TWI742965B - 含氰基吡啶化合物以及包含其的電激發光裝置 - Google Patents

含氰基吡啶化合物以及包含其的電激發光裝置 Download PDF

Info

Publication number
TWI742965B
TWI742965B TW109144905A TW109144905A TWI742965B TW I742965 B TWI742965 B TW I742965B TW 109144905 A TW109144905 A TW 109144905A TW 109144905 A TW109144905 A TW 109144905A TW I742965 B TWI742965 B TW I742965B
Authority
TW
Taiwan
Prior art keywords
compound
group
light
layer
cyano
Prior art date
Application number
TW109144905A
Other languages
English (en)
Other versions
TW202225149A (zh
Inventor
鄭建鴻
陳怡寬
庫馬 賈亞
Original Assignee
國立清華大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立清華大學 filed Critical 國立清華大學
Priority to TW109144905A priority Critical patent/TWI742965B/zh
Priority to US17/163,573 priority patent/US20220209129A1/en
Application granted granted Critical
Publication of TWI742965B publication Critical patent/TWI742965B/zh
Publication of TW202225149A publication Critical patent/TW202225149A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/84Nitriles
    • C07D213/85Nitriles in position 3
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Pyridine Compounds (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一種由化學式1所表示的含氰基吡啶化合物以及包含其的電激發光裝置。 [化學式1]
Figure 01_image001
在化學式1中,R 1至R 3、Ar 1及Ar 2與實施方式中所述相同。

Description

含氰基吡啶化合物以及包含其的電激發光裝置
本發明是有關於一種化合物,且特別是有關於一種含氰基吡啶化合物以及包含其的電激發光裝置。
傳統螢光材料可作為有機發光二極體(OLED)元件中的發光體。由於自旋選擇定則(spin selection rule),激發子的使用比例低,此造成發光元件的發光效率不足。而目前的磷光材料藉由引入貴重金屬,以增加自旋軌域耦合作用(Spin-Orbital Coupling,SOC),進而使得發光元件的發光效率提升。然而,由於所引入的貴重金屬(例如銥、鉑)成本高,因此發光元件的製作成本亦提高,不利於商業應用。
熱活化延遲螢光(thermally activated delayed fluorescence,TADF)材料的開發為近年熱門的研究領域,其中TADF材料同時具備高發光效率和低成本的優點。而使發光分子擁有熱活化延遲螢光性質的關鍵在於縮小最低單重激發態(S 1)和最低三重激發態(T 1)之間的能量差(Δ E ST)。當Δ E ST夠小,吸熱的逆系統間跨越(Reverse Intersystem Crossing, RISC)可經由環境的熱活化刺激而發生,並在電激發的過程中同時捕獲25 %的單重激發子和75 %的三重激發子,進而達到100 %的內部量子效率。
然而,過小的Δ E ST會使得激發態與基態之間的躍遷能力降低,並增加非輻射路徑的發生,進而降低發光量子效率(Photoluminescence Quantum Yield, PLQY)。因此,發光分子的結構設計決定了材料的放光特性。
此外,典型的TADF材料的延遲螢光生命期(Delayed Fluorescence lifetime)較長,約為數十至數百微秒(microsecond),而處在高能量的激發子容易發生焠熄,此限制了發光元件於高亮度下的效率表現和操作穩定度,因此降低了典型的TADF材料應用於電激發光裝置的可靠性和壽命表現。
本發明提供一種含氰基吡啶化合物,其能夠實現具有高發光效率的電激發光元件。
本發明提供一種含氰基吡啶化合物,由下列化學式1所表示: [化學式1]
Figure 02_image001
在化學式1中, Ar 1與Ar 2可相同或不同,且各自獨立為經取代或未經取代的芳基或經取代或未經取代的雜芳基; R 1與R 2可相同或不同,且各自獨立為經取代或未經取代的烷基;以及 R 3為含氮基團。
在本發明的一實施例中,R 3由以下結構中選出的任一者:
Figure 02_image003
Figure 02_image005
Figure 02_image007
Figure 02_image009
Figure 02_image011
Figure 02_image013
Figure 02_image015
Figure 02_image017
Figure 02_image019
在本發明的一實施例中,Ar 1與Ar 2各自獨立為由以下結構中選出的任一者:
Figure 02_image021
Figure 02_image023
Figure 02_image025
Figure 02_image027
Figure 02_image029
在本發明的一實施例中,R 1與R 2各自獨立為甲基、乙基或丙基。
在本發明的一實施例中,上述的含氰基吡啶化合物由以下結構式中選出的任一者:
Figure 02_image031
Figure 02_image032
Figure 02_image033
Figure 02_image034
Figure 02_image035
Figure 02_image036
Figure 02_image037
Figure 02_image038
Figure 02_image039
Figure 02_image040
Figure 02_image041
Figure 02_image042
Figure 02_image043
Figure 02_image044
Figure 02_image045
Figure 02_image046
本發明提供一種電激發光裝置,包括:陰極、陽極、以及發光層。發光層配置於陰極與陽極之間,發光層包含上述的含氰基吡啶化合物。
在本發明的一實施例中,上述的發光層包括主體發光材料及客體發光材料。
在本發明的一實施例中,上述的主體發光材料包括所述含氰基吡啶化合物。
在本發明的一實施例中,上述的客體發光材料包括所述含氰基吡啶化合物。
在本發明的一實施例中,上述的電激發光裝置更包括至少一輔助層,所述輔助層選自由電洞注入層、電洞傳輸層、電洞阻擋層、激子阻擋層、電子注入層、電子傳輸層以及電子阻擋層所組成的群組。
基於上述,本實施例的含氰基吡啶化合物,具有滿足多光性、高發光量子效率、優良的熱穩定性及熱活化延遲螢光的特性。本發明的含氰基吡啶化合物藉由在吡啶基團的3號、5號位引入氰基,以增加吡啶基團的接收電子能力。此外,本發明的含氰基吡啶化合物以3,5-二氰基吡啶作為拉電子基,以此增加整體分子的電荷轉移性質、並縮小HOMO和LUMO的電子雲重疊部分,以減小Δ E ST,藉此獲得熱活化延遲螢光特性,進而可提升製作成電激發光裝置的發光效率。
此外,在本實施例中,由於含氰基吡啶化合物在作為連接基團的苯基的對位處引入作為電子供體的含氮基團,藉此可調控分子的放光顏色和發光量子效率(Photoluminescence Quantum Yield, PLQY)。此外,在本實施例中,由於含氰基吡啶化合物在作為連接基團的苯基的鄰位處引入烷基,藉由烷基和氰基之間的立體障礙效應,增加苯基和3,5-二氰基吡啶之間的二面角度(dihedral angle),近而達到縮小HOMO和LUMO的電子雲重疊的目的。此外,本實施例的電激發光裝置的發光層包括含氰基吡啶化合物,因此具有高的外部量子效率及長的發光元件壽命。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
下面將結合附圖對本發明的技術方案進行清楚、完整地描述,顯然,所描述的實施例是本發明一部分實施例,而不是全部的實施例。基於本發明中的實施例,任何技術領域具有通常知識者還可以根據實施例及附圖而獲得的所有其他實施例,都屬於本發明保護的申請專利範圍。
在本發明的描述中,需要說明的是,術語「第一」、「第二」、「第三」僅用於描述目的,而不能理解為指示或暗示相對重要性。
本發明可以以許多不同的形式實施,而不應該被理解為限於在此闡述的實施例。相反,提供這些實施例,使得本公開將是徹底和完整的,並且將把本發明的構思充分傳達給本發明所屬領域具有通常知識者,本發明將僅由申請專利範圍來限定。在附圖中,為了清晰起見,會誇大層和區域的尺寸和相對尺寸。應當理解的是,當元件例如層被稱作「形成在」或「設置在」另一元件「上」時,該元件可以直接設置在所述另一元件上,或者也可以存在中間元件。相反,當元件被稱作「直接形成在」或「直接設置在」另一元件上時,不存在中間元件。
在本說明書中,
Figure 02_image047
意謂連接至另一取代基之部分。
在本說明書中,若未作另外定義時,術語「經取代」是指經下列基團所取代:鹵素、芳基、羥基、烯基、C 1-C 20烷基、炔基、氰基、三氟甲基、烷胺基、胺基、C 1-C 20烷氧基、雜芳基、具有鹵素取代基的芳基、具有鹵素取代基的芳烷基、具有鹵代烷基取代基的芳基、具有鹵代烷基取代基的芳烷基、具有芳基取代基的C 1-C 20烷基、環烷基、具有C 1-C 20烷基取代基的胺基、具有鹵代烷基取代基的胺基、具有芳基取代基的胺基、具有雜芳基取代基的胺基、具有芳基取代的磷氧基、具有C 1-C 20烷基取代的磷氧基、具有鹵代烷基取代基的磷氧基、具有鹵素取代基的磷氧基、具有雜芳基取代基的磷氧基、硝基、羰基、芳基羰基、雜芳基羰基或具有鹵素取代基的C 1-C 20烷基。
在下文中,詳細說明本發明之實施例。然而,這些實施例為示例性的,而本發明並不限於此。
根據本發明一實施例的含氰基吡啶化合物,由下列化學式1所表示: [化學式1]
Figure 02_image001
在化學式1中, Ar 1與Ar 2可相同或不同,且各自獨立為經取代或未經取代的芳基或經取代或未經取代的雜芳基; R 1與R 2可相同或不同,且各自獨立為經取代或未經取代的烷基;以及 R 3為為含氮基團。
在本發明的一實施例中,R 3由以下結構中選出的任一者:
Figure 02_image003
Figure 02_image005
Figure 02_image007
Figure 02_image009
Figure 02_image011
Figure 02_image013
Figure 02_image015
Figure 02_image017
Figure 02_image019
在本發明的一實施例中,Ar 1與Ar 2各自獨立為由以下結構中選出的任一者:
Figure 02_image021
Figure 02_image023
Figure 02_image025
Figure 02_image027
Figure 02_image029
在本發明的一實施例中,R 1與R 2各自獨立為甲基、乙基或丙基。
在本發明的一實施例中,含氰基吡啶化合物由以下結構式中選出的任一者:
Figure 02_image031
Figure 02_image032
Figure 02_image033
Figure 02_image034
Figure 02_image035
Figure 02_image036
Figure 02_image037
Figure 02_image038
Figure 02_image039
Figure 02_image040
Figure 02_image041
Figure 02_image042
Figure 02_image043
Figure 02_image044
Figure 02_image045
Figure 02_image046
在本實施例中,本發明的含氰基吡啶化合物具有3,5-二氰基吡啶的核心結構,且此核心結構可作為電子受體(即拉電子基)。此外,本發明的含氰基吡啶化合物的吡啶基團的4號位以苯基(作為連接基團)連接,並在苯基的對位處引入作為電子供體(即推電子基)的含氮基團(R 3)。此外,本發明的含氰基吡啶化合物在作為連接基團的苯基的鄰位處分別引入烷基(R 1及R 2),並在吡啶基團(作為核心結構)的2號、6號位分別引入具有共振性質的芳基或雜芳基。
由於吡啶基團本身的拉電子能力不足,因此本發明的含氰基吡啶化合物藉由在吡啶基團的3號、5號位引入氰基,以增加吡啶基團的接收電子能力。此外,本發明的含氰基吡啶化合物以3,5-二氰基吡啶作為拉電子基,以此增加整體分子的電荷轉移性質、並縮小HOMO和LUMO的電子雲重疊部分,以減小Δ E ST,藉此獲得熱活化延遲螢光特性,進而可提升製作成OLED元件的發光效率。
此外,在本實施例中,由於含氰基吡啶化合物在作為連接基團的苯基的對位處引入作為電子供體的含氮基團(R 3),藉此可調控分子的放光顏色和發光量子效率(Photoluminescence Quantum Yield, PLQY)。此外,在本實施例中,由於含氰基吡啶化合物在作為連接基團的苯基的鄰位處分別引入烷基(R 1及R 2),藉由烷基和氰基之間的立體障礙效應,增加苯基和3,5-二氰基吡啶之間的二面角度(dihedral angle),近而達到縮小HOMO和LUMO的電子雲重疊的目的。
在下文中,將參照圖示來說明本發明一實施例之有機發光二極體。
圖1為依照本發明一實施例的電激發光裝置的剖面示意圖。
請參照圖1,本實施例的電激發光裝置10包括陽極102、陰極104以及發光層106。在一實施例中,電激發光裝置10為有機發光二極體(OLED)。發光層106配置於陽極102與陰極104之間。陽極102可由具有高功函數的導體製得,以幫助電洞注入發光層106中。陽極102的材料例如是金屬、金屬氧化物、導電聚合物或其組合。具體來說,金屬例如是鎳、鉑、釩、鉻、銅、鋅、金或其合金;金屬氧化物例如是氧化鋅、氧化銦、氧化銦錫(ITO)或氧化銦鋅(IZO);金屬與氧化物的組合例如是ZnO 與Al的組合或SnO 2與Sb的組合;導電聚合物例如是聚(3-甲基噻吩)(poly(3-methylthiophene))、聚(3,4-(伸乙基-1,2-二氧基)噻吩(poly(3,4-(ethylene-1,2-dioxy)thiophene, PEDT)、聚吡咯(polypyrrole)或聚苯胺(polyaniline),但本發明不限於此。
陰極104可由具有低功函數的導體製得,以幫助電子注入發光層106中。陰極104的材料例如是金屬或多層結構之材料。具體來說,金屬例如是鎂、鈣、鈉、鉀、鈦、銦、釔、鋰、釓(gadolinium)、鋁、銀、錫、鉛、銫、鋇或其合金;多層結構之材料例如是LiF/Al、LiO 2/Al、LiF/Ca、LiF/Al或BaF 2/Ca,但本發明不限於此。
在本實施例中,發光層106包括上述實施例的含氰基吡啶化合物。具體來說,發光層106包括一種上述實施例的含氰基吡啶化合物、至少二種上述實施例的含氰基吡啶化合物或上述實施例的含氰基吡啶化合物中至少一者與其他化合物之混合物。
發光層106通常包括主體發光材料與客體發光材料。在一實施例中,上述實施例的含氰基吡啶化合物可作為主體發光材料而與客體發光材料混合。在一實施例中,發光層106可包括含氰基吡啶化合物以及其他的主體發光材料。在一實施例中,上述實施例的含氰基吡啶化合物可作為客體發光材料而與主體發光材料混合。
上述實施例的含氰基吡啶化合物以外的主體發光材料例如是稠合芳香環化合物(condensation aromatic cycle derivative)、含雜環之化合物(heterocycle-containing compound)或其類似物。稠合芳香環衍伸物例如是蒽(anthracene)化合物、芘(pyrene)化合物、萘(naphthalene)化合物、並五苯(pentacene)化合物、菲(phenanthrene)化合物、熒蒽(fluoranthene)化合物或其類似物。含雜環之化合物例如是咔唑化合物、二苯並呋喃(dibenzofuran)化合物、階梯型呋喃(ladder-type furan)化合物、嘧啶(pyrimidine)化合物或其類似物。
上述實施例的含氰基吡啶化合物以外的客體發光材料例如是芳胺化合物、苯乙烯胺化合物、硼複合物(boron complex)、熒蒽化合物、金屬複合物或其類似物。具體來說,芳胺化合物例如是經芳胺基取代之稠合芳香環化合物,其例子包括具有芳胺基之芘、蒽、屈(chrysene)及二茚並芘(periflanthene)等;苯乙烯胺化合物的具體例包括苯乙烯胺(styrylamine)、苯乙烯二胺(styryldiamine)、苯乙烯三胺(styryltriamine)及苯乙烯四胺(styryltetramine)。金屬複合物之例子包括銥複合物(iridium complex)及鉑複合物(platinum complex),但不以此為限。
在一實施例中,有機發光二極體10更包括至少一層輔助層,輔助層選自由電洞注入層、電洞傳輸層、電洞阻擋層、激子阻擋層、電子注入層、電子傳輸層以及電子阻擋層所組成的群組。
圖2為依照本發明另一實施例的電激發光裝置的剖面示意圖。在圖2中,與圖1相同的元件將以相同的標號表示,並且省略了相同技術內容的說明。電激發光裝置20包括陽極102、電洞傳輸層103、發光層106、電子傳輸層105以及陰極104。在本實施例中,發光層106包括上述實施例的含氰基吡啶化合物。
於下文中,參照實例更詳細地說明上述實施例。然而,這些實例並非於任何意義上被解釋作限制本發明的範圍。
[ 密度泛函理論計算 ]
在本實施例中,藉由密度泛函理論(Density Functional Theory, DFT)計算,以得到化合物CzmPPC、tCzmPPC、SAcmPPC、TPAmPPC、tTPAmPPC、DPCzmPPC、TPAePPC、TPAiPPC、TPAmPPCcn及TPAmPPCph的最佳結構(geometry optimization)、單重激發態能量(E S)、三重激發態能量(E T)、Δ E ST及二面角度,進而預測本發明的含氰基吡啶化合物作為熱活化延遲螢光(TADF)材料的可能性。
在本實施例中,使用Gaussian09作為計算軟體,執行B3LYP計算並以6-31G*作為基底函數(basis set),以時間相關密度泛函理論(Time-dependent density functional theory, TD-DFT)計算基態到激發態的躍遷能量和電子雲分布。
理論計算的結果如下表1所示,其中二面角度(dihedral angle)定義為3,5-二氰基吡啶與4號位的苯基之間的夾角。 [表1]
化合物結構 E S(eV) E T(eV) Δ E ST(eV) 二面角度(˚)
Figure 02_image049
2.716 2.648 0.068 76.9
Figure 02_image051
2.565 2.560 0.005 78.5
Figure 02_image053
2.230 2.230 0.0001 86.1
Figure 02_image055
2.506 2.491 0.015 73.8
Figure 02_image057
2.371 0.358 0.013 74.0
Figure 02_image059
2.583 2.580 0.003 81.7
Figure 02_image061
2.439 2.426 0.013 82.7
Figure 02_image063
2.439 2.428 0.011 89.3
Figure 02_image065
1.991 1.976 0.015 73.7
Figure 02_image067
2.413 2.399 0.014 75.3
由表1的結果可知,經由理論計算的結果,本發明的含氰基吡啶化合物的單重激發態能量(E S)與三重激發態能量(E T)之間的差值Δ E ST介於0.0001 eV~0.078 eV,二面角度介於73.7˚~89.1˚。可達成上述低Δ E ST以及高二面角度的原因在於,含氰基吡啶化合物的苯基上鄰位的烷基與吡啶基的3號、5號位的氰基之間的立體障礙錯開兩個平面至接近正交,使HOMO和LUMO之間的軌域重疊小,進而減小Δ E ST,因此可推知本發明的含氰基吡啶化合物具有熱活化延遲螢光性質。
在本實施例中,使用化合物TPAPPC、TPAsPPC作為比較例。在化合物TPAPPC的結構中,在連接吡啶-3,5-二氰基的苯環的鄰位(R 1及R 2)上不具有取代基,即R 1及R 2皆為氫。而在化合物TPAsPPC的結構中,R 1為氫,且R 2為甲基。
Figure 02_image069
Figure 02_image070
藉由密度泛函理論計算,以得到化合物TPAPPC、TPAsPPC及TPAmPPC的分子軌域(Molecular Orbital, MO)的電子雲分布、Δ E ST及二面角度。理論計算的結果如下表2所示。 [表2]
化合物 Δ E ST(eV) 二面角度(˚)
TPAPPC 0.224 50.4
TPAsPPC 0.025 68.2
TPAmPPC 0.015 73.8
圖3為TPAPPC、TPAsPPC及TPAmPPC的分子軌域(Molecular Orbital, MO)的電子雲分布圖。由表2及圖3的結果可知,化合物TPAmPPC的HOMO的電子雲集中在電子受體(即拉電子基)上,且化合物TPAmPPC的LUMO的電子雲集中在電子供體(即推電子基)上。此外,由於化合物TPAmPPC的苯基上鄰位的烷基靠近吡啶基,因此苯基上的烷基與吡啶基上的氰基產生了立體障礙,使得HOMO及LUMO具有良好的分離(即HOMO和LUMO之間的軌域重疊小),進而減小Δ E ST(僅只有0.015)。
反觀化合物TPAPPC及TPAsPPC,由於化合物TPAPPC及TPAsPPC的連接基團(即苯基)的鄰位處缺少足夠的立體障礙,因此其二面角度只有50.4˚~68.2˚,且HOMO的電子雲會延伸至吡啶基團上,造成HOMO和LUMO之間的軌域重疊變大,進而使Δ E ST增加。
有機化合物合成
[ 中間產物合成 ]
合成實例 1 :中間產物 I-1 4-(9H- 咔唑 -9- )-2,6- 二甲基苯甲醛)( 4-(9H-carbazol-9-yl)-2,6-dimethylbenzaldehyde )的合成
[反應流程圖1]
Figure 02_image071
在雙頸瓶中加入化合物9-(4-溴-3,5-二甲基苯基)-9H-咔唑(1 g, 2.9 mmol),以血清塞封住,由側口加入乾燥的四氫呋喃(THF)(19 mL, 0.15 M),並以丙酮浴使系統降溫至-78 oC。在通氮氣下,以塑膠針筒緩慢加入正丁基鋰(n-butyllithium,n-BuLi)(1.73 mL, 4.3 mmol),形成橘黃色溶液,並維持丙酮浴1小時。接著,在通氮氣下,以針筒加入乾燥的二甲基甲醯胺(DMF)(0.64 g, 8.7 mmol),再維持丙酮浴1小時,並隔夜反應。在反應結束後,加入水,並以鹽酸水溶液中和掉多餘的鹼。以乙酸乙酯萃取3次,並進行旋轉濃縮。然後,以管柱層析純化(沖堤液為乙酸乙酯/正己烷=1/19, v/v),得到白色固體的中間產物I-1(0.69 g,產率80.0 %)。
1H NMR (500 MHz, CDCl 3, δ): 10.67 (s, 1H), 8.12 (d, J= 8.0 Hz, 2H), 7.48 (d, J= 8.5 Hz, 2H), 7.42 (t, J= 8.0 Hz, 2H), 7.34 (s, 2H), 7.30 (t, J= 7.5 Hz, 2H), 2.72 (s, 6H). 13C NMR (125 MHz, CDCl 3, δ): 192.41, 143.51, 141.58, 140.11, 130.91, 127.17, 126.13, 123.79, 120.52, 120.43, 109.92, 20.80.
合成實例 2 :中間產物 I-2 4-(3,6- 二叔丁基 -9H- 咔唑 -9- )-2,6- 二甲基苯甲醛)( 4-(3,6-di-tert-butyl-9H-carbazol-9-yl)-2,6-dimethylbenzaldehyde )的合成
[反應流程圖2]
Figure 02_image073
在雙頸瓶中加入化合物9-(4-溴-3,5-二甲基苯基)-3,6-二叔丁基-9H-咔唑(1 g, 2.2 mmol),以血清塞封住,由側口加入乾燥的四氫呋喃(THF)(14 mL, 0.15 M),並以丙酮浴使系統降溫至-78 oC。在通氮氣下,以塑膠針緩慢加入正丁基鋰(1.31 mL, 3.2 mmol),形成橘黃色溶液,並維持丙酮浴1小時。接著,在通氮氣下,以針筒加入乾燥的二甲基甲醯胺(DMF)(0.47 g, 6.5 mmol),再維持丙酮浴1小時,並隔夜反應。在反應結束後,加入水,並以鹽酸水溶液中和掉多餘的鹼。以乙酸乙酯萃取3次,並進行旋轉濃縮。然後,以管柱層析純化(沖堤液為乙酸乙酯/正己烷=1/19, v/v),得到白色固體的中間產物I-2(0.6 g,產率67.4 %)。
1H NMR (500 MHz, CDCl 3, δ): 10.66 (s, 1H), 8.12 (s, 2H), 7.45 (q, J= 8.5 Hz, 4H), 7.33 (s, 2H), 2.71 (s, 6H), 1.45 (s, 18H). 13C NMR (125 MHz, CDCl 3, δ): 192.34, 143.56, 143.47, 142.13, 138.38, 130.39, 126.58, 123.87, 123.78, 116.37, 109.44, 34.75, 31.95, 20.84.
合成實例 3 :中間產物 I-3 4-(5H- 二苯並 [b,f] 吖呯 -5- )-2,6- 二甲基苯甲醛)( 4-(5H-dibenzo[b,f]azepin-5-yl)-2,6-dimethylbenzaldehyde )的合成
[反應流程圖3]
Figure 02_image075
在雙頸瓶中加入化合物5-(4-溴-3,5-二甲基苯基)-5H-二苯並[b,f]吖呯(0.3 g, 0.8 mmol),以血清塞封住,由側口加入乾燥的四氫呋喃(THF)(8 mL, 0.1 M),並以丙酮浴使系統降溫至-78 oC。在通氮氣下,以塑膠針緩慢加入正丁基鋰(0.48 mL, 1.8 mmol),形成橘黃色溶液,並維持丙酮浴1小時。接著,在通氮氣下,以針筒加入乾燥的二甲基甲醯胺(DMF)(0.18 g, 2.4 mmol),再維持丙酮浴1小時,並隔夜反應。在反應結束後,加入水,並以鹽酸水溶液中和掉多餘的鹼。以乙酸乙酯萃取3次,並進行旋轉濃縮。然後,以管柱層析純化(沖堤液為乙酸乙酯/正己烷=1/19, v/v),得到黃色固體的中間產物I-3(0.14 g,產率53.3 %)。
1H NMR (500 MHz, CDCl 3, δ): 10.28 (s, 1H), 7.51 (t, J= 7.5 Hz, 2H), 7.44 (d, J= 8.0 Hz, 4H), 7.38 (t, J= 7.5 Hz, 2H), 6.85 (s, 2H), 5.91 (s, 2H), 2.37 (s, 6H). 13C NMR (125 MHz, CDCl 3, δ): 190.76, 151.93, 143.82, 141.45, 135.72, 130.45, 130.32, 129.83, 129.48, 127.57, 123.53, 112.27, 21.42.
合成實例 4 :中間產物 I-4 2,6- 二甲基 -4-(10H- [[ -9,9'- ]-10- ] 苯甲醛)( 2,6-dimethyl-4-(10H-spiro[acridine-9,9'-fluoren]-10-yl)benzaldehyde )的合成
[反應流程圖4]
Figure 02_image077
在雙頸瓶中加入化合物10-(4-溴-3,5-二甲基苯基)-10H-螺[吖啶-9,9'-芴](1 g, 1.9 mmol),以血清塞封住,由側口加入乾燥的四氫呋喃(THF)(24 mL, 0.08 M),以丙酮浴使系統降溫至-78 oC;在通氮氣下,以塑膠針緩慢加入正丁基鋰(1.16 mL, 2.9 mmol),形成橘黃色溶液,並維持丙酮浴1小時。接著,在通氮氣下,以針筒加入乾燥的二甲基甲醯胺(DMF)(0.43 g, 5.7 mmol),再維持丙酮浴1小時,並隔夜反應。在反應結束後,加入水,並以鹽酸水溶液中和掉多餘的鹼。以乙酸乙酯萃取3次,並進行旋轉濃縮。然後,以管柱層析純化(沖堤液為乙酸乙酯/正己烷=1/19, v/v),得到黃色固體的中間產物I-4(0.61 g,產率67.2 %)。 1H NMR (500 MHz, CDCl 3, δ): 10.72 (s, 1H), 7.77 (d, J= 7.5 Hz, 2H), 7.38-7.33 (m, 4H), 7.23-7.21 (m, 4H), 6.90 (t, J= 7.5 Hz, 2H), 6.55 (t, J= 7.5 Hz, 2H), 6.38 (d, J= 7.5 Hz, 2H), 6.34 (d, J= 7.5 Hz, 2H), 2.72 (s, 6H). 13C NMR (125 MHz, CDCl 3, δ): 192.87, 156.52, 144.96, 144.44, 140.59, 139.19, 132.40, 132.13, 128.37, 127.96, 127.62, 127.23, 125.72, 124.80, 120.86, 119.91, 114.46, 20.67.
合成實例 5 :中間產物 I-5 4-( 二苯氨基 )-2,6- 二甲基苯甲醛)( 4-(diphenylamino)-2,6-dimethylbenzaldehyde )的合成
[反應流程圖5]
Figure 02_image079
在雙頸瓶中加入化合物4-溴-3,5-二甲基-N,N-二苯基苯胺(1 g, 2.8 mmol),以血清塞封住,由側口加入乾燥的四氫呋喃(THF)(28 mL, 0.1 M),以丙酮浴使系統降溫至-78 oC;在通氮氣下,以塑膠針緩慢加入正丁基鋰(1.7 mL, 4.3 mmol),形成橘黃色溶液,並維持丙酮浴1小時。接著,在通氮氣下,以針筒加入乾燥的二甲基甲醯胺(DMF)(0.64 g, 8.7 mmol),再維持丙酮浴1小時,並隔夜反應。在反應結束後,加入水,並以鹽酸水溶液中和掉多餘的鹼。以乙酸乙酯萃取3次,並進行旋轉濃縮。然後,以管柱層析純化(沖堤液為乙酸乙酯/正己烷=1/19, v/v),得到淡黃色固體的中間產物I-5(0.66 g,產率77.4 %)。
1H NMR (500 MHz, CDCl 3, δ): 10.39 (s, 1H), 7.31 (t, J= 8.0 Hz, 4H), 7.15-7.12 (m, 6H), 6.58 (s, 2H), 2.47 (s, 6H). 13C NMR (125 MHz, CDCl 3, δ): 191.18, 151.60, 146.22, 143.61, 129.58, 126.26, 125.39, 124.76, 120.27, 21.10.
合成實例 6 :中間產物 I-6 4-( (4-( 叔丁基 ) 苯基 ) 氨基 )-2,6- 二甲基苯甲醛)( 4-(bis(4-( tert-butyl)phenyl)amino)-2,6-dimethylbenzaldehyde )的合成
[反應流程圖6]
Figure 02_image081
在雙頸瓶中加入化合物4-溴-N,N-雙(4-(叔丁基)苯基)-3,5-二甲基苯胺(0.5 g, 1.1 mmol),以血清塞封住,由側口加入乾燥的四氫呋喃(THF)(11 mL, 0.1 M),以丙酮浴使系統降溫至-78 oC;在通氮氣下,以塑膠針緩慢加入正丁基鋰(0.6 mL, 1.6 mmol),形成橘黃色溶液,並維持丙酮浴1小時。接著,在通氮氣下,以針筒加入乾燥的二甲基甲醯胺(DMF)(0.2 g, 3.2 mmol),再維持丙酮浴1小時,並隔夜反應。在反應結束後,加入水,並以鹽酸水溶液中和掉多餘的鹼。以乙酸乙酯萃取3次,並進行旋轉濃縮。然後,以管柱層析純化(沖堤液為乙酸乙酯/正己烷=1/19, v/v),得到黃色固體的中間產物I-6(0.4 g,產率88.0 %)。
1H NMR (500 MHz, CDCl 3, δ): 10.38 (s, 1H), 7.31 (d, J= 8.4 Hz, 4H), 7.05 (d, J= 8.4 Hz, 4H), 6.55 (s, 2H), 2.48 (s, 6H), 1.32 (s, 18H). 13C NMR (125 MHz, CDCl 3, δ): 190.98, 151.90, 147.79, 143.61, 143.28, 126.40, 125.89, 124.64, 119.15, 34.44, 31.37, 21.19.
合成實例 7 :中間產物 I-7 4-( 二苯氨基 )- 苯甲醛)( 4-(diphenylamino)-benzaldehyde )的合成
[反應流程圖7]
Figure 02_image083
在雙頸瓶中加入三苯胺(2 g, 8.2 mmol),以針筒加入乾燥的二甲基甲醯胺(DMF)(12 mL, 0.4 M),抽灌三次,系統降溫至0 oC。在通氮氣下,以塑膠針緩慢加入三氯氧磷(6.3 g, 40.8 mmol),移除冰浴,回到室溫後以45 oC加熱三個小時。在反應結束後,加入大量冰水終止反應,並以陶瓷漏斗收集黃色固體沉澱。然後,以管柱層析純化(沖堤液:乙酸乙酯/正己烷=1/19, v/v),得到黃色固體的中間產物I-7(1.98 g,產率88.8 %)。
1H NMR (500 MHz, CDCl 3, δ): 10.39 (s, 1H), 7.31 (t, J= 8.0 Hz, 4H), 7.15-7.12 (m, 6H), 6.58 (s, 2H), 2.47 (s, 6H). 13C NMR (125 MHz, CDCl 3, δ): 191.18, 151.60, 146.22, 143.61, 129.58, 126.26, 125.39, 124.76, 120.27, 21.10.
[ 最終化合物合成 ]
合成實例 8 :化合物 4-(4-(9H- 咔唑 -9- )-2,6- 二甲基苯基 )-2,6- 二苯基吡啶 -3,5- 二氰基( 4-(4-(9H-carbazol-9-yl)-2,6-dimethylphenyl)-2,6-diphenylpyridine-3,5-dicarbonitrile CzmPPC )的合成
[反應流程圖8]
Figure 02_image085
將中間產物I-7 (0.67 g, 2.2 mmol)、苯甲酰乙腈(0.81 g, 5.6 mmol)、醋酸氨(0.43 g, 5.6 mmol)加至雙頸瓶中,溶劑為醋酸(6.7 mL),加熱110 oC,迴流12小時。待反應結束,回至室溫,將2,3-二氯-5,6-二氰對苯醌(1.5 g, 6.6 mmol)加至雙頸瓶,加熱110 oC,迴流2小時,以進行氧化反應。待反應結束,回至室溫,抽氣過濾,並以水洗掉多餘的醋酸,上高真空除掉溶劑和水,得到粗產物。經由管柱層析進行純化,得白色固體產物CzmPPC(0.69 g,總產率57.2 %)。最後以昇華機於高真空(5 × 10 -6torr)下精製產物,昇華溫度為240 oC。
1H NMR (500 MHz, CDCl 3, δ): 8.19-8.15 (m, 6H), 7.62-7.61 (m, 6H), 7.55 (d, J= 8.0 Hz, 2H), 7.51 (s, 2H), 7.46 (t, J= 8.0 Hz, 2H), 7.31 (t, J= 7.5 Hz, 2H), 2.31 (s, 6H). 13C NMR (125 MHz, CDCl 3, δ): 163.12, 160.71, 140.56, 139.36, 137.12, 136.06, 132.50, 131.68, 129.52, 128.91, 126.75, 126.04, 123.50, 120.28, 120.15, 115.05, 110.01, 106.45, 20.29. HRMS (FD) m/z: [M +] calcd. for C 39H 26N 4, 550.2152; found, 550.2151. Anal. calcd. for C 39H 26N 4: C 85.07, H 4.76, N 10.17 found: C 85.17, H 4.51, N 10.03.
合成實例 9 :化合物 4-(4-(3,6- 二叔丁基 -9H- 咔唑 -9- )-2,6- 二甲基苯基 )-2,6- 二苯基吡啶 -3,5- 二氰基( 4-(4-(3,6-di-tert-butyl-9H-carbazol-9-yl)-2,6-dimethylphenyl)-2,6-diphenylpyridine-3,5-dicarbonitrile tCzmPPC )的合成
[反應流程圖9]
Figure 02_image087
將中間產物I-2(0.2 g, 0.5 mmol)、苯甲酰乙腈(0.18 g, 1.2 mmol)、醋酸氨(0.11 g, 1.5 mmol)加至雙頸瓶中,溶劑為醋酸(5 mL),加熱110 oC,迴流12小時。待反應結束,回至室溫,將2,3-二氯-5,6-二氰對苯醌(0.34 g, 1.5 mmol)加至雙頸瓶中,加熱110 oC,迴流2小時,以進行氧化反應。待反應結束,回至室溫,抽氣過濾,並以水洗掉多餘的醋酸,上高真空除掉溶劑和水,得到粗產物。經由管柱層析進行純化,得產物tCzmPPC(0.23 g,總產率68.1 %)。最後以昇華機於高真空(5 × 10 -6torr)下精製產物,昇華溫度為265 oC。
1H NMR (500 MHz, CDCl 3, δ): 8.15-8.13 (m, 6H), 7.60 (m, 6H), 7.48 (m, 6H), 2.27 (s, 6H), 1.46 (s, 18H). 13C NMR (125 MHz, CDCl 3, δ): 163.10, 160.84, 143.10, 139.89, 138.89, 136.92, 136.11, 131.90, 131.65, 129.53, 128.91, 126.24, 123.69, 123.54, 116.20, 115.06, 109.49, 106.57, 34.73, 31.99, 20.29. HRMS (FD) m/z: [M +] calcd. for C 47H 42N 4, 662.3404; found, 662.3405. Anal. calcd. for C 47H 42N 4: C 85.16, H 6.39, N 8.45 found: C 85.56, H 5.98, N 8.51.
合成實例 10 :化合物 4-(4-(5H- 二苯並 [b,f] 吖呯 -5- )-2,6- 二甲基苯基 )-2,6- 二苯基吡啶 -3,5- 二氰基( 4-(4-(5H-dibenzo[b,f]azepin-5-yl)-2,6-dimethylphenyl)-2,6-diphenylpyridine-3,5-dicarbonitrile DBAZmPPC )的合成
[反應流程圖10]
Figure 02_image089
將中間產物I-3(0.2 g, 0.6 mmol)、苯甲酰乙腈(0.22 g, 1.5 mmol)、醋酸氨(0.14 g, 1.8 mmol)加至雙頸瓶中,溶劑為醋酸(5.5 mL),加熱110 oC,迴流12小時。待反應結束,回至室溫,將2,3-二氯-5,6-二氰對苯醌(0.41 g, 1.8 mmol)加至雙頸瓶中,加熱110 oC,進行氧化反應2小時。待反應結束,回至室溫,抽氣過濾,並以水洗掉多餘的醋酸,上高真空除掉溶劑和水,得到粗產物。經由管柱層析進行純化,得黃色產物DBAZmPPC(0.21 g,總產率60.3 %)。最後以昇華機於高真空(5 × 10 -6torr)下精製產物,昇華溫度為260 oC。
1H NMR (500 MHz, CDCl 3, δ): 8.05 (d, J= 7.5 Hz, 4H), 7.54-7.52 (m, 8H), 7.49 (t, J= 8.0 Hz, 2H), 7.44 (d, J= 7.5 Hz, 2H), 7.35 (t, J= 7.5 Hz, 2H), 6.87 (s, 2H), 6.11 (s, 2H), 1.92 (s, 6H). 13C NMR (125 MHz, CDCl 3, δ): 162.75, 162.23, 149.75, 142.44, 136.36, 136.30, 135.13, 131.27, 130.67, 130.21, 130.20, 129.60, 129.45, 128.74, 127.11, 123.09, 115.44, 111.51, 107.58, 20.48. HRMS (FD) m/z: [M +] calcd. for C 41H 28N 4, 576.2309; found, 576.2303. Anal. calcd. for C 41H 28N 4: C 85.39, H 4.89, N 9.72 found: C 85.23, H 4.66, N 9.70.
合成實例 11 :化合物 4-(2,6- 二甲基 -4-(10H- [[ -9,9'- ] -10- ) 苯基 )-2,6- 二苯基吡啶 -3,5- 二氰基( 4-(2,6-dimethyl-4-(10 H-spiro[acridine-9,9'-fluoren]-10-yl)phenyl)-2,6-diphenylpyridine-3,5-dicarbonitrile SAcmPPC )的合成
[反應流程圖11]
Figure 02_image091
將中間產物I-4(0.2 g, 0.4 mmol)、苯甲酰乙腈(0.16 g, 1.1 mmol)、醋酸氨(0.1 g, 1.3 mmol)加至雙頸瓶中,溶劑為醋酸(5.5 mL),加熱110 oC,迴流12小時。待反應結束,回至室溫,將2,3-二氯-5,6-二氰對苯醌(0.27 g, 1.2 mmol)加至雙頸瓶中,加熱110 oC,迴流2小時,以進行氧化反應。待反應結束,回至室溫,抽氣過濾,並以水洗掉多餘的醋酸,上高真空除掉溶劑和水,得到粗產物。經由管柱層析進行純化,得黃色產物SAcmPPC(0.15 g,總產率51.4 %)。最後以昇華機於高真空(5 × 10 -6torr)下精製產物,昇華溫度為310 oC。
1H NMR (500 MHz, CDCl 3, δ): 8.19 (d, J= 7.5 Hz, 4H), 7.79 (d, J= 7.5 Hz, 2H), 7.62-7.61 (m, 6H), 7.43-7.42 (m, 4H), 7.37 (t, J= 7.5 Hz, 2H), 7.26 (d, J= 7.5 Hz, 2H), 6.98 (t, J= 7.5 Hz, 2H), 6.58 (t, J= 7.5 Hz, 2H), 6.49 (d, J= 8.5 Hz, 2H), 6.41 (d, J= 8.0 Hz, 2H), 2.33 (s, 6H). 13C NMR (125 MHz, CDCl 3, δ): 163.09, 160.88, 156.52, 142.69, 140.93, 139.21, 138.48, 136.07, 133.97, 131.74, 131.10, 129.55, 129.53, 128.95, 128.35, 127.73, 127.57, 127.48, 125.77, 124.75, 120.76, 119.88, 115.06, 114.67, 106.37, 20.27. HRMS (FD) m/z: [M +] calcd. for C 52H 34N 4, 714.2778; found, 714.2783. Anal. calcd. for C 52H 34N 4: C 87.37, H 4.79, N 7.84 found: C 87.56, H 4.38, N 7.91.
合成實例 12 4-(4-( 二苯基氨基 )-2,6- 二甲基苯基 )-2,6- 二苯基吡啶 -3,5- 二氰基( 4-(4-(diphenylamino)-2,6-dimethylphenyl)-2,6-diphenylpyridine-3,5-dicarbonitrile TPAmPPC )的合成
[反應流程圖12]
Figure 02_image093
將中間產物I-5(0.2 g, 0.7 mmol)、苯甲酰乙腈(0.24 g, 1.7 mmol)、醋酸氨(0.15 g, 2.0 mmol)加至雙頸瓶中,溶劑為醋酸(6 mL),加熱110 oC,迴流12小時。待反應結束,回至室溫,將2,3-二氯-5,6-二氰對苯醌(0.48 g, 2.1 mmol)加至雙頸瓶,加熱110 oC,迴流2小時,以進行氧化反應。待反應結束,回至室溫,抽氣過濾,並以水洗掉多餘的醋酸,上高真空除掉溶劑和水,得到粗產物。經由管柱層析進行純化,得產物TPAmPPC(0.21 g,總產率54.1 %)。最後以昇華機於高真空(5 × 10 -6torr)下精製產物,昇華溫度為230 oC。
1H NMR (500 MHz, CDCl 3, δ): 8.10 (d, J= 7.5 Hz, 4H), 7.57-7.56 (m, 6H), 7.29 (t, J= 7.5 Hz, 4H), 7.16 (d, J= 8.0 Hz, 4H), 7.06 (t, J= 7.5 Hz, 2H), 6.87 (s, 2H), 2.04 (s, 6H). 13C NMR (125 MHz, CDCl 3, δ): 162.85, 161.70, 149.20, 147.18, 136.21, 135.84, 131.41, 129.45, 129.38, 128.78, 126.68, 125.36, 123.54, 121.41, 115.27, 107.11, 20.21. HRMS (FD) m/z: [M +] calcd. for C 39H 28N 4, 552.2309; found, 552.2313. Anal. calcd. for C 39H 28N 4: C 84.76, H 5.11, N 10.14 found: C 85.09, H 4.78, N 10.08.
合成實例 13 4-(4-( (4-( 叔丁基 ) 苯基 ) 氨基 )-2,6- 二甲基苯基 )-2,6- 二苯基吡啶 -3,5- 二氰基( 4-(4-(Bis(4-( tert-butyl)phenyl)amino)-2,6-dimethylphenyl)-2,6-diphenylpyridine-3,5-dicarbonitrile tTPAmPPC )的合成
[反應流程圖13]
Figure 02_image095
將I-6(0.4 g, 0.9 mmol)、苯甲酰乙腈(0.4 g, 2.4 mmol)、醋酸氨(0.2 g, 2.9 mmol)加至雙頸瓶中,溶劑為醋酸(15 mL),加熱110 oC,迴流12小時。待反應結束,回至室溫,將2,3-二氯-5,6-二氰對苯醌(0.61 g, 2.7 mmol)加至雙頸瓶中,加熱110 oC,迴流2小時,以進行氧化反應。待反應結束,回至室溫,抽氣過濾,並以水洗掉多餘的醋酸,上高真空除掉溶劑和水,得到粗產物。經由管柱層析進行純化,得產物tTPAmPPC(0.34 g,總產率57.0 %)。最後以昇華機於高真空(5 × 10 -6torr)下精製產物,昇華溫度為260 oC。
1H NMR (500 MHz, CDCl 3, δ): 8.10 (d, J= 7.2 Hz, 4H), 7.57-7.56 (m, 6H), 7.29 (d, J= 7.8 Hz, 4H), 7.09 (d, J= 7.9 Hz, 4H), 6.85 (s, 2H), 2.05 (s, 6H), 1.32 (s, 18H). 13C NMR (125 MHz, CDCl 3, δ): 162.83, 161.95, 149.55, 146.31, 144.47, 136.30, 135.64, 131.37, 129.49, 128.80, 126.17, 125.97, 124.90, 120.78, 115.34, 34.33, 31.42, 20.27. HRMS (EI) m/z: [M+] calcd. for C 47H 44N 4, 664.3566; found, 664.3564. Anal. calcd. for C 47H 44N 4: C 84.90, H 6.67, N 8.43 found: C 84.78, H 6.55, N 8.33.
合成比較例 1 4-(4-( 二苯基氨基 ) 苯基 )-2,6- 二苯基吡啶 -3,5- 二氰基( 4-(4-(diphenylamino)phenyl)-2,6-diphenylpyridine-3,5-dicarbonitrile TPAPPC )的合成
[反應流程圖14]
Figure 02_image097
將中間產物I-7(1.0 g, 3.7 mmol)、苯甲酰乙腈(1.2 g, 8 mmol)、醋酸氨(1.3 g, 16.5 mmol)加至雙頸瓶中,溶劑為醋酸(29 mL),加熱110 oC,迴流12小時。待反應結束,回至室溫,將2,3-二氯-5,6-二氰對苯醌(2.5 g, 11.1 mmol)加至雙頸瓶中,溶劑為醋酸(20 mL),加熱110 oC,迴流2小時,以進行氧化反應。待反應結束,回至室溫,抽氣過濾,並以水洗掉多餘的醋酸,上高真空除掉溶劑和水,得到粗產物。經由管柱層析進行純化,得黃色產物TPAPPC(1.5 g,總產率78.0 %)。最後以昇華機於高真空(5 × 10 -6torr)下精製產物,昇華溫度為240 oC。
1H NMR (500 MHz, CDCl 3, δ): 8.03 (d, J= 7.3 Hz, 6H), 7.55-7.54 (m, 2H), 7.48 (d, J= 8.6 Hz, 4H), 7.32 (t, J= 7.6 Hz, 4H), 7.21 (d, J= 7.8 Hz, 4H), 7.13 (dd, J= 13.8, 7.9 Hz, 4H). 13C NMR (125 MHz, CDCl 3, δ): 163.55, 155.96, 150.44, 146.52, 136.60, 131.21, 130.34, 129.64, 129.55, 128.71, 126.09, 124.91, 124.55, 120.12, 116.41, 105.57. HRMS (EI) m/z: [M+] calcd. for C 37H 24N 4, 524.2001; found, 524.2006. Anal. calcd. for C 37H 24N 4: C 84.71, H 4.61, N 10.68 found: C 84.64, H 4.43, N 10.59.
在本實施例中,上述各化合物的核磁共振光譜(Nuclear magnetic resonance spectrum, NMR)是由光譜儀 (Varian Mercury 500)所量測。氫核磁共振光譜( 1H NMR)的化學位移以CDCl 3為標準,化學位移(chemical shift)定為7.24 ppm,符號s表示單重峰(singlet),d表示雙重峰(doublet),t表示三重峰(triplet),m表示多重峰(multiplet),dd表示雙二重峰(doublet of doublets),耦合常數(coupling constant)單位為Hz。 13C NMR光譜的化學位移以CDCl 3為標準,化學位移定為77.0 ppm。高解析質譜使用JEOL AccuTOF GCx HRGCMS或是JEOL JMS-700 HRMS質譜儀測定。由元素分析儀(Elemental analyzer)測定樣品中碳、氫、氮及硫之重量百分比,量測儀器為全自動元素分析裝置vario EL III CHN-OS Rapid(艾力蒙塔(elementar)股份有限公司)。
[ 化合物之性質評估 ]
[ 光物理性質 ]
[ 紫外光 - 可見光吸收光譜及光激發放光光譜分析 ]
將合成實例8至13及合成比較例1的化合物置於10 -5M的甲苯溶液中,於石英樣品槽進行校正,並以分光光譜儀(spectrophotometer) Hitach U-3300量測合成實例8至13及合成比較例1的化合物的紫外光-可見光吸收(UV-vis absorption)光譜,以及使用螢光光譜儀(fluorescence spectrophotometer) Hitach F-7000量測合成實例8至13及合成比較例1的化合物的光激發放光(Photoluminescence, PL)光譜。
[ 紫外光光電子光譜分析 ]
在本實施例中,使用光電子光譜儀(photoelectron spectrometer)量測合成實例8至13及合成比較例1的化合物在薄膜態的電子脫離能量,以得到紫外光光電子光譜。具體來說,將各樣品形成為非摻雜薄膜並設置於玻璃基板上,以紫外光照射薄膜的表面。因為化合物表層的價電子和原子核之間的引力較小,在吸收高能量後價電子離開表面射出,並與氧氣形成帶負電的O 2 -,在電場下加速進入偵測器,而電子開始被儀器偵測到的起始能量為化合物的HOMO能階,單位為電子伏特(eV)。以吸收光譜的起始值(onset)計算由基態到單重激發態能量差(energy gap, E g),再由HOMO和E g計算化合物的LUMO能階。
合成實例8至13及合成比較例1的化合物的紫外光-可見光吸收光譜、光激發放光光譜及紫外光光電子光譜的結果如下表3所示。圖4為合成實例8至13及合成比較例1的化合物的紫外光-可見光吸收(UV-vis absorption)光譜。圖5為合成實例8至13及合成比較例1的化合物的光激發放光光譜。 [表3]
合成實例 λ abs(nm) λ Tol(nm) E g(eV) HOMO (eV) LUMO (eV)
CzmPPC 292 482 3.07 -5.82 -2.75
tCzmPPC 298 502 2.92 -5.72 -2.80
DBAZmPPC 288 526 2.73 -5.72 -2.99
SAcmPPC 296 534 2.68 -5.61 -2.93
TPAmPPC 302 544 2.61 -5.69 -3.08
tTPAmPPC 304 564 2.53 -5.60 -3.07
合成比較例 λ abs(nm) λ Tol(nm) E g(eV) HOMO (eV) LUMO (eV)
TPAPPC 290 503 2.64 -5.76 -3.12
λ abs:於甲苯中的吸收波長 λ Tol:於甲苯中的放光波長
由表3及圖4至圖5的結果可知,本發明的含氰基吡啶化合物的HOMO能階介於-5.82 eV至-5.60 eV,LUMO能階介於-3.12 eV至-2.75 eV。此外,本發明的含氰基吡啶化合物的放光涵蓋天藍光、綠光至黃光,其放光波長介於482 nm至564 nm。也就是說,隨著苯基上對位處的含氮基團(R 3)的不同,本發明的含氰基吡啶化合物的放光顏色不同。有就是說,本發明的含氰基吡啶化合物可滿足多光性。因此,本發明可藉由改變含氰基吡啶化合物的含氮基團(R 3)的結構來調控含氰基吡啶化合物的放光顏色。
[ 室溫螢光光譜和低溫磷光光譜分析 ]
將合成實例8至13及合成比較例1的化合物以10wt%摻雜於主體材料mCPCN中,將上述材料於石英片上蒸鍍30 nm以形成薄膜,並置放於透明石英管中。以螢光光譜儀(fluorescence spectrophotometer) Hitach F-7000進行量測室溫螢光光譜及低溫磷光光譜。在本實施例中,室溫螢光光譜的量測溫度為298 K,低溫磷光光譜的量測溫度為77 K。以螢光光譜的起始波長計算E S,以磷光光譜的起始波長計算E T,兩者相減可得Δ E ST,單位為電子伏特(eV)。室溫螢光光譜及低溫磷光光譜的結果如下表4所示。
Figure 02_image099
[ 發光量子效率量測 ]
將合成實例8至13及合成比較例1的化合物分別以10wt%摻雜於主發光體mCPCN中,將上述材料於石英片上蒸鍍30 nm以形成薄膜。先以空白石英片進行校正,再利用積分球(integrating sphere)在氮氣下,量測薄膜樣品於石英片上的發光量子效率(photoluminescence quantum yield, PLQY)。 [表4]
合成實例 E S(eV) E T(eV) Δ E ST(eV) Φ PLQY(%)
CzmPPC 2.95 2.68 0.27 92
tCzmPPC 2.82 2.70 0.12 97
DBAZmPPC 2.80 2.78 0.02 24
SAcmPPC 2.73 2.68 0.05 100
TPAmPPC 2.69 2.67 0.02 100
tTPAmPPC 2.60 2.58 0.02 79
合成比較例 E S(eV) E T(eV) Δ E ST(eV) Φ PLQY(%)
TPAPPC 2.73 2.52 0.21 100
圖6為本發明的實施例的CzmPPC的室溫螢光光譜及低溫磷光光譜。圖7為本發明的實施例的TPAmPPC的室溫螢光光譜及低溫磷光光譜。圖8為本發明的實施例的tCzmPPC的室溫螢光光譜及低溫磷光光譜。圖9為本發明的實施例的TPAPPC的室溫螢光光譜及低溫磷光光譜。
如圖6至圖9及表4所示。本發明的含氰基吡啶化合物的Δ E ST介於0.02 eV~0.27 eV,符合熱活化延遲螢光分子的特性(Δ E ST<0.3 eV)。當ΔE ST較小時,分子越容易從三重激發態回到單重激發態,並放出延遲螢光。
此外,由表4所示,本發明的含氰基吡啶化合物CzmPPC、tCzmPPC、TPAmPPC、SAcmPPC、tTPAmPPC在薄膜中的PLQY分別為92 %、97 %、100 %、100 %、79 %,這些含氰基吡啶化合物在薄膜中的優異表現符合預期。由於吡啶-3,5-二氰基具有良好的分子結構剛性,且苯基(連接基團)上的二甲基和吡啶上的二氰基之間的立體障礙可以避免分子運動等非輻射衰退,因此可使上述含氰基吡啶化合物達到接近100 %的PLQY,顯示本發明的含氰基吡啶化合物具有高效率TADF材料的潛力,有助於應用在發光元件上。
[ 熱穩定性質測試 ]
在OLED裝置的蒸鍍過程中,須確保化合物在高溫時不會分解,且能形成非晶相(amorphous)的薄膜,以避免結晶阻礙電荷的傳輸。此外,在裝置運作過程中,激發子暴露於帶電荷的環境中,因此化合物要具備高的鍵解離能(Bond Dissociation Energy,BDE)。
在本實施例中,使用熱重分析儀(Thermogravimetric analysis,TGA)(梅特勒-托利多(Mettler-Toledo)公司)並以10°C/分鐘的升溫速率、在氮氣下量測物質重量對溫度的變化,以得到合成實例8至13及合成比較例1的化合物的熱裂解溫度(Decomposed Temperature, T d),其中熱裂解溫度定義為損失5 %重量時的溫度。合成實例8至13及合成比較例1的化合物的熱裂解溫度如下表5所示。
[ 延遲螢光特性測試 ]
將合成實例8至13及合成比較例1的化合物分別以10wt%摻雜於主體材料mCPCN中,並將上述材料蒸鍍於石英片上,利用暫態光激發光譜儀(Transient Photoluminescence Spectroscopy, Transient PL) Edinburgh FLS-S2S2-stm量測暫態光激發光譜,並且由程式F980計算瞬時螢光生命期(Prompt Fluorescence lifetime, τ p)、延遲螢光生命期(Delayed Fluorescence lifetime, τ d)、瞬時螢光發光量子效率(Φ prompt)及延遲螢光發光量子效率(Φ delayed),其結果如下表5所示。
[表5]
合成實例 T d( oC) τ p(ns) τ d(µs) Φ prompt(%) Φ delayed(%)
CzmPPC 363 42 462 19 73
tCzmPPC 374 54 87 25 72
DBAZmPPC 371 15 0.1 5 19
SAcmPPC 400 99 72 16 84
TPAmPPC 336 33 3 9 91
tTPAmPPC 370 14 2 3 76
合成比較例 T d( oC) τ p(ns) τ d(µs) Φ prompt(%) Φ delayed(%)
TPAPPC 380 10 134 5 95
由表5的結果可知,本發明的含氰基吡啶化合物的熱裂解溫度介於336 oC~400 oC,具有良好的熱穩定性,因此可確保在蒸鍍過程中不會產生裂解。
此外,本發明的含氰基吡啶化合物的瞬時螢光生命期(τ p)皆小於100奈秒(ns),此表示為單重激發態返回到基態的快速放光,此為具有熱活化延遲螢光特性的重要指標。本發明的含氰基吡啶化合物的延遲螢光生命期(τ d)短,且延遲螢光發光量子效率(Φ delayed)高,具有優異的熱活化延遲螢光性質。而合成比較例TPAPPC則因為苯基的鄰位處缺少立體障礙,使得HOMO和LUMO的電子雲部分重疊,因此具有較大的Δ E ST,導致TPAPPC具有較長的延遲螢光生命期(134微秒(µs))。
[ 有機發光二極體的製作 ]
實驗例 1
使用9-(3-(9 H-咔唑基-9-基)苯基)-9 H-咔唑基-3-羰腈(9-(3-(9 H-carbazol-9-yl)phenyl)-9 H-carbazole-3-carbonitrile,mCPCN),作為主體發光材料,並使用合成實例8所得到的化合物CzmPPC作為客體發光材料(即摻質),以製作有機發光二極體。
具體而言,有機發光二極體的製作流程如下所示:首先,於作為陽極的ITO玻璃基板上沉積三氧化鉬(molybdenum trioxide,MoO 3),以形成電洞注入層。接著,於電洞注入層上沉積二-[4-(N,N-二(對甲苯基)胺基)苯基]環己烷,(1,1-bis[4-[ N,N′-di( p-tolyl)amino]phenyl] cyclohexane, TAPC),以形成電洞傳輸層。然後,在電洞傳輸層上沉積1,3-雙(9-咔唑基)苯(1,3-bis(9-carbazolyl)benzene,mCP),以形成激子阻擋層。接著,沉積摻雜有10%化合物CzmPPC的主體發光材料mCPCN(20 nm),以形成發光層。然後,於發光層上沉積三-[3-(3-吡啶基)2,4,6-三甲苯基]硼烷(3,3’,3’’-[borylidynetris(2,4,6-trimethyl-3,1-phenylene)]tris[pyridine], 3TPYMB)(50 nm),以形成電子傳輸層。之後,於電子傳輸層上依序沉積LiF(電子注入層)(0.5 nm)以及Al,以形成陰極。至此,即完成了本實驗例的有機發光二極體的製作。在本實施例中,本發明的含氰基吡啶化合物CzmPPC作為摻質。
上述有機發光二極體具有下列結構:ITO/ MoO 3(1 nm)/ TAPC (50 nm)/ mCP (10 nm)/ mCPCN:CzmPPC (10wt%) (20 nm)/ 3TPYMB (50 nm)/ LiF (0.5 nm)/ Al (100 nm)。
Figure 02_image100
實驗例 2
使用與實驗例1類似的方法來形成有機發光二極體,其差別只在於使用於合成實例9所得到的化合物tCzmPPC作為發光層的摻質。
實驗例 3
使用與實驗例1類似的方法來形成有機發光二極體,其差別只在於使用於合成實例10所得到的化合物DBAZmPPC作為發光層的摻質。
實驗例 4
使用與實驗例1類似的方法來形成有機發光二極體,其差別只在於使用於合成實例11所得到的化合物SAcmPPC作為發光層的摻質。
實驗例 5
使用與實驗例1類似的方法來形成有機發光二極體,其差別只在於使用於合成實例12所得到的化合物TPAmPPC作為發光層的摻質。
實驗例 6
使用與實驗例1類似的方法來形成有機發光二極體,其差別只在於使用於合成實例13所得到的化合物tTPAmPPC作為發光層的摻質。
比較例 1
使用與實驗例1類似的方法來形成有機發光二極體,其差別只在於使用於合成比較例1所得到的化合物TPAPPC作為發光層的摻質。
比較例 2
使用與實驗例1類似的方法來形成有機發光二極體,其差別只在於使用化合物TPAsPPC作為發光層的摻質。
Figure 02_image070
比較例 3
使用與實驗例1類似的方法來形成有機發光二極體,其差別只在於使用化合物tCzmPMC作為發光層的摻質。在化合物tCzmPMC的結構中,在核心結構吡啶基的2號、6號位(R 3)引入甲基。
Figure 02_image103
[ 有機發光二極體的效能評估 ]
圖10為實驗例1至實驗例6的有機發光二極體的光激發放光光譜。表6為檢測實驗例1至實驗例6以及比較例1至比較例3的有機發光二極體的效能的結果。在本實施例中,有機發光二極體的起始電壓為元件亮度為1 cd m -2時的操作電壓。有機發光二極體的亮度、外部量子效率、發光效率、功率效率分別為元件之最大值。有機發光二極體的放光波長和CIE座標為操作電壓為8 V的電激發光特性。 [表6]
  摻質 起始電壓(V) 亮度(cd m -2) 外部量子效率(%) 發光效率(cd A -1) 功率效率(lm W -1) 放光波長(nm) CIE座標
實驗例1 CzmPPC 3.0 581 16.1 36.8 38.5 480 (0.16, 0.27)
實驗例2 tCzmPPC 2.8 3906 28.0 76.4 106.7 499 (0.21, 0.45)
實驗例3 DBAZmPPC 3.0 2011 14.6 47.2 49.4 518 (0.28, 0.53)
實驗例4 SAcmPPC 2.6 3914 37.6 122.8 128.6 525 (0.31, 0.56)
實驗例5 TPAmPPC 2.6 15256 39.8 133.5 139.8 537 (0.35, 0.57)
實驗例6 tTPAmPPC 2.7 9872 29.8 91.8 96.1 556 (0.42, 0.55)
比較例1 TPAPPC 2.7 6985 36.0 116.5 121.9 521 (0.29, 0.56)
比較例2 TPAsPPC 2.7 13111 37.4 122.7 128.5 526 (0.31, 0.56)
比較例3 tCzmPMC 3.2 369 3.2 4.6 4.2 450 (0.17, 0.15)
由圖10可以看出,實驗例1至實驗例6的有機發光二極體的放光波長可由天藍光(480 nm)至黃光(556 nm)。也就是說,隨著苯基上對位處的含氮基團(R 3)的不同,本發明的含氰基吡啶化合物的放光顏色不同。因此,本發明可藉由改變含氰基吡啶化合物的含氮基團(R 3)的結構來調控有機發光二極體的放光顏色。
此外,由表6的結果可知,實驗例1至實驗例6的有機發光二極體的起始電壓皆在3.0 V以下(2.6 V~3.0 V)。實驗例1的有機發光二極體(具有化合物CzmPPC作為摻質)的放光波長為480 nm,為天藍光,最大外部量子效率為16.1 %,最大發光效率為36.8 cd A -1,最大功率效率為38.5 lm W -1。實驗例6的有機發光二極體(具有化合物tTPAmPPC作為摻質)的放光波長為556 nm,為黃光,最大外部量子效率為29.8 %,最大發光效率為91.8 cd A -1,最大功率效率為96.1 lm W -1
在上述實驗例中,實驗例4(具有化合物SAcmPPC作為摻質)及實驗例5(具有化合物TPAmPPC作為摻質)的有機發光二極體具有更優異的元件效率表現,其最大外部量子效率分別可達37.6 %和39.8 %,最大發光效率為122.8 cd A -1和133.5 cd A -1,最大功率效率為128.6 lm W -1和139.8 lm W -1,優於典型的TADF材料的效率表現。
圖11為實驗例5、比較例1及比較例2的有機發光二極體的亮度-外部量子效率曲線。
由圖11的結果可知,與實驗例5的有機發光二極體相比,比較例1與比較例2的有機發光二極體隨著亮度增加,其外部量子效率下降的速度越快。當在高亮度(1000 cd m -2)的情況下,比較例1的有機發光二極體的外部量子效率僅約9.6%,遠低於實驗例5的外部量子效率(27.0%)。這是由於比較例1的化合物TPAPCC具有較大的Δ E ST,因此當在高電流密度下,容易產生激發子-載子焠熄或是激發子-激發子焠熄,進而導致能量和效率的損失。也就是說,上述結果證實經由在連接基團苯基上的鄰位處引入二個甲基(可與吡啶基上的氰基產生立體障礙),可縮小延遲螢光生命期,改善發光元件於高亮度時的效率表現,進而更有效運用於顯示器上。
圖12為實驗例2及比較例3的有機發光二極體的亮度-外部量子效率曲線。
參照圖12及表6,比較例3的有機發光二極體的最大外部量子效率、最大發光效率、最大功率效率分別只有3.2 %、4.6 cd A -1及4.2 lm W -1,不僅遠低於實驗例2的效率表現。此外,比較例3的最大外部量子效率不足5%,也就是說,比較例3的化合物tCzmPMC並不具有「熱活化延遲螢光分子能透過轉換而提升激發子使用率」的特性,屬於傳統螢光材料。上述的結果可證實本發明的含氰基吡啶化合物在核心結構吡啶基的2號、6號位(R 3)引入芳香基對於熱活化延遲螢光特性和元件發光效率的重要。
[ 元件退火測試 ]
在本實施例中,經由元件退火(thermal annealing)實驗,更進一步測試本發明的含氰基吡啶化合物的熱穩定性。在有機發光二極體蒸鍍完、並在手套箱中氮氣環境下封裝後,將有機發光二極體置放於加熱板上。接著,以50 oC和80 oC分別加熱20分鐘,加熱後靜置回到室溫,再進行有機發光二極體的電性測試。
在本實施例中,使用實驗例5的有機發光二極體(具有化合物TPAmPPC作為摻質)進行退火測試,其結果如下表7。 [表7]
起始電壓(V) 亮度(cd m -2) 外部量子效率(%) 發光效率(cd A -1) 功率效率(lm W -1) CIE座標(x, y)
TPAmPPC (25 oC) 2.6 15256 39.8 133.5 139.8 (0.35, 0.57)
TPAmPPC (50 oC) 2.6 15872 34.3 115.1 120.6 (0.35, 0.57)
TPAmPPC (80 oC) 2.6 14459 29.0 97.1 101.7 (0.35, 0.57)
圖13為在不同溫度下實驗例5的有機發光二極體的亮度-外部量子效率曲線。
由圖13及表7的結果可知,即使經由80 oC加熱,實驗例5的有機發光二極體表現仍可以維持相當程度的穩定性,其最大外部量子效率可達29.0 %,最大亮度可達14459 cd m -2。此外,隨著加熱溫度增加,實驗例5的有機發光二極體的放光位置和起始電壓並未改變,且電激發光光譜也並未出現漏光,上述結果代表化合物TPAmPPC作為有機發光二極體中的有機發光客體材料可具有良好熱穩定性。
[ 發光元件壽命測 ]
[ 有機發光二極體的製作 ]
實驗例 7
在本實施例中,製作有機發光二極體的材料依序為:陽極為ITO,電洞注入層為1,4,5,8,9,12-六氮雜三伸苯六碳腈(Hexaazatriphenylenehexacarbonitrile,HAT-CN),電洞傳輸層為9,9',9''-三苯基-9H,9H',9H''-3,3',6',3''-三咔唑(9-Phenyl-3,6-bis(9-phenyl-9Hcarbazol-3-yl)-9H-carbazole,Tris-PCz),激子阻擋層為1,3-雙(9-咔唑基)苯(1,3-bis(9-carbazolyl)benzene,mCP),發光層中的主體材料為3,3'-雙(N-咔唑基)-1,1'-聯苯(3,3′-Di(9H-carbazol-9-yl)-1,1′-biphenyl,mCBP),本發明的含氰基吡啶化合物CzmPPC作為客體材料,電洞阻擋層為2,4,6-三([1,1'-聯苯]-3-基)-1,3,5-三嗪(2,4,6-tris(biphenyl-3-yl)-1,3,5-triazine,T2T),電子傳輸層為2,7-二([2,2'-二吡啶]-5-基)三伸苯(2,7-Bis(2,2′-bipyridin-5-yl)triphenylene,BPy-TP2),電子注入層為LiF,陰極材料為Al。
上述有機發光二極體具有下列結構:ITO/ HAT-CN (10 nm)/ Tris-PCz (30 nm)/ mCP (10 nm)/ mCBP:10wt% 客體材料 (30 nm)/ T2T (10 nm)/ BPy-TP2 (40 nm)/ LiF (1.0 nm)/ Al (100 nm)。
Figure 02_image105
實驗例 8
使用與實驗例7類似的方法來形成有機發光二極體,其差別只在於使用於合成實例9所得到的化合物tCzmPPC作為發光層的摻質。
實驗例 9
使用與實驗例7類似的方法來形成有機發光二極體,其差別只在於使用於合成實例11所得到的化合物SAcmPPC作為發光層的摻質。
實驗例 10
使用與實驗例7類似的方法來形成有機發光二極體,其差別只在於使用於合成實例12所得到的化合物TPAmPPC作為發光層的摻質。
實驗例 11
使用與實驗例7類似的方法來形成有機發光二極體,其差別只在於使用於合成實例13所得到的化合物tTPAmPPC作為發光層的摻質。
比較例 4
使用與實驗例7類似的方法來形成有機發光二極體,其差別只在於使用於合成比較例1所得到的化合物TPAPPC作為發光層的摻質。
元件半生期測試的方式為以亮度1000 cd m -2作為起始亮度(L 0=1000 cd m -2),量測當有機發光二極體的亮度衰退至一半(L=500 cd m -2)經過的時間,其量測結果如下表8所示。圖14顯示實驗例10、實驗例11及比較例4的發光元件壽命測試結果。 [表8]
  摻質 起始電壓(V) 亮度(cd m -2) 外部量子效率(%) 發光效率(cd A -1) 功率效率(lm W -1) 放光波長(nm) 元件半生期(hr)
實驗例7 CzmPPC 3.6 4178 8.5 24.6 19.3 504 2
實驗例8 tCzmPPC 4.0 11565 10.3 31.9 22.3 513 4
實驗例9 SAcmPPC 3.6 13418 11.7 31.0 24.3 527 15
實驗例10 TPAmPPC 3.5 60701 21.4 72.3 56.2 531 208
實驗例11 tTPAmPPC 3.5 43033 22.1 68.7 53.6 556 86
比較例4 TPAPPC 3.5 24655 10.7 33.7 22.3 515 3
由圖14及表8的結果可知,實驗例10的有機發光二極體(具有化合物TPAmPPC作為摻質)的元件半生期最長,可達208小時,明顯優於比較例4的有機發光二極體(具有化合物TPAPPC作為摻質)的元件半生期(3小時)。這是因為化合物TPAmPPC具有較短的延遲螢光生命期,因此減少材料處於激發子的時間,避免與環境中電洞、電子和激發子發生反應,進而避免非輻射衰退路徑或是化學鍵斷裂,大幅提升發光元件的穩定度。
本發明的含氰基吡啶化合物作為有機發光二極體元件的客體材料,具有優異的熱活化延遲螢光特性和分子剛性,藉由改變苯基的對位處的推電子基,並在苯基的鄰位處引入雙甲基,可縮短延遲螢光生命期,進而達到快速的逆系統間跨越(RISC)和100 %的發光量子效率,以有效地利用激發子。此外,由上述含氰基吡啶化合物所製作的電激發光元件不僅元件效率可達接近40 %,最大亮度可達15256 cd m -2,且在高亮度(1000 cd m -2)下的外部量子效率仍可以維持27.0 %,符合實際應用所需的規格。
此外,經由退火元件測試和壽命元件測試進一步證明本發明的含氰基吡啶化合物的良好穩定性,符合面板的長時間操作所需。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
10、20:電激發光裝置
102:陽極
103:電洞傳輸層
104:陰極
105:電子傳輸層
106:發光層
圖1為依照本發明一實施例的電激發光裝置的剖面示意圖。 圖2為依照本發明另一實施例的電激發光裝置的剖面示意圖。 圖3為TPAPPC、TPAsPPC及TPAmPPC的分子軌域(Molecular Orbital, MO)的電子雲分布圖。 圖4為合成實例8至13及合成比較例1的化合物的紫外光-可見光吸收(UV-vis absorption)光譜。 圖5為合成實例8至13及合成比較例1的化合物的光激發放光光譜。 圖6為本發明的實施例的CzmPPC的室溫螢光光譜及低溫磷光光譜。 圖7為本發明的實施例的TPAmPPC的室溫螢光光譜及低溫磷光光譜。 圖8為本發明的實施例的tCzmPPC的室溫螢光光譜及低溫磷光光譜。 圖9為本發明的實施例的TPAPPC的室溫螢光光譜及低溫磷光光譜。 圖10為實驗例1至實驗例6的有機發光二極體的光激發放光光譜。 圖11為實驗例5、比較例1及比較例2的有機發光二極體的亮度-外部量子效率曲線。 圖12為實驗例2及比較例3的有機發光二極體的亮度-外部量子效率曲線。 圖13為在不同溫度下實驗例5的有機發光二極體的亮度-外部量子效率曲線。 圖14顯示實驗例10、實驗例11及比較例4的發光元件壽命測試結果。
Figure 01_image001
10:電激發光裝置
102:陽極
104:陰極
106:發光層

Claims (9)

  1. 一種含氰基吡啶化合物,由下列化學式1所表示:
    Figure 109144905-A0305-02-0056-1
    在化學式1中,Ar1與Ar2可相同或不同,且各自獨立為經取代或未經取代的芳基或經取代或未經取代的雜芳基;R1與R2可相同或不同,且各自獨立為經取代或未經取代的烷基;以及R3為含氮基團,其中R3由以下結構中選出的任一者:
    Figure 109144905-A0305-02-0056-2
    Figure 109144905-A0305-02-0057-3
  2. 如請求項1所述的含氰基吡啶化合物,其中Ar1與Ar2各自獨立為由以下結構中選出的任一者:
    Figure 109144905-A0305-02-0057-4
  3. 如請求項1所述的含氰基吡啶化合物,其中R1與R2各自獨立為甲基、乙基或丙基。
  4. 如請求項1所述的含氰基吡啶化合物,其中所述含氰基吡啶化合物由以下結構式中選出的任一者:
    Figure 109144905-A0305-02-0058-5
  5. 一種電激發光裝置,包括:陰極;陽極;以及發光層,配置於所述陰極與所述陽極之間,所述發光層包含如請求項1至請求項4中任一項所述的含氰基吡啶化合物。
  6. 如請求項5所述的電激發光裝置,其中所述發光層包括主體發光材料及客體發光材料。
  7. 如請求項6所述的電激發光裝置,其中所述主體發光材料包括所述含氰基吡啶化合物。
  8. 如請求項6所述的電激發光裝置,其中所述客體發光材料包括所述含氰基吡啶化合物。
  9. 如請求項5所述的電激發光裝置,更包括至少一輔助層,所述輔助層選自由電洞注入層、電洞傳輸層、電洞阻擋層、激子阻擋層、電子注入層、電子傳輸層以及電子阻擋層所組成的群組。
TW109144905A 2020-12-18 2020-12-18 含氰基吡啶化合物以及包含其的電激發光裝置 TWI742965B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW109144905A TWI742965B (zh) 2020-12-18 2020-12-18 含氰基吡啶化合物以及包含其的電激發光裝置
US17/163,573 US20220209129A1 (en) 2020-12-18 2021-02-01 Pyridine-carbonitrile compound and electroluminescent device including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109144905A TWI742965B (zh) 2020-12-18 2020-12-18 含氰基吡啶化合物以及包含其的電激發光裝置

Publications (2)

Publication Number Publication Date
TWI742965B true TWI742965B (zh) 2021-10-11
TW202225149A TW202225149A (zh) 2022-07-01

Family

ID=80782569

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109144905A TWI742965B (zh) 2020-12-18 2020-12-18 含氰基吡啶化合物以及包含其的電激發光裝置

Country Status (2)

Country Link
US (1) US20220209129A1 (zh)
TW (1) TWI742965B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240102124A (ko) * 2022-12-23 2024-07-03 솔루스첨단소재 주식회사 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109535131A (zh) * 2018-12-25 2019-03-29 西安瑞联新材料股份有限公司 一种以氰基吡啶为受体的化合物及其应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9178164B2 (en) * 2011-08-05 2015-11-03 Industrial Technology Research Institute Organic compound and organic electroluminescent device employing the same
KR102603865B1 (ko) * 2016-04-21 2023-11-21 삼성디스플레이 주식회사 유기 발광 소자
TWI640513B (zh) * 2017-03-08 2018-11-11 國立清華大學 咪唑雜菲化合物以及包含其的有機發光二極體

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109535131A (zh) * 2018-12-25 2019-03-29 西安瑞联新材料股份有限公司 一种以氰基吡啶为受体的化合物及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Jayachandran Jayakumar et al.,"Carbonitrile-Pyridine-Carbazole-Based Delayed Fluorescence Materials with Highly Congested Structures and Excellent OLED Performance", ACS Appl. Mater. Interfaces, Vol.11, No.23, May 2019, pages 21042-21048.

Also Published As

Publication number Publication date
US20220209129A1 (en) 2022-06-30
TW202225149A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
CN107922837B (zh) 杂环化合物和使用其的有机发光二极管
JP6318155B2 (ja) 化合物、発光材料および有機発光素子
TWI469966B (zh) 具有咔唑環構造的化合物及有機電致發光元件
Kaafarani et al. Bis (carbazolyl) derivatives of pyrene and tetrahydropyrene: synthesis, structures, optical properties, electrochemistry, and electroluminescence
KR101521790B1 (ko) 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
WO2015002213A1 (ja) 発光材料、遅延蛍光体、有機発光素子および化合物
WO2015080183A1 (ja) 発光材料、有機発光素子および化合物
Reig et al. Easy accessible blue luminescent carbazole-based materials for organic light-emitting diodes
Chen et al. Naphthalimide–arylamine derivatives with aggregation induced delayed fluorescence for realizing efficient green to red electroluminescence
CN107548399B (zh) 杂环化合物及使用所述杂环化合物的有机发光元件
JPWO2018159662A1 (ja) 化合物、発光材料および有機発光素子
Godumala et al. Novel dendritic large molecules as solution-processable thermally activated delayed fluorescent emitters for simple structured non-doped organic light emitting diodes
JP2014009352A (ja) 発光材料、化合物および有機発光素子
TWI759158B (zh) 用於有機光電裝置的化合物、用於有機光電裝置的組成物、有機光電裝置及顯示裝置
TW201506126A (zh) 用於有機電致發光元件的化合物及包括該化合物之有機電致發光元件
KR20130075982A (ko) 안트라센계 화합물 및 이를 이용한 유기 전계 발광 소자
KR101601356B1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
TW201815761A (zh) 有機發光元件及用於其之發光材料及化合物
KR20150012974A (ko) 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
Wang et al. An efficient guest/host fluorescent energy transfer pair based on the naphthalimide skeleton, and its application in heavily-doped red organic light-emitting diodes
TW201718554A (zh) 雜環化合物及使用其之有機發光裝置
Vigante et al. Synthesis of linear and V‐shaped carbazolyl‐substituted pyridine‐3, 5‐dicarbonitriles exhibiting efficient bipolar charge transport and E‐type fluorescence
Chen et al. Full-colour luminescent compounds based on anthracene and 2, 2′-dipyridylamine
Wang et al. Construction of thermally stable 3, 6-disubstituted spiro-fluorene derivatives as host materials for blue phosphorescent organic light-emitting diodes
KR101661592B1 (ko) 융합된 플루오란텐 유도체 및 이를 포함한 유기 전계발광 소자