重組病毒粒子的沉降。
在一些實施方案中,將正則化(regularization)應用於擬合水平(fitting level),其F統計值的置信水平為至少約0.68。在一些實施方案中,所述正則化是二階導數正則化。在一些實施方案中,所述正則化是最大熵正則化。在一些實施方案中,將正則化應用於擬合水平,其F統計值的置信水平為約0.68至約0.90。在一些實施方案中,將正則化應用於擬合水平,其F統計值的置信水平為約0.68至約0.99。在一些實施方案中,將正則化應用於擬合水平,其F統計值的置信水平為約0.68。
在一些實施方案中,如下C(S)參數保持恒定:分辨率(resolution)是約200S至約5000S,Smin是1S至約100S,Smax是約100S至約5000S,且摩擦比(frictional ratio)是約1.0或使其浮動至由離心軟件確定的值。在一些實施方案中,分辨率是約200S至約1000S。在一些實施方案中,分辨率是約200S。在一些實施方案中,Smin是約1。在一些實施方案中,Smax是約100S至約1000S。在一些實施方案中,Smax是約200S至約5000S。在一些實施方案中,Smax是約200S。在一些實施方案中,使所述摩擦比浮動至由離心軟件確定的值。在一些實施方案中,所述摩擦比是約1.0。在一些實施方案中,應用半徑不變量(RI)和時間不變量(TI)減噪。
在一些實施方案中,在約每10-60秒監測重組病毒粒子的沉降。在一些 實施方案中,在約每10秒監測(例如掃描)重組病毒粒子的沉降。在一些實施方案中,在約每60秒監測重組病毒粒子的沉降。在一些實施方案中,通過在多於約每15秒、30秒、45秒、1分鐘(60秒)、2分鐘、3分鐘、4分鐘、5分鐘、6分鐘、7分鐘、8分鐘、9分鐘、10分鐘、15分鐘、20分鐘、25分鐘監測一次每重組病毒粒子的沉降,來確定超速離心期間重組病毒的沉降速度。
在上述方面的一些實施方案中,所述邊界沉降速度以約3,000rpm至約20,000rpm進行。在一些實施方案中,所述邊界沉降速度以約3,000rpm至約10,000rpm進行。在一些實施方案中,所述邊界沉降速度以約10,000rpm至約20,000rpm進行。在一些實施方案中,所述邊界沉降速度以約15,000rpm至約20,000rpm進行。
在上述方面的一些實施方案中,所述邊界沉降速度在約4℃至約20℃處進行。在一些實施方案中,所述邊界沉降速度在約4℃處進行。
在上述方面的一些實施方案中,所述重組病毒粒子是重組腺相關的病毒(AAV)粒子,重組腺病毒粒子、重組慢病毒粒子或重組單純皰疹病毒(HSV)粒子。在一些實施方案中,重組病毒粒子包含AAV1衣殼、AAV2衣殼、AAV3衣殼、AAV4衣殼、AAV5衣殼、AAV6衣殼、AAV7衣殼、AAV8衣殼、AAVrh8衣殼、AAV9衣殼、AAV10衣殼、AAVrh10衣殼、AAV11衣殼、AAV12衣殼、AAV2R471A衣殼、AAVAAV2/2-7m8衣殼、AAV DJ衣殼、AAV2 N587A衣殼、AAV2 E548A衣殼、AAV2 N708A衣殼、AAV V708K衣殼、山羊AAV衣殼、AAV1/AAV2嵌合衣殼、牛AAV衣殼、或小鼠AAV衣殼rAAV2/HBoV1(嵌合的AAV/人博卡病毒1)。在一些實施方案中,所述重組病毒粒子包含AAV1 ITR、AAV2 ITR、AAV3 ITR、AAV4 ITR、AAV5 ITR、AAV6 ITR、AAV7 ITR、AAV8 ITR、AAVrh8 ITR、AAV9 ITR、AAV10 ITR、AAVrh10 ITR、AAV11 ITR、AAV12 ITR。在一些實施方案中,所述AAV衣殼包含酪氨酸突變或肝素結合突變。在其他實施方案中,所述重組病毒粒子是重組腺病毒粒子。在一些實施方案中,重組腺病 毒粒子包含來自腺病毒血清型2、1、5、6、19、3、11、7、14、16、21、12、18、31、8、9、10、13、15、17、19、20、22、23、24-30、37、40、41、AdHu2、AdHu3、AdHu4、AdHu24、AdHu26、AdHu34、AdHu35、AdHu36、AdHu37、AdHu41、AdHu48、AdHu49、AdHu50、AdC6、AdC7、AdC69、牛Ad 3型、犬Ad 2型、綿羊Ad、或豬Ad 3型的衣殼。在一些實施方案中,重組腺病毒粒子包含腺病毒血清型2衣殼的變體或腺病毒血清型5衣殼的變體。在一些實施方案中,重組病毒粒子是重組慢病毒粒子。在一些實施方案中,重組慢病毒粒子是假型水皰性口炎病毒(VSV)、淋巴細胞性脈絡叢腦膜炎病毒(LCMV)、羅斯河病毒(Ross river virus,RRV)、埃博拉病毒、馬爾堡病毒、Mokala病毒、狂犬病病毒、RD114或其變體。在一些實施方案中,重組病毒粒子是rHSV粒子。在一些實施方案中,HSV粒子是HSV-1粒子或HSV-2粒子。
在一些方面,本發明提供用於評價重組病毒粒子的生產方法的方法,所述生產方法包含請求項1-67任一項的方法,其中與重組病毒粒子的參考製備物相比,包含完整病毒基因組的重組病毒粒子的相對量與空衣殼粒子和/或具有不同重組病毒基因組的重組病毒衣殼粒子的相對量相比增加指示重組病毒粒子產量的提高。在一些實施方案中,所述重組病毒粒子是重組腺相關的病毒(AAV)粒子、重組腺病毒粒子、重組慢病毒粒子和重組單純皰疹病毒(HSV)粒子。在一些實施方案中,rAAV粒子產生自生產者細胞系。在一些實施方案中,所述rAAV粒子通過如下三重轉染產生:i)編碼AAVrep和cap的核酸,ii)rAAV載體序列,和iii)編碼腺病毒輔助功能的核酸。在其他實施方案中,重組病毒粒子通過AAV/HSV雜交產生。在其他實施方案中,重組病毒粒子產生自杆狀病毒細胞。在一些實施方案中,重組病毒粒子通過將編碼AAV載體序列、AAV rep和cap編碼區、和AAV輔助病毒功能的核酸瞬時轉染至合適的宿主細胞而產生。在一些實施方案中,重組病毒粒子通過將一個或多個編碼AAV載體序列、AAV rep和cap編碼區、和AAV輔助病毒功能的核酸導入合適的宿主細胞而產生,其中用重組 輔助病毒將所述一個或多個核酸導入細胞。在一些實施方案中,所述重組輔助病毒是腺病毒或單純皰疹病毒。在一些實施方案中,重組病毒粒子包含自身互補的AAV(scAAV)基因組。在一些實施方案中,所述方法用於檢測包含單體形式的scAAV基因組或二聚形式的scAAV基因組的重組病毒粒子的存在。
在上述方面的一些實施方案中,所述重組病毒粒子通過將編碼腺病毒載體序列和腺病毒複製和包裝序列的核酸瞬時轉染至合適的宿主細胞而產生。在其他實施方案中,所述重組病毒粒子通過將編碼慢病毒載體序列和/或慢病毒複製和包裝序列的核酸瞬時轉染至合適的宿主細胞而產生。在其他實施方案中,所述重組病毒粒子通過將編碼HSV載體序列和/或HSV複製和包裝序列的核酸瞬時轉染至合適的宿主細胞而產生。
在一些方面,本發明提供用於製備重組病毒粒子的方法,所述重組病毒粒子具有減少的空衣殼和/或包含不同基因組的重組病毒粒子,所述方法包括:a)在適合重組病毒產生的條件下培養宿主細胞,其中所述細胞包含:i)編碼異源轉基因的核酸,其側翼為至少一個AAV ITR,ii)包含AAV rep和cap編碼區的核酸,其中所述核酸包含突變的p5啟動子,其中自所述p5啟動子的rep表達與野生型p5啟動子相比降低,及iii)編碼AAV輔助病毒功能的核酸;b)裂解宿主細胞以釋放重組病毒粒子;c)分離由宿主細胞產生的重組病毒粒子;及d)通過分析性超速離心法,按照上述方法來分析重組病毒粒子中空衣殼和/或具有不同基因組的重組病毒粒子的存在。在一些方面,本發明提供用於製備重組病毒粒子的方法,所述重組病毒粒子具有減少的空衣殼和/或包含不同基因組的重組病毒粒子,所述方法包括:a)在適合重組病毒產生的條件下培養宿主細胞,其中所述細胞包含:i)編碼異源轉基因的核酸,其側翼為至少一個AAV ITR,ii)包含AAV rep和cap編碼區的核酸,其中所述核酸包含突變的p5啟動子,其中自所述p5啟動子的rep表達與野生型p5啟動子相比降低,及iii)編碼AAV輔助病毒功能的核酸;b)裂解宿主細胞以釋放重組病毒粒子;c)分離由宿主細胞產生的重 組病毒粒子;及d)通過分析性超速離心法,按照上述方法來分析重組病毒粒子中空衣殼和/或具有不同基因組的重組病毒粒子的存在。在一些實施方案中,所述p5啟動子位於rep和/或cap編碼區的3’。在一些實施方案中,所述AAV輔助病毒功能包含腺病毒E1A功能、腺病毒E1B功能、腺病毒E2A功能、腺病毒VA功能和腺病毒E4 orf6功能。
在一些實施方案中,任意前述實施方案中的重組病毒粒子已用一個或多個純化步驟進行純化。
圖1顯示分析性超速離心(AUC)可用於表徵重組病毒載體粒子。(A)代表性的邊界沉降速度的掃描譜,其隨1.2小時的時間間隔(T)標繪了AAV2混合物的吸光度(260nm)對半徑(cm)。AAV2混合物含有空衣殼(“空Cap”)和完整基因組衣殼(“完整載體”)。(B)濃度圖,其檢測單位為C(S),對比沉降係數(Svedberg單位,S),其顯示AUC可用於測量來自80%/20%混合物的空衣殼和完全基因組衣殼的濃度。每個峰用粒子種類及其對應的沉降係數(S)和相對豐度(%)進行標記。
圖2顯示空AAV2衣殼(A)和含基因組的AAV2-轉基因1衣殼(B)的純總體的AUC概貌。每個峰都用衣殼種類及其的沉降係數(S)進行標記。
圖3顯示干涉(interference)和吸光度檢測方法之間通過AUC的對比。(A)差示沉降係數分佈值c(s)對比以Svedberg單位(S)表示的沉降係數的圖,得到了空衣殼和含基因組的衣殼1:1混合物的沉降係數分佈,其用干涉光檢測產生而成。對每一種的沉降係數和相對豐度(%)進行標記。(B)差示沉降係數分佈值c(s)對比以Svedberg單位(S)表示的沉降係數的圖,得到了空衣殼和含基因組的衣殼1:1混合物的沉降係數分佈,其用吸收光檢測(260nm)產生而成。對每一種的沉降係數和相對豐度(%)進行標記。
圖4描繪了用於AAV載體生產的三重轉染方法。對包含目的基因(“pVector”)、AAV Rep和Cap基因(“pHLP”)、和腺病毒組分(“pIAdeno”)的 三種載體進行標記。需注意,含基因組的衣殼(用“ITR-Transgene-ITR”圖形標記)和空衣殼(空白)二者均產生。
圖5描繪了用於AAV載體生產的生產者細胞系方法。如標記所示,HeLa S3細胞系含有整合的Rep、Cap和嘌呤黴素抗性基因,以及側翼有ITR的目的轉基因。用腺病毒(“Ad5”)感染該細胞系以刺激重組病毒產生。需注意,除腺病毒粒子之外,含基因組的衣殼(標記為“重組病毒載體”)和空衣殼二者均產生。
圖6顯示,通過生產者細胞系和三重轉染方法的載體生產得到了不同的載體製備物,如AUC分析所揭示的那樣。(A)AAV2-轉基因2載體及其3.4kb基因組的示意圖。(B)差示沉降係數分佈值c(s)對比以Svedberg單位(S)表示的沉降係數的圖,得到了通過生產者細胞系方法產生的載體製備物的沉降係數分佈。對每一種的沉降係數和相對豐度(%)進行標記。(C)差示沉降係數分佈值c(s)對比以Svedberg單位(S)表示的沉降係數的圖,得到了通過三重轉染方法產生的載體製備物的沉降係數的分佈。對每一種的沉降係數和相對豐度(%)進行標記。
圖7顯示,AUC方法可用於監測載體純化的質量和效力。(A)顯示用陰離子交換色譜法從空衣殼純化完全基因組AAV2-轉基因1衣殼的圖。對與每一種對應的峰級分進行標記。(B)差示沉降係數分佈值c(s)對比以Svedberg單位(S)表示的沉降係數的圖,得到了在從陰離子交換柱洗脫後的載體製備物的沉降係數分佈。對每一種的沉降係數和相對豐度(%)進行標記。(C)差示沉降係數分佈值c(s)對比以Svedberg單位(S)表示的沉降係數的圖,得到了色譜之前的載體製備物的沉降係數分佈。對每一種的沉降係數和相對豐度(%)進行標記。
圖8顯示了沉降係數與載體基因組大小之間的線性關係。描繪了沉降係數(S)對基因組大小繪製的標準曲線,以及最佳擬合的線、其公式、及其相關的R2值。
圖9顯示了用AUC數據對衣殼基因組大小的評估與通過南方印跡對基 因組大小的評估是互相關聯的。(A)差示沉降係數分佈值c(s)對比以Svedberg單位(S)表示的沉降係數的圖,得到了scAAV9 EGFP載體製備物的沉降係數分佈。用相應的沉降係數和相對豐度值(%)對單鏈單體(82S)和雙鏈二聚體(101S)種進行標記。還提供了載體的示意圖。(B)來自scAAV9 EGFP(泳道1)和單鏈AAV9 EGFP(泳道2)載體衣殼的DNA的鹼性Southern印跡分析。對應的條帶按照印跡說明中所述標記。如所標記的提供了4.2和2.4kb大小標準。(C)差示沉降係數分佈值c(s)對比以Svedberg單位(S)表示的沉降係數的圖,得到了單鏈AAV9 EGFP載體製備物的沉降係數分佈。用相應的沉降係數和相對豐度值(%)對82S和99S(完全基因組)峰進行標記。
圖10顯示,Rep/Cap啟動子位置影響由三重轉染方法產生的重組病毒載體中的基因組包裝。(A)自我裝配的scAAV2 EGFP載體的示意圖,以及估計的二聚體和單體基因組種的沉降係數。(B)差示沉降係數分佈值c(s)對比以Svedberg單位(S)表示的沉降係數的圖,得到了scAAV2 EGFP載體製備物的沉降係數分佈,所述製備物用含有驅動Rep 78/68表達的內源性p5啟動子的“野生型”輔助質體(“WT Rep”)產生。用相應的沉降係數和相對豐度值(%)對單鏈單體(80S)和雙鏈二聚體(100S)種的峰進行標記。(C)差示沉降係數分佈值c(s)對比以Svedberg單位(S)表示的沉降係數的圖,得到了scAAV2 EGFP載體製備物的沉降係數分佈,所述製備物用含有驅動Rep 78/68表達的內源性p5啟動子(其移至cap2序列下游)的“野生型”輔助質體(“pHLP Rep”)產生。用相應的沉降係數和相對豐度值(%)對單鏈單體(82S)和雙鏈二聚體(100S)種的峰進行標記。
圖11顯示Rep/Cap啟動子位置影響兩個額外AAV載體中的基因組包裝。(A-B)差示沉降係數分佈值c(s)對比以Svedberg單位(S)表示的沉降係數的圖,得到了單鏈AAV5 Factor IX載體(AAV5 hFIX16)的沉降係數分佈,所述載體含有用輔助質體產生的cap5序列,所述輔助質體具有內源性p5啟動子(“WT Rep,”B)或cap5序列下游的p5啟動子(“pHLP Rep,”A)。(C-D)差示沉降係數分佈值c(s)對比以Svedberg單位(S)表示的沉降係數的圖,得 到了AAV5hSMN載體(AAV5SMN)的沉降係數分佈,所述載體含有用輔助質體產生的cap5序列,所述輔助質體具有內源性p5啟動子(“WT Rep,”D)或cap5序列下游的p5啟動子(“pHLP Rep,”C)。
圖12揭示了南方印跡分析與AUC分析相關聯,但遺漏了一些片段化的基因組,其可以由AUC檢測出來。(A)來自AAV5SMN製備物的載體DNA的Southern印跡分析,其用pHLP輔助質體(泳道2)或WT Rep質體(泳道1)完成。如所標記的,提供了4.6和2.4kb大小標準。(B)來自AAV5FIX製備物的載體DNA的南方印跡分析,其用pHLP輔助質體(泳道2)或WT Rep質體(泳道1)完成。如所標記的,提供了4.3、3.0和1.9kb大小標準。
圖13提供了AAV5 Factor IX載體的圖譜,指示了hFIX轉基因、ITR、Rep起點、和AmpR標記基因的位置,以及其他特徵。需注意,AmpR標記基因在ITR、增強子、和啟動子區的上游。
圖14顯示了WT Rep載體基因組(與pHLP Rep載體基因組不同)對AAV5 Factor IX載體中5’ITR上游的序列進行包裝。(A)使用hFIX轉基因特異性探針比較pHLP Rep(泳道1)和WT Rep(泳道2)載體基因組的Southern印記分析。(B)使用Rep ori/AmpR-特異性探針比較pHLP Rep(泳道1)和WT Rep(泳道2)載體基因組的Southern印記分析。
圖15顯示了過大的AAV載體基因組的片段化,如AUC分析所表示的那樣。(A)具有過大基因組的AAV載體的濃度C(S)對比沉降係數(S)圖,其通過AUC產生。基因組含有全長雞β-肌動蛋白(CBA)啟動子,其驅動β-磷酸二酯酶的表達(ssAAV2/5CBA-βPDE)。檢測出的種的峰通過觀察到的沉降係數(S)和相對豐度值(%)進行標記。(B)具有截短的基因組的AAV載體的濃度C(S)對比沉降係數(S)圖,其通過AUC產生。該基因組含有具有尺寸減小的內含子的CBA啟動子,其驅動β-磷酸二酯酶的表達(AAV5 minCBAPDE6B)。檢測出的種的峰通過觀察到的沉降係數(S)和相對豐度值(%)進行標記。
圖16顯示了腺病毒衣殼的純總體的AUC概貌。為各峰給出沉降係數 (S)和干涉值。
本發明提供使用分析性超速離心來表徵病毒粒子製備物的方法。通過在邊界沉降速度條件下對製備物進行分析性超速離心(AUC),可以在時間間隔(例如一次或多次)處監測病毒粒子的沉降。然後繪製差示沉降係數分佈值(C(s))對以Svedberg單位(S)表示的沉降係數,並對C(s)分佈中的每個峰下的面積求積分,以確定每個峰的相對濃度。每個峰代表病毒粒子的種,反映其分子量。可以通過這些方法檢測的種包括但不限於重組腺相關的病毒(rAAV)粒子、重組腺病毒(rAd)粒子、重組慢病毒粒子、和重組簡單皰疹病毒(rHSV)粒子。為了用rAAV粒子作為闡釋性的例子,這些方法允許檢測rAAV種,所述rAAV種包括包含完整rAAV基因組的衣殼粒子(例如完全衣殼)、空病毒衣殼(其中病毒衣殼中未用衣殼包裹rAAV基因組)、以及rAAV粒子變體,其中所述變體rAAV基因組被衣殼包裹於病毒衣殼中(例如含有用衣殼包裹的AAV的DNA雜質、截短的病毒基因組、聚集體等等的粒子)。無論病毒基因組的核酸序列或重組病毒衣殼的血清型(針對重組病毒粒子而言)如何,這些方法都能夠應用於重組病毒的製備。這些方法能夠應用於rAAV、rAd、重組慢病毒和rHSV病毒粒子。
在一些方面,本發明提供評估重組病毒粒子製備物中的重組病毒粒子的載體基因組完整性的方法,其通過在邊界沉降速度條件下對所述製備物進行分析性超速離心,其中在時間間隔(例如一次或多次)處監測重組病毒粒子的沉降。通過以差示沉降係數分佈值(C(s))對以Svedberg單位(S)表示的沉降係數進行繪圖,可以通過圖上存在的相對於S值的峰來鑒定製備物中的重組病毒粒子的種。其中具體種的重組病毒粒子的基因組大小可以通過例如比較所述種的S值與標準曲線來計算,所述標準曲線由包含有衣殼包被的已知不同大小的病毒基因組的重組病毒粒子的S值產生。能夠通過這些方法評估的載體基因組包括但不限於:包含完整存在病毒基因組的重組病 毒衣殼粒子(例如完全衣殼)、空病毒衣殼(其中病毒衣殼中未用衣殼包裹rAAV基因組)、以及重組病毒粒子變體,其中變體重組病毒基因組(例如含有用衣殼包被的AAV的DNA雜質、截短的病毒基因組、聚集體等等的粒子)被衣殼包被於病毒衣殼中。在一些實施方案中,所述病毒粒子是rAAV、rAd、重組慢病毒或rHSV病毒粒子。
在一些實施方案中,本發明提供通過AUC在邊界沉降速度條件下確定重組病毒粒子製備物中重組病毒粒子(例如rAAV、rAd、慢病毒或rHSV粒子)的異質性的方法,其中在C(S)對S的圖中,除代表含有完整重組病毒基因組的衣殼的峰以外的峰的存在指示製備物中重組粒子的異質性。在一些實施方案中,製備物中每個重組病毒種的相對量通過對圖中每個峰面積求積分來計算。
在本發明的一些實施方案中,用AUC來確定重組病毒粒子(例如rAAV、rAd、慢病毒或rHSV粒子)製備物中空衣殼和/或重組病毒粒子變體的存在,其中在C(S)對S的圖中與空衣殼粒子和/或重組病毒粒子變體的S值對應的峰的存在指示存在空衣殼粒子和/或重組病毒粒子變體。在一些實施方案中,重組病毒粒子製備物中空衣殼和/或重組病毒粒子變體的相對量通過如下方法來確定:對C(S)對S的圖中每個峰下的面積求積分,並將具有對應於空衣殼粒子和/或重組病毒粒子變體的S值的重組病毒粒子的量與具有對應於含完整病毒基因組的重組病毒粒子的S值的重組病毒粒子的量進行比較。在一些實施方案中,將具有對應於空衣殼粒子和/或重組病毒粒子變體的S值的重組病毒粒子的量與製備物中所有重組病毒粒子的總量進行比較,所述總量通過積分並加總圖中所有峰下的面積而得。
在一些實施方案中,本發明提供在重組病毒粒子(例如rAAV、rAd、慢病毒或rHSV粒子)製備物的純化過程中通過使用AUC監測空衣殼和/或重組病毒粒子變體的去除的方法。對來自純化過程的一個或多個步驟後的製備物的重組病毒粒子的樣品進行分析,分析其空衣殼和/或重組病毒粒子變體的相對量,其中空衣殼和/或重組病毒粒子變體與完全衣殼粒子相比的相 對量的降低指示空衣殼和/或重組病毒粒子變體從重組病毒粒子製備物的去除。
在一些實施方案中,本發明提供通過AUC評價重組病毒粒子(例如rAAV、rAd、慢病毒或rHSV粒子)的生產方法的方法。分析重組病毒粒子製備物中完全病毒衣殼粒子、空粒子和/或重組病毒粒子變體的存在。與重組病毒粒子的參考製備物(例如標準重組病毒製備物)相比,包含完整病毒基因組的重組病毒粒子的相對量與空衣殼粒子和/或重組病毒粒子變體(例如含有用衣殼包裹的AAV的DNA雜質、截短的病毒基因組、聚集體等等的粒子)的相對量相比增加指示重組病毒粒子產量的提高。
I. 通用技術
本文所述的技術和程序是本領域技術人員所熟知且使用常規方法慣常加以採用的,比如,例如Molecular Cloning:A Laboratory Manual(Sambrook等,第四版,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.,2012);Current Protocols in Molecular Biology(F.M.Ausubel等編,2003);the series Methods in Enzymology(Academic Press,Inc.);PCR 2:A Practical Approach(M.J.MacPherson,B.D.Hames和G.R.Taylor等編,1995);Antibodies,A Laboratory Manual(Harlow和Lane編,1988);Culture of Animal Cells:A Manual of Basic Technique and Specialized Applications(R.I.Freshney,第六版,J.Wiley和Sons,2010);Oligonucleotide Synthesis(M.J.Gait編,1984);Methods in Molecular Biology,Humana Press;Cell Biology:A Laboratory Notebook(J.E.Cellis編,Academic Press,1998);Introduction to Cell and Tissue Culture(J.P.Mather和P.E.Roberts,Plenum Press,1998);Cell and Tissue Culture:Laboratory Procedures(A.Doyle,J.B.Griffiths和D.G.Newell編,J.Wiley and Sons,1993-8);Handbook of Experimental Immunology(D.M.Weir和C.C.Blackwell編,1996);Gene Transfer Vectors for Mammalian Cells(J.M.Miller和M.P.Calos,eds.,1987);PCR:The Polymerase Chain Reaction,(Mullis等編,1994);Current Protocols in Immunology(J.E.Coligan等編,1991);Short Protocols in Molecular Biology(Ausubel等編,J.Wiley and Sons,2002);Immunobiology(C.A.Janeway等,2004);Antibodies(P.Finch,1997);Antibodies:A Practical Approach(D.Catty編,IRL Press,1988-1989);Monoclonal Antibodies:A Practical Approach(P.Shepherd和C.Dean編,Oxford University Press,2000);Using Antibodies:A Laboratory Manual(E.Harlow和D.Lane,Cold Spring Harbor Laboratory Press,1999);The Antibodies(M.Zanetti和J.D.Capra編,Harwood Academic Publishers,1995);以及Cancer:Principles and Practice of Oncology(V.T.DeVita等編,J.B.Lippincott Company,2011)中所述的廣泛運用的方法。
II. 定義
本文所用的“載體(vector)”意指包含要遞送至宿主細胞(體外或體內)的核酸的重組質體或病毒。
本文所用的“術語“多核苷酸”或“核酸”意指任何長度的聚合形式的核苷酸(無論是核糖核苷酸還是脫氧核糖核苷酸)。因此,該術語包括但不限於單鏈、雙鏈或多鏈DNA或RNA、基因組DNA、cDNA、DNA-RNA雜交體、或是包含嘌呤或嘧啶鹼基或其他天然的、化學或生物修飾的、非天然的、或衍生的核苷酸鹼基的聚合體。多核苷酸的骨架可以包含糖和磷酸基團(如RNA或DNA中通常發現的)、或經修飾的或替換的糖或磷酸基團。或者,多核苷酸的骨架可以包含合成的亞基(如胺基磷酸酯)的聚合物,並因而可以是寡脫氧核苷胺基磷酸酯(P-NH2)或混合的胺基磷酸酯-磷酸二酯寡聚體。此外,可以通過合成互補鏈並在合適條件下對鏈進行退火,或是通過用DNA聚合酶以合適的引物從頭合成互補鏈,從化學合成的單鏈多核苷酸產物獲得雙鏈多核苷酸。
術語“多肽”和“蛋白質”可互換使用,意指胺基酸殘基的聚合物,並且不設最小長度的限制。胺基酸殘基的此類聚合物可以含有天然或非天然的胺 基酸殘基,並且包括但不限於肽、寡肽、胺基酸殘基的二聚體、三聚體、和多聚體。全長蛋白質及其片段二者均涵蓋在本定義中。該術語還包括肽表達後修飾,例如糖基化、唾液酸化、乙醯化、磷酸化,等等。此外,用於本發明的目的,“多肽”意指包含修飾的蛋白質,所述修飾如對原序列的缺失、添加和替換(通常在性質上是保守的),只要該蛋白質保持想要的活性。這些修飾可以是故意的,例如通過定向誘變而成的;或者可以是偶然的,如通過產生蛋白質的宿主的突變或是由於PCR擴增錯誤而成的。
“重組病毒載體”意指包含一個或多個異源序列(即非病毒原有的核酸序列)的重組多核苷酸載體。就重組AAV載體而言,重組核酸側翼有至少一個反向末端重複序列(ITR)。在一些實施方案中,重組核酸側翼有至少2個反向末端重複序列(ITR)。
“重組AAV載體(重組腺相關的病毒載體)”意指包含一個或多個異源序列(即非AAV原有的核酸序列)的多核苷酸載體,所述異源序列側翼有至少一個AAV反向末端重複序列(ITR)。在一些實施方案中,重組核酸側翼有至少2個反向末端重複序列(ITR)。此類重組病毒載體存在於宿主細胞中時可以複製並包裝進入感染性的病毒粒子,所述宿主細胞已用合適的輔助病毒進行感染(或是表現合適的輔助功能的),並且表現AAV rep和cap基因產物(即AAV Rep和Cap蛋白)。當重組病毒載體整合至較大的多核苷酸中(例如染色體中或用於克隆或轉染的另一載體如質體中)時,重組病毒載體可以意指“前載體(pro-vector)”,其能夠在存在AAV包裝功能和合適的輔助功能的條件下通過複製和衣殼包被而得到“恢復(rescued)”。重組病毒載體可以以許多形式的任一種存在,包括但不限於質體、線性人工染色體、與脂質複合、包封於脂質體內、和衣殼包被於病毒粒子中,例如AAV粒子。重組病毒載體可以包裝於AAV病毒衣殼中,以產生“重組腺相關病毒粒子(重組病毒粒子)”。
“rAAV病毒”或“rAAV病毒粒子”意指由至少一個AAV衣殼蛋白和衣殼包被的rAAV載體基因組組成的病毒粒子。
“重組腺病毒載體”意指包含一個或多個異源序列(即非腺病毒原有的核酸序列)的多核苷酸載體,所述異源序列側翼有至少一個腺病毒反向末端重複序列(ITR)。在一些實施方案中,重組核酸側翼有至少2個反向末端重複序列(ITR)。此類重組病毒載體存在於宿主細胞中時可以複製和包裝至感染性病毒粒子中,所述宿主細胞表達基本的腺病毒基因,所述基因從重組病毒基因組缺失(例如E1基因、E2基因、E4基因等)。當重組病毒載體整合至較大的多核苷酸中(例如染色體中或用於克隆或轉染的另一載體如質體中)時,重組病毒載體可以意指“前載體”,其能夠在存在腺病毒包裝功能和合適的輔助功能的條件下通過複製和衣殼包被而得到“恢復”。重組病毒載體可以以許多形式的任一種存在,包括但不限於質體、線性人工染色體、與脂質複合、包封於脂質體內、和衣殼包被於病毒粒子中,例如腺病毒粒子。重組病毒載體可以包裝於腺病毒衣殼中,以產生“重組腺病毒粒子”。
“重組慢病毒載體”意指包含一個或多個異源序列(即非慢病毒原有的核酸序列)的多核苷酸載體,所述異源序列側翼有至少一個慢病毒末端重複序列(ITR)。在一些實施方案中,重組核酸側翼有至少2個慢病毒末端重複序列(ITR)。此類重組病毒載體在存在於宿主細胞中時可以複製並包裝進入感染性的病毒粒子,所述宿主細胞已用合適的輔助病毒進行感染。重組病毒載體可以包裝於慢病毒衣殼中,以產生“重組慢病毒粒子”。
“重組簡單皰疹病毒載體(重組HSV載體)”意指包含一個或多個異源序列(即非HSV原有的核酸序列)的多核苷酸載體,所述異源序列側翼有HSV末端重複序列。此類重組病毒載體在存在於宿主細胞中時可以複製並包裝進入感染性的病毒粒子,所述宿主細胞已用合適的輔助病毒進行感染。當重組病毒載體整合至較大的多核苷酸中(例如染色體中或用於克隆或轉染的另一載體如質體中)時,重組病毒載體可以意指“前載體”,其能夠在存在HSV包裝功能和合適的輔助功能的條件下通過複製和衣殼包被而得到“恢復”。重組病毒載體可以以許多形式的任一種存在,包括但不限於質體、線性人工染色體、與脂質複合、包封於脂質體內、和衣殼包被於病毒粒子中,例如 HSV粒子。重組病毒載體可以包裝於HSV衣殼中以產生“重組腺病毒粒子”。
“異源的”意為來源於這樣的個體,所述個體與進行比較的個體或其引入或整合入的個體的其他部分在基因型上完全不同。例如,通過遺傳工程技術引入至不同細胞類型中的多核苷酸是異源多核苷酸(並且在表達時能編碼異源多肽)。類似地,整合至病毒載體中的細胞序列(例如基因或其部分)相對於載體而言是異源核苷酸序列。
術語“轉基因”意指引入至細胞中且能夠轉錄成RNA的、並任選地能夠在合適條件下翻譯和/或多核苷酸的多核苷酸。在一些方面,其賦予其被引入的細胞想要的特性,或是達到想要的治療或診斷結果。在另一個方面,其可以轉錄成介導RNA幹擾如siRNA的分子。
關於病毒力價所使用的術語“基因組粒子(gp)”、“基因組等價物”、或“基因組拷貝”,意指含有重組病毒DNA基因組或RNA基因組的病毒體(無論感染性或功能性如何)的數量。具體的病毒製備物中的基因組粒子的數量可以通過例如本文實施例中所述的方法,或例如Clark等,(1999)Hum.Gene Ther.,10:1031-1039;Veldwijk et al.(2002)Mol.Ther.,6:272-278中所述的方法來測量。
關於病毒力價所使用的術語“感染單元(iu)”、“感染性粒子”、或“複製單元”,意指感染性的和能夠複製的重組病毒載體粒子的數量,其通過感染中心測定法測出,也稱為複製中心測定法,以AAV為例,如McLaughlin等,(1988)J.Virol.,62:1963-1973中所述。
關於病毒力價所使用的術語“轉導單元(tu)”,意指導致產生功能性的轉基因產物的感染性重組病毒載體粒子的數量,其通過功能性測定法測出,例如本文實施例所述,或例如關於AAV,見Xiao等,(1997)Exp.Neurobiol.,144:113-124;或見Fisher等(1996)J.Virol.,70:520-532(LFU測定法)。
“反向末端重複”或“ITR”序列是本領域熟知的術語,其意指在病毒基因組末端發現的相對短的序列,其反向排列。
“AAV反向末端重複(ITR)”序列是本領域熟知的術語,其是約145個核苷酸的序列,存在於原始單鏈AAV基因組的兩端。ITR的最外的125個核苷酸可以取兩個方向的任一向,導致了不同AAV基因組之間以及單個AAV基因組的兩端之間的異質性。最外的125個核苷酸還含有若干較短的自身互補區(稱為A、A'、B、B'、C、C和D區),從而允許ITR的該部分內發生鏈內(intrastrand)鹼基配對。
“末端分辨序列(terminal resolution sequence)”或“trs”是由AAV rep蛋白在病毒DNA複製期間切割的AAV ITR的D區中的序列。突變的末端分辨序列是AAV rep蛋白難以切割的。
“AAV輔助功能”意指允許宿主細胞對AAV進行複製和包裝的功能。AAV輔助功能可以以許多形式的任一種提供,包括但不限於協助AAV複製和包裝的輔助病毒或輔助病毒基因。其他AAV輔助功能是本領域已知的,如遺傳毒性劑。
用於AAV的“輔助病毒”意指允許宿主細胞對AAV(其是有缺陷的細小病毒)進行複製和包裝的病毒。輔助病毒提供“輔助功能”,其允許AAV的複製。已經鑒定出了一些此類輔助病毒,包括腺病毒、皰疹病毒、痘病毒如牛痘和杆狀病毒。腺病毒包含一些不同的亞群,儘管C亞群的腺病毒5型(Ad5)是最常用的。已知許多人的、非人的哺乳動物的、和鳥類來源的腺病毒,並且其可從保藏機構如ATCC獲得。皰疹家族的病毒(其也可從保藏機構如ATCC獲得)包括例如簡單皰疹病毒(HSV)、EB病毒(Epstein-Barr viruses,EBV)、巨細胞病毒(CMV)和偽狂犬病病毒(PRV)。用於AAV複製的腺病毒輔助功能的例子包括E1A功能、E1B功能、E2A功能、VA功能和E4orf6功能。可以從保藏機構獲得的杆狀病毒包括苜蓿銀紋夜蛾核型多角體病毒(Autographa californica nuclear polyhedrosis virus)。
當感染性AAV粒子對感染性輔助病毒粒子之比為至少約102:1、至少約104:1、至少約106:1、或至少約108:1或更多時,rAAV的製備物據稱是“基本不含”輔助病毒的。在一些實施方案中,製備物也是不含等量的輔助病毒蛋 白(即如果上述輔助病毒粒子雜質以破壞的形式呈現時,會因這種水平的輔助病毒而存在的蛋白)的。當SDS凝膠上存在考馬斯染色條帶(即出現了對應於AAV衣殼蛋白VP1、VP2和VP3的條帶之外的條帶)時,可以觀察到病毒的和/或細胞的蛋白質污染。
本文所用的“差示係數分佈值”或“C(S)”是包含Lamm方程解的分佈的變體,用於描述沉澱粒子的分佈,例如在超速離心期間。
本文所用的“Svedberg單位”意指用於沉降速率的單位。給定尺寸和形狀的粒子的沉降速率衡量粒子沉澱有多快。一個Svedberg單位等於10-13秒。例如,Svedberg單位常用於反映離心的離心力作用下分子運動的速率。
本文所用的“沉降速度條件”或“邊界沉降速度條件”可以指任何這樣的實驗條件,在所述實驗條件下樣品溶液被用於沉降速度分析。沉降速度允許在廣範圍的pH和離子強度條件下以及在4-40℃的溫度處研究粒子。沉降邊界變動處的速率是沉降的種的沉降係數測量值。沉降係數取決於分子量(較大粒子沉澱較快)並且還取決於分子形狀。沉降邊界的最小寬度與分子的擴散係數相關;多個沉降係數相似的種的存在會引起邊界比僅基於擴散所預期的更寬。沉降速度條件可以不受限地包括任何與轉子轉速、樣品與轉子中心之間距離、溫度、溶劑、樣品、緩衝液、離心時間、檢測的時間間隔、扇區(sector)、和光學窗口特徵、AUC儀器(包括超速離心和檢測裝置),參考溶劑的平衡透析、以及數據分析算法相關的條件。
本文所用的術語“分析密度梯度沉降平衡”涉及測量粒子浮力密度的方法,或用浮力密度的差別來分離不同種的粒子。這些方法可以使用例如AUC沉降平衡技術。在這些方法中,粒子溶液(例如但不限於多肽、多核苷酸、或病毒衣殼的溶液)可以在梯度溶劑合物(如氯化銫或硫酸銫梯度)中進行超速離心,直至達到與溶劑合物的平衡。在平衡處,粒子溶液會在梯度中粒子密度與溶劑合物密度相等的位置處濃縮或出現帶。帶的位置可以用於計算粒子密度,或可以提取帶以分離單種的粒子。
本文所用的“SEDFIT算法”是允許人們分析水動力學數據(如沉降速度) 的算法Schuck(2000)Biophys.J.,78:1606-19)。在SEDFIT算法中,生成覆蓋預期範圍的沉降係數的網格(grid)。用各沉降係數的Lamm方程的解來模擬沉降邊界,假設粒子形狀和溶劑摩擦比為恒定。
本文所用的術語“F統計值”或“F比率”意指置信水平。該參數控制正則化的使用量。其對於不同範圍具有不同的含義:從0至0.5,不使用正則化。從0.5至0.999的至對應於概率P(置信水平)。從這些P值,考慮到了簡約性約束(parsimony constraint)的想要的卡方增加用F-統計值進行計算。0.51的值會導致非常小的正則化;0.68至0.90對應於常用的置信水平(通常伴隨50個掃描或更多時對應於0.7的概率的卡方增加大約為0.1%),當值接近0.99時會導致非常高的正則化。這些值與概率之間的關係可以用F-統計值計算器來測驗。如果輸入了>1的數目,將其直接作為卡方比(因為沒有>1的概率)。例如,1.1的值會導致卡方增加為10%的正則化。
“減少”是與參考相比降低、減少或阻止活性、功能、和/或量。在一些實施例中,“減少”意指引起總計20%或更大幅度降低的能力。在另一個實施方案中,減少”意指引起總計50%或更大幅度降低的能力。在又一個實施方案中,減少”意指引起總計75%、85%、90%、95%或更大幅度降低的能力。
本文所用的“參考”意指用於比較目的的任何樣品、標準、或水平。例如,當測量水溶液中AAV的吸光度或折射率時,將所述溶液吸光度或折射率與沒有AAV的水溶液(即參考溶液)的吸光度或折射率。在其他實施例中,參考可以援引本領域已知的標準程序。例如,當對用於提高AAV生產質量(例如同質性)的程序進行分析時,將通過候選程序產生的AAV與本領域已知的程序進行比較(即參考程序)。
“分離的”分子(例如核酸或蛋白質)或細胞意指其已經經過鑒定,並從其天然環境的組分分離和/或回收。因此,例如分離的rAAV粒子可以用純化技術來製備,以使其從來源混合物(如培養裂解液或生產培養物上清)富集。可以通過多種途徑來測量富集,比如,例如通過溶液中DNA酶抗性的粒子 (DRP)的比例,或通過感染性,或其可以根據來源混合物中存在的第二個潛在的干涉物質(如污染物,包括生產培養基污染物或過程中(in-process)污染物,包括輔助病毒、培養基組分等等,如下文所定義)來測量。
本文對“約”某個值或參數的提述包括(並描述)這樣的實施方案,所述實施方案指代該值或參數本身。例如,關於“約X”的描述包含對“X”的描述。
除另有說明外,本文所用的物體的單數形式“一”、“一個”和“該”包括複數的引述對象。例如,短語“rAAV粒子”包括一個或多個rAAV粒子。
應理解的是,本文所述本發明的方面和實施方案包括“包含”、“由......組成”和/或“基本由......組成”方面和實施方案。
III. 分析性超速離心
分析性超速離心是一種評估蛋白質或其他大分子的分子量和水動力學和熱動力學特性的方法。蛋白質或大分子的異質性通過沉降速度在一些條件範圍內,所述條件包括濃度、溫度、離子強度、和pH。例如,可以在臨床相關製劑中對蛋白質進行分析。分析性超速離心用於表徵腺病毒製備物的用途在Berkowitz,SA & Philo JS,(2007)Anal.Biochem.,362:16-37中提供。
在一些方面,本發明提供用分析性超速離心(AUC)來表徵病毒粒子製備物的方法。例如,在一些實施方案中,發明提供了評估rAAV粒子製備物中重組腺相關病毒(rAAV)粒子的載體基因組完整性的方法,所述方法使用AUC以區分含有完全、完整的基因組的病毒粒子、空病毒衣殼和具有不同的(例如截短的、聚集體、雜質等等)病毒基因組的病毒粒子。在其他方面,這些方法可以以相似的方式應用以分析腺病毒、慢病毒、和簡單皰疹病毒(HSV)粒子。AUC分析意指用於表徵粒子(例如多肽、多核苷酸、和病毒衣殼)的生物物理學特性的定量方法,所述方法通過測量它們在離心力場中的經過溶劑的遷移來進行。AUC分析已在超過數十年間得到了良好的表徵並且具有高度多用性。因為AUC分析依賴于第一性原理水動力學和熱動力學 信息,AUC可以應用於確定跨越廣範圍的粒子濃度和尺寸的許多類型的粒子的生物物理學特性。AUC分析通常涵蓋兩個基本實驗類型:沉降速度和沉降平衡。沉降平衡分析得出粒子的熱動力學特性,所述粒子可用於測量特徵,如化學計量學特徵和締合常數。沉降速度得出粒子的水動力學特性,所述粒子可用於測量特徵,如尺寸、形狀、和濃度。病毒製備物的AUC分析的一個特點是可以用相同測定條件來分析不同的病毒粒子製備物,無論該衣殼的病毒基因組核苷酸序列或血清型如何。
本發明公開內容的一些方面涉及沉降速度分析用於表徵病毒衣殼特性的用途。在一些實施方案中,沉降速度分析在透析平衡中用兩個扇區(一個用於實驗樣品而一個用於僅溶劑的參考樣品)來使用超速離心速度小室,每個扇區含有兩個允許光線通過隔室的光學窗口。超速離心對細胞應用角速度並導致溶質體子向扇區底部快速沉降。隨著沉降發生,小室頂部的彎液面(meniscus)附近溶質減少殆盡,在溶質殆盡區和沉降的溶質之間形成沉降邊界。通過移出測量物並比較樣品和參考扇區在具體時間間隔(對於沉降速度而言,這些間隔通常以秒為數量級)處的特性,來測量沉降邊界的移動或遷移速率。如果存在多個種的溶質,這可能導致多個沉降邊界的形成,其各自對應於一個可溶/可解析的種。
本領域已知一些用於光學檢測沉降邊界並測量其移動或遷移速率的方法(參考請參見Cole等(2008)Methods Cell Biol.,84:143-79)。在一些實施方案中,參考和樣品扇區可以用吸光度檢測來測定。在這種檢測方法中,可以測量樣品和參考扇區在具體波長處的吸光度,所述測量在每個扇區內不同的徑向位置處進行。或者,可以在單個徑向位置處測量吸光度的時間進程。比爾定律(Beer’s Law)提供了吸光度和溶質消光係數之間的數學關係式。
在一些實施方案中,可以用干涉檢測(例如Rayleigh干涉檢測)來測定參考和樣品扇區。在Rayleigh干涉檢測方法中,幹擾光系統含有兩個平行狹縫。分出光的單個相干光束從而使其通過兩個窗口,然後將兩個光束重新 合併。當這兩個光波合併時,它們形成明和暗條紋交互的干涉圖形。如果樣品和參考樣品要具有相同的折射率,所得的干涉條紋會是完美的直條紋。增加溶質的濃度可以增加溶液的折射率,進而阻止樣品光束並導致垂直條紋移動。通過測量這種條紋移動,人們可以測量樣品中溶質的濃度。與吸光度檢測不同的是,吸光度檢測測量的是樣品和參考的絕對值,而干涉檢測測量的是樣品和參考之間的相對差。然而,干涉檢測得到積分的(integrated)峰,其直接與濃度成比例,並且可以用於不顯著吸光的類型的樣品。要參考用AUC使用Rayleigh干涉光學,請參見Furst(1997)Eur.Biophys.J.35:307-10。
可以在沉降邊界移動處的速率使用對速率的測量,以導出溶質體子的許多物理性質。邊界移動的速率確定沉降係數,其是基於粒子的質量和形狀(摩擦係數)。粒子的沉降係數,s,意指其速度與離心力場對其施加的加速度的比。沉降係數以Svedberg單位,S,來表示(一個Svedberg單位等於10-13秒)。粒子或粒子溶液的沉降係數取決於其性質,例如分子量(根據浮力校正),以及溶劑的性質。
超速離心期間溶質的濃度邊界隨時間的變化可以用Lamm方程式來確定(Schuck(2000)Biophys.J.,78:1606-19)。簡言之,Lamm方程式計算溶質的濃度邊界響應於沉降的競爭力(其將溶質濃縮)和擴散(其將溶質分散)隨時間的變化,考慮到了扇形的小室和由轉子產生的離心力場。Lamm方程式可以表達為:
Figure 105101529-A0202-12-0026-53
其中c是溶質濃度,D代表溶質擴散常數,s代表沉降係數,ω代表轉子的角速度,r是半徑,而t是時間。
通過將原始AUC數據與Lamm方程的解匹配,可能確定溶質特徵如沉降係數及濃度分佈的變化。例如,實驗確定的沉降邊界變化速率的值可以用Lamm方程來建模以求出形成邊界的溶質的沉降係數、分子質量、或濃度。本領域已知的一些程序,如SEDFIT(Schuck(2000)Biophys.J., 78:1606-19),可用于對Lamm方程建模以得出AUC數據。這些程序還能將Lamm方程應用於含有多種溶質或多個沉降邊界的溶液。
合適的用於確定溶質特徵的程序的一個例子是SEDFIT算法。在一些實施方案中,SEDFIT算法可以用於計算差示係數分佈值,或C(S),其採用來自含有粒子種的混合物的溶液的AUC數據(參考文獻請參見Schuck(2000)Biophys.J.,78:1606-19)。在SEDFIT算法中,生成覆蓋預期範圍的沉降係數的網格。用各沉降係數的Lamm方程的解來模擬沉降邊界,假設粒子形狀和溶劑摩擦比為恒定。然後調整實際的AUC數據適應這些Lamm解以求出差示係數分佈值,或C(S)。許多其他對分析AUC數據有用的程序可見於Cole和Hansen(1999)J.Biomol.Tech.10:163-76中。
在本發明的一些實施方案中,重組病毒粒子是高度純化、適當緩衝、並且濃縮的。在一些實施方案中,病毒粒子濃縮到至少約1 x 107vg/mL、2 x 107vg/mL、3 x 107vg/mL、4 x 107vg/mL、5 x 107vg/mL、6 x 107vg/mL、7 x 107vg/mL、8 x 107vg/mL、9 x 107vg/mL、1 x 108vg/mL、2 x 108vg/mL、3 x 108vg/mL、4 x 108vg/mL、5 x 108vg/mL、6 x 108vg/mL、7 x 108vg/mL、8 x 108vg/mL、9 x 108vg/mL、1 x 109vg/mL、2 x 109vg/mL、3 x 109vg/mL、4 x 109vg/mL、5 x 109vg/mL、6 x 109vg/mL、7 x 109vg/mL、8 x 109vg/mL、9 x 109vg/mL、1 x 1010vg/mL、2 x 1010vg/mL、3 x 1010vg/mL、4 x 1010vg/mL、5 x 1010vg/mL、6 x 1010vg/mL、7 x 1010vg/mL、8 x 1010vg/mL、9 x 1010vg/mL、1 x 1011vg/mL、2 x 1011vg/mL、3 x 1011vg/mL、4 x 1011vg/mL、5 x 1011vg/mL、6 x 1011vg/mL、7 x 1011vg/mL、8 x 1011vg/mL、9 x 1011vg/mL、1 x 1012vg/mL、2 x 1012vg/mL、3 x 1012vg/mL、4 x 1012vg/mL、5 x 1012vg/mL、6 x 1012vg/mL、7 x 1012vg/mL、8 x 1012vg/mL、9 x 1012vg/mL、1 x 1013vg/mL、2 x 1013vg/mL、3 x 1013vg/mL、4 x 1013vg/mL、5 x 1013vg/mL、6 x 1013vg/mL、7 x 1013vg/mL、8 x 1013vg/mL、9 x 1013vg/mL的任一項。在一些實施方案中,病毒粒子濃縮至約1 x 107vg/mL至約1 x 1013vg/mL、約1 x 108vg/mL至約1 x 1013vg/mL、約1 x 109vg/mL至約1 x 1013vg/mL、約1 x 1010vg/mL至約1 x 1013 vg/mL、約1 x 1011vg/mL至約1 x 1013vg/mL、約1 x 1012vg/mL至約1 x 1013vg/mL、約1 x 107vg/mL至約1 x 1012vg/mL、約1 x 108vg/mL至約1 x 1012vg/mL、約1 x 109vg/mL至約1 x 1012vg/mL、約1 x 1010vg/mL至約1 x 1012vg/mL、約1 x 1011vg/mL至約1 x 1012vg/mL、約1 x 107vg/mL至約1 x 1011vg/mL、約1 x 108vg/mL至約1 x 1011vg/mL、約1 x 109vg/mL至約1 x 1011vg/mL、約1 x 1010vg/mL至約1 x 1011vg/mL、約1 x 107vg/mL至約1 x 1010vg/mL、約1 x 108vg/mL至約1 x 1010vg/mL、約1 x 109vg/mL至約1 x 1010vg/mL、約1 x 107vg/mL至約1 x 109vg/mL、約1 x 108vg/mL至約1 x 109vg/mL、或約1 x 107vg/mL至約1 x 108vg/mL。
在一些實施方案中,病毒粒子在合適的宿主細胞中產生並進行純化。在一些實施方案中,所述病毒粒子通過親和色譜純化。純化病毒粒子(例如AAV粒子、腺病毒粒子、慢病毒粒子、HSV粒子)的方法是本領域已知的。例如,通過使用病毒衣殼蛋白的抗體或病毒衣殼蛋白的結合配體固定在色譜基質上。病毒衣殼親和色譜的例子包括但不限於:用於AAV的AVB親和色譜(GE Healthcare)、用於腺病毒和HSV的金屬親和色譜、以及用於AAV和慢病毒的肝素親和色譜,等等。已發現了純化腺病毒粒子的方法,例如在Bo,H等,(2014)Eur.J.Pharm.Sci.67C:119-125中的。已發現了純化慢病毒粒子的方法,例如在Segura MM等,(2013)Expert Opin Biol Ther.13(7):987-1011中的。已發現了純化HSV粒子的方法,例如在Goins,WF等,(2014)Herpes Simplex Virus Methods in Molecular Biology 1144:63-79中的。
在一些實施方案中,將重組病毒粒子配製於藥物組合物中。在相關的實施方案中,所述藥物組合物含有具備生理學pH和/或生理學滲透壓濃度的緩衝液。藥物組合物的一個非限制性的例子是磷酸鹽緩衝鹽水(PBS),並且一些實施方案中,PBS可以處於生理學滲透壓濃度(即約pH 7.2和約300mOsm/L)。在一些實施方案中,通過在260nm處的光密度測量,調整樣品至目的濃度,從0.1至1.0。在一些例子中,該濃度得到可重複的且一致的 AUC數據。在一些例子中,通過直接用PBS稀釋或進一步的濃縮來調整病毒粒子的濃度,所述進一步的濃縮例如通過使用離心過濾設備。
在本發明的一些實施方案中,用分析性超速離心來進行沉降速度分析性超速離心(SV-AUC)分析,所述分析性超速離心能夠在生物相關溶液條件下、在其原本狀態下表徵樣品(例如ProteomeLabTM XL-I(Beckman Coulter))。當使用ProteomeLabTM XL-1時,將樣品加載至兩個扇區速度小室的樣品扇區中,將載體對照(例如沒有重組病毒的PBS)加載至對應的參考扇區中。將樣品置於四孔轉子中並使其在儀器中平衡直至維持20℃的溫度和完全真空約1小時。在一個示例性的實施方案中,沉降速度離心在約20,000RPM、約20℃、和約0.003cm半徑步驟設定中進行,無延遲無重複。如下文所述,可以用不同的參數用於離心。在一些實施方案中,用吸光度(260nm)和/或干涉光學(例如Rayleigh干涉光學)來同時記錄半徑濃度與時間的函數,直至最小的沉降組分通過光學窗口。在一些實施方案中,記載半徑濃度直至沉降的密度最低的種通過扇區。在一些實施方案中,監測沉降直至密度最低的重組病毒粒子沉降至超速離心的扇區底部。在一些實施方案中,對沉降進行監測直至重組病毒粒子沉降至超速離心速度小室的底部。扇區可以是超速離心機的一部分;例如超速離心速度小室。在一些實施方案中,扇區可以是超速離心機的檢測樣品的部分。在一些實施方案中,超速離心法利用含有超速離心速度小室的超速離心機。在一些實施方案中,監測直至重組病毒粒子沉降至超速離心速度小室的底部。在一些實施方案中,檢測沉降直至密度最低的重組病毒粒子沉降並通過光學窗口。在一些實施方案中,記錄半徑濃度至少約0.5小時、0.75小時、1.0小時、1.5小時、2.0小時、3.0小時、4.0小時、或5.0小時的任一項。在一些實施方案中,記錄半徑濃度至少約0.5小時至約0.75小時、約0.75小時至約1.0小時、約1.0小時至約1.5小時、約1.5小時至約2.0小時、約2小時至約3小時、約3小時至約4小時、約4小時至約5小時的任一項。在一些實施方案中,記錄半徑濃度為約1.2小時。優化運行條件可以包括:例如繼續運行直至所有沉澱的 種都完全沉澱至扇區底部,溫度恒定維持在20℃且速度在18,000rpm至20,000rpm。如下文所述,可以使用其他溫度和速度。
通過分析來自各種檢測方法的多個(例如75個)掃描,用SEDFIT連續大小C(S)分佈模型來確定完全衣殼的百分比。將第二個(2nd)導數正則化應用於擬合。在一些實施方案中,F統計值的置信水平約為0.68。在一些實施方案中,F統計值的置信水平大於約0.68、0.70、0.75、0.80、0.85、0.90、0.95或0.99的任一項。在一些實施方案中,F統計值的置信水平是約0.68至約0.90。在一些實施方案中,F統計值的置信水平是約0.68至約0.99。在一些實施方案中,如下C(S)參數保持恒定,分辨率是約200S至約5000S,Smin是1S至約100S,Smax是約100S至約5000S,且摩擦比是約1.0或使其浮動至由離心軟件確定的值。在一些實施方案中,所述分辨率是約200S、300S、400S、500S、600S、700S、800S、900S、或1000S的任一項。在一些實施方案中,所述分辨率是約200S至約1000S、200S至約900S、200S至約800S、200S至約700S、200S至約600S、200S至約500S、200S至約400S、200S至約300S、300S至約1000S、300S至約900S、300S至約800S、300S至約700S、300S至約600S、300S至約500S、300S至約400S、400S至約1000S、400S至約900S、400S至約800S、400S至約700S、400S至約600S、400S至約500S、500S至約1000S、500S至約900S、500S至約800S、500S至約700S、500S至約600S、600S至約1000S、600S至約900S、600S至約800S、600S至約700S、700S至約1000S、700S至約900S、700S至約800S、800S至約1000S、800S至約900S、或900S至約1000S的任一項。在一些實施方案中,所述分辨率是約200S。在一些實施方案中,Smax是約100S、200S、300S、400S、500S、600S、700S、800S、900S、或1000S的任一項。在一些實施方案中,Smax是約100S至約1000S、100S至約900S、100S至約800S、100S至約700S、100S至約600S、100S至約500S、100S至約400S、100S至約300S、100S至約200S、200S至約1000S、200S至約900S、200S至約800S、200S至約700S、200S至約600S、200S至約500S、 200S至約400S、200S至約300S、300S至約1000S、300S至約900S、300S至約800S、300S至約700S、300S至約600S、300S至約500S、300S至約400S、400S至約1000S、400S至約900S、400S至約800S、400S至約700S、400S至約600S、400S至約500S、500S至約1000S、500S至約900S、500S至約800S、500S至約700S、500S至約600S、600S至約1000S、600S至約900S、600S至約800S、600S至約700S、700S至約1000S、700S至約900S、700S至約800S、800S至約1000S、800S至約900S、或900S至約1000S的任一項。在一些實施方案中,Smax是約200S至約5000S。在一些實施方案中,其中Smax是約200S。在一些實施方案中,摩擦比是任其浮動至由離心軟件確定的值。在一些實施方案中,摩擦比是約1.0。在一些實施方案中,應用半徑不變量(RI)和時間不變量(TI)減噪(noise subtractions)。在一些實施方案中,允許彎液面位置浮動,使軟件選擇最佳位置。在一些實施方案中,允許摩擦比浮動,使軟件選擇最佳位置。模型使數據與Lamm方程式擬合,並且得到的尺寸分佈是“沉降係數的分佈”,其看起來像色譜圖,其每個峰下的面積與以條紋為單位或OD260為單位中的濃度成比例。確定分佈中每個組分的沉降係數(以Svedberg單位表示)和相對濃度(以OD單位表示)。在一些實施方案中,多個AUC運行是獨立的測定,並且監測如下屬性的各個分析以確保結果質量:擬合優度(rmsd)、每個峰的OD260nm/條紋表示的幹擾信號之比(A260/IF比)、運行之間的每個種的沉降係數的一致性、以及掃描的總體質量。
在本發明的一些實施方案中,從吸光度數據使用消光係數來計算完整載體峰的摩爾濃度(molar concentration)和實際百分值。空衣殼的摩爾吸光度消光係數(є260/衣殼=3.72e6)和完整載體的摩爾吸光度消光係數(є260/載體=3.00e7)可以基於出版的公式(Sommer等(2003)Mol Ther.,7:122-8)來計算。消光係數可用於空衣殼和完整載體峰。C(S)值可以用Schuck(2000)Biophys.J.,78:1606-19中描述的SEDFIT算法來確定。完整載體和空衣殼的摩爾濃度都可以用比爾定律來計算,而完全衣殼的百分比從這些值來計算。在一些實 施方案中,數值以完全衣殼的百分比形式來報道。
在一些實施方案中,可能依照經驗來確定具體種的重組病毒粒子(例如具有未知大小和序列的片段化基因組的病毒粒子)的消光係數。S值和基因組大小之間的關係可以通過分析重組病毒載體來確立,所述重組病毒載體用衣殼包被的已知核酸大小的病毒基因組來製備,並且相應的S值如本文所述來確定。可以對計算出的S值進行繪圖以產生標準曲線,所述標準曲線可以與未知分子量或基因組大小的重組病毒種進行比較,以確定所述未知種的分子量。
在一些方面,本發明提供表徵重組病毒粒子(例如rAAV、rAd、慢病毒、或rHSV粒子)製備物的方法,包括如下步驟:a)在邊界沉降速度條件下對製備物進行分析性超速離心,其中在時間間隔(例如一次或多次)處監測重組病毒粒子的沉降,b)繪製差示沉降係數分佈值(C(s))對以Svedberg單位(S)表示的沉降係數,c)對C(s)分佈中的每個峰下的面積求積分以確定每個峰的相對濃度,其中每個峰代表一種重組病毒粒子。在一些實施方案中,由本發明的方法鑒定出的重組病毒粒子的種包括但不限於:包含完整重組病毒基因組的完全重組病毒粒子、空重組病毒衣殼粒子、和包含不同的重組病毒基因組的重組病毒粒子。在一些實施方案中,所述不同的基因組比完整的重組病毒基因組小(例如截短的基因組)。在一些實施方案中,所述不同的基因組比完整的重組病毒基因組大(例如聚集體、重組體等)。在一些實施方案中,本發明提供評估重組病毒粒子製備物中的重組病毒粒子的載體基因組完整性的方法,其包括:a)在邊界沉降速度條件下對所述製備物進行分析性超速離心,其中在時間間隔(例如一次或多次)處監測重組病毒粒子的沉降,b)以差示沉降係數分佈值(C(s))對以Svedberg單位(S)表示的沉降係數進行繪圖,c)通過圖上存在的相對於S值的峰來鑒定製備物中的重組病毒粒子的種,其中具體種的重組病毒粒子的基因組大小通過比較所述種的S值與標準曲線來計算,所述標準曲線由包含有衣殼包被的不同的已知大小的病毒基因組的重組病毒粒子的S值產生。在一些實施方案中,所述方法 還包括對C(S)分佈中的峰下的面積求積分,以確定重組病毒粒子的每個種的相對濃度。在一些實施方案中,在一個時間間隔處監測重組病毒粒子的沉降。在一些實施方案中,在多於一個時間間隔處監測重組病毒粒子的沉降。
在本發明的一些實施方案中,通過在260nm處測量光密度或吸光度來監測重組病毒粒子(例如rAAV、rAd、慢病毒、或rHSV粒子)的沉降。測量吸光度的方法是本領域已知的。在一些實施方案中,用於AUC的超速離心機裝備了用於測量吸光度的手段。在其他實施方案中,通過干涉來監測重組病毒粒子的沉降。在一些實施方案中,通過Rayleigh干涉來監測重組病毒粒子的沉降。測量干涉的方法是本領域已知的(Furst(1997)Eur.Biophys.J.35:307-10)。在一些實施方案中,用於AUC的超速離心機裝備有用於測量干涉的手段。在一些實施方案中,通過吸光度和干涉二者來監測重組病毒粒子的沉降。在一些實施方案中,用參考標準來測量吸光度和/或干涉。在一些實施方案中,所述參考標準與重組病毒製備物的溶液匹配,除了重組病毒不存在的情況之外。例如,重組病毒製備物可以包含緩衝液中的重組病毒,所述緩衝液如磷酸鹽緩衝鹽水。在這個例子中,參考標準可以是沒有重組病毒粒子的磷酸鹽緩衝鹽水。
在本發明的一些實施方案中,病毒粒子的製備物是藥物製劑的形式。此類製劑是本領域所熟知的(參見例如Remington’s Pharmaceutical Sciences,第15版,pp.1035-1038和1570-1580)。此類藥物製劑可以是無菌水,例如水和油,包括石油、動物、蔬菜或合成來源的油,如花生油、大豆油、礦物油等等。鹽水溶液和含水的右旋糖、聚乙二醇(PEG)和甘油溶液也可以用作液體載劑,尤其是用於可注射溶液。藥物製劑還可以包含額外的成分,例如防腐劑、緩衝劑、張度劑、抗氧化劑和穩定劑、非離子濕潤劑或澄清劑、增粘劑,等等。在本發明的一些實施方案中,所述藥物製劑包含磷酸鹽緩衝鹽水。
在本發明的一些實施方案中,通過在超速離心期間連續監測病毒粒子 的沉降來確定超速離心期間病毒粒子的沉降速度。針對不同類型的病毒粒子對AUC的參數進行優化是在本領域技術人員的理解範疇內的。不受理論束縛,允許對AAV和慢病毒粒子二者進行分析的AUC設置的範圍應當使得能夠分析其他病毒粒子,包括慢病毒和HSV,因為HSV和慢病毒粒子的尺寸在AAV和腺病毒粒子的尺寸之間。在一些實施方案中,從rAAV、rHSV、慢病毒、和/或rAd粒子的數據獲取是伴隨約3,000至約20,000rpm的AUC速度進行的。在一些實施方案中,對於rAAV、rHSV、慢病毒、和/或rAd的數據分析是伴隨約1S的Smin和約1000S的Smax進行的。在一些實施方案中,對於rAAV、rHSV、慢病毒、和/或rAd粒子的數據分析是伴隨約200S至約1,000S的分辨率進行的。在一些實施方案中,分辨率是約200S、300S、400S、500S、600S、700S、800S、900S、或1000S的任一項。在一些實施方案中,分辨率是約200S至約1000S、200S至約900S、200S至約800S、200S至約700S、200S至約600S、200S至約500S、200S至約400S、200S至約300S、300S至約1000S、300S至約900S、300S至約800S、300S至約700S、300S至約600S、300S至約500S、300S至約400S、400S至約1000S、400S至約900S、400S至約800S、400S至約700S、400S至約600S、400S至約500S、500S至約1000S、500S至約900S、500S至約800S、500S至約700S、500S至約600S、600S至約1000S、600S至約900S、600S至約800S、600S至約700S、700S至約1000S、700S至約900S、700S至約800S、800S至約1000S、800S至約900S、或900S至約1000S的任一項。在一些實施方案中,分辨率是約200S。在一些實施方案中,對於rAAV、rHSV、慢病毒、和/或rAd粒子的數據分析是伴隨約100S、200S、300S、400S、500S、600S、700S、800S、900S、或1000S任一項的Smax進行的。在一些實施方案中,Smax是約100S至約1000S、100S至約900S、100S至約800S、100S至約700S、100S至約600S、100S至約500S、100S至約400S、100S至約300S、100S至約200S、200S至約1000S、200S至約900S、200S至約800S、200S至約700S、200S至約600S、200S至約500S、200S至約400S、 200S至約300S、300S至約1000S、300S至約900S、300S至約800S、300S至約700S、300S至約600S、300S至約500S、300S至約400S、400S至約1000S、400S至約900S、400S至約800S、400S至約700S、400S至約600S、400S至約500S、500S至約1000S、500S至約900S、500S至約800S、500S至約700S、500S至約600S、600S至約1000S、600S至約900S、600S至約800S、600S至約700S、700S至約1000S、700S至約900S、700S至約800S、800S至約1000S、800S至約900S、或900S至約1000S的任一項。在一些實施方案中,Smax是約200S至約5000S。在一些實施方案中,其中Smax是約200S。在一些實施方案中,應用半徑不變量(RI)和時間不變量(TI)減噪。在一些實施方案中,允許彎液面位置浮動,讓軟件來選擇最佳位置。在一些實施方案中,允許摩擦比浮動,讓軟件來選擇最佳位置。在一些實施方案中,rAAV和/或腺病毒粒子的數據分析維持恒定為1。在一些實施方案中,通過使用以非線性回歸優化的值的FIT命令,允許rAAV、HSV、慢病毒和/或腺病毒粒子的數據分析浮動。
對於重組病毒粒子(例如rAAV、rAd、慢病毒或rHSV粒子),在一些實施方案中,超速離心期間重組病毒的沉降速度通過在多於約每15秒、30秒、45秒、1分鐘(60秒)、2分鐘、3分鐘、4分鐘、5分鐘、6分鐘、7分鐘、8分鐘、9分鐘、10分鐘、15分鐘、20分鐘、25分鐘一次監測(例如掃描)重組病毒粒子的沉降來確定。掃描可以在光學系統允許的情況下盡可能快地無延遲地連續獲得。干涉掃描是快速的,並且單個掃描在~10-15秒中完成,而吸光度掃描需要~60秒。當使用雙重檢測時,兩種檢測的掃描獲取速度都取決於吸光度系統。在本發明的一些實施方案中,在超速離心期間用多於約5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、或100個掃描來監測重組病毒粒子的沉降。在一些實施方案中,最少需要30個掃描用於分析,並收集掃描直至沉降過程完成。在一些實施方案中,沉降過程通常可以通過40至75個掃描來描述。在一些實施方案中,重組病毒粒子的沉降速度基於約75個掃描來確定。在一些實施方 案中,重組病毒粒子的沉降速度基於約55至約75個掃描來確定。在一些實施方案中,重組病毒粒子的沉降速度基於約55至約60個掃描來確定。在一些實施方案中,重組病毒粒子的沉降速度基於約60至約75個掃描來確定。在一些實施方案中,重組病毒粒子的沉降速度基於約60至約70個掃描來確定。在一些實施方案中,重組病毒粒子的沉降速度基於多個超速離心(運行)來確定。在一些實施方案中,重組病毒粒子的沉降速度基於1、2、3、4、5、6、7、8、9、10個或更多個的任一項的超速離心運行來確定。在一些實施方案中,用沉降速度採用SEDFIT算法來檢測C(S)值。在一些實施方案中,將二階導數正則化應用於擬合水平,F統計值的置信水平是約0.68。在一些實施方案中,如下C(S)參數保持恒定:分辨率約100S至約200S,Smin是1,Smax是約200S至約300S,且摩擦比是約1.0至約1.2S。在一些實施方案中,應用半徑不變量(RI)和時間不變量(TI)減噪。
在本發明的一些實施方案中,重組病毒粒子製備物中重組病毒粒子(例如rAAV、rAd、慢病毒或rHSV粒子)的邊界沉降速度通過對重組病毒粒子製備物在大於約5,000rpm;10,000rpm;15,000rpm;20,000rpm;25,000rpm;30,000rpm;35,000rpm;40,000rpm;45,000rpm;或50,000rpm的任一項處進行超速離心。在一些實施方案中,所述超速離心在約5,000rpm至約50,000rpm;約10,000rpm至約50,000rpm;約15,000rpm至約50,000rpm;約20,000rpm至約50,000rpm;約25,000rpm至約50,000rpm;約30,000rpm至約50,000rpm;約35,000rpm至約50,000rpm;約40,000rpm至約50,000rpm;約45,000rpm至約50,000rpm;約5,000rpm至約45,000rpm;約10,000rpm至約45,000rpm;約15,000rpm至約45,000rpm;約20,000rpm至約45,000rpm;約25,000rpm至約45,000rpm;約30,000rpm至約45,000rpm;約40,000rpm至約45,000rpm;約5,000rpm至約40,000rpm;約10,000rpm至約40,000rpm;約15,000rpm至約40,000rpm;約20,000rpm至約40,000rpm;約25,000rpm至約40,000rpm;約30,000rpm至約40,000rpm;約35,000rpm至約40,000rpm;約5,000rpm至約35,000rpm;約10,000rpm至約35,000 rpm;約15,000rpm至約35,000rpm;約20,000rpm至約35,000rpm;約25,000rpm至約35,000rpm;約30,000rpm至約35,000rpm;約5,000rpm至約30,000rpm;約10,000rpm至約30,000rpm;約15,000rpm至約30,000rpm;約20,000rpm至約30,000rpm;約25,000rpm至約30,000rpm;約5,000rpm至約25,000rpm;約10,000rpm至約25,000rpm;約20,000rpm至約25,000rpm;約5,000rpm至約20,000rpm;約10,000rpm至約20,000rpm;約15,000rpm至約20,000rpm;約5,000rpm至約15,000rpm;約10,000rpm至約15,000rpm;或約5,000rpm至約10,000rpm的任一項運行。在本發明的一些實施方案中,重組病毒粒子製備物中重組病毒粒子的邊界沉降速度通過在約20,000rpm處對重組病毒粒子製備物進行超速離心。在本發明的一些實施方案中,重組病毒粒子製備物中重組病毒粒子的邊界沉降速度通過在約15,000rpm至約20,000rpm處對重組病毒粒子製備物進行超速離心。
在本發明的一些實施方案中,重組病毒粒子(例如rAAV、rAd、慢病毒或rHSV粒子)製備物中重組病毒粒子的邊界沉降速度通過在約或大於4℃,10℃、15℃、20℃、25℃、或30℃處對重組病毒粒子製備物進行超速離心。在一些實施方案中,超速離心在約4℃至約30℃、約4℃至約25℃、約4℃至約20℃、約4℃至約15℃、約4℃至約10℃、約10℃至約30℃、約10℃至約25℃、約10℃至約20℃、約10℃至約15℃、約15℃至約30℃、約15℃至約25℃、約15℃至約20℃、約20℃至約30℃、或約20℃至約25℃的任一項運行。在一些實施方案中,重組病毒粒子製備物中重組病毒粒子的邊界沉降速度通過在約20℃對重組病毒粒子製備物進行超速離心。在一些實施方案中,重組病毒粒子製備物中重組病毒粒子的邊界沉降速度通過在約15℃至約20℃對重組病毒粒子製備物進行超速離心。
如本文公開的,可以通過本發明的方法來分析許多種類的重組病毒粒子(例如AAV、腺病毒、慢病毒和/或HSV粒子)。合適的超速離心條件、分析算法、和其他參數可以通過本領域已知方法按照經驗來確定。用於AAV、腺病毒、慢病毒、和HSV粒子的示例性的參數以及用於選擇具體參數選項 的指導在下表1中提供,其不起限制作用。
Figure 105101529-A0202-12-0038-1
Figure 105101529-A0202-12-0039-2
在一些方面,本發明提供用於確定重組病毒粒子(例如rAAV、rAd、慢病毒或rHSV粒子)製備物中空衣殼的存在的方法,包括如下步驟:a)在邊界沉降速度條件下對所述製備物進行分析性超速離心,其中在時間間隔(例如一次或多次)處監測重組病毒粒子的沉降,及b)以差示沉降係數分佈值(C(s))對以Svedberg單位(S)表示的沉降係數進行繪圖,其中對應於空衣殼粒子的S值的峰的存在指示存在空衣殼粒子。在一些實施方案中,本發明提供測量重組病毒粒子製備物中相對量空衣殼的方法,其包括如下步驟:a)在 邊界沉降速度條件下對所述製備物進行分析性超速離心,其中在時間間隔(例如一次或多次)處監測重組病毒粒子的沉降,b)以差示沉降係數分佈值(C(s))對以Svedberg單位(S)表示的沉降係數進行繪圖,c)對C(s)分佈中每個峰下的面積求積分以確定每個重組病毒粒子種的相對濃度,d)將具有對應於空衣殼粒子的S值的重組病毒粒子的量與具有對應於包含完整病毒基因組的重組病毒粒子的S值的重組病毒粒子的量進行比較。在一些實施方案中,將具有對應於空衣殼粒子的S值的重組病毒粒子的量與製備物中所有重組病毒粒子的總量進行比較,所述總量通過對C(S)對S的圖上所有峰求積分而得出。
在一些方面,本發明提供確定確定重組病毒粒子(例如rAAV、rAd、慢病毒或rHSV粒子)製備物中重組病毒粒子變體的存在的方法,其包括如下步驟:a)在邊界沉降速度條件下對所述製備物進行分析性超速離心,其中在時間間隔(例如一次或多次)處監測重組病毒粒子的沉降,b)以差示沉降係數分佈值(C(s))對以Svedberg單位(S)表示的沉降係數進行繪圖,其中與包含完全完整重組病毒基因組的重組病毒衣殼粒子的S值不同的S值所對應的峰的存在指示存在重組病毒粒子變體。在一些實施方案中,本發明提供測量重組病毒粒子製備物中相對量重組病毒粒子變體的方法,其包括如下步驟:a)在邊界沉降速度條件下對所述製備物進行分析性超速離心,其中在時間間隔(例如一次或多次)處監測重組病毒粒子的沉降,b)以差示沉降係數分佈值(C(s))對以Svedberg單位(S)表示的沉降係數進行繪圖,c)對C(s)分佈中每個峰下的面積求積分以確定每個重組病毒粒子種的相對濃度,d)將具有對應於空衣殼粒子的S值的重組病毒粒子的量與具有對應於包含完整病毒基因組的重組病毒粒子的S值的重組病毒粒子的量進行比較。在一些實施方案中,將S值與包含完全完整重組病毒基因組的重組病毒衣殼粒子的S值不同的重組病毒粒子的量與製備物中所有重組病毒粒子的總量進行比較,所述總量是通過對C(S)對S的圖上所有峰求積分而得到的。在一些實施方案中,重組病毒粒子變體包含比全長完整病毒基因組更小(例如截 短的)或更大的重組病毒基因組。還能檢測出其他病毒衣殼包被的DNA雜質。
在一些實施方案中,本發明提供在重組病毒粒子(例如rAAV、rAd、慢病毒或rHSV粒子)製備物的純化過程中監測空衣殼和/或包含不同重組病毒基因組的衣殼粒子的去除的方法,該方法包括在純化過程的一個或多個步驟後從所述製備物移出重組病毒粒子的樣品,和用本文所述的AUC來分析樣品的空衣殼的相對量。其中空衣殼和/或包含不同基因組的衣殼粒子與完全衣殼相比的相對量的降低指示空衣殼從重組病毒粒子製備物的去除。
在一些實施方案中,本發明提供確定重組病毒粒子(例如rAAV、rAd、慢病毒或rHSV粒子)製備物中重組病毒粒子的異質性的方法,其包括如下步驟:a)在邊界沉降速度條件下對所述製備物進行分析性超速離心,其中在時間間隔(例如一次或多次)處監測重組病毒粒子的沉降,b)以差示沉降係數分佈值(C(s))對以Svedberg單位(S)表示的沉降係數進行繪圖,其中除代表包含完整病毒基因組的衣殼的峰以外的峰的存在指示製備物中重組病毒粒子的異質性。在一些實施方案中,本發明的方法鑒定的重組病毒粒子的種包括但不限於:包含完整重組病毒基因組的完全重組病毒粒子、空重組病毒衣殼粒子、和包含不同的重組病毒基因組的重組病毒粒子。在一些實施方案中,所述不同的基因組比完整重組病毒基因組小(例如截短的基因組)。在一些實施方案中,所述不同的基因組比完整重組病毒基因組大(例如聚集體、重組體等等)。在一些實施方案中,所述不同的基因組包括比完整重組病毒基因組更小或更大的基因組。
本發明提供在重組病毒粒子(例如rAAV、rAd、慢病毒或rHSV粒子)製備物的純化過程中監測重組病毒粒子的異質性的方法,該方法包括在純化過程的一個或多個步驟後從所述製備物移出重組病毒粒子的樣品,和用本文所述AUC來確定包含完整重組病毒基因組的完全衣殼、空衣殼和/或具有不同基因組的重組病毒粒子的相對量,其中包含完整病毒基因組的重組病毒粒子的相對量的增加指示重組病毒粒子製備物中完全病毒粒子的異質 性增加。
在上述實施方案的實施方案中,重組病毒粒子已用一個或多個純化步驟進行純化。純化步驟的例子包括但不限於平衡離心、陰離子交換過濾、切向流過濾(TFF)、磷灰石色譜、輔助病毒的熱失活、疏水相互作用色譜、免疫親和力色譜、大小排阻色譜(SEC)、納米過濾、陽離子交換色譜、和陰離子交換色譜。
在上述實施方案的實施方案中,重組病毒粒子包含自我裝配的AAV(scAAV)基因組。在一些實施方案中,重組的AAV基因組包含第一異源多核苷酸序列(例如治療性轉基因編碼鏈)和第二異源多核苷酸序列(例如治療性轉基因的非編碼或反義鏈),其中所述第一異源多核苷酸序列能與第二多核苷酸序列按照其大多數或全部長度形成鏈內鹼基對。在一些實施方案中,第一異源多核苷酸序列和第二異源多核苷酸序列通過促進鏈內鹼基配對的序列而連接;例如髮夾DNA結構。髮夾結構是本領域已知的,例如在siRNA分子中。在一些實施方案中,第一異源多核苷酸序列和第二異源多核苷酸序列通過突變的ITR而連接。在一些實施方案中,scAAV病毒粒子包含單體形式的scAAV基因組。在一些實施方案中,scAAV病毒粒子包含二聚體形式的scAAV基因組。在一些實施方案中,本文所述的AUC用於檢測包含單體形式的scAAV基因組的rAAV粒子的存在。在一些實施方案中,本文所述的AUC用於檢測包含二聚體形式的scAAV基因組的rAAV粒子的存在。在一些實施方案中,通過本文所述的AUC來監測將scAAV基因組包裝進衣殼中。
在上述實施方案的實施方案中,rAAV粒子包含AAV1衣殼、AAV2衣殼、AAV3衣殼、AAV4衣殼、AAV5衣殼、AAV6衣殼(例如野生型AAV6衣殼、或變體AAV6衣殼如ShH10,如U.S.PG Pub.2012/0164106中所述)、AAV7衣殼、AAV8衣殼、AAVrh8衣殼、AAVrh8R、AAV9衣殼(例如野生型AAV9衣殼、或經修飾的AAV9衣殼,如U.S.PG Pub.2013/0323226中所述)、AAV10衣殼、AAVrh10衣殼、AAV11衣殼、AAV12衣殼、酪氨 酸衣殼突變體、肝素結合衣殼突變體、AAV2R471A衣殼、AAVAAV2/2-7m8衣殼、AAV DJ衣殼(例如AAV-DJ/8衣殼、AAV-DJ/9衣殼、或U.S.PG Pub.2012/0066783中所述的任何其他衣殼)、AAV2 N587A衣殼、AAV2 E548A衣殼、AAV2 N708A衣殼、AAV V708K衣殼、山羊AAV衣殼、AAV1/AAV2嵌合衣殼、牛AAV衣殼、小鼠AAV衣殼、或美國專利No.8,283,151或國際公開No.WO/2003/042397中所述的AAV衣殼。在上述實施方案的實施方案中,rAAV粒子包含至少一個AAV1 ITR、AAV2 ITR、AAV3 ITR、AAV4 ITR、AAV5 ITR、AAV6 ITR、AAV7 ITR、AAV8 ITR、AAVrh8 ITR、AAV9 ITR、AAV10 ITR、AAVrh10 ITR、AAV11 ITR、AAV12 ITR、AAV DJ ITR、山羊AAV ITR、牛AAV ITR、或小鼠AAV ITR。在一些實施方案中,rAAV粒子包含來自一個AAV血清型的ITR和來自另一個血清型的AAV衣殼。例如,rAAV衣殼可以包含側翼有至少一個AAV2 ITR的治療性轉基因,其被包被於AAV9衣殼中。此類組合可以稱為假型rAAV粒子。
IV. 病毒粒子
本發明公開的方法尤其可以用於在各種病毒粒子(例如與具有截短的基因組的病毒粒子和/或包含DNA雜質的病毒粒子相比,具有完整基因組的病毒粒子)中表徵感興趣的種。
在一些實施方案中,病毒粒子是包含核酸的重組的AAV粒子,所述核酸包含側翼有一個或兩個ITR的轉基因。所述核酸被包被在AAV粒子中。AAV粒子還包含衣殼蛋白。在一些實施方案中,所述核酸包含感興趣的蛋白編碼序列(例如治療性轉基因),其可操作地連接朝向轉錄、控制序列的成分,包括轉錄起始和終止序列,進而形成表達盒。表達盒在5’和3’側翼有至少一個功能性的AAV ITR序列。“功能性的AAV ITR序列”,其意指用於恢復AAV病毒體的複製和包裝的ITR序列功能。參見Davidson等,PNAS,2000,97(7)3428-32;Passini等,J.Virol.,2003,77(12):7034-40;和Pechan等,Gene Ther.,2009,16:10-16,其全部在此通過提述以其整體併入。為了實施 本發明的一些方面,重組載體至少包含對於衣殼包被所必需的AAV的所有序列和用於被rAAV感染的物理結構。本發明用於在載體中使用的AAV ITR不需要具有野生型核苷酸序列(例如Kotin,Hum.Gene Ther.,1994,5:793-801中所述),並且可以通過核苷酸的插入、缺失或替換來改變,或者所述AAV ITR可以來源於一些AAV血清型的任一項。目前已知超過40個血清型的AAV,並且還在繼續鑒定新的血清型和現有血清型的變體。參見Gao等,PNAS,2002,99(18):11854-6;Gao等,PNAS,2003,100(10):6081-6;和Bossis等,J.Virol.,2003,77(12):6799-810。任何AAV血清型的用途都理解為在本發明的範圍內。在一些實施方案中,rAAV載體是來源於這樣的AAV血清型的載體,所述AAV包括但不限於:AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAVrh.8、AAVrh.10、AAV11、AAV12、酪氨酸衣殼突變體、肝素結合衣殼突變體、AAV2R471A衣殼、AAVAAV2/2-7m8衣殼、AAV DJ衣殼、AAV2 N587A衣殼、AAV2 E548A衣殼、AAV2 N708A衣殼、AAV V708K衣殼、山羊AAV衣殼、AAV1/AAV2嵌合衣殼、牛AAV衣殼、或小鼠AAV衣殼,等等。在一些實施方案中,AAV中的核酸包含AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAVrh.8、AAVrh10、AAV11、AAV12等等的ITR。在進一步的實施方案中,rAAV粒子包含AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAVrh.8、AAVrh.10、AAV11、AAV12等等的衣殼蛋白。在進一步的實施方案中,rAAV粒子包含來自進化枝(Clades)A-F的AAV血清型的衣殼蛋白(Gao,等J.Virol.2004,78(12):6381)。
用不同的AAV血清型來優化具體的靶細胞的轉導或在具體靶組織(例如患病組織)內靶向具體的細胞類型。rAAV粒子可以含有相同血清型的或混合血清型的病毒蛋白和病毒核酸。例如rAAV粒子可以包含AAV9衣殼蛋白和至少一個AAV2 ITR或其可以包含AAV2衣殼蛋白和至少一個AAV9 ITR。在又一個實施方案中,rAAV粒子可以包含來自AAV9和AAV2 二者的衣殼蛋白,並進一步包含至少一個AAV2 ITR。本文提供用於產生rAAV粒子的AAV血清型的任意組合,如同每個組合已在此處明確記載一樣。
在一些實施方案中,AAV包含至少一個AAV1 ITR和來自AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAVrh.8、AAVrh10、AAV11、和/或AAV12的任一項的衣殼蛋白。在一些實施方案中,AAV包含至少一個AAV2 ITR和來自AAV1、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAVrh.8、AAVrh10、AAV11、和/或AAV12的任一項的衣殼蛋白。在一些實施方案中,AAV包含至少一個AAV3 ITR和來自AAV1、AAV2、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAVrh.8、AAVrh10、AAV11、和/或AAV12的任一項的衣殼蛋白。在一些實施方案中,AAV包含至少一個AAV4 ITR和來自AAV1、AAV2、AAV3、AAV5、AAV6、AAV7、AAV8、AAV9、AAVrh.8、AAVrh10、AAV11、和/或AAV12的任一項的衣殼蛋白。在一些實施方案中,AAV包含至少一個AAV5 ITR和來自AAV1、AAV2、AAV3、AAV4、AAV6、AAV7、AAV8、AAV9、AAVrh.8、AAVrh10、AAV11、和/或AAV12的任一項的衣殼蛋白。在一些實施方案中,AAV包含至少一個AAV6 ITR和來自AAV1、AAV2、AAV3、AAV4、AAV5、AAV7、AAV8、AAV9、AAVrh.8、AAVrh10、AAV11、和/或AAV12的任一項的衣殼蛋白。在一些實施方案中,AAV包含至少一個AAV7 ITR和來自AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV8、AAV9、AAVrh.8、AAVrh10、AAV11、和/或AAV12的任一項的衣殼蛋白。在一些實施方案中,AAV包含至少一個AAV8 ITR和來自AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV9、AAVrh.8、AAVrh10、AAV11、和/或AAV12的任一項的衣殼蛋白。在一些實施方案中,AAV包含至少一個AAV9 ITR和來自AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh.8、AAVrh10、AAV11、和/或AAV12的任一項的衣殼蛋白。在一些實施方案中,AAV包含至少一個AAVrh8 ITR和來自AAV1、AAV2、AAV3、AAV4、AAV5、 AAV6、AAV8、AAV9、AAVrh10、AAV11、和/或AAV12的任一項的衣殼蛋白。在一些實施方案中,AAV包含至少一個AAVrh10 ITR和來自AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV11、和/或AAV12的任一項的衣殼蛋白。在一些實施方案中,AAV包含至少一個AAV11 ITR和來自AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAV9、AAVrh10、和/或AAV12的任一項的衣殼蛋白。在一些實施方案中,AAV包含至少一個AAV12 ITR和來自AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV rh8、AAV9、AAVrh10、和/或AAV11的任一項的衣殼蛋白。
自身互補的AAV病毒基因組
在一些方面,本發明提供包含重組的自身互補的基因組的病毒粒子。含有自身互補的基因組的AAV病毒粒子和使用自身互補的AAV基因組的方法如US專利號6,596,535;7,125,717;7,765,583;7,785,888;7,790,154;7,846,729;8,093,054;和8,361,457;和Wang Z.,等,(2003)Gene Ther 10:2105-2111中所述,其各自在此通過提述以其整體併入。包含自身互補的基因組的rAAV會憑藉其部分互補的序列(例如轉基因的互補的編碼和非編碼鏈)快速地形成雙鏈DNA分子。在一些實施方案中,本發明提供包含AAV基因組的AAV病毒粒子,其中rAAV基因組包含第一異源多核苷酸序列(例如治療性轉基因編碼鏈)和第二異源多核苷酸序列(例如治療性轉基因的非編碼或反義鏈),其中所述第一異源多核苷酸序列能與第二多核苷酸序列按照其大多數或全部長度形成鏈內鹼基對。在一些實施方案中,第一異源多核苷酸序列和第二異源多核苷酸序列通過促進鏈內鹼基配對的序列而連接;例如髮夾DNA結構。髮夾結構是本領域已知的,例如在siRNA分子中。在一些實施方案中,第一異源多核苷酸序列和第二異源多核苷酸序列通過突變的ITR(例如右邊的ITR(right ITR))而連接。突變的ITR包含D區的缺失,所述D區包含末端分辨序列。結果,在複製AAV病毒基因組時,rep 蛋白不會在突變的ITR處切割病毒基因組,同樣地,以5’至3’的順序包含如下項的重組病毒基因組會被包裝於病毒衣殼中:AAV ITR、包括調控序列的第一異源多核苷酸序列、突變的AAV ITR、與第一異源多核苷酸方向相反的第二異源多核苷酸和第三AAV ITR。
在一些實施方案中,病毒粒子是腺病毒粒子。在一些實施方案中,所述腺病毒粒子是重組腺病毒粒子,例如包含一個或多個異源序列(即非腺病毒原有的核酸序列)的多核苷酸載體,所述異源序列在兩個ITR之間。在一些實施方案中,腺病毒粒子缺乏或含有一個或多個E1基因的有缺陷的拷貝,這導致腺病毒複製缺陷。腺病毒包括線性的、雙鏈DNA基因組,其在大的(~950Å)、非包膜的二十面體衣殼內。腺病毒具有大基因組,所述大基因組能整合大於30kb的異源序列(例如代替E1和/或E3區),使其獨特地適於與較大的異源基因一起使用。還已知它們感染分裂的和非分裂的細胞並且不天然整合至宿主基因組中(雖然雜交變體可能具有這種能力)。在一些實施方案中,腺病毒載體可以是第一代腺病毒載體,其E1被異源序列取代。在一些實施方案中,腺病毒載體以是第二代腺病毒載體,其具有E2A、E2B、和/或E4中的缺失或額外的突變。在一些實施方案中,腺病毒載體可以是第三代或掏空的(gutted)腺病毒載體,其缺乏所有病毒編碼基因,僅保留ITR和包裝信號並且需要反式的(in trans)輔助腺病毒用於複製,和包裝。已經研究了腺病毒粒子用作載體的用途,所述載體用於瞬時轉染哺乳動物細胞以及基因治療載體。進一步的描述請參見Danthinne,X.和Imperiale,M.J.(2000)Gene Ther.7:1707-14,及Tatsis,N.和Ertl,H.C.(2004)Mol.Ther.10:616-29。
在一些實施方案中,病毒粒子是包含核酸的重組腺病毒粒子,所述核酸包含轉基因。任何腺病毒血清型的用途都視為在本發明的範圍內。在一些實施方案中,重組腺病毒載體是來源於腺病毒血清型的載體,包括但不限於:AdHu2、AdHu 3、AdHu4、AdHu5、AdHu7、AdHu11、AdHu24、AdHu26、AdHu34、AdHu35、AdHu36、AdHu37、AdHu41、AdHu48、AdHu49、AdHu50、AdC6、AdC7、AdC69、牛Ad 3型、犬Ad 2型、綿羊Ad、和豬 Ad 3型。腺病毒粒子還包含衣殼蛋白。在一些實施方案中,重組病毒粒子包含腺病毒粒子與一個或多個外來病毒衣殼蛋白組合。此類組合可以稱為假型重組腺病毒粒子。用於假型重組腺病毒粒子中的外來病毒衣殼蛋白來源於外來病毒或來自另一腺病毒血清型。在一些實施方案中,外來病毒衣殼蛋白來源於,包括但不限於呼腸孤病毒3型(reovirus type 3)。用於假型腺病毒粒子中的載體和衣殼蛋白組合的例子可以在如下參考文獻中找到(Tatsis,N.等(2004)Mol.Ther.10(4):616-629及Ahi,Y.等(2011)Curr.Gene Ther11(4):307-320)。可以用不同的腺病毒血清型來優化具體靶細胞的轉導或在具體的靶組織(例如患病組織)內靶向具體的細胞類型。被具體的腺病毒血清型靶向的組織或細胞包括但不限於肺(例如HuAd3),脾和肝(例如HuAd37),平滑肌,滑膜細胞,樹突細胞,心血管細胞,腫瘤細胞系(例如HuAd11),和樹突細胞(例如HuAd5假型呼腸孤病毒3型,HuAd30,或HuAd35)。進一步描述請參見Ahi,Y.等(2011)Curr.Gene Ther.11(4):307-320,Kay,M.等(2001)Nat.Med.7(1):33-40,及Tatsis,N.等(2004)Mol.Ther.10(4):616-629。
在一些實施方案中,病毒粒子是慢病毒粒子。在一些實施方案中,慢病毒粒子是重組慢病毒粒子,例如包含一個或多個異源序列(即非慢病毒原有的核酸序列)的多核苷酸載體,所述異源序列在兩個ITR之間慢病毒是正股(positive-sense)的ssRNA逆轉錄病毒,其基因組約為10kb。已知慢病毒整合至分裂的和非分裂的細胞中。慢病毒粒子可以通過例如將多個質體(通常將慢病毒基因組和複製和/或所需的基因分離以避免病毒複製)轉染至包裝細胞系中來產生,所述包裝細胞系將經修飾的慢病毒基因組包裝至慢病毒粒子中。在一些實施方案中,慢病毒粒子可以意指缺乏包膜蛋白的第一代載體。在一些實施方案中,慢病毒粒子可以意指缺乏所有基因(除gag/pol和tat/rev區外)第二代載體。在一些實施方案中,慢病毒粒子可以意指僅含有內源的rev、gag、和pol基因且具有嵌合的LTR用於無tat基因的轉導的第三代載體(參見Dull,T.等(1998)J.Virol.72:8463-71)。進一步的描述請參 見Durand,S.和Cimarelli,A.(2011)Viruses 3:132-59。
在一些實施方案中,病毒粒子是包含核酸的重組慢病毒粒子,所述核酸包含轉基因。任何腺病毒血清型的用途都視為在本發明的範圍內。在一些實施方案中,慢病毒載體來源於如下慢病毒,其包括但不限於:人免疫缺陷病毒-1(HIV-1)、人免疫缺陷病毒-2(HIV-2)、猴免疫缺陷病毒(SIV)、貓免疫缺陷病毒(FIV)、馬傳染性貧血病毒(EIAV)、牛免疫缺陷病毒(BIV)、Jembrana病病毒(JDV)、綿羊髓鞘脫落病毒(visna virus,VV)、和山羊關節炎腦炎病毒(caprine arthritis encephalitis virus,CAEV)。慢病毒粒子還包含衣殼蛋白。在一些實施方案中,重組病毒粒子包含慢病毒載體與一個或多個外來病毒衣殼蛋白組合。此類組合可以稱為假型重組慢病毒粒子。在一些實施方案中,用於假型重組慢病毒粒子中的外來病毒衣殼蛋白來源於外來病毒。在一些實施方案中,用於假型重組慢病毒粒子中的外來病毒衣殼蛋白是水皰性口炎病毒糖蛋白(VSV-GP)。VSV-GP與普遍存在的細胞受體相互作用,產生針對假型重組慢病毒粒子的廣泛的組織嗜性(tissue tropism)。此外,VSV-GP據信對假型重組慢病毒粒子提供較高的穩定性。在其他實施方案中,所述外來的病毒衣殼蛋白來源於,包括但不限於:金地普拉病毒(Chandipura virus)、狂犬病病毒、莫科拉病毒(Mokola virus)、淋巴細胞性脈絡叢腦膜炎病毒(LCMV)、羅斯河病毒(RRV)、辛德比斯病毒(Sindbis virus)、塞姆利基森林病毒(SFV)、委內瑞拉馬腦炎病毒、埃博拉病毒萊斯頓(Ebola virus Reston)、埃博拉病毒紮伊爾(Ebola virus Zaire)、馬爾堡病毒、拉沙病毒、禽白血病病毒(ALV)、綿羊肺腺瘤反轉錄病毒(JSRV)、莫洛尼鼠白血病病毒(MLV)、長臂猿白血病病毒(Gibbon ape leukemia virus,GALV)、貓內源性逆轉錄病毒(RD114)、人嗜T-淋巴細胞病毒1(HTLV-1)、人泡沫病毒、梅迪-維斯那病毒(Maedi-visna virus,MVV)、SARS-CoV、仙台病毒、呼吸道合胞體病毒(RSV)、人副流感病毒3型、丙型肝炎病毒(HCV)、流感病毒、禽疫病毒(FPV)、或苜蓿銀紋夜蛾多發多角體病毒(Autographa californica multiple nucleopolyhedro virus,AcMNPV)。假型慢病毒粒子中使用的載體和 衣殼蛋白組合的例子可見於例如Cronin,J.等(2005).Curr.Gene Ther.5(4):387-398中。可以用不同的假型重組慢病毒粒子來優化具體的靶細胞的轉導或在具體的靶組織(例如患病組織)內靶向具體的細胞類型。例如,被具體的假型重組慢病毒粒子靶向的組織包括但不限於肝臟(例如用VSV-G、LCMV、RRV、或SeV F蛋白假型化的)、肺(例如用Ebola、Marburg、SeV F和HN、或JSRV蛋白假型化的)、胰島細胞(例如用LCMV蛋白假型化的)、中樞神經系統(例如用VSV-G、LCMV、狂犬病、或Mokola蛋白假型化的)、視網膜(例如用VSV-G或Mokola蛋白假型化的)、單核細胞或肌肉(例如用Mokola或Ebola蛋白假型化的)、造血系統(例如用RD114或GALV蛋白假型化的)、或癌細胞(例如用GALV或LCMV蛋白假型化的)。進一步的描述請參見J.等(2005).Curr.Gene Ther.5(4):387-398及Kay,M.等(2001)Nat.Med.7(1):33-40。
一些實施方案中,病毒粒子是簡單皰疹病毒(HSV)粒子。在一些實施方案中,所述HSV粒子是rHSV粒子,例如包含一個或多個異源序列(即非HSV原有的核酸序列)的多核苷酸載體,所述異源序列在兩個TR之間。HSV是包膜包被的雙鏈DNA病毒,其基因組約為152kb。有利的是,其約一半的基因是非必需的,並且可以將其缺失來適應異源序列。HSV粒子感染非分裂的細胞。此外它們在神經元中自發形成延遲,通過逆向運輸來移動,並能轉移經過突觸,這使它們對於神經元的轉染和/或涉及神經元系統的基因治療途徑更有優勢。在一些實施方案中,HSV粒子可以是複製缺陷性的或能夠複製的(例如能夠通過一個或多個後期基因的失活來進行單一複製循環)。進一步的描述請參見Manservigi,R.等(2010)Open Virol.J.4:123-56.。
在一些實施方案中,病毒粒子是包含核酸的rHSV粒子,所述核酸包含轉基因。任何HSV載體的用途都視為在本發明的範圍內。在一些實施方案中,HSV載體來源於包括但不限於HSV-1和HSV-2的HSV血清型。HSV粒子還包含衣殼蛋白。在一些實施方案中,重組病毒粒子包含HSV載體與一個或多個外來病毒衣殼蛋白組合。此類組合可以稱為假型rHSV粒子。在 一些實施方案中,假型rHSV粒子中使用的外來病毒衣殼蛋白來源於外來病毒或來自另一個HSV血清型。在一些實施方案中,假型rHSV粒子中使用的外來病毒衣殼蛋白是水皰性口炎病毒糖蛋白(VSV-GP)。VSV-GP與普遍存在的細胞受體相互作用,產生針對假型rHSV粒子的廣泛的組織嗜性。此外,VSV-GP據信對假型rHSV粒子提供較高的穩定性。在其他實施方案中,所述外來病毒衣殼蛋白可以來自不同的HSV血清型。例如,HSV-1載體可以含有一個或多個HSV-2衣殼蛋白。可以用不同的HSV血清型來優化具體靶細胞的轉導或在具體的靶組織(例如患病組織)內靶向具體的細胞類型。被特異性的腺病毒靶向的組織或細胞,包括但不限於中樞神經系統和神經元(例如HSV-1)。進一步的描述請參見Manservigi,R.等(2010)Open Virol J 4:123-156、Kay,M.等(2001)Nat.Med.7(1):33-40、及Meignier,B.等(1987)J.Infect.Dis.155(5):921-930。
V. 病毒載體的生產
本領域已知許多方法用於產生rAAV載體,包括轉染、穩定細胞系生產、和感染性雜交病毒生產系統,其包括腺病毒-AAV雜交、皰疹病毒-AAV雜交(Conway,JE等,(1997)J.Virology 71(11):8780-8789)和杆狀病毒-AAV雜交。用於生產rAAV病毒粒子的rAAV生產培養全部需要:1)合適的宿主細胞,例如人來源的細胞系如HeLa、A549或293細胞,或對於杆狀病毒生產系統而言是昆蟲來源的細胞系如SF-9;2)合適的輔助病毒功能,其由烴輔助功能的野生型或突變型腺病毒(如溫度敏感性腺病毒)、皰疹病毒、杆狀病毒、或質體構建體提供;3)AAV rep和cap基因和基因產物;4)側翼有至少一個AAV ITR序列的轉基因(如治療性轉基因);和5)合適的培養基和培養基組分來支持rAAV生產。在一些實施方案中,AAV rep和cap基因產物可以來自任何AAV血清型。通常而言,但不是必須,AAV rep基因產物是與rAAV載體基因組的ITR的相同血清型的,只要rep基因產物可以發揮複製和包裝rAAV基因組的功能。可以用本領域已知的合適的培養 基來生產rAAV載體。這些培養基包括但不限於:Hyclone Laboratories和JRH,包括改良型Eagle培養基(Modified Eagle Medium,MEM),Dulbecco氏改良型Eagle培養基(Dulbecco's Modified Eagle Medium,DMEM),常用配製物如中美國專利No.6,566,118中所述的那些,和美國專利No.6,723,551中所述的Sf-900 II SFM培養基,其各自在此通過提述以其整體併入,尤其是對於用於生產重組AAV載體的常用培養基配製物而言。在一些實施方案中,AAV輔助功能由腺病毒或HSV提供。在一些實施方案中,AAV輔助功能由杆狀病毒提供並且宿主細胞是昆蟲細胞(例如草地夜蛾(Spodoptera frugiperda)(Sf9)細胞)。
本發明的合適的rAAV生產培養基可以用血清或血清來源的重組蛋白以0.5%-20%(v/v或w/v)的水平來進行補充。或者,如本領域所知,rAAV載體可以在無血清條件中生產,其也稱為不含動物來源產物的培養基。本領域一個普通技術人員可以理解,意在支持rAAV載體的生產的商用的或定制的培養基都可以用一個或多個本領域已知的細胞培養組分來補充,所述細胞培養組分包括但不限於葡萄糖、維生素、胺基酸、和/或生長因子,從而增加生產培養物中rAAV的力價。
在一些方面,本發明提供用於製備具有減少的空衣殼的rAAV粒子的方法,包括:a)在適合rAAV生產的條件下培養宿主細胞,其中所述細胞包含:i)編碼異源轉基因的核酸,其側翼為至少一個AAV ITR,ii)包含AAV rep和cap編碼區的核酸,其中所述核酸包含突變的p5啟動子,其中自所述p5啟動子的表達與野生型p5啟動子相比降低,及iii)編碼AAV輔助病毒功能的核酸;b)裂解宿主細胞以釋放rAAV粒子;c)分離由宿主細胞產生的rAAV粒子;及d)通過分析性超速離心法,如上文所述分析rAAV粒子中空衣殼和/或具有不同基因組的rAAV粒子的存在。在一些實施方案中,編碼AAV rep和cap區的核酸的p5啟動子位於rep和/或cap編碼區的3’。在一些實施方案中,編碼AAV rep和cap區的核酸是質體pHLP、pHLP19或pHLP09(參見美國專利Nos.5,622,856;6,001,650;6,027,931;6,365,403; 6,376,237;和7,037,713;各自內容在此以其整體併入)。在一些實施方案中,AAV輔助病毒功能包括腺病毒E1A功能、腺病毒E1B功能、腺病毒E2A功能、腺病毒VA功能和腺病毒E4 orf6功能。
rAAV生產培養基可以在適合所利用的具體宿主細胞的多種條件下生長(跨越廣範圍的溫度,培養各種的時間長度,等等)。如本領域所知,rAAV生產培養物包括附著依賴性的(attachment-dependent)培養物,其可以培養於合適的附著依賴性的容器中,如,例如滾瓶、中空纖維過濾器、微載體、和包裝的床(packed-bed)或液化床(fluidized-bed)生物反應器。rAAV載體生產培養物還可以包括適於懸浮的宿主細胞如HeLa、293和SF-9細胞,其可以以多種方式來培養,包括例如旋轉瓶(spinner flasks)、攪拌槽生物反應器、和一次性系統如波動袋系統(Wave bag system)。
可以通過裂解生產培養物的宿主細胞或通過從生產培養物收獲用過的培養基,從rAAV生產培養物收獲本發明的rAAV載體粒子,只要在本領域已知引起rAAV粒子從完整細胞釋放至培養基中的條件下培養細胞,如美國專利No.6,566,118中更詳細所述。合適的裂解細胞的方法也是本領域已知的,並且包括例如多個冷凍/復蘇循環、微液化(microfluidization)、和用化學品處理,如洗滌劑和/或蛋白酶。
本領域已知許多生產腺病毒載體粒子的方法。例如,對於掏空的腺病毒載體,可以將腺病毒載體基因組和輔助腺病毒基因組轉染至包裝細胞系(例如293細胞系)中。在一些實施方案中,輔助腺病毒基因組可以含有重組位點,所述重組位點位於其包裝信號側翼,並且兩個基因組都可以轉染至表達重組酶(例如可以用Cre/loxP系統)的包裝細胞系中,從而使感興趣的腺病毒載體比輔助腺病毒更有效地包裝(參見例如Alba,R.等(2005)Gene Ther.12 Suppl 1:S18-27)。可以用標準方法來收穫和純化腺病毒載體,例如本文所述的那些。
本領域已知許多生產慢病毒載體粒子方法。例如,對於第三代慢病毒載體,可以將含有感興趣的慢病毒基因組(其含有gag和pol基因)的載體與 含有的rev基因的載體共轉染至包裝細胞系(例如293細胞系)中。感興趣的慢病毒基因組還含有在Tat不存在時促進轉錄的嵌合LTR(參見Dull,T.等(1998)J.Virol.72:8463-71)。可以用此處所述的方法(例如Segura MM,等,(2013)Expert Opin Biol Ther.13(7):987-1011)來收獲和純化慢病毒載體。
本領域已知許多生產HSV粒子方法。可以用標準方法來收獲和純化HSV載體,如本文所述的那些。例如,對於複製缺乏的HSV載體,可以將缺乏所有中早期(IE)基因的感興趣的HSV基因組轉染至補充細胞系中,所述補充細胞系提供病毒生產所需的基因,如ICP4、ICP27和ICP0(參見例如Samaniego,L.A.等(1998)J.Virol.72:3307-20)。可以用所述的方法(例如Goins,WF等,(2014)Herpes Simplex Virus Methods in Molecular Biology 1144:63-79)來收獲和純化HSV載體。
VI. rAAV載體的生產
在收穫時,本發明的rAAV生產培養物可以含有如下項的一項或多項:(1)宿主細胞蛋白質;(2)宿主細胞DNA;(3)質體DNA;(4)輔助病毒;(5)輔助病毒蛋白質;(6)輔助病毒DNA;和(7)培養基組分,包括例如血清蛋白、胺基酸、轉鐵蛋白和其他低分子量蛋白質。此外,rAAV生產培養物還包括具有選自下組的AAV衣殼血清型的rAAV粒子:AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAV9、AAV10、AAVrh10、AAV11、或AAV12。在一些實施方案中,rAAV生產培養物還包含空AAV衣殼(例如包含衣殼蛋白但不含rAAV基因組的rAAV粒子)。在一些實施方案中,rAAV生產培養物還包含rAAV粒子,所述rAAV粒子包含不同的rAAV基因組(例如包含與完整全長rAAV基因組不同的rAAV基因組的rAAV粒子)。在一些實施方案中,rAAV生產培養物還包含rAAV粒子,所述rAAV粒子包含截短的rAAV基因組。在一些實施方案中,rAAV生產培養物還包含rAAV粒子,所述rAAV粒子包含AAV-衣殼包被的DNA雜質。
在一些實施方案中,對rAAV生產培養物收穫物進行澄清以去除宿主細胞碎片。在一些實施方案中,通過經一系列深度濾器的過濾對生產培養物收穫物進行澄清,所述深度濾器例如等級DOHC Millipore Millistak+HC Pod過濾器,等級A1HC Millipore Millistak+HC Pod過濾器、和0.2μm Filter Opticap XL1O Millipore Express SHC親水性膜過濾器。可以通過多種本領域已知標準技術來達到澄清,例如本領域已知的離心或通過任何0.2μm或更大孔徑的醋酸纖維素濾膜的過濾。
在一些實施方案中,進一步用Benzonase®處理rAAV生產培養物收穫物以消化生產培養物中存在的任何高分子量DNA。在一些實施方案中,在本領域已知的標準條件下進行Benzonase®消化,所述標準條件包括例如1-2.5單位/ml的Benzonase®終濃度,溫度範圍為室溫至37℃,時間為30分鐘至數小時。
可以用如下純化步驟的一個或多個來分離或純化rAAV粒子:平衡離心;流經式(flow-through)陰離子交換過濾;用於濃縮rAAV粒子的切向流過濾(TFF);通過磷灰石色譜的rAAV捕獲;通過輔助病毒的熱失活;通過疏水相互作用色譜的rAAV捕獲;通過大小排阻色譜(SEC)的緩衝液交換;納米過濾;和通過陰離子交換色譜、陽離子交換色譜、或親和色譜的rAAV捕獲。這些步驟可以單獨使用,以多種組合使用,或是以不同順序使用。在一些實施方案中,所述方法包括按照下文所述順序的所有步驟。純化rAAV粒子的方法見於例如Xiao等,(1998)Journal of Virology 72:2224-2232;美國專利號6,989,264和8,137,948和WO 2010/148143中。純化腺病毒粒子的方法見於例如Bo,H等,(2014)Eur.J.Pharm.Sci.67C:119-125中。純化慢病毒粒子的方法見於例如Segura MM,等,(2013)Expert Opin Biol Ther.13(7):987-1011中。純化HSV粒子的方法見於例如Goins,WF等,(2014)Herpes Simplex Virus Methods in Molecular Biology 1144:63-79中。
實施例
通過參考如下實施例會更充分地理解本發明。然而,它們不應視為對本發明範圍的限制。據理解,本文所描述的實施例和實施方案僅用於描述目的,並且各種基於其的改良或變化都會向本領域技術人員指示,且涵蓋於本申請的精神和範圍以及所附的請求項書的範圍內。
實施例1:通過分析性超速離心表徵重組腺相關病毒載體製備物
腺相關病毒(AAV)具有的特徵使其成為引人注目的用於基因治療的載體。野生型AAV由兩個開放閱讀框(rep和cap)組成,其編碼組裝、複製和感染所需的所有結構和調控元件。rep ORF編碼具有基因組複製功能的Rep 78和68蛋白,以及涉及單鏈複製和包裝的Rep 52和40蛋白。cap ORF編碼三種結構衣殼蛋白:VP1、VP2和VP3。重組AAV載體通常由三重轉染方法用“空(gutless)”載體手段來產生(Xiao,X,等,1998,J.Virol.3:2224-2232)。用治療性基因及其調控元件來替換rep和cap,所述調控元件夾心在5’和3’反向末端重複(ITR)之間,rep和cap基因以反式提供於分離的質體上,並且第三質體提供所需的腺病毒輔助基因。假設病毒衣殼完全組裝並且位於載體基因組側翼的ITR隨即經衣殼孔插入至衣殼中(Myers,MW& Carter,BJ,1980,Virology,102:71-82)。所得的衣殼群體含有不含基因組的衣殼(空衣殼)以及含基因組的衣殼。此外,衣殼可以含有不完整的部分重組病毒基因組。然後可以通過親和色譜從細胞碎片分離衣殼,來純化載體製備物,並能通過陰離子交換色譜進一步進行加工以富集完整的載體。
基於其近期獲批用於在基因治療中使用,腺相關的病毒(AAV)載體已經成為了一類重要的新的生物製藥藥物產品。AAV載體產品的產生需要分析方法來監測產品質量,所述產品質量關於異質性、純度、和製造的一致性,但迄今尚未有方法支持AAV載體表徵。為了滿足這個要求,對分析性超速離心(AUC)作為表徵AAV載體同質性的技術的潛在用途進行了研究。
方法
樣品製備
為了支持精確AUC評估,將載體產物(AAV2-轉基因2)高度純化,適當緩衝,並濃縮至大於5 x 1011vg/mL。為了達到這個目標,用AVB親和色譜(GE Healthcare)來純化細胞上清液運行,並用10K MWCO Slide-a-Lyzer(Thermo Scientific)緩衝液交換至PBS pH7.2中。通過光密度測量法在260nm(OD260)處通過分光光度法確定產物濃度。為了產生可複製且一致的AUC數據,通過光密度測量法在260nm處從0.1至1.0,通過用PBE直接稀釋或用Amicon Ultra-0.5/30K MWCO離心過濾器裝置進一步濃縮,將樣品調整至靶濃度。
沉降速度AUC數據獲取
用ProteomeLabTM XL-I(Beckman Coulter)進行沉降速度分析性超速離心(SV-AUC)分析。將400μL樣品加載至兩個扇區速度小室的樣品扇區中,並將400μL PBS加載至對應的參考扇區中。將樣品置於四孔轉子中並允許其在儀器中平衡直至在20℃的溫度和完全真空維持1小時。以20,000RPM、20℃、0.003cm半徑步驟設置進行沉降速度離心,無延遲且無重複。用吸光度(260nm)和Raleigh干涉光學來同步記錄半徑濃度與時間的函數直至最小的沉降組分通過光學窗口(1.2小時)。將測定通量限制至單個樣品/每次運行,這是基於大於1分鐘的吸光度掃描收集時間,以及AAV的大尺寸和快速沉降。
AUC數據分析
通過用SEDFIT(NIH/參見網頁analyticalultracentrifugation.com)連續大小C(S)分佈模型,從每個檢測方法分析約75個掃描來確定百分比完全衣殼。將二階(2nd)導數正則化應用於擬合,F統計值的置信水平=0.68。將如下C(S)參數保持恒定:分辨率=200S,Smin=1,Smax=200,且摩擦比=1.0。應用 RI和TI減噪,且允許彎液面位置浮動,讓軟件來選擇最佳位置。該模型擬合Lamm方程的數據,並且得出的大小分佈是“沉降係數的分佈”,其看起來像色譜圖,每個峰下的面積與以條紋(Fringes)的單位或OD260單位表示的濃度成比例。確定分佈中每個組分的沉降係數(以Svedberg單位表示)和相對濃度(以OD單位表示)。每個AUC運行都是獨立的測定,並監測每個分析的如下屬性來確保結果的質量:擬合優度(rmsd)、每個峰的OD260nm/干涉信號(以條紋表示)的比(A260/IF比)、運行之間每個種的沉降係數一致性、以及掃描的總體質量。
吸光度光學(260nm)
用消光係數從吸光度數據計算完整載體峰的摩爾濃度和實際百分值。空衣殼(є260/衣殼=3.72e6)和完整載體(є260/載體=3.00e7)的摩爾吸光度消光係數基於公開的公式計算(Sommer等(2003)Mol Ther.,7:122-8)。消光係數可用於空衣殼和完整載體峰。用Schuck(2000)Biophys.J.,78:1606-19所述的SEDFIT算法來確定C(S)值。完整載體和空衣殼的摩爾濃度均用比爾定律進行計算,並從這些值計算完全衣殼的百分比。根據完全衣殼的百分比來報告值。
產生AUC標準曲線
因為按照經驗確定未知大小和序列的片段化基因組的消光係數是不可能的,因此在S值和基因組大小之間建立了關係。為了達到這個目的,通過AUC分析了具有衣殼包被的已知核酸大小的病毒基因組的rAAV載體製備物,並如上所述確定了相應的S值。
通過瞬時轉染產生rAAV
通過三重轉染方法用“空的”載體手段產生重組AAV載體(Xiao等(1998)J.Virol.,3:2224-32)。在這種方法中,用治療性基因及其調控元件(均夾心在 5’和3’反向末端重複(ITR)之間)來代替rep和cap基因。rep和cap基因以反式提供於分離的載體上,並且第三質體提供所需的腺病毒輔助基因。不受理論束縛,假設病毒衣殼完全組裝並且位於載體基因組側翼的ITR隨即經衣殼孔插入至衣殼中(Myers,MW& Carter,BJ,1980,Virology,102:71-82)。所得的衣殼群體含有不含基因組的衣殼(空衣殼)以及含基因組的衣殼。
通過生產者細胞平臺產生rAAV
AAV生產者細胞系是一種可供選擇的生產平臺,其用於產生臨床rAAV載體。用這種方法,將適應於懸浮生長的HeLa S3設計來具有整合的AAV rep和cap基因拷貝,其是載體複製和包裝所需的,此外還有載體序列和選擇標記物(參見例如Puro:Thorne等(2009)Hum.Gene Ther.,20:707-14)。一旦用WT腺病毒轉染(其提供複製所需的輔助功能),細胞產生重組AAV載體以及腺病毒,隨後在純化過程期間用離子交換色譜將其去除。
其他方法
將合成的轉基因克隆至含有選擇的啟動子和牛生長激素多聚腺苷酸化信號(polyA)的質體中。然後將整個轉基因表現盒殖株至含有AAV2反向末端重複的前病毒(previral)質體載體pAAVDC64中。各自的表現質體中所得的AAV基因組的總大小(包括側翼有ITR的區域)為4-4.6kb。通過用表達rep2/cap序列和腺病毒輔助功能的輔助質體,pAd Helper(Stratagene,La Jolla,CA USA)對293細胞進行三重轉染來生產重組載體。rep/cap輔助子(helper)從AAV血清型2表現rep,而cap序列編碼如下序列之一:AAV cap 1、2、5、9、或rh8R。通過親和色譜純化載體,並且在一些情況下進一步純化以去除空粒子(參見例如Qu等(2007)J.Virol.Methods.140:183-92)。
結果
使用經典邊界沉降速度的分析性超速離心(AUC)用於揭示重組腺相關 的病毒(rAAV)載體製備物的粒子異質性。通過將純化的空衣殼和純化的含基因組的衣殼以限定的比例混合在一起,產生含有20%具有完全基因組的rAAV2粒子和80%空衣殼的混合物。通過CsCl2梯度純化空衣殼和完全衣殼的混合物然後進行三重轉染生產,產生空衣殼和完全衣殼。為了監測rAAV2粒子響應於離心力的運動,在260nm的吸光度處沿著離心力場在限定的時間間隔處對該rAAV2衣殼混合物進行掃描。圖1A顯示AAV2混合物在20,000rpm離心1.2小時後(直至最小的沉降種通過光學窗口)代表性的掃描圖譜。掃描表示獲得了濃度數據作為半徑r在時間t處的函數,以產生一系列的濃度掃描,其揭示了rAAV2載體製備物中的成分載體粒子的完整遷移模式。在這些S形曲線或邊界中,曲線的前緣代表較快沉降的種(即含基因組的rAAV2衣殼),而曲線後緣則代表較慢沉降的種(即“空”rAAV2衣殼)。
按差示沉降係數分佈值C(S)對沉降係數(以Svedberg單位,S,來表示)進行繪圖,得到了不同的峰,空衣殼和含基因組的衣殼種二者都具有獨特的沉降係數(圖1B)。用Schuck(2000)Biophys.J.,78:1606-19所述的SEDFIT算法來確定C(S)值。為了從吸光度數據計算各衣殼種的摩爾濃度和百分比值,根據表2來使用消光係數。
Figure 105101529-A0202-12-0060-3
空衣殼(ε260/衣殼=3.72e6)和含基因組的衣殼(ε260/衣殼=3e7)二者的摩爾吸光度消光係數用基因組大小和公開的公式進行計算(Sommer等,2003)。然後用比爾定律來計算含基因組的衣殼和空衣殼二者的摩爾濃度。用各個種的摩爾濃度來計算起相對豐度,以總衣殼的百分比表示(圖1)。這些結果證明AUC可以用於從異質性的載體製備物對空衣殼和含基因組的衣殼進行精確 區分和定量。
對於圖1中所示的rAAV2載體製備物,含有完全基因組的衣殼用沉降於94處的峰表示,且占載體製備物的21%。空衣殼以64S的S值沉降,且占載體製備物的79%。這些沉降系數值通過空衣殼(圖2A)或含基因組粒子(圖2B)的純製備物的AUC分析進行確認。rAAV2空衣殼純製備物的AUC圖譜揭示了沉降係數為64S的單個峰,而rAAV2AUC含有基因組的衣殼純製備物的AUC圖譜揭示了沉降係數更高為94S的單個峰。這些結果與產生自異質性製備物的值一致,且進一步確認了AUC方法可以用於從含有兩個種的異質性製備物對含有基因組的和空的AAV衣殼進行定量。
通過對相同的載體樣品(scAAV2/9 LP2)進行五個獨立的AUC運行,進一步評估AUC方法的再現性,如表3中所示。含基因組的和空的AAV2衣殼二者的沉降係數都是高度可再現的,產生0.5-0.6%的變異係數。類似地,含基因組的衣殼的相對豐度(表示為總量的百分比)用約2%的變異係數來確定。這些結果指示用於對含基因組的和空的AAV2衣殼定量的AUC方法產生高度可再現的和一致的值。
Figure 105101529-A0202-12-0061-4
實施例2:用於AUC的干涉和吸光度檢測方法的對比
還評價了可供選擇的用於AUC的光學檢測方法,Rayleigh干涉光學。這種檢測方法基於參考溶液和含AAV的樣品之間的折射率差異來測量樣 品濃度。如吸光度檢測一樣,干涉檢測能應用於任何rAAV,無論其基因組序列如何。與吸光度檢測不一樣的是,吸光度檢測需要消光係數,而干涉檢測得到積分的峰,其直接與濃度成比例。
將空的和含基因組的AAV2衣殼的純製備物以1:1的比例混合並通過AUC用干涉(圖3A)和吸光度檢測(圖3B)方法二者進行分析。干涉檢測揭示了AAV衣殼在約43%的空衣殼和57%的含基因組的衣殼的預期比值處的兩個群體(圖3A)。兩種檢測方法都產生相似的豐度比。然而,用吸光度檢測將兩種方法產生的峰尺寸相比,指示了峰高度和濃度之間的斷開(disconnect)(比較圖3A和3B中“空衣殼”峰的尺寸)。兩種方法產生的數據在表4中進行比較。吸光度信號與干涉信號的比(A260nm/IF)可以與吸光度數據的260/280比類似的方式使用,並且其有助於鑒定C(S)分佈中的峰。
Figure 105101529-A0202-12-0062-5
雖然干涉光學提供精准度和分辨率,但其可能需要高濃度的樣品。此外,干涉光學可能受到參考和AAV樣品緩衝液之間錯誤匹配的影響。然而,AAV樣品通常含有的蛋白濃度低,並且其可能對於完全匹配AAV樣品和參考溶液是必需的。
實施例3:生產方法對AAV載體異質性的影響
此前的實施例證明瞭AUC方法是高度精確且可再現的從異質性混合物分辨和定量空的和含基因組的AAV衣殼的方法。這種能力對於多種評估AAV載體製備物的質量的應用可以是有利的。例如,生產純AAV載體製備物的主要問題在於存在含有部分或片段化基因組的衣殼。為了說明AUC方法用於分辨這些種的實用性,對通過兩種不同方法(稱為“三重轉染”和“生 產者細胞系”方法)產生的AAV載體通過AUC進行了分析。
用來三重轉染方法(圖4)或生產者細胞系方法(圖5)生產攜帶轉基因2的AAV2載體。這些方法的描述參見實施例1。在色譜純化後,兩種載體製備物均通過AUC進行分析。圖6A顯示了這種AAV2載體基因組的示意圖。
通過這些方法生產的載體製備物的AUC圖譜是顯著不同的。用生產者細胞系方法,74%的衣殼含有完全基因組,由92S的種表示(圖6B)。19%是空衣殼,剩下的含有片段化的基因組(75S的種,7%)。相比之下,82%的通過三重轉染方法產生的衣殼是空的,64S的種(圖6C),而含有片段化基因組的衣殼(76S和84S的種)為11%而具有完全基因組的衣殼(94S)僅8%。
這些結果證明用生產者細胞系技術產生的載體製備物可以具有高質量,主要含有具有完全基因組的衣殼。通過三重轉染方法產生的絕大多數的衣殼是空的,而更大比例的衣殼具有片段化的基因組。這些結果也凸顯了AUC方法除了分辨含完全基因組的衣殼和空衣殼外,分辨具有片段化基因組的衣殼的能力。此外,它們指示了AUC方法對於評估載體製備物的質量和同質性的效力。
實施例4:AUC用於評估空衣殼從載體製備物去除的用途
AUC方法被評價為用色譜方法監測空衣殼的去除的工具(該方法參見Qu等(2007)J.Virol.Methods,140:183-92)。對空的和含基因組的衣殼的分離是用陰離子交換色譜進行的(圖7A)。在可分辨的峰(resolved peak)上進行AUC,以證明含基因組的rAAV2粒子在稍後從樹脂洗脫的級分中富集(圖7A中的“完全基因組衣殼”)。
如圖7B中所示,AUC分析揭示了在從柱洗脫時,含基因組的衣殼代表94%的載體製備物。這種稍後的級分產生了具有92S的沉降係數的單個峰。相比之下,在色譜步驟之前的rAAV2載體製備物(圖7C)具有實質水平的空衣殼。AUC分析揭示了S值為63和93的兩個峰,63S峰(空衣殼)代表 52%的總衣殼群體。這些結果顯示色譜方法對於從AAV載體製備物去除空衣殼是高度有效的。重要的是,它們證明在純化時應用AUC方法來評估載體質量的實用性。AUC方法是用於評估不同載體純化方案或技術的有用的工具。
實施例5:通過AUC方法評估病毒基因組整合
如實施例3所述,AAV載體製備物除含有完全基因組和空的種之外,還可能含有與片段化的基因組包裝在一起的衣殼。產生用於治療或研究應用的同質性AAV製備物的主要問題在於存在含有片段化基因組的衣殼,其可能導致感興趣的轉基因的異常表達或缺乏表達。確實,已報道與AAV載體製備物有關的異質性導致片段化的基因組或AAV衣殼包被的DNA雜質的包裝。(Kapranov等(2012)Hum.Gene Ther.,23:46-55)。因此,AUC被認為是用於對rAAV載體製備物中片段化基因組的異常包裝進行定量的工具。
因為按照經驗確定未知大小和序列的片段化基因組的消光係數是不可能的,因此在S值和基因組大小之間建立了關係。為了達到這個目的,通過AUC分析了具有衣殼包被的已知核酸大小的病毒基因組的rAAV載體製備物,並確定了它們相應的S值,如表5中所示。然後生成關聯基因組大小和S值的標準曲線(圖8)。這證明瞭沉降係數和基因組大小之間高度線性的關係(R2=0.9978)。
Figure 105101529-A0202-12-0064-6
Figure 105101529-A0202-12-0065-7
為了證明AUC檢測基因組片段的實用性,將包含AAV2 ITRS的自身互補的載體、最小CBA啟動子、和EGFP轉基因包裝至AAV9衣殼中(AAV2/9minCBAEGFP;參見圖9A中的示意圖)。純化載體粒子以消除空衣殼,並通過AUC進行分析。然後用標準曲線將基因組大小分配至各個分辨出的含基因組的衣殼。約25%的載體製備物沉澱為101S的種,代表衣殼包被的~4.3kb的基因組(圖9A)。這種101S的峰代表雙鏈二聚體載體基因組,其預測的大小為~4.3kb。然而,載體製備物的大多數(75%)以82的S值沉澱,其對應於~2kb的載體基因組大小(圖9A),這與單鏈單體的包裝是一致的。單體基因組與自身互補的載體的包裝是詳細記錄的,並且常常是由假的“trs樣”序列處的偶然末端分辨導致的,儘管存在具有突變的D序列的ITR(McCarty等(2001)Gene Ther.,8:1248-54)。
圖9B顯示同一載體(scAAV9 EGFP)的鹼性Southern印跡,揭示了基因組大小為~4.3kb和~2kb的兩個載體群體,證實了圖9A中的AUC。Southern印跡也證實了單體病毒基因組相對於二聚體基因組是優先包裝的。有趣的是,單鏈AAV9 EGFP載體(~4kb)的AUC分析通過標準曲線和84%的衣殼豐度揭示了測得S值為99S的單一主峰,對應於約4.1kb(圖9C)。這些結果表明單鏈AAV載體可以以比雙鏈載體更加同質性的方式來包裝。同樣地,與AUC方法一致,這種載體製備物的Southern印跡分析揭示了預測大小為~4kb的病毒基因組的同質性的衣殼化(泳道2,圖9B)。這些結果證明AUC方法可以用於測量AAV載體基因組的大小,得到符合標準Southern印跡技術的基因組大小的數據。使用AUC方法,發現單鏈AAV載體產生比雙鏈的那些更具同質性的載體製備物。這些結果顯示AUC方法是從載體製備物鑒定和定量含有不完整基因組的衣殼種的強有力的工具。
實施例6:AUC用於評估影響載體基因組包裝的因素的用途
隨後用AUC方法作為工具來鑒定影響完整AAV載體基因組包裝的因素。
如實施例3所述,通過瞬時轉染方法生產rAAV載體需要使用三種質體,包括rep/cap輔助質體、ITR載體質體、和pAd輔助質體(圖4)。用AUC評估rep/cap輔助質體對載體基因組包裝(針對單鏈和自身互補的AAV載體二者)的效果。首先,用兩種方法之一來產生攜帶EGFP轉基因的自身互補的AAV載體(圖10A)。在第一個方法中(圖10B),使用輔助質體,其中rep 78/68表達受內源性的p5啟動子所驅動(“WT Rep”構建體)。在第二個方法中(圖10C),對輔助質體進行修飾,通過將p5啟動子移動至cap2序列下游及使TATA盒突變,從而降低78/68表達(“pHLP Rep”構建體)。預測完全scAAV2 EFGP衣殼具有100S(在二聚體基因組形式中)和80S(在單體基因組形式中)的沉降係數。
這些scAAV2EGFP載體製備物的AUC分析揭示了載體基因組包裝上的顯著差異。在存在減少的rep78/68(pHLP)時,超過一半的(55%)載體製備物含有二聚體基因組,其由100S的種表示(圖10C)。這是對於含有4.4kb的二聚體基因組的衣殼預期的沉降係數。相比之下,用rep78/68的完全補體(full complement)產生的scAAV2EGFP製備物具有顯著更少的包裝的二聚體基因組(26%),大多數衣殼含有單體基因組並沉降於80S處(圖10B)。這些結果揭示了通過移動輔助質體的P5啟動子而誘導的基因組包裝上的顯著差異,導致降低的rep 78/68蛋白水平。
用與上述的那些在rep表達上不同的rep/cap輔助子產生了單鏈AAV5 Factor IX載體(AAV5FIX)(圖11A-B)和單鏈AAV5hSMN載體(圖11C-D),但AAV2的cap序列由AAV5的cap序列取代。基於FIX表達盒的核苷酸大小(4.3kb),對於AAV5 FIX載體衣殼預測的沉降係數約為101S。在存在降低的rep78/68(“pHLP19 Rep”)情況下進行的AAV2/5FIX的AUC分析揭示了同質性圖譜,大多數的載體(90%)以預期大小的S值(~101S)沉降(圖 11A)。相比之下,用表達野生型水平的78/68蛋白的rep/cap5輔助子產生的AAV5 FIX載體(“WT Rep”)產生顯著不同的AUC圖譜(圖11B)。這個圖譜揭示了更多的衣殼異質性,大多數的AAV5 FIX(80%)沉降於較低的S值86S處(而不是101S處的主峰),可能表示片段化基因組的包裝。此外,在這個載體樣品中,僅15%的AAV5 FIX載體衣殼沉降於正確的S值~104S處(圖11B)。
用這些相同的野生型和突變的p5 rep/cap複製子制得的AAV5SMN載體也具有顯著不同的AUC圖譜。如通過AUC分析在單鏈AAV5FIX載體中所見的,在存在降低的rep78/68的情況下產生的AAV5 SMN載體顯示出較低的異質性,單個衣殼種沉降於101S的S值處,這與預測大小為~4.4kb的基因組的包裝是一致的(圖11C)。相比之下,用“野生型”水平的rep78/68蛋白包裝的相同載體的AUC圖譜揭示了三個不同的AAV載體的種,沉降係數為100S(為4400nt的完全載體基因組預測的S值)、92S(代表約3300nt的片段化的基因組)和80S(代表約2000個核苷酸的片段化的基因組)(圖11D)。這些結果證實了通過用兩個額外的AAV載體移動輔助質體的P5啟動子所誘導的基因組包裝的顯著差異。
對AAV5SMN和AAV5FIX載體製備物進一步的分析通過載體DNA的Southern印跡分析進行。按照AUC方法,用野生型rep78/68蛋白產生的AAV5SMN的Southern印跡分析揭示了的全長(4.4kb)和片段化(少於4.4kb)SMN基因組的包裝(圖12A,泳道1)。相比之下,在存在降低的rep78/68蛋白的情況下產生的AAV5SMN載體主要含有具有全長SMN基因組的衣殼(圖12A,泳道2)。有趣的是,通過Southern分析對兩個AAV5FIX載體製備物比較揭示了存在FIX全長基因組,甚至在當載體是在存在野生型水平的rep 78/68的情況下產生時(圖12B,泳道2)。然而,此種AAV5FIX載體的AUC分析(圖11B)顯示80%的衣殼含有片段化的基因組(~3000個核苷酸),其無法由FIX探針檢測到。
通過生成針對載體質體的離散區域(包括骨架區域)的探針,對兩種實驗 條件下產生的FIX載體製備物進行進一步分析。圖13中提供了這種載體的圖譜。圖14顯示了使用這些探針的Southern印跡分析來比較這些在不同條件下產生的FIX載體製備物。如圖14A中所示,兩種載體製備物(pHLP rep,泳道1;WT rep,泳道2)都含有hFIX基因。然而,圖14B泳道2證實,在WT Rep製備物(圖11B)中觀察到沉降於86S處的載體基因組的種約為3kb片段。此外,這個種與Amp R 特異性的探針(圖14B,泳道2)反應,表明5’ITR的上游的包裝以rep依賴性的方式發生。相比之下,沒有在存在降低的rep 68/78水平的情況下產生的rAAV5 FIX載體製備物中含Amp R 的片段的證據(圖14B,泳道1)。
還通過用特異性針對Amp R 的引物和探針的Q-PCR來評估AAV FIX製備物中的DNA雜質。通過Q-PCR,在存在“wt”rep的情況下產生的AAV5FIX載體製備物中檢測到了約35%的Amp R 力價,相比之下,當在存在減少的rep68/78的情況下將相同的載體用於產生AAV5FIX載體時,則低於1%(數據未顯示)。這些結果凸顯了AUC用於揭示包裝的基因的存在的實用性,所述存在反而是基因特異性的Southern印跡分析檢測不到的。
AAV載體的包裝能力已經得到了廣泛的研究,並且雖然許多報道已證明瞭用包裝過大的AAV基因組的載體的成功轉導,已顯示後者被片段化稱為亞基因組的-長度DNA。為了進一步探索AUC方法的適用性,評估了用過大的基因組產生的AAV載體的異質性。將攜帶驅動β-磷酸二酯酶轉基因表達的全長CBA啟動子的表達盒包裝為5.4kb的過大的基因組(圖15A)或包裝為4.6kb的野生型大小的基因組(圖15B)。為了產生4.6kb基因組,通過如先前報道的降低內含子的尺寸而將CBA啟動子截短(Gray,SJ等,(2011)Hum.Gene Ther.22(9):1143-1153)。
如圖15A中所示,用過大的載體基因組產生的AAV載體製備物的AUC圖譜證明瞭接近一半的所述載體製備物沉降為93S的種,這與包裝約3.5kb的片段化載體基因組是一致的。30%的製備物由另一個亞基因組的載體種代表,所述種約為4.9kb,沉降於105S處。沒有全長5.4kb基因組的包裝的證 據,預測其沉降於108-109S處。相比之下,AUC分析揭示了在簡化的(abbreviated)CBA啟動子的控制下相同的轉基因主要以102S的載體的種沉降,這與預測的4.6kb的全長載體基因組的包裝是一致的(圖15B)。這些結果證明瞭AUC分析用於剖析具有過大的基因組的AAV載體的實用性,並且考慮到所觀察到的基因片段化的發生率,這種側寫(profiling)是關鍵的。
這個實施例證明瞭AUC方法對於分析異質性的製備物中AAV載體衣殼的基因組大小是高度有效的。通過根據尺寸來分辨含基因組的衣殼(例如二聚體和單體的基因組,或其部分片段),AUC方法代表了用於測定不同條件下生產的AAV載體製備物的質量的強有力的工具。此外,來自三個不同載體系統的結果證明,AUC方法對於用以產生改進的AAV載體製備物的質量控制和條件優化是廣泛有用的。重要的是,AUC方法能夠檢測Southern印跡分析所檢測不到的片段化的基因組。鑒於Southern印跡依賴於存在用於檢測的DNA探針序列,AUC方法是序列獨立性的。還證明瞭AUC方法是用於分析過大的AAV基因組的有效工具。總體而言,這些結果證明,AUC方法用於分析多種類型的AAV載體製備物是高度有利且有效實施的,已經發現其對於基因組包裝表現出極大的可變效果。
實施例7:通過分析性超速離心表徵重組腺病毒載體製備物
腺病毒(Ad)載體具有的特徵使其成為引人注目的用於基因治療的載體。Ad載體產品的生成需要分析方法來監測產品質量,所述質量關於同質性、純度、和製造的一致性。為了滿足這樣的要求,研究了分析性超速離心(AUC)用作表徵Ad載體的同質性的技術的潛在用途。
方法
樣品製備
為了支持精確AUC評估,製備了重組腺病毒血清型2載體(Ad2),並通過CsCl梯度超速離心對其進行純化以富集含粒子的基因組。用分光光度 法通過260nm(OD260)處的光密度測量來確定產品濃度。為了產生可再現且一致的AUC數據,通過260nm處從0.1至1.0的光密度測量將樣品調整至靶濃度,所述調整或是通過直接用PBS稀釋或是用Amicon Ultra-0.5/30K MWCO離心過濾器裝置進一步濃縮。
沉降速度AUC數據獲取
用ProteomeLabTM XL-I(Beckman Coulter)進行沉降速度分析性超速離心(SV-AUC)分析。將400μL樣品加載至兩個扇區速度小室的樣品扇區中,並將400μL PBS加載至對應的參考扇區中。將樣品置於四孔轉子中並允許其在儀器中平衡直至在20℃的溫度和完全真空維持1小時。以6,000RPM、20℃、0.003cm半徑步驟設置進行沉降速度離心,無延遲且無重複。用Raleigh干涉光學來同步記錄半徑濃度與時間的函數直至最小的沉降組分通過光學窗口(1.2小時)。將測定通量限制至單個樣品/每次運行,這是基於大於1分鐘的吸光度掃描收集時間,以及Ad2的大尺寸和快速沉降。
AUC數據分析
通過用SEDFIT(NIH/參見網頁analyticalultracentrifugation.com)連續大小C(S)分佈模型,從干涉檢測方法分析約75個掃描來確定百分比完全衣殼。將二階(2nd)導數正則化應用於擬合,F統計值的置信水平/比=0.68。將如下C(S)參數保持恒定:分辨率=250S,Smin=10,Smax=1500,且摩擦比=1.86935。應用RI和TI減噪,且允許彎液面位置浮動,讓軟件來選擇最佳位置。該模型擬合Lamm方程的數據,並且得出的大小分佈是“沉降係數的分佈”,其看起來像色譜圖,每個峰下的面積與以條紋的單位或OD260單位表示的濃度成比例。確定分佈中每個組分的沉降係數(以Svedberg單位表示)和相對濃度(以OD單位表示)。每個AUC運行都是獨立的測定,並監測每個分析的如下屬性來確保結果的質量:擬合優度(rmsd)、每個峰的OD260nm/干涉信號(以條紋表示)的比(A260/IF比)、運行之間每個種的沉降係數一致性、以 及掃描的總體質量。這個代表性的實施例的rmsd值為0.006584。
結果
使用經典邊界沉降速度的分析性超速離心(AUC)用於揭示重組腺病毒血清型2載體(rAd2)載體製備物的粒子異質性。為了監測rAd2粒子響應於離心力的運動,沿著離心力場在限定的時間間隔處用干涉光學對該rAd2衣殼的混合物進行掃描。掃描表示獲得了濃度數據作為半徑r在時間t處的函數,以產生一系列的濃度掃描,其揭示了rAd2載體製備物中的成分載體粒子的完整遷移模式。按差示沉降係數分佈值C(S)對沉降係數(以Svedberg單位,S,來表示)進行繪圖,得到了具有獨特的沉降係數rAd2種的不同的峰(圖16)。用Schuck(2000)Biophys.J.,78:1606-19所述的SEDFIT算法來確定C(S)值。
對於圖16中所示的rAd2載體製備物,87.8%的rAd2載體製備物以731的S值沉降,這與主要由含基因組的衣殼組成的載體製備物一致。這些數據證實了腺病毒粒子能通過AUC解析。

Claims (33)

  1. 一種表徵重組腺相關之病毒(AAV)粒子製備物的方法,其包括如下步驟:a)在邊界沉降速度條件下對所述製備物進行分析性超速離心,其中在時間間隔處監測重組AAV粒子的沉降,b)以差示沉降係數分佈值(C(s))對以Svedberg單位(S)表示的沉降係數進行繪圖,及c)對C(s)分佈中每個峰下的面積求積分以確定每個峰的相對濃度,其中每個峰代表一種類的重組AAV粒子。
  2. 一種評估重組AAV粒子製備物中的重組病毒粒子的載體基因組完整性的方法,其包括:a)在邊界沉降速度條件下對所述製備物進行分析性超速離心,其中在時間間隔處監測重組AAV粒子的沉降,b)以差示沉降係數分佈值(C(s))對以Svedberg單位(S)表示的沉降係數進行繪圖,及c)通過圖上存在的相對於S值的峰來鑑別製備物中的重組AAV粒子的種類,其中具體種類的重組AAV粒子的基因組大小通過比較所述種類的S值與標準曲線來計算,所述標準曲線由包含有衣殼包被的已知核酸大小的AAV基因組的重組AAV粒子的S值產生。
  3. 根據請求項2的方法,其中所述方法進一步包含對C(s)分佈中每個峰下的面積求積分以確定每個重組AAV粒子種類的相對濃度。
  4. 一種確定重組AAV粒子製備物中空衣殼或包含變體大小的重組AAV基因組的衣殼粒子的存在的方法,其包括如下步驟:a)在邊界沉降速度條件下對所述製備物進行分析性超速離心,其中在時間間隔處監測重組AAV粒子的沉降,及b)以差示沉降係數分佈值(C(s))對以Svedberg單位(S)表示的沉降係數進行繪圖,其中除含有完整重組AAV基因組的完全衣殼粒子的峰以外的一個或多個峰的存在指示存在包含變體大小的基因組的 衣殼粒子和/或空衣殼。
  5. 一種測量重組AAV粒子製備物中相對量空衣殼的方法,其包括如下步驟:a)在邊界沉降速度條件下對所述製備物進行分析性超速離心,其中在時間間隔處監測重組AAV粒子的沉降,b)以差示沉降係數分佈值(C(s))對以Svedberg單位(S)表示的沉降係數進行繪圖,c)對C(s)分佈中每個峰下的面積求積分以確定每個重組AAV粒子種類的相對濃度,及d)將具有對應於空衣殼粒子的S值的重組AAV粒子的量與具有對應於包含完整AAV基因組的重組AAV粒子的S值的重組AAV粒子的量或製備物中重組AAV粒子的總量進行比較;將具有不對應於包含完整AAV基因組的重組AAV粒子的S值的重組AAV粒子的量與具有對應於包含完整AAV基因組的重組病毒粒子的S值的重組AAV粒子的量或製備物中重組病毒粒子的總量進行比較;將具有不對應於包含完整AAV基因組的重組AAV粒子或空衣殼的S值的重組AAV粒子的量與製備物中重組AAV粒子的總量進行比較;將具有對應於包含完整AAV基因組的重組AAV粒子的S值的重組AAV粒子的量與具有對應於空衣殼粒子的S值的重組AAV粒子的量、與包含變體(variant)重組AAV基因組的衣殼粒子、和/或與製備物中重組AAV粒子的總量進行比較。
  6. 一種在重組AAV粒子製備物的純化過程中監測空衣殼和/或包含變體重組AAV基因組的衣殼粒子的去除的方法,該方法包括在純化過程的一個或多個步驟後從所述製備物移出重組AAV粒子的樣品,和根據請求項5的方法分析樣品的空衣殼和/或包含變體重組AAV基因組的衣殼粒子的相對量,其中空衣殼和/或包含變體基因組的衣殼與完 全衣殼相比的相對量的降低指示空衣殼從重組AAV粒子製備物的去除。
  7. 根據請求項5的方法,其中所述對應於空衣殼粒子的S值的峰的存在指示存在空衣殼粒子或除了含有完整重組AAV基因組的完全衣殼粒子或空衣殼粒子的峰以外的一個或多個峰的存在指示存在包含不同大小的基因組的衣殼粒子。
  8. 根據請求項7的方法,其中所述包含變體大小的基因組的衣殼粒子包含截短的基因組、聚集體、重組體和/或DNA雜質。
  9. 一種確定重組AAV粒子製備物中重組AAV粒子的異質性的方法,其包括如下步驟:a)在邊界沉降速度條件下對所述製備物進行分析性超速離心,其中在時間間隔處監測重組AAV粒子的沉降,b)以差示沉降係數分佈值(C(s))對以Svedberg單位(S)表示的沉降係數進行繪圖,其中除代表含有完整重組AAV基因組的衣殼的峰以外的峰的存在指示製備物中重組粒子的異質性。
  10. 根據請求項9的方法,其中所述方法進一步包括對C(s)分佈中每個峰下的面積求積分以確定每個重組病毒粒子種類的相對濃度。
  11. 根據請求項9的方法,其中所述額外峰的存在指示存在空衣殼粒子和/或包含變體基因組的重組AAV粒子。
  12. 根據請求項11的方法,其中所述變體基因組是截短的AAV毒基因組、聚集體、重組體和/或DNA雜質。
  13. 一種在重組AAV粒子製備物的純化過程中監測重組AAV粒子的同質性的方法,該方法包括在純化過程的一個或多個步驟後從所述製備物移出重組AAV粒子的樣品,和根據請求項9的方法判定所述重組AAV粒子的異質性,其中包含完整AAV基因組的重組AAV粒子的相對量增加指示重組AAV粒子製備物中的完全AAV粒子的同質性增加。
  14. 根據請求項1-13中任一項的方法,其中通過一或多個吸光度、干涉 及Rayleigh干涉來監測重組AAV粒子的沉降,所述吸光度是在約230nm、260nm或280nm,及/或在約每10-60秒、每10秒或每60秒監測。
  15. 根據請求項1-13中任一項的方法,其中所述製備物是水溶液。
  16. 根據請求項15的方法,其中所述水溶液包含一或多種醫藥物配製物、緩衝劑,緩衝劑處於生理學pH,緩衝劑處於生理學滲透壓濃度,磷酸鹽緩衝鹽水(PBS)及pH約7.2且滲透壓濃度是約300mOsm/L之PBS。
  17. 根據請求項15的方法,其中所述監測進一步包括與參考樣品比較,其中所述參考樣品包含無重組AAV粒子的水溶液。
  18. 根據請求項1-13中任一項的方法,其中所述C(s)值通過包含Lamm方程解的演算法來判定。
  19. 根據請求項18的方法,其中所述演算法是SEDFIT演算法及/或應用半徑不變量(RI)和時間不變量(TI)減噪。
  20. 根據請求項1-13中任一項的方法,其中監測沉降直至一或多個最低密度的重組AAV粒子沉降至超速離心機的扇區底部,重組AAV粒子沉降至超速離心速度小室的底部,及密度最低的重組AAV粒子沉降並且通過光學窗口。
  21. 根據請求項20的方法,其中用至少30次、約30次、約30至約75次、約30至約50次或約50至約75次掃描來監測重組AAV粒子的沉降。
  22. 根據請求項18的方法,其中將正則化應用於擬合水平,其F統計值的置信水平為至少約0.68。
  23. 根據請求項22的方法,其中所述正則化是一或多個二階導數正則化,最大熵正則化,應用於F統計值的置信水平為約0.68至約0.90之擬合水平,應用於F統計值的置信水平為約0.68至約0.99之擬合水平,或應用於F統計值的置信水平為約0.68之擬合水平。
  24. 根據請求項18的方法,其中如下C(s)參數保持恒定:分辨率是約200S 至約5000S,Smin是1S至約100S,Smax是約100S至約5000S,且摩擦比是約1.0或使其浮動至由離心軟體確定的值。
  25. 根據請求項24的方法,其中所述分辨率是約200S至約1000S或約200S;所述Smin是約1;及/或所述Smax是約100S至約1000S、約200S至約5000S,或約200S。
  26. 根據請求項1-13中任一項的方法,其中所述邊界沉降速度係在一或多個約3,000rpm至約20,000rpm、約3,000rpm至約10,000rpm、約10,000rpm至約20,000rpm、約15,000rpm至約20,000rpm、約4℃至約20℃、約4℃下進行。
  27. 一種評價重組AAV粒子的生產方法的方法,其包含根據請求項1-26中任一項的方法,其中與重組AAV粒子的參考製備物相比,包含完整AAV基因組的重組AAV粒子的相對量與空衣殼粒子和/或具有變體重組AAV基因組的重組AAV衣殼粒子的相對量相比增加指示重組AAV粒子產量的改進。
  28. 根據請求項27的方法,其中所述重組AAV粒子是通過如下三重轉染自生產者細胞系產生:i)編碼AAV rep和cap的核酸,ii)rAAV載體序列,和iii)編碼腺病毒輔助功能的核酸;通過AAV/HSV雜交產生;自昆蟲細胞產生;通過將編碼rAAV載體序列、AAV rep和cap編碼區、和AAV輔助病毒功能的核酸瞬時轉染至合適的宿主細胞而產生;或通過將一個或多個編碼rAAV載體序列、AAV rep和cap編碼區、和AAV輔助病毒功能的核酸導入合適的宿主細胞而產生,其中用重組輔助病毒將所述一個或多個核酸導入細胞桿狀病毒。
  29. 根據請求項28的方法,其中所述重組輔助病毒是腺病毒、單純皰疹病毒或桿狀病毒。
  30. 一種用於製備重組AAV粒子的方法,其具有減少的空衣殼和/或包含變體基因組的重組AAV粒子,所述方法包括:a)在適合重組AAV產生的條件下培養宿主細胞,其中所述細胞包含: i)編碼異源轉基因的核酸,其側翼為至少一個AAV ITR,ii)包含AAV rep和cap編碼區的核酸,其中所述核酸包含突變的p5啟動子,其中自所述p5啟動子的rep表現與野生型p5啟動子相比降低,及iii)編碼AAV輔助病毒功能的核酸;b)裂解宿主細胞以釋放重組病毒粒子;c)分離由宿主細胞產生的重組AAV粒子;及d)通過分析性超速離心法,按照請求項1-29中任一項的方法來分析重組AAV粒子中空衣殼和/或具有變體基因組的重組AAV粒子的存在。
  31. 根據請求項30的方法,其中所述p5啟動子位於rep和/或cap編碼區的3’及/或所述AAV輔助病毒功能包含腺病毒E1A功能、腺病毒E1B功能、腺病毒E2A功能、腺病毒VA功能和腺病毒E4 orf6功能。
  32. 根據請求項27、28或30的方法,其中所述重組AAV粒子包含一或多個自身互補的AAV(scAAV)基因組,其中所述方法用於檢測包含單體形式的scAAV基因組或二聚形式的scAAV基因組的重組病毒粒子的存在。
  33. 根據請求項30的方法,其中所述重組AAV粒子包含AAV1衣殼、AAV2衣殼、AAV3衣殼、AAV4衣殼、AAV5衣殼、AAV6衣殼、AAV7衣殼、AAV8衣殼、AAVrh8衣殼、AAV9衣殼、AAV10衣殼、AAVrh10衣殼、AAV11衣殼、AAV12衣殼、AAV2R471A衣殼、AAV2/2-7m8衣殼、AAV DJ衣殼、AAV2 N587A衣殼、AAV2 E548A衣殼、AAV2 N708A衣殼、AAV V708K衣殼、山羊AAV衣殼、AAV1/AAV2嵌合衣殼、牛AAV衣殼、或小鼠AAV衣殼rAAV2/HBoV1(嵌合的AAV/人博卡病毒1)及AAV1 ITR、AAV2 ITR、AAV3 ITR、AAV4 ITR、AAV5 ITR、AAV6 ITR、AAV7 ITR、AAV8 ITR、AAVrh8 ITR、AAV9 ITR、AAV10 ITR、AAVrh10 ITR、AAV11 ITR、AAV12 ITR、AAV DJ ITR、山羊AAV ITR、牛AAV ITR、或 小鼠AAV ITR;包含酪氨酸突變或肝素結合突變之AAV衣殼。
TW105101529A 2015-01-20 2016-01-19 用於重組病毒粒子特徵化之分析性超速離心法 TWI745285B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562105714P 2015-01-20 2015-01-20
US62/105,714 2015-01-20

Publications (2)

Publication Number Publication Date
TW201639958A TW201639958A (zh) 2016-11-16
TWI745285B true TWI745285B (zh) 2021-11-11

Family

ID=55305080

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105101529A TWI745285B (zh) 2015-01-20 2016-01-19 用於重組病毒粒子特徵化之分析性超速離心法

Country Status (13)

Country Link
US (5) US10429288B2 (zh)
EP (1) EP3247793A1 (zh)
JP (4) JP2018505695A (zh)
KR (1) KR20170104594A (zh)
CN (1) CN107646052A (zh)
AR (1) AR105412A1 (zh)
AU (1) AU2016209471B2 (zh)
CA (1) CA2974378A1 (zh)
EA (1) EA201791630A1 (zh)
IL (4) IL310375A (zh)
TW (1) TWI745285B (zh)
UY (1) UY36522A (zh)
WO (1) WO2016118520A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3247793A1 (en) 2015-01-20 2017-11-29 Genzyme Corporation Analytical ultracentrifugation for characterization of recombinant viral particles
WO2019183605A1 (en) * 2018-03-23 2019-09-26 University Of Massachusetts Gene therapeutics for treating bone disorders
EP3696534A1 (en) * 2019-02-14 2020-08-19 SmartDyeLivery GmbH Method for determining physicochemical properties of nanoscale systems (nss)
TW202142692A (zh) * 2020-01-29 2021-11-16 美商航海家醫療公司 用於生產aav顆粒之方法及系統
GB202004254D0 (en) 2020-03-24 2020-05-06 Puridify Ltd Characterization of gene therapy vectors
US20220033782A1 (en) * 2020-07-29 2022-02-03 Pall Corporation Adenovirus-associated viruses separation method
CN117460832A (zh) 2021-03-22 2024-01-26 建新公司 空aav衣壳和完整aav衣壳的尺寸排阻色谱分析
EP4328318A1 (en) 2021-04-19 2024-02-28 Osaka University Method for characterizing molecule delivery particles
TWI787809B (zh) * 2021-05-07 2022-12-21 台達電子工業股份有限公司 資料預篩方法及其資料預篩裝置
WO2024025787A1 (en) * 2022-07-26 2024-02-01 Brammer Bio, Llc Analytical ultracentrifugation methods
WO2024079655A1 (en) 2022-10-11 2024-04-18 Meiragtx Uk Ii Limited Chromatography methods for purification of aav capsids

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001025462A1 (en) 1999-10-01 2001-04-12 Genovo, Incorporated Production of recombinant aav using adenovirus comprising aav rep/cap genes

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5622856A (en) * 1995-08-03 1997-04-22 Avigen High efficiency helper system for AAV vector production
US6001650A (en) 1995-08-03 1999-12-14 Avigen, Inc. High-efficiency wild-type-free AAV helper functions
EP0842287B1 (en) 1995-08-03 2004-02-04 Avigen, Inc. High efficiency helper system for aav vector production
US6027931A (en) 1995-08-03 2000-02-22 Avigen, Inc. High-efficiency AA V helper functions
WO1998035062A1 (en) * 1997-02-07 1998-08-13 Lingappa Jaisri R Multistep, atp-dependent cell-free system for the assembly of human immunodeficiency virus capsids
US6989264B2 (en) 1997-09-05 2006-01-24 Targeted Genetics Corporation Methods for generating high titer helper-free preparations of released recombinant AAV vectors
US6566118B1 (en) 1997-09-05 2003-05-20 Targeted Genetics Corporation Methods for generating high titer helper-free preparations of released recombinant AAV vectors
EP1204739B1 (en) 1999-08-09 2008-08-06 Targeted Genetics Corporation Enhancement of expression of a single-stranded, heterologous nucleotide sequence from recombinant viral vectors by designing the sequence such that it forms intrastrand base pairs
NZ522840A (en) 2000-06-01 2004-12-24 Univ North Carolina A parvovirus vector that carries a duplexed genome resulting in co-packaging of strands of plus and minus polarity tethered together
US6723551B2 (en) 2001-11-09 2004-04-20 The United States Of America As Represented By The Department Of Health And Human Services Production of adeno-associated virus in insect cells
NZ532635A (en) 2001-11-13 2007-05-31 Univ Pennsylvania A method of identifying unknown adeno-associated virus (AAV) sequences and a kit for the method
ES2521682T3 (es) 2003-05-21 2014-11-13 Genzyme Corporation Procedimientos para producir preparaciones de viriones de AAV recombinantes sustancialmente exentas de cápsidas vacías
US7765583B2 (en) 2005-02-28 2010-07-27 France Telecom System and method for managing virtual user domains
WO2006119432A2 (en) 2005-04-29 2006-11-09 The Government Of The U.S.A., As Rep. By The Sec., Dept. Of Health & Human Services Isolation, cloning and characterization of new adeno-associated virus (aav) serotypes
EP2007795B1 (en) 2006-03-30 2016-11-16 The Board Of Trustees Of The Leland Stanford Junior University Aav capsid proteins
KR101812813B1 (ko) 2009-06-16 2017-12-27 젠자임 코포레이션 재조합 aav 벡터에 대한 개선된 정제 방법
US8663624B2 (en) 2010-10-06 2014-03-04 The Regents Of The University Of California Adeno-associated virus virions with variant capsid and methods of use thereof
ES2724800T3 (es) 2011-02-17 2019-09-16 Univ Pennsylvania Composiciones y métodos para alterar la especificidad de tejido y mejorar la transferencia génica mediada por AAV9
FR3002237B1 (fr) 2013-02-15 2017-12-15 Genethon Methodes pour la production de particules virales aav double brin
EP3230441A4 (en) * 2014-12-12 2018-10-03 Voyager Therapeutics, Inc. Compositions and methods for the production of scaav
EP3247793A1 (en) 2015-01-20 2017-11-29 Genzyme Corporation Analytical ultracentrifugation for characterization of recombinant viral particles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001025462A1 (en) 1999-10-01 2001-04-12 Genovo, Incorporated Production of recombinant aav using adenovirus comprising aav rep/cap genes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ewound Van Tricht et al: MSc Chemistry Analytical Sciences Virus Particle Characterization Techniques to Quantify Virus Particle Aggregation and Integrity, pages 1-51, 2013/07 *

Also Published As

Publication number Publication date
UY36522A (es) 2016-08-31
IL274137B (en) 2022-10-01
US20180180525A1 (en) 2018-06-28
IL296391B1 (en) 2024-02-01
WO2016118520A1 (en) 2016-07-28
AU2016209471A1 (en) 2017-09-07
JP2018505695A (ja) 2018-03-01
US20230288308A1 (en) 2023-09-14
US20200225139A1 (en) 2020-07-16
US12031894B2 (en) 2024-07-09
US20240077402A1 (en) 2024-03-07
EP3247793A1 (en) 2017-11-29
US11639887B2 (en) 2023-05-02
IL274137B2 (en) 2023-02-01
JP2024113102A (ja) 2024-08-21
KR20170104594A (ko) 2017-09-15
IL296391B2 (en) 2024-06-01
IL310375A (en) 2024-03-01
IL296391A (en) 2022-11-01
IL274137A (en) 2020-06-30
AU2016209471B2 (en) 2022-03-31
IL253542A0 (en) 2017-09-28
JP2022095863A (ja) 2022-06-28
JP2021000110A (ja) 2021-01-07
US20240085301A1 (en) 2024-03-14
CA2974378A1 (en) 2016-07-28
IL253542B (en) 2020-05-31
EA201791630A1 (ru) 2018-04-30
US12013326B2 (en) 2024-06-18
US12085494B2 (en) 2024-09-10
AR105412A1 (es) 2017-10-04
US10429288B2 (en) 2019-10-01
CN107646052A (zh) 2018-01-30
TW201639958A (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
TWI745285B (zh) 用於重組病毒粒子特徵化之分析性超速離心法
AU2022203942B2 (en) Production of oversized adeno-associated vectors
US20220308022A1 (en) Characterization of gene therapy viral particles using size exclusion chromatography and multi-angle light scattering technologies
US20240159718A1 (en) Size exclusion chromatography analysis of empty and full aav capsids