TWI734148B - 自適應微波頻率控制的動作偵測方法及相關裝置 - Google Patents

自適應微波頻率控制的動作偵測方法及相關裝置 Download PDF

Info

Publication number
TWI734148B
TWI734148B TW108125910A TW108125910A TWI734148B TW I734148 B TWI734148 B TW I734148B TW 108125910 A TW108125910 A TW 108125910A TW 108125910 A TW108125910 A TW 108125910A TW I734148 B TWI734148 B TW I734148B
Authority
TW
Taiwan
Prior art keywords
signal
frequency
detection
detection signal
output
Prior art date
Application number
TW108125910A
Other languages
English (en)
Other versions
TW202022400A (zh
Inventor
陳則朋
Original Assignee
立積電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 立積電子股份有限公司 filed Critical 立積電子股份有限公司
Publication of TW202022400A publication Critical patent/TW202022400A/zh
Application granted granted Critical
Publication of TWI734148B publication Critical patent/TWI734148B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/04Systems determining presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/56Discriminating between fixed and moving objects or between objects moving at different speeds for presence detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/886Radar or analogous systems specially adapted for specific applications for alarm systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0232Avoidance by frequency multiplex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/36Means for anti-jamming, e.g. ECCM, i.e. electronic counter-counter measures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一種動作偵測方法,用於一微波動作感測器中,該動作偵測方法包含有:抑制以一第一頻率產生的一第一偵測訊號的輸出;判斷在抑制輸出期間,是否在該第一頻率偵測到一第一干擾訊號;當判斷在抑制輸出期間,在該第一頻率偵測到該第一干擾訊號,產生具有與該第一頻率不同的一第二頻率的一第二偵測訊號,並抑制該第二偵測訊號的輸出;判斷在抑制該第二偵測訊號的輸出期間,是否在該第二頻率偵測到一第二干擾訊號;以及當判斷在抑制該第二偵測訊號的輸出期間,在該第二頻率未偵測到該第二干擾訊號,輸出用於動作偵測的該第二偵測訊號。

Description

自適應微波頻率控制的動作偵測方法及相關裝置
本發明涉及一種動作偵測的方法,尤指一種透過自適應微波頻率控制來進行動作偵測的方法及裝置。
動作感測器是確保家庭安全的最佳方式之一。保護入口通道是確保居家安全的一種方式,但如果有人設法破壞房屋的外部防設時,屋主還需知道入侵者是否在房屋內移動。因此,屋主通常會設置具有雷達、光傳感器或紅外線動作偵測器的動作感測器在屋內,以偵測是否有物體在室內移動。一般來說,最簡單的動作感測器是採用雷達或微波技術。
傳統的微波動作感測器使用電磁輻射,其發出的訊號在接觸到物體後,會反射回微波動作感測器中的接收器,接著接收器分析此反射訊號。如果房間內有物體移動,這些反射訊號會與發射的訊號不同,而微波動作感測器能夠隨時識別此變化。
透過更改微波動作感測器的編譯程式方式可以減少錯誤警報的數量,而不必減少正確的正數,從而提高準確性,同時還提高了易用性。然而, 這種方式仍存在許多誤報,舉例來說,屋內帷幔移動之類的事件可能會引起警報。另外,配備有與微波動作感測器相同的無線頻譜的任何電子設備都可能影響到動作偵測。換句話說,由於從微波動作感測器發射的訊號(以下稱為偵測信號)與電子設備的頻率相同,因此微波動作感測器的接收器可能同時接收到反射訊號及來自電子設備的和干擾信號,因而造成誤報。在此情況下,用戶可以將電子設備放置在遠離微波動作感測器的位置,但是,由於一般室內的空間有限,此種方式可能較不適用。
此外,現今許多電子設備都配備了無線區域網路(Wi-Fi)技術。例如,微波動作感測器和Wi-Fi設備集成在同一設備中。因此,在動作偵測期間無法避免相互干擾。
因此,本發明的主要目的即在於提供一種自適應微波頻率控制的動作偵測方法,以解決上述問題。
本發明揭露一種自適應微波頻率控制的動作偵測方法,用於一微波動作感測器中,該動作偵測方法包含有:抑制用來進行動作偵測的一第一偵測訊號的輸出,其中該第一偵測信號是以一第一頻率產生;判斷在抑制該第一偵測訊號的輸出期間,是否在該第一頻率偵測到一第一干擾訊號;當判斷在抑制該第一偵測訊號的輸出期間,在該第一頻率偵測到該第一干擾訊號,產生具有與該第一頻率不同的一第二頻率的一第二偵測訊號,並抑制該第二偵測訊號的輸出;判斷在抑制該第二偵測訊號的輸出期間,是否在該第二頻率偵測到一第二干擾訊號;以及當判斷在抑制該第二偵測訊號的輸出期間,在該第二頻率未 偵測到該第二干擾訊號,輸出用於動作偵測的該第二偵測訊號。
本發明另揭露一微波動作感測器,其中該微波動作感測器具自適應微波頻率控制功能,以及可操作於一正常模式或一偵測模式,該微波動作感測器包含有:一振盪器,用來於該正常模式產生具有一第一頻率的一第一偵測訊號,以及於該偵測模式產生具有一第二頻率的一第二偵測訊號,其中該第一頻率與第二頻率不同;一傳輸放大器,耦接該振盪器,用來於該正常模式,放大該第一偵測訊號及輸出放大的該第一偵測訊號,以進行動作偵測,以及於該偵測模式抑制該第一偵測訊號的輸出;一混頻器,耦接該振盪器,用來於正常模式,根據該第一偵測訊號及一反射訊號,產生一第一混合訊號,其中該反射訊號是根據一物體的動作事件及該第一偵測訊號而產生,以及用來於偵測模式,根據該第一偵測訊號及一干擾訊號,產生一第二混合訊號;以及一偵測器,耦接該混頻器及該振盪器,用來根據該第一混合訊號及該第二混合訊號,切換該微波動作感測器於該正常模式及該偵測模式之間。
10:微波動作感測器
100:處理單元
110:儲存單元
120:通訊介面單元
114:程式碼
20:流程
201~205:步驟
OSC:振盪器
TX-AMP:傳輸放大器
TX:發射器
RX:接收器
F1~F5、f1-f4:頻率
30:干擾源
40:控制器
T1~T2:閥值
第1圖為本發明實施例一微波動作感測器的示意圖。
第2圖為本發明實施例一動作偵測流程的示意圖。
第3~6圖為本發明實施例一微波動作感測器的操作示意圖。
第7~8圖為本發明實施例一微波動作感測器的流程示意圖。
第9~12圖為本發明實施例一自適應微波頻率控制的示意圖。
第13圖為本發明實施例一微波動作感測器的示意圖。
第14圖為本發明實施例一電子裝置的示意圖。
第15~16圖為本發明實施例一電子裝置的操作示意圖。
以下實施例將參考附圖詳細描述,以使本領域技術人員能容易實現。本發明構思可以各種形式實施,而不限於本文闡述的實施例。為清楚起見,省略了對公知元件的描述,以及相同的附圖標記表示相同的元件。
第1圖為本發明實施例一微波動作感測器10的示意圖。微波動作感測器10包含有一處理單元100、一儲存單元110以及一通訊介面單元120。處理單元100可為一微處理器或一特殊應用積體電路(application-specific integrated circuit,ASIC)。儲存單元110可為任一資料儲存裝置,用來儲存一程式碼114,並透過處理單元100讀取及執行程式碼114。舉例來說,儲存單元110可為用戶識別模組(subscriber identity module,SIM)、唯讀式記憶體(read-only memory,ROM)、隨機存取記憶體(random-access memory,RAM)、光碟唯讀記憶體(CD-ROMs)、磁帶(magnetic tapes)、軟碟(floppy disks)、光學資料儲存裝置(optical data storage devices)等等,而不限於此。通訊介面單元120可為無線收發器,用來根據處理單元100的處理結果,與其他裝置交換訊號。
請參考第2圖,其為本發明實施例一動作偵測流程20的示意圖。流程20用於第1圖所示的微波動作感測器10。動作偵測流程20可編譯為程式碼114,並包含有以下步驟:
步驟201:抑制用來進行動作偵測的一第一偵測訊號的輸出,其中該第一偵測信號是以一第一頻率產生。
步驟202:判斷在抑制該第一偵測訊號的輸出期間,是否在該第一頻 率偵測到一第一干擾訊號。
步驟203:當判斷在抑制該第一偵測訊號的輸出期間,在該第一頻率偵測到該第一干擾訊號,產生具有與該第一頻率不同的一第二頻率的一第二偵測訊號,並抑制該第二偵測訊號的輸出。
步驟204:判斷在抑制該第二偵測訊號的輸出期間,是否在該第二頻率偵測到一第二干擾訊號。
步驟205:當判斷在抑制該第二偵測訊號的輸出期間,在該第二頻率未偵測到該第二干擾訊號,輸出用於動作偵測的該第二偵測訊號。
根據動作偵測流程20,當微波動作感測器10偵測到非預期的干擾訊號時,如從Wi-Fi裝置或其他微波動作感測器,微波動作感測器10改變偵測訊號的頻率(如從第一頻率變更為第二頻率),以避免在動作偵測期間內的干擾發生。簡單來說,微波動作感測器10採用自適應微波頻率控制,藉以降低干擾訊號所造成的誤觸警報。
第3~6圖為本發明實施例一微波動作感測器10偵測物體動作的示意圖。微波動作感測器10可操作於正常模式或偵測模式,其包含有振盪器OSC、傳輸放大器TX-AMP、混頻器及偵測器。在一實施例中,傳輸放大器TX-AMP透過微波動作感測器10的一傳輸節點,耦接發射器TX。混頻器透過微波動作感測器10的接收節點,耦接接收器RX。在另一實施例中,微波動作感測器10包含有發射器TX及接收器RX。如第3圖所示,在物體動作偵操作的正常模式下,振盪器OSC產生振盪頻率F1的振盪訊號(在本文中稱為偵測訊號)、傳輸放大器TX-AMP可切換至放大模式,用來放大偵測訊號,並輸出偵測訊號至發射器TX。換句話說,傳輸放大器TX-AMP可切換至放大模式以放大偵測訊號,藉由例如透過增加 傳輸放大器TX-AMP的增益、啟動或打開傳輸放大器TX-AMP,或將放大的偵測訊號從接地點切換到發射器TX。在一實施例中,傳輸放大器TX-AMP可透過混合另一個具有不同於振盪頻率F1的偵測訊號,來放大偵測訊號。發射器TX傳送放大後的偵測訊號,以偵測物體動作。簡言之,偵測訊號被傳輸放大器TX-AMP放大之後,會接著由發射器TX傳送出去。一般來說,混頻器根據接收到具有頻率F1的偵測訊號及由接收器RX所接收,具有頻率F2的反射訊號,產生混合訊號,其中反射訊號是由物體反射偵測訊號而產生。頻率F2可以是接近振盪頻率F1並且由於物體的動作而具有微小的頻移。然而,接收器RX可能會接收到具有頻率F3的干擾訊號,其中頻率F3基本上等於振盪頻率F1或頻率F2,因此混合訊號會包含干擾成份。偵測器根據混合訊號的訊號強度與預設閥值,判斷是否有動作事件發生。舉例來說,若混合訊號的訊號強度大於預設閥值,偵測器判斷有動作事件發生。另一方面,若混合訊號的訊號強度小於預設閥值,偵測器判斷沒有動作事件發生。由上述可知,由於混合訊號可能包含非預期的具有頻率F3的干擾訊號,偵測器可能會誤判有動作事件發生,造成誤報。在此情況下,偵測器可切換微波動作感測器10在正常模式及偵測模式之間。
如第4圖所示的偵測模式,傳輸放大器TX-AMP抑制具有頻率F1的偵測訊號的輸出。換句話說,傳輸放大器TX-AMP可切換至抑制模式,藉由例如減少傳輸放大器TX-AMP的增益、停止或關閉傳輸放大器TX-AMP、衰減或不輸出偵測訊號,或將偵測訊號分流到接地點,藉以實現抑制偵測訊號的輸出。因此,發射器TX僅能傳送微弱的偵測訊號或甚至不發送偵測訊號。值得注意的是,由於微弱的偵測訊號被發送或是不發送偵測訊號,接收器RX也只會接收到微弱的反射訊號,或是不會接收到反射訊號。因此,接收器RX接收到的具有足夠訊號強度與頻率F3(基本上等於頻率F1或頻率F2)的任何訊號可被視為是干擾源產 生的干擾信號,例如Wi-Fi路由器或另一個微波動作感測器。在此情況下,偵測器判斷混合訊號的訊號強度是否大於預設閥值。若混合訊號的訊號強度小於預設閥值,偵測器判斷沒有干擾發生,並切換微波動作感測器10從偵測模式至正常模式。換句話說,振盪器OSC產生振盪訊號以作為具有頻率F1的偵測訊號,傳輸放大器TX-AMP放大偵測訊號,並輸出放大後的偵測訊號至發射器TX,接著發射器TX傳送放大後的具有頻率F1偵測訊號來偵測物體動作。
另一方面,如第5圖所示,若混合訊號大於預設閥值,偵測器判斷偵測到干擾訊號,接著控制振盪器產生具有與振盪頻率F1不同的振盪頻率F4的偵測訊號。因此具有頻率F3(基本上等於頻率F1或頻率F2)的干擾訊號應不會被接收器RX接收及偵測到。同時,傳輸放大器TX-AMP抑制具有振盪頻率F4的偵測訊號的輸出,以及偵測器比較混合訊號的訊號強度與預設閥值,判斷在振盪頻率F4是否有干擾發生。若在振盪頻率F4未偵測到干擾訊號,偵測器將微波動作感測器10從偵測模式切換至正常模式,如第6圖所示。因此,振盪器OSC產生振盪訊號以作為具有振盪頻率F4的偵測訊號,以及傳輸放大器TX-AMP放大振盪頻率F4的偵測訊號,並傳送至發射器TX,以發射用來偵測物體動作的具有頻率F4偵測訊號。反之,若在振盪頻率F4偵測到干擾訊號,偵測器控制振盪器OSC改變產生的振盪頻率,並重複上述步驟,直到沒有偵測到干擾訊號。
第7~8圖為本發明實施例一微波動作感測器的流程示意圖。微波動作感測器10的運作方式可歸類為動作偵測流程。如第7圖所示,微波動作感測器10被啟始並操作於正常模式。在開始物體動作偵測之前,偵測器切換微波動作感測器10至偵測模式,使傳輸放大器TX-AMP抑制偵測訊號。換句話說,傳輸放大器TX-AMP被切換至前述的抑制模式,或是微波動作感測器10的物體動作偵測 功能被關閉。在偵測模式下,若輸入至偵測器的混合訊號的訊號強度超過預設閥值T1,偵測器控制振盪器OSC變更偵測訊號的頻率(如第5圖所示的從振盪頻率F1至振盪頻率F4)。若輸入至偵測器的混合訊號的訊號強度沒有超過預設閥值T1,偵測器切換微波動作感測器10至正常模式。因此,傳輸放大器TX-AMP被啟動與切換至上述的放大模式,即微波動作感測器10的物體動作偵測功能被開啟。另一方面,在正常模式下,若輸入至偵測器的混合訊號的訊號強度超過預設閥值T2,偵測器判斷偵測到物體。反之,若輸入至偵測器的混合訊號的訊號強度沒有超過預設閥值T2,偵測器判斷未偵測到物體。
此外,如第8圖所示,當偵測器在預設期間內持續偵測到物體(如輸入至偵測器的混合訊號的訊號強度持續大於預設閥值T2),偵測器將微波動作感測器10從正常模式切換至偵測模式,以抑制傳輸放大器TX-AMP的輸出,或關閉微波動作感測器10的物體動作偵測功能。
在一實施例中,振盪器OSC可為自由振盪器,即利用頻率偏移方式,操作於目標頻率。因此,當偵測器控制振盪器OSC改變偵測訊號的頻率(如第5圖所示的從振盪頻率F1至振盪頻率F4),振盪器OSC可以根據預定的頻率間距來進行逐步調整頻率、或根據一組預定的頻率調整步驟來進行逐步頻率調整操作,以產生不同頻率的偵測訊號。換句話說,由於無法精確控制微波動作感測器10的自由振盪器的頻率,振盪器OSC可以使用預定的頻率間距或者以一組預定的頻率調整步驟,來重複改變頻率,直到沒有偵測到干擾訊號。
關於自適應頻率控制的實際應用,請參見第9~12圖。在第9圖中,振盪器OSC根據預設的頻率間距,逐步減少振盪頻率。換句話說,振盪器OSC透 過移動預定的頻率來改變振盪頻率。舉例來說,振盪頻率從頻率f1變更至頻率f2,接著偵測器判斷是否有干擾發生在頻率f2(如上述透過比較混合訊號的訊號強度與預設閥值)。若偵測器在頻率f2沒有偵測到干擾訊號,偵測器將微波動作感測器10從偵測模式,切換至正常模式,以在頻率f2偵測物體動作。相反的,若偵測器在頻率f2偵測到干擾訊號,偵測器控制振盪器OSC將振盪頻率從頻率f2變更至頻率f3,再進行干擾訊號偵測。換句話說,微波動作感測器10重複振盪頻率移位操作,直到在振盪頻率中未發生干擾現象。
在第10圖中,振盪器OSC根據預設的頻率間距,逐步增加振盪頻率。也就是說,振盪器OSC透過移動預設的頻率間距來改變振盪頻率,因此振盪頻率從頻率f1變更為頻率f2,同理,如果在頻率f2發生干擾則再變為頻率f3,並以此類推。
在第11圖中,振盪器透過一組預定的頻率調整步驟,變更振盪頻率。舉例來說,振盪器OSC將振盪頻率從頻率f1降低為頻率f2(如減少預設的頻率間距),接著再將振盪頻率從頻率f2增加為頻率f3(如增加二倍預設的頻率間距),並以此類推。同理,如第12圖所示,振盪器OSC可將振盪頻率從頻率f1增加為頻率f2(如增加預設的頻率間距),接著再將振盪頻率從頻率f2減少為頻率f3(如減少二倍預設的頻率間距)。換句話說,微波動作感測器10重複振盪頻率移位操作直到在振盪頻率中沒有干擾發生,以有效地減少因非預期的干擾訊號所引起的誤報。
第13圖為本發明實施例一微波動作感測器的示意圖。在第13圖中,低通濾波器107耦接混頻器及偵測器,以根據預設的截止頻率,過濾混合訊號, 以避免超出頻率範圍的干擾訊號。此外,為了實現傳輸放大器TX-AMP切換到抑制模式或關閉微波動作感測器10的物體動作偵測功能,本發明提出開關108耦接到傳輸放大器TX-AMP,用來將傳輸放大器TX-AMP切換到放大模式(即連接到發射器TX)以在正常模式下輸出偵測信號,以及將傳輸放大器TX-AMP切換到抑制模式(即通過電阻器106耦接接地點GND),以在偵測模式下停止輸出偵測訊號。
請參見第14圖,其為本發明實施例一電子裝置140的示意圖。電子裝置140包含微波動作感測器10、干擾源30(如Wi-Fi路由器)及控制器40(如前述的微控制器)。值得注意的是,控制器40用來控制微波動作感測器10的頻率設定。詳細來說,控制器40能夠獲得由干擾源30使用的無線通道(radio channel)佔據(occupied)高頻側或低頻側。因此,當干擾源30使用的無線通道佔據高頻側,控制器40能夠控制微波動作感測器10(例如通過偵測器)降低工作頻段,或者當干擾源30使用的無線通道佔據低頻側,則控制微波動作感測器10增加工作頻段。換句話說,透過微波動作感測器10改變振盪頻率,以更有效地減少干擾引起的誤報。
進一步來說,當微波動作感測器10的振盪器OSC以自由振盪器(free-running oscillator)實作時,電子裝置140的控制器40無法得知微波動作感測器10正確的工作頻率,但是可知道微波動作感測器10佔用了哪個Wi-Fi通道。請參見第15圖,舉例來說,Wi-Fi通道最低通道是在5.725GHz,以及最高通道是在5.875GHz。因此,振盪器OSC不應移動振盪頻率至小於Wi-Fi最低通道(如5.725GHz)和超過Wi-Fi最高通道(如5.875GHz)。此外,如第16圖所示,當控制器40確定干擾源30在高頻側操作,控制器40控制微波動作感測器10/振盪器OSC 降低振盪頻率(如上述的預定頻率間距)。另一方面,當控制器40確定干擾源30未在高頻側操作,控制器40進一步判斷干擾源30是否在低頻側操作。如果是,控制器40控制微波動作感測器10/振盪器OSC增加振盪頻率。否則,控制器40控制微波動作感測器10/振盪器OSC增加或減少振盪頻率(如上述的預定頻率調整步驟)。關於預定頻移的詳細描述可參見上述,在此不再贅述。
上述所有步驟,包含所建議的步驟,可透過硬體、韌體(即硬體裝置與電腦指令的組合,硬體裝置中的資料為唯讀軟體資料)或電子系統等方式實現。舉例來說,硬體可包含類比、數位及混合電路(即微電路、微晶片或矽晶片)。電子系統可包含系統單晶片(system on chip,SOC)、系統封裝(system in package,Sip)、電腦模組(computer on module,COM)及微波動作感測器10。
綜上所述,本發明提供具有自適應微波頻率控制功能的微波動作偵測方法,以降低干擾源造成的誤報。詳細來說,本發明提出在偵測模式下,抑制傳輸放大器的輸出,藉以有效判斷是否有干擾源的存在。因此,微波動作感測器可據以調整偵測訊號的頻率。
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。
20:流程
201~205:步驟

Claims (19)

  1. 一種自適應微波頻率控制的動作偵測方法,用於一微波動作感測器中,該動作偵測方法包含有:抑制用來進行動作偵測的一第一偵測訊號的輸出,其中該第一偵測信號是以一第一頻率產生;判斷在抑制該第一偵測訊號的輸出期間,是否在該第一頻率偵測到一第一干擾訊號;當判斷在抑制該第一偵測訊號的輸出期間,在該第一頻率偵測到該第一干擾訊號,產生具有與該第一頻率不同的一第二頻率的一第二偵測訊號,並抑制該第二偵測訊號的輸出;判斷在抑制該第二偵測訊號的輸出期間,是否在該第二頻率偵測到一第二干擾訊號;以及當判斷在抑制該第二偵測訊號的輸出期間,在該第二頻率未偵測到該第二干擾訊號,輸出用於動作偵測的該第二偵測訊號;其中,當判斷在抑制該第二偵測訊號的輸出期間,在該第二頻率偵測到該第二干擾訊號,不輸出用於動作偵測的該第二偵測訊號。
  2. 如請求項1所述的動作偵測方法,其中判斷在抑制該第一偵測訊號的輸出期間,是否在該第一頻率偵測到該第一干擾訊號的步驟包含有:在抑制該第一偵測訊號的輸出期間,判斷該微波動作感測器是否接收到視為該第一干擾訊號的一第一訊號;以及至少以下步驟之一:當在抑制該第一偵測訊號的輸出期間,該微波動作感測器未接收到該第一訊號,判斷未在該第一頻率偵測到該第一干擾訊號;當在抑制該第一偵測訊號的輸出期間,該微波動作感測器接收到該第一訊 號,但一第一混合訊號的訊號強度低於一第一閥值,判斷未偵測到該第一干擾訊號,其中該第一混合訊號是根據該第一偵測訊號及接收到的該第一訊號產生;以及當在抑制該第一偵測訊號的輸出期間,該微波動作感測器接收到該第一訊號,但該第一混合訊號的訊號強度高於該第一閥值時,判斷偵測到該第一干擾訊號。
  3. 如請求項2所述的動作偵測方法,其中在抑制該第一偵測訊號的輸出期間,判斷該微波動作感測器是否接收到視為該第一干擾訊號的該第一訊號的步驟包含有:對該第一混合訊號進行一低通濾波操作;當該第一混合訊號的一第四頻率低於該低通濾波操作的一第一截止頻率,判斷該微波動作感測器接收到該第一訊號;以及當該第一混合訊號的該第四頻率高於該第一截止頻率,判斷該微波動作感測器未接收到該第一訊號;其中,判斷在抑制該第二偵測訊號的輸出期間,是否在該第二頻率偵測到該第二干擾訊號的步驟包含有:在抑制該第二偵測訊號的輸出期間,判斷該微波動作感測器是否接收到視為該第二干擾訊號的一第二訊號;對一第二混合訊號進行該低通濾波操作,其中該第二混合訊號是根據該第二偵測訊號及接收到的該第二訊號產生;當該第二混合訊號的一第五頻率低於該低通濾波操作的一第二截止頻率,判斷該微波動作感測器接收到該第二訊號;以及當該第二混合訊號的該第五頻率高於該第二截止頻率,判斷該微波動作感測器 未接收到該第二訊號。
  4. 如請求項1所述的動作偵測方法,其中抑制用來進行動作偵測的該第一偵測訊號的輸出的步驟有:週期性地停止輸出該第一偵測訊號;或降低該第一偵測訊號的一輸出功率。
  5. 如請求項1所述的動作偵測方法,更包含有:當在抑制該第一偵測訊號的輸出期間,在該第一頻率未偵測到該第一干擾訊號,輸出用於動作偵測的該第一偵測訊號;接收對應輸出後的該第一偵測訊號的一反射訊號;以及當一第三混合訊號的訊號強度在一時間週期內,持續高於一第三閥值,抑制該第一偵測訊號的輸出,其中該第三混合訊號是根據該第一偵測訊號及接收到的該反射訊號產生。
  6. 如請求項1所述的動作偵測方法,其中當判斷在抑制該第一偵測訊號的輸出期間,在該第一頻率偵測到該第一干擾訊號,產生具有與該第一頻率不同的該第二頻率的該第二偵測訊號的步驟包含有:根據一第一頻率間距或一第一組頻率調整步驟,減少或增加該第一偵測訊號的該第一頻率,以產生該第二偵測訊號;以及其中該動作偵測方法更包含有:當在抑制該第二偵測訊號的輸出期間,在該第二頻率偵測到該第二干擾訊號,產生具有一第三頻率的一第三偵測訊號,其中該第三頻率與該第一及第二頻率不同;以及 根據一第二頻率間距或一第二組頻率調整步驟,減少或增加該第二偵測訊號的該第二頻率,以產生該第三偵測訊號。
  7. 如請求項6所述的動作偵測方法,其中根據該第一頻率間距或該第一組頻率調整步驟,減少或增加該第一偵測訊號的該第一頻率,以產生該第二偵測訊號,或根據該第二頻率間距或該第二組頻率調整步驟,減少或增加該第二偵測訊號的該第二頻率,以產生該第三偵測訊號的步驟包含有:根據該第一頻率間距減少該第一偵測訊號的該第一頻率,以產生該第二偵測訊號;以及根據該第二頻率間距增加該第二偵測訊號的該第二頻率,以產生該第三偵測訊號;或根據該第一頻率間距增加該第一偵測訊號的該第一頻率,以產生該第二偵測訊號;以及根據該第二頻率間距減少該第二偵測訊號的該第二頻率,以產生該第三偵測訊號。
  8. 如請求項1所述的動作偵測方法,更包含有:當在抑制該第一偵測訊號的輸出期間,在該第一頻率未偵測到該第一干擾訊號,輸出用於動作偵測的該第一偵測訊號;接收對應輸出後的該第一偵測訊號的一反射訊號;以及根據一第三混合訊號的訊號強度,判斷是否偵測到一物體,其中該第三混合訊號是根據該第一偵測訊號及接收到的該反射訊號產生。
  9. 如請求項1所述的動作偵測方法,更包含有: 當在抑制該第二偵測訊號的輸出期間,在該第二頻率偵測到該第二干擾訊號,產生具有一第三頻率的一第三偵測訊號,其中該第三頻率與該第一及第二頻率不同。
  10. 如請求項1所述的動作偵測方法,其中判斷在抑制該第二偵測訊號的輸出期間,是否在該第二頻率偵測到該第二干擾訊號的步驟包含有:在抑制該第二偵測訊號的輸出期間,判斷該微波動作感測器是否接收到視為該第二干擾訊號的一第二訊號;以及至少以下步驟之一:當在抑制該第二偵測訊號的輸出期間,該微波動作感測器未接收到該第二訊號,判斷未在該第二頻率偵測到該第二干擾訊號;當在抑制該第二偵測訊號的輸出期間,該微波動作感測器接收到該第二訊號,但一第二混合訊號的訊號強度低於一第二閥值,判斷未偵測到該第二干擾訊號,其中該第二混合訊號是根據該第二偵測訊號及接收到的該第二訊號產生;以及當在抑制該第一偵測訊號的輸出期間,該微波動作感測器接收到該第二訊號,但該第二混合訊號的訊號強度高於該第二閥值時,判斷偵測到該第二干擾訊號。
  11. 如請求項1所述的動作偵測方法,其中當判斷在抑制該第一偵測訊號的輸出期間,在該第一頻率偵測到該第一干擾訊號,產生具有與該第一頻率不同的該第二頻率的該第二偵測訊號的步驟包含有:判斷一干擾源所佔用的一無線通道是在高頻側或低頻側,其中該第一干擾訊號是由該干擾源產生,以及該第一干擾訊號的該第一頻率在該無線通道內; 當判斷該干擾源所佔用的該無線通道在高頻側,根據一第一頻率間距或一第一組頻率調整步驟,減少該第一偵測訊號的該第一頻率,以產生該第二偵測訊號;以及當判斷該干擾源所佔用的該無線通道在低頻側,根據一第二頻率間距或一第二組頻率調整步驟,增加該第一偵測訊號的該第一頻率,以產生該第二偵測訊號。
  12. 如請求項11所述的動作偵測方法,其中該干擾源是一無線區域網路設備或其他微波動作感測器。
  13. 一微波動作感測器,其中該微波動作感測器具自適應微波頻率控制功能,以及可操作於一正常模式或一偵測模式,該微波動作感測器包含有:一振盪器,用來於該正常模式產生具有一第一頻率的一第一偵測訊號,以及於該偵測模式產生具有一第二頻率的一第二偵測訊號,其中該第一頻率與第二頻率不同;一傳輸放大器,耦接該振盪器,用來於該正常模式,放大該第一偵測訊號及輸出放大的該第一偵測訊號,以進行動作偵測,以及於該偵測模式抑制該第一偵測訊號的輸出;一混頻器,耦接該振盪器,用來於該正常模式,根據該第一偵測訊號及一反射訊號,產生一第一混合訊號,其中該反射訊號是根據一物體的動作事件及該第一偵測訊號而產生,以及用來於該偵測模式,根據該第一偵測訊號及一干擾訊號,產生一第二混合訊號;以及一偵測器,耦接該混頻器及該振盪器,用來根據該第一混合訊號及該第二混合訊號,切換該微波動作感測器於該正常模式及該偵測模式之間; 其中,該偵測器更用來當該第一混合訊號的訊號強度在一時間週期內持續大於一第一閥值,將該微波動作感測器從該正常模式切換至該偵測模式,以及用來當該第二混合訊號的訊號強度小於一第二閥值,將該微波動作感測器從該偵測模式切換至該正常模式。
  14. 如請求項13所述的該微波動作感測器,更包含有:一低通濾波器,耦接該混頻器及該偵測器,用來根據一預設截止頻率,過濾該第一混合訊號及該第二混合訊號。
  15. 如請求項13所述的該微波動作感測器,更包含有:一切換器,耦接該傳輸放大器,用來於該正常模式,將該傳輸放大器切換至一放大模式,以輸出該第一偵測訊號,以及於該偵測模式,將該傳輸放大器切換至一抑制模式,以抑制該第一偵測訊號輸出。
  16. 如請求項13所述的該微波動作感測器,其中該振盪器用來根據一頻率間距或一組頻率調整步驟,減少或增加該第一偵測訊號的該第一頻率,以產生該第二偵測訊號。
  17. 如請求項16所述的該微波動作感測器,其中該振盪器用來根據一第一頻率間距,減少該第一偵測訊號的該第一頻率,以產生該第二偵測訊號,以及更用來根據一第二頻率間距,增加該第二偵測訊號的該第二頻率,以產生一第三偵測訊號;或用來根據該第一頻率間距,增加該第一偵測訊號的該第一頻率,以產生該第二偵測訊號,以及更用來根據該第二頻率間距,減少該第二偵測訊號的該第二頻率,以產生該第三偵測訊號。
  18. 如請求項13所述的該微波動作感測器,其中該偵測器用來當該第一混合訊號的訊號強度大於一閥值,判斷偵測到該物體,以及當該第一混合訊號的訊號強度小於該閥值,判斷未偵測到該物體。
  19. 如請求項13所述的該微波動作感測器,其中該振盪器是一自由振盪器,以及基於頻率偏移方式,操作一目標頻率。
TW108125910A 2018-07-23 2019-07-23 自適應微波頻率控制的動作偵測方法及相關裝置 TWI734148B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862701850P 2018-07-23 2018-07-23
US62/701,850 2018-07-23
US16/453,984 2019-06-26
US16/453,984 US11656321B2 (en) 2018-07-23 2019-06-26 Method of microwave motion detection with adaptive frequency control and related devices

Publications (2)

Publication Number Publication Date
TW202022400A TW202022400A (zh) 2020-06-16
TWI734148B true TWI734148B (zh) 2021-07-21

Family

ID=69162376

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108125910A TWI734148B (zh) 2018-07-23 2019-07-23 自適應微波頻率控制的動作偵測方法及相關裝置

Country Status (3)

Country Link
US (1) US11656321B2 (zh)
CN (1) CN110764077B (zh)
TW (1) TWI734148B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220113401A1 (en) * 2020-10-13 2022-04-14 Google Llc Radar-based localization from interference
TWI764420B (zh) * 2020-12-09 2022-05-11 立積電子股份有限公司 雷達偵測器以及使用雷達偵測器的干擾抑制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080165059A1 (en) * 2005-03-14 2008-07-10 Alfred E. Mann Foundatiion For Scientific Research System and Method for Locating Objects and Communicating With the Same
TW200848766A (en) * 2007-06-14 2008-12-16 Chung Shan Inst Of Science Transceiver of a frequency modulated continuous wave radar
TWI514193B (zh) * 2014-12-25 2015-12-21 Univ Nat Sun Yat Sen 動作感測裝置
TW201636638A (zh) * 2015-04-08 2016-10-16 立積電子股份有限公司 偵測器
WO2018033574A1 (en) * 2016-08-16 2018-02-22 Resmed Sensor Technologies Limited Digital radio frequency motion detection sensor

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5168215A (en) * 1991-11-15 1992-12-01 Lockheed Sanders, Inc. Instantaneous frequency measurement apparatus and method
US5280288A (en) * 1992-08-14 1994-01-18 Vorad Safety Systems, Inc. Interference avoidance system for vehicular radar system
US5682164A (en) * 1994-09-06 1997-10-28 The Regents Of The University Of California Pulse homodyne field disturbance sensor
DE10059673A1 (de) * 2000-12-01 2002-06-06 Bosch Gmbh Robert Impuls-Radarverfahren sowie Impuls-Radarsensor und System
DE10108582A1 (de) * 2001-02-22 2002-09-05 Bosch Gmbh Robert Verfahren zum Erkennen gestörter Zustände einer Radareinrichtung und Radareinrichtung
US6426716B1 (en) * 2001-02-27 2002-07-30 Mcewan Technologies, Llc Modulated pulse doppler sensor
JP4007498B2 (ja) * 2002-11-15 2007-11-14 三菱電機株式会社 車載用レーダ装置
US7683827B2 (en) * 2004-12-15 2010-03-23 Valeo Radar Systems, Inc. System and method for reducing the effect of a radar interference signal
JPWO2006123499A1 (ja) * 2005-05-16 2008-12-25 株式会社村田製作所 レーダ
US20070171122A1 (en) * 2006-01-25 2007-07-26 Fujitsu Ten Limited Radar apparatus and interference detection method
JP5226185B2 (ja) * 2006-02-15 2013-07-03 富士通株式会社 探知測距装置
JP4275694B2 (ja) * 2006-10-27 2009-06-10 三菱電機株式会社 レーダ装置
US7969349B2 (en) * 2009-04-06 2011-06-28 Raytheon Company System and method for suppressing close clutter in a radar system
US9229102B1 (en) * 2009-12-18 2016-01-05 L-3 Communications Security And Detection Systems, Inc. Detection of movable objects
DE102012021240A1 (de) * 2012-10-27 2014-04-30 Valeo Schalter Und Sensoren Gmbh Verfahren zum Unterdrücken einer Interferenz in einem Empfangssignal einesRadarsensors eines Kraftfahrzeugs und entsprechende Fahrerassistenzeinrichtung
WO2014125958A1 (ja) * 2013-02-12 2014-08-21 古野電気株式会社 レーダ装置、及び干渉抑制方法
US9279881B2 (en) * 2013-03-12 2016-03-08 Escort Inc. Radar false alert reduction
JP6176007B2 (ja) * 2013-09-06 2017-08-09 富士通株式会社 探知測距装置
DE102014112806A1 (de) * 2014-09-05 2016-03-10 Hella Kgaa Hueck & Co. Radarsensor
DE102014114107A1 (de) * 2014-09-29 2016-03-31 Hella Kgaa Hueck & Co. Radarsensor
CN107438774B (zh) * 2015-04-20 2021-08-24 瑞思迈传感器技术有限公司 多传感器射频检测
EP3286577B1 (en) * 2015-04-20 2021-03-17 ResMed Sensor Technologies Limited Detection and identification of a human from characteristic signals
EP3139139B1 (de) * 2015-09-01 2021-11-10 VEGA Grieshaber KG Füllstandmessgerät mit störsignal-erfassungsmodus
US9992722B2 (en) * 2015-12-14 2018-06-05 Huawei Technologies Canada Co., Ltd. Reconfigurable multi-mode and multi-bands radio architecture and transceiver
US10411716B2 (en) * 2016-06-06 2019-09-10 Richwave Technology Corp. Subsampling motion detector for detecting motion of object under measurement
US10340958B2 (en) * 2016-12-28 2019-07-02 Intel IP Corporation Unique frequency plan and baseband design for low power radar detection module
EP3502732B1 (en) * 2017-12-21 2021-10-20 Nxp B.V. Radar unit and method for detecting an existence of interference in a radar unit
CN111190170B (zh) * 2018-10-25 2023-05-16 华为技术有限公司 一种探测方法、装置以及系统
DE102018128334B3 (de) * 2018-11-13 2020-04-09 Infineon Technologies Ag Vorrichtung und verfahren zum einstellen eines untedrückungssignals zum unterdrücken eines hf-störsignals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080165059A1 (en) * 2005-03-14 2008-07-10 Alfred E. Mann Foundatiion For Scientific Research System and Method for Locating Objects and Communicating With the Same
TW200848766A (en) * 2007-06-14 2008-12-16 Chung Shan Inst Of Science Transceiver of a frequency modulated continuous wave radar
TWI514193B (zh) * 2014-12-25 2015-12-21 Univ Nat Sun Yat Sen 動作感測裝置
TW201636638A (zh) * 2015-04-08 2016-10-16 立積電子股份有限公司 偵測器
WO2018033574A1 (en) * 2016-08-16 2018-02-22 Resmed Sensor Technologies Limited Digital radio frequency motion detection sensor

Also Published As

Publication number Publication date
CN110764077A (zh) 2020-02-07
US20200025867A1 (en) 2020-01-23
CN110764077B (zh) 2023-11-10
TW202022400A (zh) 2020-06-16
US11656321B2 (en) 2023-05-23

Similar Documents

Publication Publication Date Title
TWI753282B (zh) 基於多普勒效應原理的微波探測器及抗輻射干擾方法
TWI734148B (zh) 自適應微波頻率控制的動作偵測方法及相關裝置
US20120162636A1 (en) Proximity detector including anti-falsing mechanism
JP5224727B2 (ja) Dme地上装置
US20090243915A1 (en) Microwave sensor apparatus and microwave sensor system
US11709243B2 (en) Occupancy detection apparatus using multiple antenna motion sensing
JP2021532674A (ja) 無線通信機に対するvswr検出を介した送信機の動的rf電力制御
CN110632565A (zh) 自激自适应式微波探测器及其自适应方法
AU2017320225B2 (en) ASIC implemented motion detector
EP3716229B1 (en) System and method of reducing a communication range
KR20220086668A (ko) 적응형 동적 안전 관리 기능을 가지는 무선 파워 전송 시스템
KR101958466B1 (ko) Rf 송수신기 보호장치 및 이를 이용한 rf 송수신 시스템
JP2001229474A (ja) 受信回路及びそれを用いたセキュリティシステム
US3673590A (en) Device to detect motion
JP2009273053A (ja) 送信装置、受信装置及び通信システム
JP2010078375A (ja) 電波式アクティブセンサ
KR20140112319A (ko) 자동 정합 회로를 근거로 한 rfid 리더 및 그의 제어 방법
CN115606203A (zh) 用于配置射频感测网络的网络设备的配置模块
CN109564715B (zh) 具有防掩蔽保护的运动传感器
KR101615693B1 (ko) 소형 중계기의 발진 제어 방법 및 이를 이용한 중계기 장치
JP5222190B2 (ja) ドップラセンサ
WO2021078299A1 (zh) 自适应式微波探测器和自适应方法
JP2006170816A (ja) パルス諸元検出回路
KR102114661B1 (ko) 반사판 기반 레이더 감지기 및 이의 자가 보정 방법
JP3039411U (ja) 自動車盗難警報用レーダセンサ装置