TWI738051B - 自旋軌道轉矩磁性裝置與其製作方法 - Google Patents

自旋軌道轉矩磁性裝置與其製作方法 Download PDF

Info

Publication number
TWI738051B
TWI738051B TW108131940A TW108131940A TWI738051B TW I738051 B TWI738051 B TW I738051B TW 108131940 A TW108131940 A TW 108131940A TW 108131940 A TW108131940 A TW 108131940A TW I738051 B TWI738051 B TW I738051B
Authority
TW
Taiwan
Prior art keywords
layer
magnetic
diffusion barrier
magnetic layer
spin
Prior art date
Application number
TW108131940A
Other languages
English (en)
Other versions
TW202029542A (zh
Inventor
蔡惠銘
林世杰
宋明遠
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202029542A publication Critical patent/TW202029542A/zh
Application granted granted Critical
Publication of TWI738051B publication Critical patent/TWI738051B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/10Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having two electrodes, e.g. diodes or MIM elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

自旋軌道轉矩(Spin-Orbit-Torque;SOT)磁性裝置包含底金屬層、設置於底金屬層上之第一磁性層、設置於第一磁性層上之間隙壁層、以及設置於間隙壁層上之第二磁性層。擴散阻障層係設置於底金屬層和第一磁性層之間,且擴散阻障層係用以抑制第一磁性層的金屬元素擴散至底金屬層中。

Description

自旋軌道轉矩磁性裝置與其製作方法
本揭露之一實施例係有關一種磁性裝置與其製作方法,且特別是提供一種具有良好熱穩定性之自旋軌道轉矩磁性裝置與其製作方法。
磁性隨機存取記憶體(Magnetic Random Access Memory;MRAM)提供相當於揮發性靜態隨機存取記憶體(Static Random Access Memory;SRAM)的性能,以及相當於揮發性動態隨機存取記憶體(Dynamic Random Access Memory;DRAM)之具較低功率消耗的密度。相較於非揮發性記憶體(Non-Volatile Memory;NVM)快閃記憶體,MRAM提供更快的存取時間,並承受最少之隨著時間增加所導致的劣化,而快閃記憶體僅可被覆寫有限的次數。一種型式之MRAM為自旋轉移矩隨機存取記憶體(Spin Transfer Torque Random Access Memory;STT-RAM)。STT-RAM至少部份地藉由電流通過磁性穿隧接面(Magnetic Tunneling Junction;MTJ) 來使用MTJ寫入。另一種型式之MRAM為自旋軌道轉矩(Spin Orbit Torque;SOT)隨機存取記憶體(SOT-RAM)。
根據本揭露之一些實施例,本揭露之一實施例揭示一種自旋軌道轉矩磁性裝置。此自旋軌道轉矩磁性裝置包含底金屬層、第一磁性層、間隙壁層、第二磁性層與擴散阻障層,其中第一磁性層係設置於底金屬層上,間隙壁層係設置於第一磁性層上,第二磁性層係設置於間隙壁層上,且擴散阻障層係設置於底金屬層及第一磁性層之間。擴散阻障層抑制第一磁性層之金屬元素擴散至底金屬層中。
根據本揭露之一些實施例,本揭露之另一實施例揭示一種自旋軌道轉矩磁性裝置。此自旋軌道轉矩磁性裝置包含底金屬層、第一磁性層、間隙壁層、第二磁性層與擴散阻障層,其中第一磁性層係設置於底金屬層上,間隙壁層係設置於第一磁性層上,第二磁性層係設置於間隙壁層上,且擴散阻障層係設置於磁死層(magnetic dead layer)和第一磁性層之間。磁死層係形成並設置於底金屬層與第一磁性層之間,且擴散阻障層抑制第一磁性層之金屬元素擴散至底金屬層中。
根據本揭露之一些實施例,本揭露之另一實施例揭示一種自旋軌道轉矩磁性裝置的製作方法。此製作方法係先形成第一磁性層於底金屬層上,並處理第一磁性層,以使擴散阻障層形成於底金屬層和第一磁性層之間。然後,形 成間隙壁層於第一磁性層上,並形成中間金屬層於間隙壁層上。接著,形成第二磁性層於中間金屬層上。於後續超過450℃之熱製程中,擴散阻障層抑制第一磁性層之金屬元素擴散至底金屬層中。
5:支撐層
10:底金屬層
20:第一磁性層
22:磁死層
30:非磁性間隙壁層
40:第二磁性層
50:頂導電層
60:中間金屬層
70:反鐵磁性層
80:第三磁性層
100:擴散阻障層
110:電流源
120:開關元件
Je:電流
從以下結合所附圖式所做的詳細描述,可對本揭露之一實施例的態樣有更佳的了解。需注意的是,根據業界的標準實務,各特徵並未依比例繪示。事實上,為了使討論更為清楚,各特徵的尺寸可任意地增加或減少。
〔圖1A〕係根據本揭露之一實施例之自旋軌道轉矩(Spin Orbit Torque;SOT)磁性隨機存取記憶體(Magnetic Random Access Memory;MRAM)單元的示意圖。
〔圖1B〕係根據本揭露之一實施例之SOT MRAM單元的示意圖。
〔圖2A〕、〔圖2B〕、〔圖2C〕與〔圖2D〕係根據本揭露之一些實施例之SOT MRAM單元的製造操作之剖視示意圖。
〔圖3A〕、〔圖3B〕、〔圖3C〕與〔圖3D〕係顯示具有與不具有擴散阻障層之SOT磁性裝置之垂直磁性異向性的實驗結果。
〔圖4A〕與〔圖4B〕係顯示二次離子質譜的實驗結果。
應該理解的是,以下公開內容提供了用於實現本揭露之不同特徵的許多不同實施例或示例。以下描述具體實施例或示例的元件和配置以簡化本揭露。當然,這些僅僅是例子,並不意在限制。例如,元件的尺寸不限於所公開的範圍或數值,而是可以取決於製成條件和/或裝置的期望特性。此外,在下面的描述中,在第二特徵上方或之上形成第一特徵可以包括其中第一特徵和第二特徵形成為直接接觸的實施例,並且還可以包括其中可以形成介於第一特徵和第二特徵之間的額外特徵,使得第一特徵和第二特徵可以不直接接觸。為了簡單和清楚起見,各種特徵可以以不同比例任意繪製。於附圖中,為了簡化起見,可省略一些層或特徵。
此外,為了便於描述,在此可以使用例如「在...之下(beneath)」、「在...下方(below)」、「低於(lower)」、「在...之上(above)」、「高於(upper)」等的開口相對術語來描述一個元件或特徵與如附圖所示之另一個元件或特徵的關係。除了附圖中描繪的方向之外,開口相對術語旨在涵蓋使用或操作中的裝置的不同方位。此裝置可以以其他方式定向(旋轉90度或在其他方位)並且同樣可以相應地解釋這裡使用的開口關係描述符號。另外,術語「由...構成(made of)」可以表示「包含(comprising)」或「由...組成(consisting of)」。其次,於接續之製造流程中,於所述之操作中或操作之間可具有一或多個額外之操作,且操作之順序可被改變。在本揭露中,慣用語「A、B和C之一者(one of A,B and C)」意指「A、B和/或C」(A、B、C、A和B、A和C、B和C或A、B和C),並且不代表來自A的一個元素、來自B的一個元素和來自C的一個元素,除非另有說明。
在自旋軌道轉矩形式磁性裝置中,垂直磁性異向性(Perpendicular Magnetic Anisotropy;PMA)的熱穩定性係多個關鍵性能指標其中一者。垂直磁性異向性係被自旋軌道主動層(如:重金屬層)與自由磁性層(如:資料儲存層)之間的界面所影響。特別是,界面擴散可降低垂直磁性異向性的性能。界面之缺點與非理想型的結構可導致會喪失鐵磁性次序的垂直磁性異向性不穩定與較厚的磁死層(Magnetic Dead Layer;MDL)。本揭露之一實施例係指向在自旋軌道主動層與自由磁性層間的一種新穎界面,以解決自旋軌道轉矩(Spin Orbit Torque;SOT)磁性裝置中的前述問題。
圖1A係根據本揭露之一實施例之利用轉換之自旋軌道作用的SOT MRAM單元(SOT磁性裝置)之示意圖。
此SOT磁性裝置包含做為自旋軌道作用主動層的底金屬層10,且底金屬層10形成於支撐層5上。其次,SOT磁性裝置包含第一磁性層20、非磁性間隙壁層30與第二磁性層40。第一磁性層20係做為自由磁性層或資料儲存層,且第一磁性層20設置於底金屬層10上。非磁性間隙壁層30設置於第一磁性層20上。第二磁性層40係做為參考層,且第二磁性層40設置於非磁性間隙壁層30上。在一些實施例 中,做為電極之頂導電層50係設置於第二磁性層40上。再者,在本揭露之實施例中,擴散阻障層100係設置於底金屬層10和第一磁性層20之間,如圖1A所示。
自由層(即第一磁性層20)的磁矩係利用自旋軌道作用效應切換。在一些實施例中,第一磁性層20的磁矩僅利用自旋軌道作用效應切換。在其他實施例中,第一磁性層20的磁矩係利用結合之效應來切換。舉例而言,第一磁性層20的磁矩係利用自旋轉換矩做為主要效應,並輔以自旋軌道作用所引起之轉矩來切換。在其他實施例中,主要切換機制係自旋軌道作用所引起的轉矩。在此些實施例中,其他效應可輔助以切換,且其他效應包含但不限於自旋轉換矩。
底金屬層10係具有強自旋軌道作用的自旋軌道主動層,且其可用以切換第一磁性層20的磁矩。底金屬層10係用以產生自旋軌道磁場H。更特別地,於穿過底金屬層10之平面中所驅動的電流和伴隨的自旋軌道作用可導致自旋軌道磁場H。此自旋軌道磁場H係等效於磁化向量上之自旋軌道轉矩T,於第一磁性層20中,T=-γ[M×H]。故,此轉矩與磁場可替換地稱為自旋軌道磁場與自旋軌道轉矩。此反映出自旋軌道作用係自旋軌道轉矩與自旋軌道磁場的起源之事實。自旋軌道轉矩存在於底金屬層10和自旋軌道作用之平面中所驅動的電流中。相對的,自旋轉換矩係由於垂直於平面的電流,其中垂直於平面的電流流過第一磁性層20、非磁性間隙壁層30與第二磁性層40(參考層),且垂 直於平面的電流注入自旋極化電荷載體至第一磁性層20中。自旋軌道轉矩T可快速地偏斜第一磁性層20之磁矩的平衡狀態,其中第一磁性層20之磁矩的平衡狀態係平行於易磁化軸(easy axis)。相較於相同最大振幅的習知STT轉矩,自旋軌道轉矩T可相當地更快傾斜第一磁性層20的磁化向量。在一些實施例中,切換可利用自旋軌道轉矩完成。在其他實施例中,另一如自旋轉換的機制可用以完成切換。所產生之自旋軌道磁場/自旋軌道轉矩如此可用以切換第一磁性層20的磁矩。
在一些實施例中,底金屬層的作用包含自旋霍爾效應。對於自旋霍爾效應,電流Je係於底金屬層10的平面被驅動(即電流方向在平面內(current-in-plane),實質係位於圖1A的x-y平面中)。換言之,電流Je係以垂直於包含底金屬層10和第一磁性層20之薄膜的堆疊方向被驅動(即垂直於表面之法線,圖1A中之z方向)。具有特定方位之自旋的電荷載體累積於底金屬層10之表面,其中特定方位係垂直於電流之方向,且垂直於表面之法線(z方向)。此些自旋極化電荷載體的主要部分擴散至第一磁性層20(自由層)中。此擴散導致於第一磁性層20之磁化向量上的轉矩T。由於磁化向量上的轉矩係等效於磁化向量上的有效磁場,如前所述,自旋積累等效地導致第一磁性層20上的磁場H。自旋霍爾效應的自旋軌道磁場係自旋軌道偏極化與第一磁性層20上的磁矩之向量積(cross product)。如此一來,轉矩之大小係與平面電流密度Je和電荷之自旋極化成比 例。當自旋霍爾效應所誘發之偏極化係平行於第一磁性層20的易磁化軸時,自旋霍爾效應可用以切換如圖1A所示之磁性堆疊層。為了獲得自旋軌道轉矩T,電流脈衝係於穿過底金屬層10之平面中驅動。所導致之自旋軌道轉矩T抵銷阻尼力矩,且此導致第一磁性層20之磁化向量的切換,其中此切換係類似於習知之STT切換。
如前所述,底金屬層10係自旋軌道主動層,且此自旋軌道主動層引起與第一磁性層20(自由層)強的自旋軌道作用。在一些實施例中,底金屬層10包含一或多個重金屬或摻雜重金屬之材料。在此些實施例中,α-W、β-W及/或β-Ta係做為底金屬層10。在一些實施例中,底金屬層10之厚度實質為2nm至20nm,且在其他實施例中,底金屬層10之厚度實質為5nm至15nm。
做為資料儲存層之第一磁性層20係具有可切換的磁矩之自由層。第一磁性層20包含厚度範圍實質為0.6nm至1.2nm之鈷鐵硼(CoFeB)層、鈷/鈀(CoPd)層及/或鈷鐵(CoFe)層,在一些實施例中。在其他實施例中,第一磁性層20磁性材料之複數層。在此些實施例中,第一磁性層係FexCoyB1-x-y,其中0.50
Figure 108131940-A0305-02-0010-1
x
Figure 108131940-A0305-02-0010-2
0.70,且0.10
Figure 108131940-A0305-02-0010-3
y
Figure 108131940-A0305-02-0010-4
0.30。在其他實施例中,0.55
Figure 108131940-A0305-02-0010-5
x
Figure 108131940-A0305-02-0010-6
0.65,且0.15
Figure 108131940-A0305-02-0010-7
y
Figure 108131940-A0305-02-0010-8
0.25。
非磁性間隙壁層30係由介電材料所製成,且做為穿隧能障。在一些實施例中,非磁性間隙壁層30包含結晶型氧化鎂(MgO)層或非晶型氧化鎂層。在其他實施例 中,非磁性間隙壁層30係由氧化鋁或導電材料(如銅)所製成。在一些實施例中,非磁性間隙壁層30具有範圍實質為0.3nm至1.2nm的厚度,且在其他實施例中,非磁性層(即非磁性間隙壁層30)的厚度實質0.5nm至1.0nm。於本揭露之一實施例中,「元素層」或「化合物層」通常表示元素或化合物之含量係超過99%。
第二磁性層40係參考層,且其磁矩沒有變化。在一些實施例中,第二磁性層40係由相同於前述第一磁性層20之材料所製成。在一些實施例中,第二磁性層40包含磁性材料之複數層。在一些實施例中,第二磁性層40包含鈷(Co)與鉑(Pt)的多層結構。在一些實施例中,第二磁性層40之厚度的範圍實質為0.2nm至1.0nm,且在其他實施例中,第二磁性層40之厚度的範圍實質為0.3nm至0.5nm。
在一些實施例中,第二磁性層40係包含合成式反鐵磁性層(synthetic antiferromagnetic layer)的複數層,其中合成式反鐵磁性層具有被非磁性層(如釕)分開之鐵磁層。在一些實施例中,釘扎層係設置於第二磁性層40上,且具有釕層穿插於其中,其中釘扎層例如為固定第二磁性層40之磁矩的反鐵磁性層。在一些實施例中,第一磁性層與第二磁性層係結晶的。
做為電極之頂導電層50包含Ta、Ru、Au、Cr與Pt的一或多層。
支撐層5係由介電材料所製成,例如:氧化矽、氮氧化矽、氮化矽、氧化鋁、氧化鎂或其他適當之材料。在 一些實施例中,支撐層5係半導體裝置中之淺溝渠隔離層、層間介電(Interlayer Dielectric;ILD)層或金屬間介電(Inter-Metal Dielectric;IMD)層。
於本揭露之一實施例中,擴散阻障層100係設置於底金屬層10和第一磁性層20之間,以改善此些層之間的界面性質。在一些實施例中,擴散阻障層100可抑制第一磁性層20中之金屬元素擴散至底金屬層10中。當第一磁性層20係直接接觸底金屬層10時,相對厚的一磁死層係形成,且藉由後續實質於300℃至450℃的熱製程,第一磁性層20中之金屬元素(例如:鐵與鈷)擴散至底金屬層10中。
在本揭露之一實施例中,如圖1A所示,擴散阻障層100係設置於第一磁性層20和底金屬層10之間,其中擴散阻障層100係抑制第一磁性層20中之金屬元素擴散至底金屬層10中。在一些實施例中,擴散阻障層100的厚度範圍實質為0.1nm至0.6nm,且在其他實施例中,擴散阻障層100的厚度範圍實質為0.2nm至0.5nm。
在一些實施例中,第一磁性層20包含鐵與鈷,故擴散阻障層100抑制鐵與/或鈷由第一磁性層20擴散至底金屬層10。在一些實施例中,擴散阻障層100係包含鐵之富鐵層,且擴散阻障層100中之鐵的原子百分比係高於第一磁性層20中之鐵的原子百分比。在一些實施例中,擴散阻障層100中,於第一磁性層側之鐵的原子百分比係高於底金屬層側的鐵原子百分比。在此些實施例中,由第一磁性層側至底金屬層側,鐵逐漸減少。
在一些實施例中,第一磁性層20更包含硼,且擴散阻障層100亦更包含硼。在第一磁性層20中之硼的原子百分比係相等於或不同於擴散阻障層100中之硼的原子百分比。在此些實施例中,擴散阻障層100中之硼的原子百分比係高於第一磁性層20中之硼的原子百分比。
在一些實施例中,第一磁性層20係FexCoyB1-x-y,如前所述,且擴散阻障層100係FezB1-z,其中z>x。在一些實施例中,0.50
Figure 108131940-A0305-02-0013-9
x
Figure 108131940-A0305-02-0013-10
0.70,0.10
Figure 108131940-A0305-02-0013-11
y
Figure 108131940-A0305-02-0013-22
0.30,且0.65
Figure 108131940-A0305-02-0013-13
z
Figure 108131940-A0305-02-0013-14
0.90。在其他實施例中,0.55
Figure 108131940-A0305-02-0013-15
x
Figure 108131940-A0305-02-0013-16
0.65,0.15
Figure 108131940-A0305-02-0013-17
y
Figure 108131940-A0305-02-0013-18
0.25,且0.65
Figure 108131940-A0305-02-0013-19
z
Figure 108131940-A0305-02-0013-21
0.75。
在一些實施例中,擴散阻障層100係富鈷層,且鈷的原子百分比係高於第一磁性層20中之鈷的原子百分比。在一些實施例中,於擴散阻障層100中,鈷的原子百分比於第一磁性層側係高於底金屬層側。在此些實施例中,由第一磁性層側至底金屬層側,鈷的含量逐漸減少。
擴散阻障層100可由其他材料所製成。在一些實施例中,擴散阻障層100係由非磁性金屬材料所製成,例如鎂。在其他實施例中,擴散阻障層100係由介電材料所製成,例如金屬氧化物。在一些實施例中,金屬氧化物係包含於底金屬層10中之金屬的氧化物。在此些實施例中,金屬氧化物係氧化鎢與氧化鉭的一者。
圖1B係根據本揭露之另一實施例之SOT MRAM單元的示意圖。與前述圖1A所描述相同或向相似之 材料、配置、尺寸及/或製程可應用於以下之實施例,且其詳細之說明可被省略。
相似於圖1A,底金屬層10係形成於支撐層5上。在一些實施例中,底金屬層10係β-W層。做為自由層或參考層的第一磁性層20係形成底金屬層10上。在一些實施例中,第一磁性層20包含鐵與鈷。在此些實施例中,第一磁性層20更包含硼。舉例而言,非磁性間隙壁層30係由氧化鎂所製成,非磁性間隙壁層30係形成於第一磁性層20上,且第二磁性層40係形成於非磁性間隙壁層30上。
在一些實施例中,中間金屬層60係設置於非磁性間隙壁層30和第二磁性層40之間。在一些實施例中,中間金屬層60係由非磁性材料所製成。在此些實施例中,中間金屬層60係由鎂所製成。在一些實施例中,中間金屬層60的厚度範圍實質為0.1nm至0.6nm,且在其他實施例中,中間金屬層60的厚度範圍實質為0.2nm至0.5nm。在其他實施例中,不使用中間金屬層。
在一些實施例中,反鐵磁性層70係形成於第二磁性層上,且第三磁性層80係形成於反鐵磁性層70上,如圖1B所示。反鐵磁性層70助於固定第二磁性層40的磁矩。在一些實施例中,反鐵磁性層70包含釕(Ru)或任何其他適當之反鐵磁性材料。在一些實施例中,反鐵磁性層70之厚度的範圍實質為0.2nm至0.8nm。
第三磁性層80包含磁性材料之一或多層。在一些實施例中,第三磁性層80包含鈷、鐵、鎳與鉑之一或多 者。在一些實施例中,第三磁性層80的材料係相同於或不同於第二磁性層40的材料。在此些實施例中,第三磁性層80係CoPt層。在一些實施例中,第三磁性層80的厚度範圍實質為0.5nm至1.5nm,且在其他實施例中,第三磁性層80的厚度範圍實質為0.7nm至1.2nm。
再者,如圖1B所示,擴散阻障層100係設置於底金屬層10和第一磁性層20之間,以避免第一磁性層20之金屬元素擴散至底金屬層10中。擴散阻障層100係富鐵層、富鈷層、鎂層、氧化鎢層與氧化鉭層的一者,其中富鐵層具有高於第一磁性層20的鐵原子百分比,而富鈷層具有高於第一磁性層20的鈷原子百分比。
在一些實施例中,銥(Ir)係包含於擴散阻障層100與中間金屬層之任一者中。在一些實施例中,含銥層係插入至如圖1B所示的任一個兩相鄰層之間。此含銥層可選自於由銥層、氧化銥層、銥層與氧化銥層的雙層結構、氮化鈦銥(Iridium-titanium nitride)層、銥層與鉭層之雙層結構,與銥與鉭之雙合金層所組成之一群組的一者。
如圖1A與圖1B所示之每一層可藉由適當之薄膜形成方法來形成,且此薄膜形成方法包含具有濺鍍之物理氣相沉積(Physical Vapor Deposition;PVD)、分子束磊晶(Molecular Beam Epitaxy;MBE)、脈衝雷射沉積(Pulsed Laser Deposition;PLD)、原子層沉積(Atomic Layer Deposition;ALD)、電子束(electron beam;e-beam)磊晶、化學氣相沉積(Chemical Vapor Deposition;CVD),或者更包含低壓CVD(Low Pressure CVD;LPCVD)、超高真空CVD(Ultrahigh Vacuum CVD;UHVCVD)、減壓CVD(Reduced Pressure CVD;RPCVD)、電鍍或上述方法之任意組合的衍生CVD製程。
在一些實施例中,薄膜堆疊係藉由前述之薄膜形成操作來形成,且於薄膜堆疊形成後,對薄膜堆疊進行含有一或多個微影與蝕刻操作的圖案化操作,以形成如圖1A所示之SOT單元。
圖2A至2C係顯示根據本揭露之一實施例之用以形成擴散阻障層100的接續製造操作。可理解的是,額外之操作可於如圖2A至圖2C所示製程之前、於其期間和於其之後提供,且對於此方法的額外之實施例,後述之此些操作的一些可被替換或刪除。此些操作/製程的順序係可互相交換的。
如圖2A所示,底金屬層10係形成於支撐層5上。底金屬層10可藉由PVD、CVD、ALD或任何適當之薄膜形成方法來形成。然後,如圖2B所示,第一磁性層20可藉由利用PVD、CVD、ALD或任何適當之薄膜形成方法來形成。於形成第一磁性層20後,如圖2B所示,磁死層22係形成於第一磁性層20與底金屬層10之間。磁死層22不利地影響SOT磁性裝置之性能。磁死層22的厚度範圍實質為0.2nm至0.8nm。
接著,如圖2C所示,進行製作富鐵擴散阻障層100的製程。在一些實施例中,此製程係熱退火製程。熱退 火製程的製程溫度之範圍實質為350℃至450℃,且實質為375℃至425℃,在其他實施例中。在一些實施例中,熱退火之製程時間的範圍實質為30分鐘至240分鐘,且實質為90分鐘至180分鐘,在其他實施例中。藉由熱退火製程,富鐵層,如擴散阻障層100,係如圖2C所形成。在一些實施例中,磁死層22的厚度減少。在特定實施例中,於熱退火製程後,磁死層22之厚度實質為0.1nm至0.3nm。在一特定實施例中,磁死層22不存在。
在其他實施例中,進行製作富鐵/鈷擴散阻障層100的電漿處理製程。於形成如圖2B所示之第一磁性層20後,對第一磁性層20施加電漿。電漿係氬氣電漿、氮氣電漿與氫氣電漿的至少一者,在一些實施例中。射頻(Radio Frequency;RF)電漿、感應耦合電漿(Inductively Coupled Plasma;ICP)或電子迴旋共振(Electron-Cyclotron Resonance;ECR)電漿或其他電漿可被利用。在一些實施例中,電漿處理之製程時間的範圍實質為1分鐘至60分鐘,且實質為10分鐘至30分鐘,在其他實施例中。於電漿處理之期間,堆疊結構係於範圍實質為250℃至450℃的溫度中加熱,在一些實施例中。藉由電漿處理,富鐵層,如擴散阻障層100,係如圖2C所形成。在一些實施例中,磁死層22的厚度減少。在特定實施例中,於電漿處理後,磁死層22的厚度實質為0.1nm至0.3nm。在一特定實施例中,磁死層22不存在。
其次,當擴散阻障層100係鎢或鉭的氧化物,擴散阻障層100可藉由直接氧化由鎢或鉭所製作之底金屬層10的表面來形成,如圖2D所示。氧化製程包含熱氧化製程、電漿氧化製程或濕式化學氧化製程。於鎢或鉭之氧化物係形成為如擴散阻障層100後,第一磁性層20係形成。
在其他實施例中,擴散阻障層100係藉由沉積方法來形成,例如:PVD、CVD、MBE、ALD、電鍍或其他適當之方法。
圖3A、3B、3C與3D係根據本揭露之一些實施例顯示SOT磁性裝置之垂直磁性異向性的實驗結果,其中此些實驗結果存在有擴散阻障層100的影響。於圖3A至3D中,水平方向係磁場(Oe),且垂直軸係磁光克爾效應(Magneto-Optic Kerr Effect;MOKE effect)。圖3A與3C顯示不具有擴散阻障層之SOT磁性單元的垂直磁性異向性,且圖3B與3D顯示具有擴散阻障層100之SOT磁性單元的垂直磁性異向性。圖3A與3B顯示形成初期之垂直磁性異向性,且圖3C與3D顯示於對SOT磁性單元進行熱製程(400℃進行50分鐘)後的垂直磁性異向性。如圖3A與3B所示,不具有擴散阻障層之SOT磁性單元和具有擴散阻障層之SOT磁性單元的兩者均顯示具有清楚之磁滯現象(hysteresis)的良好垂直磁性異向性。然而,於不具有擴散阻障層之SOT磁性單元在400℃加熱後,垂直磁性異向性之結果顯示不具有磁滯現象。相對的,即使具有擴散阻障層之SOT磁性單元在400℃加熱後,於垂直磁性異向性之結果可 觀察到良好之磁滯現象。此些結果顯示根據本揭露之一實施例之擴散阻障層100可提升SOT磁性單元之熱穩定性。
圖4A與4B顯示根據本揭露之一些實施例存在擴散阻障層100之效應的實驗結果。圖4A與4B係藉由能量色散光譜儀(Energy Dispersive X-ray Spectrometry;EDX)之結果。由樣品之底部,使用於EDX中之樣品包含氧化矽支撐層、做為底金屬層之鎢層、做為第一磁性層之鈷鐵硼層、做為非磁性間隙壁層之氧化鎂層、做為中間金屬層之鎂層、做為第二磁性層之鈷鐵硼層,以及釕層。圖4A之樣品更包含做為擴散阻障層之鐵硼層,且圖4B之樣品除了不包含擴散阻障層外,其係相同於圖4A。此些樣品係於400℃加熱50分鐘。
在此實驗中,第一磁性層與第二磁性層係Fe0.6Co0.2B0.2,且擴散阻障層係Fe0.7B0.3。鎢層之厚度實質為10nm,第一磁性層之厚度實質為0.8nm,氧化鎂層之厚度實質為1.0nm,鎂層之厚度實質為0.3nm,第二磁性層之厚度實質為0.4nm,且釕(Ru)層之厚度實質為3nm。
如圖4B所示,顯著量之鐵(Fe)與鈷(Co)擴散至鎢層中,而如圖4A所示,擴散至鎢層之鐵與鈷係有效地被抑制。鑒於圖3A至3D與圖4A和4B,藉由使用擴散阻障層100,由第一傳導層擴散至鎢層(底金屬層)的鐵與鈷可有效地被抑制,而可改善SOT磁性裝置之熱穩定性。
當SOT磁性單元之熱穩定性係高的,其係較容易的結合做為MRAM之SOT磁性單元至半導體裝置中。在 一些實施例中,MRAM裝置係形成於整個半導體製造操作的後段(Back-End-of-Line;BEOL)。於BEOL中,對形成於半導體基材之結構進行一或多個實質由400℃至450℃的熱操作。據此,本揭露之一實施例的SOT磁性單元係相容於半導體製作流程的BEOL製程。
在一些實施例中,MRAM包含如圖1A所示之SOT磁性裝置與電流源110和開關元件(switching element)120,如電晶體。
可理解的是,並非所有的優點都已經在本文中進行了必然的討論,對於所有實施例或示例皆不需要特別的優點,且其他實施例或示例可以提供不同的優點。
舉例而言,於本揭露之一實施例中,擴散阻障層係插入至底金屬層(自旋軌道主動層)與第一磁性層(自由磁性層)之間。擴散阻障層抑制金屬元素的擴散,如鐵與鈷,其中金屬元素係包含於第一磁性層中,且金屬元素係擴散至底金屬層。因此,界面特性可被改善。舉例而言,磁死層之厚度可被減少。其次,擴散阻障層尤其於接續之熱製程抑制金屬元素的擴散。據此,本揭露之一實施例之自旋軌道轉矩(SOT)磁性裝置顯示出改良之垂直磁性異向性(PMA),且其係相容於半導體裝置製程。
根據本揭露之一態樣,自旋軌道轉矩(SOT)磁性裝置包含底金屬層、第一磁性層、間隙壁層與第二磁性層,其中第一磁性層係設置於底金屬層上,間隙壁層係設置於第一磁性層上,且第二磁性層係設置於間隙壁層上。抑制 第一磁性層之金屬元素擴散至底金屬層的擴散阻障層係設置於底金屬層和第一磁性層之間。在一或多個前述與接續之實施例中,第一磁性層包含鐵與鈷。在一或多個前述與接續之實施例中,擴散阻障層包含鐵,且擴散阻障層中之鐵的原子百分比係高於第一磁性層中之鐵的原子百分比。在一或多個前述與接續之實施例中,第一磁性層更包含硼,且擴散阻障層更包含硼。在一或多個前述與接續之實施例中,擴散阻障層中之硼的原子百分比係高於第一磁性層中之硼的原子百分比。在一或多個前述與接續之實施例中,第一磁性層係FexCoyB1-x-y,且擴散阻障層係FezB1-z,其中z>x。在一或多個前述與接續之實施例中,0.50
Figure 108131940-A0305-02-0021-23
x
Figure 108131940-A0305-02-0021-24
0.70,且0.65
Figure 108131940-A0305-02-0021-25
z
Figure 108131940-A0305-02-0021-26
0.90。在一或多個前述與接續之實施例中,擴散阻障層包含鈷,且擴散阻障層中之鈷的原子百分比係高於第一磁性層中之鈷的原子百分比。在一或多個前述與接續之實施例中,擴散阻障層係由鎂所製成。在一或多個前述與接續之實施例中,擴散阻障層係由鎢或鉭之氧化物所製成。在一或多個前述與接續之實施例中,底金屬層係由鎢或鉭所製成。在一或多個前述與接續之實施例中,擴散阻障層之厚度的範圍為0.1nm至0.6nm。在一或多個前述與接續之實施例中,SOT磁性裝置更包含設置於間隙壁層和第二磁性層之間的中間金屬層。在一或多個前述與接續之實施例中,中間金屬層係由鎂所製成,且間隙壁層係由氧化鎂所製成。在一或多個前述與接續之實施例中,SOT磁性裝置更包含設置於第二磁性層之上的頂金屬層。在一或多個前述與接續之實施例 中,頂金屬層係由釕所製成。在一或多個前述與接續之實施例中,第二磁性層包含鐵、鈷與硼。
根據本揭露之另一態樣,自旋軌道轉矩(SOT)磁性裝置包含底金屬層、第一磁性層、間隙壁層與第二磁性層,其中第一磁性層係設置於底金屬層上,間隙壁層係設置於第一磁性層上,且第二磁性層係設置於間隙壁層上。磁死層係設置於底金屬層和第一磁性層之間,且抑制第一磁性層之金屬元素擴散至底金屬層的擴散阻障層係設置於磁死層和第一磁性層之間。在一或多個前述與接續之實施例中,第一磁性層包含鐵與鈷。在一或多個前述與接續之實施例中,擴散阻障層包含鐵,且擴散阻障層中之鐵的原子百分比係高於第一磁性層中之鐵的原子百分比。在一或多個前述與接續之實施例中,第一磁性層與擴散阻障層更包含硼。在一或多個前述與接續之實施例中,擴散阻障層中之硼的原子百分比係高於第一磁性層中之硼的原子百分比。在一或多個前述與接續之實施例中,第一磁性層係FexCoyB1-x-y,且擴散阻障層係FezB1-z,其中z>x。在一或多個前述與接續之實施例中,0.50
Figure 108131940-A0305-02-0022-27
x
Figure 108131940-A0305-02-0022-28
0.70,且0.65
Figure 108131940-A0305-02-0022-29
z
Figure 108131940-A0305-02-0022-30
0.90。在一或多個前述與接續之實施例中,擴散阻障層包含鈷,且擴散阻障層中之鈷的原子百分比係高於第一磁性層中之鈷的原子百分比。在一或多個前述與接續之實施例中,擴散阻障層係由鎂所製成。在一或多個前述與接續之實施例中,擴散阻障層係由鎢或鉭之氧化物所製成。在一或多個前述與接續之實施例中,底金屬層係由鎢或鉭所製成。在一或多個前述與接續之 實施例中,擴散阻障層之厚度的範圍為0.1nm至0.6nm。在一或多個前述與接續之實施例中,SOT磁性裝置更包含設置於間隙壁層和第二磁性層之間的中間金屬層。在一或多個前述與接續之實施例中,中間金屬層係由鎂所製成,且間隙壁層係由氧化鎂所製成。在一或多個前述與接續之實施例中,SOT磁性裝置更包含設置於第二磁性層之上的頂金屬層。在一或多個前述與接續之實施例中,頂金屬層係由釕所製成。在一或多個前述與接續之實施例中,第二磁性層包含鐵、鈷與硼。
根據本揭露之另一態樣,磁存儲器(magnetic memory)包含自旋軌道轉矩(SOT)磁性裝置與開關元件(switching element)。SOT磁性裝置包含底金屬層、第一磁性層、間隙壁層與第二磁性層,其中第一磁性層係設置於底金屬層上,間隙壁層係設置於第一磁性層上,且第二磁性層係設置於間隙壁層上。開關元件係耦接至底金屬層或第二磁性層。抑制第一磁性層之金屬元素擴散至底金屬層的擴散阻障層係設置於底金屬層和第一磁性層之間。在一或多個前述與接續之實施例中,第一磁性層包含鐵與鈷。在一或多個前述與接續之實施例中,擴散阻障層包含鐵,且擴散阻障層中之鐵的原子百分比係高於第一磁性層中之鐵的原子百分比。在一或多個前述與接續之實施例中,第一磁性層與擴散阻障層更包含硼。在一或多個前述與接續之實施例中,擴散阻障層中之硼的原子百分比係高於第一磁性層中之硼的原子百分比。在一或多個前述與接續之實施例中,第一磁性層 係FexCoyB1-x-y,且擴散阻障層係FezB1-z,其中z>x。在一或多個前述與接續之實施例中,0.50
Figure 108131940-A0305-02-0024-31
x
Figure 108131940-A0305-02-0024-32
0.70,且0.65
Figure 108131940-A0305-02-0024-33
z
Figure 108131940-A0305-02-0024-34
0.90。在一或多個前述與接續之實施例中,擴散阻障層包含鈷,且擴散阻障層中之鈷的原子百分比係高於第一磁性層中之鈷的原子百分比。在一或多個前述與接續之實施例中,擴散阻障層係由鎂所製成。在一或多個前述與接續之實施例中,擴散阻障層係由鎢或鉭之氧化物所製成。在一或多個前述與接續之實施例中,底金屬層係由鎢或鉭所製成。在一或多個前述與接續之實施例中,擴散阻障層之厚度的範圍為0.1nm至0.6nm。在一或多個前述與接續之實施例中,SOT磁性裝置更包含設置於間隙壁層和第二磁性層之間的中間金屬層。在一或多個前述與接續之實施例中,中間金屬層係由鎂所製成,且間隙壁層係由氧化鎂所製成。在一或多個前述與接續之實施例中,SOT磁性裝置更包含設置於第二磁性層之上的頂金屬層。在一或多個前述與接續之實施例中,頂金屬層係由釕所製成。在一或多個前述與接續之實施例中,第二磁性層包含鐵、鈷與硼。
根據本揭露之一態樣,於自旋軌道轉矩(SOT)磁性裝置的製作方法中,形成第一磁性層於底金屬層上。形成間隙壁層於第一磁性層上。形成第二磁性層於間隙壁層上。然後,形成擴散阻障層於第一磁性層和底金屬層之間。在一或多個前述與接續之實施例中,於形成第一磁性層後,藉由進行熱退火來形成擴散阻障層。在一或多個前述與接續之實施例中,熱退火之製程溫度的範圍係350℃至450℃。 在一或多個前述與接續之實施例中,熱退火之製程時間的範圍係30分鐘至240分鐘。在一或多個前述與接續之實施例中,於形成第一磁性層後,藉由對第一磁性層進行電漿處理來形成擴散阻障層。在一或多個前述與接續之實施例中,氬氣電漿、氮氣電漿與氫氣電漿之至少一者係使用於電漿處理中。在一或多個前述與接續之實施例中,電漿處理之製程時間的範圍係1分鐘至60分鐘。在一或多個前述與接續之實施例中,第一磁性層包含鐵與鈷,擴散阻障層包含鐵,且擴散阻障層中之鐵的原子百分比係高於第一磁性層中之鐵的原子百分比。在一或多個前述與接續之實施例中,第一磁性層和擴散阻障層更包含硼。在一或多個前述與接續之實施例中,擴散阻障層中之硼的原子百分比係高於第一磁性層中之硼的原子百分比。在一或多個前述與接續之實施例中,第一磁性層係FexCoyB1-x-y,且擴散阻障層係FezB1-z,其中z>x。在一或多個前述與接續之實施例中,0.50
Figure 108131940-A0305-02-0025-35
x
Figure 108131940-A0305-02-0025-36
0.70,且0.65
Figure 108131940-A0305-02-0025-37
z
Figure 108131940-A0305-02-0025-38
0.90。在一或多個前述與接續之實施例中,第一磁性層包含鐵與鈷,擴散阻障層包含鈷,且擴散阻障層中之鈷的原子百分比係高於第一磁性層中之鈷的原子百分比。在一或多個前述與接續之實施例中,擴散阻障層係藉由沉積製程來形成。在一或多個前述與接續之實施例中,擴散阻障層係由鎂所製成。在一或多個前述與接續之實施例中,擴散阻障層係由鎢或鉭的氧化物所製成。在一或多個前述與接續之實施例中,擴散阻障層係藉由底金屬層的氧化所製成。在一或多個前述與接續之實施例中,底金屬層係由鎢或 鉭所製成,且擴散阻障層係由鎢或鉭的氧化物所製成。在一或多個前述與接續之實施例中,擴散阻障層之厚度的範圍實質為0.1nm至0.6nm。
根據本揭露之另一態樣,於SOT磁性裝置的製作方法中,形成擴散阻障層於底金屬層上。形成第一磁性層於擴散阻障層上。形成間隙壁層於第一磁性層上。形成中間金屬層於間隙壁層上。形成第二磁性層於中間金屬層上。於接續超過450℃之熱製程中,擴散阻障層抑制第一磁性層之金屬元素擴散至底金屬層。在一或多個前述與接續之實施例中,於形成第一磁性層後,藉由進行熱退火來形成擴散阻障層。在一或多個前述與接續之實施例中,熱退火之製程溫度的範圍係350℃至450℃。在一或多個前述與接續之實施例中,熱退火之製程時間的範圍係30分鐘至240分鐘。在一或多個前述與接續之實施例中,於形成第一磁性層後,藉由對第一磁性層進行電漿處理來形成擴散阻障層。在一或多個前述與接續之實施例中,氬氣電漿、氮氣電漿與氫氣電漿之至少一者係使用於電漿處理中。在一或多個前述與接續之實施例中,電漿處理之製程時間的範圍係1分鐘至60分鐘。在一或多個前述與接續之實施例中,第一磁性層包含鐵與鈷,擴散阻障層包含鐵,且擴散阻障層中之鐵的原子百分比係高於第一磁性層中之鐵的原子百分比。在一或多個前述與接續之實施例中,第一磁性層和擴散阻障層更包含硼。在一或多個前述與接續之實施例中,擴散阻障層中之硼的原子百分比係高於第一磁性層中之硼的原子百分比。在一或多個前述與接 續之實施例中,第一磁性層係FexCoyB1-x-y,且擴散阻障層係FezB1-z,其中z>x。在一或多個前述與接續之實施例中,0.50
Figure 108131940-A0305-02-0027-39
x
Figure 108131940-A0305-02-0027-40
0.70,且0.65
Figure 108131940-A0305-02-0027-41
z
Figure 108131940-A0305-02-0027-42
0.90。在一或多個前述與接續之實施例中,第一磁性層包含鐵與鈷,擴散阻障層包含鈷,且擴散阻障層中之鈷的原子百分比係高於第一磁性層中之鈷的原子百分比。在一或多個前述與接續之實施例中,擴散阻障層係藉由沉積製程來形成。在一或多個前述與接續之實施例中,擴散阻障層係由鎂所製成。在一或多個前述與接續之實施例中,擴散阻障層係由鎢或鉭的氧化物所製成。在一或多個前述與接續之實施例中,擴散阻障層係藉由底金屬層的氧化所製成。在一或多個前述與接續之實施例中,底金屬層係由鎢或鉭所製成,且擴散阻障層係由鎢或鉭的氧化物所製成。在一或多個前述與接續之實施例中,擴散阻障層之厚度的範圍實質為0.1nm至0.6nm。
根據本揭露之另一態樣,於SOT磁性裝置的製作方法中,形成第一磁性層於底金屬層上。處理第一磁性層,故擴散阻障層係形成於底金屬層和第一磁性層之間。形成間隙壁層於第一磁性層上。形成中間金屬層於間隙壁層上。形成第二磁性層於中間金屬層上。於接續超過450℃之熱製程中,擴散阻障層抑制第一磁性層之金屬元素擴散至底金屬層。在一或多個前述與接續之實施例中,於形成第一磁性層後,藉由進行熱退火來形成擴散阻障層。在一或多個前述與接續之實施例中,熱退火之製程溫度的範圍係350℃至450℃。在一或多個前述與接續之實施例中,熱退火之製程 時間的範圍係30分鐘至240分鐘。在一或多個前述與接續之實施例中,於形成第一磁性層後,藉由對第一磁性層進行電漿處理來形成擴散阻障層。在一或多個前述與接續之實施例中,氬氣電漿、氮氣電漿與氫氣電漿之至少一者係使用於電漿處理中。在一或多個前述與接續之實施例中,電漿處理之製程時間的範圍係1分鐘至60分鐘。在一或多個前述與接續之實施例中,第一磁性層包含鐵與鈷,擴散阻障層包含鐵,且擴散阻障層中之鐵的原子百分比係高於第一磁性層中之鐵的原子百分比。在一或多個前述與接續之實施例中,第一磁性層和擴散阻障層更包含硼。在一或多個前述與接續之實施例中,擴散阻障層中之硼的原子百分比係高於第一磁性層中之硼的原子百分比。在一或多個前述與接續之實施例中,第一磁性層係FexCoyB1-x-y,且擴散阻障層係FezB1-z,其中z>x。在一或多個前述與接續之實施例中,0.50
Figure 108131940-A0305-02-0028-43
x
Figure 108131940-A0305-02-0028-44
0.70,且0.65
Figure 108131940-A0305-02-0028-45
z
Figure 108131940-A0305-02-0028-46
0.90。在一或多個前述與接續之實施例中,第一磁性層包含鐵與鈷,擴散阻障層包含鈷,且擴散阻障層中之鈷的原子百分比係高於第一磁性層中之鈷的原子百分比。在一或多個前述與接續之實施例中,擴散阻障層係藉由沉積製程來形成。在一或多個前述與接續之實施例中,擴散阻障層係由鎂所製成。在一或多個前述與接續之實施例中,擴散阻障層係由鎢或鉭的氧化物所製成。在一或多個前述與接續之實施例中,擴散阻障層係藉由底金屬層的氧化所製成。在一或多個前述與接續之實施例中,底金屬層係由鎢或鉭所製成,且擴散阻障層係由鎢或鉭的氧化物所製 成。在一或多個前述與接續之實施例中,擴散阻障層之厚度的範圍實質為0.1nm至0.6nm。
以上概略說明了本發明數個實施例或例示的特徵,使所屬技術領域中具有通常知識者對於本揭露的型態可更為容易理解。任何所屬技術領域中具有通常知識者應瞭解到可輕易利用本揭露做為其它製程或結構的變更或設計基礎,以進行相同於此處所述實施例或例示的目的及/或獲得相同的優點。任何所屬技術領域中具有通常知識者也可理解與上述等同的結構並未脫離本揭露之精神和保護範圍內,且可在不脫離本揭露之精神和範圍內,當可作更動、替代與潤飾。
5:支撐層
10:底金屬層
20:第一磁性層
30:非磁性間隙壁層
40:第二磁性層
50:頂導電層
100:擴散阻障層
110:電流源
120:開關元件
Je:電流

Claims (10)

  1. 一種自旋軌道轉矩(Spin-Orbit-Torque;SOT)磁性裝置,包含:一底金屬層;一第一磁性層,設置於該底金屬層上;一間隙壁層,設置於該第一磁性層上;一第二磁性層,設置於該間隙壁層上;以及一擴散阻障層,設置於該底金屬層與該第一磁性層之間,其中該擴散阻障層包含鐵或鈷的至少一者,且該擴散阻障層抑制該第一磁性層之一元素擴散至該底金屬層中。
  2. 如申請專利範圍第1項所述之自旋軌道轉矩磁性裝置,其中該第一磁性層包含鐵和鈷。
  3. 如申請專利範圍第2項所述之自旋軌道轉矩磁性裝置,其中該擴散阻障層包含該鐵,且該擴散阻障層中之一鐵原子百分比係高於該第一磁性層中之一鐵原子百分比。
  4. 如申請專利範圍第3項所述之自旋軌道轉矩磁性裝置,其中該第一磁性層與該擴散阻障層更包含硼。
  5. 如申請專利範圍第4項所述之自旋軌道轉矩磁性裝置,其中該擴散阻障層中之一硼原子百分比係高於該第一磁性層中之一硼原子百分比。
  6. 如申請專利範圍第2項所述之自旋軌道轉矩磁性裝置,其中該第一磁性層為FexCoyB1-x-y,該擴散阻障層為FezB1-z,其中z>x。
  7. 如申請專利範圍第2項所述之自旋軌道轉矩磁性裝置,其中該擴散阻障層包含鈷,且該擴散阻障層中之一鈷原子百分比係高於該第一磁性層中之一鈷原子百分比。
  8. 如申請專利範圍第1項所述之自旋軌道轉矩磁性裝置,更包含一中間金屬層,其中該中間金屬層係設置於該間隙壁層和該第二磁性層之間。
  9. 一種自旋軌道轉矩磁性裝置,包含:一底金屬層;一第一磁性層,設置於該底金屬層上;一間隙壁層,設置於該第一磁性層上;一第二磁性層,設置於該間隙壁層上;以及一擴散阻障層,設置於一磁死層(magnetic dead layer)和該第一磁性層之間, 其中該磁死層係設置於該底金屬層與該第一磁性層之間,該擴散阻障層抑制該第一磁性層之一元素擴散至該底金屬層中。
  10. 一種自旋軌道轉矩磁性裝置的製作方法,包含:形成一第一磁性層於一底金屬層上;處理該第一磁性層,以使一擴散阻障層形成於該底金屬層和該第一磁性層之間,其中該擴散阻障層包含硼或鎂的至少一者;形成一間隙壁層於該第一磁性層上;形成一中間金屬層於該間隙壁層上:以及形成一第二磁性層於該中間金屬層上,且於超過450℃之一後續熱製程中,該擴散阻障層抑制該第一磁性層之一元素擴散至該底金屬層中。
TW108131940A 2018-09-21 2019-09-04 自旋軌道轉矩磁性裝置與其製作方法 TWI738051B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862734484P 2018-09-21 2018-09-21
US62/734,484 2018-09-21
US16/427,308 2019-05-30
US16/427,308 US10879307B2 (en) 2018-09-21 2019-05-30 Magnetic device and magnetic random access memory

Publications (2)

Publication Number Publication Date
TW202029542A TW202029542A (zh) 2020-08-01
TWI738051B true TWI738051B (zh) 2021-09-01

Family

ID=69725086

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108131940A TWI738051B (zh) 2018-09-21 2019-09-04 自旋軌道轉矩磁性裝置與其製作方法

Country Status (5)

Country Link
US (3) US10879307B2 (zh)
KR (1) KR102287559B1 (zh)
CN (1) CN110943157A (zh)
DE (1) DE102019115922B4 (zh)
TW (1) TWI738051B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10879307B2 (en) * 2018-09-21 2020-12-29 Taiwan Semiconductor Manufacturing Co., Ltd. Magnetic device and magnetic random access memory
US11348715B2 (en) * 2019-06-10 2022-05-31 Samsung Electronics Co., Ltd. Semiconductor device and method of making the same
CN111682105B (zh) * 2020-06-23 2023-04-07 浙江驰拓科技有限公司 一种磁存储器件及其写入方法、逻辑器件
CN113451503B (zh) * 2020-12-31 2023-03-17 北京航空航天大学 多功能磁性随机存储单元、存储器及设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6347049B1 (en) * 2001-07-25 2002-02-12 International Business Machines Corporation Low resistance magnetic tunnel junction device with bilayer or multilayer tunnel barrier
TW200809858A (en) * 2006-07-17 2008-02-16 Grandis Inc Method and system for using a pulsed field to assist spin transfer induced switching of magnetic memory elements
US7508042B2 (en) * 2006-12-22 2009-03-24 Magic Technologies, Inc. Spin transfer MRAM device with magnetic biasing
TW201709578A (zh) * 2015-06-26 2017-03-01 英特爾股份有限公司 低雜散場磁記憶體
KR20170057464A (ko) * 2014-10-16 2017-05-24 마이크론 테크놀로지, 인크 메모리 셀들, 반도체 디바이스들, 및 제조 방법들
US9666256B1 (en) * 2016-03-15 2017-05-30 National Tsing Hua University Spin-orbit torque magnetic random access memory and method of writing the same
KR20170093546A (ko) * 2016-02-05 2017-08-16 한양대학교 산학협력단 메모리 소자
KR20170105395A (ko) * 2016-03-09 2017-09-19 삼성전자주식회사 스핀 전달 토크 응용에 사용 가능하고 자기 배리어층을 포함하는 자기 접합을 제공하기 위한 방법 및 시스템
US20200006626A1 (en) * 2018-06-28 2020-01-02 Intel Corporation Spin orbit torque device with insertion layer between spin orbit torque electrode and free layer for improved performance

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100626390B1 (ko) * 2005-02-07 2006-09-20 삼성전자주식회사 자기 메모리 소자 및 그 형성 방법
JP2006319259A (ja) 2005-05-16 2006-11-24 Fujitsu Ltd 強磁性トンネル接合素子、これを用いた磁気ヘッド、磁気記録装置、および磁気メモリ装置
JP4877575B2 (ja) * 2005-05-19 2012-02-15 日本電気株式会社 磁気ランダムアクセスメモリ
KR100773544B1 (ko) * 2006-02-09 2007-11-05 삼성전자주식회사 확산 방지층을 포함하는 자기 저항 소자
US20100148167A1 (en) 2008-12-12 2010-06-17 Everspin Technologies, Inc. Magnetic tunnel junction stack
JP2013048210A (ja) 2011-07-22 2013-03-07 Toshiba Corp 磁気抵抗素子
JP2013197409A (ja) * 2012-03-21 2013-09-30 Toshiba Corp 磁気抵抗素子及びそれを備える磁気ランダムアクセスメモリ
US9076537B2 (en) 2012-08-26 2015-07-07 Samsung Electronics Co., Ltd. Method and system for providing a magnetic tunneling junction using spin-orbit interaction based switching and memories utilizing the magnetic tunneling junction
JP6200471B2 (ja) 2015-09-14 2017-09-20 株式会社東芝 磁気メモリ
CN115915906A (zh) 2016-02-05 2023-04-04 汉阳大学校产学协力团 存储器件
US10546997B2 (en) * 2016-12-02 2020-01-28 Regents Of The University Of Minnesota Magnetic structures including FePd
US10879307B2 (en) * 2018-09-21 2020-12-29 Taiwan Semiconductor Manufacturing Co., Ltd. Magnetic device and magnetic random access memory

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6347049B1 (en) * 2001-07-25 2002-02-12 International Business Machines Corporation Low resistance magnetic tunnel junction device with bilayer or multilayer tunnel barrier
TW200809858A (en) * 2006-07-17 2008-02-16 Grandis Inc Method and system for using a pulsed field to assist spin transfer induced switching of magnetic memory elements
US7508042B2 (en) * 2006-12-22 2009-03-24 Magic Technologies, Inc. Spin transfer MRAM device with magnetic biasing
KR20170057464A (ko) * 2014-10-16 2017-05-24 마이크론 테크놀로지, 인크 메모리 셀들, 반도체 디바이스들, 및 제조 방법들
TW201709578A (zh) * 2015-06-26 2017-03-01 英特爾股份有限公司 低雜散場磁記憶體
KR20170093546A (ko) * 2016-02-05 2017-08-16 한양대학교 산학협력단 메모리 소자
KR20170105395A (ko) * 2016-03-09 2017-09-19 삼성전자주식회사 스핀 전달 토크 응용에 사용 가능하고 자기 배리어층을 포함하는 자기 접합을 제공하기 위한 방법 및 시스템
US9666256B1 (en) * 2016-03-15 2017-05-30 National Tsing Hua University Spin-orbit torque magnetic random access memory and method of writing the same
US20200006626A1 (en) * 2018-06-28 2020-01-02 Intel Corporation Spin orbit torque device with insertion layer between spin orbit torque electrode and free layer for improved performance

Also Published As

Publication number Publication date
KR20200034930A (ko) 2020-04-01
CN110943157A (zh) 2020-03-31
DE102019115922A1 (de) 2020-03-26
US20200098407A1 (en) 2020-03-26
US10879307B2 (en) 2020-12-29
US20210118952A1 (en) 2021-04-22
US11963366B2 (en) 2024-04-16
DE102019115922B4 (de) 2022-05-25
US11437434B2 (en) 2022-09-06
TW202029542A (zh) 2020-08-01
KR102287559B1 (ko) 2021-08-11
US20220375993A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
TWI738051B (zh) 自旋軌道轉矩磁性裝置與其製作方法
US9231192B2 (en) Semiconductor memory device and method for manufacturing the same
KR101831504B1 (ko) 메모리 셀, 제조 방법, 반도체 디바이스 구조, 및 메모리 시스템
US11088201B2 (en) Magnetic tunneling junction (MTJ) element with an amorphous buffer layer and its fabrication process
US10249817B2 (en) Magnetic device
KR102397904B1 (ko) 낮은 보론 농도를 갖는 영역 및 높은 보론 농도를 갖는 영역을 포함하는 자유 층, 자기 저항 셀, 및 자기 저항 메모리 소자, 및 그 제조 방법
TW202011572A (zh) 記憶體裝置的製造方法
KR102335104B1 (ko) 자기 소자
US8772845B2 (en) Technique for smoothing an interface between layers of a semiconductor device
JP2012019163A (ja) 磁気ランダムアクセスメモリ及びその製造方法
KR102398190B1 (ko) 자기 디바이스 및 자기 랜덤 액세스 메모리
US20170373246A1 (en) Perpendicular magnetic tunnel junction devices with high thermal stability
US20210351342A1 (en) Spin-orbit torque mram structure and manufacture thereof
US20130249025A1 (en) Magnetoresistive element and magnetoresistive random access memory with the same
US11342496B2 (en) Semiconductor memory structure with magnetic tunneling junction stack and method for forming the same
US20200052191A1 (en) Magnetic tunnel junction element with a robust reference layer
US11763972B2 (en) Magnetic tunnel junction element with a robust reference layer
US11935677B2 (en) Magnetic device
US11456411B2 (en) Method for fabricating magnetic tunneling junction element with a composite capping layer
US20240164219A1 (en) Fast switching mram having an aluminum-manganese-germanium free layer combined with a chromium diffusion barrier
KR20230034788A (ko) 자기 소자