TWI731060B - Split type array camera module and its assembling and application method - Google Patents

Split type array camera module and its assembling and application method Download PDF

Info

Publication number
TWI731060B
TWI731060B TW106111816A TW106111816A TWI731060B TW I731060 B TWI731060 B TW I731060B TW 106111816 A TW106111816 A TW 106111816A TW 106111816 A TW106111816 A TW 106111816A TW I731060 B TWI731060 B TW I731060B
Authority
TW
Taiwan
Prior art keywords
module
calibration
split
array camera
camera module
Prior art date
Application number
TW106111816A
Other languages
Chinese (zh)
Other versions
TW201736934A (en
Inventor
陳洪
丁亮
趙波杰
方銀麗
鐘淩
張勝
戚楊迪
蔣恒
Original Assignee
大陸商寧波舜宇光電信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610214905.8A external-priority patent/CN107302670B/en
Priority claimed from CN201610585367.3A external-priority patent/CN107645624A/en
Application filed by 大陸商寧波舜宇光電信息有限公司 filed Critical 大陸商寧波舜宇光電信息有限公司
Publication of TW201736934A publication Critical patent/TW201736934A/en
Application granted granted Critical
Publication of TWI731060B publication Critical patent/TWI731060B/en

Links

Images

Landscapes

  • Studio Devices (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)

Abstract

一分體式陣列攝像模組及其組裝方法,該模組包括多顆子模組以及一 組裝支架。所述多顆子模組中一顆為參考模組,其餘子模組為校準模組。所述參考模組和所述每個校準模組分別組裝於所述組裝支架,其中所述參考模組和每個校準模組則分別為獨立且合格的單體攝像模組。 A split array camera module and its assembling method. The module includes a plurality of sub-modules and a Assemble the bracket. One of the multiple sub-modules is a reference module, and the remaining sub-modules are calibration modules. The reference module and each calibration module are assembled on the assembly bracket respectively, wherein the reference module and each calibration module are independent and qualified single camera modules.

Description

分體式陣列攝像模組及其組裝和應用方法 Split type array camera module and its assembling and application method

本發明涉及一攝像模組,尤其涉及一分體式陣列攝像模組,其適用於移動終端,以提高生產效率和良率,特別還提高資源利用率。 The present invention relates to a camera module, in particular to a split array camera module, which is suitable for mobile terminals to improve production efficiency and yield, and in particular to improve resource utilization.

隨著科技的發展,智慧型攜帶裝置可以說已經是人們現代不可或缺的器具,其中像是手機或平板電腦人手一台已是非常普遍常見的情況。 With the development of technology, smart portable devices can be said to have become indispensable devices for people in modern times. Among them, a mobile phone or a tablet computer is a very common situation.

特別地,由於科技進步,使裝置在智慧型攜帶裝置中的相機功能品質不斷提升,因此人們逐漸的使用智慧型攜帶裝置中的相機去取代傳統相機去記錄生活的習慣。特別地,在各種硬體規格不斷的進化下,手機的相機已經取代了大部份的相機市場,但是擁有大鏡頭的專業相機可以比小鏡頭的手機相機收集更多的光資訊,因此專業相機所拍攝出的畫質原則上是優於小鏡頭的手機相機,但是,也因為專業相機的鏡頭尺寸、重量和價格對於要將專業相機的鏡頭應用於隨身攜帶的手機是非常不易的。 In particular, due to advances in technology, the quality of the camera functions in smart portable devices has been continuously improved. Therefore, people are gradually using cameras in smart portable devices to replace traditional cameras to record their daily habits. In particular, with the continuous evolution of various hardware specifications, mobile phone cameras have replaced most of the camera market, but professional cameras with large lenses can collect more light information than mobile phones with small lenses. Therefore, professional cameras The quality of the shots is in principle better than that of a small-lens mobile phone camera. However, because of the lens size, weight and price of a professional camera, it is very difficult to apply the lens of a professional camera to a portable mobile phone.

特別地在2014年,隨著宇龍發佈攜帶雙攝的智慧手機,攝像模組進入了雙攝時代。因此,將可利用多顆的小鏡頭架構出陣列式攝像模組,以代替單一笨重和昂貴的專業相機的鏡頭應用于智慧型攜帶裝置。 Especially in 2014, as Yulong released a dual-camera smart phone, the camera module entered the dual-camera era. Therefore, an array camera module can be constructed using multiple small lenses to replace a single bulky and expensive professional camera lens for smart portable devices.

隨著雙攝像頭及多攝像頭的應用技術開發,其優勢越來越被手機終端商或消費電子廠商看重,特別是運用於手機、數位相機這樣可隨身攜帶的電子式產品,而且在重量和價格上也極具競爭性。 With the development of dual-camera and multi-camera application technology, its advantages are increasingly valued by mobile phone terminal manufacturers or consumer electronics manufacturers, especially for portable electronic products such as mobile phones and digital cameras, and in terms of weight and price. It is also very competitive.

值得一提的,光學變焦一直是單反相機的專屬功能,手機攝像頭業屆裡一直期望能夠把光學變焦的功能移植到手機中,縮小和單反相機的差距,真正取代其拍照地位。 It is worth mentioning that optical zoom has always been the exclusive function of SLR cameras. In the mobile phone camera industry, it has always been expected that the function of optical zoom can be transplanted into mobile phones, narrowing the gap with SLR cameras, and truly replacing its camera status.

在手機攝像頭技術發展的過程中也出現過光學變焦功能的攝像頭,這些攝像頭大多是通過鏡片間距離改變實現變焦功能,此類攝像頭的致命缺陷在於抗機械應力能力差,從而無法被終端手機廠商或消費電子廠商所接受。 In the process of mobile phone camera technology development, cameras with optical zoom function have also appeared. Most of these cameras realize the zoom function by changing the distance between the lenses. The fatal flaw of this type of camera is that it has poor resistance to mechanical stress and cannot be used by terminal mobile phone manufacturers. Accepted by consumer electronics manufacturers.

然而通過不同焦距攝像頭間自由切換的方式實現變焦功能則避免了這個最大的問題,此類設計的攝像頭鏡頭和鏡片結構完全和尋常手機攝像頭無異,使得光學變焦的功能在手機上實現。 However, the realization of the zoom function by freely switching between cameras of different focal lengths avoids this biggest problem. The lens and lens structure of this type of design is completely the same as that of ordinary mobile phone cameras, enabling the optical zoom function to be realized on mobile phones.

但是,目前市場上的陣列攝像模組在產生製造時有良率低下的問題,這樣無疑是增加了產品的生產製造成本,因為通常在陣列攝像模組中的一個攝像頭(或鏡頭)出現不良,即會導致整個陣列攝像模組的報廢,而且制程的技術公差能力和物料水準完全決定了多個攝像的光軸角度。 However, the current array camera modules on the market have the problem of low yield during manufacturing, which undoubtedly increases the production and manufacturing cost of the product, because usually one camera (or lens) in the array camera module is defective. That will lead to the scrapping of the entire array camera module, and the technical tolerance capability and material level of the manufacturing process completely determine the optical axis angles of multiple cameras.

因為,所謂陣列攝像模組在設計的概念是利用多個鏡頭去收集影像資訊,並將大量的資訊進行處理後所組構出的影像,當其中一個鏡頭出現光學差異、機械定位的誤差或是電子的雜訊等問題,即會造成整組的陣列攝像模組無法產生完整清晰的影像,因此造成制程時間和成本的浪費。 Because the concept of the so-called array camera module in the design is to use multiple lenses to collect image information and process a large amount of information to form an image. When one of the lenses has an optical discrepancy, mechanical positioning error or Electronic noise and other problems will cause the entire array of camera modules to be unable to produce a complete and clear image, resulting in waste of process time and cost.

另外,現今亦有將棱鏡應用於攝像模組的相關產品問市,像在中國專利CN201480051999.0公開了反射鏡傾斜致動,其中設有多個鏡頭組和反射鏡及支承反射鏡的基座。 In addition, there are also related products that apply prisms to camera modules on the market today. For example, Chinese patent CN201480051999.0 discloses a mirror tilt actuation, which is provided with a plurality of lens groups and mirrors and a base supporting the mirror. .

根據該專利,採用不同的樞軸支承反射鏡,並利用磁鐵、FP線圈、霍爾感測器以及彈簧等元件控制反射鏡,避免其在使用過程出現的抖動。但是這種反射鏡傾斜致動結果複雜,零件數量眾多,製造維修複雜。 According to this patent, different pivots are used to support the mirror, and elements such as magnets, FP coils, Hall sensors, and springs are used to control the mirror to avoid jitter during use. However, the result of the tilting actuation of the mirror is complicated, the number of parts is large, and the manufacturing and maintenance are complicated.

本發明的一個目的在於提供一分體式陣列攝像模組及其組裝應用方法,其中所述分體式陣列攝像模組中的單體攝像模組單獨完成製造、組裝和測試過程,互不佔用組裝和測試時間。也就是說,所述單體攝像模組的製造、組裝和測試無需區別于常規模組生產形式,無需私立特殊工序站,以提高生產效率和使生產資源高度利用。 An object of the present invention is to provide a split array camera module and its assembly and application method, wherein the single camera module in the split array camera module completes the manufacturing, assembly and testing processes independently, and does not occupy each other's assembly and testing time. That is to say, the manufacturing, assembly and testing of the single camera module do not need to be different from the conventional module production form, and there is no need for a private special process station, so as to improve production efficiency and make production resources highly utilized.

本發明的另一目的在於提供一分體式陣列攝像模組及其組裝應用方法,其中對所述單體攝像模組完成性能測試合格後再進行所述分體式陣列攝像模組的組裝,大大提升了所述分體式陣列攝像模組成品的良率。 Another object of the present invention is to provide a split array camera module and its assembling and application method, wherein after the performance test of the single camera module is qualified, the split array camera module is assembled, which greatly improves The yield rate of the finished product of the split-array camera module is measured.

本發明的另一目的在於提供一分體式陣列攝像模組及其組裝應用方法,其中自動調整光軸的方式,能夠解決因制程光軸傾斜帶來的光軸不平行問題,一定程度上降低了在雙攝、多攝模組深度標定中的不良比例,並提升了共基板共鏡座雙攝像頭和多攝像頭模組的實際應用效果。 Another object of the present invention is to provide a split array camera module and its assembling and application method, in which the method of automatically adjusting the optical axis can solve the problem of non-parallelism of the optical axis caused by the tilt of the optical axis in the process, and reduce it to a certain extent. The poor ratio in the depth calibration of dual-camera and multi-camera modules has improved the practical application effects of dual-camera and multi-camera modules with a common substrate and common lens mount.

本發明的另一目的在於提供一分體式陣列攝像模組及其組裝應用方法,其中單體攝像模組使用常規的鏡頭,相比單反鏡頭的光學變焦設計原理,無疑光學變焦的雙攝像頭顯得簡單很多,無需複雜的光路設計。 Another object of the present invention is to provide a split array camera module and its assembly and application method. The single camera module uses a conventional lens. Compared with the optical zoom design principle of a single-lens reflex lens, the dual optical zoom camera is undoubtedly simple Many, no complicated optical path design is required.

本發明的另一目的在於提供一分體式陣列攝像模組及其組裝應用方法,其中採用不同FOV的單體攝像模組,這樣相比單反鏡頭的製造工藝而 言,不同FOV的單體攝像模組進行陣列組合相對簡單很多,因此對手機攝像頭製造商的製造能力挑戰也最小。進一步地說,不同FOV的單體攝像模組的組合是實現光學變焦的關鍵,在不同焦距單體攝像模組間的平滑切換實現變焦的體驗效果。 Another object of the present invention is to provide a split array camera module and its assembling and application method, in which single camera modules with different FOVs are used, so that compared with the manufacturing process of a SLR lens In other words, the array combination of single camera modules with different FOVs is relatively simple, and therefore the manufacturing capacity challenge for mobile phone camera manufacturers is minimal. Furthermore, the combination of single camera modules with different FOVs is the key to realizing optical zoom, and the smooth switching between single camera modules with different focal lengths achieves the zoom experience effect.

本發明的另一目的在於提供一分體式陣列攝像模組及其組裝應用方法,其中通過組裝支架組合多個單體攝像模組,以提高良率和可靠度。另外,所述組裝支架為高硬度和高強度材質所制,以保證單體攝像模組間的位置關係不受外力影響變化。換言之,一般的雙攝模組在運輸和裝機過程中容易受外力影響發生視差的變化,而大多針對雙攝開發的光學變焦演算法對雙攝模組的視差有嚴格要求,因此,所述組裝支架能有效保證所述分體式陣列攝像模組的視差能力。 Another object of the present invention is to provide a split array camera module and its assembling and application method, in which multiple single camera modules are combined by an assembly bracket to improve the yield and reliability. In addition, the assembly bracket is made of high-hardness and high-strength materials to ensure that the positional relationship between the single camera modules is not affected by external forces. In other words, general dual-camera modules are easily affected by external forces to change parallax during transportation and installation. Most of the optical zoom algorithms developed for dual-camera have strict requirements on the parallax of the dual-camera module. Therefore, the assembly The bracket can effectively ensure the parallax capability of the split array camera module.

本發明的另一目的在於提供一分體式陣列攝像模組及其組裝應用方法,其中可根據實際終端產品的空間結構放置陀螺儀。換言之,根據手機裝機結構空間差異性可以把陀螺儀的擺放位置進行靈活性調整。 Another object of the present invention is to provide a split array camera module and an assembly and application method thereof, in which the gyroscope can be placed according to the spatial structure of the actual terminal product. In other words, the placement of the gyroscope can be flexibly adjusted according to the spatial difference of the mobile phone installation structure.

為達到以上至少一個目的,本發明提供一分體式陣列攝像模組,包括:多顆子模組,其中至少一顆子模組為參考模組,其餘子模組為校準模組;以及一組裝支架,其中所述參考模組和所述每個校準模組分別組裝於所述組裝支架,其中所述參考模組和每個校準模組則分別為獨立且合格的單體攝像模組。 In order to achieve at least one of the above objectives, the present invention provides a split array camera module, including: a plurality of sub-modules, at least one of which is a reference module, and the remaining sub-modules are calibration modules; and an assembly A bracket, wherein the reference module and each calibration module are assembled on the assembly bracket respectively, and the reference module and each calibration module are independent and qualified single camera modules.

根據本發明的一實施例,其中所述參考模組為一可調焦攝像模組或一定焦攝像模組。 According to an embodiment of the present invention, the reference module is an adjustable focus camera module or a fixed focus camera module.

根據本發明的一實施例,其中所述校準模組為一可調焦攝像模組或一定焦攝像模組。 According to an embodiment of the present invention, the calibration module is an adjustable focus camera module or a fixed focus camera module.

根據本發明的一實施例,其中所述組裝支架具有至少一參考單元和至少一校準單元,其中所述參考模組與所述校準模組分別組裝於所述組裝支架的所述參考單元與所述校準單元。 According to an embodiment of the present invention, the assembly bracket has at least one reference unit and at least one calibration unit, wherein the reference module and the calibration module are respectively assembled in the reference unit and the calibration unit of the assembly bracket.述calibration unit.

根據本發明的一實施例,其中所述校準模組與所述參考模組之間的模組中心距離是1-100mm。 According to an embodiment of the present invention, the module center distance between the calibration module and the reference module is 1-100 mm.

根據本發明的一實施例,其中所述參考模組與所述參考單元的四周組裝間隙為0.01-1mm,所述校準模組與所述校準單元的四周組裝間隙為0.03-3mm。 According to an embodiment of the present invention, the circumferential assembly gap between the reference module and the reference unit is 0.01-1 mm, and the circumferential assembly gap between the calibration module and the calibration unit is 0.03-3 mm.

根據本發明的一實施例,其中所述參考模組還包括至少一參考鏡頭,至少一參考驅動器以及至少一參考感光晶片,其中所述參考鏡頭位於所述參考感光晶片的感光路徑,所述參考鏡頭被安裝於所述參考驅動器。 According to an embodiment of the present invention, the reference module further includes at least one reference lens, at least one reference driver, and at least one reference photosensitive chip, wherein the reference lens is located on the photosensitive path of the reference photosensitive chip, and the reference The lens is mounted on the reference drive.

根據本發明的一實施例,其中所述校準模組還包括至少一校準鏡頭和一至少校準感光晶片,其中所述校準鏡頭位於所述校準感光晶片的感光路徑。 According to an embodiment of the present invention, the calibration module further includes at least one calibration lens and one at least calibration photosensitive chip, wherein the calibration lens is located in the photosensitive path of the calibration photosensitive chip.

根據本發明的一實施例,其中所述參考模組還包括至少一參考底座和至少一參考基板,其中所述參考感光晶片電連接於所述參考基板上,所述參考底座設置於所述參考基板上,所述參考驅動器被安裝於所述參考底座。 According to an embodiment of the present invention, the reference module further includes at least one reference base and at least one reference substrate, wherein the reference photosensitive chip is electrically connected to the reference substrate, and the reference base is disposed on the reference substrate. On the substrate, the reference driver is mounted on the reference base.

根據本發明的一實施例,其中所述校準模組還包括至少一校準底座和至少一校準基板,其中所述校準感光晶片電連接於所述校準基板上。所述校準底座設置於所述校準基板上。 According to an embodiment of the present invention, the calibration module further includes at least one calibration base and at least one calibration substrate, wherein the calibration photosensitive chip is electrically connected to the calibration substrate. The calibration base is arranged on the calibration substrate.

根據本發明的一實施例,其中所述分體式陣列攝像模組包括至少一共同底座,所述參考模組還包括至少一參考基板,所述校準模組還包括至少一校準基板,其中所述參考感光晶片電連接於所述參考基板上,所述校準感光晶片電連接於所述校準基板上,所述共同底座設置於所述參考基板和/或所述校準基板上。 According to an embodiment of the present invention, the split-array camera module includes at least one common base, the reference module further includes at least one reference substrate, and the calibration module further includes at least one calibration substrate, wherein the The reference photosensitive wafer is electrically connected to the reference substrate, the calibration photosensitive wafer is electrically connected to the calibration substrate, and the common base is disposed on the reference substrate and/or the calibration substrate.

根據本發明的一實施例,其中包括至少一共同底座和至少一共同基板,其中所述參考感光晶片和所述校準感光晶片電連接於所述共同基板上,所述共同底座設置於所述共同基板上,所述參考驅動器和所述校準鏡頭都被安裝於所述共同底座。 According to an embodiment of the present invention, it includes at least one common base and at least one common substrate, wherein the reference photosensitive chip and the calibration photosensitive chip are electrically connected to the common substrate, and the common base is disposed on the common substrate. On the substrate, the reference driver and the calibration lens are both mounted on the common base.

根據本發明的一實施例,其中包括一陀螺儀,其設置於所述參考模組的所述參考基板。 According to an embodiment of the present invention, a gyroscope is included, which is disposed on the reference substrate of the reference module.

根據本發明的一實施例,其中包括一陀螺儀,其設置於所述校準模組的所述校準基板。 According to an embodiment of the present invention, a gyroscope is included, which is disposed on the calibration substrate of the calibration module.

根據本發明的一實施例,其中包括一陀螺儀,其電連接於所述參考模組並設置於所述共同基板上。 According to an embodiment of the present invention, a gyroscope is included, which is electrically connected to the reference module and disposed on the common substrate.

根據本發明的一實施例,其中包括一陀螺儀,其電連接所述校準模組地設置於所述共同基板上。 According to an embodiment of the present invention, a gyroscope is included, which is electrically connected to the calibration module and disposed on the common substrate.

根據本發明的一實施例,其中所述參考驅動器系選自由馬達、熱驅動器或微致動器所構成的群組。 According to an embodiment of the present invention, the reference driver is selected from the group consisting of a motor, a thermal driver or a micro-actuator.

根據本發明的一實施例,其中所述校準模組還可包括一校準驅動器,其中所述校準鏡頭被支撐於所述校準驅動器上方。 According to an embodiment of the present invention, the calibration module may further include a calibration driver, and the calibration lens is supported above the calibration driver.

根據本發明的一實施例,其中所述參考模組實施為大視場角鏡頭,其FOV一般在60°~220°之間,所述校準模組實施為小視場角鏡頭,其FOV一般在10°~90°之間。為達到以上至少一個目的,本發明提供一分體式陣列攝像模組,其包括:至少一第一攝像模組,至少一棱鏡模組,至少一第二攝像模組,以及至少一電路板,其中所述第一攝像模組與所述棱鏡模組共平面設置,所述棱鏡模組與所述第二攝像模組光軸同心設置,所述電路板連接在所述第二攝像模組上。 According to an embodiment of the present invention, the reference module is implemented as a lens with a large field of view, and its FOV is generally between 60° and 220°, and the calibration module is implemented as a lens with a small field of view, and its FOV is generally Between 10°~90°. To achieve at least one of the above objectives, the present invention provides a split array camera module, which includes: at least one first camera module, at least one prism module, at least one second camera module, and at least one circuit board, wherein The first camera module and the prism module are arranged coplanar, the prism module and the second camera module are arranged concentrically on the optical axis, and the circuit board is connected to the second camera module.

根據本發明的一實施例,其中所述棱鏡模組包括一棱鏡單元和一棱鏡基座,所述棱鏡單元可轉動地支承在所述棱鏡基座中。 According to an embodiment of the present invention, the prism module includes a prism unit and a prism base, and the prism unit is rotatably supported in the prism base.

根據本發明的一實施例,其中所述第二攝像模組包括至少一第二鏡頭,至少一第二感光晶片,和至少一第二基板,其中其中所述第二鏡頭位於所述第二感光晶片的感光路徑,所述第二感光晶片電連接於所述第二基板上。 According to an embodiment of the present invention, the second camera module includes at least one second lens, at least one second photosensitive chip, and at least one second substrate, wherein the second lens is located on the second photosensitive chip. The photosensitive path of the wafer, and the second photosensitive wafer is electrically connected to the second substrate.

根據本發明的一實施例,其中所述第二攝像模組包括至少一第二驅動器,其中所述第二鏡頭被安裝於所述第二驅動器。 According to an embodiment of the present invention, the second camera module includes at least one second driver, and the second lens is mounted on the second driver.

根據本發明的一實施例,其中所述第二攝像模組包括一攝像外殼,一防抖單元和一支承殼,其中所述攝像外殼、所述第二驅動器、所述防抖單元和所述支承殼相互同軸設置。 According to an embodiment of the present invention, the second camera module includes a camera housing, an anti-shake unit, and a support housing, wherein the camera housing, the second driver, the anti-shake unit, and the The supporting shells are arranged coaxially with each other.

根據本發明的一實施例,其中所述第一攝像模組包括至少一第一鏡頭,至少一第一感光晶片,和至少一第一基板,其中所述鏡頭位於所述感光晶片的感光路徑,所述感光晶片電連接於所述基板上。 According to an embodiment of the present invention, the first camera module includes at least one first lens, at least one first photosensitive chip, and at least one first substrate, wherein the lens is located in the photosensitive path of the photosensitive chip, The photosensitive chip is electrically connected to the substrate.

根據本發明的一實施例,其中所述第一攝像模組包括至少一第一驅動器,其中所述第一鏡頭被安裝於所述第一驅動器。 According to an embodiment of the present invention, the first camera module includes at least one first driver, and the first lens is mounted on the first driver.

根據本發明的一實施例,其中所述棱鏡單元主要包括一棱鏡外殼,一棱鏡,一棱鏡座,一支承軸套和一支承軸,所述棱鏡固定設置在所述棱鏡座中,所述支承軸套固定安裝在所述棱鏡座的下部,所述支承軸可轉動地安裝在所述支承軸套中,所述棱鏡座設置在所述棱鏡外殼中。 According to an embodiment of the present invention, the prism unit mainly includes a prism housing, a prism, a prism holder, a support sleeve and a support shaft, the prism is fixedly arranged in the prism holder, and the support A shaft sleeve is fixedly installed at the lower part of the prism holder, the supporting shaft is rotatably installed in the supporting shaft sleeve, and the prism holder is arranged in the prism housing.

根據本發明的一實施例,其中所述棱鏡座和所述棱鏡之間塗覆膠水以相互粘接。 According to an embodiment of the present invention, glue is applied between the prism holder and the prism to adhere to each other.

根據本發明的一實施例,其中所述棱鏡外殼呈矩形框,具有一底邊框和兩個側邊框,兩個所述側邊框分別各自一端與所述底邊框固定連接,其另一端為向外延伸的自由端,兩個所述自由端之間設有一連接橫樑。 According to an embodiment of the present invention, the prism housing is a rectangular frame with a bottom frame and two side frames, each of the two side frames is fixedly connected to the bottom frame at one end, and the other end is outward. The extended free end is provided with a connecting beam between the two free ends.

根據本發明的一實施例,其中所述棱鏡基座具有一第一攝像模組容納腔和一棱鏡模組容納腔,其中所述第一攝像模組被容納於第一攝像模組容納腔,所述棱鏡單元被容納於棱鏡模組容納腔。 According to an embodiment of the present invention, the prism base has a first camera module accommodating cavity and a prism module accommodating cavity, wherein the first camera module is accommodated in the first camera module accommodating cavity, The prism unit is accommodated in the prism module accommodating cavity.

根據本發明的一實施例,其中所述棱鏡基座包括一中間加強板,其沿著垂直於所述棱鏡基座長度方向並在其整個寬度上貫穿棱鏡基座延伸。 According to an embodiment of the present invention, the prism base includes an intermediate reinforcing plate extending through the prism base along a direction perpendicular to the length of the prism base and across the entire width of the prism base.

根據本發明的一實施例,其中所述第一攝像模組容納腔的側壁具有一第一開口,其用於施布所述第一攝像模組的電源/信號線,其中所述棱鏡模組容納腔的側壁具有一第二開口,其用於施布用於控制所述棱鏡的電源/控制信號線的開口。 According to an embodiment of the present invention, the side wall of the first camera module accommodating cavity has a first opening for distributing the power/signal lines of the first camera module, wherein the prism module The side wall of the accommodating cavity has a second opening, which is used to provide an opening for controlling the power/control signal line of the prism.

根據本發明的一實施例,其中所述棱鏡模組容納腔的一側設有一連接壁,其表面上設有至少一個定位柱或定位孔,以用於與所述第二攝像模組精准定位的連接。 According to an embodiment of the present invention, a connecting wall is provided on one side of the prism module accommodating cavity, and at least one positioning post or positioning hole is provided on the surface for precise positioning with the second camera module Connection.

根據本發明的一實施例,其中所述攝像外殼具有圍繞形成中空矩形柱的一外殼部,固定連接在所述外殼部一端的一前面板,以及在所述外殼部側面上形成兩個凹陷的兩個連接部。 According to an embodiment of the present invention, the camera housing has a housing part surrounding a hollow rectangular column, a front panel fixedly connected to one end of the housing part, and two recessed parts formed on the side surface of the housing part. Two connecting parts.

根據本發明的一實施例,其中所述攝像外殼包括一光軸開孔和至少一定位孔或定位柱,其中所述光軸開孔設置於所述前面板中央,所述定位孔或定位柱設置於所述前面板上。 According to an embodiment of the present invention, the camera housing includes an optical axis opening and at least one positioning hole or positioning post, wherein the optical axis opening is provided in the center of the front panel, and the positioning hole or positioning post Set on the front panel.

根據本發明的一實施例,其中所述定位柱位於所述定位孔中,所述自由端與所述連接部相互配合並相互固定連接。 According to an embodiment of the present invention, the positioning column is located in the positioning hole, and the free end and the connecting portion are matched with each other and fixedly connected to each other.

根據本發明的一實施例,其中所述第一攝像模組為廣角攝像模組,所述第二攝像模組為變焦攝像模組,所述第一攝像模組的光軸與所述第二攝像模組的光軸相互垂直。 According to an embodiment of the present invention, wherein the first camera module is a wide-angle camera module, the second camera module is a zoom camera module, and the optical axis of the first camera module is connected to the second camera module. The optical axes of the camera modules are perpendicular to each other.

為達到以上至少一個目的,本發明提供一分體式陣列攝像模組的組裝方法,其包括如下步驟:(S11)一分體式陣列攝像模組的至少一參考模組組裝固定,即將所述參考模組組裝並固定在一組裝支架的一參考單元內;(S12)一分體式陣列攝像模組的至少一個校準模組預組裝,即將所述校準模組預組裝到所述組裝支架的一校準單元內;(S13)模組高度校準,測量所述每個校準模組與所述參考模組的鏡頭端面高度差,對所述校準模組作相應的高度位置校準;(S14)模組偏移校準,測量每個校準模組與所述參考模組的水準位置偏移量,對所述校準模組作相應的水準偏移位置校準;(S15)模組旋轉校準,設置一光源和一標板,點亮所述分體式陣列攝像模組,對所述標板進行拍攝採集圖像,根據所述參考模組和所述每個校準模組採集得到 的圖像,利用軟體計算出所述每個校準模組的旋轉校準量,並對所述每個校準模組進行旋轉位置校準;(S16)模組偏移檢驗/校準,判斷所述每個校準模組與所述參考模組的水準位置偏移量是否在公差允許範圍內,若在公差範圍內不作校準,若不在公差範圍內返回步驟(S13)重新對所述每個校準模組做高度校準、偏移校準和旋轉校準,直到所述每個校準模組與所述參考模組的水準位置偏移量在所述公差範圍內;以及(S17)固定模組,固定整個所述分體式陣列攝像模組,完成組裝。 In order to achieve at least one of the above objectives, the present invention provides a method for assembling a split array camera module, which includes the following steps: (S11) at least one reference module of a split array camera module is assembled and fixed, that is, the reference module Assembled and fixed in a reference unit of an assembly bracket; (S12) At least one calibration module of a split-array camera module is pre-assembled, that is, the calibration module is pre-assembled to a calibration unit of the assembly bracket Inside; (S13) module height calibration, measuring the height difference between the lens end face of each calibration module and the reference module, and calibrating the corresponding height position of the calibration module; (S14) module offset Calibration, measuring the level position offset of each calibration module and the reference module, and calibrating the corresponding level offset position of the calibration module; (S15) module rotation calibration, setting a light source and a standard Board, light up the split-array camera module, take images of the target board, and collect images based on the reference module and each calibration module Use software to calculate the rotation calibration amount of each calibration module, and perform rotation position calibration on each calibration module; (S16) module offset inspection/calibration, and determine each Whether the offset of the horizontal position of the calibration module and the reference module is within the tolerance allowable range, if it is not within the tolerance range, do not calibrate, if it is not within the tolerance range, return to step (S13) to perform a new calibration on each of the calibration modules Height calibration, offset calibration, and rotation calibration until the horizontal position offset of each calibration module and the reference module is within the tolerance range; and (S17) fixing the module, fixing the entire component The body array camera module is assembled.

根據本發明的一實施例,其中所述分體式陣列攝像模組包含一至多顆子模組,其中至少一顆子模組是所述參考模組,其餘子模組為所述校準模組,所述子模組彼此之間相互獨立並組裝於所述組裝支架。 According to an embodiment of the present invention, the split-array camera module includes one or more sub-modules, at least one of the sub-modules is the reference module, and the remaining sub-modules are the calibration modules, The sub-modules are independent of each other and assembled in the assembly bracket.

根據本發明的一實施例,其中所述參考模組選擇所述分體式陣列攝像模組中圖元最高的一顆子模組。 According to an embodiment of the present invention, the reference module selects a sub-module with the highest image element in the split-array camera module.

根據本發明的一實施例,其中所述參考模組與所述校準模組都是完成了製造、組裝並且性能測試合格的單體攝像模組。 According to an embodiment of the present invention, the reference module and the calibration module are both single camera modules that have been manufactured, assembled, and passed the performance test.

根據本發明的一實施例,其中所述參考模組與所述參考單元的四周組裝間隙為0.01-1mm,所述校準模組與所述校準單元的四周組裝間隙為0.01-3mm。 According to an embodiment of the present invention, the circumferential assembly gap between the reference module and the reference unit is 0.01-1 mm, and the circumferential assembly gap between the calibration module and the calibration unit is 0.01-3 mm.

根據本發明的一實施例,其中步驟(S11)中,所述參考模組組裝固定的步驟還包括:1)用一限位治具對所述參考模組與所述參考單元進行限位元組裝;以及2)在所述參考模組與所述參考單元之間畫膠水,固化所述膠水。 根據本發明的一實施例,其中所述膠水是一UV熱固膠,通過紫外曝光將所述膠水固化。 According to an embodiment of the present invention, in step (S11), the step of assembling and fixing the reference module further includes: 1) Using a limit fixture to limit the reference module and the reference unit Assembling; and 2) drawing glue between the reference module and the reference unit, and curing the glue. According to an embodiment of the present invention, wherein the glue is a UV thermosetting glue, and the glue is cured by ultraviolet exposure.

根據本發明的一實施例,其中步驟(S13)中,所述模組高度校準具體包括:1)測量所述參考模組和所述每個校準模組的鏡頭端面上的一個點的高度,分別計算出所述每個校準模組與所述參考模組的鏡頭端面高度差值;以及2)調整所述每個校準模組的Z軸位移。 According to an embodiment of the present invention, in step (S13), the module height calibration specifically includes: 1) measuring the height of a point on the lens end face of the reference module and each calibration module, Respectively calculating the height difference of the lens end face of each calibration module and the reference module; and 2) adjusting the Z-axis displacement of each calibration module.

根據本發明的一實施例,其中步驟(S14)中,所述模組偏移校準具體包括:1)對所述參考模組與所述每個校準模組的鏡頭端面進行拍攝,抓取鏡頭端面圖像,用軟體分別計算出所述每個校準模組與所述參考模組的水準位置偏移量;以及2)調整所述每個校準模組的X、Y軸位移。 According to an embodiment of the present invention, in step (S14), the module offset calibration specifically includes: 1) Taking a picture of the lens end face of the reference module and each calibration module, and grabbing the lens For the end image, the horizontal position offset of each calibration module and the reference module is calculated by software; and 2) the X and Y axis displacements of each calibration module are adjusted.

根據本發明的一實施例,其中步驟(S15)中,所述標板中心為MTF測試標板,所述標板四角含有四個Mark點。 According to an embodiment of the present invention, in step (S15), the center of the target is an MTF test target, and the four corners of the target contain four Mark points.

根據本發明的一實施例,其中步驟(S15)中,所述每個校準模組的旋轉校準通過在U、V、W三個空間維度的運動來實現,目的是為了使所述每個校準模組與所述參考模組的光軸平行。 According to an embodiment of the present invention, in step (S15), the rotation calibration of each calibration module is realized by movement in the three spatial dimensions of U, V, and W, and the purpose is to make each calibration The optical axis of the module is parallel to the reference module.

根據本發明的一實施例,其中步驟(S12)中,所述校準模組的預組裝步驟具體包括:1)將所述參考模組與所述組裝支架安裝並固定到一模組校準平臺的一固定治具上,所述參考模組放置於所述組裝支架的參考單元內; 2)將所述校準模組安裝並固定到一校準治具上,所述校準治具設置在六軸平臺上,所述校準模組放置於所述組裝支架的校準單元內,所述校準模組可以隨著所述六軸平臺作X、Y、Z、U、V、W六個空間維度的運動;以及3)在所述校準模組與所述校準單元之間畫膠水,所述膠水為一種UV熱固膠。 According to an embodiment of the present invention, in step (S12), the pre-assembly step of the calibration module specifically includes: 1) Mounting and fixing the reference module and the assembly bracket to a module calibration platform On a fixed jig, the reference module is placed in the reference unit of the assembly bracket; 2) Install and fix the calibration module to a calibration jig, the calibration jig is set on a six-axis platform, the calibration module is placed in the calibration unit of the assembly bracket, the calibration mold The group can move with the six-axis platform in six spatial dimensions of X, Y, Z, U, V, and W; and 3) draw glue between the calibration module and the calibration unit, the glue It is a kind of UV thermosetting adhesive.

根據本發明的一實施例,其中步驟(S17)中,所述分體式陣列攝像模組固定步驟具體包括:1)對所述校準模組與所述校準單元之間的所述膠水進行紫外曝光,所述膠水半固化;以及2)烘烤所述分體式陣列攝像模組,所述膠水完全固化,固定整個所述分體式陣列攝像模組。 According to an embodiment of the present invention, in step (S17), the step of fixing the split-array camera module specifically includes: 1) UV exposure of the glue between the calibration module and the calibration unit , The glue is semi-cured; and 2) baking the split-type array camera module, the glue is completely cured, and the entire split-type array camera module is fixed.

根據本發明的一實施例,其中步驟(S12)中,所述校準模組的預組裝步驟具體包括:1)將所述參考模組與所述組裝支架安裝並固定到一模組校準平臺的固定治具上,所述參考模組放置於所述組裝支架的參考單元內;以及2)將所述校準模組安裝並固定到校準治具上,所述校準治具設置在六軸平臺上,所述校準模組放置於所述組裝支架的校準單元內,所述校準模組可以隨著所述六軸平臺作X、Y、Z、U、V、W六個空間維度的運動。 According to an embodiment of the present invention, in step (S12), the pre-assembly step of the calibration module specifically includes: 1) Mounting and fixing the reference module and the assembly bracket to a module calibration platform On a fixed jig, the reference module is placed in the reference unit of the assembly bracket; and 2) the calibration module is installed and fixed on the calibration jig, the calibration jig is set on a six-axis platform The calibration module is placed in the calibration unit of the assembly bracket, and the calibration module can move in six spatial dimensions of X, Y, Z, U, V, and W along with the six-axis platform.

根據本發明的一實施例,其中步驟(S17)中,中所述分體式陣列攝像模組固定步驟具體包括:1)在所述校準模組與所述校準單元之間畫膠水,所述膠水為一種UV熱固膠;2)對所述校準模組與所述校準單元之間的所述膠水進行紫外曝光,所述膠水半固化;以及 3)烘烤所述分體式陣列攝像模組,所述膠水完全固化,固定整個所述分體式陣列攝像模組。 According to an embodiment of the present invention, in step (S17), the step of fixing the split-array camera module specifically includes: 1) drawing glue between the calibration module and the calibration unit, the glue Is a UV thermosetting adhesive; 2) UV-exposing the glue between the calibration module and the calibration unit, and the glue is semi-cured; and 3) Baking the split-type array camera module, the glue is completely cured, and the entire split-type array camera module is fixed.

根據本發明的一實施例,其中所述分體式陣列攝像模組在烤箱中的烘烤溫度為50℃~200℃,烘烤時間5min~600min。 According to an embodiment of the present invention, the baking temperature of the split-type array camera module in the oven is 50° C. to 200° C., and the baking time is 5 min to 600 min.

為達到以上至少一個目的,本發明提供一分體式陣列攝像模組的組裝方法,其包括如下步驟:(S11A)一分體式陣列攝像模組的一參考模組組裝固定,即將所述參考模組組裝並固定在一組裝支架的一參考單元內;(S12A)一分體式陣列攝像模組的至少一個校準模組預組裝,即將所述校準模組預組裝到所述組裝支架的一校準單元內;(S13A)模組高度/偏移校準,測量所述每個校準模組與所述參考模組的鏡頭端面高度差和水準位置偏移量,對所述校準模組作相應的高度位置校準和相應的水準偏移位置校準;(S14A)模組旋轉校準,設置一光源和一標板,點亮所述分體式陣列攝像模組,對所述標板進行拍攝採集圖像,根據所述參考模組和所述每個校準模組採集得到的圖像,利用軟體計算出所述每個校準模組的旋轉校準量,並對所述每個校準模組進行旋轉位置校準;以及(S15A)固定模組,固定整個所述分體式陣列攝像模組,完成組裝。 In order to achieve at least one of the above objectives, the present invention provides a method for assembling a split array camera module, which includes the following steps: (S11A) a reference module of a split array camera module is assembled and fixed, that is, the reference module Assembled and fixed in a reference unit of an assembly bracket; (S12A) At least one calibration module of a split-array camera module is pre-assembled, that is, the calibration module is pre-assembled into a calibration unit of the assembly bracket (S13A) Module height/offset calibration, measuring the height difference of the lens end face and the horizontal position offset of each calibration module and the reference module, and calibrating the corresponding height position of the calibration module And the corresponding level offset position calibration; (S14A) module rotation calibration, set a light source and a target plate, light up the split array camera module, take pictures of the target plate and collect images according to the The reference module and the image collected by each calibration module are used to calculate the rotation calibration amount of each calibration module using software, and the rotation position calibration of each calibration module is performed; and (S15A ) The fixed module, which fixes the entire split-type array camera module to complete the assembly.

為達到以上至少一個目的,本發明提供一分體式陣列攝像模組的組裝方法,其包括如下步驟:(S11B)一分體式陣列攝像模組的一參考模組組裝固定,即將所述參考模組組裝並固定在一組裝支架的一參考單元內; (S12B)一分體式陣列攝像模組的至少一個校準模組預組裝,即將所述校準模組預組裝到所述組裝支架的一校準單元內;(S13B)模組偏移校準,測量每個校準模組與所述參考模組的水準位置偏移量,對所述校準模組作相應的水準偏移位置校準;(S14B)模組高度校準,測量所述每個校準模組與所述參考模組的鏡頭端面高度差,對所述校準模組作相應的高度位置校準;(S15B)模組旋轉校準,設置一光源和一標板,點亮所述分體式陣列攝像模組,對所述標板進行拍攝採集圖像,根據所述參考模組和所述每個校準模組採集得到的圖像,利用軟體計算出所述每個校準模組的旋轉校準量,並對所述每個校準模組進行旋轉位置校準;以及(S16B)固定模組,固定整個所述分體式陣列攝像模組,完成組裝。 In order to achieve at least one of the above objectives, the present invention provides a split-type array camera module assembly method, which includes the following steps: (S11B) a reference module of a split-type array camera module is assembled and fixed, that is, the reference module Assembled and fixed in a reference unit of an assembly bracket; (S12B) At least one calibration module of a split-array camera module is pre-assembled, that is, the calibration module is pre-assembled into a calibration unit of the assembly bracket; (S13B) module offset calibration, measuring each The leveling position offset between the calibration module and the reference module, the corresponding leveling offset position calibration of the calibration module; (S14B) the module height calibration, measuring each calibration module and the Refer to the height difference of the lens end face of the module to calibrate the corresponding height position of the calibration module; (S15B) the module rotates to calibrate, set a light source and a target plate, light up the split array camera module, The target plate captures images, and uses software to calculate the rotation calibration amount of each calibration module based on the images collected by the reference module and each calibration module, and compares the Each calibration module performs rotation position calibration; and (S16B) a fixed module to fix the entire split array camera module to complete the assembly.

為達到以上至少一個目的,本發明提供一分體式陣列攝像模組的組裝方法,其包括如下步驟:(S21)一分體式陣列攝像模組的一參考模組組裝固定,即將所述參考模組組裝並固定在一組裝支架的一參考單元內;(S22)一分體式陣列攝像模組的至少一個校準模組預組裝,即將所述校準模組預組裝到所述組裝支架的一校準單元內;(S23)模組高度校準,測量所述每個校準模組與所述參考模組的鏡頭端面高度差,對所述校準模組作相應的高度位置校準;(S24)模組偏移校準,測量每個校準模組與所述參考模組的水準位置偏移量,對所述校準模組作相應的水準偏移位置校準;(S25)模組旋轉校準,設置一光源和一標板,點亮所述分體式陣列攝像模組,對所述標板進行拍攝採集圖像,根據所述參考模組和所述每個校準模組採集得到 的圖像,利用軟體計算出所述每個校準模組的旋轉校準量,並對所述每個校準模組進行旋轉位置校準;(S26)模組偏移校準,測量每個校準模組與所述參考模組的水準位置偏移量,對所述校準模組作相應的水準偏移位置校準;以及(S27)固定模組,固定整個所述分體式陣列攝像模組,完成組裝。 In order to achieve at least one of the above objectives, the present invention provides a method for assembling a split array camera module, which includes the following steps: (S21) a reference module of a split array camera module is assembled and fixed, that is, the reference module Assembled and fixed in a reference unit of an assembly bracket; (S22) At least one calibration module of a split array camera module is pre-assembled, that is, the calibration module is pre-assembled into a calibration unit of the assembly bracket (S23) Module height calibration, measuring the height difference between the lens end face of each calibration module and the reference module, and calibrating the corresponding height position of the calibration module; (S24) Module offset calibration , Measure the level position offset of each calibration module and the reference module, and calibrate the corresponding level offset position of the calibration module; (S25) Module rotation calibration, set a light source and a target plate , The split-array camera module is lighted, and the target plate is photographed to acquire images, and the acquisition is obtained according to the reference module and each calibration module Use software to calculate the rotation calibration amount of each calibration module, and calibrate the rotation position of each calibration module; (S26) module offset calibration, measure each calibration module and Performing a corresponding horizontal offset position calibration on the calibration module according to the level offset of the reference module; and (S27) a fixing module, fixing the entire split array camera module to complete the assembly.

根據本發明的一實施例,其中所述分體式陣列攝像模組包含一至多顆子模組,其中一顆子模組是所述參考模組,其餘子模組為所述校準模組,所述子模組彼此之間相互獨立並組裝於所述組裝支架。 According to an embodiment of the present invention, the split-array camera module includes one or more sub-modules, one of the sub-modules is the reference module, and the remaining sub-modules are the calibration modules, so The sub-modules are independent of each other and assembled in the assembly bracket.

根據本發明的一實施例,其中所述參考模組與所述校準模組都是完成了製造、組裝並且性能測試合格的單體攝像模組。 According to an embodiment of the present invention, the reference module and the calibration module are both single camera modules that have been manufactured, assembled, and passed the performance test.

根據本發明的一實施例,其中所述參考模組和所述校準模組分別為一可調焦攝像模組或一定焦攝像模組。 According to an embodiment of the present invention, the reference module and the calibration module are respectively an adjustable focus camera module or a fixed focus camera module.

根據本發明的一實施例,其中所述參考模組為一可調焦攝像模組,所述校準模組為一定焦攝像模組。 According to an embodiment of the present invention, the reference module is an adjustable focus camera module, and the calibration module is a fixed focus camera module.

根據本發明的一實施例,其中所述參考模組與所述參考單元的四周組裝間隙為0.01-1mm,所述校準模組與所述校準單元的四周組裝間隙為0.01-3mm。 According to an embodiment of the present invention, the circumferential assembly gap between the reference module and the reference unit is 0.01-1 mm, and the circumferential assembly gap between the calibration module and the calibration unit is 0.01-3 mm.

根據本發明的一實施例,其中所述參考模組組裝固定的步驟還包括:1)用一限位治具對所述參考模組與所述參考單元進行限位元組裝;以及2)在所述參考模組與所述參考單元之間畫膠水,固化所述膠水。 According to an embodiment of the present invention, the step of assembling and fixing the reference module further includes: 1) using a limit fixture to assemble the reference module and the reference unit with limit elements; and 2) Glue is drawn between the reference module and the reference unit to cure the glue.

根據本發明的一實施例,其中所述膠水是一UV熱固膠,通過紫外曝光將所述膠水固化。 According to an embodiment of the present invention, wherein the glue is a UV thermosetting glue, and the glue is cured by ultraviolet exposure.

根據本發明的一實施例,其中所述模組高度校準具體包括:1)用一鐳射測距方法各測量所述參考模組和所述每個校準模組的鏡頭端面上的一個點的高度,分別計算出所述每個校準模組與所述參考模組的鏡頭端面高度差值;以及2)通過所述六軸平臺調整所述每個校準模組的Z軸位移。 According to an embodiment of the present invention, the module height calibration specifically includes: 1) Using a laser ranging method to measure the height of a point on the lens end face of the reference module and each calibration module Calculate the height difference of the lens end face of each calibration module and the reference module respectively; and 2) adjust the Z-axis displacement of each calibration module through the six-axis platform.

根據本發明的一實施例,其中所述模組偏移校準具體包括:1)對所述參考模組與所述每個校準模組的鏡頭端面進行CCD拍攝,抓取鏡頭端面圖像,用軟體分別計算出所述每個校準模組與所述參考模組的水準位置偏移量;以及2)通過所述六軸平臺調整所述每個校準模組的X、Y軸位移。 According to an embodiment of the present invention, the module offset calibration specifically includes: 1) CCD shooting the lens end face of the reference module and each calibration module, capturing the lens end face image, and using The software separately calculates the horizontal position offset of each calibration module and the reference module; and 2) adjusts the X and Y axis displacement of each calibration module through the six-axis platform.

根據本發明的一實施例,其中所述標板中心為MTF測試標板,所述標板含有2-20個Mark點。 According to an embodiment of the present invention, the center of the target is an MTF test target, and the target contains 2-20 Mark points.

根據本發明的一實施例,其中所述每個校準模組的旋轉校準通過所述六軸平臺在U、V、W三個空間維度的運動來實現,目的是為了使所述每個校準模組與所述參考模組的光軸平行。 According to an embodiment of the present invention, the rotation calibration of each calibration module is realized by the movement of the six-axis platform in the three spatial dimensions of U, V, W, and the purpose is to make each calibration module The group is parallel to the optical axis of the reference module.

根據本發明的一實施例,其中所述校準模組的預組裝步驟具體包括:1)將所述參考模組與所述組裝支架安裝並固定到一模組校準平臺的一固定治具上,所述參考模組放置於所述組裝支架的參考單元內;2)將所述校準模組安裝並固定到一校準治具上,所述校準治具設置在六軸平臺上,所述校準模組放置於所述組裝支架的校準單元內,所述校準模組可以隨著所述六軸平臺作X、Y、Z、U、V、W六個空間維度的運動;以及3)在所述校準模組與所述校準單元之間畫膠水,所述膠水為一種UV熱固膠。 According to an embodiment of the present invention, the pre-assembly step of the calibration module specifically includes: 1) installing and fixing the reference module and the assembly bracket to a fixture of a module calibration platform; The reference module is placed in the reference unit of the assembly bracket; 2) the calibration module is installed and fixed to a calibration jig, the calibration jig is set on a six-axis platform, and the calibration mold The group is placed in the calibration unit of the assembly bracket, and the calibration module can move in six spatial dimensions of X, Y, Z, U, V, and W along with the six-axis platform; and 3) in the Glue is drawn between the calibration module and the calibration unit, and the glue is a UV thermosetting glue.

根據本發明的一實施例,其中所述分體式陣列攝像模組固定步驟具體包括:1)對所述校準模組與所述校準單元之間的所述膠水進行紫外曝光,所述膠水半固化;以及2)烘烤所述分體式陣列攝像模組,所述膠水完全固化,固定整個所述分體式陣列攝像模組。 According to an embodiment of the present invention, the step of fixing the split-array camera module specifically includes: 1) UV-exposing the glue between the calibration module and the calibration unit, and the glue is semi-cured And 2) baking the split-type array camera module, the glue is completely cured, and the entire split-type array camera module is fixed.

根據本發明的一實施例,其中所述校準模組的預組裝步驟具體包括:1)將所述參考模組與所述組裝支架安裝並固定到一模組校準平臺的一固定治具上,所述參考模組放置於所述組裝支架的參考單元內;以及2)將所述校準模組安裝並固定到一校準治具上,所述校準治具設置在六軸平臺上,所述校準模組放置於所述組裝支架的校準單元內,所述校準模組可以隨著所述六軸平臺作X、Y、Z、U、V、W六個空間維度的運動。 According to an embodiment of the present invention, the pre-assembly step of the calibration module specifically includes: 1) installing and fixing the reference module and the assembly bracket to a fixture of a module calibration platform; The reference module is placed in the reference unit of the assembly bracket; and 2) the calibration module is installed and fixed to a calibration jig, the calibration jig is set on a six-axis platform, and the calibration The module is placed in the calibration unit of the assembly bracket, and the calibration module can move in six spatial dimensions of X, Y, Z, U, V, and W along with the six-axis platform.

根據本發明的一實施例,其中所述分體式陣列攝像模組固定步驟具體包括:1)在所述校準模組與所述校準單元之間畫膠水,所述膠水為一種UV熱固膠;2)對所述校準模組與所述校準單元之間的所述膠水進行紫外曝光,所述膠水半固化;以及3)烘烤所述分體式陣列攝像模組,所述膠水完全固化,固定整個所述分體式陣列攝像模組。 According to an embodiment of the present invention, the step of fixing the split-array camera module specifically includes: 1) drawing glue between the calibration module and the calibration unit, and the glue is a UV thermosetting glue; 2) UV exposure is performed on the glue between the calibration module and the calibration unit, and the glue is semi-cured; and 3) the split-array camera module is baked, and the glue is completely cured and fixed The entire split type array camera module.

根據本發明的一實施例,其中所述分體式陣列攝像模組在烤箱中的烘烤溫度為50℃~200℃,烘烤時間5min~600min。 According to an embodiment of the present invention, the baking temperature of the split-type array camera module in the oven is 50° C. to 200° C., and the baking time is 5 min to 600 min.

1:參考模組、第一攝像模組 1: Reference module, first camera module

2:校準模組、棱鏡模組 2: Calibration module, prism module

3:第二攝像模組 3: The second camera module

4:電路板 4: circuit board

M1:MTF測試圖形 M1: MTF test pattern

2M:定焦攝像模組 2M: Fixed focus camera module

13M:可調焦攝像模組 13M: Adjustable focus camera module

10:組裝支架 10: Assemble the bracket

11:參考鏡頭 11: Reference lens

12:參考驅動器 12: Reference drive

13:參考感光晶片 13: Reference photosensitive chip

14:參考底座 14: Reference base

15:參考基板 15: Reference substrate

20:共同底座 20: Common base

21:校準鏡頭 21: Calibrate the lens

22:校準驅動器 22: Calibrate the drive

23:校準感光晶片 23: Calibrate the photosensitive chip

24:校準底座 24: Calibration base

25:校準基板 25: Calibration substrate

30:共同基板、限位治具 30: Common substrate, limit fixture

40:陀螺儀 40: Gyroscope

100A:第一鏡頭 100A: the first shot

101:參考支架單元 101: Reference bracket unit

102:校準支架單元 102: Calibration bracket unit

201:棱鏡單元 201: Prism unit

200A:感光晶片 200A: photosensitive wafer

300A:第一驅動器 300A: first drive

301:第一凹槽 301: first groove

302:第二凹槽 302: second groove

400A:第一基板 400A: first substrate

401:固定治具 401: Fixed fixture

402:校準治具 402: Calibration Fixture

403:模組校準平臺 403: Module Calibration Platform

S11:參考模組組裝固定 S11: Reference module assembly and fixing

S12:校準模組預組裝 S12: Calibration module pre-assembly

S13:模組高度校準 S13: Module height calibration

S14:模組偏移校準 S14: Module offset calibration

S15:模組旋轉校準 S15: Module rotation calibration

S16:模組偏移檢驗 S16: Module offset inspection

S17:固定模組 S17: Fixed module

S11A:參考模組1組裝固定 S11A: Refer to Module 1 assembling and fixing

S12A:至少一個校準模組2預組裝 S12A: At least one calibration module 2 pre-assembled

S13A:模組高度/偏移校準 S13A: Module height/offset calibration

S14A:模組旋轉校準 S14A: Module rotation calibration

S15A:固定模組 S15A: Fixed module

S11B:參考模組1組裝固定 S11B: Refer to Module 1 assembling and fixing

S12B:至少一個校準模組2預組裝 S12B: At least one calibration module 2 pre-assembled

S13B:模組偏移校準 S13B: Module offset calibration

S14B:模組高度校準 S14B: Module height calibration

S15B:模組旋轉校準 S15B: Module rotation calibration

S16B:固定模組 S16B: Fixed module

S24:重複步驟 S24: Repeat steps

S26:步驟 S26: Step

S21:參考模組1組裝固定 S21: Refer to Module 1 assembling and fixing

S22:至少一個校準模組2預組裝 S22: At least one calibration module 2 pre-assembled

S23:模組高度校準 S23: Module height calibration

S24:模組偏移校準 S24: Module offset calibration

S25:模組旋轉校準 S25: Module rotation calibration

S26:模組偏移校準 S26: Module offset calibration

S27:固定模組 S27: Fixed module

Z軸:高度 Z axis: height

X、Y軸:水準偏移 X, Y axis: horizontal offset

U、V、W軸:旋轉 U, V, W axis: rotation

2011:棱鏡外殼 2011: Prism housing

2012:棱鏡 2012: Prism

2013:棱鏡座 2013: Prism holder

2014:支承軸套 2014: Support bushing

2015:支承軸 2015: Support shaft

2016:支承卡座 2016: support deck

圖1是根據本發明的第一個優選實施例的一分體式陣列攝像模組的一俯視示意圖。 FIG. 1 is a schematic top view of a split-array camera module according to the first preferred embodiment of the present invention.

圖2是根據本發明的第一個優選實施例的一分體式陣列攝像模組的一前視示意圖。 2 is a schematic front view of a split array camera module according to the first preferred embodiment of the present invention.

圖3是根據本發明的第一個優選實施例的一分體式陣列攝像模組的一前視示意圖。進一步說明零件相對關係。 3 is a schematic front view of a split array camera module according to the first preferred embodiment of the present invention. Further explain the relative relationship of parts.

圖4是根據本發明的第一個優選實施例的一分體式陣列攝像模組的第一變形實施例的一前視示意圖。 4 is a schematic front view of a first modified embodiment of a split-array camera module according to the first preferred embodiment of the present invention.

圖5是根據本發明的第一個優選實施例的一分體式陣列攝像模組的第二變形實施例的一前視示意圖。 5 is a schematic front view of a second modified embodiment of a split-array camera module according to the first preferred embodiment of the present invention.

圖6是根據本發明的第一個優選實施例的一分體式陣列攝像模組的第三變形實施例的一前視示意圖。 6 is a schematic front view of a third modified embodiment of a split-array camera module according to the first preferred embodiment of the present invention.

圖7是根據本發明的第一個優選實施例的一分體式陣列攝像模組的第四變形實施例的一前視示意圖。 7 is a schematic front view of a fourth modified embodiment of a split-array camera module according to the first preferred embodiment of the present invention.

圖8是根據本發明的第一個優選實施例的一分體式陣列攝像模組的第五變形實施例的一前視示意圖。 FIG. 8 is a schematic front view of a fifth modified embodiment of a split-array camera module according to the first preferred embodiment of the present invention.

圖9是根據本發明的第一個優選實施例的一分體式陣列攝像模組的第六變形實施例的一前視示意圖。 9 is a schematic front view of a sixth modified embodiment of a split-array camera module according to the first preferred embodiment of the present invention.

圖10是根據本發明的第一個優選實施例的一分體式陣列攝像模組的第七變形實施例的一前視示意圖。 10 is a schematic front view of a seventh modified embodiment of a split-array camera module according to the first preferred embodiment of the present invention.

圖11是根據本發明的第一個優選實施例的一分體式陣列攝像模組的第八變形實施例的一前視示意圖。 11 is a schematic front view of an eighth modified embodiment of a split-array camera module according to the first preferred embodiment of the present invention.

圖12是根據本發明的第一個優選實施例的一分體式陣列攝像模組的組裝方法的一流程圖。 FIG. 12 is a flowchart of a method for assembling a split-array camera module according to the first preferred embodiment of the present invention.

圖13是根據本發明的第一個優選實施例的一分體式陣列攝像模組在組裝時搭配治具的示意圖。 FIG. 13 is a schematic diagram of a split-type array camera module with a fixture during assembly according to the first preferred embodiment of the present invention.

圖14是根據本發明的第一個優選實施例的一分體式陣列攝像模組在組裝時搭配治具的示意圖。說明一參考模組與一限位治具的相對應關係。 14 is a schematic diagram of a split-type array camera module with a fixture during assembly according to the first preferred embodiment of the present invention. Explain the corresponding relationship between a reference module and a limit fixture.

圖15是根據本發明的第一個優選實施例的一分體式陣列攝像模組在進行校準時的一標板的圖形示意圖。 15 is a schematic diagram of a target plate during calibration of a split-array camera module according to the first preferred embodiment of the present invention.

圖16是根據本發明的第一個優選實施例的另一分體式陣列攝像模組的組裝方法的一流程圖。 16 is a flowchart of another method for assembling a split-array camera module according to the first preferred embodiment of the present invention.

圖17是根據本發明的第二個優選實施例的一分體式陣列攝像模組在組裝後立體示意圖。 FIG. 17 is a perspective view of a split-type array camera module after assembly according to the second preferred embodiment of the present invention.

圖18是根據本發明的第二個優選實施例的一分體式陣列攝像模組的分解示意圖。 FIG. 18 is an exploded schematic diagram of a split array camera module according to the second preferred embodiment of the present invention.

圖19是根據本發明的第二個優選實施例的一分體式陣列攝像模組的棱鏡單元分解示意圖。 19 is an exploded schematic diagram of the prism unit of a split-array camera module according to the second preferred embodiment of the present invention.

圖20是根據本發明的第二個優選實施例的一分體式陣列攝像模組的棱鏡基座的立體示意圖。 20 is a three-dimensional schematic diagram of a prism base of a split-array camera module according to a second preferred embodiment of the present invention.

圖21是根據本發明的第二個優選實施例的一分體式陣列攝像模組的棱鏡單元組裝到棱鏡基座上的示意圖。 21 is a schematic diagram of a prism unit of a split-array camera module assembled on a prism base according to a second preferred embodiment of the present invention.

圖22是根據本發明的第二個優選實施例的一分體式陣列攝像模組的第二攝像模組的分解示意圖。 22 is an exploded schematic diagram of a second camera module of a split-array camera module according to a second preferred embodiment of the present invention.

圖23是根據本發明的第二個優選實施例的一分體式陣列攝像模組的棱鏡模組與第二攝像模組的相互連接的狀態示意圖。 FIG. 23 is a schematic diagram of the interconnection state of the prism module and the second camera module of a split-array camera module according to the second preferred embodiment of the present invention.

圖24是根據本發明的第二個優選實施例的一分體式陣列攝像模組邏輯示意圖。 FIG. 24 is a logical schematic diagram of a split-array camera module according to the second preferred embodiment of the present invention.

以下描述用於揭露本發明以使本領域技術人員能夠實現本發明。以下描述中的優選實施例只作為舉例,本領域技術人員可以想到其他顯而易見的變型。在以下描述中界定的本發明的基本原理可以應用於其他實施方案、變形方案、改進方案、等同方案以及沒有背離本發明的精神和範圍的其他技術方案。 The following description is used to disclose the present invention so that those skilled in the art can implement the present invention. The preferred embodiments in the following description are only examples, and those skilled in the art can think of other obvious variations. The basic principles of the present invention defined in the following description can be applied to other embodiments, modifications, improvements, equivalents, and other technical solutions that do not deviate from the spirit and scope of the present invention.

本領域技術人員應理解的是,在本發明的揭露中,術語“縱向”、“橫向”、“上”、“下”、“前”、“後”、“左”、“右”、“豎直”、“水準”、“頂”、“底”“內”、“外”等指示的方位或位置關係是基於附圖所示的方位或位置關係,其僅是為了便於描述本發明和簡化描述,而不是指示或暗示所指的裝置或元件必須具有特定的方位、以特定的方位構造和操作,因此上述術語不能理解為對本發明的限制。 Those skilled in the art should understand that, in the disclosure of the present invention, the terms "longitudinal", "lateral", "upper", "lower", "front", "rear", "left", "right", " The orientation or positional relationship indicated by "vertical", "horizontal", "top", "bottom", "inner", "outer", etc. are based on the orientation or positional relationship shown in the drawings, which is only for the convenience of describing the present invention and The description is simplified, rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore the above-mentioned terms should not be construed as limiting the present invention.

可以理解的是,術語“一”應理解為“至少一”或“一個或多個”,即在一個實施例中,一個元件的數量可以為一個,而在另外的實施例中,該元件的數量可以為多個,術語“一”不能理解為對數量的限制。 It can be understood that the term "a" should be understood as "at least one" or "one or more", that is, in one embodiment, the number of an element may be one, and in another embodiment, the number of the element The number can be multiple, and the term "one" cannot be understood as a restriction on the number.

如圖1至3所示,是根據本發明的第一優選實施例的一分體式陣列攝像模組,其中所述分體式陣列攝像模組是將多個已經完成獨立製造組裝後且品質合格的攝像模組成品組裝集成在同一個支架上,以構成一個全新的陣列 式攝像模組。這樣所述分體式陣列攝像模組具有高良率、高組裝效率、高資源利用率等顯著優點。 As shown in Figures 1 to 3, it is a split array camera module according to the first preferred embodiment of the present invention, wherein the split array camera module is a plurality of products that have been independently manufactured and assembled and are of qualified quality. The finished camera module is assembled and integrated on the same bracket to form a brand new array Camera module. In this way, the split-type array camera module has significant advantages such as high yield, high assembly efficiency, and high resource utilization.

根據本發明的這個優選實施例,所述分體式陣列攝像模組實施為一個雙攝像頭模組,其包含一參考模組1和一校準模組2。所述參考模組1實施為一可調焦攝像模組如13M可調焦攝像模組。所述校準模組2實施為一定焦攝像模組如2M定焦攝像模組。所述參考模組1與所述校準模組2分別是已經完成了製造、組裝並且性能測試合格的單體攝像模組。可以理解的是,單體攝像模組也可以都是可調焦攝像模組,或者可以都是定焦攝像模組,或者一個是調焦攝像模組,另一個是定焦攝像模組。在這個作為舉例的實施例中,所述分體式陣列攝像模組包括一個13M可調焦攝像模組作為所述參考模組1,以及一個2M定焦攝像模組作為所述校準模組2,其中所述參考模組1和所述校準模組2分別為獨立的所述單體攝像模組。 According to this preferred embodiment of the present invention, the split array camera module is implemented as a dual camera module, which includes a reference module 1 and a calibration module 2. The reference module 1 is implemented as an adjustable focus camera module such as a 13M adjustable focus camera module. The calibration module 2 is implemented as a fixed-focus camera module such as a 2M fixed-focus camera module. The reference module 1 and the calibration module 2 are individual camera modules that have been manufactured, assembled, and passed performance tests, respectively. It is understandable that the single camera modules may also be adjustable focus camera modules, or may be fixed focus camera modules, or one may be a focus camera module and the other may be a fixed focus camera module. In this embodiment as an example, the split array camera module includes a 13M adjustable focus camera module as the reference module 1, and a 2M fixed focus camera module as the calibration module 2. The reference module 1 and the calibration module 2 are respectively independent single camera modules.

如圖1、圖2所示,所述分體式陣列攝像模組進一步包括一組裝支架10,其具有一參考支架單元101和一校準支架單元102。這樣所述參考模組1與所述校準模組2分別組裝於所述組裝支架10的所述參考支架單元101與所述校準支架單元102。換言之,所述參考模組1組裝於所述組裝支架10的所述參考支架單元101,而所述校準模組2組裝於同一個所述組裝支架10的所述校準支架單元102。也就是說,所述參考模組1與所述校準模組2是組裝於同一個所述組裝支架。另外,為了保證所述雙攝像頭模組的成像品質,需要嚴格保證所述參考模組1與所述校準模組2的高度、光軸間距和光軸平行度,因此對所述參考模組1與所述校準模組2在所述組裝支架10的所述參考支架單元101與所述校準支架單元102中的組裝位置有嚴格的要求。另外,所述組裝支架10由高硬度的金屬和非金屬材料所制,其中所述組裝支架10的材料要求為受溫度和濕度變化影響形變小,以用於固定所述參考模組1和所述校準模組2之間的空間位置。 As shown in FIGS. 1 and 2, the split-type array camera module further includes an assembly bracket 10 having a reference bracket unit 101 and a calibration bracket unit 102. In this way, the reference module 1 and the calibration module 2 are assembled to the reference support unit 101 and the calibration support unit 102 of the assembly support 10 respectively. In other words, the reference module 1 is assembled in the reference bracket unit 101 of the assembly bracket 10, and the calibration module 2 is assembled in the calibration bracket unit 102 of the same assembly bracket 10. In other words, the reference module 1 and the calibration module 2 are assembled in the same assembly bracket. In addition, in order to ensure the imaging quality of the dual camera module, it is necessary to strictly ensure the height, optical axis distance, and optical axis parallelism of the reference module 1 and the calibration module 2. The assembly position of the calibration module 2 in the reference support unit 101 and the calibration support unit 102 of the assembly support 10 has strict requirements. In addition, the assembly bracket 10 is made of high-hardness metal and non-metal materials, and the material of the assembly bracket 10 is required to be less deformed by changes in temperature and humidity, so as to fix the reference module 1 and the reference module 1 The spatial position between the calibration modules 2 is described.

在本實施例中,所述校準模組2與所述參考模組1之間的模組中心距離是10.5mm。所述參考模組1與所述參考支架單元101的四周組裝間隙為0.1mm,所述校準模組2與所述校準支架單元102的四周組裝間隙為0.3mm。 In this embodiment, the module center distance between the calibration module 2 and the reference module 1 is 10.5 mm. The assembly gap between the reference module 1 and the reference support unit 101 is 0.1 mm, and the assembly gap between the calibration module 2 and the calibration support unit 102 is 0.3 mm.

如圖3所示,所述參考模組1還包括一參考鏡頭11,一參考驅動器12,一參考感光晶片13,一參考底座14和一參考基板15。所述參考鏡頭11位於所述參考感光晶片13的感光路徑,從而在所述參考模組1用於採集物體的影像時,被物體反射的光線能夠在藉由所述參考鏡頭11的處理之後進一步被所述參考感光晶片13接受以適於進行光電轉化。所述參考感光晶片13電連接於所述參考基板15上。所述參考底座14設置於所述參考基板15上。所述參考驅動器12被安裝於所述參考底座14,所述參考鏡頭11被安裝於所述參考驅動器12,以使得所述參考鏡頭11被支撐於所述參考基板15上方。所述參考基板15可以被耦接至所述電子設備,從而與所述電子設備配合使用。值得一提的是,所述參考驅動器12可實施為馬達、熱驅動器或微制動器(MEMS)等。 As shown in FIG. 3, the reference module 1 further includes a reference lens 11, a reference driver 12, a reference photosensitive chip 13, a reference base 14 and a reference substrate 15. The reference lens 11 is located on the photosensitive path of the reference photosensitive chip 13, so that when the reference module 1 is used to collect an image of an object, the light reflected by the object can be further processed by the reference lens 11. It is accepted by the reference photosensitive wafer 13 to be suitable for photoelectric conversion. The reference photosensitive chip 13 is electrically connected to the reference substrate 15. The reference base 14 is disposed on the reference substrate 15. The reference driver 12 is mounted on the reference base 14, and the reference lens 11 is mounted on the reference driver 12 so that the reference lens 11 is supported above the reference substrate 15. The reference substrate 15 may be coupled to the electronic device so as to be used in conjunction with the electronic device. It is worth mentioning that the reference driver 12 can be implemented as a motor, a thermal driver or a micro-actuator (MEMS) or the like.

另外,值得一提的是,所述參考底座14可以分離式地設置於所述參考基板15上,亦可經由模塑工藝形成於所述參考基板15上,其中通過模塑工藝一體地封裝連接於所述參考基板15,其中模塑工藝可以是注塑或模壓等工藝。另外,所述參考底座14圍繞於所述參考感光晶片13外側並形成一通孔,以提供所述參考鏡頭11和所述參考感光晶片13的光線通路。另外,所述參考感光晶片13可採用正裝或倒裝的方式安裝於所述參考基板15,其不為本發明的限制。 In addition, it is worth mentioning that the reference base 14 can be separately provided on the reference substrate 15, or can be formed on the reference substrate 15 through a molding process, wherein the package connection is integrated through a molding process. In the reference substrate 15, the molding process can be injection molding or molding. In addition, the reference base 14 surrounds the reference photosensitive chip 13 and forms a through hole to provide a light path for the reference lens 11 and the reference photosensitive chip 13. In addition, the reference photosensitive chip 13 can be mounted on the reference substrate 15 in a front-mount or flip-chip manner, which is not a limitation of the present invention.

所述校準模組2還包括一校準鏡頭21,一校準感光晶片23,一校準底座24和一校準基板25。所述校準鏡頭21位於所述校準感光晶片23的感光路徑,從而在所述校準模組2用於採集物體的影像時,被物體反射的光線能夠在 藉由所述校準鏡頭21的處理之後進一步被所述校準感光晶片23接受以適於進行光電轉化。所述校準感光晶片23電連接於所述校準基板25上。所述校準底座24設置於所述校準基板25上。所述校準鏡頭21被支撐於所述校準底座24上方。所述校準基板25可以被耦接至所述電子設備,從而與所述電子設備配合使用。值得一提的是,所述校準模組2實施為一個2M定焦攝像模組,故無包括驅動器。但是所述校準模組2亦可實施為變焦攝像模組,故所述校準模組2還可包括一校準驅動器22,其中所述校準驅動器22被安裝於所述校準底座24,所述校準鏡頭21被安裝於所述校準底座24,以使得所述校準鏡頭21被支撐於所述校準基板25上方。值得一提的是,所述校準驅動器22可實施為馬達、熱驅動器或微制動器(MEMS)等。另外,所述參考感光晶片13和所述校準感光晶片23的解析度接近,以保證圖像成像品質。 The calibration module 2 also includes a calibration lens 21, a calibration photosensitive chip 23, a calibration base 24 and a calibration substrate 25. The calibration lens 21 is located on the photosensitive path of the calibration photosensitive chip 23, so that when the calibration module 2 is used to collect an image of an object, the light reflected by the object can be After being processed by the calibration lens 21, it is further accepted by the calibration photosensitive chip 23 to be suitable for photoelectric conversion. The calibration photosensitive wafer 23 is electrically connected to the calibration substrate 25. The calibration base 24 is disposed on the calibration substrate 25. The calibration lens 21 is supported above the calibration base 24. The calibration substrate 25 may be coupled to the electronic device so as to cooperate with the electronic device. It is worth mentioning that the calibration module 2 is implemented as a 2M fixed-focus camera module, so it does not include a driver. However, the calibration module 2 can also be implemented as a zoom camera module, so the calibration module 2 can also include a calibration driver 22, wherein the calibration driver 22 is mounted on the calibration base 24, and the calibration lens 21 is installed on the calibration base 24 so that the calibration lens 21 is supported above the calibration substrate 25. It is worth mentioning that the calibration driver 22 can be implemented as a motor, a thermal driver or a micro-actuator (MEMS) or the like. In addition, the resolutions of the reference photosensitive wafer 13 and the calibration photosensitive wafer 23 are close to ensure the image imaging quality.

另外,值得一提的是,所述校準底座24可以分離式地設置於所述校準基板25上,亦可經由模塑工藝形成於所述校準基板25上,其中通過模塑工藝一體地封裝連接於所述校準基板25,其中模塑工藝可以是注塑或模壓等工藝。另外,所述校準底座24圍繞於所述校準感光晶片23外側並形成一通孔,以提供所述校準鏡頭21和所述校準感光晶片23的光線通路。另外,所述校準感光晶片23可採用正裝或倒裝的方式安裝於所述校準基板25,其不為本發明的限制。 In addition, it is worth mentioning that the calibration base 24 can be separately provided on the calibration substrate 25, or can be formed on the calibration substrate 25 through a molding process, wherein the encapsulation connection is integrated through a molding process. In the calibration substrate 25, the molding process can be injection molding or molding. In addition, the calibration base 24 surrounds the calibration photosensitive wafer 23 and forms a through hole to provide a light path for the calibration lens 21 and the calibration photosensitive wafer 23. In addition, the calibration photosensitive wafer 23 can be mounted on the calibration substrate 25 in a front-mount or flip-chip manner, which is not a limitation of the present invention.

另外,所述參考模組1和所述校準模組2採用不同的FOV鏡頭設計。換言之,所述參考模組1實施為大視場角鏡頭,其FOV一般在75°~120°之間,所述校準模組2實施為小視場角鏡頭,其FOV一般在20°~50°之間。特別地,所述參考模組1和所述校準模組2若都實施為變焦攝像模組,其變焦能力從2倍到6倍不等。也就是說,通過演算法合成實現畫質不損下的圖像倍率放大,根據搭配不同倍率在2到6倍不等。另外,根據實際需求,可分別對小視場角鏡 頭和大視場角鏡頭使用OIS或者AF對焦馬達,其不為本發明的限制。可以理解的,在單體攝像模組中輔加OIS或者AF對焦功能,以增加光學變焦圖像拍照品質。換言之,可選擇性地在小視場角鏡頭和大視場角鏡頭使用OIS或者AF對焦功能,以提升光學變焦拍照效果。 In addition, the reference module 1 and the calibration module 2 adopt different FOV lens designs. In other words, the reference module 1 is implemented as a lens with a large field of view, and its FOV is generally between 75° and 120°, and the calibration module 2 is implemented as a lens with a small field of view, and its FOV is generally between 20° and 50. °between. In particular, if both the reference module 1 and the calibration module 2 are implemented as zoom camera modules, their zoom capabilities range from 2 times to 6 times. In other words, the magnification of the image without loss of image quality is achieved through algorithmic synthesis, and the magnification varies from 2 to 6 times depending on the combination. In addition, according to actual needs, the small field of view lens can be adjusted separately The head and the large field of view lens use OIS or AF focus motor, which is not a limitation of the present invention. It is understandable that the OIS or AF focusing function is added to the single camera module to increase the quality of the optical zoom image. In other words, the OIS or AF focusing function can be selectively used in the small field angle lens and the large field angle lens to enhance the optical zoom camera effect.

另外,本領域的技術人員應理解,所述分體式陣列攝像模組可實施為不只一個雙攝像頭模組,也就是說可根據需要進行多個攝像頭的搭配組合,其重點為將各別合格的所述單體攝像模組組裝至所述組裝支架10。換言之,所述分體式陣列攝像模組包含一至多顆子模組,其中一顆子模組是所述參考模組1,其餘的子模組為所述校準模組2,所述子模組彼此之間相互獨立並組裝於所述組裝支架10。 In addition, those skilled in the art should understand that the split-array camera module can be implemented as more than one dual-camera module, that is to say, multiple cameras can be combined as needed. The single camera module is assembled to the assembly bracket 10. In other words, the split-array camera module includes one or more sub-modules, one of the sub-modules is the reference module 1, the remaining sub-modules are the calibration module 2, and the sub-modules They are independent of each other and assembled in the assembly bracket 10.

如圖4所示,是根據本發明的第一優選實施例的一分體式陣列攝像模組的第一變形實施例,其中所述分體式陣列攝像模組進一步包括一組裝支架10和一共同底座20。所述分體式陣列攝像模組實施為一個雙攝像頭模組,其包含一參考模組1和一校準模組2。 As shown in FIG. 4, it is a first modified embodiment of a split-type array camera module according to the first preferred embodiment of the present invention, wherein the split-type array camera module further includes an assembly bracket 10 and a common base 20. The split array camera module is implemented as a dual camera module, which includes a reference module 1 and a calibration module 2.

所述組裝支架10,其具有一參考支架單元101和一校準支架單元102。這樣所述參考模組1與所述校準模組2分別組裝於所述組裝支架10的所述參考支架單元101與所述校準支架單元102。 The assembly bracket 10 has a reference bracket unit 101 and a calibration bracket unit 102. In this way, the reference module 1 and the calibration module 2 are assembled to the reference support unit 101 and the calibration support unit 102 of the assembly support 10 respectively.

所述參考模組1還包括一參考鏡頭11,一參考驅動器12,一參考感光晶片13,和一參考基板15。所述參考鏡頭11位於所述參考感光晶片13的感光路徑,從而在所述參考模組1用於採集物體的影像時,被物體反射的光線能夠在藉由所述參考鏡頭11的處理之後進一步被所述參考感光晶片13接受以適於進行光電轉化。所述參考感光晶片13電連接於所述參考基板15上。所述參考鏡頭11被安裝於所述參考驅動器12。所述參考基板15可以被耦接至所述電子設 備,從而與所述電子設備配合使用。值得一提的是,所述參考驅動器12可實施為馬達、熱驅動器或微制動器(MEMS)等。 The reference module 1 also includes a reference lens 11, a reference driver 12, a reference photosensitive chip 13, and a reference substrate 15. The reference lens 11 is located on the photosensitive path of the reference photosensitive chip 13, so that when the reference module 1 is used to collect an image of an object, the light reflected by the object can be further processed by the reference lens 11. It is accepted by the reference photosensitive wafer 13 to be suitable for photoelectric conversion. The reference photosensitive chip 13 is electrically connected to the reference substrate 15. The reference lens 11 is mounted on the reference driver 12. The reference substrate 15 may be coupled to the electronic device It can be used in conjunction with the electronic equipment. It is worth mentioning that the reference driver 12 can be implemented as a motor, a thermal driver or a micro-actuator (MEMS) or the like.

所述校準模組2還包括一校準鏡頭21,一校準感光晶片23,和一校準基板25。所述校準鏡頭21位於所述校準感光晶片23的感光路徑,從而在所述校準模組2用於採集物體的影像時,被物體反射的光線能夠在藉由所述校準鏡頭21的處理之後進一步被所述校準感光晶片23接受以適於進行光電轉化。所述校準感光晶片23電連接於所述校準基板25上。所述校準基板25可以被耦接至所述電子設備,從而與所述電子設備配合使用。值得一提的是,所述校準模組2實施為一個2M定焦攝像模組,故無包括驅動器。但是所述校準模組2亦可實施為變焦攝像模組,故所述校準模組2還可包括一校準驅動器22,其中所述校準鏡頭21被支撐於所述校準驅動器22上方。值得一提的是,所述校準驅動器22可實施為馬達、熱驅動器或微制動器(MEMS)等。 The calibration module 2 also includes a calibration lens 21, a calibration photosensitive chip 23, and a calibration substrate 25. The calibration lens 21 is located on the photosensitive path of the calibration photosensitive chip 23, so that when the calibration module 2 is used to collect an image of an object, the light reflected by the object can be further processed by the calibration lens 21. It is accepted by the calibration photosensitive wafer 23 to be suitable for photoelectric conversion. The calibration photosensitive wafer 23 is electrically connected to the calibration substrate 25. The calibration substrate 25 may be coupled to the electronic device so as to cooperate with the electronic device. It is worth mentioning that the calibration module 2 is implemented as a 2M fixed-focus camera module, so it does not include a driver. However, the calibration module 2 can also be implemented as a zoom camera module, so the calibration module 2 may further include a calibration driver 22, wherein the calibration lens 21 is supported above the calibration driver 22. It is worth mentioning that the calibration driver 22 can be implemented as a motor, a thermal driver or a micro-actuator (MEMS) or the like.

值得一提的,所述共同底座20設置於所述參考基板15和所述校準基板25上,這樣所述參考模組1實施為可調焦攝像模組,所述校準模組2實施為定焦攝像模組時,所述參考驅動器12和所述校準鏡頭21都被安裝於所述共同底座20。另外,當所述參考模組1和所述校準模組2都實施為可調焦攝像模組時,所述參考驅動器12和所述校準驅動器22都被安裝於所述共同底座20。 It is worth mentioning that the common base 20 is arranged on the reference substrate 15 and the calibration substrate 25, so that the reference module 1 is implemented as an adjustable focus camera module, and the calibration module 2 is implemented as a fixed focus camera module. When focusing the camera module, the reference driver 12 and the calibration lens 21 are both installed on the common base 20. In addition, when the reference module 1 and the calibration module 2 are both implemented as adjustable focus camera modules, the reference driver 12 and the calibration driver 22 are both installed on the common base 20.

另外,值得一提的是,所述共同底座20可以分離式地設置於所述參考基板15和所述校準基板25,亦可經由模塑工藝形成於所述參考基板15和所述校準基板25上,其中通過模塑工藝一體地封裝連接於所述參考基板15和所述校準基板25,其中模塑工藝可以是注塑或模壓等工藝。另外,所述共同底座20圍繞於所述參考感光晶片13和所述校準感光晶片23外側並分別形成一通孔,以提供所述參考感光晶片13和所述校準感光晶片23的光線通路。另外,所述參考感光晶片13可採用正裝或倒裝的方式安裝於所述參考基板15,所述校準感光 晶片23可採用正裝或倒裝的方式安裝於所述校準基板25,其不為本發明的限制。 In addition, it is worth mentioning that the common base 20 can be separately provided on the reference substrate 15 and the calibration substrate 25, or can be formed on the reference substrate 15 and the calibration substrate 25 through a molding process. Above, wherein the reference substrate 15 and the calibration substrate 25 are integrally packaged and connected by a molding process, wherein the molding process may be injection molding or compression molding. In addition, the common base 20 surrounds the reference photosensitive wafer 13 and the calibration photosensitive wafer 23 and forms a through hole respectively to provide a light path for the reference photosensitive wafer 13 and the calibration photosensitive wafer 23. In addition, the reference photosensitive wafer 13 can be mounted on the reference substrate 15 in a front-mounted or flip-chip manner, and the calibration photosensitive chip 13 The chip 23 can be mounted on the calibration substrate 25 in a front-mount or flip-chip manner, which is not a limitation of the present invention.

如圖5所示,是根據本發明的第一優選實施例的一分體式陣列攝像模組的第二變形實施例,其中所述分體式陣列攝像模組進一步包括一組裝支架10,一共同底座20和一共同基板30。所述分體式陣列攝像模組實施為一個雙攝像頭模組,其包含一參考模組1和一校準模組2。 As shown in FIG. 5, it is a second modified embodiment of a split-type array camera module according to the first preferred embodiment of the present invention, wherein the split-type array camera module further includes an assembly bracket 10 and a common base 20 and a common substrate 30. The split array camera module is implemented as a dual camera module, which includes a reference module 1 and a calibration module 2.

所述組裝支架10,其具有一參考支架單元101和一校準支架單元102。這樣所述參考模組1與所述校準模組2分別組裝於所述組裝支架10的所述參考支架單元101與所述校準支架單元102。 The assembly bracket 10 has a reference bracket unit 101 and a calibration bracket unit 102. In this way, the reference module 1 and the calibration module 2 are assembled to the reference support unit 101 and the calibration support unit 102 of the assembly support 10 respectively.

所述參考模組1還包括一參考鏡頭11,一參考驅動器12和一參考感光晶片13。所述參考鏡頭11位於所述參考感光晶片13的感光路徑,從而在所述參考模組1用於採集物體的影像時,被物體反射的光線能夠在藉由所述參考鏡頭11的處理之後進一步被所述參考感光晶片13接受以適於進行光電轉化。所述參考感光晶片13電連接於所述共同基板30上。所述參考鏡頭11被安裝於所述參考驅動器12。所述共同基板30可以被耦接至所述電子設備,從而與所述電子設備配合使用。值得一提的是,所述參考驅動器12可實施為馬達、熱驅動器或微制動器(MEMS)等。 The reference module 1 also includes a reference lens 11, a reference driver 12 and a reference photosensitive chip 13. The reference lens 11 is located on the photosensitive path of the reference photosensitive chip 13, so that when the reference module 1 is used to collect an image of an object, the light reflected by the object can be further processed by the reference lens 11. It is accepted by the reference photosensitive wafer 13 to be suitable for photoelectric conversion. The reference photosensitive chip 13 is electrically connected to the common substrate 30. The reference lens 11 is mounted on the reference driver 12. The common substrate 30 may be coupled to the electronic device so as to be used in conjunction with the electronic device. It is worth mentioning that the reference driver 12 can be implemented as a motor, a thermal driver or a micro-actuator (MEMS) or the like.

所述校準模組2還包括一校準鏡頭21和一校準感光晶片23。所述校準鏡頭21位於所述校準感光晶片23的感光路徑,從而在所述校準模組2用於採集物體的影像時,被物體反射的光線能夠在藉由所述校準鏡頭21的處理之後進一步被所述校準感光晶片23接受以適於進行光電轉化。所述校準感光晶片23電連接於所述共同基板30上。所述共同基板30可以被耦接至所述電子設備,從而與所述電子設備配合使用。值得一提的是,所述校準模組2實施為一個2M定焦攝像模組,故無包括驅動器。但是所述校準模組2亦可實施為變焦攝像模 組,故所述校準模組2還可包括一校準驅動器22,其中所述校準鏡頭21被支撐於所述校準驅動器22上方。值得一提的是,所述校準驅動器22可實施為馬達、熱驅動器或微制動器(MEMS)等。 The calibration module 2 also includes a calibration lens 21 and a calibration photosensitive chip 23. The calibration lens 21 is located in the photosensitive path of the calibration photosensitive chip 23, so that when the calibration module 2 is used to collect an image of an object, the light reflected by the object can be further processed by the calibration lens 21. It is accepted by the calibration photosensitive wafer 23 to be suitable for photoelectric conversion. The calibration photosensitive chip 23 is electrically connected to the common substrate 30. The common substrate 30 may be coupled to the electronic device so as to be used in conjunction with the electronic device. It is worth mentioning that the calibration module 2 is implemented as a 2M fixed-focus camera module, so it does not include a driver. However, the calibration module 2 can also be implemented as a zoom camera module Therefore, the calibration module 2 may further include a calibration driver 22, wherein the calibration lens 21 is supported above the calibration driver 22. It is worth mentioning that the calibration driver 22 can be implemented as a motor, a thermal driver or a micro-actuator (MEMS) or the like.

值得一提的,所述共同底座20設置於所述共同基板30上,這樣所述參考模組1實施為可調焦攝像模組,所述校準模組2實施為定焦攝像模組時,所述參考驅動器12和所述校準鏡頭21都被安裝於所述共同底座20。另外,當所述參考模組1和所述校準模組2都實施為可調焦攝像模組時,所述參考驅動器12和所述校準驅動器22都被安裝於所述共同底座20。 It is worth mentioning that when the common base 20 is disposed on the common substrate 30, so that the reference module 1 is implemented as an adjustable focus camera module, and when the calibration module 2 is implemented as a fixed focus camera module, The reference driver 12 and the calibration lens 21 are both mounted on the common base 20. In addition, when the reference module 1 and the calibration module 2 are both implemented as adjustable focus camera modules, the reference driver 12 and the calibration driver 22 are both installed on the common base 20.

另外,值得一提的是,所述共同底座20可以分離式地設置於所述共同基板30,亦可經由模塑工藝形成於所述共同基板30上,其中通過模塑工藝一體地封裝連接於所述共同基板30,其中模塑工藝可以是注塑或模壓等工藝。另外,所述共同底座20圍繞於所述參考感光晶片13和所述校準感光晶片23外側並分別形成一通孔,以提供所述參考感光晶片13和所述校準感光晶片23的光線通路。另外,所述參考感光晶片13可採用正裝或倒裝的方式安裝於所述共同基板30,所述校準感光晶片23可採用正裝或倒裝的方式安裝於所述共同基板30,其不為本發明的限制。 In addition, it is worth mentioning that the common base 20 may be separately provided on the common substrate 30, or may be formed on the common substrate 30 through a molding process, wherein the common base 20 is integrally packaged and connected to the common substrate 30 through a molding process. In the common substrate 30, the molding process may be injection molding or molding. In addition, the common base 20 surrounds the reference photosensitive wafer 13 and the calibration photosensitive wafer 23 and forms a through hole respectively to provide a light path for the reference photosensitive wafer 13 and the calibration photosensitive wafer 23. In addition, the reference photosensitive chip 13 may be mounted on the common substrate 30 in a front-mounting or flip-chip manner, and the calibration photosensitive chip 23 may be mounted on the common substrate 30 in a front-mounting or flip-chip manner. This is a limitation of the present invention.

如圖6所示,是根據本發明的第一優選實施例的一分體式陣列攝像模組的第三變形實施例,其中所述分體式陣列攝像模組進一步包括一陀螺儀40,其設置於所述參考模組1。所述分體式陣列攝像模組實施為一個雙攝像頭模組,其包含一參考模組1和一校準模組2。所述組裝支架10,其具有一參考支架單元101和一校準支架單元102。這樣所述參考模組1與所述校準模組2分別組裝於所述組裝支架10的所述參考支架單元101與所述校準支架單元102。 As shown in FIG. 6, it is a third modified embodiment of a split-type array camera module according to the first preferred embodiment of the present invention, wherein the split-type array camera module further includes a gyroscope 40 disposed at The reference module 1. The split array camera module is implemented as a dual camera module, which includes a reference module 1 and a calibration module 2. The assembly bracket 10 has a reference bracket unit 101 and a calibration bracket unit 102. In this way, the reference module 1 and the calibration module 2 are assembled to the reference support unit 101 and the calibration support unit 102 of the assembly support 10 respectively.

所述參考模組1還包括一參考鏡頭11,一參考驅動器12,一參考感光晶片13,一參考底座14和一參考基板15。所述參考鏡頭11位於所述參考感 光晶片13的感光路徑,從而在所述參考模組1用於採集物體的影像時,被物體反射的光線能夠在藉由所述參考鏡頭11的處理之後進一步被所述參考感光晶片13接受以適於進行光電轉化。所述參考感光晶片13電連接於所述參考基板15上。所述參考底座14設置於所述參考基板15上。所述參考驅動器12被安裝於所述參考底座14,所述參考鏡頭11被安裝於所述參考驅動器12,以使得所述參考鏡頭11被支撐於所述參考基板15上方。所述參考基板15可以被耦接至所述電子設備,從而與所述電子設備配合使用。值得一提的是,所述陀螺儀40設置於所述參考基板15。所述參考驅動器12可實施為馬達、熱驅動器或微制動器(MEMS)等。 The reference module 1 also includes a reference lens 11, a reference driver 12, a reference photosensitive chip 13, a reference base 14 and a reference substrate 15. The reference lens 11 is located in the reference sense The light-sensing path of the optical chip 13, so that when the reference module 1 is used to collect an image of an object, the light reflected by the object can be further received by the reference photosensitive chip 13 after being processed by the reference lens 11 Suitable for photoelectric conversion. The reference photosensitive chip 13 is electrically connected to the reference substrate 15. The reference base 14 is disposed on the reference substrate 15. The reference driver 12 is mounted on the reference base 14, and the reference lens 11 is mounted on the reference driver 12 so that the reference lens 11 is supported above the reference substrate 15. The reference substrate 15 may be coupled to the electronic device so as to be used in conjunction with the electronic device. It is worth mentioning that the gyroscope 40 is disposed on the reference substrate 15. The reference driver 12 may be implemented as a motor, a thermal driver, or a micro actuator (MEMS) or the like.

另外,值得一提的是,所述參考底座14可以分離式地設置於所述參考基板15上,亦可經由模塑工藝形成於所述參考基板15上,其中通過模塑工藝一體地封裝連接於所述參考基板15,其中模塑工藝可以是注塑或模壓等工藝。另外,所述參考底座14圍繞於所述參考感光晶片13外側並形成一通孔,以提供所述參考鏡頭11和所述參考感光晶片13的光線通路。另外,所述參考感光晶片13可採用正裝或倒裝的方式安裝於所述參考基板15,其不為本發明的限制。 In addition, it is worth mentioning that the reference base 14 can be separately provided on the reference substrate 15, or can be formed on the reference substrate 15 through a molding process, wherein the package connection is integrated through a molding process. In the reference substrate 15, the molding process can be injection molding or molding. In addition, the reference base 14 surrounds the reference photosensitive chip 13 and forms a through hole to provide a light path for the reference lens 11 and the reference photosensitive chip 13. In addition, the reference photosensitive chip 13 can be mounted on the reference substrate 15 in a front-mount or flip-chip manner, which is not a limitation of the present invention.

如圖7所示,是根據本發明的第一優選實施例的一分體式陣列攝像模組的第四變形實施例,其中所述分體式陣列攝像模組進一步包括一陀螺儀40,其設置於所述校準模組2。所述分體式陣列攝像模組實施為一個雙攝像頭模組,其包含一參考模組1和一校準模組2。所述組裝支架10,其具有一參考支架單元101和一校準支架單元102。這樣所述參考模組1與所述校準模組2分別組裝於所述組裝支架10的所述參考支架單元101與所述校準支架單元102。 As shown in FIG. 7, it is a fourth modified embodiment of a split array camera module according to the first preferred embodiment of the present invention, wherein the split array camera module further includes a gyroscope 40 disposed in The calibration module 2. The split array camera module is implemented as a dual camera module, which includes a reference module 1 and a calibration module 2. The assembly bracket 10 has a reference bracket unit 101 and a calibration bracket unit 102. In this way, the reference module 1 and the calibration module 2 are assembled to the reference support unit 101 and the calibration support unit 102 of the assembly support 10 respectively.

所述校準模組2還包括一校準鏡頭21,一校準感光晶片23,一校準底座24和一校準基板25。所述校準鏡頭21位於所述校準感光晶片23的感光路 徑,從而在所述校準模組2用於採集物體的影像時,被物體反射的光線能夠在藉由所述校準鏡頭21的處理之後進一步被所述校準感光晶片23接受以適於進行光電轉化。所述校準感光晶片23電連接於所述校準基板25上。所述校準底座24設置於所述校準基板25上。所述校準鏡頭21被支撐於所述校準底座24上方。所述校準基板25可以被耦接至所述電子設備,從而與所述電子設備配合使用。值得一提的是,所述校準模組2實施為一個2M定焦攝像模組,故無包括驅動器。但是所述校準模組2亦可實施為變焦攝像模組,故所述校準模組2還可包括一校準驅動器22,其中所述校準驅動器22被安裝於所述校準底座24,所述校準鏡頭21被安裝於所述校準底座24,以使得所述校準鏡頭21被支撐於所述校準基板25上方。值得一提的是,所述陀螺儀40設置於所述校準基板25。所述校準驅動器22可實施為馬達、熱驅動器或微制動器(MEMS)等。 The calibration module 2 also includes a calibration lens 21, a calibration photosensitive chip 23, a calibration base 24 and a calibration substrate 25. The calibration lens 21 is located on the photosensitive path of the calibration photosensitive chip 23 Therefore, when the calibration module 2 is used to collect an image of an object, the light reflected by the object can be further received by the calibration photosensitive chip 23 after being processed by the calibration lens 21 to be suitable for photoelectric conversion. . The calibration photosensitive wafer 23 is electrically connected to the calibration substrate 25. The calibration base 24 is disposed on the calibration substrate 25. The calibration lens 21 is supported above the calibration base 24. The calibration substrate 25 may be coupled to the electronic device so as to cooperate with the electronic device. It is worth mentioning that the calibration module 2 is implemented as a 2M fixed-focus camera module, so it does not include a driver. However, the calibration module 2 can also be implemented as a zoom camera module, so the calibration module 2 can also include a calibration driver 22, wherein the calibration driver 22 is mounted on the calibration base 24, and the calibration lens 21 is installed on the calibration base 24 so that the calibration lens 21 is supported above the calibration substrate 25. It is worth mentioning that the gyroscope 40 is disposed on the calibration substrate 25. The calibration driver 22 may be implemented as a motor, a thermal driver, or a micro actuator (MEMS) or the like.

另外,值得一提的是,所述校準底座24可以分離式地設置於所述校準基板25上,亦可經由模塑工藝形成於所述校準基板25上,其中通過模塑工藝一體地封裝連接於所述校準基板25,其中模塑工藝可以是注塑或模壓等工藝。另外,所述校準底座24圍繞於所述校準感光晶片23外側並形成一通孔,以提供所述校準鏡頭21和所述校準感光晶片23的光線通路。另外,所述校準感光晶片23可採用正裝或倒裝的方式安裝於所述校準基板25,其不為本發明的限制。 In addition, it is worth mentioning that the calibration base 24 can be separately provided on the calibration substrate 25, or can be formed on the calibration substrate 25 through a molding process, wherein the encapsulation connection is integrated through a molding process. In the calibration substrate 25, the molding process can be injection molding or molding. In addition, the calibration base 24 surrounds the calibration photosensitive wafer 23 and forms a through hole to provide a light path for the calibration lens 21 and the calibration photosensitive wafer 23. In addition, the calibration photosensitive wafer 23 can be mounted on the calibration substrate 25 in a front-mount or flip-chip manner, which is not a limitation of the present invention.

如圖8所示,是根據本發明的第一優選實施例的一分體式陣列攝像模組的第五變形實施例,其中所述分體式陣列攝像模組進一步包括一陀螺儀40。所述分體式陣列攝像模組包括一組裝支架10,一共同底座20。所述分體式陣列攝像模組實施為一個雙攝像頭模組,其包含一參考模組1和一校準模組2。所述陀螺儀40設置於所述參考模組1。 As shown in FIG. 8, it is a fifth modified embodiment of a split array camera module according to the first preferred embodiment of the present invention, wherein the split array camera module further includes a gyroscope 40. The split-type array camera module includes an assembly bracket 10 and a common base 20. The split array camera module is implemented as a dual camera module, which includes a reference module 1 and a calibration module 2. The gyroscope 40 is installed in the reference module 1.

所述參考模組1還包括一參考鏡頭11,一參考驅動器12,一參考感光晶片13,和一參考基板15。所述參考鏡頭11位於所述參考感光晶片13的感光路徑,從而在所述參考模組1用於採集物體的影像時,被物體反射的光線能夠在藉由所述參考鏡頭11的處理之後進一步被所述參考感光晶片13接受以適於進行光電轉化。所述參考感光晶片13電連接於所述參考基板15上。所述參考鏡頭11被安裝於所述參考驅動器12。所述參考基板15可以被耦接至所述電子設備,從而與所述電子設備配合使用。值得一提的是,所述陀螺儀40設置於所述參考基板15。所述參考驅動器12可實施為馬達、熱驅動器或微制動器(MEMS)等。 The reference module 1 also includes a reference lens 11, a reference driver 12, a reference photosensitive chip 13, and a reference substrate 15. The reference lens 11 is located on the photosensitive path of the reference photosensitive chip 13, so that when the reference module 1 is used to collect an image of an object, the light reflected by the object can be further processed by the reference lens 11. It is accepted by the reference photosensitive wafer 13 to be suitable for photoelectric conversion. The reference photosensitive chip 13 is electrically connected to the reference substrate 15. The reference lens 11 is mounted on the reference driver 12. The reference substrate 15 may be coupled to the electronic device so as to be used in conjunction with the electronic device. It is worth mentioning that the gyroscope 40 is disposed on the reference substrate 15. The reference driver 12 may be implemented as a motor, a thermal driver, or a micro actuator (MEMS) or the like.

所述校準模組2還包括一校準鏡頭21,一校準感光晶片23,和一校準基板25。所述校準鏡頭21位於所述校準感光晶片23的感光路徑,從而在所述校準模組2用於採集物體的影像時,被物體反射的光線能夠在藉由所述校準鏡頭21的處理之後進一步被所述校準感光晶片23接受以適於進行光電轉化。所述校準感光晶片23電連接於所述校準基板25上。所述校準基板25可以被耦接至所述電子設備,從而與所述電子設備配合使用。值得一提的是,所述校準模組2實施為一個2M定焦攝像模組,故無包括驅動器。但是所述校準模組2亦可實施為變焦攝像模組,故所述校準模組2還可包括一校準驅動器22,其中所述校準鏡頭21被支撐於所述校準驅動器22上方。值得一提的是,所述校準驅動器22可實施為馬達、熱驅動器或微制動器(MEMS)等。 The calibration module 2 also includes a calibration lens 21, a calibration photosensitive chip 23, and a calibration substrate 25. The calibration lens 21 is located in the photosensitive path of the calibration photosensitive chip 23, so that when the calibration module 2 is used to collect an image of an object, the light reflected by the object can be further processed by the calibration lens 21. It is accepted by the calibration photosensitive wafer 23 to be suitable for photoelectric conversion. The calibration photosensitive wafer 23 is electrically connected to the calibration substrate 25. The calibration substrate 25 may be coupled to the electronic device so as to cooperate with the electronic device. It is worth mentioning that the calibration module 2 is implemented as a 2M fixed-focus camera module, so it does not include a driver. However, the calibration module 2 can also be implemented as a zoom camera module, so the calibration module 2 may further include a calibration driver 22, wherein the calibration lens 21 is supported above the calibration driver 22. It is worth mentioning that the calibration driver 22 can be implemented as a motor, a thermal driver or a micro-actuator (MEMS) or the like.

值得一提的,所述共同底座20設置於所述參考基板15和所述校準基板25上,這樣所述參考模組1實施為可調焦攝像模組,所述校準模組2實施為定焦攝像模組時,所述參考驅動器12和所述校準鏡頭21都被安裝於所述共同底座20。另外,當所述參考模組1和所述校準模組2都實施為可調焦攝像模組時,所述參考驅動器12和所述校準驅動器22都被安裝於所述共同底座20。 It is worth mentioning that the common base 20 is arranged on the reference substrate 15 and the calibration substrate 25, so that the reference module 1 is implemented as an adjustable focus camera module, and the calibration module 2 is implemented as a fixed focus camera module. When focusing the camera module, the reference driver 12 and the calibration lens 21 are both installed on the common base 20. In addition, when the reference module 1 and the calibration module 2 are both implemented as adjustable focus camera modules, the reference driver 12 and the calibration driver 22 are both installed on the common base 20.

另外,值得一提的是,所述共同底座20可以分離式地設置於所述參考基板15和所述校準基板25,亦可經由模塑工藝形成於所述參考基板15和所述校準基板25上,其中通過模塑工藝一體地封裝連接於所述參考基板15和所述校準基板25,其中模塑工藝可以是注塑或模壓等工藝。另外,所述共同底座20圍繞於所述參考感光晶片13和所述校準感光晶片23外側並分別形成一通孔,以提供所述參考感光晶片13和所述校準感光晶片23的光線通路。另外,所述參考感光晶片13可採用正裝或倒裝的方式安裝於所述參考基板15,所述校準感光晶片23可採用正裝或倒裝的方式安裝於所述校準基板25,其不為本發明的限制。 In addition, it is worth mentioning that the common base 20 can be separately provided on the reference substrate 15 and the calibration substrate 25, or can be formed on the reference substrate 15 and the calibration substrate 25 through a molding process. Above, wherein the reference substrate 15 and the calibration substrate 25 are integrally packaged and connected by a molding process, wherein the molding process may be injection molding or compression molding. In addition, the common base 20 surrounds the reference photosensitive wafer 13 and the calibration photosensitive wafer 23 and forms a through hole respectively to provide a light path for the reference photosensitive wafer 13 and the calibration photosensitive wafer 23. In addition, the reference photosensitive chip 13 may be mounted on the reference substrate 15 in a front-mounting or flip-chip manner, and the calibration photosensitive chip 23 may be mounted on the calibration substrate 25 in a front-mounting or flip-chip manner. This is a limitation of the present invention.

如圖9所示,是根據本發明的第一優選實施例的一分體式陣列攝像模組的第六變形實施例,其中所述分體式陣列攝像模組進一步包括一陀螺儀40。所述分體式陣列攝像模組包括一組裝支架10,一共同底座20。所述分體式陣列攝像模組實施為一個雙攝像頭模組,其包含一參考模組1和一校準模組2。所述陀螺儀40設置於所述校準模組2。 As shown in FIG. 9, it is a sixth modified embodiment of a split array camera module according to the first preferred embodiment of the present invention, wherein the split array camera module further includes a gyroscope 40. The split-type array camera module includes an assembly bracket 10 and a common base 20. The split array camera module is implemented as a dual camera module, which includes a reference module 1 and a calibration module 2. The gyroscope 40 is installed in the calibration module 2.

所述參考模組1還包括一參考鏡頭11,一參考驅動器12,一參考感光晶片13,和一參考基板15。所述參考鏡頭11位於所述參考感光晶片13的感光路徑,從而在所述參考模組1用於採集物體的影像時,被物體反射的光線能夠在藉由所述參考鏡頭11的處理之後進一步被所述參考感光晶片13接受以適於進行光電轉化。所述參考感光晶片13電連接於所述參考基板15上。所述參考鏡頭11被安裝於所述參考驅動器12。所述參考基板15可以被耦接至所述電子設備,從而與所述電子設備配合使用。值得一提的是,所述參考驅動器12可實施為馬達、熱驅動器或微制動器(MEMS)等。 The reference module 1 also includes a reference lens 11, a reference driver 12, a reference photosensitive chip 13, and a reference substrate 15. The reference lens 11 is located on the photosensitive path of the reference photosensitive chip 13, so that when the reference module 1 is used to collect an image of an object, the light reflected by the object can be further processed by the reference lens 11. It is accepted by the reference photosensitive wafer 13 to be suitable for photoelectric conversion. The reference photosensitive chip 13 is electrically connected to the reference substrate 15. The reference lens 11 is mounted on the reference driver 12. The reference substrate 15 may be coupled to the electronic device so as to be used in conjunction with the electronic device. It is worth mentioning that the reference driver 12 can be implemented as a motor, a thermal driver or a micro-actuator (MEMS) or the like.

所述校準模組2還包括一校準鏡頭21,一校準感光晶片23,和一校準基板25。所述校準鏡頭21位於所述校準感光晶片23的感光路徑,從而在所 述校準模組2用於採集物體的影像時,被物體反射的光線能夠在藉由所述校準鏡頭21的處理之後進一步被所述校準感光晶片23接受以適於進行光電轉化。所述校準感光晶片23電連接於所述校準基板25上。所述校準基板25可以被耦接至所述電子設備,從而與所述電子設備配合使用。值得一提的是,所述校準模組2實施為一個2M定焦攝像模組,故無包括驅動器。但是所述校準模組2亦可實施為變焦攝像模組,故所述校準模組2還可包括一校準驅動器22,其中所述校準鏡頭21被支撐於所述校準驅動器22上方。值得一提的是,所述陀螺儀40設置於所述校準基板25。所述校準驅動器22可實施為馬達、熱驅動器或微制動器(MEMS)等。 The calibration module 2 also includes a calibration lens 21, a calibration photosensitive chip 23, and a calibration substrate 25. The calibration lens 21 is located on the photosensitive path of the calibration photosensitive chip 23, so that When the calibration module 2 is used to collect an image of an object, the light reflected by the object can be further received by the calibration photosensitive chip 23 after being processed by the calibration lens 21 to be suitable for photoelectric conversion. The calibration photosensitive wafer 23 is electrically connected to the calibration substrate 25. The calibration substrate 25 may be coupled to the electronic device so as to cooperate with the electronic device. It is worth mentioning that the calibration module 2 is implemented as a 2M fixed-focus camera module, so it does not include a driver. However, the calibration module 2 can also be implemented as a zoom camera module, so the calibration module 2 may further include a calibration driver 22, wherein the calibration lens 21 is supported above the calibration driver 22. It is worth mentioning that the gyroscope 40 is disposed on the calibration substrate 25. The calibration driver 22 may be implemented as a motor, a thermal driver, or a micro actuator (MEMS) or the like.

值得一提的,所述共同底座20設置於所述參考基板15和所述校準基板25上,這樣所述參考模組1實施為可調焦攝像模組,所述校準模組2實施為定焦攝像模組時,所述參考驅動器12和所述校準鏡頭21都被安裝於所述共同底座20。另外,當所述參考模組1和所述校準模組2都實施為可調焦攝像模組時,所述參考驅動器12和所述校準驅動器22都被安裝於所述共同底座20。 It is worth mentioning that the common base 20 is arranged on the reference substrate 15 and the calibration substrate 25, so that the reference module 1 is implemented as an adjustable focus camera module, and the calibration module 2 is implemented as a fixed focus camera module. When focusing the camera module, the reference driver 12 and the calibration lens 21 are both installed on the common base 20. In addition, when the reference module 1 and the calibration module 2 are both implemented as adjustable focus camera modules, the reference driver 12 and the calibration driver 22 are both installed on the common base 20.

另外,值得一提的是,所述共同底座20可以分離式地設置於所述參考基板15和所述校準基板25,亦可經由模塑工藝形成於所述參考基板15和所述校準基板25上,其中通過模塑工藝一體地封裝連接於所述參考基板15和所述校準基板25,其中模塑工藝可以是注塑或模壓等工藝。另外,所述共同底座20圍繞於所述參考感光晶片13和所述校準感光晶片23外側並分別形成一通孔,以提供所述參考感光晶片13和所述校準感光晶片23的光線通路。另外,所述參考感光晶片13可採用正裝或倒裝的方式安裝於所述參考基板15,所述校準感光晶片23可採用正裝或倒裝的方式安裝於所述校準基板25,其不為本發明的限制。 In addition, it is worth mentioning that the common base 20 can be separately provided on the reference substrate 15 and the calibration substrate 25, or can be formed on the reference substrate 15 and the calibration substrate 25 through a molding process. Above, wherein the reference substrate 15 and the calibration substrate 25 are integrally packaged and connected by a molding process, wherein the molding process may be injection molding or compression molding. In addition, the common base 20 surrounds the reference photosensitive wafer 13 and the calibration photosensitive wafer 23 and forms a through hole respectively to provide a light path for the reference photosensitive wafer 13 and the calibration photosensitive wafer 23. In addition, the reference photosensitive chip 13 may be mounted on the reference substrate 15 in a front-mounting or flip-chip manner, and the calibration photosensitive chip 23 may be mounted on the calibration substrate 25 in a front-mounting or flip-chip manner. This is a limitation of the present invention.

如圖10所示,是根據本發明的第一優選實施例的一分體式陣列攝像模組的第七變形實施例,其中所述分體式陣列攝像模組進一步包括一組裝支架10,一共同底座20,一共同基板30和一陀螺儀40。所述分體式陣列攝像模組實施為一個雙攝像頭模組,其包含一參考模組1和一校準模組2。所述組裝支架10,其具有一參考支架單元101和一校準支架單元102。這樣所述參考模組1與所述校準模組2分別組裝於所述組裝支架10的所述參考支架單元101與所述校準支架單元102。所述陀螺儀40設置於所述共同基板30上。 As shown in FIG. 10, it is a seventh modified embodiment of a split-type array camera module according to the first preferred embodiment of the present invention, wherein the split-type array camera module further includes an assembly bracket 10 and a common base 20. A common substrate 30 and a gyroscope 40. The split array camera module is implemented as a dual camera module, which includes a reference module 1 and a calibration module 2. The assembly bracket 10 has a reference bracket unit 101 and a calibration bracket unit 102. In this way, the reference module 1 and the calibration module 2 are assembled to the reference support unit 101 and the calibration support unit 102 of the assembly support 10 respectively. The gyroscope 40 is disposed on the common substrate 30.

所述參考模組1還包括一參考鏡頭11,一參考驅動器12和一參考感光晶片13。所述參考鏡頭11位於所述參考感光晶片13的感光路徑,從而在所述參考模組1用於採集物體的影像時,被物體反射的光線能夠在藉由所述參考鏡頭11的處理之後進一步被所述參考感光晶片13接受以適於進行光電轉化。所述參考感光晶片13電連接於所述共同基板30上。所述參考鏡頭11被安裝於所述參考驅動器12。所述共同基板30可以被耦接至所述電子設備,從而與所述電子設備配合使用。值得一提的是,所述陀螺儀40電連接於所述參考模組1並設置於所述共同基板30上。所述參考驅動器12可實施為馬達、熱驅動器或微制動器(MEMS)等。 The reference module 1 also includes a reference lens 11, a reference driver 12 and a reference photosensitive chip 13. The reference lens 11 is located on the photosensitive path of the reference photosensitive chip 13, so that when the reference module 1 is used to collect an image of an object, the light reflected by the object can be further processed by the reference lens 11. It is accepted by the reference photosensitive wafer 13 to be suitable for photoelectric conversion. The reference photosensitive chip 13 is electrically connected to the common substrate 30. The reference lens 11 is mounted on the reference driver 12. The common substrate 30 may be coupled to the electronic device so as to be used in conjunction with the electronic device. It is worth mentioning that the gyroscope 40 is electrically connected to the reference module 1 and is disposed on the common substrate 30. The reference driver 12 may be implemented as a motor, a thermal driver, or a micro actuator (MEMS) or the like.

所述校準模組2還包括一校準鏡頭21和一校準感光晶片23。所述校準鏡頭21位於所述校準感光晶片23的感光路徑,從而在所述校準模組2用於採集物體的影像時,被物體反射的光線能夠在藉由所述校準鏡頭21的處理之後進一步被所述校準感光晶片23接受以適於進行光電轉化。所述校準感光晶片23電連接於所述共同基板30上。所述共同基板30可以被耦接至所述電子設備,從而與所述電子設備配合使用。值得一提的是,所述校準模組2實施為一個2M定焦攝像模組,故無包括驅動器。但是所述校準模組2亦可實施為變焦攝像模組,故所述校準模組2還可包括一校準驅動器22,其中所述校準鏡頭21被支撐 於所述校準驅動器22上方。值得一提的是,所述校準驅動器22可實施為馬達、熱驅動器或微制動器(MEMS)等。 The calibration module 2 also includes a calibration lens 21 and a calibration photosensitive chip 23. The calibration lens 21 is located in the photosensitive path of the calibration photosensitive chip 23, so that when the calibration module 2 is used to collect an image of an object, the light reflected by the object can be further processed by the calibration lens 21. It is accepted by the calibration photosensitive wafer 23 to be suitable for photoelectric conversion. The calibration photosensitive chip 23 is electrically connected to the common substrate 30. The common substrate 30 may be coupled to the electronic device so as to be used in conjunction with the electronic device. It is worth mentioning that the calibration module 2 is implemented as a 2M fixed-focus camera module, so it does not include a driver. However, the calibration module 2 can also be implemented as a zoom camera module, so the calibration module 2 can also include a calibration driver 22, wherein the calibration lens 21 is supported Above the calibration driver 22. It is worth mentioning that the calibration driver 22 can be implemented as a motor, a thermal driver or a micro-actuator (MEMS) or the like.

值得一提的,所述共同底座20設置於所述共同基板30上,這樣所述參考模組1實施為可調焦攝像模組,所述校準模組2實施為定焦攝像模組時,所述參考驅動器12和所述校準鏡頭21都被安裝於所述共同底座20。另外,當所述參考模組1和所述校準模組2都實施為可調焦攝像模組時,所述參考驅動器12和所述校準驅動器22都被安裝於所述共同底座20。 It is worth mentioning that when the common base 20 is disposed on the common substrate 30, so that the reference module 1 is implemented as an adjustable focus camera module, and when the calibration module 2 is implemented as a fixed focus camera module, The reference driver 12 and the calibration lens 21 are both mounted on the common base 20. In addition, when the reference module 1 and the calibration module 2 are both implemented as adjustable focus camera modules, the reference driver 12 and the calibration driver 22 are both installed on the common base 20.

另外,值得一提的是,所述共同底座20可以分離式地設置於所述共同基板30,亦可經由模塑工藝形成於所述所述共同基板30上,其中通過模塑工藝一體地封裝連接於所述共同基板30,其中模塑工藝可以是注塑或模壓等工藝。另外,所述共同底座20圍繞於所述參考感光晶片13和所述校準感光晶片23外側並分別形成一通孔,以提供所述參考感光晶片13和所述校準感光晶片23的光線通路。另外,所述參考感光晶片13可採用正裝或倒裝的方式安裝於所述共同基板30,所述校準感光晶片23可採用正裝或倒裝的方式安裝於所述共同基板30,其不為本發明的限制。 In addition, it is worth mentioning that the common base 20 may be separately provided on the common substrate 30, or may be formed on the common substrate 30 through a molding process, wherein the common base 20 is packaged integrally through a molding process. It is connected to the common substrate 30, wherein the molding process can be injection molding or molding. In addition, the common base 20 surrounds the reference photosensitive wafer 13 and the calibration photosensitive wafer 23 and forms a through hole respectively to provide a light path for the reference photosensitive wafer 13 and the calibration photosensitive wafer 23. In addition, the reference photosensitive chip 13 may be mounted on the common substrate 30 in a front-mounting or flip-chip manner, and the calibration photosensitive chip 23 may be mounted on the common substrate 30 in a front-mounting or flip-chip manner. This is a limitation of the present invention.

如圖11所示,是根據本發明的第一優選實施例的一分體式陣列攝像模組的第八變形實施例,其中所述分體式陣列攝像模組進一步包括一組裝支架10,一共同底座20,一共同基板30和一陀螺儀40。所述分體式陣列攝像模組實施為一個雙攝像頭模組,其包含一參考模組1和一校準模組2。所述組裝支架10,其具有一參考支架單元101和一校準支架單元102。這樣所述參考模組1與所述校準模組2分別組裝於所述組裝支架10的所述參考支架單元101與所述校準支架單元102。所述陀螺儀40電連接所述校準模組2地設置於所述共同基板30上。 As shown in FIG. 11, it is an eighth modified embodiment of a split-type array camera module according to the first preferred embodiment of the present invention, wherein the split-type array camera module further includes an assembly bracket 10 and a common base 20. A common substrate 30 and a gyroscope 40. The split array camera module is implemented as a dual camera module, which includes a reference module 1 and a calibration module 2. The assembly bracket 10 has a reference bracket unit 101 and a calibration bracket unit 102. In this way, the reference module 1 and the calibration module 2 are assembled to the reference support unit 101 and the calibration support unit 102 of the assembly support 10 respectively. The gyroscope 40 is electrically connected to the calibration module 2 and is disposed on the common substrate 30.

所述參考模組1還包括一參考鏡頭11,一參考驅動器12和一參考感光晶片13。所述參考鏡頭11位於所述參考感光晶片13的感光路徑,從而在所述參考模組1用於採集物體的影像時,被物體反射的光線能夠在藉由所述參考鏡頭11的處理之後進一步被所述參考感光晶片13接受以適於進行光電轉化。所述參考感光晶片13電連接於所述共同基板30上。所述參考鏡頭11被安裝於所述參考驅動器12。所述共同基板30可以被耦接至所述電子設備,從而與所述電子設備配合使用。值得一提的是,所述參考驅動器12可實施為馬達、熱驅動器或微制動器(MEMS)等。 The reference module 1 also includes a reference lens 11, a reference driver 12 and a reference photosensitive chip 13. The reference lens 11 is located on the photosensitive path of the reference photosensitive chip 13, so that when the reference module 1 is used to collect an image of an object, the light reflected by the object can be further processed by the reference lens 11. It is accepted by the reference photosensitive wafer 13 to be suitable for photoelectric conversion. The reference photosensitive chip 13 is electrically connected to the common substrate 30. The reference lens 11 is mounted on the reference driver 12. The common substrate 30 may be coupled to the electronic device so as to be used in conjunction with the electronic device. It is worth mentioning that the reference driver 12 can be implemented as a motor, a thermal driver or a micro-actuator (MEMS) or the like.

所述校準模組2還包括一校準鏡頭21和一校準感光晶片23。所述校準鏡頭21位於所述校準感光晶片23的感光路徑,從而在所述校準模組2用於採集物體的影像時,被物體反射的光線能夠在藉由所述校準鏡頭21的處理之後進一步被所述校準感光晶片23接受以適於進行光電轉化。所述校準感光晶片23電連接於所述共同基板30上。所述共同基板30可以被耦接至所述電子設備,從而與所述電子設備配合使用。值得一提的是,所述校準模組2實施為一個2M定焦攝像模組,故無包括驅動器。但是所述校準模組2亦可實施為變焦攝像模組,故所述校準模組2還可包括一校準驅動器22,其中所述校準鏡頭21被支撐於所述校準驅動器22上方。值得一提的是,所述陀螺儀40電連接所述校準模組2地設置於所述共同基板30上。所述校準驅動器22可實施為馬達、熱驅動器或微制動器(MEMS)等。 The calibration module 2 also includes a calibration lens 21 and a calibration photosensitive chip 23. The calibration lens 21 is located in the photosensitive path of the calibration photosensitive chip 23, so that when the calibration module 2 is used to collect an image of an object, the light reflected by the object can be further processed by the calibration lens 21. It is accepted by the calibration photosensitive wafer 23 to be suitable for photoelectric conversion. The calibration photosensitive chip 23 is electrically connected to the common substrate 30. The common substrate 30 may be coupled to the electronic device so as to be used in conjunction with the electronic device. It is worth mentioning that the calibration module 2 is implemented as a 2M fixed-focus camera module, so it does not include a driver. However, the calibration module 2 can also be implemented as a zoom camera module, so the calibration module 2 may further include a calibration driver 22, wherein the calibration lens 21 is supported above the calibration driver 22. It is worth mentioning that the gyroscope 40 is electrically connected to the calibration module 2 and is disposed on the common substrate 30. The calibration driver 22 may be implemented as a motor, a thermal driver, or a micro actuator (MEMS) or the like.

值得一提的,所述共同底座20設置於所述共同基板30上,這樣所述參考模組1實施為可調焦攝像模組,所述校準模組2實施為定焦攝像模組時,所述參考驅動器12和所述校準鏡頭21都被安裝於所述共同底座20。另外,當所述參考模組1和所述校準模組2都實施為可調焦攝像模組時,所述參考驅動器12和所述校準驅動器22都被安裝於所述共同底座20。 It is worth mentioning that when the common base 20 is disposed on the common substrate 30, so that the reference module 1 is implemented as an adjustable focus camera module, and when the calibration module 2 is implemented as a fixed focus camera module, The reference driver 12 and the calibration lens 21 are both mounted on the common base 20. In addition, when the reference module 1 and the calibration module 2 are both implemented as adjustable focus camera modules, the reference driver 12 and the calibration driver 22 are both installed on the common base 20.

另外,值得一提的是,所述共同底座20可以分離式地設置於所述共同基板30,亦可經由模塑工藝形成於所述共同基板30上,其中通過模塑工藝一體地封裝連接於所述共同基板30,其中模塑工藝可以是注塑或模壓等工藝。另外,所述共同底座20圍繞於所述參考感光晶片13和所述校準感光晶片23外側並分別形成一通孔,以提供所述參考感光晶片13和所述校準感光晶片23的光線通路。另外,所述參考感光晶片13可採用正裝或倒裝的方式安裝於所述共同基板30,所述校準感光晶片23可採用正裝或倒裝的方式安裝於所述共同基板30,其不為本發明的限制。 In addition, it is worth mentioning that the common base 20 may be separately provided on the common substrate 30, or may be formed on the common substrate 30 through a molding process, wherein the common base 20 is integrally packaged and connected to the common substrate 30 through a molding process. In the common substrate 30, the molding process may be injection molding or molding. In addition, the common base 20 surrounds the reference photosensitive wafer 13 and the calibration photosensitive wafer 23 and forms a through hole respectively to provide a light path for the reference photosensitive wafer 13 and the calibration photosensitive wafer 23. In addition, the reference photosensitive chip 13 may be mounted on the common substrate 30 in a front-mounting or flip-chip manner, and the calibration photosensitive chip 23 may be mounted on the common substrate 30 in a front-mounting or flip-chip manner. This is a limitation of the present invention.

本發明的這個優選實施例中,如圖12所示,是本發明第一優選實施例的第一分體式陣列攝像模組的組裝方法,其包括如下步驟:(S11)一分體式陣列攝像模組的一參考模組1組裝固定,即將所述參考模組1組裝並固定在一組裝支架10的一參考單元101內;(S12)一分體式陣列攝像模組的至少一個校準模組2預組裝,即將所述校準模組2預組裝到所述組裝支架10的一校準單元102內;(S13)模組高度校準,測量所述每個校準模組2與所述參考模組1的鏡頭端面高度差,對所述每個校準模組2作相應的高度位置校準;(S14)模組偏移校準,測量所述每個校準模組2與所述參考模組1的水準位置偏移量,對所述每個校準模組2作相應的水準偏移位置校準;(S15)模組旋轉校準,設置一光源和一標板,點亮所述分體式陣列攝像模組,對所述標板進行拍攝採集圖像,根據所述參考模組1和所述每個校準模組2採集得到的圖像,利用軟體計算出所述每個校準模組2的旋轉校準量,並對所述校準模組2進行旋轉位置校準;(S16)模組偏移檢驗/校準,判斷所述每個校準模組2與所述參考模組1的水準位置偏移量是否在公差允許範圍內,若在公差範圍內不作校準,若不在公差範圍 內返回步驟(S13)重新對所述每個校準模組2做高度校準、偏移校準和旋轉校準,直到所述每個校準模組2與所述參考模組1的水準位置偏移量在所述公差範圍內;以及(S17)固定模組,固定整個所述分體式陣列攝像模組,完成組裝。 In this preferred embodiment of the present invention, as shown in FIG. 12, it is the assembling method of the first split array camera module of the first preferred embodiment of the present invention, which includes the following steps: (S11) a split array camera module A reference module 1 of the group is assembled and fixed, that is, the reference module 1 is assembled and fixed in a reference unit 101 of an assembly bracket 10; (S12) At least one calibration module 2 of a split-array camera module is pre-assembled Assemble, that is, pre-assemble the calibration module 2 into a calibration unit 102 of the assembly bracket 10; (S13) calibrate the height of the module, measure the lens of each calibration module 2 and the reference module 1 For the height difference of the end face, calibrate the corresponding height position of each calibration module 2; (S14) module offset calibration, measure the horizontal position offset of each calibration module 2 and the reference module 1 Calibrate each calibration module 2 corresponding to the level offset position; (S15) module rotation calibration, set a light source and a target plate, light up the split array camera module, and perform calibration on the The target plate is taken to capture images. Based on the images collected by the reference module 1 and each calibration module 2, the software is used to calculate the rotation calibration amount of each calibration module 2 and compare the The calibration module 2 performs rotation position calibration; (S16) module offset inspection/calibration, judging whether the horizontal position offset of each calibration module 2 and the reference module 1 is within the allowable tolerance range, If the calibration is not within the tolerance range, if it is not within the tolerance range The inner return step (S13) re-does height calibration, offset calibration and rotation calibration for each calibration module 2 until the horizontal position offset of each calibration module 2 and the reference module 1 is within Within the tolerance range; and (S17) a fixing module, fixing the entire split array camera module to complete the assembly.

值得一提的是,步驟(S13)和步驟(S14)之間的順序並無固定,即可互換。也就是說,根據需要可以先進行步驟(S13)再進行步驟(S14),或者是先進行步驟(S4)再進行步驟(S13),其中並不影所述體式陣列攝像模組的組裝方法。值得一提的是,更可以直接把步驟(S13)和步驟(S14)合併為一個步驟,即為:模組水準校準,也就是對X、Y、Z軸進行校準,不限制先後順序。 It is worth mentioning that the order between step (S13) and step (S14) is not fixed and can be interchanged. That is, if necessary, step (S13) can be performed first and then step (S14), or step (S4) can be performed first and then step (S13), which does not affect the assembly method of the body-type array camera module. It is worth mentioning that, step (S13) and step (S14) can be directly combined into one step, namely: module level calibration, which is to calibrate the X, Y, and Z axes, and the sequence is not limited.

另外,步驟(S16)不一定要存在。換言之,模組校準的檢驗可在步驟(S13)、步驟(S14)和步驟(S15)進行校準時,同時檢驗完成,以簡化組裝工序。 In addition, the step (S16) does not have to exist. In other words, the verification of module calibration can be completed at the same time when the calibration is performed in step (S13), step (S14), and step (S15), so as to simplify the assembly process.

另外,所述分體式陣列攝像模組包含一至多顆子模組,其中一顆子模組是所述參考模組1,其餘子模組為所述校準模組2,所述子模組彼此之間相互獨立並組裝於所述組裝支架10。特別地,所述參考模組1選擇所述分體式陣列攝像模組中圖元最高的一顆子模組。 In addition, the split-type array camera module includes one or more sub-modules. One of the sub-modules is the reference module 1, and the remaining sub-modules are the calibration module 2. They are independent of each other and assembled to the assembly bracket 10. In particular, the reference module 1 selects a sub-module with the highest image element in the split-array camera module.

本發明的這個優選實施例中,根據步驟(S11),如圖14所示,利用一限位治具30對所述參考模組1與所述組裝支架10的所述參考單元101進行限位元組裝,其中用膠水將所述參考模組1與所述參考單元101的支架邊框進行固定。優選地,所述膠水採用UV熱固膠,畫膠區域位於所述參考單元101的所述支架邊框的上邊緣,畫膠完成後通過紫外曝光將所述UV熱固膠預固化。值得一提的是,所述參考模組1與所述參考單元101的四周組裝間隙為0.1mm。 In this preferred embodiment of the present invention, according to step (S11), as shown in FIG. 14, a limit jig 30 is used to limit the reference module 1 and the reference unit 101 of the assembly bracket 10. Element assembly, wherein the reference module 1 and the frame frame of the reference unit 101 are fixed with glue. Preferably, the glue adopts UV thermosetting glue, and the painting glue area is located on the upper edge of the frame of the reference unit 101. After painting, the UV thermosetting glue is pre-cured by ultraviolet exposure. It is worth mentioning that the assembly gap between the reference module 1 and the reference unit 101 is 0.1 mm.

換言之,其中步驟(S11)中,所述參考模組組裝固定的步驟還包括: 1)用所述限位治具30對所述參考模組1與所述參考單元101進行限位元組裝;以及2)在所述參考模組1與所述參考單元101之間畫膠水,固化所述膠水。 In other words, in step (S11), the step of assembling and fixing the reference module further includes: 1) Use the limit jig 30 to assemble the reference module 1 and the reference unit 101 with limit elements; and 2) draw glue between the reference module 1 and the reference unit 101, Curing the glue.

根據步驟(S12),如圖13所示,將所述參考模組1與所述組裝支架10安裝並固定到一模組校準平臺403的一固定治具401上,將所述校準模組2安裝並固定到一校準治具402上,所述校準治具402設置在一六軸平臺上,同時,所述校準模組2放置於所述組裝支架10的所述校準單元102內,因此所述校準模組2可以隨著所述六軸平臺作X、Y、Z、U、V、W六個空間維度的運動。值得一提的是,所述校準模組2與所述校準單元102的四周組裝間隙為0.3mm。 According to step (S12), as shown in FIG. 13, the reference module 1 and the assembly bracket 10 are installed and fixed to a fixture 401 of a module calibration platform 403, and the calibration module 2 Installed and fixed to a calibration jig 402, the calibration jig 402 is set on a six-axis platform, and at the same time, the calibration module 2 is placed in the calibration unit 102 of the assembly bracket 10, so The calibration module 2 can move in six spatial dimensions of X, Y, Z, U, V, and W along with the six-axis platform. It is worth mentioning that the assembly gap between the calibration module 2 and the calibration unit 102 is 0.3 mm.

根據步驟(S13),透用一鐳射測距方法各測量所述參考模組1和所述校準模組2的所述鏡頭端面上的一個點的高度,接著分別計算出所述校準模組2與所述參考模組1的鏡頭端面高度差值,通過所述六軸平臺調整所述校準模組2的Z軸位移。 According to step (S13), the height of a point on the lens end surface of the reference module 1 and the calibration module 2 is measured through a laser ranging method, and then the calibration module 2 is calculated separately The height difference between the end face of the lens of the reference module 1 and the Z-axis displacement of the calibration module 2 is adjusted through the six-axis platform.

換言之,其中步驟(S13)中,所述模組高度校準具體包括:1)用所述鐳射測距方法各測量所述參考模組1和所述每個校準模組2的鏡頭端面上的一個點的高度,分別計算出所述每個校準模組2與所述參考模組1的鏡頭端面高度差值;以及2)通過所述六軸平臺調整所述每個校準模組2的Z軸位移。 In other words, in step (S13), the module height calibration specifically includes: 1) Using the laser ranging method to measure each of the reference module 1 and the lens end face of each calibration module 2 The height of the points, respectively calculating the height difference between the lens end face of each calibration module 2 and the reference module 1; and 2) adjust the Z-axis of each calibration module 2 through the six-axis platform Displacement.

根據步驟(S14),對所述參考模組1與所述每個校準模組2的所述鏡頭端面進行CCD拍攝,抓取所述鏡頭端面圖像,並利用軟體計算出所述校準模組2與所述參考模組1的水準位置偏移量,根據所述的水準位置偏移量,通過所述六軸平臺調整所述校準模組2的X、Y軸位移。 According to step (S14), the lens end face of the reference module 1 and each calibration module 2 is photographed by CCD, the lens end face image is captured, and the calibration module is calculated by software 2 The horizontal position offset from the reference module 1 is adjusted by the six-axis platform to adjust the X and Y axis displacement of the calibration module 2 according to the horizontal position offset.

換言之,其中步驟(S14)中,所述模組偏移校準具體包括: 1)對所述參考模組1與所述每個校準模組2的鏡頭端面進行CCD拍攝,抓取鏡頭端面圖像,用軟體分別計算出所述每個校準模組1與所述參考模組1的水準位置偏移量;以及2)通過所述六軸平臺調整所述每個校準模組2的X、Y軸位移。 根據步驟(S15),根據所述校準模組2的所述旋轉校準量調整所述六軸平臺的U、V、W旋轉軸的旋轉角,實現所述校準模組2的旋轉校準。 In other words, in step (S14), the module offset calibration specifically includes: 1) Take CCD shooting on the lens end face of the reference module 1 and each calibration module 2, capture the image of the lens end face, and use software to calculate each calibration module 1 and the reference mold The offset of the horizontal position of group 1; and 2) adjust the X and Y axis displacement of each calibration module 2 through the six-axis platform. According to step (S15), the rotation angles of the U, V, and W rotation axes of the six-axis platform are adjusted according to the rotation calibration amount of the calibration module 2 to realize the rotation calibration of the calibration module 2.

根據步驟(S16),所述校準模組2與所述參考模組1的X軸位置偏移量的公差為[10.4,10.6]mm,Y軸位置偏移量的公差為[-0.1,0.1]mm。 According to step (S16), the tolerance of the X-axis position offset of the calibration module 2 and the reference module 1 is [10.4, 10.6] mm, and the tolerance of the Y-axis position offset is [-0.1, 0.1 ]mm.

根據步驟(S17),在所述校準模組2與所述校準單元102之間畫膠水,所述膠水為一種UV熱固膠,將所述校準模組2與所述校準單元102之間的所述UV熱固膠在紫外曝光預固化,再將所述分體式陣列攝像模組拿到烤箱中烘烤,實現所有UV熱固膠的固化,固定整個所述分體式陣列攝像模組並最終完成組裝。 According to step (S17), glue is drawn between the calibration module 2 and the calibration unit 102, the glue is a UV thermosetting glue, and the gap between the calibration module 2 and the calibration unit 102 The UV thermosetting adhesive is pre-cured in ultraviolet exposure, and then the split array camera module is baked in an oven to realize the curing of all UV thermosetting adhesives, and the entire split array camera module is fixed and finally Complete the assembly.

在本發明一個實施例中,所述限位治具30包括一第一凹槽301和一第二凹槽302,其分別從所述限位治具30的表面向內延伸以形成凹槽。所述第一凹槽301用來放置所述參考模組1,所述第二凹槽302用來放置所述組裝支架10。 In an embodiment of the present invention, the limiting jig 30 includes a first groove 301 and a second groove 302, which respectively extend inwardly from the surface of the limiting jig 30 to form grooves. The first groove 301 is used to place the reference module 1, and the second groove 302 is used to place the assembly bracket 10.

另外,如圖14所示,其中步驟(S11)中所述參考模組1與所述限位治具30的組裝步驟進一步地包括:1)將所述參考模組1放置到所述限位治具30的所述第一凹槽301;2)將所述組裝支架10放置到所述限位治具30的所述第二凹槽302;3)通過所述限位治具30的所述第一凹槽301和所述第二凹槽302的組裝限位來控制所述參考模組1與所述組裝支架10的組裝位置誤差。 In addition, as shown in FIG. 14, the assembling step of the reference module 1 and the limiting jig 30 in step (S11) further includes: 1) placing the reference module 1 in the limiting position The first groove 301 of the jig 30; 2) place the assembly bracket 10 in the second groove 302 of the limit jig 30; 3) pass the position of the limit jig 30 The assembly limit of the first groove 301 and the second groove 302 controls the assembly position error of the reference module 1 and the assembly bracket 10.

值得一提的是,其中步驟(S11A)和(S11B)並無先後組裝順序,也就是說,可根據組裝需求進而調整組裝的先後順序。 It is worth mentioning that the steps (S11A) and (S11B) have no sequential assembly sequence, that is, the assembly sequence can be adjusted according to the assembly requirements.

在本發明一個實施例中,步驟(S13)中,所述參考模組1的鐳射測高點位於所述參考模組1的所述鏡頭端面的上方,所述校準模組2的鐳射測高點與所述參考模組1的鐳射測高點之間的距離固定,其為所述校準模組2與所述參考模組1之間的模組中心距離,在本實施例中,此距離是10.5mm。可選地,對所述參考模組1與所述校準模組2的鐳射測高點各有三個,且分別取得平均值,從而得到更加精確的所述參考模組1與所述校準模組2的高度差,然而這種方法的測高效率相比一個測高點的方案要低很多。 In one embodiment of the present invention, in step (S13), the laser height measurement point of the reference module 1 is located above the lens end surface of the reference module 1, and the laser height measurement point of the calibration module 2 The distance between the point and the laser height measurement point of the reference module 1 is fixed, which is the module center distance between the calibration module 2 and the reference module 1. In this embodiment, the distance It is 10.5mm. Optionally, there are three laser height measuring points for the reference module 1 and the calibration module 2, and average values are obtained respectively, so as to obtain a more accurate reference module 1 and the calibration module 2 height difference, but the height measurement efficiency of this method is much lower than that of one height measurement point.

在本發明一個實施例中,步驟(S15)中所述標板的圖形示意圖,如圖15所示,所述標板中心是由多組橫豎條紋組成的一MTF測試圖形M1,用來對所述參考模組1進行調焦,所述標板的四角是四個圓形的Mark點M2,用來計算所述校準模組2的旋轉校準量。進一步地,由於所述參考模組1是可調焦模組,在採集標板圖像前需要對所述參考模組1進行調焦,所述MTF測試圖形M1用來對所述參考模組1進行調焦,調整焦距直到使所述MTF測試圖形在所述參考模組1中成像最清晰,再去計算所述校準模組2的旋轉校準量。進一步地,根據所述參考模組1和所述校準模組2拍攝得到的四個所述Mark點M2的位置座標,可以分別計算出所述參考模組1和所述校準模組2的光軸傾斜,由此就可以計算出所述校準模組2的旋轉校準量。 In an embodiment of the present invention, the schematic diagram of the target plate in step (S15) is shown in FIG. 15. The center of the target plate is an MTF test pattern M1 composed of multiple sets of horizontal and vertical stripes, which is used to compare all The reference module 1 performs focusing, and the four corners of the target plate are four circular Mark points M2, which are used to calculate the rotation calibration amount of the calibration module 2. Further, since the reference module 1 is an adjustable focus module, it is necessary to adjust the focus of the reference module 1 before collecting the target image, and the MTF test pattern M1 is used to adjust the focus of the reference module 1. Adjust the focus, adjust the focus until the MTF test pattern is most clearly imaged in the reference module 1, and then calculate the rotation calibration amount of the calibration module 2. Further, according to the position coordinates of the four Mark points M2 captured by the reference module 1 and the calibration module 2, the light of the reference module 1 and the calibration module 2 can be calculated respectively. The axis is tilted, so that the rotation calibration amount of the calibration module 2 can be calculated.

另外,若定義所述參考模組1和所述校準模組2的排列方向為X軸,其垂直方向為Y軸,在本實施例中,所述校準模組2與所述參考模組1之間的模組中心距離是10.5mm。值得一提的是,步驟(S16)中所述校準模組2與所述參考模組1的X軸位置偏移量的公差為[10.4,10.6]mm,Y軸位置偏移量的公差為 [-0.1,0.1]mm,只要所述校準模組2與所述參考模組1的X、Y軸位置偏移量的其中任何一個值不在相應的公差範圍內,就需要從步驟(S13)開始重新依次對所述校準模組2進行高度校準、偏移校準和旋轉校準,直到所述校準模組2與所述參考模組1的X、Y軸位置偏移量都落在相應的公差範圍內。 In addition, if it is defined that the arrangement direction of the reference module 1 and the calibration module 2 is the X axis, and the vertical direction is the Y axis, in this embodiment, the calibration module 2 and the reference module 1 The distance between the module centers is 10.5mm. It is worth mentioning that in step (S16), the tolerance of the X-axis position offset of the calibration module 2 and the reference module 1 is [10.4, 10.6] mm, and the tolerance of the Y-axis position offset is [-0.1,0.1] mm, as long as any one of the X and Y axis position offsets of the calibration module 2 and the reference module 1 is not within the corresponding tolerance range, it is necessary to start from step (S13) Start to perform height calibration, offset calibration, and rotation calibration on the calibration module 2 in sequence again, until the X and Y axis position offsets of the calibration module 2 and the reference module 1 fall within the corresponding tolerances Within range.

在本實施例中,步驟(S12)中並沒有在所述校準模組2與所述校準單元102之間畫膠,直到步驟(S17)中完成了所有校準工序後再在所述校準模組2與所述校準單元102之間畫膠,本發明也可以將步驟(S17)中的所述校準模組2與所述校準單元102之間畫膠工序放到步驟(S12)的最後,也就是說,先進行所述校準模組2與所述校準單元102之間的畫膠,再對所述校準模組2的組裝位置進行校準,校準完成後,步驟(S17)中,將所述膠水紫外曝光半固化,再對整個模組烘烤,完成組裝。 In this embodiment, in step (S12), glue is not applied between the calibration module 2 and the calibration unit 102, until all calibration processes are completed in step (S17), then the calibration module 2 and the calibration unit 102 to draw glue, the present invention can also put the glue drawing process between the calibration module 2 and the calibration unit 102 in step (S17) at the end of step (S12), also That is to say, the paint between the calibration module 2 and the calibration unit 102 is first performed, and then the assembly position of the calibration module 2 is calibrated. After the calibration is completed, in step (S17), the The glue is semi-cured by UV exposure, and then the entire module is baked to complete the assembly.

優選地,步驟(S17)中,所述分體式陣列攝像模組在烤箱中的烘烤溫度為80℃~90℃,烘烤時間50min~60min。 Preferably, in step (S17), the baking temperature of the split-type array camera module in the oven is 80° C. to 90° C., and the baking time is 50 min to 60 min.

另外,在本實施例中所提及的簡化組裝工序,是將步驟(S13)和步驟(S14)整合或互換,以及將步驟(S16)簡化。換言之,本發明第一優選實施例第一簡化替代模式的一分體式陣列攝像模組的組裝方法,其包括如下步驟:(S11A)一分體式陣列攝像模組的一參考模組1組裝固定,即將所述參考模組1組裝並固定在一組裝支架10的一參考單元101內;(S12A)一分體式陣列攝像模組的至少一個校準模組2預組裝,即將所述校準模組2預組裝到所述組裝支架10的一校準單元102內;(S13A)模組高度/偏移校準,測量所述每個校準模組2與所述參考模組1的鏡頭端面高度差和水準位置偏移量,對所述每個校準模組2作相應的高度位置校準和相應的水準偏移位置校準; (S14A)模組旋轉校準,設置一光源和一標板,點亮所述分體式陣列攝像模組,對所述標板進行拍攝採集圖像,根據所述參考模組1和所述每個校準模組2採集得到的圖像,利用軟體計算出所述每個校準模組2的旋轉校準量,並對所述校準模組2進行旋轉位置校準;以及(S15A)固定模組,固定整個所述分體式陣列攝像模組,完成組裝。 In addition, the simplified assembly process mentioned in this embodiment is to integrate or interchange step (S13) and step (S14), and to simplify step (S16). In other words, the method for assembling a split array camera module in the first simplified alternative mode of the first preferred embodiment of the present invention includes the following steps: (S11A) a reference module 1 of a split array camera module is assembled and fixed, That is, the reference module 1 is assembled and fixed in a reference unit 101 of an assembly bracket 10; (S12A) At least one calibration module 2 of a split-array camera module is pre-assembled, that is, the calibration module 2 is pre-assembled Assembled into a calibration unit 102 of the assembly bracket 10; (S13A) Module height/offset calibration, measuring the height difference and horizontal position deviation of each calibration module 2 and the reference module 1 The amount of displacement, the corresponding height position calibration and the corresponding level offset position calibration for each calibration module 2; (S14A) Module rotation calibration, set a light source and a target plate, light up the split-array camera module, shoot and collect images of the target plate, according to the reference module 1 and each The image collected by the calibration module 2 is used to calculate the rotation calibration amount of each calibration module 2 using software, and the rotation position calibration of the calibration module 2 is performed; and (S15A) a fixed module to fix the entire The split-type array camera module is assembled.

在本實施例中,所述分體式陣列攝像模組包含一至多顆子模組,其中一顆子模組是所述參考模組1,其餘子模組為所述校準模組2,所述子模組彼此之間相互獨立並組裝於所述組裝支架10。所述參考模組1與所述校準模組2都是完成了製造、組裝並且性能測試合格的單體攝像模組。所述參考模組1可實施為一13M可調焦攝像模組。所述校準模組2可實施為一2M定焦攝像模組。另外,所述參考模組與所述參考單元的四周組裝間隙為0.1mm,所述校準模組與所述校準單元的四周組裝間隙為0.3mm。 In this embodiment, the split-array camera module includes one or more sub-modules, one of which is the reference module 1, and the remaining sub-modules are the calibration module 2. The sub-modules are independent of each other and assembled in the assembly bracket 10. Both the reference module 1 and the calibration module 2 are single camera modules that have been manufactured, assembled, and passed the performance test. The reference module 1 can be implemented as a 13M adjustable focus camera module. The calibration module 2 can be implemented as a 2M fixed-focus camera module. In addition, the circumferential assembly gap between the reference module and the reference unit is 0.1 mm, and the circumferential assembly gap between the calibration module and the calibration unit is 0.3 mm.

本發明第一優選實施例第二簡化替代模式的一分體式陣列攝像模組的組裝方法,其包括如下步驟:(S11B)一分體式陣列攝像模組的一參考模組1組裝固定,即將所述參考模組1組裝並固定在一組裝支架10的一參考單元101內;(S12B)一分體式陣列攝像模組的至少一個校準模組2預組裝,即將所述校準模組2預組裝到所述組裝支架10的一校準單元102內;(S13B)模組偏移校準,測量所述每個校準模組2與所述參考模組1的水準位置偏移量,對所述每個校準模組2作相應的水準偏移位置校準;(S14B)模組高度校準,測量所述每個校準模組2與所述參考模組1的鏡頭端面高度差,對所述每個校準模組2作相應的高度位置校準; (S15B)模組旋轉校準,設置一光源和一標板,點亮所述分體式陣列攝像模組,對所述標板進行拍攝採集圖像,根據所述參考模組1和所述每個校準模組2採集得到的圖像,利用軟體計算出所述每個校準模組2的旋轉校準量,並對所述校準模組2進行旋轉位置校準;以及(S16B)固定模組,固定整個所述分體式陣列攝像模組,完成組裝。 The method for assembling a split-type array camera module in the second simplified alternative mode of the first preferred embodiment of the present invention includes the following steps: (S11B) a reference module 1 of a split-type array camera module is assembled and fixed, i.e. The reference module 1 is assembled and fixed in a reference unit 101 of an assembly bracket 10; (S12B) At least one calibration module 2 of a split-array camera module is pre-assembled, that is, the calibration module 2 is pre-assembled to In a calibration unit 102 of the assembling bracket 10; (S13B) module offset calibration, measuring the offset of the horizontal position of each calibration module 2 and the reference module 1, and performing the calibration for each calibration module 2 Module 2 performs corresponding leveling offset position calibration; (S14B) Module height calibration, measuring the height difference between the lens end face of each calibration module 2 and the reference module 1, and for each calibration module 2 Make the corresponding height position calibration; (S15B) Module rotation calibration, set a light source and a target plate, light up the split-array camera module, shoot and collect images of the target plate, according to the reference module 1 and each The image collected by the calibration module 2 is used to calculate the rotation calibration amount of each calibration module 2 by using software, and the rotation position calibration of the calibration module 2 is performed; and (S16B) a fixed module to fix the entire The split-type array camera module is assembled.

如圖16所示,是本發明第一優選實施例的第二一分體式陣列攝像模組的組裝方法的示意圖,與第一實施例的不同之處在於,步驟(S26)中不對所述校準模組2與所述參考模組1的水準位置偏移量設置公差範圍,不管所述校準模組2與所述參考模組1的水準位置偏移量是多少,直接根據測量得到的兩者的水準位置偏移量,通過六軸平臺來調整校準模組的X、Y軸位移,即步驟(S26)重複步驟(S24)。第二個實施例的組裝方式相比第一個實施例的組裝方式校準效率更高,但是校準品質會相對較低,在具體實施時需要根據所述分體式陣列攝像模組的特點來對上述兩種方案進行選擇。 As shown in FIG. 16, it is a schematic diagram of the method for assembling the second-one split-array camera module in the first preferred embodiment of the present invention. The difference from the first embodiment is that the calibration is not performed in step (S26). The tolerance range is set for the offset of the horizontal position of the module 2 and the reference module 1, no matter how much the offset of the horizontal position of the calibration module 2 and the reference module 1 is, it is directly based on the two measured values. Adjust the X and Y axis displacement of the calibration module through the six-axis platform, that is, step (S26) and repeat step (S24). Compared with the assembly method of the first embodiment, the assembly method of the second embodiment has higher calibration efficiency, but the calibration quality will be relatively low. In the specific implementation, it is necessary to adjust the above-mentioned characteristics according to the characteristics of the split-array camera module. Choose between two options.

換言之,本發明第二優選地實施例的一分體式陣列攝像模組的組裝方法,其包括如下步驟:(S21)一分體式陣列攝像模組的一參考模組1組裝固定,即將所述參考模組1組裝並固定在一組裝支架10的一參考單元101內;(S22)一分體式陣列攝像模組的至少一個校準模組2預組裝,即將所述校準模組2預組裝到所述組裝支架10的一校準單元102內;(S23)模組高度校準,測量所述每個校準模組2與所述參考模組1的鏡頭端面高度差,對所述每個校準模組2作相應的高度位置校準;(S24)模組偏移校準,測量所述每個校準模組2與所述參考模組1的水準位置偏移量,對所述每個校準模組2作相應的水準偏移位置校準; (S25)模組旋轉校準,設置一光源和一標板,點亮所述分體式陣列攝像模組,對所述標板進行拍攝採集圖像,根據所述參考模組1和所述每個校準模組2採集得到的圖像,利用軟體計算出所述每個校準模組2的旋轉校準量,並對所述校準模組2進行旋轉位置校準;(S26)模組偏移校準,測量所述每個校準模組2與所述參考模組1的水準位置偏移量,對所述每個校準模組2作相應的水準偏移位置校準;以及(S27)固定模組,固定整個所述分體式陣列攝像模組,完成組裝。 In other words, the method for assembling a split-type array camera module according to the second preferred embodiment of the present invention includes the following steps: (S21) a reference module 1 of a split-type array camera module is assembled and fixed, that is, the reference The module 1 is assembled and fixed in a reference unit 101 of an assembly bracket 10; (S22) At least one calibration module 2 of a split-array camera module is pre-assembled, that is, the calibration module 2 is pre-assembled to the In a calibration unit 102 of the assembling bracket 10; (S23) Module height calibration, measuring the height difference between the lens end faces of each calibration module 2 and the reference module 1, and performing the calibration on each calibration module 2 Corresponding height position calibration; (S24) Module offset calibration, measuring the offset of the level position of each calibration module 2 and the reference module 1, and making corresponding adjustments to each calibration module 2 Level offset position calibration; (S25) Module rotation calibration, set a light source and a target plate, light up the split array camera module, shoot and collect images of the target plate, according to the reference module 1 and each The image collected by the calibration module 2 is used to calculate the rotation calibration amount of each calibration module 2 using software, and the rotation position calibration of the calibration module 2 is performed; (S26) module offset calibration, measurement The level offset of each calibration module 2 and the reference module 1 is calibrated corresponding to the level offset position of each calibration module 2; and (S27) a fixed module is fixed to fix the entire The split-type array camera module is assembled.

在本發明第一優選實施例第一簡化替代模式和第二簡化替代模式以及第二優選地實施例中,共同包含下面內容:優選地,所述參考模組組裝固定的步驟還包括:1)用一限位治具30對所述參考模組1與所述參考單元101進行限位元組裝;以及2)在所述參考模組1與所述參考單元101之間畫膠水,固化所述膠水。特別地,所述膠水是一UV熱固膠,通過紫外曝光將所述膠水固化。 優選地,所述模組高度校準具體包括:1)用一鐳射測距方法各測量所述參考模組1和所述每個校準模組2的鏡頭端面上的一個點的高度,分別計算出所述每個校準模組2與所述參考模組1的鏡頭端面高度差值;以及2)通過所述六軸平臺調整所述每個校準模組2的Z軸位移。 優選地,所述模組偏移校準具體包括:1)對所述參考模組1與所述每個校準模組2的鏡頭端面進行CCD拍攝,抓取鏡頭端面圖像,用軟體分別計算出所述每個校準模組2與所述參考模組1的水準位置偏移量;以及2)通過所述六軸平臺調整所述每個校準模組的X、Y軸位移。 In the first preferred embodiment of the present invention, the first simplified alternative mode and the second simplified alternative mode and the second preferred embodiment jointly contain the following content: Preferably, the step of assembling and fixing the reference module further includes: 1) Use a limit jig 30 to assemble the limit elements of the reference module 1 and the reference unit 101; and 2) draw glue between the reference module 1 and the reference unit 101 to cure the glue. In particular, the glue is a UV thermosetting glue, and the glue is cured by ultraviolet exposure. Preferably, the module height calibration specifically includes: 1) Using a laser ranging method to measure the height of a point on the lens end surface of the reference module 1 and each calibration module 2, and calculate them separately The height difference between the lens end face of each calibration module 2 and the reference module 1; and 2) the Z-axis displacement of each calibration module 2 is adjusted through the six-axis platform. Preferably, the module offset calibration specifically includes: 1) CCD shooting of the lens end faces of the reference module 1 and each calibration module 2, captures the lens end face images, and calculates them with software. The offset of the horizontal position of each calibration module 2 and the reference module 1; and 2) adjust the X and Y axis displacement of each calibration module through the six-axis platform.

在本實施例中,所述標板中心為MTF測試標板,所述標板四角含有四個圓形Mark點。 In this embodiment, the center of the target is the MTF test target, and the four corners of the target contain four circular Mark points.

優選地,所述每個校準模組的旋轉校準通過所述六軸平臺在U、V、W三個空間維度的運動來實現,目的是為了使所述每個校準模組與所述參考模組的光軸平行。 Preferably, the rotation calibration of each calibration module is realized by the movement of the six-axis platform in the three spatial dimensions of U, V, and W. The purpose is to make each calibration module communicate with the reference module. The optical axis of the group is parallel.

優選地,所述校準模組的預組裝步驟具體包括:1)將所述參考模組與所述組裝支架安裝並固定到一模組校準平臺403的一固定治具401上,所述參考模組放置於所述組裝支架的參考單元內;2)將所述校準模組安裝並固定到一校準治具402上,所述校準治具402設置在六軸平臺上,所述校準模組2放置於所述組裝支架10的校準單元102內,所述校準模組可以隨著所述六軸平臺作X、Y、Z、U、V、W六個空間維度的運動;以及3)在所述校準模組與所述校準單元之間畫膠水,所述膠水為一種UV熱固膠。 Preferably, the pre-assembly step of the calibration module specifically includes: 1) Mounting and fixing the reference module and the assembly bracket to a fixed fixture 401 of a module calibration platform 403, the reference module The assembly is placed in the reference unit of the assembly bracket; 2) the calibration module is installed and fixed to a calibration jig 402, the calibration jig 402 is set on a six-axis platform, the calibration module 2 Placed in the calibration unit 102 of the assembly bracket 10, the calibration module can move with the six-axis platform in six spatial dimensions of X, Y, Z, U, V, and W; and 3) Glue is drawn between the calibration module and the calibration unit, and the glue is a UV thermosetting glue.

配合上述的所述校準模組的預組裝步驟,其中所述分體式陣列攝像模組固定步驟具體包括:1)對所述校準模組2與所述校準單元102之間的所述膠水進行紫外曝光,所述膠水半固化;以及2)烘烤所述分體式陣列攝像模組,所述膠水完全固化,固定整個所述分體式陣列攝像模組。 優選地,所述校準模組的預組裝步驟具體包括:1)將所述參考模組1與所述組裝支架10安裝並固定到所述模組校準平臺403的所述固定治具401上,所述參考模組1放置於所述組裝支架的參考單元101內;以及 2)將所述校準模組安裝並固定到一校準治具402上,所述校準治具402設置在六軸平臺上,所述校準模組放置於所述組裝支架10的校準單元102內,所述校準模組可以隨著所述六軸平臺作X、Y、Z、U、V、W六個空間維度的運動。 Cooperating with the above-mentioned pre-assembly step of the calibration module, the fixing step of the split-array camera module specifically includes: 1) UV-curing the glue between the calibration module 2 and the calibration unit 102 Exposing, the glue is semi-cured; and 2) baking the split array camera module, the glue is completely cured, and the entire split array camera module is fixed. Preferably, the pre-assembly step of the calibration module specifically includes: 1) installing and fixing the reference module 1 and the assembly bracket 10 to the fixing fixture 401 of the module calibration platform 403; The reference module 1 is placed in the reference unit 101 of the assembly bracket; and 2) Install and fix the calibration module to a calibration jig 402, the calibration jig 402 is set on a six-axis platform, and the calibration module is placed in the calibration unit 102 of the assembly bracket 10, The calibration module can move in six spatial dimensions of X, Y, Z, U, V, and W along with the six-axis platform.

配合上述的所述校準模組的預組裝步驟,其中所述分體式陣列攝像模組固定步驟具體包括:1)在所述校準模組2與所述校準單元102之間畫膠水,所述膠水為一種UV熱固膠;2)對所述校準模組2與所述校準單元102之間的所述膠水進行紫外曝光,所述膠水半固化;以及3)烘烤所述分體式陣列攝像模組,所述膠水完全固化,固定整個所述分體式陣列攝像模組。 Cooperating with the above-mentioned pre-assembly step of the calibration module, the fixing step of the split-array camera module specifically includes: 1) drawing glue between the calibration module 2 and the calibration unit 102, the glue Is a kind of UV thermosetting glue; 2) UV-exposing the glue between the calibration module 2 and the calibration unit 102, and the glue is semi-cured; and 3) baking the split array camera module Group, the glue is completely cured, and the entire split-array camera module is fixed.

特別地,所述分體式陣列攝像模組在烤箱中的烘烤溫度為80℃~90℃,烘烤時間50min~60min。 In particular, the baking temperature of the split-type array camera module in the oven is 80°C to 90°C, and the baking time is 50min to 60min.

本發明提出所述分體式陣列攝像模組的組裝方法,所述分體式陣列攝像模組指由一個以上彼此之間完全獨立的並且檢驗合格的攝像模組成品通過一個共同的組裝支架集成組裝而成的陣列式攝像模組。在所述陣列模組的組裝過程中不僅要嚴格控制每個子模組之間的模組高度,而且要嚴格控制每個子模組之間光軸間距和光軸平行度,為了解決上述技術問題,本專利分體式陣列攝像模組的組裝方法採取的技術方案為:將所述分體式陣列攝像模組中的一個子模組作為參考模組1,其它子模組作為校準模組2,先所述將參考模組1組裝固定在所述組裝支架10上,再以所述參考模組1作為參考標準依次對所述校準模組2的高度(Z軸)、水準偏移(X、Y軸)、旋轉(U、V、W軸)共六個軸的組裝位置進行校準,校準完成後將校準完成的所述校準模組2與所述組裝支 架10固定,完成所述分體式陣列攝像模組的組裝工序。上述分體式陣列攝像模組的組裝方法不僅提升了模組生產效率、良率和模組品質,而且能實現生產資源的高度利用。 The present invention provides a method for assembling the split-type array camera module. The split-type array camera module refers to the integrated assembly of more than one fully independent and qualified camera module products through a common assembly bracket. Into an array camera module. In the assembly process of the array module, not only the module height between each sub-module must be strictly controlled, but also the optical axis spacing and optical axis parallelism between each sub-module must be strictly controlled. In order to solve the above technical problems, this The technical solution adopted by the patented split-array camera module assembly method is as follows: one sub-module of the split-array camera module is used as the reference module 1, and the other sub-modules are used as the calibration module 2. Assemble and fix the reference module 1 on the assembly bracket 10, and then use the reference module 1 as a reference standard to sequentially adjust the height (Z axis) and level offset (X, Y axis) of the calibration module 2 , Rotate (U, V, W axis) a total of six axis assembly positions for calibration, after the calibration is completed, the calibration module 2 and the assembly support The frame 10 is fixed, and the assembly process of the split array camera module is completed. The above-mentioned assembling method of the split array camera module not only improves the production efficiency, yield rate and quality of the module, but also realizes the high utilization of production resources.

如圖17-24所示,是根據本發明的第二優選實施例的一分體式陣列攝像模組,其中所述分體式陣列攝像模組是將多個已經完成獨立製造組裝後且品質合格的攝像模組或棱鏡模組成品組裝集成為一個全新的陣列式攝像模組。這樣所述分體式陣列攝像模組具有高良率、高組裝效率、高資源利用率等顯著優點。 As shown in Figures 17-24, it is a split-type array camera module according to the second preferred embodiment of the present invention, wherein the split-type array camera module is a plurality of products that have been independently manufactured and assembled and are of qualified quality. The finished camera module or prism module is assembled and integrated into a brand new array camera module. In this way, the split-type array camera module has significant advantages such as high yield, high assembly efficiency, and high resource utilization.

根據本發明的這個優選實施例,所述分體式陣列攝像模組實施為一個雙攝變焦模組,其包含一第一攝像模組1,一棱鏡模組2,一第二攝像模組3和一電路板4。如圖所示,所述第一攝像模組1可拆解的耦合連接所述棱鏡模組2,並且所述第二攝像模組3裝置於所述棱鏡模組2和所述電路板4之間。進一步地說,所述第一攝像模組1設置在整個雙攝變焦模組的最左側,其後設置著所述棱鏡模組2。並且如圖17和18所示,根據本發明的一種實施方式,將所述第一攝像模組1和所述棱鏡模組2相互組裝後,與所述第二攝像模組3相互固定連接。在實現這種連接的時候,要求兩者相互嚴格定位並對齊,這樣才能保證所述棱鏡模組2中折射出的光線與所述第二攝像模組3中的攝像鏡頭的光軸同心或同軸。這種定位的結構將在後面結合相關附圖做進一步詳細描述。在本實施方式中,固定有所述第一攝像模組1的所述棱鏡模組2與所述第二攝像模組3相互定位後,利用鐳射焊接或粘接將兩者相互固定連接。所述電路板4可以預先組裝在所述第二攝像模組3上,然後再將所述第一攝像模組1的所述棱鏡模組2與所述第二攝像模組3相互固定連接。也可以先將所述第一攝像模組1的所述棱鏡模組2與所述第二攝像模組3相互固定連接,然後再將所述電路板4固定連 接在所述第二攝像模組3上。至此,根據本發明的雙攝變焦模組組裝完成,形成如圖17所示的完整的雙攝變焦模組。 According to this preferred embodiment of the present invention, the split-array camera module is implemented as a dual-camera zoom module, which includes a first camera module 1, a prism module 2, a second camera module 3 and One circuit board 4. As shown in the figure, the first camera module 1 is detachably coupled to the prism module 2, and the second camera module 3 is installed between the prism module 2 and the circuit board 4. between. Furthermore, the first camera module 1 is arranged on the leftmost side of the entire dual-camera zoom module, and the prism module 2 is arranged thereafter. And as shown in FIGS. 17 and 18, according to an embodiment of the present invention, after the first camera module 1 and the prism module 2 are assembled with each other, they are fixedly connected to the second camera module 3 with each other. When realizing this connection, the two are required to be strictly positioned and aligned with each other, so as to ensure that the light refracted in the prism module 2 is concentric or coaxial with the optical axis of the camera lens in the second camera module 3 . This positioning structure will be described in further detail later in conjunction with related drawings. In this embodiment, after the prism module 2 to which the first camera module 1 is fixed and the second camera module 3 are positioned with each other, they are fixedly connected to each other by laser welding or bonding. The circuit board 4 may be pre-assembled on the second camera module 3, and then the prism module 2 of the first camera module 1 and the second camera module 3 are fixedly connected to each other. Alternatively, the prism module 2 of the first camera module 1 and the second camera module 3 may be fixedly connected to each other, and then the circuit board 4 may be fixedly connected to each other. Connected to the second camera module 3. So far, the dual-camera zoom module according to the present invention is assembled to form a complete dual-camera zoom module as shown in FIG. 17.

根據本實施例,圖24所示,所述第一攝像模組1包括一第一鏡頭100A,一第一驅動器300A,一第一感光晶片200A,和一第一基板400A。所述第一鏡頭100A位於所述第一感光晶片200A的感光路徑,從而在所述第一攝像模組1用於採集物體的影像時,被物體反射的光線能夠在藉由所述第一鏡頭100A的處理之後進一步被所述第一感光晶片200A接受以適於進行光電轉化。所述第一感光晶片200A電連接於所述第一基板400A上。所述第一鏡頭100A被安裝於第一所述驅動器300A。所述第一基板400A第一可以被耦接至所述電子設備,從而與所述電子設備配合使用。值得一提的是,所述第一驅動器300A可實施為馬達、熱驅動器或微制動器(MEMS)等。 According to this embodiment, as shown in FIG. 24, the first camera module 1 includes a first lens 100A, a first driver 300A, a first photosensitive chip 200A, and a first substrate 400A. The first lens 100A is located on the photosensitive path of the first photosensitive chip 200A, so that when the first camera module 1 is used to capture an image of an object, the light reflected by the object can pass through the first lens After the 100A treatment, it is further accepted by the first photosensitive wafer 200A to be suitable for photoelectric conversion. The first photosensitive chip 200A is electrically connected to the first substrate 400A. The first lens 100A is mounted on the first driver 300A. The first substrate 400A may be coupled to the electronic device so as to cooperate with the electronic device. It is worth mentioning that the first driver 300A can be implemented as a motor, a thermal driver, a micro actuator (MEMS), or the like.

根據本實施例,所述棱鏡模組2包括一棱鏡單元201和一棱鏡基座202。所述棱鏡基座202呈長方形形狀並設有兩個位置,其中一個位置用於容納所述棱鏡單元201,另一個用於容納所述第一攝像模組1。這樣設置使得所述第一攝像模組1和所述棱鏡單元201相互安裝在一個底板或平面上,或者說所述第一攝像模組1和所述棱鏡單元201是共平面設置的。這樣就消除了將所述第一攝像模組1和所述棱鏡單元201設置在不同基座上所產生的相互之間的位置誤差。這種佈置方式以簡單的結構保證了進入所述第一攝像模組1和所述棱鏡單元201的光線平行度,也就是保證了成像品質。 According to this embodiment, the prism module 2 includes a prism unit 201 and a prism base 202. The prism base 202 has a rectangular shape and is provided with two positions, one of which is for accommodating the prism unit 201 and the other is for accommodating the first camera module 1. This arrangement allows the first camera module 1 and the prism unit 201 to be mutually mounted on a base plate or plane, or the first camera module 1 and the prism unit 201 are arranged coplanar. In this way, the mutual positional error caused by setting the first camera module 1 and the prism unit 201 on different bases is eliminated. This arrangement ensures the parallelism of the light entering the first camera module 1 and the prism unit 201 with a simple structure, that is, the imaging quality is guaranteed.

圖19以分解示意圖的方式表示了根據本發明的雙攝變焦模組中所述棱鏡模組2中的所述棱鏡單元201。 FIG. 19 shows the prism unit 201 in the prism module 2 in the dual-camera zoom module according to the present invention in an exploded schematic view.

如圖19所示,所述棱鏡單元201主要包括一棱鏡外殼2011、一棱鏡2012、一棱鏡座2013、一支承軸套2014、一支承軸2015和一支承卡座2016。 所述棱鏡外殼2011是一個由三個側壁或邊框圍成的矩形框,三個側壁或邊框分別是一底邊框2011a和兩個側邊框2011b。其中的兩個所述側邊框2011b的結構和形狀相同,並且相互相對佈置。在兩個所述側邊框2011b的一端設有所述底邊框2011a。由此形成一個大約呈U字形的框架。這個框架是一側開口或敞開的矩形框架。可以理解的,U字形的所述框架的側開口即設置於所述底邊框2011a的相對側。兩個所述側邊框2011b分別以各自一端與所述底邊框2011a固定連接,其另一端則為向外延伸的自由端2011c,即在所述自由端2011c處形成所述側開口。在本實施方式中,這兩個所述自由端2011c用於與順序設置於其後的所述第二攝像模組3相互連接。在兩個所述自由端2011c之間還設有一連接橫樑2011d。所述連接橫樑2011d一方面用於固定兩個所述自由端2011c之間的距離,使其能夠更加精准地與後面的所述第二攝像模組3銜接定位後相互固定連接;另一方面,所述連接橫樑2011d還起到遮擋有可能在連接縫隙處洩漏到所述棱鏡2012與所述第二攝像模組3之間的空間中的光線。這有利於提高成像品質。所述連接橫樑2011d提高了所述棱鏡外殼2011的整體剛度,並有效地防止不需要的光線進入根據本發明的雙攝變焦模組中。值得一提的,所述連接橫樑2011d可實施為一長條或一矩形框。可以理解的,所述連接橫樑2011d若為所述長條即設置於兩個所述側邊框2011b上,且於兩個所述自由端2011c之間。所述連接橫樑2011d若為所述矩形框即位於所述底邊框2011a和兩個所述側邊框2011b上部,並使所述矩形框的其中一邊位於兩個所述自由端2011c之間。 As shown in FIG. 19, the prism unit 201 mainly includes a prism housing 2011, a prism 2012, a prism holder 2013, a supporting sleeve 2014, a supporting shaft 2015, and a supporting holder 2016. The prism housing 2011 is a rectangular frame surrounded by three side walls or frames, and the three side walls or frames are respectively a bottom frame 2011a and two side frames 2011b. The two side frames 2011b have the same structure and shape, and are arranged opposite to each other. The bottom frame 2011a is provided at one end of the two side frames 2011b. This forms an approximately U-shaped frame. This frame is a rectangular frame with one side open or open. It can be understood that the side openings of the U-shaped frame are arranged on the opposite side of the bottom frame 2011a. The two side frames 2011b are respectively fixedly connected to the bottom frame 2011a at one end, and the other end is a free end 2011c extending outward, that is, the side opening is formed at the free end 2011c. In this embodiment, the two free ends 2011c are used to connect with the second camera module 3 sequentially arranged thereafter. A connecting beam 2011d is also provided between the two free ends 2011c. On the one hand, the connecting beam 2011d is used to fix the distance between the two free ends 2011c, so that it can be more accurately connected to the second camera module 3 and then fixedly connected to each other; on the other hand, The connecting beam 2011d also serves to block light that may leak into the space between the prism 2012 and the second camera module 3 at the connecting gap. This helps to improve the image quality. The connecting beam 2011d improves the overall rigidity of the prism housing 2011 and effectively prevents unwanted light from entering the dual-camera zoom module according to the present invention. It is worth mentioning that the connecting beam 2011d can be implemented as a long strip or a rectangular frame. It can be understood that if the connecting beam 2011d is the long strip, it is arranged on the two side frames 2011b and between the two free ends 2011c. If the connecting beam 2011d is the rectangular frame, it is located above the bottom frame 2011a and the two side frames 2011b, and one side of the rectangular frame is located between the two free ends 2011c.

如圖19所示,所述種棱鏡單元201還包括所述棱鏡2012、所述棱鏡座2013、所述支承軸套2014和所述支承軸2015。所述棱鏡2012固定設置在所述棱鏡座2013中,從圖中可以清晰地看出,在組裝狀態下,所述棱鏡2012的上表面突出於所述棱鏡座2013。所述支承軸套2014固定安裝在所述棱鏡座2013的 下部,即所述棱鏡座2013上的與安裝所述棱鏡2012的位置相對的另一側。所述支承軸2015可轉動地安裝在所述支承軸套2014中。 As shown in FIG. 19, the seed prism unit 201 further includes the prism 2012, the prism holder 2013, the support sleeve 2014, and the support shaft 2015. The prism 2012 is fixedly arranged in the prism holder 2013. It can be clearly seen from the figure that in the assembled state, the upper surface of the prism 2012 protrudes from the prism holder 2013. The supporting sleeve 2014 is fixedly installed on the prism holder 2013 The lower part is the other side of the prism holder 2013 opposite to the position where the prism 2012 is installed. The supporting shaft 2015 is rotatably installed in the supporting sleeve 2014.

如圖19所示,所述棱鏡2012的橫截面基本呈直角三角形,圖中所示的所述棱鏡2012處於橫置的狀態。如圖所示,直角三角形的一條直角邊所在的平面朝上設置。這樣,棱所述鏡2012上直角三角形的斜邊所在平面面對所述棱鏡座2013,並支承於其中。 As shown in FIG. 19, the cross section of the prism 2012 is basically a right triangle, and the prism 2012 shown in the figure is in a horizontal state. As shown in the figure, the plane of a right-angled side of the right-angled triangle faces upwards. In this way, the plane of the hypotenuse of the right triangle on the prism mirror 2012 faces the prism holder 2013 and is supported therein.

如圖19所示,在根據本發明的一種實施方式中,所述支承軸套2014與所述支承軸2015相互配合地用於支承整個所述棱鏡座2013和所述棱鏡2012,使之可以圍繞所述支承軸2015轉動。 As shown in FIG. 19, in an embodiment according to the present invention, the support sleeve 2014 and the support shaft 2015 cooperate with each other to support the entire prism holder 2013 and the prism 2012 so that they can surround The support shaft 2015 rotates.

在如圖19所示的根據本發明的一種實施方式中,首先在所述棱鏡座2013中塗覆粘接用的膠水,然後將所述棱鏡2012放入棱鏡座2013中並使膠水固化,從而將所述棱鏡2012與所述棱鏡座2013相互粘接牢固。將所述支承軸套2014放入所述棱鏡座2013上的所述通孔2013a中,並將其固定。通過所述支承軸2015將已經組裝了所述棱鏡2012的所述棱鏡座2013可轉動地支承在所述棱鏡基座202上,再將所述棱鏡外殼2011安裝在所述棱鏡座2013之上。 In an embodiment according to the present invention as shown in FIG. 19, firstly, glue for bonding is applied to the prism holder 2013, and then the prism 2012 is put into the prism holder 2013 and the glue is cured, thereby The prism 2012 and the prism holder 2013 are firmly bonded to each other. Put the support sleeve 2014 into the through hole 2013a on the prism holder 2013 and fix it. The prism holder 2013 assembled with the prism 2012 is rotatably supported on the prism base 202 through the supporting shaft 2015, and then the prism housing 2011 is installed on the prism holder 2013.

在根據本發明的實施方式中,在所述棱鏡座2013上還設有用於驅動所述棱鏡座2013運動的磁鐵,在所述棱鏡基座202上設有用於與上述驅動所述棱鏡座2013運動的磁鐵相互配合的線圈以及電路。由此形成驅動所述棱鏡2012運動的驅動裝置。在該驅動裝置的驅動下,所述棱鏡2012相對所述支承軸2015轉動或移動,從而實現所述棱鏡2012在不同自由度上的調整運動。 In the embodiment according to the present invention, the prism holder 2013 is further provided with a magnet for driving the prism holder 2013 to move, and the prism base 202 is provided with a magnet for driving the prism holder 2013 to move as described above. The magnets cooperate with the coils and circuits. Thus, a driving device for driving the prism 2012 to move is formed. Driven by the driving device, the prism 2012 rotates or moves relative to the supporting shaft 2015, so as to realize the adjustment movement of the prism 2012 in different degrees of freedom.

圖20以立體圖的形式示出了所述棱鏡基座202的具體形狀和結構。如圖所示,所述棱鏡基座202呈長方形,其具有一底板2025為一個長方形的平板。在所述底板2025的一個表面上,設有沿其邊長延伸的一定位框壁2026。如圖所示,在根據本發明的這種實施方案中,所述定位框壁2026並不是 連續地圍繞所述底板2025的整個邊長延伸,而是間斷延伸的。特別地,所述定位框壁2026圍繞於所述底板2025時,在當中形成一第一開口2028。 FIG. 20 shows the specific shape and structure of the prism base 202 in the form of a three-dimensional view. As shown in the figure, the prism base 202 is rectangular and has a bottom plate 2025 which is a rectangular flat plate. On one surface of the bottom plate 2025, a positioning frame wall 2026 extending along the side length is provided. As shown in the figure, in this embodiment according to the present invention, the positioning frame wall 2026 is not It extends continuously around the entire length of the bottom plate 2025, but extends intermittently. In particular, when the positioning frame wall 2026 surrounds the bottom plate 2025, a first opening 2028 is formed in the middle.

圖20所示的所述棱鏡基座202由一中間隔壁2027分割成兩個不同腔室,其中一個用於容納或佈置所述棱鏡單元201的是一棱鏡模組容納腔2022。另一個用於容納所述第一攝像模組1的是一第一攝像模組容納腔2021。 值得一提的,所述第一開口2028形成在所述第一攝像模組容納腔2021的側壁。另外,亦有一第二開口2029形成於棱鏡模組容納腔2022的側壁。如圖中所示,所述第一開口2028用於施布所述第一攝像模組1的電源/信號線。同理,所述第二開口2029也是用於施布用於控制所述棱鏡2012的電源/控制信號線的開口。 The prism base 202 shown in FIG. 20 is divided into two different cavities by a middle partition wall 2027, one of which is used for accommodating or arranging the prism unit 201 is a prism module accommodating cavity 2022. Another one for accommodating the first camera module 1 is a first camera module accommodating cavity 2021. It is worth mentioning that the first opening 2028 is formed on the side wall of the first camera module accommodating cavity 2021. In addition, a second opening 2029 is formed on the side wall of the prism module containing cavity 2022. As shown in the figure, the first opening 2028 is used for distributing the power/signal lines of the first camera module 1. In the same way, the second opening 2029 is also an opening for applying power/control signal lines for controlling the prism 2012.

在所述棱鏡模組容納腔2022的一側設有一連接壁2023,所述連接壁2023用於與所述第二攝像模組3連接,同時還起著在與所述第二攝像模組3相互連接的時候使兩者相互精准定位的作用。進一步地說,所述連接壁2023設置於所述中間隔壁2027的相對側。在所述棱鏡模組容納腔2022中,還設有用於支承所述支承軸2015的支承座。所述支承軸2015固定支承在所述支承座上,從而使所述棱鏡2012能夠在驅動機構的驅動下運動。 A connecting wall 2023 is provided on one side of the prism module accommodating cavity 2022, and the connecting wall 2023 is used to connect with the second camera module 3, and at the same time, it also plays a role in connecting with the second camera module 3 When they are connected to each other, they can accurately locate each other. Furthermore, the connecting wall 2023 is arranged on the opposite side of the middle partition wall 2027. In the prism module accommodating cavity 2022, a supporting seat for supporting the supporting shaft 2015 is also provided. The supporting shaft 2015 is fixedly supported on the supporting seat, so that the prism 2012 can move under the driving of a driving mechanism.

根據本發明,在所述棱鏡基座202上分別設置所述第一攝像模組1和所述棱鏡模組2。這種設置的目的之一在於使所述棱鏡單元201與所述第一攝像模組1中的鏡頭所構成的有效光學區域相互對準。這對於成像品質非常重要。但是,當將兩個部件或單元同時設置在所述棱鏡基座202上時,導致所述棱鏡基座202承擔著兩個具有一定重量的零件。這樣,所述棱鏡基座202的中間部位成為整個基座上相對脆弱的部位。當根據本發明的雙攝變焦模組在使用過程中受到比較強烈的衝擊或振動時,所述棱鏡基座202會在中間部位斷裂。 According to the present invention, the first camera module 1 and the prism module 2 are respectively provided on the prism base 202. One of the purposes of this arrangement is to align the effective optical area formed by the prism unit 201 and the lens in the first camera module 1 with each other. This is very important for image quality. However, when two components or units are installed on the prism base 202 at the same time, the prism base 202 is caused to bear two parts with a certain weight. In this way, the middle part of the prism base 202 becomes a relatively fragile part on the entire base. When the dual-camera zoom module according to the present invention is subjected to relatively strong impact or vibration during use, the prism base 202 may break in the middle part.

為了避免所述棱鏡基座202的中間部位斷裂,根據本發明在其中間部位設置了一中間加強板2024。從圖20可以看出,所述中間加強板2024沿著垂直於所述棱鏡基座202長度方向、在其整個寬度上貫穿棱鏡基座202延伸。中間加強板2024具有一定的厚度,從而增強了所述棱鏡基座202中間部位的強度。有效地避免所述中間加強板2024斷裂或損壞。此外,所述中間加強板2024提高了所述棱鏡基座202的整體剛性,使得所述第一攝像模組1和所述棱鏡單元201的安裝基礎更加牢固,兩者之間的位置關係得以保證。 In order to prevent the middle part of the prism base 202 from breaking, a middle reinforcing plate 2024 is provided in the middle part according to the present invention. It can be seen from FIG. 20 that the middle reinforcing plate 2024 extends through the prism base 202 along the direction perpendicular to the length of the prism base 202 and extends through the prism base 202 across its entire width. The middle reinforcing plate 2024 has a certain thickness, thereby enhancing the strength of the middle part of the prism base 202. This effectively prevents the middle reinforcing plate 2024 from being broken or damaged. In addition, the intermediate reinforcing plate 2024 improves the overall rigidity of the prism base 202, so that the installation foundation of the first camera module 1 and the prism unit 201 is firmer, and the positional relationship between the two is ensured. .

參見圖21可以看出,所述棱鏡基座202端部的所述連接壁2023的另一個表面上設有至少一定位凸起2030。在根據本發明的這種實施方式中,設置了四個所述定位凸起2030。這四個所述定位凸起2030分佈在所述連接壁2023表面的四個角上。這些所述定位凸起2030用於與後面的所述第二攝像模組3上的所述攝像殼體301上的所述定位孔301c相互配合,確定所述棱鏡基座202與所述第二攝像模組3之間的連接位置,保證所述棱鏡2012的光學軸線與所述第二攝像模組3中的鏡頭的光學軸線相互同軸。與此同時,在所述連接壁2023的中心部位還開設有用於使光線通過的一通孔。由所述棱鏡2012折射的光線將通過這個通孔,進入所述第二攝像模組3中,穿過其中的鏡頭到達感光晶片。 It can be seen from FIG. 21 that at least one positioning protrusion 2030 is provided on the other surface of the connecting wall 2023 at the end of the prism base 202. In this embodiment according to the present invention, four positioning protrusions 2030 are provided. The four positioning protrusions 2030 are distributed on the four corners of the surface of the connecting wall 2023. The positioning protrusions 2030 are used to cooperate with the positioning holes 301c on the camera housing 301 of the second camera module 3 to determine the prism base 202 and the second camera housing 301. The connection position between the camera modules 3 ensures that the optical axis of the prism 2012 and the optical axis of the lens in the second camera module 3 are coaxial with each other. At the same time, a through hole for passing light is also opened in the central part of the connecting wall 2023. The light refracted by the prism 2012 will pass through this through hole, enter the second camera module 3, pass through the lens therein and reach the photosensitive chip.

圖21中還清楚地示出所述棱鏡外殼2011的所述自由端2011c。根據本發明的這種實施方式中,這兩個所述自由端2011c用於與後面的所述第二攝像模組3固定連接。後面將對此做進一步詳細描述。 FIG. 21 also clearly shows the free end 2011c of the prism housing 2011. In this embodiment according to the present invention, the two free ends 2011c are used for fixed connection with the second camera module 3 behind. This will be described in further detail later.

根據本實施例,圖24所示,所述第二攝像模組3包括一第二鏡頭102A,一第二驅動器302A,一第二感光晶片202A,和一第二基板402A。所述第二鏡頭102A位於所述第二感光晶片202A的感光路徑,從而在所述第一二攝像模組3用於採集物體的影像時,被物體反射的光線能夠在藉由所述第二鏡頭102A的處理之後進一步被所述第二感光晶片202A接受以適於進行光電轉化。 所述第二感光晶片202A電連接於所述第二基板402A上。所述第二鏡頭102A被安裝於第二所述驅動器302A。所述第二基板402A第一可以被耦接至所述電子設備,從而與所述電子設備配合使用。值得一提的是,所述第二驅動器302A可實施為馬達、熱驅動器或微制動器(MEMS)等。 According to this embodiment, as shown in FIG. 24, the second camera module 3 includes a second lens 102A, a second driver 302A, a second photosensitive chip 202A, and a second substrate 402A. The second lens 102A is located on the photosensitive path of the second photosensitive chip 202A, so that when the first and second camera modules 3 are used to capture images of an object, the light reflected by the object can pass through the second After the processing of the lens 102A, it is further accepted by the second photosensitive chip 202A so as to be suitable for photoelectric conversion. The second photosensitive chip 202A is electrically connected to the second substrate 402A. The second lens 102A is mounted on the second driver 302A. The second substrate 402A may first be coupled to the electronic device, so as to cooperate with the electronic device. It is worth mentioning that the second driver 302A can be implemented as a motor, a thermal driver, a micro actuator (MEMS), or the like.

另外,圖22示出了根據本發明的所述第二攝像模組3的部分結構。 In addition, FIG. 22 shows a partial structure of the second camera module 3 according to the present invention.

在根據本發明的一種實施方式中,所述第二攝像模組3包括一攝像外殼301A。如圖22所示,所述攝像外殼301A呈中空矩形柱狀,具有圍繞形成中空矩形柱的一外殼部301a,以及固定連接在所述外殼部301a一端的一前面板301e。如圖22所示,所述前面板301e的長度小於所述攝像外殼301A的寬度,因為在所述攝像外殼301A沿寬度方向的兩端分別設有兩個連接部301b。這兩個所述連接部301b是在所述攝像外殼301A側面上的兩個凹陷。結合圖5所示的所述棱鏡外殼2011可以看出,在裝配狀態下,所述棱鏡外殼2011的所述自由端2011c貼嵌在所述攝像外殼301A端部兩側的這兩個凹陷的所述連接部301b處,然後通過鐳射焊接或粘接將兩者固定連接在一起。 In an embodiment according to the present invention, the second camera module 3 includes a camera housing 301A. As shown in FIG. 22, the camera housing 301A is in the shape of a hollow rectangular column, with a housing portion 301a surrounding the hollow rectangular column, and a front panel 301e fixedly connected to one end of the housing portion 301a. As shown in FIG. 22, the length of the front panel 301e is smaller than the width of the camera housing 301A because two connecting portions 301b are respectively provided at both ends of the camera housing 301A in the width direction. The two connecting portions 301b are two recesses on the side surface of the camera housing 301A. In combination with the prism housing 2011 shown in FIG. 5, it can be seen that in the assembled state, the free end 2011c of the prism housing 2011 is attached to the two recessed surfaces on both sides of the end of the camera housing 301A. At the connecting portion 301b, the two are fixedly connected together by laser welding or bonding.

如圖22所示,在所述前面板301e設置有至少一個定位孔301c。在根據本發明的這種實施方式中,在所述前面板301e的四個角上設置有四個所述定位孔301c。在將所述第二攝像模組3與安裝有所述棱鏡單元201和所述第一攝像模組1的所述棱鏡基座202相互組合固定時,這些所述定位孔301c起定位作用,並且做所述棱鏡2012的光學軸線與所述第一攝像模組1中的鏡頭的光學軸線和所述第二攝像模組3中的鏡頭的光學軸線相互同軸。 As shown in Fig. 22, the front panel 301e is provided with at least one positioning hole 301c. In this embodiment according to the present invention, four positioning holes 301c are provided on the four corners of the front panel 301e. When the second camera module 3 and the prism base 202 on which the prism unit 201 and the first camera module 1 are mounted are combined and fixed to each other, the positioning holes 301c play a positioning role, and The optical axis of the prism 2012 is coaxial with the optical axis of the lens in the first camera module 1 and the optical axis of the lens in the second camera module 3.

圖22中還示意性的表示了根據本發明的這種實施方式中的一第二驅動器302A,一防抖單元303和一支承殼304。這些部件相互同軸設置,所述第二驅動器302A安裝在所述防抖單元303中,並可在驅動機構的驅動下在所述 防抖單元303中移動以抵消抖動造成的偏差。所述防抖單元303整體地安裝在所述支承殼304中,並可在所述支承殼304中移動,以帶動攝像模組中的鏡頭進行調焦。 FIG. 22 also schematically shows a second driver 302A, an anti-shake unit 303 and a support shell 304 in this embodiment according to the present invention. These components are arranged coaxially with each other. The second driver 302A is installed in the anti-shake unit 303, and can be driven by the driving mechanism in the The anti-shake unit 303 moves in order to offset the deviation caused by the shaking. The anti-shake unit 303 is integrally installed in the supporting shell 304 and can move in the supporting shell 304 to drive the lens in the camera module to adjust the focus.

圖22中僅僅示意性表示了根據本發明的所述第二攝像模組3的組成部分,並未具體詳細表示例如驅動磁鐵、相應的霍爾感測器等。 FIG. 22 only schematically shows the components of the second camera module 3 according to the present invention, and does not specifically show, for example, driving magnets, corresponding Hall sensors, etc. in detail.

圖23示意性表示了在根據本發明的一種實施方式中所述棱鏡模組2與所述第二攝像模組3的相互連接狀態。 FIG. 23 schematically shows the interconnection state of the prism module 2 and the second camera module 3 in an embodiment according to the present invention.

在將所述棱鏡單元201整體地安裝到所述棱鏡基座202上以後,便得到如圖21所示的所述棱鏡單元201與所述棱鏡基座202的組合。然後在所述棱鏡基座202面對所述第二攝像模組3的端面上塗覆粘接膠水,並在所述第二攝像模組3的相應端面的所述攝像外殼301的所述前面板301e上也附塗粘接膠水。 After the prism unit 201 is integrally mounted on the prism base 202, the combination of the prism unit 201 and the prism base 202 as shown in FIG. 21 is obtained. Then, the end surface of the prism base 202 facing the second camera module 3 is coated with adhesive glue, and the front panel of the camera housing 301 on the corresponding end surface of the second camera module 3 is applied. Adhesive glue is also attached to 301e.

然後,將所述棱鏡基座202上的四個所述定位凸起2030與所述第二攝像模組3的所述攝像外殼301上的四個所述定位孔301c相互對齊,然後插入所述定位孔301c中。這樣,便可保證所述第二攝像模組3和所述棱鏡單元201相互嚴格對齊。 Then, align the four positioning protrusions 2030 on the prism base 202 with the four positioning holes 301c on the camera housing 301 of the second camera module 3, and then insert the Positioning hole 301c. In this way, it can be ensured that the second camera module 3 and the prism unit 201 are strictly aligned with each other.

在實現上述對齊之後,所述棱鏡外殼2011的所述自由端2011c貼嵌在所述攝像外殼301端部兩側的這兩個凹陷的所述連接部301b處。對所述自由端2011c與所述連接部301b施以鐳射焊接或也是通過塗覆膠水實施粘接,將兩者固定連接。連接後得到如圖23所示的組合,但圖23中省略了所述第一攝像模組1以及相應的位於最右側的所述電路板4。所述電路板4可以通過粘接等方式連接於所述第二攝像模組3的後面。另外,所述電路板4亦可通過結構的配合,像螺紋或卡勾配合,連接於所述第二攝像模組3的後面。這不為本發明的限制。 After the above-mentioned alignment is achieved, the free end 2011c of the prism housing 2011 is attached to the two concave connecting portions 301b on both sides of the end of the camera housing 301. Laser welding is applied to the free end 2011c and the connecting portion 301b or adhesive is also applied by applying glue to fix the connection between the two. After connection, the combination shown in FIG. 23 is obtained, but the first camera module 1 and the corresponding circuit board 4 on the rightmost side are omitted in FIG. 23. The circuit board 4 can be connected to the back of the second camera module 3 by bonding or the like. In addition, the circuit board 4 can also be connected to the back of the second camera module 3 through structural cooperation, such as screw or hook fitting. This is not a limitation of the present invention.

本領域的技術人員應理解,上述描述及附圖中所示的本發明的實施例只作為舉例而並不限制本發明。本發明的目的已經完整並有效地實現。本發明的功能及結構原理已在實施例中展示和說明,在沒有背離所述原理下,本發明的實施方式可以有任何變形或修改。 Those skilled in the art should understand that the above description and the embodiments of the present invention shown in the accompanying drawings are only examples and do not limit the present invention. The purpose of the present invention has been completely and effectively achieved. The functions and structural principles of the present invention have been shown and explained in the embodiments. Without departing from the principles, the implementation of the present invention may have any deformation or modification.

S11:參考模組組裝固定 S11: Reference module assembly and fixing

S12:校準模組預組裝 S12: Calibration module pre-assembly

S13:模組高度校準 S13: Module height calibration

S14:模組偏移校準 S14: Module offset calibration

S15:模組旋轉校準 S15: Module rotation calibration

S16:模組偏移檢驗 S16: Module offset inspection

S17:固定模組 S17: Fixed module

Claims (55)

一種分體式陣列攝像模組,其特徵在於,包括:多顆子模組,其中至少一顆子模組為參考模組,其餘子模組為校準模組;以及一組裝支架,其中所述參考模組和所述每個校準模組分別組裝於所述組裝支架,其中所述參考模組和每個校準模組則分別為獨立且合格的單體攝像模組,其中所述參考模組還包括至少一參考底座,至少一參考基板,至少一參考感光晶片,至少一參考驅動器,其中所述參考感光晶片電連接於所述參考基板上,所述參考底座設置於所述參考基板上,所述參考驅動器被安裝於所述參考底座。 A split-type array camera module, which is characterized by comprising: a plurality of sub-modules, at least one of which is a reference module, and the remaining sub-modules are calibration modules; and an assembly bracket, wherein the reference The module and each calibration module are assembled in the assembly bracket respectively, wherein the reference module and each calibration module are respectively independent and qualified single camera modules, wherein the reference module is also It includes at least one reference base, at least one reference substrate, at least one reference photosensitive chip, and at least one reference driver, wherein the reference photosensitive chip is electrically connected to the reference substrate, and the reference base is disposed on the reference substrate, so The reference driver is mounted on the reference base. 根據申請專利範圍第1項所述的分體式陣列攝像模組,其中所述參考模組為一可調焦攝像模組或一定焦攝像模組。 According to the split array camera module described in item 1 of the scope of patent application, the reference module is an adjustable focus camera module or a fixed focus camera module. 根據申請專利範圍第2項所述的分體式陣列攝像模組,其中所述校準模組為一可調焦攝像模組或一定焦攝像模組。 According to the split array camera module described in item 2 of the scope of patent application, the calibration module is an adjustable focus camera module or a fixed focus camera module. 根據申請專利範圍第3項所述的分體式陣列攝像模組,其中所述組裝支架具有至少一參考單元和至少一校準單元,其中所述參考模組與所述校準模組分別組裝於所述組裝支架的所述參考單元與所述校準單元。 The split array camera module according to item 3 of the scope of patent application, wherein the assembly bracket has at least one reference unit and at least one calibration unit, wherein the reference module and the calibration module are respectively assembled in the Assembling the reference unit and the calibration unit of the bracket. 根據申請專利範圍第4項所述的分體式陣列攝像模組,其中所述校準模組與所述參考模組之間的模組中心距離是1-100mm。 The split array camera module according to item 4 of the scope of patent application, wherein the module center distance between the calibration module and the reference module is 1-100 mm. 根據申請專利範圍第5項所述的分體式陣列攝像模組,其中所述參考模組與所述參考單元的四周組裝間隙為0.01-1mm,所述校準模組與所述校準單元的四周組裝間隙為0.03-3mm。 The split array camera module according to item 5 of the scope of patent application, wherein the assembly gap between the reference module and the reference unit is 0.01-1mm, and the calibration module is assembled with the circumference of the calibration unit The gap is 0.03-3mm. 根據申請專利範圍第1項所述的分體式陣列攝像模組,其中所述參考模組還包括至少一參考鏡頭,其中所述參考鏡頭位於所述參考感光晶片的感光路徑,所述參考鏡頭被安裝於所述參考驅動器。 The split-array camera module according to item 1 of the scope of patent application, wherein the reference module further includes at least one reference lens, wherein the reference lens is located on the photosensitive path of the reference photosensitive chip, and the reference lens is Install on the reference drive. 根據申請專利範圍第7項所述的分體式陣列攝像模組,其中所述校準模組還包括至少一校準鏡頭和一至少校準感光晶片,其中所述校準鏡頭位於所述校準感光晶片的感光路徑。 The split array camera module according to item 7 of the scope of patent application, wherein the calibration module further includes at least one calibration lens and one at least calibration photosensitive chip, wherein the calibration lens is located in the photosensitive path of the calibration photosensitive chip . 根據申請專利範圍第1項所述的分體式陣列攝像模組,其中所述校準模組還包括至少一校準底座和至少一校準基板,其中所述校準感光晶片電連接於所述校準基板上,所述校準底座設置於所述校準基板上。 The split array camera module according to item 1 of the scope of patent application, wherein the calibration module further includes at least one calibration base and at least one calibration substrate, wherein the calibration photosensitive chip is electrically connected to the calibration substrate, The calibration base is arranged on the calibration substrate. 根據申請專利範圍第8項所述的分體式陣列攝像模組,其中所述分體式陣列攝像模組包括至少一共同底座,所述校準模組還包括至少一校準基板,其中所述校準感光晶片電連接於所述校準基板上,所述共同底座設置於所述參考基板和/或所述校準基板上。 The split array camera module according to item 8 of the scope of patent application, wherein the split array camera module includes at least one common base, the calibration module further includes at least one calibration substrate, and the calibration photosensitive chip It is electrically connected to the calibration substrate, and the common base is disposed on the reference substrate and/or the calibration substrate. 根據申請專利範圍第8項所述的分體式陣列攝像模組,其中包括至少一共同底座和至少一共同基板,其中所述參考感光晶片和所述校準感光晶片電連接於所述共同基板上,所述共同底座設置於所述共同基板上,所述校準鏡頭被安裝於所述共同底座。 The split array camera module according to item 8 of the scope of patent application, which includes at least one common base and at least one common substrate, wherein the reference photosensitive chip and the calibration photosensitive chip are electrically connected to the common substrate, The common base is arranged on the common substrate, and the calibration lens is installed on the common base. 根據申請專利範圍第9項所述的分體式陣列攝像模組,其中包括一陀螺儀,其設置於所述參考模組的所述參考基板。 The split-array camera module according to item 9 of the scope of patent application includes a gyroscope which is arranged on the reference substrate of the reference module. 根據申請專利範圍第9項所述的分體式陣列攝像模組,其中包括一陀螺儀,其設置於所述校準模組的所述校準基板。 The split array camera module according to item 9 of the scope of patent application, which includes a gyroscope, which is disposed on the calibration substrate of the calibration module. 根據申請專利範圍第10項所述的分體式陣列攝像模組,其中包括一陀螺儀,其設置於所述參考模組的所述參考基板。 The split array camera module according to item 10 of the scope of patent application, which includes a gyroscope, which is disposed on the reference substrate of the reference module. 根據申請專利範圍第10項所述的分體式陣列攝像模組,其中包括一陀螺儀,其設置於所述校準模組的所述校準基板。 The split array camera module according to item 10 of the scope of patent application includes a gyroscope arranged on the calibration substrate of the calibration module. 根據申請專利範圍第11項所述的分體式陣列攝像模組,其中包括一陀螺儀,其電連接於所述參考模組並設置於所述共同基板上。 The split array camera module according to item 11 of the scope of patent application includes a gyroscope electrically connected to the reference module and disposed on the common substrate. 根據申請專利範圍第11項所述的分體式陣列攝像模組,其中包括一陀螺儀,其電連接所述校準模組地設置於所述共同基板上。 The split array camera module according to item 11 of the scope of patent application includes a gyroscope which is electrically connected to the calibration module and is disposed on the common substrate. 根據申請專利範圍第17項所述的分體式陣列攝像模組,其中所述參考驅動器系選自由馬達、熱驅動器或微致動器所構成的群組。 The split array camera module according to item 17 of the scope of patent application, wherein the reference driver is selected from the group consisting of a motor, a thermal driver or a micro-actuator. 根據申請專利範圍第8項所述的分體式陣列攝像模組,其中所述校準模組還可包括一校準驅動器,其中所述校準鏡頭被支撐於所述校準驅動器上方。 According to the split array camera module described in item 8 of the scope of patent application, the calibration module may further include a calibration driver, wherein the calibration lens is supported above the calibration driver. 根據申請專利範圍第1項所述的分體式陣列攝像模組,其中所述參考模組實施為大視場角鏡頭,其FOV一般在60°~220°之間,所述校準模組實施為小視場角鏡頭,其FOV一般在10°~90°之間。 According to the split-array camera module described in item 1 of the scope of patent application, the reference module is implemented as a lens with a large field of view, and its FOV is generally between 60° and 220°, and the calibration module is implemented as The FOV of a lens with a small field of view is generally between 10° and 90°. 一種分體式陣列攝像模組的組裝方法,其特徵在於,包括如下步驟:(S11)一分體式陣列攝像模組的至少一參考模組組裝固定,即將所述參考模組組裝並固定在一組裝支架的一參考單元內;(S12)一分體式陣列攝像模組的至少一個校準模組預組裝,即將所述校準模組預組裝到所述組裝支架的一校準單元內;(S13)模組高度校準,測量所述每個校準模組與所述參考模組的鏡頭端面高度差,對所述校準模組作相應的高度位置校準;(S14)模組偏移校準,測量每個校準模組與所述參考模組的水準位置偏移量,對所述校準模組作相應的水準偏移位置校準; (S15)模組旋轉校準,設置一光源和一標板,點亮所述分體式陣列攝像模組,對所述標板進行拍攝採集圖像,根據所述參考模組和所述每個校準模組採集得到的圖像,利用軟體計算出所述每個校準模組的旋轉校準量,並對所述每個校準模組進行旋轉位置校準;(S16)模組偏移檢驗/校準,判斷所述每個校準模組與所述參考模組的水準位置偏移量是否在公差允許範圍內,若在公差範圍內不作校準,若不在公差範圍內返回步驟(S13)重新對所述每個校準模組做高度校準、偏移校準和旋轉校準,直到所述每個校準模組與所述參考模組的水準位置偏移量在所述公差範圍內;以及(S17)固定模組,固定整個所述分體式陣列攝像模組,完成組裝。 A method for assembling a split array camera module, which is characterized by comprising the following steps: (S11) at least one reference module of a split array camera module is assembled and fixed, that is, the reference module is assembled and fixed in an assembly In a reference unit of the bracket; (S12) At least one calibration module of a split-array camera module is pre-assembled, that is, the calibration module is pre-assembled into a calibration unit of the assembly bracket; (S13) Module Height calibration, measuring the height difference between the lens end face of each calibration module and the reference module, and calibrating the corresponding height position of the calibration module; (S14) module offset calibration, measuring each calibration module The level offset between the group and the reference module, and perform a corresponding level offset calibration on the calibration module; (S15) Module rotation calibration, setting a light source and a target plate, lighting the split-array camera module, taking pictures of the target plate and collecting images, according to the reference module and each calibration The image collected by the module is used to calculate the rotation calibration amount of each calibration module using software, and the rotation position calibration of each calibration module is performed; (S16) module offset inspection/calibration, judgment Whether the offset of the horizontal position of each calibration module and the reference module is within the tolerance allowable range, if the calibration is not performed within the tolerance range, if it is not within the tolerance range, return to step (S13) to re-check each The calibration module performs height calibration, offset calibration, and rotation calibration until the horizontal position offset of each calibration module and the reference module is within the tolerance range; and (S17) fixing the module, fixing The entire split-type array camera module is assembled. 根據申請專利範圍第21項所述分體式陣列攝像模組的組裝方法,其中所述分體式陣列攝像模組包含一至多顆子模組,其中至少一顆子模組是所述參考模組,其餘子模組為所述校準模組,所述子模組彼此之間相互獨立並組裝於所述組裝支架。 The method for assembling the split-type array camera module according to item 21 of the scope of patent application, wherein the split-type array camera module includes one or more sub-modules, and at least one of the sub-modules is the reference module, The remaining sub-modules are the calibration modules, and the sub-modules are independent of each other and assembled in the assembly bracket. 根據申請專利範圍第22項所述分體式陣列攝像模組的組裝方法,其中所述參考模組選擇所述分體式陣列攝像模組中圖元最高的一顆子模組。 According to the method for assembling the split-type array camera module according to item 22 of the scope of patent application, the reference module selects the sub-module with the highest picture element in the split-type array camera module. 根據申請專利範圍第21項至23項中任一項所述分體式陣列攝像模組的組裝方法,其中所述參考模組與所述校準模組都是完成了製造、組裝並且性能測試合格的單體攝像模組。 According to the method for assembling the split array camera module according to any one of items 21 to 23 in the scope of patent application, wherein the reference module and the calibration module are both manufactured, assembled and qualified in performance testing Single camera module. 根據申請專利範圍第21項所述分體式陣列攝像模組的組裝方法,其中所述參考模組與所述參考單元的四周組裝間隙為0.01-1mm,所述校準模組與所述校準單元的四周組裝間隙為0.01-3mm。 The method for assembling the split-array camera module according to item 21 of the scope of patent application, wherein the assembly gap between the reference module and the reference unit is 0.01-1mm, and the calibration module and the calibration unit The surrounding assembly gap is 0.01-3mm. 根據申請專利範圍第21項所述分體式陣列攝像模組的組裝方法,其中步驟(S11)中,所述參考模組組裝固定的步驟還包括:1)用一限位治具對所述參考模組與所述參考單元進行限位元組裝;以及2)在所述參考模組與所述參考單元之間畫膠水,固化所述膠水。 The method for assembling the split-array camera module according to item 21 of the scope of patent application, wherein in step (S11), the step of assembling and fixing the reference module further includes: 1) using a limit fixture to align the reference The module and the reference unit are assembled with limit elements; and 2) glue is drawn between the reference module and the reference unit to cure the glue. 根據申請專利範圍第26項所述分體式陣列攝像模組的組裝方法,其中所述膠水是一UV熱固膠,通過紫外曝光將所述膠水固化。 According to the method for assembling the split-array camera module according to item 26 of the scope of patent application, the glue is a UV thermosetting glue, and the glue is cured by ultraviolet exposure. 根據申請專利範圍第21項所述分體式陣列攝像模組的組裝方法,其中步驟(S13)中,所述模組高度校準具體包括:1)測量所述參考模組和所述每個校準模組的鏡頭端面上的一個點的高度,分別計算出所述每個校準模組與所述參考模組的鏡頭端面高度差值;以及調整所述每個校準模組的Z軸位移。 According to the method for assembling the split array camera module according to item 21 of the scope of patent application, in step (S13), the module height calibration specifically includes: 1) measuring the reference module and each calibration module For the height of a point on the lens end face of the group, the height difference between the lens end face of each calibration module and the reference module is calculated respectively; and the Z-axis displacement of each calibration module is adjusted. 根據申請專利範圍第21項所述分體式陣列攝像模組的組裝方法,其中步驟(S14)中,所述模組偏移校準具體包括:1)對所述參考模組與所述每個校準模組的鏡頭端面進行拍攝,抓取鏡頭端面圖像,用軟體分別計算出所述每個校準模組與所述參考模組的水準位置偏移量;以及2)調整所述每個校準模組的X、Y軸位移。 The method for assembling the split-array camera module according to item 21 of the scope of patent application, wherein in step (S14), the module offset calibration specifically includes: 1) calibrating the reference module and each The lens end face of the module is photographed, the image of the lens end face is captured, and the horizontal position offset of each calibration module and the reference module is calculated by software; and 2) each calibration module is adjusted The X and Y axis displacement of the group. 根據申請專利範圍第21項所述分體式陣列攝像模組的組裝方法,其中步驟(S15)中,所述標板中心為MTF測試標板,所述標板四角含有四個Mark點。 According to the method for assembling the split-array camera module according to item 21 of the scope of patent application, in step (S15), the center of the target is an MTF test target, and the four corners of the target contain four Mark points. 根據申請專利範圍第21項所述分體式陣列攝像模組的組裝方法,其中步驟(S15)中,所述每個校準模組的旋轉校準通過在U、V、W三個空間維度的運動來實現,目的是為了使所述每個校準模組與所述參考模組的光軸平行。 According to the method for assembling the split-array camera module described in item 21 of the scope of patent application, in step (S15), the rotation calibration of each calibration module is performed by movement in the three spatial dimensions of U, V, and W. The purpose is to make each calibration module parallel to the optical axis of the reference module. 根據申請專利範圍第21項所述分體式陣列攝像模組的組裝方法,其中步驟(S12)中,所述校準模組的預組裝步驟具體包括:1)將所述參考模組與所述組裝支架安裝並固定到一模組校準平臺的一固定治具上,所述參考模組放置於所述組裝支架的參考單元內;2)將所述校準模組安裝並固定到一校準治具上,所述校準治具設置在六軸平臺上,所述校準模組放置於所述組裝支架的校準單元內,所述校準模組可以隨著所述六軸平臺作X、Y、Z、U、V、W六個空間維度的運動;以及3)在所述校準模組與所述校準單元之間畫膠水,所述膠水為一種UV熱固膠。 According to the method for assembling the split-array camera module according to item 21 of the scope of patent application, in step (S12), the pre-assembly step of the calibration module specifically includes: 1) assembling the reference module with the The bracket is installed and fixed to a fixed jig of a module calibration platform, the reference module is placed in the reference unit of the assembly bracket; 2) the calibration module is installed and fixed to a calibration jig The calibration jig is set on a six-axis platform, the calibration module is placed in the calibration unit of the assembly bracket, and the calibration module can perform X, Y, Z, U along with the six-axis platform. , V, and W six spatial dimensions; and 3) draw glue between the calibration module and the calibration unit, the glue is a UV thermosetting glue. 根據申請專利範圍第32項所述分體式陣列攝像模組的組裝方法,其中步驟(S17)中,所述分體式陣列攝像模組固定步驟具體包括:1)對所述校準模組與所述校準單元之間的所述膠水進行紫外曝光,所述膠水半固化;以及2)烘烤所述分體式陣列攝像模組,所述膠水完全固化,固定整個所述分體式陣列攝像模組。 According to the method for assembling the split array camera module according to item 32 of the scope of patent application, in step (S17), the fixing step of the split array camera module specifically includes: 1) aligning the calibration module with the The glue between the calibration units is exposed to ultraviolet light, and the glue is semi-cured; and 2) baking the split array camera module, the glue is completely cured, and the entire split array camera module is fixed. 根據申請專利範圍第21項所述分體式陣列攝像模組的組裝方法,其中步驟(S12)中,所述校準模組的預組裝步驟具體包括:1)將所述參考模組與所述組裝支架安裝並固定到一模組校準平臺的固定治具上,所述參考模組放置於所述組裝支架的參考單元內;以及2)將所述校準模組安裝並固定到校準治具上,所述校準治具設置在六軸平臺上,所述校準模組放置於所述組裝支架的校準單元內,所述校準模組可以隨著所述六軸平臺作X、Y、Z、U、V、W六個空間維度的運動。 According to the method for assembling the split-array camera module according to item 21 of the scope of patent application, in step (S12), the pre-assembly step of the calibration module specifically includes: 1) assembling the reference module with the The bracket is installed and fixed to a fixed fixture of a module calibration platform, the reference module is placed in the reference unit of the assembly bracket; and 2) the calibration module is installed and fixed to the calibration fixture, The calibration jig is set on a six-axis platform, the calibration module is placed in the calibration unit of the assembly bracket, and the calibration module can perform X, Y, Z, U, and U, along with the six-axis platform. Movement of the six spatial dimensions of V and W. 根據申請專利範圍第34項所述分體式陣列攝像模組的組裝方法,其中步驟(S17)中,中所述分體式陣列攝像模組固定步驟具體包括:1)在所述校準模組與所述校準單元之間畫膠水,所述膠水為一種UV熱固膠; 2)對所述校準模組與所述校準單元之間的所述膠水進行紫外曝光,所述膠水半固化;以及3)烘烤所述分體式陣列攝像模組,所述膠水完全固化,固定整個所述分體式陣列攝像模組。 According to the method for assembling the split array camera module according to item 34 of the scope of patent application, in step (S17), the fixing step of the split array camera module specifically includes: 1) the calibration module and the Draw glue between the calibration units, and the glue is a UV thermosetting glue; 2) Perform ultraviolet exposure on the glue between the calibration module and the calibration unit, and the glue is semi-cured; and 3) bake the split-array camera module, and the glue is completely cured and fixed The entire split type array camera module. 根據申請專利範圍第33項或35項所述分體式陣列攝像模組的組裝方法,其中所述分體式陣列攝像模組在烤箱中的烘烤溫度為50℃~200℃,烘烤時間5min~600min。 According to the method for assembling the split-array camera module described in item 33 or 35 of the scope of patent application, the baking temperature of the split-array camera module in the oven is 50℃~200℃, and the baking time is 5min~ 600min. 一種分體式陣列攝像模組的組裝方法,其特徵在於,包括如下步驟:(S11A)一分體式陣列攝像模組的一參考模組組裝固定,即將所述參考模組組裝並固定在一組裝支架的一參考單元內;(S12A)一分體式陣列攝像模組的至少一個校準模組預組裝,即將所述校準模組預組裝到所述組裝支架的一校準單元內;(S13A)模組高度/偏移校準,測量所述每個校準模組與所述參考模組的鏡頭端面高度差和水準位置偏移量,對所述校準模組作相應的高度位置校準和相應的水準偏移位置校準;(S14A)模組旋轉校準,設置一光源和一標板,點亮所述分體式陣列攝像模組,對所述標板進行拍攝採集圖像,根據所述參考模組和所述每個校準模組採集得到的圖像,利用軟體計算出所述每個校準模組的旋轉校準量,並對所述每個校準模組進行旋轉位置校準;以及(S15A)固定模組,固定整個所述分體式陣列攝像模組,完成組裝。 A method for assembling a split array camera module, which is characterized in that it comprises the following steps: (S11A) a reference module of a split array camera module is assembled and fixed, that is, the reference module is assembled and fixed to an assembly bracket (S12A) At least one calibration module of a split-array camera module is pre-assembled, that is, the calibration module is pre-assembled into a calibration unit of the assembly bracket; (S13A) Module height /Offset calibration, measuring the height difference between the lens end face and the leveling position offset of each calibration module and the reference module, and calibrating the corresponding height position and the corresponding leveling offset position of the calibration module Calibration; (S14A) module rotation calibration, set a light source and a target plate, light up the split array camera module, take pictures of the target plate and collect images, according to the reference module and each Using software to calculate the rotation calibration amount of each calibration module and calibrate the rotation position of each calibration module; and (S15A) fix the module to fix the entire The split-type array camera module is assembled. 一種分體式陣列攝像模組的組裝方法,其特徵在於,包括如下步驟: (S11B)一分體式陣列攝像模組的一參考模組組裝固定,即將所述參考模組組裝並固定在一組裝支架的一參考單元內;(S12B)一分體式陣列攝像模組的至少一個校準模組預組裝,即將所述校準模組預組裝到所述組裝支架的一校準單元內;(S13B)模組偏移校準,測量每個校準模組與所述參考模組的水準位置偏移量,對所述校準模組作相應的水準偏移位置校準;(S14B)模組高度校準,測量所述每個校準模組與所述參考模組的鏡頭端面高度差,對所述校準模組作相應的高度位置校準;(S15B)模組旋轉校準,設置一光源和一標板,點亮所述分體式陣列攝像模組,對所述標板進行拍攝採集圖像,根據所述參考模組和所述每個校準模組採集得到的圖像,利用軟體計算出所述每個校準模組的旋轉校準量,並對所述每個校準模組進行旋轉位置校準;以及(S16B)固定模組,固定整個所述分體式陣列攝像模組,完成組裝。 A method for assembling a split array camera module is characterized in that it comprises the following steps: (S11B) A reference module of a split array camera module is assembled and fixed, that is, the reference module is assembled and fixed in a reference unit of an assembly bracket; (S12B) at least one of a split array camera module Calibration module pre-assembly, that is, the calibration module is pre-assembled into a calibration unit of the assembly bracket; (S13B) Module offset calibration, measuring the level position deviation of each calibration module and the reference module (S14B) Module height calibration, measuring the height difference between the lens end face of each calibration module and the reference module, and calibrating the calibration module accordingly. The module performs corresponding height position calibration; (S15B) module rotation calibration, sets a light source and a target plate, lights up the split-array camera module, takes pictures of the target plate and collects images, according to the Using software to calculate the rotation calibration amount of each calibration module with reference to the image collected by the reference module and each calibration module, and perform rotation position calibration on each calibration module; and (S16B ) The fixed module, which fixes the entire split-type array camera module to complete the assembly. 一種分體式陣列攝像模組的組裝方法,其特徵在於,包括如下步驟:(S21)一分體式陣列攝像模組的一參考模組組裝固定,即將所述參考模組組裝並固定在一組裝支架的一參考單元內;(S22)一分體式陣列攝像模組的至少一個校準模組預組裝,即將所述校準模組預組裝到所述組裝支架的一校準單元內;(S23)模組高度校準,測量所述每個校準模組與所述參考模組的鏡頭端面高度差,對所述校準模組作相應的高度位置校準;(S24)模組偏移校準,測量每個校準模組與所述參考模組的水準位置偏移量,對所述校準模組作相應的水準偏移位置校準; (S25)模組旋轉校準,設置一光源和一標板,點亮所述分體式陣列攝像模組,對所述標板進行拍攝採集圖像,根據所述參考模組和所述每個校準模組採集得到的圖像,利用軟體計算出所述每個校準模組的旋轉校準量,並對所述每個校準模組進行旋轉位置校準;(S26)模組偏移校準,測量每個校準模組與所述參考模組的水準位置偏移量,對所述校準模組作相應的水準偏移位置校準;以及(S27)固定模組,固定整個所述分體式陣列攝像模組,完成組裝。 A method for assembling a split array camera module, which is characterized in that it comprises the following steps: (S21) a reference module of a split array camera module is assembled and fixed, that is, the reference module is assembled and fixed to an assembly bracket (S22) At least one calibration module of a split-array camera module is pre-assembled, that is, the calibration module is pre-assembled into a calibration unit of the assembly bracket; (S23) Module height Calibration, measuring the height difference between the lens end face of each calibration module and the reference module, and calibrating the corresponding height position of the calibration module; (S24) module offset calibration, measuring each calibration module The level offset from the reference module, and perform a corresponding level offset calibration on the calibration module; (S25) Module rotation calibration, setting a light source and a target plate, lighting the split-array camera module, taking pictures of the target plate to collect images, according to the reference module and each calibration The image collected by the module is used to calculate the rotation calibration amount of each calibration module, and the rotation position calibration of each calibration module is performed; (S26) module offset calibration, measuring each Calibrate the horizontal offset position of the calibration module and the reference module corresponding to the calibration module; and (S27) fix the fixed module to fix the entire split array camera module, Complete the assembly. 根據申請專利範圍第37項至39項中任一項所述分體式陣列攝像模組的組裝方法,其中所述分體式陣列攝像模組包含一至多顆子模組,其中一顆子模組是所述參考模組,其餘子模組為所述校準模組,所述子模組彼此之間相互獨立並組裝於所述組裝支架。 According to the method for assembling the split array camera module according to any one of items 37 to 39 in the scope of patent application, wherein the split array camera module includes one or more sub-modules, and one of the sub-modules is The reference module and the remaining sub-modules are the calibration modules, and the sub-modules are independent of each other and assembled in the assembly bracket. 根據申請專利範圍第37項至39項中任一項所述分體式陣列攝像模組的組裝方法,其中所述參考模組與所述校準模組都是完成了製造、組裝並且性能測試合格的單體攝像模組。 According to the method for assembling the split-array camera module according to any one of items 37 to 39 in the scope of the patent application, the reference module and the calibration module are both manufactured, assembled and qualified for performance testing Single camera module. 根據申請專利範圍第37項至39項中任一項所述的分體式陣列攝像模組,其中所述參考模組和所述校準模組分別為一可調焦攝像模組或一定焦攝像模組。 The split array camera module according to any one of items 37 to 39 in the scope of patent application, wherein the reference module and the calibration module are respectively an adjustable focus camera module or a fixed focus camera module group. 根據申請專利範圍第37項至39項中任一項所述的分體式陣列攝像模組,其中所述參考模組為一可調焦攝像模組,所述校準模組為一定焦攝像模組。 The split array camera module according to any one of items 37 to 39 in the scope of patent application, wherein the reference module is an adjustable focus camera module, and the calibration module is a fixed focus camera module . 根據申請專利範圍第37項至39項中任一項所述分體式陣列攝像模組的組裝方法,其中所述參考模組與所述參考單元的四周組裝間隙為0.01-1mm,所述校準模組與所述校準單元的四周組裝間隙為0.01-3mm。 According to the method for assembling the split-array camera module according to any one of items 37 to 39 in the scope of patent application, the assembly gap between the reference module and the reference unit is 0.01-1mm, and the calibration mold The assembly gap between the group and the calibration unit is 0.01-3 mm. 根據申請專利範圍第37項至39項中任一項所述分體式陣列攝像模組的組裝方法,其中所述參考模組組裝固定的步驟還包括:1)用一限位治具對所述參考模組與所述參考單元進行限位元組裝;以及2)在所述參考模組與所述參考單元之間畫膠水,固化所述膠水。 According to the method for assembling the split array camera module according to any one of items 37 to 39 in the scope of patent application, the step of assembling and fixing the reference module further includes: 1) Using a limit fixture to align the The reference module and the reference unit are assembled with limit elements; and 2) glue is drawn between the reference module and the reference unit to cure the glue. 根據申請專利範圍第45項所述分體式陣列攝像模組的組裝方法,其中所述膠水是一UV熱固膠,通過紫外曝光將所述膠水固化。 According to the method for assembling the split array camera module according to item 45 of the scope of patent application, the glue is a UV thermosetting glue, and the glue is cured by ultraviolet exposure. 根據申請專利範圍第37項至39項中任一項所述分體式陣列攝像模組的組裝方法,其中所述模組高度校準具體包括:1)用一鐳射測距方法各測量所述參考模組和所述每個校準模組的鏡頭端面上的一個點的高度,分別計算出所述每個校準模組與所述參考模組的鏡頭端面高度差值;以及2)通過所述六軸平臺調整所述每個校準模組的Z軸位移。 According to the method for assembling the split-array camera module according to any one of items 37 to 39 in the scope of the patent application, the height calibration of the module specifically includes: 1) Using a laser ranging method to measure each of the reference modules Group and the height of a point on the end face of the lens of each calibration module, respectively calculating the height difference between the end face of the lens of each calibration module and the reference module; and 2) through the six-axis The platform adjusts the Z-axis displacement of each calibration module. 根據申請專利範圍第37項至39項中任一項所述分體式陣列攝像模組的組裝方法,其中所述模組偏移校準具體包括:1)對所述參考模組與所述每個校準模組的鏡頭端面進行CCD拍攝,抓取鏡頭端面圖像,用軟體分別計算出所述每個校準模組與所述參考模組的水準位置偏移量;以及2)通過所述六軸平臺調整所述每個校準模組的X、Y軸位移。 According to the method for assembling the split-array camera module according to any one of the 37th to 39th items in the scope of the patent application, the module offset calibration specifically includes: 1) Perform a comparison between the reference module and each The lens end face of the calibration module is photographed by CCD, the image of the lens end face is captured, and the horizontal position offset of each calibration module and the reference module is calculated by software; and 2) through the six axes The platform adjusts the X and Y axis displacements of each calibration module. 根據申請專利範圍第37項至39項中任一項所述分體式陣列攝像模組的組裝方法,其中所述標板中心為MTF測試標板,所述標板含有2-20個Mark點。 According to the method for assembling the split-array camera module according to any one of items 37 to 39 in the scope of patent application, the center of the target plate is an MTF test target plate, and the target plate contains 2-20 Mark points. 根據申請專利範圍第37項至39項中任一項所述分體式陣列攝像模組的組裝方法,其中所述每個校準模組的旋轉校準通過所述六軸平臺在U、 V、W三個空間維度的運動來實現,目的是為了使所述每個校準模組與所述參考模組的光軸平行。 According to the method for assembling the split array camera module according to any one of items 37 to 39 in the scope of patent application, the rotation calibration of each calibration module is performed by the six-axis platform in U, The movement of the three spatial dimensions of V and W is realized in order to make each calibration module parallel to the optical axis of the reference module. 根據申請專利範圍第37項至39項中任一項所述分體式陣列攝像模組的組裝方法,其中所述校準模組的預組裝步驟具體包括:1)將所述參考模組與所述組裝支架安裝並固定到一模組校準平臺的一固定治具上,所述參考模組放置於所述組裝支架的參考單元內;2)將所述校準模組安裝並固定到一校準治具上,所述校準治具設置在六軸平臺上,所述校準模組放置於所述組裝支架的校準單元內,所述校準模組可以隨著所述六軸平臺作X、Y、Z、U、V、W六個空間維度的運動;以及3)在所述校準模組與所述校準單元之間畫膠水,所述膠水為一種UV熱固膠。 According to the method for assembling the split array camera module according to any one of items 37 to 39 in the scope of patent application, the pre-assembly step of the calibration module specifically includes: 1) combining the reference module with the The assembly bracket is installed and fixed to a fixed fixture of a module calibration platform, and the reference module is placed in the reference unit of the assembly bracket; 2) the calibration module is installed and fixed to a calibration fixture Above, the calibration jig is set on a six-axis platform, the calibration module is placed in the calibration unit of the assembly bracket, and the calibration module can perform X, Y, Z, Movement in six spatial dimensions of U, V, and W; and 3) draw glue between the calibration module and the calibration unit, the glue is a UV thermosetting glue. 根據申請專利範圍第51項所述分體式陣列攝像模組的組裝方法,其中所述分體式陣列攝像模組固定步驟具體包括:1)對所述校準模組與所述校準單元之間的所述膠水進行紫外曝光,所述膠水半固化;以及2)烘烤所述分體式陣列攝像模組,所述膠水完全固化,固定整個所述分體式陣列攝像模組。 According to the method for assembling the split-type array camera module according to item 51 of the scope of patent application, the step of fixing the split-type array camera module specifically includes: 1) Performing the alignment between the calibration module and the calibration unit The glue is exposed to ultraviolet light, and the glue is semi-cured; and 2) baking the split-type array camera module, the glue is completely cured, and the entire split-type array camera module is fixed. 根據申請專利範圍第37項至39項中任一項所述分體式陣列攝像模組的組裝方法,其中所述校準模組的預組裝步驟具體包括:1)將所述參考模組與所述組裝支架安裝並固定到一模組校準平臺的一固定治具上,所述參考模組放置於所述組裝支架的參考單元內;以及2)將所述校準模組安裝並固定到一校準治具上,所述校準治具設置在六軸平臺上,所述校準模組放置於所述組裝支架的校準單元內,所述校準模組可以隨著所述六軸平臺作X、Y、Z、U、V、W六個空間維度的運動。 According to the method for assembling the split array camera module according to any one of items 37 to 39 in the scope of patent application, the pre-assembly step of the calibration module specifically includes: 1) combining the reference module with the The assembly bracket is installed and fixed to a fixed fixture of a module calibration platform, the reference module is placed in the reference unit of the assembly bracket; and 2) the calibration module is installed and fixed to a calibration fixture On the tool, the calibration jig is set on a six-axis platform, the calibration module is placed in the calibration unit of the assembly bracket, and the calibration module can perform X, Y, Z along with the six-axis platform. , U, V, and W movement in six spatial dimensions. 根據申請專利範圍第53項所述分體式陣列攝像模組的組裝方法,其中所述分體式陣列攝像模組固定步驟具體包括:1)在所述校準模組與所述校準單元之間畫膠水,所述膠水為一種UV熱固膠;2)對所述校準模組與所述校準單元之間的所述膠水進行紫外曝光,所述膠水半固化;以及3)烘烤所述分體式陣列攝像模組,所述膠水完全固化,固定整個所述分體式陣列攝像模組。 The method for assembling the split-type array camera module according to item 53 of the scope of patent application, wherein the step of fixing the split-type array camera module specifically includes: 1) drawing glue between the calibration module and the calibration unit , The glue is a UV thermosetting glue; 2) UV-exposing the glue between the calibration module and the calibration unit, and the glue is semi-cured; and 3) baking the split array In the camera module, the glue is completely cured to fix the entire split array camera module. 根據申請專利範圍第51項所述分體式陣列攝像模組的組裝方法,其中所述分體式陣列攝像模組在烤箱中的烘烤溫度為50℃~200℃,烘烤時間5min~600min。 According to the method for assembling the split array camera module described in item 51 of the scope of patent application, the baking temperature of the split array camera module in the oven is 50° C. to 200° C., and the baking time is 5 min to 600 min.
TW106111816A 2016-04-07 2017-04-07 Split type array camera module and its assembling and application method TWI731060B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610214905.8A CN107302670B (en) 2016-04-07 2016-04-07 Split type array camera module and assembling method
CNCN201610214905.8 2016-04-07
CN201610585367.3A CN107645624A (en) 2016-07-20 2016-07-20 Camera module and its antidote and optical anti-vibration method and the electronic equipment with camera module
CNCN201610585367.3 2016-07-20

Publications (2)

Publication Number Publication Date
TW201736934A TW201736934A (en) 2017-10-16
TWI731060B true TWI731060B (en) 2021-06-21

Family

ID=60000874

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106111816A TWI731060B (en) 2016-04-07 2017-04-07 Split type array camera module and its assembling and application method

Country Status (2)

Country Link
TW (1) TWI731060B (en)
WO (1) WO2017174022A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109688299B (en) * 2017-10-18 2024-04-09 宁波舜宇光电信息有限公司 Camera module array and corresponding integrated substrate
JP7260483B2 (en) 2017-12-08 2023-04-18 ソニーセミコンダクタソリューションズ株式会社 Imaging device and imaging device manufacturing method
CN107990108A (en) * 2017-12-26 2018-05-04 上海摩软通讯技术有限公司 For double stents taken the photograph, Split type supporting stand formula pair takes the photograph and assemble method
CN108174080B (en) 2018-03-20 2020-01-31 维沃移动通信有限公司 camera module and mobile terminal
CN108419003A (en) * 2018-03-26 2018-08-17 深圳市泰品科技有限公司 A kind of module group assembling technique and equipment with two or more cameras
CN113766094B (en) * 2020-06-02 2023-04-18 Oppo(重庆)智能科技有限公司 Front-mounted component mounting method, electronic equipment and device with storage function
CN113286019B (en) * 2021-05-07 2022-06-21 南昌欧菲光电技术有限公司 Optical module, camera and electronic equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103052915A (en) * 2011-07-26 2013-04-17 松下电器产业株式会社 Imaging device
CN105187697A (en) * 2015-08-04 2015-12-23 宁波舜宇光电信息有限公司 Multi-lens camera module one-piece bracket, multi-lens camera module and application of multi-lens camera module
CN105338230A (en) * 2015-11-25 2016-02-17 鸿富锦精密工业(深圳)有限公司 Imaging device and assembly method thereof
CN105409212A (en) * 2013-02-28 2016-03-16 谷歌技术控股有限责任公司 Electronic device with multiview image capture and depth sensing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103052915A (en) * 2011-07-26 2013-04-17 松下电器产业株式会社 Imaging device
CN105409212A (en) * 2013-02-28 2016-03-16 谷歌技术控股有限责任公司 Electronic device with multiview image capture and depth sensing
CN105187697A (en) * 2015-08-04 2015-12-23 宁波舜宇光电信息有限公司 Multi-lens camera module one-piece bracket, multi-lens camera module and application of multi-lens camera module
CN105338230A (en) * 2015-11-25 2016-02-17 鸿富锦精密工业(深圳)有限公司 Imaging device and assembly method thereof

Also Published As

Publication number Publication date
TW201736934A (en) 2017-10-16
WO2017174022A2 (en) 2017-10-12

Similar Documents

Publication Publication Date Title
TWI731060B (en) Split type array camera module and its assembling and application method
JP7419311B2 (en) Multi-lens camera module combination stand, multi-lens camera module, and its use
TWI724609B (en) Adjustable optical lens, camera module and manufacturing method thereof
TWI788403B (en) Camera module using split lens and assembly method thereof
CN112204940B (en) Periscopic camera module, array camera module thereof, manufacturing method of periscopic camera module and electronic equipment
JP6082045B2 (en) Lens module positioning structure
TW201736893A (en) Optical lens, camera module group and assembly method thereof
US20040080658A1 (en) Low cost electronic camera made using integrated circuit technology
JP7061139B2 (en) Welded structures for optical modules and their applications
KR102131597B1 (en) Folded camera module and method for manufacturing thereof
JP3848062B2 (en) Imaging apparatus and mobile phone using the same
TWI698693B (en) Lens assembly driving module and electronic device
JP7205486B2 (en) Imaging device
WO2019233477A1 (en) Periscopic camera module, array camera module thereof and manufacturing method therefor, and electronic device
JP2005018024A (en) Lens unit, imaging unit equipped with lens unit, and portable terminal
WO2018228520A1 (en) Multi-group lens, camera module, and electronic device thereof
CN210839745U (en) Camera device
WO2016127919A1 (en) Array camera module and array camera device and focusing method therefor
JP4185236B2 (en) Solid-state imaging device and imaging apparatus
EP3859419B1 (en) Optical zoom camera module and assembling method therefor
JP2005051520A (en) Digital camera and assembling method thereof
WO2018161387A1 (en) Adapter assembly for combining multiple lenses for 3d imaging and camera
CN206629143U (en) A kind of photographing module and electronic installation
KR101038792B1 (en) Camera Module
WO2021249191A1 (en) Photosensitive assembly having anti-shake function, camera module, and assembly methods therefor