TWI742059B - 擴增dna的方法 - Google Patents

擴增dna的方法 Download PDF

Info

Publication number
TWI742059B
TWI742059B TW106110178A TW106110178A TWI742059B TW I742059 B TWI742059 B TW I742059B TW 106110178 A TW106110178 A TW 106110178A TW 106110178 A TW106110178 A TW 106110178A TW I742059 B TWI742059 B TW I742059B
Authority
TW
Taiwan
Prior art keywords
sequence
primer
temperature
dna
item
Prior art date
Application number
TW106110178A
Other languages
English (en)
Other versions
TW201738383A (zh
Inventor
高芳芳
陸思嘉
任軍
Original Assignee
大陸商序康醫療科技(蘇州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商序康醫療科技(蘇州)有限公司 filed Critical 大陸商序康醫療科技(蘇州)有限公司
Publication of TW201738383A publication Critical patent/TW201738383A/zh
Application granted granted Critical
Publication of TWI742059B publication Critical patent/TWI742059B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6848Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6853Nucleic acid amplification reactions using modified primers or templates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6874Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本申請涉及一種擴增基因組DNA的方法,包括:(a)提供第一反應混合物,包括包含基因組DNA的樣本、第一引物、核苷酸單體混合物和核酸聚合酶,其中所述第一引物從5’端到3’端包含通用序列和包括第一隨機序列的第一可變序列;(b)將第一反應混合物置於第一溫度迴圈程式獲得預擴增產物;(c)提供第二反應混合物,包括預擴增產物、第二引物、核苷酸單體混合物和核酸聚合酶,其中所述第二引物從5’端到3’端包含或由特定序列及所述通用序列組成;(d)將第二反應混合物置於第二溫度迴圈程式進行擴增,獲得擴增產物。本申請還涉及一種用於擴增基因組DNA的試劑盒。

Description

擴增DNA的方法
本發明涉及擴增DNA的方法,特別涉及擴增單細胞全基因組DNA並對其進行測序的方法。
單細胞全基因組測序技術是在單細胞水準對全基因組進行擴增與測序的一項新技術。其原理是將分離的單個細胞的微量全基因組DNA進行擴增,獲得高覆蓋率的完整基因組後進行高通量測序。
目前主要的全基因組擴增技術主要有四類:擴增前引物延伸聚合酶鏈式反應(Primer Extension Preamplification-Polymerase Chain Reaction,簡稱為PEP-PCR,具體方法參見Zhang L,Cui X,Schmitt K,Hubert R,Navidi W,Arnheim N.1992.Whole genome amplification from a single cell:implications for genetic analysis.Proc Natl Acad Sci U S A.89(13):5847-51.)、退變寡核苷酸引物聚合酶鏈式反應(Degenerate Oligonucleotide-Primed Polymerase Chain Reaction,簡稱為DOP-PCR,具體方法參見Telenius H,Carter NP,Bebb CE,Nordenskjo M, Ponder BA,Tunnacliffe A.1992.Degenerate oligonucleotide-primed PCR:general amplification of target DNA by a single degenerate primer.Genomics13:718-25)、多重置換擴增(Multiple Displacement Amplification,簡稱為MDA,具體方法參見Dean FB,Nelson JR,Giesler TL,LaskenRS.2001.Rapid amplification of plasmid and phageDNA using phi29 DNA polymerase and multiply-primed rolling circle amplification.Genome Res.11:1095-99)和多次退火環狀迴圈擴增(Multiple Annealing and Looping Based Amplification Cycles,簡稱為MALBAC,具體方法參見PCT專利申請WO2012166425)。
基因測序技術經過了三個發展階段:第一代DNA測序技術包括化學降解法、雙去氧鏈終止法以及在它們基礎上發展起來的各種測序技術,其中最具代表性的是1975年由桑格(Sanger)和考爾森(Coulson)提出的鏈終止法。第一代技術準確率高,讀取長,是至今唯一可以進行“從頭至尾”測序的方法,但存在成本高、速度慢等方面的不足,並不是最理想的測序方法。隨後的二、三代測序技術以高通量為共同特徵,也被稱為“新一代測序技術(NGS)”。其中第二代測序技術以焦磷酸測序技術、邊合成邊測序(SBS)技術、以及連接測序技術為代表,經過幾年的發展,焦磷酸測序技術以及連接測序技術已很少使用,現在主流的二代測序技術為邊合成邊測序技術、半導體測序技術以及CG測序技術。第三代測序技術大體分為 兩類,一類為單分子螢光測序,具有代表性的技術為TSMS技術和SMRT技術,另一類為奈米孔單分子技術。與前兩代技術相比,第三代測序技術最大的特點是單分子測序。雖然第三代測序技術取得了一定的進展,但現階段主流的測序技術仍是第二代測序技術。
目前的全基因組擴增技術擴增出的全基因序列無法直接用於二代測序技術。因此,無論是將上述全基因組序列應用於二代測序技術中的邊合成邊測序技術、半導體測序技術或者CG測序技術,在上機測序之前都需要進行文庫製備過程。每種測序技術都具有各自對應的文庫製備方法,其中邊合成邊測序平臺的文庫製備主要分為兩類,一類為片段化DNA經過末端修復後添加Y形接頭技術或頸環接頭技術,另一類為transpson技術。半導體測序平臺的文庫製備同樣分為兩類,一類為片段化DNA經過末端修復後添加接頭技術,另一類為transpson技術。CG平臺文庫製備過程比較複雜,片段化DNA經過末端修復後需要酶切、以及兩次環化過程,操作繁瑣,耗時較長。
當將目前的主流擴增方法擴增出的產物用於上述測序技術時,要麼需要另行進行建庫,要麼測序的效果不佳。因此,目前急需一種能夠克服主流擴增方法的一個、多個或全部缺陷的改進的擴增方法。
本發明提供了一種擴增細胞基因組DNA的方法和一 種用於擴增基因組DNA的試劑盒。
在本申請的一個方面中,提供了一種擴增基因組DNA的方法,所述方法包括:(a)提供第一反應混合物,其中所述第一反應混合物包括包含所述基因組DNA的樣本、第一引物、核苷酸單體混合物和核酸聚合酶,其中所述第一引物從5’端到3’端包含通用序列和第一可變序列,所述第一可變序列包括第一隨機序列,其中所述第一隨機序列從5’端到3’端依次為Xa1Xa2......Xan,所述第一隨機序列的Xai(i=1-n)均屬於同一個集合,所述集合選自B、或D、或H、或V,其中B={T、G、C},D={A、T、G},H={T、A、C},V={A、C、G},其中Xai表示第一隨機序列5’端的第i個核苷酸,n是選自3-20的正整數,可選地,所述第一反應混合物進一步包括第三引物,其中所述第三引物從5’端到3’端包含所述通用序列和第三可變序列,所述第三可變序列包括第三隨機序列,其中所述第三隨機序列從5’端到3’端依次為Xb1Xb2......Xbn,所述第三隨機序列的Xbi(i=1-n)均屬於同一個集合,所述集合選自B、或D、或H、或V,其中B={T、G、C},D={A、T、G},H={T、A、C},V={A、C、G},並且Xbi(i=1-n)和Xai(i=1-n)屬於不同的集合,其中Xbi表示第三隨機序列5’端的第i個核苷酸,n是選自3-20的正整數;(b)將所述第一反應混合物置於第一溫度迴圈程式進行預擴增,獲得預擴增產物;(c)提供第二反應混合物,所述第二反應混合物包括步驟(b)中得到的預擴增產物、第二引物、 核苷酸單體混合物和核酸聚合酶,其中所述第二引物從5’端到3’端包含或由特定序列及所述通用序列組成;(d)將所述第二反應混合物置於第二溫度迴圈程式進行擴增,獲得擴增產物。
在一些實施方式中,第一隨機序列的Xai(i=1-n)均屬於集合B,第三隨機序列的Xbi(i=1-n)均屬於集合D。
在一些實施方式中,所述第一可變序列和所述第三可變序列進一步在其3’端包括固定序列,所述固定序列能夠提高基因組覆蓋度的鹼基組合。在一些實施方式中,所述固定序列選自CCC、AAA、TGGG、GTTT、GGG、TTT、TNTNG或GTGG。
在一些實施方式中,所述第一可變序列選自Xa1Xa2......XanTGGG或Xa1Xa2......XanGTTT,所述第三可變序列選自Xb1Xb2......XbnTGGG或Xb1Xb2......XbnGTTT。
在一些實施方式中,選擇所述通用序列以使得其基本上不會與基因組DNA結合產生擴增,所述通用序列長度為6-60bp。在一些實施方式中,選擇所述通用序列使得擴增產物能夠直接進行測序。在一些實施方式中,所述通用序列選自SEQ ID NO:1[TTGGTAGTGAGTG]、SEQ ID NO:2[GAGGTGTGATGGA]、SEQ ID NO:3[GTGATGGTTGAGGTA]、SEQ ID NO:4[AGATGTGTATAAGAGACAG]、SEQ ID NO:5[GTGAGTGATGGTTGAGGTAGTGTGGAG]或SEQ ID NO:6[GCTCTTCCGATCT]。
在一些實施方式中,所述通用序列和所述第一可變序 列直接相連,或者所述通用序列和所述第一可變序列通過第一間隔序列相連,所述第一間隔序列為Ya1......Yam,其中Yaj(j=1-m)
Figure 106110178-A0202-12-0006-131
{A、T、G、C},其中Yaj表示間隔序列5’端的第j個核苷酸,m是選自1-3的正整數。
在一些實施方式中,所述通用序列和所述第三可變序列直接相連,或者所述通用序列和所述第三可變序列通過第三間隔序列相連,所述第三間隔序列為Yb1......Ybm,其中Ybj(j=1-m)
Figure 106110178-A0202-12-0006-132
{A、T、G、C},其中Ybj表示間隔序列5’端的第j個核苷酸,m是選自1-3的正整數。
在一些實施方式中,所述m=1。
在一些實施方式中,所述第一引物包括GCTCTTCCGATCTYa1Xa1Xa2Xa3Xa4Xa5TGGG、GCTCTTCCGATCTYa1Xa1Xa2Xa3Xa4Xa5GTTT或其混合物,所述第三引物包括GCTCTTCCGATCTYb1Xb1Xb2Xb3Xb4Xb5TGGG、GCTCTTCCGATCTYb1Xb1Xb2Xb3Xb4Xb5GTTT或其混合物,其中Ya1
Figure 106110178-A0202-12-0006-133
{A、T、G、C},Yb1
Figure 106110178-A0202-12-0006-134
{A、T、G、C},所述Xai(i=1-5)
Figure 106110178-A0202-12-0006-135
{T、G、C},所述Xbi(i=1-5)
Figure 106110178-A0202-12-0006-136
{A、T、G}。
在一些實施方式中,所述方法進一步包括對步驟(d)中獲得的擴增產物進行測序的步驟,其中所述第二引物包括與測序用引物的部分或全部互補或者相同的序列。
在一些實施方式中,所述通用序列包括與測序用引物的部分或全部互補或者相同的序列。
在一些實施方式中,所述第二引物的特定序列包括與測序用引物的部分或全部互補或者相同的序列。
在一些實施方式中,所述第二引物的特定序列進一步包括與測序平臺的捕捉序列部分或全部互補或者相同的序列。
在一些實施方式中,所述第二引物的特定序列中包含的與測序用引物的部分或全部互補或相同的序列包含或由SEQ ID NO:31[ACACTCTTTCCCTACACGAC]、或SEQ ID NO:32[GTGACTGGAGTTCAGACGTGT]組成。
在一些實施方式中,所述第二引物的特定序列中包含的與測序平臺的捕捉序列部分或全部互補或相同的序列包含或由SEQ ID NO:33[AATGATACGGCGACCACCGAGATCT]、或SEQ ID NO:34[CAAGCAGAAGACGGCATACGAGAT]組成。
在一些實施方式中,所述第二引物的特定序列進一步包括標識序列,所述標識序列位於所述與測序平臺的捕捉序列部分或全部互補或相同的序列和所述與測序用引物的部分或全部互補或相同的序列之間。
在一些實施方式中,所述第二引物包括具有相同通用序列和不同特定序列的引物混合物,所述不同特定序列分別與同一測序中用到的測序引物對中不同引物的部分或全部互補或相同。
在一些實施方式中,所述第二引物包括SEQ ID NO:35[AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGAC GCTCTTCCGATCT]和SEQ ID NO:36[CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGG AGTTCAGACGTGTGCTCTTCCGATCT]所示的序列的混合物。
在一些實施方式中,所述核酸聚合酶具有熱穩定和/或鏈置換活性。在一些實施方式中,所述核酸聚合酶選自:Phi29 DNA聚合酶、Bst DNA聚合酶、Pyrophage 3137、Vent聚合酶、TOPOTaq DNA聚合酶、9° Nm聚合酶、Klenow Fragment DNA聚合酶I、MMLV反轉錄酶、AMV反轉錄酶、HIV反轉錄酶、T7 phase DNA聚合酶變種、Phusion®超保真DNA聚合酶、Taq聚合酶、Bst DNA聚合酶、E.coli DNA聚合酶、LongAmp Taq DNA聚合酶、OneTaq DNA聚合酶、Deep Vent DNA聚合酶、Vent(exo-)DNA聚合酶、Deep Vent(exo-)DNA聚合酶,及其任何組合。
在一些實施方式中,步驟(b)使得所述第一類引物的可變序列能夠與所述基因組DNA配對並擴增所述基因組DNA以得到基因組預擴增產物,其中所述基因組預擴增產物的5’端包含所述通用序列,3’端包含所述通用序列的互補序列。
在一些實施方式中,所述第一溫度迴圈程式包括:(b1)能夠打開所述DNA雙鏈以獲得DNA單鏈範本的溫度程式;(b2)能夠使所述第一引物以及可選的第三引物與所述DNA單鏈範本結合的溫度程式;(b3)在所述核酸聚合酶的作用下能夠使與所述DNA單鏈範本結合的第一類引物延伸長度以產生預擴增產物的溫度程式;(b4)重 複步驟(b1)到(b3)至指定的第一迴圈次數,其中所述指定的第一迴圈次數大於1。
在一些實施方式中,在進行第一次迴圈時,步驟(b1)中所述DNA雙鏈為基因組DNA雙鏈,所述溫度程式包括在90-95℃的溫度之間變性反應1-20分鐘。在一些實施方式中,在進行第一次迴圈後,步驟(b1)中所述的溫度程式包括在90-95℃的溫度之間解鏈反應3-50秒。
在一些實施方式中,當進行到第二次迴圈後,所述預擴增產物包含在5’端包含所述通用序列,3’端包含所述通用序列的互補序列的基因組預擴增產物。
在一些實施方式中,在步驟(b1)後並且在步驟(b2)之前不包括額外的將所述第一反應混合物置於適當的溫度程式,使得所述基因組預擴增產物的3’端與5’端雜交結合以形成髮卡結構的步驟(b2’)。在一些實施方式中,所述步驟(b2)包括將所述反應混合物置於多於一種的溫度程式,以促使所述第一類引物充分與所述DNA範本有效結合。在一些實施方式中,所述多於一種的溫度程式包括:介於10-20℃之間的第一溫度,介於20-30℃之間的第二溫度,和介於30-50℃之間的第三溫度。在一些實施方式中,所述步驟(b2)中所述步驟包括在第一溫度退火反應3-60秒、在第二溫度退火反應3-50秒和在第三溫度退火反應3-50秒。在一些實施方式中,所述步驟(b3)中所述的溫度程式包括在60-80℃的溫度之間延伸反應10秒-15分鐘。在一些實施方式中,所述步驟(b4)的所述第一迴圈次 數為2-40。
在一些實施方式中,所述步驟(d)使得所述第二引物的所述通用序列能夠與所述基因組預擴增產物的3’端配對並擴增所述基因組預擴增產物以得到擴大的基因組擴增產物。
在一些實施方式中,所述步驟(d)包括:(d1)能夠打開DNA雙鏈的溫度程式;(d2)進一步能打開DNA雙鏈的溫度程式;(d3)能夠使所述第二引物與所述經步驟(b)獲得的基因組預擴增產物的單鏈結合的溫度程式;(d4)能夠使與所述基因組預擴增產物單鏈結合的第二引物在所述核酸聚合酶的作用下延伸長度的溫度程式;(d5)重複步驟(d2)到(d4)至指定的第二迴圈次數,其中所述指定的第二迴圈次數大於1。
在一些實施方式中,步驟(d1)中所述DNA雙鏈為所述基因組預擴增產物,並且所述DNA雙鏈包括DNA髮卡結構中包含的雙鏈,所述溫度程式包括90-95℃的溫度之間變性反應5秒-20分鐘。
在一些實施方式中,步驟(d2)中所述的溫度程式包括在90-95℃的溫度之間解鏈反應3-50秒。在一些實施方式中,所述步驟(d3)中所述的溫度程式包括在45-65℃的溫度之間退火反應3-50秒。在一些實施方式中,所述步驟(d4)中所述的溫度程式包括在60-80℃的溫度之間延伸反應10秒-15分鐘。
在一些實施方式中,所述方法進一步包括分析所述擴 增產物以識別與疾病或表型相關的序列特徵。在一些實施方式中,所述與疾病或表型相關的序列特徵包括染色體水準異常、染色體的異位、非整倍體、部分或全部染色體的缺失或重複、胎兒HLA單倍型和父源突變,或者所述疾病或表型選自下組:β-地中海貧血、唐氏綜合徵、囊性纖維化、鐮狀細胞病、泰-薩克斯病、脆性X綜合徵、脊髓性肌萎縮症、血紅蛋白病、α-地中海貧血、X連鎖疾病(由在X染色體上基因主導的疾病)、脊柱裂、無腦畸形、先天性心臟病、肥胖、糖尿病、癌症、胎兒性別、胎兒RHD。在一些實施方式中,所述基因組DNA來源於卵裂球、囊胚滋養層、培養的細胞、提取後的gDNA或囊胚培養液。
本申請的一方面提供了一種擴增基因組DNA的方法,所述方法包括:(a)提供第一反應混合物,其中所述第一反應混合物包括包含所述基因組DNA的樣本、第一引物、核苷酸單體混合物、和核酸聚合酶,其中所述第一引物從5’端到3’端包含通用序列和可變序列,其中所述第一引物從5’端到3’端包含通用序列和第一可變序列,所述第一可變序列包括第一隨機序列,其中所述第一隨機序列從5’端到3’端依次為Xa1Xa2......Xan,所述第一隨機序列的Xai(i=1-n)均屬於同一個集合,所述集合選自B、或D、或H、或V,其中B={T、G、C},D={A、T、G},H={T、A、C},V={A、C、G},其中Xai表示第一隨機序列5’端的第i個核苷酸,n是選自3-20的正整數,其中所 述通用序列和所述第一可變序列直接相連、或所述通用序列和所述第一可變序列通過第一間隔序列相連,所述第一間隔序列為Ya1......Yam,其中Yaj(j=1-m)
Figure 106110178-A0202-12-0012-129
{A、T、G、C},其中Yaj表示間隔序列5’端的第j個核苷酸,可選地,其中所述第一反應混合物進一步包括第三引物,其中所述第三引物從5’端到3’端包含所述通用序列和第三可變序列,所述第三可變序列包括第三隨機序列,其中所述第三隨機序列從5’端到3’端依次為Xb1Xb2......Xbn,所述第三隨機序列的Xbi(i=1-n)均屬於同一個集合,所述集合選自B、或D、或H、或V,其中B={T、G、C},D={A、T、G},H={T、A、C},V={A、C、G},並且Xbi(i=1-n)和Xai(i=1-n)屬於不同的集合,其中Xbi表示第一隨機序列5’端的第i個核苷酸,n是選自3-20的正整數,其中所述通用序列和所述第三可變序列直接相連,或者所述通用序列和所述第三可變序列通過第三間隔序列相連,所述第三間隔序列為Yb1......Ybm,其中Ybj(j=1-m)
Figure 106110178-A0202-12-0012-130
{A、T、G、C},其中Ybj表示間隔序列5’端的第j個核苷酸,m是選自1-3的正整數;(b)將所述第一反應混合物置於第一溫度迴圈程式,使得所述第一引物的第一可變序列以及可選的第三引物的第三可變序列能夠與所述基因組DNA配對並擴增所述基因組DNA以得到基因組預擴增產物,其中所述基因組預擴增產物的5’端包含所述通用序列,3’端包含所述通用序列的互補序列;其中所述第一溫度迴圈程式包括:(b1)第一個迴圈為在介於90-95℃的 溫度之間的第一變性溫度反應1-20分鐘,第一個迴圈之後為在介於90-95℃的溫度之間的第二解鏈溫度反應3-50秒;(b2)在介於10-20℃之間的第一退火溫度反應3-60秒,介於20-30℃之間的第二退火溫度反應3-50秒,和介於30-50℃之間的第三退火溫度反應3-50秒;(b3)在介於60-80℃之間的第一延伸溫度反應10秒-15分鐘;(b4)重複步驟(b1)到(b3)至2-40個迴圈;(c)提供第二反應混合物,所述第二反應混合物包括步驟(b)中得到的所述基因組預擴增產物、第二引物、核苷酸單體混合物、和核酸聚合酶,其中所述第二引物的從5’端到3’端包含或由特定序列及所述通用序列組成;(d)將所述第二反應混合物置於第二溫度迴圈程式,使得所述第二引物的所述通用序列能夠與所述基因組預擴增產物的3’端配對並擴增所述基因組預擴增產物以得到擴大的基因組擴增產物,其中所述第二溫度迴圈程式包括:(d1)在介於90-95℃之間的第二變性溫度反應5秒-20分鐘;(d2)在介於90-95℃之間的第二解鏈溫度反應3-50秒;(d3)在介於45-65℃之間的第四退火溫度反應3-50秒;(d4)在介於60-80℃之間的第二延伸溫度反應10秒-15分鐘;(d5)重複步驟(d2)到(d4)2-40個迴圈。
在一些實施方式中,所述通用序列包含或由SEQ ID NO:6組成;所述第一隨機序列的Xai(i=1-n)均屬於D,所述第三隨機序列的Xbi(i=1-n)均屬於B。
在一些實施方式中,步驟(d)得到的擴增產物已完成 了文庫構建。
在本申請的再一個方面中,提供了一種用於擴增基因組DNA的試劑盒,所述試劑盒包括第一引物,其中所述第一引物從5’端到3’端包含通用序列和第一可變序列,所述第一可變序列包括第一隨機序列,其中所述第一隨機序列從5’端到3’端依次為Xa1Xa2......Xan,所述第一隨機序列的Xai(i=1-n)均屬於同一個集合,所述集合選自B、或D、或H、或V,其中B={T、G、C},D={A、T、G},H={T、A、C},V={A、C、G},其中Xai表示第一隨機序列5’端的第i個核苷酸,n是選自3-20的正整數,其中所述通用序列和所述第一可變序列直接相連、或所述通用序列和所述第一可變序列通過第一間隔序列相連,所述第一間隔序列為Ya1......Yam,其中Yaj(j=1-m)
Figure 106110178-A0202-12-0014-128
{A、T、G、C},其中Yaj表示間隔序列5’端的第j個核苷酸,m是選自1-3的正整數,可選地,其中所述第一反應混合物進一步包括第三引物,其中所述第三引物從5’端到3’端包含所述通用序列和第三可變序列,所述第三可變序列包括第三隨機序列,其中所述第三隨機序列從5’端到3’端依次為Xb1Xb2......Xbn,所述第三隨機序列的Xbi(i=1-n)均屬於同一個集合,所述集合選自B、或D、或H、或V,其中B={T、G、C},D={A、T、G},H={T、A、C},V={A、C、G},並且Xbi(i=1-n)和Xai(i=1-n)屬於不同的集合,其中Xbi表示第一隨機序列5’端的第i個核苷酸,n是選自3-20的正整數,其中所述通用序列和所述第三可變序 列直接相連,或者所述通用序列和所述第三可變序列通過第三間隔序列相連,所述第三間隔序列為Yb1......Ybm,其中Ybj(j=1-m)
Figure 106110178-A0202-12-0015-127
{A、T、G、C},其中Ybj表示間隔序列5’端的第j個核苷酸,m是選自1-3的正整數。
在一些實施方式中,所述通用序列包含或由SEQ ID NO:6組成;所述第一隨機序列的Xai(i=1-n)均屬於D,所述第三隨機序列的Xbi(i=1-n)均屬於B。在一些實施方式中,所述通用序列包含或由SEQ ID NO:1組成;所述第一隨機序列的Xai(i=1-n)均屬於D,所述第三隨機序列的Xbi(i=1-n)均屬於B。在一些實施方式中,所述通用序列包含或由SEQ ID NO:2組成;所述第一隨機序列的Xai(i=1-n)均屬於D,所述第三隨機序列的Xbi(i=1-n)均屬於B。
在一些實施方式中,所述試劑盒用於構建全基因組DNA文庫。
在一些實施方式中,所述試劑盒進一步包括核酸聚合酶,其中所述核酸聚合酶選自:Phi29 DNA聚合酶、Bst DNA聚合酶、Pyrophage 3137、Vent聚合酶、TOPOTaq DNA聚合酶、9° Nm聚合酶、Klenow Fragment DNA聚合酶I、MMLV反轉錄酶、AMV反轉錄酶、HIV反轉錄酶、T7 phase DNA聚合酶變種、Phusion®超保真DNA聚合酶、Taq聚合酶、Bst DNA聚合酶、E.coli DNA聚合酶、LongAmp Taq DNA聚合酶、OneTaq DNA聚合酶、Deep Vent DNA聚合酶、Vent(exo-)DNA聚合酶、Deep Vent(cxo-)DNA聚合酶、及其任何組合。
在一些實施方式中,所述試劑盒進一步包括包含一種或多種選自下組的成分:核苷酸單體混合物、Mg2+、dTT、牛血清白蛋白、pH調節劑、DNase抑制劑、RNase、SO4 2-、Cl-、K+、Ca2+、Na+、(NH4)+的一種或多種試劑。
在一些實施方式中,所述混合物進一步包括細胞裂解劑,所述細胞裂解劑選自:蛋白酶K、胃蛋白酶、木瓜蛋白酶、NP-40、吐溫、SDS、TritonX-100、EDTA和異硫氰酸胍中的一種或多種。
通過下面說明書和所附的申請專利範圍並與所附圖式結合,將會更加充分地描述本申請內容的上述和其他特徵。可以理解,這些所附圖式僅描繪了本申請內容的若干實施方式,因此不應認為是對本申請內容範圍的限定。通過採用附圖,本申請內容將會得到更加明確和詳細地說明。
圖1示出了本申請擴增方法的基本原理。
圖2示出了本申請擴增方法中使用的第一類引物(線性擴增引物)的結構示意圖。
圖3示出了使用不同的第一類引物混合物對50pg人基因組DNA進行擴增,並將得到的擴增產物分別進行凝膠電泳的結果,其中自左向右第1泳道為分子量標記 (M),第2-13泳道為使用實驗組1-12的引物混合物(具體見表1)對gDNA進行擴增獲得的擴增樣品,第14泳道為分子量標記。
圖4示出了實驗組1-12中獲得的擴增產物在SBS測序中每個讀數位置的A、T、C、G分佈。
圖5示出了使用表1中所示的1-12個實驗組的引物混合物以正常人表皮成纖維細胞(AFP細胞)為起始樣本進行擴增的擴增結果,自左向右第1泳道為分子量標記,第2-11泳道為單細胞擴增樣品,第12泳道為分子量標記。
圖6示出了使用表1中所示的實驗組9/10和實驗組11/12的引物混合物以正常人表皮成纖維細胞(AFP細胞)為起始樣本進行擴增,並將得到的擴增產物分別進行凝膠電泳的結果。自左向右第1泳道為分子量標記,第2-11泳道為使用實驗組11/12的引物混合物對單細胞進行擴增獲得的擴增樣品,第12泳道為分子量標記,第13-22泳道為使用實驗組9/10的引物混合物對單細胞進行擴增獲得的擴增樣品,第23泳道為分子量標記。
圖7示出了圖6中的每個樣本1_1、1_2...1_10及2_1、2_2...2_10在SBS測序中的資料量(以等體積擴增產物進行測序)。
圖8示出了圖6中的每個樣本1_1、1_2...1_10及2_1、2_2...2_10在SBS測序中的拷貝數變異係數。
圖9示出了圖6中的每個樣本1_1、1_2...1_10及 2_1、2_2...2_10在SBS測序中每個染色體的拷貝數。
圖10示出了對圖6中的擴增樣本1_1、1_2及2_1、2_2分別進一步針對表8中所列的35個致病位點基因進行PCR擴增,將擴增產物進行凝膠電泳的結果。從左向右每個泳道依次表示分子量標記物、針對表8所示的致病位點1-23進行的擴增結果、分子量標記物、針對表8所示的致病位點24-35進行的擴增結果、分子量標記物。
圖11示出了使用表1中所示的實驗組9/10的引物混合物以正常人表皮成纖維細胞(AFP細胞)為起始樣本進行擴增,並將得到的擴增產物分別進行凝膠電泳的結果。從左向右每個泳道依次表示分子量標記物、使用實驗組9/10的引物混合物對單細胞進行擴增獲得的擴增樣品(4個平行實驗孔)、分子量標記物。
圖12示出了對圖11中的擴增樣本1和2別進一步針對表8中所列的35個致病位點基因進行PCR擴增,將擴增產物進行凝膠電泳的結果。從左向右每個泳道依次表示分子量標記物、針對表8所示的致病位點1-23進行的擴增結果、分子量標記物、針對表6所示的致病位點24-35進行的擴增結果、分子量標記物。
圖13示出了對圖11中的擴增樣本在半導體測序中每個染色體的拷貝數。
圖14示出了使用表1中所示的實驗組9/10的引物混合物對以囊胚培養液中DNA為起始樣本進行擴增,並將擴增樣本進行SBS測序得到的染色體拷貝數。
本發明提供了擴增基因組DNA的方法,特別是擴增單細胞全基因組DNA的方法。
在本發明之前,通常是在基因擴增完成之後進行建庫,在建庫完成後再對其進行測序,這種方法流程複雜,耗時時間長。而本申請發明人通過設計特殊結構的引物並且優化擴增的過程,使得在單細胞擴增之後能夠直接成庫從而大幅減少單細胞全基因組DNA文庫構建所需的時間。雖然在某些文獻中報導了對引物的某些設計,但是這些設計均存在這樣或那樣的缺陷。例如在WO2012/166425中進行單細胞全基因組預擴增步驟時,引物的隨機序列選自四種鹼基(即,A、T、C和G),但是使用這種方法進行直接擴增建庫時會不可避免的自體或相互之間成環或形成二聚體,從而顯著降低了擴增的效率。再例如,在US8,206,913中報導了引物中隨機序列選自兩種鹼基(即,G和T、G和A、A和C、C和T)以避免自體或相互之間成環,但是由於使用這類引物擴增出的序列中目標序列前的鹼基隨機性很差,所以在整板上機進行SBS測序時必須添加陽性對照品來校正鹼基隨機性,否則無法進行檢測,因此這種方法勢必會浪費一定的資料量。而與上述現有技術不同,本發明中涉及的引物雖然包含較高的鹼基隨機性,但引物自身或引物之間基本不形成或與四鹼基隨機引物相比形成非常少的成環或二聚體,並且本發明構 建出的文庫中目標序列前具有較高的鹼基隨機性,因此根據本發明的方法進行擴增獲得的擴增產物二聚體少、可以直接成庫、可用於整版上機並且測序結果良好。
在一方面,本申請提供了擴增基因組DNA的方法,所述方法包括:(a)提供第一反應混合物,其中所述第一反應混合物包括包含所述基因組DNA的樣本、第一引物、核苷酸單體混合物和核酸聚合酶,其中所述第一引物從5’端到3’端包含通用序列和第一可變序列,所述第一可變序列包括第一隨機序列,其中所述第一隨機序列從5’端到3’端依次為Xa1Xa2......Xan,所述第一隨機序列的Xai(i=1-n)均屬於同一個集合,所述集合選自B、或D、或H、或V,其中B={T、G、C},D={A、T、G},H={T、A、C},V={A、C、G},其中Xai表示第一隨機序列5’端的第i個核苷酸,n是選自3-20的正整數,可選地,所述第一反應混合物進一步包括第三引物,其中所述第三引物從5’端到3’端包含所述通用序列和第三可變序列,所述第三可變序列包括第三隨機序列,其中所述第三隨機序列從5’端到3’端依次為Xb1Xb2......Xbn,所述第三隨機序列的Xbi(i=1-n)均屬於同一個集合,所述集合選自B、或D、或H、或V,其中B={T、G、C},D={A、T、G},H={T、A、C},V={A、C、G},並且Xbi(i=1-n)和Xai(i=1-n)屬於不同的集合,其中Xbi表示第三隨機序列5’端的第i個核苷酸,n是選自3-20的正整數;(b)將所述第一反應混合物置於第一溫度迴圈程式進行預擴增,獲得預 擴增產物;(c)提供第二反應混合物,所述第二反應混合物包括步驟(b)中得到的預擴增產物、第二引物、核苷酸單體混合物和核酸聚合酶,其中所述第二引物從5’端到3’端包含或由特定序列及所述通用序列組成;(d)將所述第二反應混合物置於第二溫度迴圈程式進行擴增,獲得擴增產物。本申請提供的方法的一種實施方式的圖示請見圖1。
步驟(a):提供第一反應混合物
本申請的方法廣泛適用于基因組DNA的擴增,特別是痕量的基因組DNA的擴增。
i. 基因組DNA
本申請的方法優選適用于基因組DNA。在某些實施方式中,反應混合物中包含的基因組DNA的起始量不超過10ng、不超過5ng、不超過1ng、不超過500pg、不超過200pg、不超過100pg、不超過50pg、不超過20pg、或者不超過10pg。
基因組DNA可以來自生物樣品,例如生物組織或含有細胞或游離DNA的體液。含有基因組DNA的樣品可以通過已知的方法獲取,例如通過口腔粘膜樣本、鼻腔樣本、頭髮、漱口水、臍帶血、血漿、羊水、胚胎組織、內皮細胞、指甲樣本、蹄樣本等獲取。生物樣品可以是任何適當的形式提供,例如可以是石蠟包埋的形式,新鮮分離 的形式等。基因組DNA可以來自任何物種或生物種類,例如但不限於,人類、哺乳動物、牛、豬、羊、馬、齧齒動物、禽類、魚類、斑馬魚、蝦、植物、酵母、病毒或細菌。
在某些實施方式中,基因組DNA是來自於單個細胞的基因組DNA,或者來自兩個或多個同類細胞的基因組DNA。單個細胞或同類細胞可以來自,例如,植入前的胚胎、孕婦外周血中的胚胎細胞、單精子、卵細胞、受精卵、癌細胞、細菌細胞、腫瘤迴圈細胞、腫瘤組織細胞、或者從任何組織獲得的單個或多個同類細胞。本申請的方法可以用於擴增一些寶貴的樣本或起始量低樣本中的DNA,如人類的卵細胞、生殖細胞、腫瘤迴圈細胞、腫瘤組織細胞等。
在一些實施方式中,基因組DNA來源於卵裂球、囊胚滋養層、培養的細胞、提取後的gDNA或囊胚培養液。
獲得單細胞的方法在本領域也是公知的,例如,可以通過流式細胞分選的方法(Herzenberg等人Proc Natl Acad Sci USA 76:1453-55,1979;lverson等人Prenatal Diagnosis 1:61-73,1981;Bianchi等人Prenatal Diagnosis 11:523-28,1991)、螢光啟動細胞分選法、通過磁珠分離的方法(MACS,Ganshirt-Ahlert等人Am J Obstet Gynecol 166:1350,1992)、使用半自動細胞挑取儀(例如Stoelting公司生產的細胞轉移系統QuixellTM)或者上述多種方法的結合。在一些實施方式中,可以使用梯度離心 和流式細胞技術來提高分離和分選的效率。在一些實施方式中,可以根據單個細胞不同的性質來挑選特定類型的細胞,例如表達某種特定的生物標記的細胞。
獲得基因組DNA的方法也是本領域公知的。在某些實施方式中,可以從生物樣品中或單個細胞中裂解細胞並釋放獲得基因組DNA。可以使用本領域公知的任何適當的方法進行裂解,例如可以通過熱裂解、鹼裂解、酶裂解、機械裂解,或其任何組合的方式進行裂解(具體可參見,例如,U.S.7,521,246、Thermo Scientific Pierce Cell Lysis Technical Handbook v2和Current Protocols in Molecular Biology(1995).John Wiley和Sons,Inc.(supplement 29)pp.9.7.1-9.7.2.)。
機械裂解包括使用超聲、高速攪拌、均質、加壓(例如法式濾壓壺)、減壓和研磨等使用機械力破壞細胞的方法。最常用的機械裂解法是液體均質法,其迫使細胞懸浮液通過一個很狹窄的空間,從而對細胞膜施加剪切力(例如,如WO2013153176 A1中所描述的)。
在某些實施方式中,可以使用溫和的裂解方法。例如,可以將細胞在含有Tween-20的溶液中72℃加熱2分鐘、在水中65℃加熱10分鐘(Esumi等人,Neurosci Res 60(4):439-51(2008)、在含有0.5% NP-40的PCR緩衝液II(Applied Biosystems)中70℃加熱90秒(Kurimoto等人,Nucleic Acids Res 34(5):e42(2006)、或者使用蛋白酶(例如蛋白酶K)或者離鹽液(例如異硫氰酸胍)進行 裂解(例如,如美國專利申請US 20070281313中所描述的)。
熱裂解包括加熱法和反復凍融法。在一些實施方式中,所述熱裂解包括溫度在20-100℃之間,裂解10-100分鐘。在一些實施方式中,熱裂解的溫度可以是介於在20-90、30-90、40-90、50-90、60-90、70-90、80-90、30-80、40-80、50-80、60-80或70-80℃之間的任何溫度。在一些實施方式中,熱裂解的溫度不低於20、30、40或50℃。在一些實施方式中,熱裂解的溫度不高於100、90或80℃。在一些實施方式中,熱裂解時間可以是介於20-100、20-90、20-80、20-70、20-60、20-50、20-40、20-30、30-100、30-90、30-80、30-70、30-60、30-50或30-40分鐘之間的任何時間。在一些實施方式中,熱裂解的時間不少於20、30、40、50、60、70、80或90分鐘。在一些實施方式中,熱裂解的時間不多於90、80、70、60、50、40、30或20分鐘。在一些實施方式中,熱裂解溫度是隨時間進行變化的。在一些實施方式中,熱裂解是溫度在30-60℃保持10-30分鐘,之後在70-90℃保持5-20分鐘。
在一些實施方式中,所述熱裂解是在裂解試劑存在的條件下進行的。當裂解試劑存在時,可以降低裂解所需的時間或降低裂解所需的溫度。裂解試劑可以破壞蛋白-蛋白、脂質-脂質和/或蛋白-脂質相互作用,從而促進細胞釋放基因組DNA。
在一些實施方式中,所述裂解試劑包括表面活性劑和/或裂解酶。表面活性劑可以分為離子型、兩性和非離子型表面活性劑。一般情況下,兩性和非離子型表面活性劑的裂解效能弱於離子型表面活性劑。示例性的表面活性劑包括,但不限於,NP-40、吐溫、SDS、GHAPS、TritonX-100、TritonX-114、EDTA、去氧膽酸鈉、膽酸鈉、異硫氰酸胍中的一種或多種。本領域技術人員可以根據實際的需要選擇表面活性劑的種類和濃度。在一些實施方式中,表面活性劑的工作濃度為0.01%-5%、0.1%-3%、0.3%-2%或0.5-1%。
示例性的裂解酶可以是蛋白酶K、胃蛋白酶、木瓜蛋白酶等,或其任何組合。在一些實施方式中,裂解酶的工作濃度為0.01%-1%、0.02%-0.5%、0.03%-0.2%或0.4-0.1%。
在本申請提供的方法中,可以在第一反應混合物中直接使用含有基因組DNA的裂解產物,例如,可以將生物樣品預先進行裂解處理,得到裂解產物,然後將裂解產物與第一反應混合物的其他成分混合。如有需要,可以對裂解產物經過進一步的處理,以分離得到其中的基因組DNA,再將該分離的基因組DNA與第一反應混合物的其他成分混合得到第一反應混合物。
在一些實施方式中,裂解後的核酸樣品無需進行純化即可進行擴增。在一些實施方式中,裂解後的核酸樣品在進行純化後再進行擴增。在一些實施方式中,裂解過程中 DNA已經發生了不同程度的斷裂,而無需特殊打斷步驟即可用於擴增。在一些實施方式中,裂解後的核酸樣品在經過打斷處理後再進行擴增。
本申請還提供了一種更為簡便的方法,即,直接將包含基因組DNA的細胞與擴增所需的其他成分混合得到第一反應混合物,也就是說,在第一反應混合物中的基因組DNA存在於細胞內部。在這樣的情況下,第一反應混合物中還可以進一步含有能夠裂解所述細胞的表面活性劑(例如但不限於,NP-40、吐溫、SDS、TritonX-100、EDTA、異硫氰酸胍中的一種或多種)和/或裂解酶(例如蛋白酶K、胃蛋白酶、木瓜蛋白酶中的一種或多種)。這樣,細胞的裂解和基因組DNA的預擴增都在同一個反應混合物中進行,能夠提高了反應效率和縮短反應時間。
在某些實施方式中,本申請提供的方法在步驟(a)完成以後並且在進行步驟(b)之前還可以進一步包括將所述反應混合物置於裂解溫度迴圈程式,使得所述細胞裂解並釋放出所述基因組DNA。本領域技術人員根據反應混合物中含有的裂解成分、細胞的種類等可以選擇適當的裂解溫度迴圈程式。示例的裂解溫度迴圈程式包括,將反應混合物置於50℃ 3分鐘到8小時(例如,在3分鐘到7小時、3分鐘到6小時、3分鐘到5小時、3分鐘到4小時、3分鐘到3小時、3分鐘到2小時、3分鐘到1小時、3分鐘到40分鐘、3分鐘到20分鐘之間的任何時間,例如10分鐘、20分鐘、30分鐘等),然後置於 80℃ 2分鐘到8小時(例如,在2分鐘到7小時、2分鐘到6小時、2分鐘到5小時、2分鐘到4小時、2分鐘到3小時、2分鐘到2小時、2分鐘到1小時、2分鐘到40分鐘、2分鐘到20分鐘之間的任何時間,例如10分鐘、20分鐘、30分鐘等)。裂解溫度程式可以進行1個迴圈,如有需要,也可以進行兩個或更多個迴圈,取決於具體的裂解條件。
ii. 第一類引物
本申請所述的方法中涉及兩大類不同的引物,其中第一類引物從5’端到3’端包含通用序列和可變序列,所述第二類引物包含特定序列和通用序列,但是不包含任何可變序列。本文中所述的“第一引物”和“第三引物”均屬於上述第一類引物。在第一反應混合物中包括的第一引物從5’端到3’端包含通用序列和第一可變序列;而在第一反應混合物中可選地包括的第三引物從5’端到3’端包括通用序列和第三可變序列。在一些實施方式中,第一類引物由通用序列和可變序列組成。在另一些實施方式中,第一類引物由通用序列、可變序列和間隔序列組成。
通用序列
通用序列在本申請中是指第一類引物和第二類引物在其5’端均具有的核苷酸序列。通用序列的長度可以是例如,6-60、8-50、9-40、10-30、10-15或25-30個鹼基。 在本申請中,選擇適當的通用序列,使得基本上不會與基因組DNA結合而產生擴增,並且避免第一類引物與第一類引物之間的聚合(例如,第一引物與第一引物之間、第三引物與第三引物之間或第一引物和第三引物之間)以及第一類引物自身的成環(例如,第一引物5’端的部分序列與3’端的部分序列互補而第一引物自身形成髮卡結構、或第三引物5’端的部分序列與3’端的部分序列互補而第三引物自身形成髮卡結構),以及第一類引物與第二類引物之間的聚合或成環的情況。
在某些實施方式中,通用序列中包含全部4類鹼基A、T、C、G。在某些實施方式中,通用序列中僅包含三類或兩類自身互補配對能力較弱的鹼基,而不含有另一種或兩種鹼基。在某些實施方式中,通用序列由G、A和T三種鹼基組成,即通用序列中不含有C鹼基。在某些實施方式中,通用序列由C、A和T三種鹼基組成,即通用序列中不含有G鹼基。在某些實施方式中,通用序列由A和T、A和C、A和G、T和C或T和G兩種鹼基組成,即通用序列中不同時含有G和C鹼基。不希望受理論限制,但認為通用序列中如果含有C或G鹼基可能會導致引物與引物之間的相互聚合,產生多聚體,從而削弱對基因組DNA的擴增能力。優選地,通用序列中不具有能夠自身配對的序列、會導致引物與引物之間配對的序列,或者連續多個同種的鹼基。
在某些實施方式中,可以選擇適當的通用序列的鹼基 序列以及其中各鹼基的比例,以確保通用序列本身不與基因組DNA範本序列發生鹼基配對或產生擴增。
在某些實施方式中,可以選擇所述通用序列使得擴增產物能夠直接進行測序。不希望受到理論的約束,可以將通用序列設計成包括與測序用引物的部分或全部互補或者相同的序列(例如,與測序用引物的部分相同、全部相同、部分互補、或全部互補的序列)。在某些實施方式中,根據不同的測序平臺針對性地選擇通用序列。在某些實施方式中,根據第二代或第三代測序平臺針對性地選擇通用序列。在某些實施方式中,根據Illumina的NGS測序平臺針對性地選擇通用序列。在某些實施方式中,根據Ion torrent測序平臺針對性地選擇通用序列。
在某些實施方式中,所述通用序列選自下組:SEQ ID NO:1[TTGGTAGTGAGTG]、SEQ ID NO:2[GAGGTGTGATGGA]、SEQ ID NO:3[GTGATGGTTGAGGTA]、SEQ ID NO:4[AGATGTGTATAAGAGACAG]、SEQ ID NO:5[GTGAGTGATGGTTGAGGTAGTGTGGAG]和SEQ ID NO:6[GCTCTTCCGATCT]。
可變序列
第一類引物從5’端到3’端包含通用序列和可變序列(例如第一引物/第三引物分別包含第一/第三可變序列),其中第一類引物中的通用序列都相同,但是可變序列可能各不相同。例如,在一些實施方式中,第一/第三 引物分別為包括相同的通用序列和不同的可變序列的引物混合物。可變序列在本申請中是指序列不固定的一段鹼基序列,其可以包含隨機序列(例如第一/第三可變序列分別包含第一/第三隨機序列)。在一些實施方式中,可變序列由隨機序列組成。在另一些實施方式中,可變序列由隨機序列和固定序列組成。
a)隨機序列
隨機序列是指該序列每個鹼基位置上的鹼基均從某個特定集合中各自獨立地隨機選出,因此上述隨機序列代表了由不同鹼基組合構成的鹼基序列的集合。
具體而言,例如,第一可變序列可包括第一隨機序列,其中所述第一隨機序列的鹼基數為n,n是選自3-20的正整數,第一隨機序列從5’端到3’端的序列可以表示為Xa1Xa2......Xan,而其中任何鹼基位置i上的鹼基(即,第一隨機序列5’端的第i個核苷酸,i=1-n)可用Xai來代表,其中每個Xai均是從一個特定的集合中隨機選擇,例如,由A、T、G、C中的特定兩種或三種核苷酸組成的集合。通常可以通過簡並標識的方法表示上述任何鹼基位置上可選擇的集合,例如,可將僅包含A、G兩種核苷酸的集合表示為R(即R={A、G}),其他的可以簡並標識方式表示的集合還包括:Y={C、T}、M={A、C}、K={G、T}、S={C、G}、W={A、T}、H={A、C、T}、B={C、G、T}、V={A、C、G}、D={A、G、T}、 N={A、C、G、T}。
可以通過完全隨機的方式選擇隨機序列(即隨機序列中的任何鹼基位置),也可以在隨機的基礎上進一步增加某些限定條件,從而排除一些不希望的情況或者增加與目標基因組DNA的匹配程度。在某些實施方式中,為避免可變序列與通用序列產生互補配對,當通用序列含有大量G時,隨機序列中的任何鹼基位置均選自集合D(即,不為C);或者當通用序列含有大量C時,隨機序列中的任何鹼基位置均選自集合H(即,不為G);當通用序列含有大量T時,隨機序列中的任何鹼基位置均選自集合B(即,不為A);或者當通用序列含有大量A時,隨機序列中的任何鹼基位置均選自集合V(即,不為T)。
隨機序列可以具有適當的長度,例如2-20個鹼基、2-19個鹼基、2-18個鹼基、2-17個鹼基、2-16個鹼基、2-15個鹼基、2-14個鹼基、2-13個鹼基、2-12個鹼基、2-11個鹼基、2-12個鹼基、2-11個鹼基、2-10個鹼基、2-9個鹼基、2-8個鹼基、3-18個鹼基、3-16個鹼基、3-14個鹼基、3-12個鹼基、3-10個鹼基,4-16個鹼基、4-12個鹼基、4-9個鹼基、或5-8個鹼基。在某些實施方式中,隨機序列的長度為5個鹼基。在某些實施方式中,隨機序列的長度為8個鹼基。理論上來說,如果隨機序列的每個鹼基位置都從A、T、G三種鹼基中隨機選擇的話,那麼長度為4個鹼基的可變序列可以組合出34=81種可能的隨機序列,長度為5個鹼基的隨機序列可以組合出 35=243種可能的隨機序列,以此類推。這些隨機序列可以與基因組DNA上的不同位置的對應序列互補配對,從而在基因組DNA的不同位置開始複製。
在一個實施方式中,第一隨機序列中每個任何鹼基位置i上的鹼基Xai(i=1-n)均屬於同一個集合,並且其中所述集合選自B、D、H或V中的一個。作為一個非限制性的例子,第一引物以具有通用序列和第一隨機序列,其中n=5,隨機序列的每個任何Xai(i=1-5)均屬於同一集合B,即,該隨機序列可表示為BBBBB或者(B)5,隨機序列可以選自{TTTTT,TGTTT,TCTTT,TTGTT,TTCTT......},共35=243種序列組合。在包括這種第一引物的特定第一反應混合物中,這些第一引物均具有相同的通用序列及上述的第一隨機序列,即,在這個特定第一反應物中的第一引物是一組引物,這些引物均具有相同的通用序列,並且具有由選自集合B的鹼基組成的相同或不同的隨機序列。
除非另有明確的說明,本文中所有對於第一引物及其各個部分的描述均適用與第三引物及其相應部分。相似地,在第一反應混合物中進一步包含第三引物的情況下,第三引物中的第三可變序列可包括第三隨機序列,其中所述第三隨機序列從5’端到3’端依次為Xb1Xb2……Xbn,優選地所述第三隨機序列的Xbi(i=1-n)均屬於同一個集合,所述集合選自B、或D、或H、或V,其中B={T、G、C},D={A、T、G},H={T、A、C},V={A、C、G},並且Xbi(i=1-n)和Xai(i=1-n)屬於不同的集合,其中Xbi表 示第三隨機序列5’端的第i個核苷酸,n是選自3-20的正整數。在一個特定的第一反應混合物中,包括一定量的第一引物,這些第一引物均具有相同的通用序列及長度為n的第一隨機序列,其中第一隨機序列的每個鹼基Xai均屬於同一個集合,並且其中所述集合選自B、D、H或V;同時上述第一反應混合物中進一步包括一定量的第三引物,這些第三引物均具有相同的通用序列及長度為n的第一隨機序列,其中第一隨機序列的每個鹼基Xbi均屬於同一個集合,並且其中所述集合選自B、D、H或V,並且Xbi和Xai屬於不同的集合。在一些實施方式中,第一隨機序列和第三隨機序列的長度相同。在另一些實施方式中,第一隨機序列和第三隨機序列的長度不同。
b)固定序列
可變序列在其3’端還可以進一步包括固定序列,所述固定序列可以選自任何能夠提高基因組覆蓋度的鹼基組合。本申請所述的固定序列包括但不限於選自CCC、AAA、TGGG、GTTT、GGG、TTT、TNTNG或GTGG的序列。在本申請中描述固定序列時使用的N表示選自A、T、C、G中的任一種單核苷酸,而並非表示選自N的隨機序列。同一引物組中,例如第一引物中,從5’端到3’端可以依次包括相同的通用序列、含有不同序列組合的隨機序列和相同的固定序列(例如所有第一引物在其3’端均包括TGGG或GTTT中的任一種)。或者,同一引物組 中,例如第一引物中,從5’端到3’端可以依次包括相同的通用序列、含有不同序列組合的隨機序列和不同的固定序列(例如第一引物中包含在其3’端均包括TGGG的引物混合物以及或在其3’端均包括GTTT的引物混合物)。在一些實施方式中,第一反應混合物包括第一引物和第三引物,其中第一引物中的第一可變序列選自Xa1Xa2......XanGGG、Xa1Xa2......XanTTT、Xa1Xa2......XanTGGG或Xa1Xa2......XanGTTT,第三引物中的第三可變序列選自Xb1Xb2......XbnGGG、Xb1Xb2......XbnTTT、Xb1Xb2......XbnTGGG或Xb1Xb2......XbnGTTT。
在某些實施方式中,還可以通過統計計算,選擇在基因組上分佈更加均勻,覆蓋度更高的可變序列,從而增加可變序列與基因組DNA的識別機會。
在某些實施方式中,可變序列選自下組:(B)nCCC、(B)n AAA、(B)n TGGG、(B)n GTTT、(B)n GGG、(B)n TTT、(B)n TNTNG、(B)n GTGGGGG、(D)nCCC、(D)n AAA、(D)n TGGG、(D)n GTTT、(D)n GGG、(D)n TTT、(D)n TNTNG、(D)n GTGGGGG、(H)nCCC、(H)n AAA、(H)n TGGG、(H)n GTTT、(H)n GGG、(H)n TTT、(H)n TNTNG、(H)n GTGGGGG、(V)nCCC、(V)n AAA、(V)n TGGG、(V)n GTTT、(V)n GGG、(V)n TTT、(V)n TNTNG、(V)n GTGGGGG,其中n是選自3-17的正整數。在某些實施方式中,所述第一引物中的第一可變序列可以具有(B)nCCC、(B)n AAA、(B)n TGGG、(B)n GTTT、(B)n GGG、(B)n TTT、(B)n TNTNG、(B)n GTGGGGG 中的一種或多種序列。在某些實施方式中,所述第三引物中的第三可變序列可以具有(D)nCCC、(D)n AAA、(D)n TGGG、(D)n GTTT、(D)n GGG、(D)n TTT、(D)n TNTNG、(D)n GTGGGGG中的一種或多種序列。
間隔序列
第一類引物的通用序列和可變序列可以是直接相鄰的,或者也可以具有一個或多個鹼基的間隔序列。在某些實施方式中,通用序列和可變序列通過長度為m的間隔序列相連,其中m是選自1-3的正整數。在為了排除一些不希望的情況(例如引物二聚體等)或者為了增加與目標基因組DNA的匹配程度而對可變序列中的隨機序列進行一定程度的限制時,可以在通用序列和可變序列中引入m個完全隨機地選自A、T、G、C的鹼基(長度為m的間隔序列),以在不增加引物二聚體產生程度的情況下進一步增加第一類引物在目標基因組DNA上的覆蓋率。
在一些實施方式中,第一引物中的通用序列和第一可變序列之間通過第一間隔序列相連,所述第一間隔序列為Ya1......Yam,其中Yaj(j=1-m)
Figure 106110178-A0202-12-0035-125
{A、T、G、C},其中Yaj表示第一間隔序列5’端的第j個核苷酸,m是選自1-3的正整數。在一些實施方式中,第三引物中的通用序列和第三可變序列之間通過第三間隔序列相連,所述第一間隔序列為Yb1......Ybm,其中Ybj(j=1-m)
Figure 106110178-A0202-12-0035-126
{A、T、G、C},其中Ybj表示第三間隔序列5’端的第j個核苷酸,m是選自1-3 的正整數。在一些實施方式中,m為1,即第一引物中通用序列和第一可變序列之間通過一個選自集合N的鹼基相連,第三引物中通用序列和第三可變序列之間通過一個選自集合N的鹼基相連。
在某些實施方式中,設計第一引物(以及可選的第三引物)以使得其擴增產物可直接用於Illumina的NGS測序平臺,其中第一引物包括GCTCTTCCGATCTYa1Xa1Xa2Xa3Xa4Xa5TGGG、GCTCTTCCGATCTYa1Xa1Xa2Xa3Xa4Xa5GTTT所示的序列或其混合物,第三引物包括GCTCTTCCGATCTYb1Xb1Xb2Xb3Xb4Xb5TGGG、GCTCTTCCGATCTYb1Xb1Xb2Xb3Xb4Xb5GTTT或其混合物,其中每個任何鹼基位置i上的鹼基Xai(i=1-n)均屬於同一個集合,其中所述集合選自B、D、H或V中的一個,以及每個任何鹼基位置i上的鹼基Xbi(i=1-n)均屬於同一個集合,其中所述集合選自B、D、H或V中的一個,並且Xbi(i=1-n)和Xai(i=1-n)屬於不同的集合;其中Ya1
Figure 106110178-A0202-12-0036-121
{A、T、G、C},Yb1
Figure 106110178-A0202-12-0036-122
{A、T、G、C}。在某些特定實施方式中,上述Xai(i=1-5)
Figure 106110178-A0202-12-0036-123
{T、G、C},Xbi(i=1-5)
Figure 106110178-A0202-12-0036-124
{A、T、G},即第一引物包括SEQ ID NO:7、SEQ ID NO:11所示的序列或其混合物,第三引物包括SEQ ID NO:8、SEQ ID NO:12所示的序列或其混合物。
在某些實施方式中,第一類引物包含或者由選自SEQ ID NO:7、SEQ ID NO:8、SEQ ID NO:9、SEQ ID NO:10、SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:13或SEQ ID NO:14所示的序列組成,其中各第一類引物的通 用序列包含或由SEQ ID NO:6組成。在某些實施方式中,第一類引物包括由SEQ ID NO:7所示的序列組成的引物和/或由SEQ ID NO:11所示的序列組成的引物。在某些實施方式中,第一類引物包括由SEQ ID NO:8所示的序列組成的引物和由SEQ ID NO:12所示的序列組成的引物。在某些實施方式中,第一類引物包括由SEQ ID NO:7所示的序列組成的引物或由SEQ ID NO:11所示的序列組成的引物;以及由SEQ ID NO:8所示的序列組成的引物或由SEQ ID NO:12所示的序列組成的引物。在某些實施方式中,第一類引物包含由SEQ ID NO:7所示的序列組成的引物、由SEQ ID NO:11所示的序列組成的引物、由SEQ ID NO:8所示的序列組成的引物和由SEQ ID NO:12所示的序列組成的引物。
在某些實施方式中,第一類引物包含或者由選自SEQ ID NO:15-22所示的序列組成,其中各第一類引物的通用序列包含或由SEQ ID NO:1組成。在某些實施方式中,第一類引物包括由SEQ ID NO:15所示的序列組成的引物和/或由SEQ ID NO:19所示的序列組成的引物。在某些實施方式中,第一類引物包括由SEQ ID NO:16所示的序列組成的引物和/或由SEQ ID NO:20所示的序列組成的引物。在某些實施方式中,第一類引物括由SEQ ID NO:15所示的序列組成的引物或由SEQ ID NO:19所示的序列組成的引物;以及由SEQ ID NO:16所示的序列組成的引物或由SEQ ID NO:20所示的序列組成的引物。在某些實 施方式中,第一類引物包含由SEQ ID NO:15所示的序列組成的引物、由SEQ ID NO:19所示的序列組成的引物、由SEQ ID NO:16所示的序列組成的引物和由SEQ ID NO:20所示的序列組成的引物。
在某些實施方式中,第一類引物包含或者由選自SEQ ID NO:23-30所示的序列組成,其中各第一類引物的的通用序列包含或由SEQ ID NO:2組成。在某些實施方式中,第一類引物包括由SEQ ID NO:23所示的序列組成的引物和/或由SEQ ID NO:27所示的序列組成的引物中的一種或兩種。在某些實施方式中,第一類引物包括由SEQ ID NO:24所示的序列組成的引物和/或由SEQ ID NO:28所示的序列組成的引物中的一種或兩種。在某些實施方式中,第一類引物括由SEQ ID NO:23所示的序列組成的引物或由SEQ ID NO:27所示的序列組成的引物;以及由SEQ ID NO:24所示的序列組成的引物或由SEQ ID NO:28所示的序列組成的引物。在某些實施方式中,第一類引物包含由SEQ ID NO:23所示的序列組成的引物、由SEQ ID NO:27所示的序列組成的引物、由SEQ ID NO:24所示的序列組成的引物和由SEQ ID NO:28所示的序列組成的引物。
在一些實施方式中,第一和第三引物在第一反應混合物中的總濃度為10-150ng/μL。在一些實施方式中,第一和第三引物在第一反應混合物中的總濃度為10-120ng/μL、10-100ng/μL、10-90ng/μL、10-80ng/μL、10-70 ng/μL、10-60ng/μL、10-50ng/μL、10-40ng/μL、20-120ng/μL、20-100ng/μL、20-80ng/μL、20-70ng/μL、20-60ng/μL、20-50ng/μL、30-140ng/μL、30-120ng/μL、30-100ng/μL、30-80ng/μL、30-60ng/μL或30-40ng/μL。在一些實施方式中,第一和第三引物在第一反應混合物中的濃度分別為10-140ng/μL、10-120ng/μL、10-100ng/μL、10-80ng/μL、10-60ng/μL、10-30ng/μL、10-20ng/μL、20-120ng/μL、20-100ng/μL、20-80ng/μL、20-60ng/μL、20-40ng/μL或20-30ng/μL。在一些實施方式中,第一和第三引物在第一反應混合物中的濃度分別為15ng/μL、30ng/μL或60ng/μL。在一些實施方式中,第一引物和第三引物在第一反應混合物中的濃度相同。在一些實施方式中,在第一反應混合物中的第一和第三引物分別為100-800pmol。在一些實施方式中,在第一反應混合物中的第一和第三引物一共為400-600pmol。
iii. 其他成分
第一反應混合物還包括DNA擴增所需的其他組分,例如核酸聚合酶、核苷酸單體混合物、以及酶活性所需的適當的金屬離子和緩衝液成分等。至少一種或多種這些成分可以使用本領域已知的試劑。
核酸聚合酶在本申請中是指能夠合成新的核酸鏈的酶。任何適用於本申請方法的核酸聚合酶都可以使用。優選使用DNA聚合酶。在某些實施方式中,本申請的方法 使用熱穩定的核酸聚合酶,例如那些在PCR擴增的溫度下(例如95攝氏度)聚合酶活性不會下降或者下降小於1%、3%、5%、7%、10%、20%、30%、40%或者50%的那些核酸聚合酶。在某些實施方式中,本申請的方法使用的核酸聚合酶具有鏈置換活性。本申請所述的“鏈置換活性”是指核酸聚合酶的一種活性,其能夠使得核酸範本和與其配對結合的互補鏈分離,並且這種分離以從5’到3’的方向進行並伴隨著新的與範本互補的核酸鏈的生成。具有鏈置換能力的核酸聚合酶及其應用是本領域已知的,例如可以參見美國專利U.S.5824517,該專利的全部內容通過引用併入本申請。適合的核酸聚合酶包括,但不限於:Phi29 DNA聚合酶、Bst DNA聚合酶、Bst 2.0 DNA聚合酶、Pyrophage 3137、Vent聚合酶(例如Thermococcus litoralis的Vent聚合酶、Deep Vent聚合酶、Vent(-exo)聚合酶、Deep Vent(-exo)聚合酶)、TOPOTaq DNA聚合酶、9° Nm聚合酶、Klenow Fragment DNA聚合酶I、MMLV反轉錄酶、AMV反轉錄酶、HIV反轉錄酶、T7 phase DNA聚合酶變種(缺少3’-5’外切酶活性)、Phusion®超保真DNA聚合酶、Taq聚合酶、Psp GBD(exo-)DNA聚合酶、Bst DNA聚合酶(全長)、E.coli DNA聚合酶、LongAmp Taq DNA聚合酶、OneTaq DNA聚合酶中的一種或多種。
核苷酸單體混合物在本申請中是指dATP、dTTP、dGTP、dCTP的混合物。
在某些實施方式中,第一反應混合物中含有Thermococcus litoralis的Vent聚合酶、Deep Vent聚合酶、Vent(-exo)聚合酶、或Deep Vent(-exo)聚合酶中的一種或多種。在某些實施方式中,反應混合物中含有Thermococcus litoralis的Vent聚合酶。Thermococcus litoralis的Vent聚合酶是指分離自Thermococcus litoralis的天然的聚合酶。在某些實施方式中,反應混合物中含有Deep Vent聚合酶。Deep Vent聚合酶是指分離自Pyrococcus species GB-D的天然的聚合酶。在某些實施方式中,反應混合物中含有Vent(-exo)聚合酶。Vent(-exo)聚合酶是指將Thermococcus litoralis的Vent聚合酶進行過D141A/E143A基因改造的酶。在某些實施方式中,反應混合物中含有Deep Vent(-exo)聚合酶。Deep Vent(-exo)聚合酶是指對Deep Vent聚合酶進行過D141A/E143A基因改造的酶。本申請中所述的各種Vent聚合酶可以從商業途徑獲得,例如從New England Biolabs公司獲得。
第一反應混合物中還可以包括核酸聚合酶發揮酶活性所需的適當的金屬離子(例如,適當濃度的Mg2+離子(例如終濃度可以為約1.5mM到約8mM),核苷酸單體混合物(例如dATP、dGTP、dTTP和dCTP)、牛血清白蛋白(BSA)、dTT(例如終濃度可以為約2mM到約7mM)、純水等。
在某些實施方式中,第一反應混合物中還可以進一步 包括pH調節劑,使得混合物的pH值維持在7.0-9.0之間。適當的pH調節劑可以包括,例如Tris HCl和Tris SO4。在某些實施方式中,第一反應混合物中還可以進一步包括一種或多種其他成分,例如DNase抑制劑、RNase、SO4 2-、Cl-、K+、Ca2+、Na+、和/或(NH4)+等。
步驟(b):置於第一溫度迴圈程式
本申請提供的方法包括步驟(b):將所述第一反應混合物置於第一溫度迴圈程式,使得所述第一類引物(第一引物或第一引物和第三引物)的可變序列能夠與所述基因組DNA通過鹼基配對結合,在核酸聚合酶的作用下複製基因組DNA。
“擴增”在本申請中是指,在核酸聚合酶的作用下,在引物的3’端添加與核酸範本互補的核苷酸,從而合成得到與核酸範本鹼基互補的新的核酸鏈。可以使用適合的擴增核酸的方法,例如聚合酶鏈式反應(PCR)、連接酶鏈式反應(LCR),或其他適合的擴增方法。這些方法都是本領域已知的,可以參見例如美國專利U.S.4,683,195和U.S.4,683,202,以及Innis等人"PCR protocols:a guide to method and applications" Academic Press,Incorporated(1990)和Wu等人(1989)Genomics 4:560-569,這些文獻和專利的全部內容通過引用併入本申請。
在擴增過程中,將反應混合物置於適當的溫度迴圈程式,使得DNA範本雙鏈解開成單鏈,第一/第三引物與範 本單鏈雜交,然後在DNA聚合酶的作用下在引物的3’端進行延伸。因此,溫度迴圈程式通常包括:變性或解鏈溫度,在該溫度下DNA範本雙鏈解開成單鏈;退火溫度,在該溫度下引物與DNA範本單鏈特異性雜交;以及延伸溫度,在該溫度下DNA聚合酶在引物的3’端添加與DNA範本鹼基互補的核苷酸,使得引物得以延長,得到與DNA範本互補的新的DNA鏈。
在第一溫度迴圈程式中的第一次迴圈,首先將第一反應混合物置於能夠打開所述基因組DNA的雙鏈的溫度程式(步驟(b1))。在第一輪迴圈中,為確保基因組DNA雙鏈完全解開成單鏈(即,變性/解鏈),可以使用較高的反應溫度(例如90℃-95℃),並且可以保持較長的反應時間(例如在介於90-95℃之間的溫度反應1-20分鐘)。而在後續迴圈中,需要解開的雙鏈為擴增過程中生成的雙鏈,在此情況下,只要待擴增的半擴增子或全擴增子雙鏈能夠變性成為單鏈即可,因此需要的解鏈時間無需很長(例如在介於90-95℃的溫度之間解鏈反應3-50秒)。
然後,將第一反應混合物置於能夠使所述第一類引物(第一引物或第一引物和第三引物)與DNA單鏈範本結合的溫度程式(步驟(b2))。在這個溫度程式中,第一類引物中的可變序列與基因組DNA中的不同位置的互補序列通過鹼基互補結合(即,退火),並由此在基因組DNA的不同位置開啟複製。由於第一類引物中的可變序 列各不相同,其中的鹼基比例、序列都存在差異,因此每個可變序列與基因組DNA結合的最佳溫度也存在較大的差別。這樣,在某個特定的退火溫度下,可能只有一部分的引物能夠很好地與基因組DNA結合,而另一部分引物與基因組DNA的結合可能並不理想。在某些實施方式中,所述步驟(b2)包括將所述反應混合物置於多於一種溫度的程式,以促使所述第一類引物充分與所述DNA範本有效結合。例如,可以將DNA變性的反應混合物快速降溫至低溫,例如約10℃-20℃,再通過梯度升溫的方式,使得反應混合物分別在不同的退火溫度下反應適當的時間,從而確保盡可能多的引物與基因組DNA配對結合。在某些實施方式中,步驟(b2)包括在介於10-20℃之間的第一退火溫度(例如15℃)反應適當的時間(例如3-60秒),在介於20-30℃之間的第二退火溫度(例如25℃)反應適當的時間(例如3-50秒),以及在介於30-50℃之間的第三退火溫度(例如35℃)反應適當的時間(例如3-50秒)。
本領域公知,引物的退火溫度通常不會比引物Tm值低5℃以上,而過低的退火溫度會導致引物與引物之間發生非特異性結合,從而導致出現引物聚合體以及非特異性擴增產物。因此,通常在引物退火溫度中不會使用如10℃-20℃這樣的低溫。但是,本申請的發明人意想不到地發現,即使從低溫(例如10℃-20℃)開始梯度升溫,引物與基因組DNA之間的配對仍然能夠保持很好的特異 性,擴增結果仍然保持非常低的變異性,表明擴增的結果準確可靠。同時,由於引物退火溫度覆蓋了低溫的情況,因此可以確保更廣範圍的引物序列與基因組DNA的結合,從而能夠提供更好的基因組覆蓋率和擴增深度。在退火溫度程式後,將所述反應混合物置於能夠使與DNA單鏈範本結合的第一類引物在所述核酸聚合酶的作用下延伸長度的溫度程式,以產生擴增產物(步驟(b3))。
延伸溫度通常與DNA聚合酶的最適溫度相關,本領域技術人員可以根據具體的反應混合物進行具體的選擇。在某些實施方式中,在反應混合物中的DNA聚合酶可以具有鏈置換活性,這樣,如果引物在延伸的過程中遇到與下游範本結合的引物或擴增子,DNA聚合酶的鏈置換活性可以使這些下游結合的引物與範本鏈分開,從而確保延伸中的引物可以繼續延伸,以得到較長的擴增序列。具有鏈置換活性的DNA聚合酶包括但不限於,例如,phi29 DNA聚合酶、T5 DNA聚合酶、SEQUENASE 1.0和SEQUENASE 2.0。在某些實施方式中,在反應混合物中的DNA聚合酶是熱穩定的DNA聚合酶。熱穩定的DNA聚合酶包括但不限於,例如,Taq DNA聚合酶、OmniBaseTM序列酶、Pfu DNA聚合酶、TaqBeadTM暖開機聚合酶、Vent DNA聚合酶(例如Thermococcus litoralis的Vent聚合酶、Deep Vent聚合酶、Vent(-exo)聚合酶、Deep Vent(-exo)聚合酶)、Tub DNA聚合酶、TaqPlus DNA聚合酶、Tfl DNA聚合酶、Tli DNA聚合酶和Tth DNA聚合酶。在某些實施方式中,反應混合物中的DNA聚合酶可以是熱穩定並且具有鏈置換活性的DNA聚合酶。在某些實施方式中,在反應混合物中的DNA聚合酶選自:Phi29 DNA聚合酶、Bst DNA聚合酶、Pyrophage 3137、Vent聚合酶(例如Thermococcus litoralis的Vent聚合酶、Deep Vent聚合酶、Vent(-exo)聚合酶、Deep Vent(-exo)聚合酶)、TOPOTaq DNA聚合酶、9° Nm聚合酶、Klenow Fragment DNA聚合酶I、MMLV反轉錄酶、AMV反轉錄酶、HIV反轉錄酶、T7 phase DNA聚合酶變種(缺少3’-5’外切酶活性)、Phusion®超保真DNA聚合酶、Taq聚合酶、Bst DNA聚合酶(全長)、E.coli DNA聚合酶、LongAmp Taq DNA聚合酶、OneTaq DNA聚合酶中的一種或多種。
在某些實施方式中,步驟(b3)包括在介於60-90℃之間的延伸溫度(例如,在65-90℃、70-90℃、75-90℃、80-90℃、60-85℃、60-80℃、60-75℃、70-80℃之間,或在60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75℃下)反應10秒-15分鐘(例如,1-14、1-13、1-12、1-11、1-10、1-9、1-8、1-7、1-6、1-5、1-4、1-3、1-2、2-14、3-14、5-14、6-14、7-14、8-14、9-14、10-14、11-14、12-14、13-14分鐘,或者10-60、10-50、10-40、10-30、10-20、20-60、20-50、20-40、20-30、30-60、30-50、30-40秒)。在某些實施方式中,步驟(b3)包括在60-80℃之間的一個或多個溫度下反 應30秒-2分鐘。在某些實施方式中,步驟(b3)包括在65℃反應40秒。在某些實施方式中,步驟(b3)包括在75℃反應40秒。在某些實施方式中,步驟(b3)包括在65℃反應40秒之後再在75℃反應40秒。
引物延伸程式後,重複步驟(b1)到(b3)至指定的第一迴圈次數,如上所述在後續迴圈中,步驟(b1)中的解鏈溫度與第一輪迴圈中的解鏈溫度相近,但反應時間可以略短。在某些實施方式中,在第一輪迴圈後的迴圈中步驟(b1)包括在90-95℃的溫度之間反應10-50秒。
本申請所述的第一迴圈次數至少為2。在第一次迴圈時,第一類引物的可變序列的3’端的序列得以延長,得到的擴增產物在5’端為通用序列,3’端為與基因組範本單鏈序列互補的序列,這樣的擴增產物也稱為半擴增子。在第二次迴圈時,之前的半擴增子本身也可以作為DNA範本與第一類引物中的可變序列結合,引物在核酸聚合酶的作用下向擴增產物的5’端延伸,直到複製完擴增產物5’末端的通用序列,由此得到在5’端為通用序列,3’端為通用序列的互補序列的基因組擴增產物,這樣的擴增產物也稱為全擴增子。本申請所述的預擴增產物主要是指5’端為通用序列而3’端為通用序列的互補序列的全擴增子。
在第一次迴圈後的後續擴增中,反應混合物中的DNA單鏈不僅包含原始的基因組DNA單鏈,也包含擴增得到的新合成的DNA單鏈,其中原始基因組DNA範本以及初始擴增中產生的半擴增子均可再次作為新的DNA範 本,與引物結合並開啟新一輪的DNA合成;但由於全擴增子兩端包含互補的序列(5’端包含的通用序列和3’端包含的通用序列的互補序列),因此會自身形成髮卡結構,從而不能在下一個反應迴圈中再次作為新的DNA範本,進行新一輪的DNA合成。
在某些實施方式中,將第一迴圈的次數控制在適當的範圍內,以確保既有足夠的預擴增產物用於後續的反應,又不會因為迴圈次數過多影響整個流程的反應時間。在某些實施方式中,第一迴圈的次數為2-40個迴圈(例如,2-40個、4-40個、6-40個、8-40個、10-40個、12-40個、14-40個、16-40個、18-40個、20-40個、15-40個、20-40個、25-40個、30-40個、5-35個、10-35個、15-35個、20-35個、25-35個、30-35個、10-30個、15-30個、20-30個、25-30個、2-20個、2-18個、2-16個、2-14個、2-12個、2-10個、2-8個、2-6個、2-4個、4-20個、4-18個、4-16個、4-14個、4-12個、4-10個、4-8個、4-6個、6-20個、6-18個、6-16個、6-14個、6-12個、6-10個、6-8個、8-20個、8-18個、8-16個、8-14個、8-12個、8-10個、10-20個、10-18個、10-16個、10-14個、10-12個、12-20個、12-18個、12-16個、12-14個、14-20個、1-18個、14-16個、16-20個、16-18個和18-20個迴圈)。例如,第一迴圈次數次數至少為3、至少為4、至少為5、或至少為6、至少為7、至少為8、至少為9、或至少為10、至少為11、至少為12、至少為 13、至少為14、至少為15、或至少為16、至少為17、至少為18、至少為19或至少為20,或者最好不超過8、不超過9、不超過10、不超過11、不超過12、不超過13、不超過14、不超過15、不超過16、不超過17、或不超過18、不超過19、不超過20、不超過21、不超過22、不超過23、不超過24、或不超過25、不超過26、不超過27、不超過28、不超過29、不超過30、不超過31、不超過32、不超過33、不超過34、不超過35、不超過36、不超過37、不超過38、不超過39或不超過40。如果第一迴圈次數過低,則得到的預擴增產物少,為獲得足夠的擴增產物,就需要在擴增步驟(d)中增加迴圈次數,這樣會降低擴增結果的準確性。而如果第一迴圈次數過高,則會由於耗時較長而導致整個流程反應時間過長。
在某些實施方式中,在步驟(b3)後進一步包括步驟(b3’),其中將所述反應混合物置於適當的溫度程式,使得所述基因組預擴增產物中全擴增子的3’端與5’端雜交結合以形成環狀結構。此前認為,步驟(b3’)能夠將全擴增子的末端保護起來,從而避免兩條或多條全擴增子之間發生首尾聚合,從而避免將兩個原本在基因組上不相鄰的序列結合在一起。這將有助於提高擴增結果的準確性。
在某些實施方式中,所述方法在步驟(b3)後不經其他步驟(例如步驟(b3’))而直接到後續步驟(b1)或(c)。這樣,全擴增子並未經過特定的步驟以避免首尾聚合的情況,因此,理論上,這樣的擴增結果應該在準確性上存在 一定的缺陷。但是,意想不到的是,在本申請的方法中,即使在步驟(b3)後不經特定的步驟使全擴增子成環,最終的擴增結果仍然具有相當高的準確度,與使用步驟(b3’)的方法相比效果差不多。這精簡了反應步驟,同時仍然保持了反應的特異性。
步驟(c):提供第二反應混合物
在步驟(c)中,第二反應混合物中包含步驟(b)中得到的預擴增產物、第二引物、核苷酸單體混合物和核酸聚合酶,第二引物從5’端到3’端包含特定序列及所述通用序列。由於通用序列基本上不與基因組序列互補,因此如果第二類引物的其他部分被設計為基本不與基因組序列互補,那麼第二類引物不會直接與基因組DNA發生配對並開啟基因組DNA的複製,因而在某些特定的實施方式中可以通過直接在步驟(b)結束後獲得的反應混合物中加入第二引物而獲得第二反應混合物。在另一些實施方式中,在步驟(c)之前對步驟(b)結束後獲得的反應混合物進行純化,得到純化的預擴增產物,然後與第二引物、核苷酸單體混合物和核酸聚合酶以及可選地與任何其他本領域公知的可以用於擴增反應的試劑混合得到第二反應混合物。
i. 第二類引物
本文中所述的“第二引物”屬於上文所述的第二類引物。第二類引物包含第一類引物中的通用序列,從而第二 類引物可以結合全擴增子中的3’端的通用序列的互補序列,從而進一步複製該全擴增子,使其數量大大增加。
在某些實施方式中,第二類引物從5’到3’包含或由特定序列和通用序列組成。可以根據不同的測序平臺針對性地選擇第二類引物。在某些實施方式中,根據第二代測序平臺針對性地選擇第二類引物。在某些實施方式中,根據Illumina的NGS測序平臺(例如但不限於Hiseq、Miseq等)或Life technologies的Ion torrent的NGS測序平臺針對性地選擇第二類引物。在某些實施方式中,第二類引物包括與測序用引物的部分或全部互補或者相同的序列。在某些實施方式中,上述第二類引物中的與測序用引物的部分或全部互補或者相同的序列包含或由所述的通用序列組成。
本申請中所述的第二引物可以是具有第二類引物結構特徵的一對引物對或者是具有相同結構和序列的單一引物。在一些實施方式中,第二引物的特定序列在其3’端包括與測序用引物的部分或全部互補或者相同的序列。在一些實施方式中所述第二引物的特定序列中包含的與測序用引物的部分或全部互補或相同的序列包含或由SEQ ID NO:31[ACACTCTTTCCCTACACGAC]、或SEQ ID NO:32[GTGACTGGAGTTCAGACGTGT]組成。在一些實施方式中,第二引物中的特定序列在其5’端進一步包括與測序平臺的捕捉序列部分或全部互補或者相同的序列。捕捉序列是指在測序平臺中測序板上包含的用於捕捉待測序片段 的序列。在一些實施方式中,第二引物的特定序列中包含的與測序平臺的捕捉序列部分或全部互補或相同的序列包含或由SEQ ID NO:33[AATGATACGGCGACCACCGAGATCT]、或SEQ ID NO:34[CAAGCAGAAGACGGCATACGAGAT]組成。在一些實施方式中,第二引物的特定序列進一步在所述與測序平臺的捕捉序列部分或全部互補或相同的序列和所述與測序用引物的部分或全部互補或相同的序列之間包括一段標識序列(barcode序列),所述標識序列是指用於標識特定的待測序片段集合的序列,當測序平臺同時對多個測序片段集合進行測序時,可以通過在測序結果中篩選每個集合帶有的標識序列來區分測序數據。
在一些實施方式中,第二引物是包括具有相同通用序列和不同特定序列的引物對,其中所述不同特定序列分別包含與同一測序平臺中用到的一對捕捉序列的部分或全部互補或者相同的序列,和/或所述不同特定序列分別包含與同一測序中用到的測序引物對中不同引物的部分或全部互補或相同的特定序列。在一些實施方式中,第二引物包括SEQ ID NO:35[AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGAC GCTCTTCCGATCT]和[CAAGCAGAAGACGGCATACGAGATX...XGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT]所示的序列的混合物,其中X...X為標識序列,本領域技術人員可以根據實際需要選擇標識序列的長度和其具體序列。在一些實施方式中,第二引物包括SEQ ID NO:35 [AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGAC GCTCTTCCGATCT]、SEQ ID NO:36[CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT]所示的序列的混合物。在一些實施方式中,第二引物包括SEQ ID NO:37[CCACTACGCCTCCGCTTTCCTCTCTATGGGCAGTCGGTGATGCTCTTCCGATCT]和SEQ ID NO:38[CCATCTCATCCCTGCGTGTCTCCGACTCAGCTAAGGTAACGATGCTCTTCCGATCT]所示的序列的混合物。在一些實施方式中,第二引物包括SEQ ID NO:39[CCACTACGCCTCCGCTTTCCTCTCTATGGGCAGTCGGTGATTTGGTAGTGAGTG]和SEQ ID NO:40[CCATCTCATCCCTGCGTGTCTCCGACTCAGCTAAGGTAACGATTTGGTAGTGAGTG]所示的序列的混合物。
在一些實施方式中,第二引物在第二反應混合物中的濃度為1-15ng/μL。在一些實施方式中,第二引物在第二反應混合物中的濃度為1-12ng/μL、1-10ng/μL、1-8ng/μL、1-7ng/μL、1-6ng/μL、1-5ng/μL、1-4ng/μL、2-3ng/μL、2-12ng/μL、2-10ng/μL、2-8ng/μL、2-6ng/μL、2-5ng/μL、2-4ng/μL、2-3ng/μL、3-12ng/μL、3-10ng/μL、3-8ng/μL、3-6ng/μL或3-4ng/μL。在一些實施方式中,在第二反應混合物中的第二引物濃度為2-3ng/μL。在一些實施方式中,在第二反應混合物中的第二引物為5-50pmol。在一些實施方式中,在第二反應混合 物中的第二引物為10pmol、15pmol或20pmol。
ii. 其它成分
在某些實施方式中,第二反應混合物中含有的核酸聚合酶為選自Thermococcus litoralis的Vent聚合酶、Deep Vent聚合酶、Vent(-exo)聚合酶、或Deep Vent(-exo)聚合酶中的一種或多種。在某些實施方式中,第二反應混合物中含有Thermococcus litoralis的Vent聚合酶。在某些實施方式中,第二反應混合物中含有Deep Vent聚合酶。在某些實施方式中,第二反應混合物中含有Vent(-exo)聚合酶。在某些實施方式中,第二反應混合物中含有Deep Vent(-exo)聚合酶。本申請中所述的各種聚合酶均可以從商業途徑獲得,例如從New England Biolabs公司獲得。
在某些實施方式中,第二反應混合物中還可以包括核酸聚合酶發揮酶活性所需的適當的金屬離子(例如,適當濃度的Mg2+離子(例如終濃度可以為約1.5mM到約8mM);核苷酸單體混合物(例如dATP、dGTP、dTTP、和dCTP)、牛血清白蛋白(BSA)、dTT(例如終濃度可以為約2mM到約7mM)、純水、適當的緩衝液成分(例如pH調節劑,如Tris HCl和Tris SO4)或其他本領域通用的一種或多種其他成分(例如DNase抑制劑、RNase、SO4 2-、Cl-、K+、Ca2+、Na+、和/或(NH4)+等)等。
步驟(d):置於第二溫度迴圈程式
本申請提供的方法還包括步驟(d):將步驟(c)得到的第二反應混合物置於第二溫度迴圈程式,使得所述第二類引物的通用序列能夠與所述基因組預擴增產物的3’端配對並擴增所述基因組預擴增產物以得到擴大的基因組擴增產物。
由於步驟(b)得到的基因組預擴增產物,即全擴增子,在3’端具有通用序列的互補序列,因此可以與第二類引物的通用序列互補,在核酸聚合酶的作用下,第二類引物延伸,複製全擴增子的全長。
在第二溫度迴圈程式中,首先將反應混合物置於能夠打開DNA雙鏈的溫度程式(步驟(d1))。這裡的DNA雙鏈主要是指在步驟(b)中得到的基因組預擴增產物(即全擴增子)的雙鏈(包括全擴增子的單鏈髮卡結構分子)。雖然此時的第二反應混合物中仍然可能存在原始的基因組DNA,但由於第二類引物基本上不與基因組DNA配對結合,因此原始的基因組DNA並不是步驟(d)中的待擴增的DNA範本。可以使用較高的反應溫度(例如90℃-95℃)反應適當的時間使得待擴增的全擴增子雙鏈/髮卡結構能夠變性成為線性單鏈。在某些實施方式中,步驟(d1)中的溫度程式中將反應混合物置於能夠打開DNA雙鏈的溫度反應足夠的時間,以確保範本DNA雙鏈或髮卡結構全部變性成單鏈,該溫度程式包括在介於90-95℃之間(例如95℃)的變性溫度反應5秒-20分鐘(例如30 秒或3分鐘)。在步驟(d1)以後,將反應混合物置於能夠使其中包含的第x輪(x為
Figure 106110178-A0202-12-0056-120
1的整數)擴增中生成的擴增產物雙鏈解鏈為單鏈範本的溫度程式(步驟(d2)),即在介於90-95℃之間(例如95℃)的解鏈溫度反應3-50秒(例如20秒)。應當理解的是,在第一輪迴圈中步驟(d2)並非必須,但由於變性和解鏈程式中使用的溫度相近,且相對於變性時間來說解鏈時間很短,所以可以認為其在第一輪中為步驟(d1)的延時。
在步驟(d2)以後,將反應混合物置於能夠使所述第二類引物與步驟(d1)或(d2)中獲得的DNA單鏈結合的溫度程式(步驟(d3))。根據第二類引物中的鹼基組成,可以計算出第二類引物的Tm值,並基於該Tm值找出對於第二類引物的適合的退火溫度。在某些實施方式中,步驟(d3)中的溫度程式包括在介於45-65℃之間的退火溫度(例如63℃)反應3-50秒(例如40秒)。在某些實施方式中,第二類引物為SEQ ID NO:35、SEQ ID NO:36的混合物,且步驟(d3)中的溫度程式包括在63℃反應3-50秒。在某些實施方式中,步驟(d3)中的退火溫度高於在步驟(b2)中的退火溫度。在步驟(d3)時,反應混合物可能仍然含有在步驟(b)中未反應的第一類引物,這些第一類引物中的可變序列可能與步驟(d3)中得到的DNA單鏈範本配對結合,從而產生不完整的擴增序列。當步驟(d3)中的退火溫度高於第一類引物適合的退火溫度時,可以減少或避免第一類引物與DNA單鏈範本結合,從而選擇性地允許 第二類引物進行擴增。
在引物退火完成以後,將所述反應混合物置於能夠使與所述擴增產物單鏈結合的第二類引物在所述核酸聚合酶的作用下延伸長度的溫度程式。在某些實施方式中,步驟(d4)中所述的溫度程式包括在介於60-80℃之間的延伸溫度(例如72℃)反應10秒-15分鐘(例如40秒或3分鐘)。
可以重複步驟(d2)到(d4)至第二迴圈次數,以獲得所需的擴大的基因組擴增產物。在這個過程中,步驟(b)中得到的基因組擴增產物被進一步複製擴增,數量大大增加,以提供足夠的基因組DNA序列用於後續的研究或操作。在某些實施方式中,步驟(d5)中的所述第二迴圈次數大於所述步驟(b4)中的第一迴圈次數。在某些實施方式中,將第二迴圈的次數控制在適當的範圍內,使得其既能夠提供足夠量的DNA,又不會因為過多的迴圈數而影響擴增的準確度。在某些實施方式中,第二迴圈次數為2-40個迴圈(例如,2-40個、4-40個、6-40個、8-40個、10-40個、12-40個、14-40個、16-40個、18-40個、20-40個、15-40個、20-40個、25-40個、30-40個、5-35個、10-35個、15-35個、20-35個、25-35個、30-35個、10-30個、15-30個、20-30個、25-30個、15-28個、15-26個、15-24個、15-22個、15-20個、15-18個、15-17個、16-30個、17-30個、18-30個、20-30個、22-30個、24-30個、26-30個、28-30個、32-40個、32-38個、32-36 個或32-34個迴圈)。
在某些實施方式中,步驟(d)進一步包括在第二溫度迴圈程式以後,將反應混合物置於與步驟(d4)相同的溫度程式(例如72℃)反應適當的時間(例如40秒)。然後將反應混合物置於4℃的溫度下以結束反應。在某些實施方式中,步驟(d)反應結束後直接將反應混合物置於4℃的溫度下以結束反應。
在某些特定的實施方式中,本申請還提供了一種擴增細胞基因組的方法,所述方法包括:(a)提供第一反應混合物,其中所述第一反應混合物包括所述基因組DNA、第一引物、核苷酸單體混合物、和核酸聚合酶,其中所述第一引物從5’端到3’端包含通用序列和可變序列,其中所述第一引物從5’端到3’端包含通用序列和第一可變序列,所述第一可變序列包括第一隨機序列,其中所述第一隨機序列從5’端到3’端依次為Xa1Xa2......Xan,所述第一隨機序列的Xai(i=1-n)均屬於同一個集合,所述集合選自B、或D、或H、或V,其中B={T、G、C},D={A、T、G},H={T、A、C},V={A、C、G},其中Xai表示第一隨機序列5’端的第i個核苷酸,n是選自3-20的正整數,其中所述通用序列和所述第一可變序列直接相連、或所述通用序列和所述第一可變序列通過第一間隔序列相連,所述第一間隔序列為Ya1......Yam,其中Yaj(j=1-m)
Figure 106110178-A0202-12-0058-119
{A、T、G、C},其中Yaj表示間隔序列5’端的第j個核苷酸, 可選地,其中所述第一反應混合物進一步包括第三引物,其中所述第三引物從5’端到3’端包含所述通用序列和第三可變序列,所述第三可變序列包括第三隨機序列,其中所述第三隨機序列從5’端到3’端依次為Xb1Xb2......Xbn,所述第三隨機序列的Xbi(i=1-n)均屬於同一個集合,所述集合選自B、或D、或H、或V,其中B={T、G、C},D={A、T、G},H={T、A、C},V={A、C、G},並且Xbi(i=1-n)和Xai(i=1-n)屬於不同的集合,其中Xbi表示第一隨機序列5’端的第i個核苷酸,n是選自3-20的正整數,其中所述通用序列和所述第三可變序列直接相連,或者所述通用序列和所述第三可變序列通過第三間隔序列相連,所述第三間隔序列為Yb1......Ybm,其中Ybj(j=1-m)
Figure 106110178-A0202-12-0059-118
{A、T、G、C},其中Ybj表示間隔序列5’端的第j個核苷酸,m是選自1-3的正整數;(b)將所述第一反應混合物置於第一溫度迴圈程式,使得所述第一引物和第三引物的可變序列能夠與所述基因組DNA配對並擴增所述基因組DNA以得到基因組擴增產物,其中所述基因組擴增產物的5’端包含所述通用序列,3’端包含所述通用序列的互補序列;其中所述第一溫度迴圈程式包括:(b1)在介於90-95℃的溫度之間的第一變性溫度反應1-10分鐘(第一輪迴圈中)或者10-50秒(後續迴圈中);(b2)介於5-15℃之間的第一退火溫度反應3-50 秒,介於15-25℃之間的第二退火溫度反應3-50秒,和介於30-50℃之間的第三退火溫度反應3-50秒;(b3)在介於60-80℃之間的(一個或多個)第一延伸溫度反應10秒-15分鐘;(b4)重複步驟(b1)到(b3)至2-40個迴圈;(c)提供第二反應混合物,所述第二反應混合物包括步驟(b)中得到的所述基因組預擴增產物、第二引物、核苷酸單體混合物、和核酸聚合酶,其中所述第二引物的從5’端到3’端包含特定序列及所述通用序列;(d)將所述第二反應混合物置於第二溫度迴圈程式,使得所述第二引物的所述通用序列能夠與所述基因組預擴增產物的3’端配對並擴增所述基因組預擴增產物以得到擴大的基因組擴增產物,其中所述第二溫度迴圈程式包括:(d1)在介於90-95℃之間的第二變性溫度反應5秒-20分鐘;(d2)在介於90-95℃之間的第二解鏈溫度反應3-50秒;(d3)在介於45-65℃之間的第四退火溫度反應3-50秒;(d4)在介於60-80℃之間的第二延伸溫度反應10秒-15分鐘;(d5)重複步驟(d2)到(d4)2-40個迴圈,獲得基因組擴增產物。
在某些實施方式中,在步驟(a)的反應混合物中的基因 組DNA存在於細胞內部,即:反應混合物含有細胞,而在細胞中包含了待擴增的基因組DNA。在某些實施方式中,在步驟(a)的反應混合物含有細胞,而且還進一步包含能夠裂解細胞的成分,例如表面活性劑和/或裂解酶等。可以使用適當的表面活性劑,例如NP-40、吐溫、SDS、TritonX-100、EDTA、異硫氰酸胍中的一種或多種。也可以選擇適當的裂解酶,例如蛋白酶K、胃蛋白酶、木瓜蛋白酶中的一種或多種。在這樣的實施方式中,上述擴增細胞基因組的方法在步驟(a)之後以及步驟(b)之前進一步包括將所述反應混合物置於裂解溫度迴圈程式(例如將反應混合物置於50℃ 20分鐘,然後置於80℃ 10分鐘),使得所述細胞裂解並釋放出所述基因組DNA。
應用
在某些實施方式中,本申請方法擴增得到的產物可以進一步用於進行測序,如進行全基因測序。由於各種測序分析平臺如新一代測序(NGS),基因晶片(Microarray),螢光定量PCR等均對待分析樣本的起始量有較高的要求(100ng以上),因此如需要從單個人類細胞(6pg左右)或者少量起始量的樣本中得到足量用於分析的核酸物質,則需要進行全基因組擴增。可以通過本申請的方法對生物樣品(例如單細胞)中的基因組DNA進行擴增,再通過本領域適當的測序方法對擴增得到的產物進行測序。示例的測序方法包括,雜交測序法 (SBH)、連接酶測序法(SBL)、定量增量螢光核酸增加測序法(QIFNAS)、逐步連接和切割法、分子信標法、焦磷酸測序法、原位螢光測序法(FISSEQ)、螢光共振能量轉移法(FRET)、多重測序法(美國專利申請12/027039;porreca等人(2007)NAT.Methods 4:931)、聚合群體(POLONY)測序法(U.S.6,432,360、U.S.6,485,944和PCT/US05/06425)、擺動測序法(PCT US05/27695)、TaqMan報告分子探針消化法、微粒滾動迴圈測序法(ROLONY)(美國專利申請12/120541)、FISSEQ小珠法(U.S.7,425,431)和等位基因特異的寡核苷酸連接分析法等。
在某些實施方式中,可以以高通量的方法實現對本申請方法的擴增產物的測序。高通量的方法通常將待測序的核酸分子片段化(例如通過酶解或機械剪切等方式),以形成大量的長度為幾十bp到幾百bp的短片段。通過在一次測序反應中平行地對幾萬個、幾十萬個、幾百萬個、幾千萬個、甚至上億個這樣的短片段測序,可以大大提高測序的通量、縮短測序所需的時間。將測得的短片段的序列通過軟體進行資料處理,可以拼接成完整的序列。本領域已知多種高通量測序平臺,例如Roche 454、Illumina Solexa、AB-SOLiD、Helicos、Polonator平臺技術等。本領域還已知多種基於光的測序技術,例如可以參見Landegren等人(1998)Genome Res.8:769-76、Kwok(2000)Pharmacogenomics 1:95-100和Shi(2001)Clin. Chem.47:164-172中描述的那些。
在某些實施方式中,本申請方法擴增得到的產物還可以用於對基因組DNA中的基因型或遺傳多態性進行分析,例如單核苷酸多態性(SNP)分析、短串聯重複序列(STR)分析、限制性片段長度多態性(RFLP)分析、可變數目串聯重複序列(VNTRs)分析、複雜重複序列(CTR)分析或微衛星分析等,例如可以參考Krebs,J.E.,Goldstein,E.S.和Kilpatrick,S.T.(2009).Lewin’s Genes X(Jones & Bartlett Publishers),其公開內容通過引用整體併入本申請。
在某些實施方式中,本申請的方法得到的擴增產物還可以用於醫學分析和/或診斷分析。例如,可以對個體的生物樣品用本申請的方法進行擴增,分析擴增產物中在感興趣的基因或DNA序列中是否存在突變、缺失、插入或染色體之間的融合等異常情況,從而評估該個體患上某種疾病的風險、疾病的進展階段、疾病的基因分型、疾病的嚴重程度、或者該個體對某種療法反應的可能性。可以使用本領域已知的適當的方法對感興趣的基因或DNA序列進行分析,例如但不限於,通過核酸探針雜交、引物特異性擴增、對感興趣的序列測序、單鏈構象多態性(SSCP)等。
在某些實施方式中,本申請的方法可以用於比較來源於不同單細胞的基因組,特別是來自於同一個體的不同單細胞。例如,當同一個體的不同單細胞的基因組之間存在 差異時,例如腫瘤細胞和正常細胞之間,可以使用本申請的方法分別擴增不同單細胞的基因組DNA,並對擴增產物進行進一步的分析,例如,通過測序分析和比較,或者進行比較基因組雜交(CGH)分析。可以參考Fan,H.C.,Wang,J.,Potanina,A.和Quake,S.R.(2011).Whole-genome molecular haplotyping of single cells.Nature Biotechnology 29,51-57.以及Navin,N.,Kendall,J.,Troge,J.,Andrews,P.,Rodgers,L.,Mclndoo,J.,Cook,K.,Stepansky,A.,Levy,D.,Esposito,D.等人(2011).Tumour evolution inferred by single-cell sequencing.Nature 472,90-94,其公開內容通過引用整體併入本申請。
在某些實施方式中,本申請的方法可以用於識別在同源染色體中的單倍體結構或單倍體基因型。單倍體基因型是指同一單倍體的染色體上共同遺傳的多個基因座上等位元基因的組合。可以將生物樣品(例如來自個體的二倍體的單細胞)分成足夠多的部分,以使得同源的兩個單倍體上的DNA序列在統計學意義上被分隔到不同的部分中。每一個部分配置成一個反應混合物,對每一個反應混合物通過本申請的方法進行DNA擴增,然後將擴增產物進行序列分析,並與參照的基因組序列(例如公開的人的標準基因組序列,請參見:International Human Genome Sequencing Consortium,Nature 431,931-945(2004))進行比對,以識別其中的單核苷酸突變情況。如果沒有現成的參照基因組序列,也可以通過從頭基因組組裝(de-novo genome assembly)的方法從基因組的多個片段序列組裝得到適當長度的一段區域以供比較。
在某些實施方式中,本申請的方法擴增得到的產物可以進一步用於基因克隆、螢光定量PCR等分析。
在某些實施方式中,本申請的方法還可以進一步包括分析所述擴增產物以識別與疾病或表型相關的序列特徵。在一些實施方式中,分析所述擴增產物包括對DNA擴增物的基因型分析。在另一些實施方式中,分析所述擴增產物包括識別DNA擴增物的多態性,如單核苷酸多態性分析(SNP)。SNP可以通過一些眾所周知的方法進行檢測,例如寡核苷酸連接測定法(OLA)、單鹼基延生法、等位基因特異性引物延伸法、錯配雜交法等。可以通過比對SNP與已知疾病表型的關係來診斷疾病。
在一些實施方式中,所述與疾病或表型相關的序列特徵包括染色體水準異常、染色體的異位、非整倍體、部分或全部染色體的缺失或重複、胎兒HLA單倍型和父源突變。
在一些實施方式中,所述疾病或表型可以是β-地中海貧血、唐氏綜合徵、囊性纖維化、鐮狀細胞病、泰-薩克斯病、脆性X綜合徵、脊髓性肌萎縮症、血紅蛋白病、α-地中海貧血、X連鎖疾病(由在X染色體上基因主導的疾病)、脊柱裂、無腦畸形、先天性心臟病、肥胖、糖尿病、癌症、胎兒性別、或胎兒RHD。
試劑盒
在本申請的另一方面還提供了可用于基因組DNA擴增的試劑盒,其中包括第一引物。在某些實施方式中,所述試劑盒同時包括第一引物和第三引物。在某些實施方式中,試劑盒進一步包括核酸聚合酶,其中所述核酸聚合酶選自:Phi29 DNA聚合酶、Bst DNA聚合酶、Pyrophage 3137、Vent聚合酶、TOPOTaq DNA聚合酶、9° Nm聚合酶、Klenow Fragment DNA聚合酶I、MMLV反轉錄酶、AMV反轉錄酶、HIV反轉錄酶、T7 phase DNA聚合酶變種、Phusion®超保真DNA聚合酶、Taq聚合酶、Bst DNA聚合酶、E.coli DNA聚合酶、LongAmp Taq DNA聚合酶、OneTaq DNA聚合酶、Deep Vent DNA聚合酶、Vent(exo-)DNA聚合酶、Deep Vent(exo-)DNA聚合酶,及其任何組合。在某些實施方式中,試劑盒進一步包括一種或多種選自下組的成分:核苷酸單體混合物(例如dATP、dGTP、dTTP和dCTP,例如,總濃度介於1mmol-8mmol/μL)、dTT(例如,濃度介於1mmol-7mmol/μL)、Mg2+溶液(例如,濃度介於2mmol-8mmol/μL)、牛血清白蛋白(BSA)、pH調節劑(例如Tris HCl)、DNase抑制劑、RNase、SO4 2-、Cl-、K+、Ca2+、Na+、和/或(NH4)+。在某些實施方式中,試劑盒進一步包括能夠裂解細胞的成分,例如一種或多種表面活性劑(例如,NP-40、吐溫、SDS、TritonX-100、EDTA、異硫氰酸胍),和/或一種或多種裂解酶(例如,蛋白酶 K、胃蛋白酶、木瓜蛋白酶)。在一些實施方式中,所述試劑盒進一步包括第二類引物(即,第二引物)。應當理解,試劑盒中的第一引物、第二引物及第三引物均具有如上文中具體描述的結構和序列特徵。
在一些實施方式中,試劑盒中的所有組分均分別存放於單獨的容器中。在一些實施方式中,試劑盒中的所有組分均共同存放在同一容器中。在一些實施方式中,試劑盒中的每種引物均分別各自存放在單獨的容器中,而除引物以外的所有其他組分均存放在同一容器中。當試劑盒中包括核酸聚合酶時,核酸聚合酶可以以基本上純的形式存放於單獨的容器中,或者可選地可以與其他成分組成混合物。
在一些實施方式中,所述試劑盒可以包含含有線性擴增反應所需的除基因組DNA以外的全部反應物的混合物,當這樣的試劑盒用於本申請所述的線性擴增反應時,可以將含有基因組DNA的樣本與試劑盒中的混合物直接混合,可選地可以加入適量的純水以獲得需要的反應體積,即可獲得本申請方法的步驟(a)中的第一反應混合物。在一些實施方式中,所述試劑盒可以包含含有指數擴增反應所需的除擴增範本以外的全部反應物的混合物,當這樣的試劑盒用於本申請所述的指數擴增反應時,可以將含有步驟(b)中的擴增產物的DNA範本樣本與試劑盒中的該混合物直接混合,可選地可以加入適量的純水以獲得需要的反應體積,即可獲得本申請方法的步驟(c)中的 第二反應混合物。在另一些實施方式中,所述試劑盒可以既包含含有指數擴增反應所需的除擴增範本以外的全部反應物的混合物又包含含有指數擴增反應所需的除擴增範本以外的全部反應物的混合物,上述混合物可以是分開的兩種,也可以是混合的一種。
在本申請的另一方面還提供了可用于基因組DNA擴增的試劑盒,所述試劑盒包括第一類引物(例如,第一引物和/或第三引物)和第二類引物(例如,第二引物),並且還包括使用說明書,所述使用說明書記載了在開始進行所述擴增之前混合引物和其他組分得到第一/第三反應混合物的步驟。在另一些實施方式中,所述說明書還記載了如何進行本申請所述的擴增。試劑盒中的第一類引物和第二類引物可以分別置於不同的容器中,但說明書中可以包括在開始擴增前將兩者混合在同一容器中的步驟。
具體實施例 實施例1:初步驗證使用不同線性擴增引物混合物的擴增 效果 a)使用標準基因組DNA樣本進行驗證
標準基因組DNA為事先提取好的人類細胞的基因組DNA。用無核酸酶水將標準基因組DNA稀釋為50皮克/微升的DNA溶液,取1微升上述溶液(作為基因組DNA源)加入到PCR管中,在各實驗組中加入如表1所示的引物混合物及其他相關試劑,得到第一反應混合物(其中 含有Na+、Mg2+、Cl-、Tris-Cl、TritonX-100、dNTP、Vent聚合酶和引物混合物)。
線性擴增
每組引物組合/混合物均使用兩個實驗組進行平行實驗以保證其準確性,並將各實驗組的反應混合液置於如下第一溫控程式進行反應:
Figure 106110178-A0202-12-0069-17
各實驗組中使用的引物混合物如下表1中所示。
Figure 106110178-A0202-12-0069-18
其中每個實驗組中使用的第一類引物的總量為600皮莫耳(如果其中包括多種引物,則總量為600皮莫耳,各 種引物含量均相同)。可根據測序平臺的不同設計不同的通用序列。在本實驗的1-12中根據Illumina平臺選用SEQ ID NO:6作為通用序列。
線性擴增程式後,在各反應體系中加入1微升10皮莫耳/微升的第二引物,獲得12組第二反應混合物,並將各實驗組的反應混合液置於如下第二溫控程式進行反應:
Figure 106110178-A0202-12-0070-19
可根據測序平臺的不同設計不同的第二引物序列。在本實驗的1-12中根據Illumina平臺均使用如下第二引物的混合物:
第二引物-1(SEQ ID NO:35):
Figure 106110178-A0202-12-0070-142
Figure 106110178-A0202-12-0070-139
AC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCT
第二引物-2(SEQ ID NO:36):
Figure 106110178-A0202-12-0070-141
Figure 106110178-A0202-12-0070-140
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT
其中,第二引物中以雙底線標識的鹼基包括與測序平臺的捕捉序列對應的部分,以斜體標識的鹼基為與測序平臺的測序序列對應的部分,以點標識的部分為標識序列部分,可根據需要替換為其他標識序列,以單底線標識的部分為通用序列部分。
各實驗組結束上述擴增溫控程式後得到擴增產物。
凝膠電泳(定性)
分別取5微升未純化的實施例1中各實驗組的擴增產物,並分別添加1微升6xDNA加樣緩衝液(購自北京康為世紀生物科技有限公司,貨號CW0610A)準備上樣。凝膠使用1%瓊脂糖凝膠,標記物使用DM2000(購自北京康為世紀生物科技有限公司,貨號CW0632C)。電泳圖請參見附圖3,其中自左向右第1泳道為分子量標記,2-13泳道為基因組DNA擴增樣品,14泳道為分子量標記。
如圖3電泳圖所示,實驗組1-4的產物在100bp附近有明顯條帶,但在100-500bp之間產物含量相對較低;其他實驗組5-12的產物集中在500bp左右,實驗組5-10在100bp附近有不清晰條帶且與實驗組1-4相比濃度非常低。由圖3可知實驗組1-4中引物聚合物較多,相對反應效率較低,而第一類引物可變序列內包含的固定序列為TGGG或者GTTT(實驗組3-4)時反應效率高於固定序列為GGG或者TTT的引物(實驗組1-2);實驗組5-12組間的擴增產物區別不大,但與實驗組1-4相比顯著更高,說明引物聚合物產生的程度比第1-4組低。
純化產物(定量)
取50微升未純化的擴增產物,使用磁珠法DNA純化回收試劑盒(購自北京康為世紀生物科技有限公司,貨號CW2508)對擴增產物進行純化處理,純化步驟按照試劑盒說明書操作。使用20微升EB洗脫。純化完成後取2 微升純化產物使用Nanodrop(AOSHENG,NANO-100)檢測濃度。濃度檢測結果如表2所示。
Figure 106110178-A0202-12-0072-20
根據獲得的擴增產物在純化後的濃度推測各實驗組的擴增效率:由表2所示的濃度檢測結果可以看出,實驗組1-2擴增效率最低,實驗組3-4與實驗組5-12相比擴增效率相對較低但比實驗組1-2擴增效率高。除實驗組1-4以外,其他實驗組擴增產物總量相當,沒有顯著差別。
測序(定性)
取上述純化後的12實驗組的擴增產物,採取淺測序的方式使用Illumina的NGS測序平臺hiseq2500測序儀進行測序,並將測序得到的序列比對到人類參考基因組上。
在表3中提供了高通量測序結果的各個指標參數。
表3的各指標參數中,原始資料中唯一比對比例(unique_mapped_of_raw,即能夠比對到人類基因組的唯一位置的資料比例)是最重要的衡量指標。如表3中資料 所示,實驗組5-12中的unique_mapped_of_raw在83%-86%之間,各組間差別不大,但實驗組1-4中的unique_mapped_of_raw相對較低在67-79%之間。
另一個重要指標參數為原始資料中比對比例(mapped_of_raw,即原始資料中能夠比對到人類基因組的某個位置的資料比例)。類似地,如表3中資料所示,實驗組5-12中的mapped_of_raw在89%-93%之間,各組間差別不大,但實驗組1-4中的mapped_of_raw相對較低在73-86%之間。
另外,表3中的資料還表明實驗組1-4的讀數資料品質也低於其他實驗組,例如實驗組3、4的原始資料中高品質資料比例僅為77.08%、76.99%,而實驗組5-12中高品質資料比例在94%-96%之間。
圖4中顯示了測序文庫中序列讀數起始位置的各核苷酸讀數情況。由圖4可見,實驗組1-4和9-10中起始讀數區域包括A、T、C、G四種鹼基。實驗組5-7中的起始讀數區域缺乏A或者C,實驗組11-12中的起始讀數區域缺乏A和C。本領域技術人員應知,在測序時,特別是使用SBS測序時要求測序的前幾個鹼基有較高的隨機性,當測序樣本整體的前幾個鹼基隨機性較低時,則需要在整板上樣時在每個上樣孔中添加一定量的陽性質控品以增加鹼基隨機性,但這勢必會浪費一定的資料量。例如,當使用實驗組11-12中製備的文庫進行整板上樣測序時,由於起始讀數區域缺乏A、C則需要加入一定數量的陽性質控 品,根據實驗經驗一般需要加入至少20%上樣量的陽性質控才能保證SBS測序的順利進行。
Figure 106110178-A0202-12-0074-21
b)使用AFP單細胞樣本進行驗證
待測樣本為AFP單細胞。使用胰蛋白酶消化培養狀態良好的人表皮成纖維細胞(AFP),將消化後的細胞收集進入1.5ml EP管內。將收集的細胞離心並用1x的PBS溶液沖洗。沖洗完成後加入1x的PBS使細胞懸浮。用移液器抽取一部分包含細胞的懸浮液,在10x顯微鏡下使用口吸管挑取單細胞,吸取的PBS溶液體積不超過1微升,並將挑取的單細胞轉移進入包含5微升裂解緩衝液(含有Tris-Cl、KCl、EDTA、Triton X-100和Qiagen Protease)的PCR管內。短暫離心後將PCR管置於PCR儀上執行裂解程式,具體程式如表4所示。
Figure 106110178-A0202-12-0074-22
將裂解後的反應液作為基因組DNA源替換實施例1a)中的標準基因組DNA,其它成分和線性擴增、指數擴增溫控程式與實施例1a)中相同。對獲得的擴增產物採用上文所述條件進行凝膠電泳檢測。凝膠電泳電泳圖請參見附圖5,其中自左向右第1泳道為分子量標記,2-13泳道為基因組DNA擴增樣品,14泳道為分子量標記。
如圖5電泳圖所示,實驗結果與圖3中所示的相似。實驗組1-4的產物在100bp附近有明顯條帶,但在100-500bp之間產物含量相對較低;其他實驗組5-12的產物集中在500bp左右,實驗組5-12在100bp附近無明顯條帶。由圖5可知實驗組1-4中引物聚合物較多,相對反應效率較低,而第一類引物可變序列內包含的固定序列為TGGG或者GTTT(實驗組3-4)時反應效率高於固定序列為GGG或者TTT的引物(實驗組1-2);實驗組5-10組間的擴增產物得率區別不大,但與實驗組1-4相比更高,說明引物聚合物產生的程度比第1-4組低,但與實驗組11-12相比略低。
根據上文所述的操作對擴增產物進行純化並且測序,測序結果的各項指標如下表5中所示。其中實驗組5-12中的unique_mapped_of_raw在78%-85%之間,各組間差別不大,但實驗組1-4中的unique_mapped_of_raw相對較低在63-70%之間。如表5中資料所示,實驗組5-12中的mapped_of_raw在84%-92%之間,各組間差別不大,但實驗組1-4中的mapped_of_raw相對較低在73-86%之間。 另外,表3中的資料還表明實驗組1-4的讀數資料品質也低於其他實驗組,例如實驗組3、4的原始資料中高品質資料比例僅為68.97%、72.29%,而實驗組5-12中高品質資料比例在94%-96%之間。
Figure 106110178-A0202-12-0076-23
由上述結果可見,實驗組1-4所使用的線性擴增引物混合物會產生較多的引物聚合物,從而使得擴增效率大大降低,相應地在同等擴增條件下資料量較低。雖然實驗組1-4在起始測序區域的A、T、C、G分佈均勻,但是資料中的比對比例尤其是唯一比對比例較低,從而導致使用其測序數據在後續處理上更為困難。
實施例2:進一步驗證使用不同線性擴增引物混合物的擴增效果
按照實施1b)所述的方法對人表皮成纖維細胞進行分離和裂解,以獲得單細胞基因組DNA,並且分別使用表1實驗組11/12中使用的引物混合物以及實驗組9/10中使用的引物混合物進行擴增,對每種引物混合物均進行10個 平行試驗(分別以1_1、1_2...1_10和2_1、2_2...2_10表示)。根據實施例1a)中所述的程式進行擴增並獲得擴增產物,並對擴增產物進行凝膠電泳檢測,電泳檢測結果如圖6所示。其中實驗組2_1、2_2...2_10中擴增產物的濃度略低於實驗組1_1、1_2...1_10中擴增產物的濃度
根據實施例1a)中所述的程式對上述擴增產物進行純化並取相同體積的純化擴增產物進行測序,測序結果的相關指標參數如下表6-7所示。
Figure 106110178-A0202-12-0077-24
Figure 106110178-A0202-12-0077-25
表6和7中的資料顯示,實驗組2_1、22...2_10中的 unique_mapped_of_raw在83%-84%左右,mapped_of_raw在90%-91%左右,實驗組1_1、1_2...1_10中的unique_mapped_of_raw在84%-85%左右,mapped_of_raw在91%-92%左右,兩組間差別不大。每組中各樣品的上機資料量統計結果顯示如圖7:實驗組1_1、1_2...1_10中,除異常的實驗組1_1以外(可能由於回收過程中的失誤導致資料量極低)其他實驗組中資料量均在1.5-2M之間,實驗組1_2、1_3...1_10的上機數據量平均值為約1.7M左右。實驗組2_1、2_2...2_10中,資料量均在1.5-2.5M之間,實驗組2_1、2_2...2_10的上機資料量平均值為約1.8M左右,實驗組2_1、2_2...2_10中數據量略高。此外,將實驗組上機資料中的拷貝數變異係數CV總結如圖8:在排除明顯異常的實驗組1_1後,實驗組1_2、1_3...1_10的平均拷貝數變異係數CV約為0.046,實驗組2_1、2_2...2_10的平均拷貝數變異係數CV約為0.049,兩個實驗組中拷貝數變異係數相比無明顯差別。圖9中單獨列出了每個實驗組的拷貝數變異圖,其中縱坐標代表染色體的拷貝數,正常人為2;橫坐標代表染色體的1-22號染色體及性染色體。如圖所示,每個實驗組中染色體1-22除個別資料點以外均大致為兩個拷貝,而性染色體X和Y均分別為大致1個拷貝。
實施例3:致病位點和質檢引物檢測 致病位點檢測
隨機選取35個致病位點(選擇的位點參見下表8),並設計引物。選取的致病位點及其相應的引物分別如表8和表9所示。
Figure 106110178-A0202-12-0079-26
Figure 106110178-A0202-12-0080-27
Figure 106110178-A0202-12-0081-28
隨機選擇根據實施例2中的1_1、1_2、2_1、2_2實驗組中的擴增產物分別作為範本DNA。使用2xGoldstarMasterMix(購自北京康為世紀生物科技有限公司,貨號CW0960)對範本DNA進行PCR檢測。擴增體系組成如表10所示,擴增程式如表11所示。
Figure 106110178-A0202-12-0081-29
Figure 106110178-A0202-12-0082-30
擴增的結果如圖10中的凝膠電泳圖所示。擴增結果顯示:在樣品1_1、1_2中致病位點4、13在兩個樣本中均未被擴增出,而致病位點21在樣品1_1中未被擴增出,致病位點20、29、31在樣品1_2中未被擴增出。在樣品2_1、2_2中致病位點31在兩個樣本中均未被擴增出,而致病位點18、21、32、35在樣品2_1中未被擴增出,致病位點8、22在樣品1_2中未被擴增出。結果顯示兩組引物組樣品(1_1、1_2和2_1、2_2)在擴增的準確性和擴增產物的量上沒有顯著差別。
質檢引物q-PCR檢測
使用上述實施例2中的1_1、1_2、2_1、2_2實驗組中的擴增產物、陽性對照(相同濃度的gDNA)、陰性對照(無範本)分別作為範本DNA。使用如表12所示的6組質檢引物,分別針對不同染色體上的DNA序列,對範本DNA進行q-PCR檢測。在螢光定量PCR中使用2xFastSYBR Mixture(購自北京康為世紀生物科技有限公司,貨號CW0955)。擴增體系組成如表表13所示,擴 增程式如表14所示。
Figure 106110178-A0202-12-0083-31
Figure 106110178-A0202-12-0083-33
Figure 106110178-A0202-12-0083-34
擴增的結果如表15中所示,其中分別列出了引物對CH1、CH2、CH4、CH5、CH6和CH7對各組範本DNA的q-PCR檢測資料。其中當Ct值越大表明,該引物對應的範本數越低,對應在gDNA擴增中擴增效率越差。擴增結果顯示:樣品2_1中CH1、CH2、CH4、CH5、CH6和 CH7擴增效率均較高。樣品2_2中CH1、CH2、CH4、CH5、CH6和CH7的擴增效率均很高。與樣本1-1與1-2的擴增沒有本質區別。
Figure 106110178-A0202-12-0084-35
實施例4:本申請的擴增方法用於Ion torrent測序平臺
抽取新鮮的血液並使用淋巴細胞分離液分離淋巴細胞,其中用移液器抽取一部分包含細胞的懸浮液,在10x顯微鏡下使用口吸管挑取約3個白細胞,吸取的PBS溶液體積不超過1微升,並將挑取的3個左右白細胞轉移進入包含4微升裂解緩衝液含有Tris-Cl、KCl、EDTA、Triton X-100和Qiagen Protease的PCR管內,並根據實施例1b)中所描述的步驟進行裂解,並使用表1中的實驗組9/10中所使用的引物混合物對基因組DNA進行線性擴增,並且使用如下第二引物混合物:第二引物-1(SEQ ID NO:37):CCA CTA CGC CTC CGC TTT CCT CTC TAT GGG CAG TCG GTG ATG CTC TTC CGA TCT; 第二引物-2(SEQ ID NO:38):
Figure 106110178-A0202-12-0085-150
Figure 106110178-A0202-12-0085-148
T CAG
Figure 106110178-A0202-12-0085-153
GA TGC TCT TCC GAT CT;(其中,第二引物中以雙底線標識的鹼基包括與測序平臺的捕捉序列對應的部分,以點標識的部分為標識序列部分,可根據需要替換為其他標識序列,單底線部分為通用序列部分)進行指數擴增得到擴增產物,平行進行4組實驗。所有其他反應條件均與實施例1b)中所描述的一致。擴增效果如圖11中的凝膠電泳所示。
均一性檢測
之後隨機選擇根據實施例4擴增出的2個樣品(在圖11中顯示為樣本1和樣本2)分別作為範本DNA。使用 2xGoldstarMasterMix(購自北京康為世紀生物科技有限公司,貨號CW0960)對範本DNA進行PCR檢測,其中使用如表9中所示的引物擴增如表8中所示的35個致病位點。擴增體系組成如表10所示,擴增程式如表11所示。
擴增的結果如圖12所示。擴增結果顯示:35個致病位點在上述兩個擴增產物樣本中均能得到了很好地擴增,兩個樣本在擴增的準確性和擴增產物的量上沒有顯著差別。
基因測序
圖11中顯示的4個樣本在經純化後分別取等體積,使用Life Technologies的Ion torrent測序平臺PGMTM測序儀進行測序,並將測序得到的序列比對到人類參考基因組上。測序結果如下表16及附圖13所示。
Figure 106110178-A0202-12-0086-36
表16中的資料顯示,樣本1、2、3、4中的unique_mapped_of_raw在68%左右,mapped_of_raw在72%-73%左右,資料量在0.38-0.53M之間,上機資料中的拷貝數變異係數CV約為0.06。此外測序讀數的拷貝數變異圖如圖13所示,每個實驗組中染色體1-22除個別資料 點以外均大致為兩個拷貝,而性染色體X和Y均分別為大致1個拷貝。
值得注意的是,在Ion Torrent測序平臺中並不需要針對測序平臺設計特定的通用序列,原則上任何基本上不會與基因組DNA結合產生擴增的6-60bp長度範圍內的序列均可選作通用序列。我們在Ion Torrent測序平臺中還使用了另外兩種引物組合進行檢測:1)使用與表1中的實驗組9/10中所使用的第一類引物混合物類似的第一類引物混合物:SEQ ID NO:15、16、19和20(但其中通用序列為SEQ ID NO:1),對應的指數擴增引物混合物為SEQ ID NO:39 CCA CTA CGC CTC CGC TTT CCT CTC TAT GGG CAG TCG GTG ATT TGG TAG TGA GTG和SEQ ID NO:40
Figure 106110178-A0202-12-0087-147
Figure 106110178-A0202-12-0087-104
T CAG
Figure 106110178-A0202-12-0087-143
GA TTT GGT AGT GAG TG;2)使用與表1中的實驗組9/10中所使用的第一類引物混合物類似的第一類引物混合物:SEQ ID NO:23、24、27和28(但其中通用序列為SEQ ID NO:2),對應的指數擴增引物混合物為SEQ ID NO:41 CCA CTA CGC CTC CGC TTT CCT CTC TAT GGG CAG TCG GTG ATG AGG TGT GAT GGA和SEQ ID NO:42
Figure 106110178-A0202-12-0087-146
Figure 106110178-A0202-12-0087-144
T CAG
Figure 106110178-A0202-12-0087-145
GA TGA GGT GTG ATG GA。擴增與測序結果與圖11及表16中所示的結果無明顯差別(此處未提供具體資料)。
實施例5:本申請的擴增方法用於囊胚滋養層的胚胎植入前染色體檢測
受精卵在體外培養,在囊胚期(體外培養第5天)取外胚滋養層的多個細胞(約3個細胞)進行染色體拷貝數異常的檢測。採集囊胚外胚滋養層細胞的方法可以為任何本領域技術人員公知的方法,例如但不限於Wang L,Cram DS et al.Validation of copy number variation sequencing for detecting chromosome imbalances in human preimplantation embryos.Biol Reprod,2014,91(2):37中所述的方法。採集的囊胚外胚滋養層細胞轉移進入包含5微升裂解緩衝液的PCR管內,加入裂解酶,根據實施例1b)中所描述的步驟進行裂解,並使用表1中的實驗組9/10中所使用的引物混合物對基因組DNA進行擴增(平行進行4組實驗)。如實施例1中所述的步驟對擴增產物進行純化及測序。測序結果如下表17中所示。
Figure 106110178-A0202-12-0088-37
表17中的資料顯示,樣本1、2、3中的unique_mapped_of_raw在66-73%左右,mapped_of_raw在71%-78%左右,資料量在1.4-2.6M之間。此外測序讀數的拷貝數變異圖如圖14所示,每個實驗組中染色體1-22 除個別資料點以外均大致為兩個拷貝,而性染色體X和Y均分別為大致1個拷貝。
儘管本發明已公開了多個方面和實施方式,但是其它方面和實施方式對本領域技術人員而言將是顯而易見的。本發明公開的多個方面和實施方式僅用於舉例說明,其並非旨在限制本發明,本發明的實際保護範圍以申請專利範圍為准。
<110> 序康醫療科技(蘇州)有限公司
<120> 擴增DNA的方法
<130> 055147-8002CN01
<160> 42
<170> PatentIn version 3.5
<210> 1
<211> 13
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<400> 1
Figure 106110178-A0202-12-0090-38
<210> 2
<211> 13
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<400> 2
Figure 106110178-A0202-12-0090-40
<210> 3
<211> 15
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<400> 3
Figure 106110178-A0202-12-0090-41
<210> 4
<211> 19
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<400> 4
Figure 106110178-A0202-12-0090-42
<210> 5
<211> 27
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<400> 5
Figure 106110178-A0202-12-0091-43
<210> 6
<211> 13
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<400> 6
Figure 106110178-A0202-12-0091-44
<210> 7
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<220>
<221> misc_feature
<222> (14)..(14)
<223> N=A或T或C或G
<220>
<221> misc_feature
<222> (15)..(19)
<223> B=T或C或G
<400> 7
Figure 106110178-A0202-12-0091-45
<210> 8
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<220>
<221> misc_feature
<222> (14)..(14)
<223> N=A或T或C或G
<220>
<221> misc_feature
<222> (15)..(19)
<223> D=A或T或G
<400> 8
Figure 106110178-A0202-12-0092-46
<210> 9
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<220>
<221> misc_feature
<222> (14)..(14)
<223> N=A或T或C或G
<220>
<221> misc_feature
<222> (15)..(19)
<223> H=A或T或C
<400> 9
Figure 106110178-A0202-12-0092-47
<210> 10
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<220>
<221> misc_feature
<222> (14)..(14)
<223> N=A或T或C或G
<220>
<221> misc_feature
<222> (15)..(19)
<223> V=A或C或G
<400> 10
Figure 106110178-A0202-12-0092-48
<210> 11
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<220>
<221> misc_feature
<222> (14)..(14)
<223> N=A或T或C或G
<220>
<221> misc_feature
<222> (15)..(19)
<223> B=T或C或G
<400> 11
Figure 106110178-A0202-12-0093-49
<210> 12
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<220>
<221> misc_feature
<222> (14)..(14)
<223> N=A或T或C或G
<220>
<221> misc_feature
<222> (15)..(19)
<223> D=A或T或G
<400> 12
Figure 106110178-A0202-12-0093-51
<210> 13
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<220>
<221> misc_feature
<222> (14)..(14)
<223> N=A或T或C或G
<220>
<221> misc_feature
<222> (14)..(14)
<223> H=A或T或C
<400> 13
Figure 106110178-A0202-12-0093-52
<210> 14
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<220>
<221> misc_feature
<222> (14)..(14)
<223> N=A或T或C或G
<220>
<221> misc_feature
<222> (15)..(19)
<223> V=A或C或G
<400> 14
Figure 106110178-A0202-12-0094-53
<210> 15
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<220>
<221> misc_feature
<222> (14)..(14)
<223> N=A或T或C或G
<220>
<221> misc_feature
<222> (15)..(19)
<223> B=T或C或G
<400> 15
Figure 106110178-A0202-12-0094-54
<210> 16
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<220>
<221> misc_feature
<222> (14)..(14)
<223> N=A或T或C或G
<220>
<221> misc_feature
<222> (15)..(19)
<223> D=A或T或G
<400> 16
Figure 106110178-A0202-12-0095-55
<210> 17
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<220>
<221> misc_feature
<222> (14)..(14)
<223> N=A或T或C或G
<220>
<221> misc_feature
<222> (15)..(19)
<223> H=A或T或C
<400> 17
Figure 106110178-A0202-12-0095-56
<210> 18
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<220>
<221> misc_feature
<222> (14)..(14)
<223> N=A或T或C或G
<220>
<221> misc_feature
<222> (15)..(19)
<223> V=A或C或G
<400> 18
Figure 106110178-A0202-12-0095-58
<210> 19
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<220>
<221> misc_feature
<222> (14)..(14)
<223> N=A或T或C或G
<220>
<221> misc_feature
<222> (15)..(19)
<223> B=T或C或G
<400> 19
Figure 106110178-A0202-12-0096-60
<210> 20
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<220>
<221> misc_feature
<222> (14)..(14)
<223> N=A或T或C或G
<220>
<221> misc_feature
<222> (15)..(19)
<223> D=A或T或G
<400> 20
Figure 106110178-A0202-12-0096-61
<210> 21
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<220>
<221> misc_feature
<222> (14)..(14)
<223> N=A或T或C或G
<220>
<221> misc_feature
<222> (15)..(19)
<223> H=A或T或C
<400> 21
Figure 106110178-A0202-12-0097-62
<210> 22
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<220>
<221> misc_feature
<222> (14)..(14)
<223> N=A或T或C或G
<220>
<221> misc_feature
<222> (15)..(19)
<223> V=A或C或G
<400> 22
Figure 106110178-A0202-12-0097-63
<210> 23
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<220>
<221> misc_feature
<222> (14)..(14)
<223> N=A或T或C或G
<220>
<221> misc_feature
<222> (15)..(19)
<223> B=T或C或G
<400> 23
Figure 106110178-A0202-12-0097-64
<210> 24
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<220>
<221> misc_feature
<222> (14)..(14)
<223> N=A或T或C或G
<220>
<221> misc_feature
<222> (15)..(19)
<223> D=A或T或G
<400> 24
Figure 106110178-A0202-12-0098-66
<210> 25
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<220>
<221> misc_feature
<222> (14)..(14)
<223> N=A或T或C或G
<220>
<221> misc_feature
<222> (15)..(19)
<223> H=A或T或C
<400> 25
Figure 106110178-A0202-12-0098-67
<210> 26
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<220>
<221> misc_feature
<222> (14)..(14)
<223> N=A或T或C或G
<220>
<221> misc_feature
<222> (15)..(19)
<223> V=A或C或G
<400> 26
Figure 106110178-A0202-12-0098-70
<210> 27
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<220>
<221> misc_feature
<222> (14)..(14)
<223> N=A或T或C或G
<220>
<221> misc_feature
<222> (15)..(19)
<223> B=T或C或G
<400> 27
Figure 106110178-A0202-12-0099-71
<210> 28
<211> 24
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<220>
<221> misc_feature
<222> (14)..(14)
<223> N=A或T或C或G
<220>
<221> misc_feature
<222> (15)..(19)
<223> D=A或T或G
<400> 28
Figure 106110178-A0202-12-0099-72
<210> 29
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<220>
<221> misc_feature
<222> (14)..(14)
<223> N=A或T或C或G
<220>
<221> misc_feature
<222> (15)..(19)
<223> H=A或T或C
<400> 29
Figure 106110178-A0202-12-0100-73
<210> 30
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<220>
<221> misc_feature
<222> (14)..(14)
<223> N=A或T或C或G
<220>
<221> misc_feature
<222> (15)..(19)
<223> V=A或C或G
<400> 30
Figure 106110178-A0202-12-0100-74
<210> 31
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<400> 31
Figure 106110178-A0202-12-0100-75
<210> 32
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<400> 32
Figure 106110178-A0202-12-0100-76
<210> 33
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<400> 33
Figure 106110178-A0202-12-0100-77
<210> 34
<211> 24
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<400> 34
Figure 106110178-A0202-12-0101-78
<210> 35
<211> 58
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<400> 35
Figure 106110178-A0202-12-0101-79
<210> 36
<211> 64
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<220>
<221> misc_feature
<223> 標識序列
<400> 36
Figure 106110178-A0202-12-0101-80
<210> 37
<211> 54
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<400> 37
Figure 106110178-A0202-12-0101-81
<210> 38
<211> 54
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<220>
<221> misc_feature
<222> (31)..(40)
<223> 標識序列
<400> 38
Figure 106110178-A0202-12-0102-82
<210> 39
<211> 56
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<400> 39
Figure 106110178-A0202-12-0102-84
<210> 40
<211> 56
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<220>
<221> misc_feature
<223> 標識序列
<400> 40
Figure 106110178-A0202-12-0102-85
<210> 41
<211> 54
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<400> 41
Figure 106110178-A0202-12-0102-86
<210> 42
<211> 56
<212> DNA
<213> 人工序列
<220>
<223> 合成的
<220>
<221> misc_feature
<222> (31)..(40)
<223> 標識序列
<400> 42
Figure 106110178-A0202-12-0103-87

Claims (50)

  1. 一種擴增基因組DNA的方法,所述方法包括:(a)提供第一反應混合物,其中所述第一反應混合物包括包含所述基因組DNA的樣本、第一引物、核苷酸單體混合物和核酸聚合酶,其中所述第一引物從5’端到3’端包含通用序列和第一可變序列,所述第一可變序列包括第一隨機序列,其中所述第一隨機序列從5’端到3’端依次為Xa1Xa2......Xan,所述第一隨機序列的Xai(i=1-n)均屬於同一個集合,所述集合選自B、或D、或H、或V,其中B={T、G、C},D={A、T、G},H={T、A、C},V={A、C、G},其中Xai表示第一隨機序列5’端的第i個核苷酸,n是選自3-20的正整數,其中選擇所述通用序列以使得其基本上不會與基因組DNA結合產生擴增,所述第一反應混合物進一步包括第三引物,其中所述第三引物從5’端到3’端包含所述通用序列和第三可變序列,所述第三可變序列包括第三隨機序列,其中所述第三隨機序列從5’端到3’端依次為Xb1Xb2......Xbn,所述第三隨機序列的Xbi(i=1-n)均屬於同一個集合,所述集合選自B、或D、或H、或V,其中B={T、G、C},D={A、T、G},H={T、A、C},V={A、C、G},並且Xbi(i=1-n)和Xai(i=1-n)屬於不同的集合,其中Xbi表示第三隨機序列5’端的第i個核苷酸,n是選自3-20的正整數;(b)將所述第一反應混合物置於第一溫度迴圈程式進行預擴增,獲得預擴增產物; (c)提供第二反應混合物,所述第二反應混合物包括步驟(b)中得到的預擴增產物、第二引物、核苷酸單體混合物和核酸聚合酶,其中所述第二引物從5’端到3’端包含或由特定序列及所述通用序列組成;及(d)將所述第二反應混合物置於第二溫度迴圈程式進行擴增,獲得擴增產物,其中所述通用序列選自SEQ ID NO:1[TTGGTAGTGAGTG]、SEQ ID NO:2[GAGGTGTGATGGA]、SEQ ID NO:3[GTGATGGTTGAGGTA]、SEQ ID NO:4[AGATGTGTATAAGAGACAG]、SEQ ID NO:5[GTGAGTGATGGTTGAGGTAGTGTGGAG]或SEQ ID NO:6[GCTCTTCCGATCT],且其中所述第二引物的特定序列包括與隨後測序用引物的部分或全部互補或者相同的序列;或,所述第二引物的特定序列進一步包括與隨後測序平臺的捕捉序列部分或全部互補或者相同的序列。
  2. 根據申請專利範圍第1項所述的方法,其中第一隨機序列的Xai(i=1-n)均屬於集合B,第三隨機序列的Xbi(i=1-n)均屬於集合D。
  3. 根據申請專利範圍第1項所述的方法,其中所述第一可變序列和所述第三可變序列進一步在其3’端包括固定序列,所述固定序列能夠提高基因組覆蓋度的鹼基組合。
  4. 根據申請專利範圍第3項所述的方法,其中所述固定序列選自CCC、AAA、TGGG、GTTT、GGG、TTT、TNTNG或GTGG。
  5. 根據申請專利範圍第1項所述的方法,其中所述第一可變序列選自Xa1Xa2......XanTGGG或Xa1Xa2......XanGTTT,所述第三可變序列選自Xb1Xb2......XbnTGGG或Xb1Xb2......XbnGTTT。
  6. 根據申請專利範圍第1項所述的方法,其中所述通用序列長度為6-60bp。
  7. 根據申請專利範圍第6項所述的方法,其中選擇所述通用序列使得擴增產物能夠直接進行測序。
  8. 根據申請專利範圍第1項所述的方法,其中所述通用序列為SEQ ID NO:6[GCTCTTCCGATCT]。
  9. 根據申請專利範圍第1項所述的方法,其中所述通用序列和所述第一可變序列直接相連,或者所述通用序列和所述第一可變序列通過第一間隔序列相連,所述第一間隔序列為Ya1......Yam,其中Yaj(j=1-m)
    Figure 106110178-A0305-02-0108-16
    {A、T、G、C},其中Yaj表示間隔序列5’端的第j個核苷酸,m是選自1-3的正整數。
  10. 根據申請專利範圍第1項所述的方法,其中所述通用序列和所述第三可變序列直接相連,或者所述通用序列和所述第三可變序列通過第三間隔序列相連,所述第三間隔序列為Yb1......Ybm,其中Ybj(j=1-m)
    Figure 106110178-A0305-02-0108-17
    {A、T、G、C},其中Ybj表示間隔序列5’端的第j個核苷酸,m是選自1-3的正整數。
  11. 根據申請專利範圍第9項或第10項所述的方法,其中所述m=1。
  12. 根據申請專利範圍第11項所述的方法,其中所述第一引物包括GCTCTTCCGATCTYa1Xa1Xa2X a3Xa4Xa5TGGG、GCTCTTCCGATCTYa1Xa1Xa2Xa3Xa4Xa5GTTT或其混合物,所述第三引物包括GCTCTTCCGATCTYb1Xb1Xb2Xb3Xb4Xb5TGGG、GCTCTTCCGATCTYb1Xb1Xb2Xb3Xb4Xb5GTTT或其混合物,其中Ya1
    Figure 106110178-A0305-02-0109-18
    {A、T、G、C},Yb1
    Figure 106110178-A0305-02-0109-21
    {A、T、G、C},所述Xai(i=1-5)
    Figure 106110178-A0305-02-0109-20
    {T、G、C},所述Xbi(i=1-5)
    Figure 106110178-A0305-02-0109-22
    {A、T、G}。
  13. 根據申請專利範圍第1項所述的方法,其中所述方法進一步包括對步驟(d)中獲得的擴增產物進行測序的步驟,其中所述第二引物包括與測序用引物的部分或全部互補或者相同的序列。
  14. 根據申請專利範圍第13項所述的方法,其中所述通用序列包括與測序用引物的部分或全部互補或者相同的序列。
  15. 根據申請專利範圍第13項所述的方法,其中所述第二引物的特定序列包括與測序用引物的部分或全部互補或者相同的序列。
  16. 根據申請專利範圍第15項所述的方法,其中所述第二引物的特定序列進一步包括與測序平臺的捕捉序列部分或全部互補或者相同的序列。
  17. 根據申請專利範圍第15項所述的方法,其中所 述第二引物的特定序列中包含的與測序用引物的部分或全部互補或相同的序列由SEQ ID NO:31[ACACTCTTTCCCTACACGAC]、或SEQ ID NO:32[GTGACTGGAGTTCAGACGTGT]組成。
  18. 根據申請專利範圍第16項所述的方法,其中所述第二引物的特定序列中包含的與測序平臺的捕捉序列部分或全部互補或相同的序列由SEQ ID NO:33[AATGATACGGCGACCACCGAGATCT]、或SEQ ID NO:34[CAAGCAGAAGACGGCATACGAGAT]組成。
  19. 根據申請專利範圍第16項所述的方法,其中所述第二引物的特定序列進一步包括標識序列,所述標識序列位於所述與測序平臺的捕捉序列部分或全部互補或相同的序列和所述與測序用引物的部分或全部互補或相同的序列之間。
  20. 根據申請專利範圍第1項所述的方法,其中所述第二引物包括具有相同通用序列和不同特定序列的引物混合物,所述不同特定序列分別與同一測序中用到的測序引物對中不同引物的部分或全部互補或相同。
  21. 根據申請專利範圍第1項所述的方法,其中所述第二引物包括SEQ ID NO:35[AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT]和SEQ ID NO:36[CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT]所示的序列的混合 物。
  22. 根據申請專利範圍第1項所述的方法,其中所述核酸聚合酶具有熱穩定和/或鏈置換活性。
  23. 根據申請專利範圍第1項所述的方法,其中所述核酸聚合酶選自:Phi29 DNA聚合酶、Bst DNA聚合酶、Pyrophage 3137、Vent聚合酶、TOPOTaq DNA聚合酶、9° Nm聚合酶、Klenow Fragment DNA聚合酶I、MMLV反轉錄酶、AMV反轉錄酶、HIV反轉錄酶、T7 phase DNA聚合酶變種、Phusion®超保真DNA聚合酶、Taq聚合酶、Bst DNA聚合酶、E.coli DNA聚合酶、LongAmp Taq DNA聚合酶、OneTaq DNA聚合酶、Deep Vent DNA聚合酶、Vent(exo-)DNA聚合酶、Deep Vent(exo-)DNA聚合酶,及其任何組合。
  24. 根據申請專利範圍第1項所述的方法,其中步驟(b)使得所述第一引物的可變序列能夠與所述基因組DNA配對並擴增所述基因組DNA以得到基因組預擴增產物,其中所述基因組預擴增產物的5’端包含所述通用序列,3’端包含所述通用序列的互補序列。
  25. 根據申請專利範圍第1項所述的方法,其中所述第一溫度迴圈程式包括:(b1)能夠打開所述DNA雙鏈以獲得DNA單鏈範本的溫度程式;(b2)能夠使所述第一引物以及第三引物與所述DNA單鏈範本結合的溫度程式; (b3)在所述核酸聚合酶的作用下能夠使與所述DNA單鏈範本結合的第一引物延伸長度以產生預擴增產物的溫度程式;(b4)重複步驟(b1)到(b3)至指定的第一迴圈次數,其中所述指定的第一迴圈次數大於1。
  26. 根據申請專利範圍第25項所述的方法,其中在進行第一次迴圈時,步驟(b1)中所述DNA雙鏈為基因組DNA雙鏈,所述溫度程式包括在90-95℃的溫度之間變性反應1-20分鐘。
  27. 根據申請專利範圍第26項所述的方法,其中在進行第一次迴圈後,步驟(b1)中所述的溫度程式包括在90-95℃的溫度之間解鏈反應3-50秒。
  28. 根據申請專利範圍第26項所述的方法,當進行到第二次迴圈後,所述預擴增產物包含在5’端包含所述通用序列,3’端包含所述通用序列的互補序列的基因組預擴增產物。
  29. 根據申請專利範圍第25項所述的方法,其中在步驟(b1)後並且在步驟(b2)之前不包括將所述第一反應混合物置於適當的溫度程式使得所述基因組預擴增產物的3’端與5’端雜交結合以形成髮卡結構的額外步驟。
  30. 根據申請專利範圍第25項所述的方法,其中所述步驟(b2)包括將所述反應混合物置於多於一種的溫度程式,以促使所述第一引物充分與所述DNA範本有效結合。
  31. 根據申請專利範圍第30項所述的方法,其中所述多於一種的溫度程式包括:介於10-20℃之間的第一溫度,介於20-30℃之間的第二溫度,和介於30-50℃之間的第三溫度。
  32. 根據申請專利範圍第31項所述的方法,其中所述步驟(b2)中所述步驟包括在第一溫度退火反應3-60秒、在第二溫度退火反應3-50秒和在第三溫度退火反應3-50秒。
  33. 根據申請專利範圍第25項所述的方法,其中所述步驟(b3)中所述的溫度程式包括在60-80℃的溫度之間延伸反應10秒-15分鐘。
  34. 根據申請專利範圍第25項所述的方法,其中所述步驟(b4)的所述第一迴圈次數為2-40。
  35. 根據申請專利範圍第1項所述的方法,其中所述步驟(d)使得所述第二引物的所述通用序列能夠與所述基因組預擴增產物的3’端配對並擴增所述基因組預擴增產物以得到擴大的基因組擴增產物。
  36. 根據申請專利範圍第1項所述的方法,其中所述步驟(d)包括:(d1)能夠打開DNA雙鏈的溫度程式;(d2)進一步能打開DNA雙鏈的溫度程式;(d3)能夠使所述第二引物與所述經步驟(b)獲得的基因組預擴增產物的單鏈結合的溫度程式;(d4)能夠使與所述基因組預擴增產物單鏈結合的第 二引物在所述核酸聚合酶的作用下延伸長度的溫度程式;(d5)重複步驟(d2)到(d4)至指定的第二迴圈次數,其中所述指定的第二迴圈次數大於1。
  37. 根據申請專利範圍第36項所述的方法,其中步驟(d1)中所述DNA雙鏈為所述基因組預擴增產物,並且所述DNA雙鏈包括DNA髮卡結構中包含的雙鏈,所述溫度程式包括90-95℃的溫度之間變性反應5秒-20分鐘。
  38. 根據申請專利範圍第36項所述的方法,其中步驟(d2)中所述的溫度程式包括在90-95℃的溫度之間解鏈反應3-50秒。
  39. 根據申請專利範圍第36項所述的方法,其中所述步驟(d3)中所述的溫度程式包括在45-65℃的溫度之間退火反應3-50秒。
  40. 根據申請專利範圍第36項所述的方法,其中所述步驟(d4)中所述的溫度程式包括在60-80℃的溫度之間延伸反應10秒-15分鐘。
  41. 根據申請專利範圍第1項所述的方法,其中所述基因組DNA來源於卵裂球、囊胚滋養層、培養的細胞、提取後的gDNA或囊胚培養液。
  42. 一種擴增基因組DNA的方法,所述方法包括:(a)提供第一反應混合物,其中所述第一反應混合物包括包含所述基因組DNA的樣本、第一引物、核苷酸單體混合物和核酸聚合酶,其中所述第一引物從5’端到3’端包含通用序列和第一可變序列,所述第一可變序列包括 第一隨機序列,其中所述第一隨機序列從5’端到3’端依次為Xa1Xa2......Xan,所述第一隨機序列的Xai(i=1-n)均屬於同一個集合,所述集合選自B、或D、或H、或V,其中B={T、G、C},D={A、T、G},H={T、A、C},V={A、C、G},其中Xai表示第一隨機序列5’端的第i個核苷酸,n是選自3-20的正整數,其中所述通用序列和所述第一可變序列直接相連、或所述通用序列和所述第一可變序列通過第一間隔序列相連,所述第一間隔序列為Ya1......Yam,其中Yaj(j=1-m)
    Figure 106110178-A0305-02-0115-23
    {A、T、G、C},其中Yaj表示間隔序列5’端的第j個核苷酸,其中所述第一反應混合物進一步包括第三引物,其中所述第三引物從5’端到3’端包含所述通用序列和第三可變序列,所述第三可變序列包括第三隨機序列,其中所述第三隨機序列從5’端到3’端依次為Xb1Xb2......Xbn,所述第三隨機序列的Xbi(i=1-n)均屬於同一個集合,所述集合選自B、或D、或H、或V,其中B={T、G、C},D={A、T、G},H={T、A、C},V={A、C、G},並且Xbi(i=1-n)和Xai(i=1-n)屬於不同的集合,其中Xbi表示第一隨機序列5’端的第i個核苷酸,n是選自3-20的正整數,其中所述通用序列和所述第三可變序列直接相連,或者所述通用序列和所述第三可變序列通過第三間隔序列相連,所述第三間隔序列為Yb1......Ybm,其中Ybj(j=1-m)
    Figure 106110178-A0305-02-0115-24
    {A、T、G、C},其中Ybj表示間隔序列5’端的第j個核苷酸,m是選自1-3的正整數; (b)將所述第一反應混合物置於第一溫度迴圈程式,使得所述第一引物的第一可變序列及第三引物的第三可變序列能夠與所述基因組DNA配對並擴增所述基因組DNA以得到基因組預擴增產物,其中所述基因組預擴增產物的5’端包含所述通用序列,3’端包含所述通用序列的互補序列;其中所述第一溫度迴圈程式包括:(b1)第一個迴圈為在介於90-95℃的溫度之間的第一變性溫度反應1-20分鐘,第一個迴圈之後為在介於90-95℃的溫度之間的第一變性溫度反應3-50秒;(b2)在介於10-20℃之間的第一退火溫度反應3-60秒,介於20-30℃之間的第二退火溫度反應3-50秒,和介於30-50℃之間的第三退火溫度反應3-50秒;(b3)在介於60-80℃之間的第一延伸溫度反應10秒-15分鐘;(b4)重複步驟(b1)到(b3)至2-40個迴圈;(c)提供第二反應混合物,所述第二反應混合物包括步驟(b)中得到的所述基因組預擴增產物、第二引物、核苷酸單體混合物和核酸聚合酶,其中所述第二引物從5’端到3’端包含或由特定序列及所述通用序列組成;及(d)將所述第二反應混合物置於第二溫度迴圈程式,使得所述第二引物的所述通用序列能夠與所述基因組預擴增產物的3’端配對並擴增所述基因組預擴增產物以得到擴大的基因組擴增產物,其中所述第二溫度迴圈程式包括:(d1)在介於90-95℃之間的第二變性溫度反應5秒- 20分鐘;(d2)在介於90-95℃之間的第二解鏈溫度反應3-50秒;(d3)在介於45-65℃之間的第四退火溫度反應3-50秒;(d4)在介於60-80℃之間的第二延伸溫度反應10秒-15分鐘;(d5)重複步驟(d2)到(d4)2-40個迴圈,其中所述通用序列選自SEQ ID NO:1[TTGGTAGTGAGTG]、SEQ ID NO:2[GAGGTGTGATGGA]、SEQ ID NO:3[GTGATGGTTGAGGTA]、SEQ ID NO:4[AGATGTGTATAAGAGACAG]、SEQ ID NO:5[GTGAGTGATGGTTGAGGTAGTGTGGAG]或SEQ ID NO:6[GCTCTTCCGATCT],且其中所述第二引物的特定序列包括與隨後測序用引物的部分或全部互補或者相同的序列;或,所述第二引物的特定序列進一步包括與隨後測序平臺的捕捉序列部分或全部互補或者相同的序列。
  43. 根據申請專利範圍第42項所述的方法,其中所述通用序列為SEQ ID NO:6;所述第一隨機序列的Xai(i=1-n)均屬於D,所述第三隨機序列的Xbi(i=1-n)均屬於B。
  44. 如根據申請專利範圍第1項所述的方法,其中步 驟(d)得到的擴增產物已完成了文庫構建。
  45. 一種用於擴增基因組DNA的試劑盒,所述試劑盒包括第一引物,其中所述第一引物從5’端到3’端包含通用序列和第一可變序列,所述第一可變序列包括第一隨機序列,其中所述第一隨機序列從5’端到3’端依次為Xa1Xa2......Xan,所述第一隨機序列的Xai(i=1-n)均屬於同一個集合,所述集合選自B、或D、或H、或V,其中B={T、G、C},D={A、T、G},H={T、A、C},V={A、C、G},其中Xai表示第一隨機序列5’端的第i個核苷酸,n是選自3-20的正整數,其中所述通用序列和所述第一可變序列直接相連、或所述通用序列和所述第一可變序列通過第一間隔序列相連,所述第一間隔序列為Ya1......Yam,其中Yaj(j=1-m)
    Figure 106110178-A0305-02-0118-25
    {A、T、G、C},其中Yaj表示間隔序列5’端的第j個核苷酸,m是選自1-3的正整數,其中所述第一反應混合物進一步包括第三引物,其中所述第三引物從5’端到3’端包含所述通用序列和第三可變序列,所述第三可變序列包括第三隨機序列,其中所述第三隨機序列從5’端到3’端依次為Xb1Xb2......Xbn,所述第三隨機序列的Xbi(i=1-n)均屬於同一個集合,所述集合選自B、或D、或H、或V,其中B={T、G、C},D={A、T、G},H={T、A、C},V={A、C、G},並且Xbi(i=1-n)和Xai(i=1-n)屬於不同的集合,其中Xbi表示第一隨機序列5’端的第i個核苷酸,n是選自3-20的正整數, 其中所述通用序列和所述第三可變序列直接相連,或者所述通用序列和所述第三可變序列通過第三間隔序列相連,所述第三間隔序列為Yb1......Ybm,其中Ybj(j=1-m)
    Figure 106110178-A0305-02-0119-26
    {A、T、G、C},其中Ybj表示間隔序列5’端的第j個核苷酸,m是選自1-3的正整數,其中所述通用序列選自SEQ ID NO:1[TTGGTAGTGAGTG]、SEQ ID NO:2[GAGGTGTGATGGA]、SEQ ID NO:3[GTGATGGTTGAGGTA]、SEQ ID NO:4[AGATGTGTATAAGAGACAG]、SEQ ID NO:5[GTGAGTGATGGTTGAGGTAGTGTGGAG]或SEQ ID NO:6[GCTCTTCCGATCT]。
  46. 根據申請專利範圍第45項所述的試劑盒,其中所述通用序列為SEQ ID NO:6;所述第一隨機序列的Xai(i=1-n)均屬於D,所述第二隨機序列的Xbi(i=1-n)均屬於B。
  47. 根據申請專利範圍第45項所述的試劑盒,其中所述試劑盒用於構建全基因組DNA文庫。
  48. 根據申請專利範圍第45項所述的試劑盒,所述試劑盒進一步包括核酸聚合酶,其中所述核酸聚合酶選自:Phi29 DNA聚合酶、Bst DNA聚合酶、Pyrophage 3137、Vent聚合酶、TOPOTaq DNA聚合酶、9° Nm聚合酶、Klenow Fragment DNA聚合酶I、MMLV反轉錄酶、AMV反轉錄酶、HIV反轉錄酶、T7 phase DNA聚合酶變 種、Phusion®超保真DNA聚合酶、Taq聚合酶、Bst DNA聚合酶、E.coli DNA聚合酶、LongAmp Taq DNA聚合酶、OneTaq DNA聚合酶、Deep Vent DNA聚合酶、Vent(exo-)DNA聚合酶、Deep Vent(exo-)DNA聚合酶,及其任何組合。
  49. 根據申請專利範圍第45-48項中任一項所述的試劑盒,其中所述試劑盒進一步包括包含一種或多種選自下組的成分:核苷酸單體混合物、Mg2+、dTT、牛血清白蛋白、pH調節劑、DNase抑制劑、RNase、SO4 2-、Cl-、K+、Ca2+、Na+、(NH4)+的一種或多種試劑。
  50. 根據申請專利範圍第45項所述的試劑盒,其中所述混合物進一步包括細胞裂解劑,所述細胞裂解劑選自:蛋白酶K、胃蛋白酶、木瓜蛋白酶、NP-40、吐溫、SDS、TritonX-100、EDTA和異硫氰酸胍中的一種或多種。
TW106110178A 2016-04-26 2017-03-27 擴增dna的方法 TWI742059B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610264059.0 2016-04-26
CN201610264059.0A CN105925675B (zh) 2016-04-26 2016-04-26 扩增dna的方法

Publications (2)

Publication Number Publication Date
TW201738383A TW201738383A (zh) 2017-11-01
TWI742059B true TWI742059B (zh) 2021-10-11

Family

ID=56836189

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106110178A TWI742059B (zh) 2016-04-26 2017-03-27 擴增dna的方法

Country Status (5)

Country Link
US (1) US20190106738A1 (zh)
EP (1) EP3450569A4 (zh)
CN (2) CN111621548A (zh)
TW (1) TWI742059B (zh)
WO (1) WO2017186117A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111621548A (zh) * 2016-04-26 2020-09-04 序康医疗科技(苏州)有限公司 扩增dna的方法
CN108070586A (zh) * 2016-11-18 2018-05-25 杭州拓宏生物科技有限公司 Pcr扩增引物及其应用
CN106755506A (zh) * 2016-12-27 2017-05-31 安诺优达基因科技(北京)有限公司 用于检测肿瘤ffpe样本中基因变异的试剂盒
WO2018148903A1 (zh) * 2017-02-16 2018-08-23 上海亿康医学检验所有限公司 泌尿系统肿瘤的辅助诊断方法
CN108504651B (zh) * 2017-02-27 2020-09-08 深圳乐土生物科技有限公司 基于高通量测序的pcr产物大样本量混合建库的文库构建方法和试剂
WO2018165366A1 (en) * 2017-03-08 2018-09-13 President And Fellows Of Harvard College Methods of amplifying dna to maintain methylation status
US20200181606A1 (en) * 2017-05-29 2020-06-11 President And Fellows Of Harvard College A Method of Amplifying Single Cell Transcriptome
CN107254541B (zh) * 2017-08-03 2020-05-08 广州万德基因医学科技有限公司 用于扩增cfDNA样品中多个目标的NGS建库引物池及应用
CN109593757B (zh) * 2017-09-30 2021-08-03 厦门艾德生物医药科技股份有限公司 一种探针及其适用于高通量测序的对目标区域进行富集的方法
CN108456713A (zh) * 2017-11-27 2018-08-28 天津诺禾致源生物信息科技有限公司 接头封闭序列、文库构建试剂盒及测序文库的构建方法
CN107937582A (zh) * 2017-12-29 2018-04-20 苏州普瑞森基因科技有限公司 一种用于分析肠道微生物的引物组及其应用
CN108959851B (zh) * 2018-06-12 2022-03-18 哈尔滨工程大学 一种Illumina高通量测序数据误差校正方法
CN109629009B (zh) * 2019-01-10 2022-02-22 北京中科遗传与生殖医学研究院有限责任公司 一种基于RAD-seq对胚胎进行无创PGS的方法
CN111575346A (zh) * 2020-05-19 2020-08-25 泰州亿康医学检验有限公司 一种针对细胞分选后的单细胞全基因组扩增方法
CN111826421B (zh) * 2020-07-09 2021-09-21 广州迈景基因医学科技有限公司 一种pcr随机引物和使用其构建靶向测序文库的方法
CN113832147B (zh) * 2021-09-08 2024-06-14 华南农业大学 一种高效的大片段dna合成与扩增的pcr引物、方法及应用
CN114015751A (zh) * 2021-10-26 2022-02-08 江苏海伯基因科技有限公司 扩增基因组dna的方法、试剂盒及其获得扩增引物的方法
CN116656787A (zh) * 2023-04-04 2023-08-29 墨卓生物科技(浙江)有限公司 一种核酸序列扩增和标记的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103890191A (zh) * 2011-05-27 2014-06-25 哈佛大学校长及研究员协会 单细胞全基因组扩增方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6521428B1 (en) * 1999-04-21 2003-02-18 Genome Technologies, Llc Shot-gun sequencing and amplification without cloning
US7993839B2 (en) * 2001-01-19 2011-08-09 General Electric Company Methods and kits for reducing non-specific nucleic acid amplification
US20090099040A1 (en) * 2007-10-15 2009-04-16 Sigma Aldrich Company Degenerate oligonucleotides and their uses
CN102124126A (zh) * 2007-10-26 2011-07-13 生命技术公司 使用非随机引物的cdna合成
IL283586B2 (en) * 2013-06-21 2023-11-01 Sequenom Inc Methods and processes for non-invasive evaluation of genetic variations
CN104630202A (zh) * 2013-11-13 2015-05-20 北京大学 一种能够减小微量核酸物质整体扩增时产生偏倚的扩增方法
US9587263B2 (en) * 2014-03-26 2017-03-07 General Electric Company Isothermal amplification under low salt condition
EP3140425B1 (en) * 2014-05-06 2020-02-12 Baylor College of Medicine Methods of linearly amplifying whole genome of a single cell
CN113684250A (zh) * 2015-11-05 2021-11-23 序康医疗科技(苏州)有限公司 一种利用囊胚培养液检测胚胎染色体异常的方法
CN111621548A (zh) * 2016-04-26 2020-09-04 序康医疗科技(苏州)有限公司 扩增dna的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103890191A (zh) * 2011-05-27 2014-06-25 哈佛大学校长及研究员协会 单细胞全基因组扩增方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Bernstein DL et al., "The BisPCR2 method for targeted bisulfite sequencing", Epigenetics & Chromatin, vol.8, article no.27, p.1-9, 2015/08

Also Published As

Publication number Publication date
CN111621548A (zh) 2020-09-04
CN105925675B (zh) 2020-06-05
EP3450569A4 (en) 2020-03-11
WO2017186117A1 (zh) 2017-11-02
TW201738383A (zh) 2017-11-01
CN105925675A (zh) 2016-09-07
EP3450569A1 (en) 2019-03-06
US20190106738A1 (en) 2019-04-11

Similar Documents

Publication Publication Date Title
TWI742059B (zh) 擴增dna的方法
US11214798B2 (en) Methods and compositions for rapid nucleic acid library preparation
JP6998404B2 (ja) 標的ヌクレオチド配列の富化及び決定方法
TWI742000B (zh) 擴增dna的方法
CN107586835B (zh) 一种基于单链接头的下一代测序文库的构建方法及其应用
US9951384B2 (en) Genotyping by next-generation sequencing
US8975019B2 (en) Deducing exon connectivity by RNA-templated DNA ligation/sequencing
CN108138209B (zh) 通过原位扩增制备细胞游离核酸分子的方法
KR20190034164A (ko) 단일 세포 전체 게놈 라이브러리 및 이의 제조를 위한 조합 인덱싱 방법
WO2013192292A1 (en) Massively-parallel multiplex locus-specific nucleic acid sequence analysis
US20220259649A1 (en) Method for target specific rna transcription of dna sequences
WO2020177012A1 (zh) 用于rna直接建库的核酸序列、基于rna样本直接构建测序文库的方法及应用
JP2023513606A (ja) 核酸を評価するための方法および材料
US20180291369A1 (en) Error-proof nucleic acid library construction method and kit
US11174511B2 (en) Methods and compositions for selecting and amplifying DNA targets in a single reaction mixture
KR20210141449A (ko) 표적화된 상보적 dna 강화를 위한 방법
WO2023060539A1 (en) Compositions and methods for detecting target cleavage sites of crispr/cas nucleases and dna translocation
CN117242190A (zh) 单链dna的扩增
WO2014086037A1 (zh) 构建核酸测序文库的方法及其应用
KR20210079309A (ko) 핵산의 바코딩
WO2022256926A1 (en) Detecting a dinucleotide sequence in a target polynucleotide
JP2005218301A (ja) 核酸の塩基配列決定方法