TWI730523B - 自我校正式系統單晶片 - Google Patents
自我校正式系統單晶片 Download PDFInfo
- Publication number
- TWI730523B TWI730523B TW108144123A TW108144123A TWI730523B TW I730523 B TWI730523 B TW I730523B TW 108144123 A TW108144123 A TW 108144123A TW 108144123 A TW108144123 A TW 108144123A TW I730523 B TWI730523 B TW I730523B
- Authority
- TW
- Taiwan
- Prior art keywords
- circuit
- value
- resistance value
- semiconductor substrate
- fine
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/22—Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management
- G11C7/222—Clock generating, synchronizing or distributing circuits within memory device
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/319—Tester hardware, i.e. output processing circuits
- G01R31/31903—Tester hardware, i.e. output processing circuits tester configuration
- G01R31/31908—Tester set-up, e.g. configuring the tester to the device under test [DUT], down loading test patterns
- G01R31/3191—Calibration
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
- G11C11/407—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
- G11C11/4076—Timing circuits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R35/00—Testing or calibrating of apparatus covered by the other groups of this subclass
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C2029/0403—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals during or with feedback to manufacture
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2207/00—Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
- G11C2207/22—Control and timing of internal memory operations
- G11C2207/2254—Calibration
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- General Engineering & Computer Science (AREA)
- Semiconductor Integrated Circuits (AREA)
- Manipulation Of Pulses (AREA)
- Networks Using Active Elements (AREA)
Abstract
本發明係揭露一種自我校正式系統單晶片,其包含一半導體基板、包含複數個動態隨機存取記憶體、一校正電路與一功能性電路之至少一矽智財電路、一循環振盪器與一控制電路。每一動態隨機存取記憶體具有一粗調電容值與一粗調電阻值,校正電路具有細調電容值與細調電阻值。循環振盪器傳送振盪時脈訊號給控制電路,以選取粗調電容值、粗調電阻值、細調電容值與細調電阻值,並將此提供給功能性電路,以調整功能參數。本發明利用動態隨機存取記憶體之較大的電容值與電阻值,配合較小的電容值與電阻值,增加電路操作範圍,並減少所需要的晶片面積。
Description
本發明係關於一種系統單晶片,且特別關於一種自我校正式系統單晶片。
在製作晶片時,常會因為不同晶圓或所處的晶圓位置造成每顆晶片都會有製程飄移的效應,因此,在類比與射頻電路設計中往往會包含大量的電阻、電容與電感元件,甚至為了避免製程變異,在每個矽智財(Silicon Intellectual Property,SIP)設計都會加入各式各樣的校正機制。最常見的莫過於利用電阻與電容來增加電路操作範圍,當電路特性漂移時仍然能透過校準的機制調整回原本的特性。
舉例來說,在無線射頻識別(radio frequency Identification, RFID)系統中,一讀取器利用自身天線將調變訊號送出,而一訊號接收器利用具有和讀取器的天線相同共振頻率之天線接收並解調調變訊號。然而因為訊號接收器的電感、電容值的誤差,所以訊號接收器的天線的共振頻率和讀取器的天線的共振頻率之間通常亦有誤差,導致無線射頻識別系統的運作距離變短。因此,訊號接收器的設計者在面對積體電路的製程飄移時,很難設計出運作良好的訊號接收器。但電阻與電容元件在設計上,會使用非常多的晶片面積而使得製造成本增加,因此如何能降低成本又維持應有的電路效能將成為一個重要的課題。
因此,本發明係在針對上述的困擾,提出一種自我校正式系統單晶片,以解決習知所產生的問題。
本發明的主要目的,在於提供一種自我校正式系統單晶片,其係利用動態隨機存取記憶體之較大且佔有小面積的電容值與電阻值,配合較小的電容值與電阻值,避免製程飄移之問題,增加電路操作範圍,同時減少所需要的晶片面積。
為達上述目的,本發明提供一種自我校正式系統單晶片,其係包含一半導體基板、包含複數個動態隨機存取記憶體、一校正電路與一功能性電路之至少一矽智財(Silicon Intellectual Property,SIP)電路、一循環振盪器與一控制電路。所有動態隨機存取記憶體設於半導體基板上,每一動態隨機存取記憶體具有一粗調電容值與一粗調電阻值。校正電路設於半導體基板上,校正電路具有複數個細調電容值與複數個細調電阻值。功能性電路設於半導體基板上,並電性連接所有動態隨機存取記憶體與校正電路,功能性電路具有一功能參數。循環振盪器設於半導體基板上,循環振盪器在一預設時段內產生一振盪時脈訊號。控制電路設於半導體基板上,並電性連接循環振盪器、所有動態隨機存取記憶體與校正電路,控制電路接收振盪時脈訊號,並計算振盪時脈訊號之脈衝(pulse)的數量。在脈衝之數量大於或小於一預設值時,控制電路根據脈衝之數量與預設值控制所有動態隨機存取記憶體與校正電路選取粗調電容值、粗調電阻值、細調電容值與細調電阻值,並將此提供給功能性電路,功能性電路根據被選取的粗調電容值、粗調電阻值、細調電容值與細調電阻值,調整功能參數。
在本發明之一實施例中,每一動態隨機存取記憶體更包含一垂直電阻器、一第一電晶體開關與一垂直電容器。垂直電阻器設於半導體基板上,垂直電阻器具有粗調電阻值。第一電晶體開關設於半導體基板上,第一電晶體開關具有一第一控制電極、一第一連接電極與一第二連接電極,第一連接電極透過垂直電阻器電性連接功能性電路,第一控制電極電性連接控制電路。垂直電容器設於半導體基板上,並電性連接第二連接電極與一電壓端,垂直電容器具有粗調電容值。在控制電路開啟第一電晶體開關時,功能性電路根據垂直電阻器之粗調電阻值與垂直電容器之粗調電容值,調整功能參數。
在本發明之一實施例中,校正電路更包含複數個校正器,其係設於半導體基板上,所有校正器分別具有所有細調電容值,且分別具有所有細調電阻值,所有校正器電性連接控制電路與功能性電路。在脈衝之數量大於或小於預設值時,控制電路根據脈衝之數量與預設值控制所有校正器選取細調電容值與細調電阻值。
在本發明之一實施例中,每一校正器更包含一第二電晶體開關、一水平電阻器與一水平電容器。第二電晶體開關設於半導體基板上,第二電晶體開關具有一第二控制電極、一第三連接電極與一第四連接電極,第二控制電極電性連接控制電路,第三連接電極電性連接功能性電路。水平電阻器與水平電容器設於半導體基板上,水平電阻器具有細調電阻值,水平電容器具有細調電容值,水平電阻器連接一電壓端,並電性串聯水平電容器,水平電容器電性連接第二電晶體開關之第四連接電極。在控制電路開啟第二電晶體開關時,功能性電路根據水平電阻器之細調電阻值與水平電容器之細調電容值,調整功能參數。
在本發明之一實施例中,控制電路更包含一計數器與一解碼器。此計數器設於半導體基板上,此計數器電性連接循環振盪器,此計數器接收振盪時脈訊號,在預設時段內,此計數器依據脈衝之上緣或下緣,計算脈衝之數量,以藉此產生一組數位值。解碼器設於半導體基板上,解碼器電性連接此計數器、所有動態隨機存取記憶體與校正電路,解碼器接收此組數位值,以據此與預設值控制所有動態隨機存取記憶體與校正電路選取粗調電容值、粗調電阻值、細調電容值與細調電阻值,並將此提供給功能性電路。
在本發明之一實施例中,計數器為移位暫存器(shift register)。在本發明之一實施例中,循環振盪器更接收一參考時脈訊號,預設時段為參考時脈訊號之週期,且振盪頻率大於參考時脈訊號之參考頻率。
在本發明之一實施例中,循環振盪器更電性連接一石英晶體振盪器,石英晶體振盪器產生參考時脈訊號。
在本發明之一實施例中,在脈衝之數量小於預設值時,控制電路與功能性電路降低功能參數,在脈衝之數量大於預設值時,控制電路與功能性電路增加功能參數。
在本發明之一實施例中,粗調電容值與粗調電阻值形成一第一時間常數,細調電容值與細調電阻值形成一第二時間常數,第一時間常數除以第二時間常數之數值大於或等於10。
在本發明之一實施例中,功能性電路為類比電路、射頻電路、數位電路、處理器、靜態隨機存取記憶體或快閃記憶體。
茲為使 貴審查委員對本發明的結構特徵及所達成的功效更有進一步的瞭解與認識,謹佐以較佳的實施例圖及配合詳細的說明,說明如後:
本發明之實施例將藉由下文配合相關圖式進一步加以解說。盡可能的,於圖式與說明書中,相同標號係代表相同或相似構件。於圖式中,基於簡化與方便標示,形狀與厚度可能經過誇大表示。可以理解的是,未特別顯示於圖式中或描述於說明書中之元件,為所屬技術領域中具有通常技術者所知之形態。本領域之通常技術者可依據本發明之內容而進行多種之改變與修改。
當一個元件被稱為『在…上』時,它可泛指該元件直接在其他元件上,也可以是有其他元件存在於兩者之中。相反地,當一個元件被稱為『直接在』另一元件,它是不能有其他元件存在於兩者之中間。如本文所用,詞彙『及/或』包含了列出的關聯項目中的一個或多個的任何組合。
於下文中關於“一個實施例”或“一實施例”之描述係指關於至少一實施例內所相關連之一特定元件、結構或特徵。因此,於下文中多處所出現之“一個實施例”或 “一實施例”之多個描述並非針對同一實施例。再者,於一或多個實施例中之特定構件、結構與特徵可依照一適當方式而結合。
以下請參閱第1圖、第2圖與第3圖,並介紹本發明之自我校正式系統單晶片(System on a Chip, Soc)之一實施例。在此實施例中,自我校正式系統單晶片包含一半導體基板10、包含複數個動態隨機存取記憶體12、一校正電路13與一功能性電路14之至少一矽智財(Silicon Intellectual Property,SIP)電路15、一循環振盪器16與一控制電路18。矽智財電路15之數量可為複數個,每一矽智財電路15包含複數個動態隨機存取記憶體12、一校正電路13與一功能性電路14。在此實施例中,矽智財電路15之數量以一為例,其可為類比電路、射頻電路、數位電路、處理器、靜態隨機存取記憶體或快閃記憶體,循環振盪器16可為環振盪器,但本發明不以此為限。具體而言,輸入輸出埠(I/O port)、包含所有動態隨機存取記憶體12、校正電路13與功能性電路14之矽智財電路15、循環振盪器16與控制電路18皆位於同一個半導體基板10上。在系統級封裝(SiP)中,主要是將不同功能的晶粒(die)封裝在同一個封裝(package)內,以增加無法避免的寄生雜散效應而降低效能,且製造成本也較高。此外,在系統級封裝中,每個矽智財(Silicon Intellectual Property,SIP)電路之內部的訊號線都數以萬計,但因受限於晶粒的大小,往往會造成輸入輸出埠(I/O port)的數量無法很多,故由一晶粒傳送資料至另一晶粒時,資料傳輸速度較低,功率消耗較高。本發明不同於系統級封裝,而是將所有矽智財電路整合在同一個晶粒中,故能避免雜散效應,亦不受限輸入輸出埠的數量,且晶粒內的匯流排的數量亦不受限。相較於系統級封裝,系統單晶片只需用系統匯流排就可以互相溝通,系統單晶片之資料傳輸速度較高,功率消耗較低,傳輸頻寬可以依照需求直接設計,提高整體效率。
每一動態隨機存取記憶體12具有一粗調電容值與一粗調電阻值。校正電路13具有複數個細調電容值與複數個細調電阻值,粗調電容值大於細調電容值,粗調電阻值大於細調電阻值。舉例來說,粗調電容值與粗調電阻值形成一第一時間常數,細調電容值與細調電阻值形成一第二時間常數,第一時間常數除以第二時間常數之數值大於或等於10。功能性電路14電性連接所有動態隨機存取記憶體12與校正電路13,功能性電路14具有一功能參數。循環振盪器16在一預設時段內產生一振盪時脈訊號Co,其中此振盪時脈訊號Co之振盪頻率會因為單晶片之製程飄移而改變。控制電路18電性連接循環振盪器16、所有動態隨機存取記憶體12與校正電路13,控制電路18接收振盪時脈訊號Co,並計算振盪時脈訊號Co之脈衝(pulse)的數量,在脈衝之數量大於或小於一預設值時,控制電路18根據脈衝之數量與預設值控制所有動態隨機存取記憶體12與校正電路13選取粗調電容值、粗調電阻值、細調電容值與細調電阻值,並將此提供給功能性電路14,功能性電路14根據被選取的粗調電容值、粗調電阻值、細調電容值與細調電阻值,調整功能參數。具體而言,在脈衝之數量小於預設值時,控制電路18與功能性電路14降低功能參數。在脈衝之數量大於預設值時,控制電路18與功能性電路14增加功能參數。預設值可以作為判斷單晶片是否有製程飄移的標準,只要脈衝之數量不同於預設值,就代表製程飄移的問題存在,脈衝之數量係量化製程飄移的程度。預設值可以由外部寫入控制電路18中作為備援機制,以防止自我校正量不足時,仍然可以隨時調整於最佳狀態。本發明根據預設值調整功能參數,以避免功能性電路14因為製程飄移而產生訊號不準確之問題。
預設時段可以內建於循環振盪器16中,或由一參考時脈訊號Cr提供。若預設時段由參考時脈訊號Cr提供時,循環振盪器16更電性連接一石英晶體振盪器22,石英晶體振盪器22產生參考時脈訊號Cr。石英晶體因為對溫度的變化影響較小,故產生出的頻率特性非常穩定,經常拿來當作外部的時脈源(clock source)使用。振盪時脈訊號Co之振盪頻率大於該參考時脈訊號Cr之參考頻率,舉例來說,振盪時脈訊號Co之參考頻率除以參考時脈訊號Cr之振盪頻率為N,N可為大於1之自然數。預設時段設定為參考時脈訊號Cr之週期T,如第3圖所示,在週期T中,脈衝之數量有八個。若預設值為七,則控制電路18與功能性電路14增加電阻量、電容量與功能參數。若預設值為九,則控制電路18與功能性電路14降低電阻量、電容量與功能參數。因為校正過程只需要參考時脈訊號Cr之一週期T,所以不會增加太多整體系統的開機時間。如此的自我校正機制可以讓單晶片即使在不同的使用環境中,都可於每次開機時執行自我校正,使單晶片維持一致的效能。
在本發明之某些實施例中,每一動態隨機存取記憶體12更包含一第一電晶體開關24、一垂直電阻器26與一垂直電容器28。垂直電容器28設於半導體基板10上,垂直電阻器26具有粗調電阻值。第一電晶體開關24可為金氧半場效電晶體或雙載子接面電晶體,但本發明不限於此,在此實施例中,第一電晶體開關24係以N通道金氧半場效電晶體為例。第一電晶體開關24設於半導
體基板10上,第一電晶體開關24具有一第一控制電極、一第一連接電極與一第二連接電極,第一控制電極、第一連接電極與第二連接電極分別以汲極、閘極與源極實現。半導體基板10上形成有一絕緣層30,絕緣層30覆蓋第一電晶體開關24,絕緣層30中形成有一第一導電通孔32、一第二導電通孔34與一第三導電通孔36。第一導電通孔32作為垂直電阻器26,第一連接電極透過垂直電阻器26電性連接功能性電路14。第一控制電極透過第二導電通孔34電性連接控制電路18。垂直電容器28設於半導體基板10上,並位於絕緣層30中。垂直電容器28之一端透過第三導電通孔36電性連接第二連接電極,另一端電性連接一電壓端,例如接地端。垂直電容器28具有粗調電容值。在控制電路18開啟第一電晶體開關24時,功能性電路14根據垂直電阻器26之粗調電阻值與垂直電容器28之粗調電容值,調整功能參數。第一電晶體開關24、垂直電阻器26與垂直電容器28也可以改變位置,只要互相串聯即可。在本發明之某些實施例中,校正電路13、功能性電路14、循環振盪器16與控制電路18可位於半導體基板10上,但本發明並不限於此。
在本發明之某些實施例中,校正電路13更包含複數個校正器37,其係設於半導體基板10上,所有校正器37分別具有所有細調電容值,且分別具有所有細調電阻值,所有校正器37電性連接控制電路18與功能性電路14。在脈衝之數量大於或小於預設值時,控制電路18根據脈衝之數量與預設值控制所有校正器37選取細調電容值與細調電阻值。
在本發明之某些實施例中,每一校正器37更包含一第二電晶體開關38、一水平電阻器40與一水平電容器42。第二電晶體開關38可為金氧半場效電晶體或雙載子接面電晶體,但本發明不限於此,在此實施例中,第二電晶體開關38係以N通道金氧半場效電晶體為例。第二電晶體開關38設於半導體基板上10,第二電晶體開關38具有一第二控制電極、一第三連接電極與一第四連接電極,第二控制電極、第三連接電極與第四連接電極分別以閘極、汲極與源極實現。第二控制電極電性連接控制電路18,第三連接電極電性連接功能性電路14。水平電阻器40與水平電容器42設於半導體基板10上,水平電阻器40具有細調電阻值,水平電容器42具有細調電容值,水平電阻器40連接一電壓端,例如接地端,並電性串聯水平電容器42,水平電容器42電性連接第二電晶體開關38之第四連接電極。在控制電路18開啟第二電晶體開關38時,功能性電路14根據水平電阻器40之細調電阻值與水平電容器42之細調電容值,調整功能參數。第二電晶體開關38、水平電阻器40與水平電容器42亦可改變位置,只要互相串聯即可。在傳統技術中,是靠水平電阻器與水平電容器來改善製程飄移的現象,但因為水平電阻器與水平電容器佔有的晶片面積太多了,使製造成本增加,故本發明利用動態隨機存取記憶體12中的垂直電阻器26與垂直電容器28來取代部分的水平電阻器與水平電容器。相對水平電阻器40與水平電容器42,垂直電阻器26與垂直電容器28具有較高的高度與較小的面積,故能減少所需要的晶片面積。通常為了要能最小化抑制製程偏移,往往需要較精確的電阻值與電容值,且若需要一個較大的控制範圍時,就需要更多的電阻面積與電容面積才能達到較大的控制範圍,即表示電路可以有較高的調整範圍,對於製程漂移還有機會可以抑制,以調整回原本所需要的特性。基於上述的想法,由於本發明使用動態隨機存取記憶體12,故等同於多了一個容值大但不會很精準的電容元件可用。雖然垂直電阻器26與垂直電容器28相對水平電阻器40與水平電容器42之誤差值較高,但因為垂直電阻器26與垂直電容器28之粗調電容值與粗調電阻值很高,所以能夠藉此特性配合較小的細調電容值與細調電阻值增加電路操作範圍。舉例來說,粗調電容值與粗調電阻值形成第一時間常數,細調電容值與細調電阻值形成第二時間常數。對於作為功能性電路14之延遲鎖相迴路(DLL)之延遲線(delay line)而言,因為製程飄移也會改變延遲線的作為功能參數之延遲時間,為了維持延遲線的原來延遲時間,可以配合所有動態隨機存取記憶體12與校正電路13進行調整。假設第一時間常數為100奈秒(ns),第二時間常數為10奈秒,且第一時間常數由10個第一電晶體開關24控制,第二時間常數由15個第二電晶體開關38控制。因此,細調的總延遲為150奈秒,其大於粗調之單一延遲的時間,即100奈秒。讓粗調與細調的延遲時間可以重疊,以保證線性切換不會造成問題。本發明可以配合粗調與細調的延遲時間,以得到所需要的延遲時間。假設需要的延遲時間為240奈秒,則只需要開啟二個第一電晶體開關24與四個第二電晶體開關38,且其餘第一電晶體開關24與第二電晶體開關38關閉即可。若粗調因為製程的不準確有+/-30%的誤差,本發明然可以透過細調控制來精確補償到所需要的延遲時間。
在本發明之某些實施例中,控制電路18更包含一計數器44與一解碼器46,其中計數器44亦可以移位暫存器(shift register)實現。此計數器44設於半導體基板10上,此計數器44電性連接循環振盪器16,此計數器44接收振盪時脈訊號Co。在預設時段內,此計數器44依據脈衝之上緣或下緣,計算脈衝之數量,以藉此產生一組數位值D。脈衝之上緣代表從低準位電壓上升到高準位電壓,下緣代表從高準位電壓下降到低準位電壓。解碼器46設於半導體基板10上,解碼器46電性連接此計數器44、所有動態隨機存取記憶體12之第一電晶體開關24之第一控制電極與校正電路13之第二電晶體開關38之第二控制電極。解碼器46接收此組數位值D,以據此與預設值控制所有動態隨機存取記憶體12與校正電路13選取粗調電容值、粗調電阻值、細調電容值與細調電阻值,並將此提供給功能性電路14。
以下介紹本發明之自我校正式系統單晶片之運作過程。首先,所有第一電晶體開關24之部分關閉,部分導通,且所有第二電晶體開關38皆呈關閉狀態,其中關閉的第一電晶體開關24之數量會等於或多於導通的第一電晶體開關24之數量,此條件係根據需求而定。接著,石英晶體振盪器22產生參考時脈訊號Cr,以利用循環振盪器16產生振盪時脈訊號Co,使上述計數器44接收振盪時脈訊號Co,以在預設時段內,依據脈衝之上緣或下緣,計算脈衝之數量,以藉此產生一組數位值D。然後,解碼器46接收此組數位值D,以據此與預設值開啟所需之第一電晶體開關24與第二電晶體開關38,或關閉所需之第一電晶體開關24,以選取開啟之第一電晶體開關24與第二電晶體開關38對應之粗調電容值、粗調電阻值、細調電容值與細調電阻值。因此,功能性電路14因應被選取的粗調電容值、粗調電阻值、細調電容值與細調電阻值調整功能參數,以達到校正之目的。
舉例來說,若上述功能性電路14為射頻電路時,功能參數為其運作頻率。具體而言,射頻電路中分別會有傳送(TX)電路與接收(RX)電路,其運作頻率是有規範的,所以必須要使用如鎖相迴路這類的電路來產生頻率,例如藍牙與無線傳真(Wi-Fi)是操作於2.4×10
9赫茲(Hz)。由於高頻電路很容易受製程漂移影響,因此通常會設計一組製程漂移用的由電阻與電容組成之校正電路,加到其振盪器的共振節點,鎖相迴路的振盪器通常會採用電感與電容組成之振盪槽的振盪器,振盪方法是透過一個放大器,並將電感與電容設計於共振頻率上,其電路就會自我振盪。本發明會將所有動態隨機存取記憶體12與校正電路13放在兩個相互振盪的節點上,因晶片會有製程漂移,每次做出來的振盪器會因電阻、電感、電容與電晶體開關等元件製程漂移而改變振盪頻率,在電晶體開關與電感無法更改的情況,本發明利用加入的所有動態隨機存取記憶體12與校正電路13來調整振盪節點的負載,就可以改變振盪頻率,來防止製程偏移造成的影響,換句話說就是製程往哪個方向飄移,就會往反方向來修改該節點的負載,以維持原本的功能參數。若上述功能性電路14為放大電路時,功能參數包含增益與相位。放大電路會有個輸入電流源,其電流源的大小會直接影響到放大電路的特性,即增益與相位。若電流源連接所有動態隨機存取記憶體12與校正電路13,即可改變電流源之大小,以改變增益及相位。若上述功能性電路14為迴路濾波器時,功能參數可為其迴路帶寬(loop bandwidth),迴路濾波器主要都是由放大器、電阻與電容所組合而成,若迴路濾波器連接所有動態隨機存取記憶體12與校正電路13,即可補償迴路濾波器之迴路帶寬。
綜上所述,本發明利用動態隨機存取記憶體之較大且佔有小面積的電容值與電阻值,配合較小的電容值與電阻值,避免製程飄移之問題,增加電路操作範圍,同時減少所需要的晶片面積。
以上所述者,僅為本發明一較佳實施例而已,並非用來限定本發明實施之範圍,故舉凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。
10:半導體基板
12:動態隨機存取記憶體
13:校正電路
14:功能性電路
15:矽智財電路
16:循環振盪器
18:控制電路
22:石英晶體振盪器
24:第一電晶體開關
26:垂直電阻器
28:垂直電容器
30:絕緣層
32:第一導電通孔
34:第二導電通孔
36:第三導電通孔
37:校正器
38:第二電晶體開關
40:水平電阻器
42:水平電容器
44:計數器
46:解碼器
第1圖為本發明之自我校正式系統單晶片之一實施例之結構剖視圖。
第2圖為本發明之自我校正式系統單晶片之一實施例之電路示意圖。
第3圖為本發明之振盪時脈訊號與參考時脈訊號之波形圖。
10:半導體基板
12:動態隨機存取記憶體
13:校正電路
14:功能性電路
15:矽智財電路
16:循環振盪器
18:控制電路
22:石英晶體振盪器
24:第一電晶體開關
26:垂直電阻器
28:垂直電容器
37:校正器
38:第二電晶體開關
40:水平電阻器
42:水平電容器
44:計數器
46:解碼器
Claims (11)
- 一種自我校正式系統單晶片(System on a Chip,Soc),包含:一半導體基板;至少一矽智財(Silicon Intellectual Property,SIP)電路,設於該半導體基板上,該至少一矽智財電路包含:複數個動態隨機存取記憶體,設於該半導體基板上,每一該動態隨機存取記憶體具有一粗調電容值與一粗調電阻值;一校正電路,設於該半導體基板上,該校正電路具有細調電容值與細調電阻值;以及一功能性電路,設於該半導體基板上,並電性連接該些動態隨機存取記憶體與該校正電路,該功能性電路具有一功能參數;一循環振盪器,設於該半導體基板上,該循環振盪器在一預設時段內產生一振盪時脈訊號;以及一控制電路,設於該半導體基板上,該控制電路電性連接該循環振盪器、該些動態隨機存取記憶體與該校正電路,該控制電路接收該振盪時脈訊號,並計算該振盪時脈訊號之脈衝(pulse)的數量,在該脈衝之該數量大於或小於一預設值時,該控制電路根據該脈衝之該數量與該預設值控制該些動態隨機存取記憶體與該校正電路選取該粗調電容值、該粗調電阻值、該細調電容值與該細調電阻值,並將此提供給該功能性電路,該功能性電路根據被選取的該粗調電容值、該粗調電阻值、該細調電容值與該細調電阻值,調整該功能參數。
- 如請求項1所述之自我校正式系統單晶片,其中每一該動態隨機存取記憶體更包含: 一垂直電阻器,設於該半導體基板上,該垂直電阻器具有該粗調電阻值;一第一電晶體開關,設於該半導體基板上,該第一電晶體開關具有一第一控制電極、一第一連接電極與一第二連接電極,該第一連接電極透過該垂直電阻器電性連接該功能性電路,該第一控制電極電性連接該控制電路;以及一垂直電容器,設於該半導體基板上,並電性連接該第二連接電極與一電壓端,該垂直電容器具有該粗調電容值,在該控制電路開啟該第一電晶體開關時,該功能性電路根據該垂直電阻器之該粗調電阻值與該垂直電容器之該粗調電容值,調整該功能參數。
- 如請求項1所述之自我校正式系統單晶片,其中該校正電路更包含複數個校正器,其係設於該半導體基板上,該些校正器分別具有該細調電容值,且分別具有該細調電阻值,該些校正器電性連接該控制電路與該功能性電路,在該脈衝之該數量大於或小於該預設值時,該控制電路根據該脈衝之該數量與該預設值控制該些校正器選取該細調電容值與該細調電阻值。
- 如請求項3所述之自我校正式系統單晶片,其中每一該校正器更包含:一第二電晶體開關,設於該半導體基板上,該第二電晶體開關具有一第二控制電極、一第三連接電極與一第四連接電極,該第二控制電極電性連接該控制電路,該第三連接電極電性連接該功能性電路;以及一水平電阻器與一水平電容器,設於該半導體基板上,該水平電阻器具有該細調電阻值,該水平電容器具有該細調電容值,該水平 電阻器連接一電壓端,並電性串聯該水平電容器,該水平電容器電性連接該第二電晶體開關之該第四連接電極,在該控制電路開啟該第二電晶體開關時,該功能性電路根據該水平電阻器之該細調電阻值與該水平電容器之該細調電容值,調整該功能參數。
- 如請求項1所述之自我校正式系統單晶片,其中該控制電路更包含:一計數器,其係設於該半導體基板上,該計數器電性連接該循環振盪器,該計數器接收該振盪時脈訊號,在該預設時段內,該計數器依據該脈衝之上緣或下緣,計算該脈衝之該數量,以藉此產生一組數位值;以及一解碼器,設於該半導體基板上,該解碼器電性連接該計數器、該些動態隨機存取記憶體與該校正電路,該解碼器接收該組數位值,以據此與該預設值控制該些動態隨機存取記憶體與該校正電路選取該粗調電容值、該粗調電阻值、該細調電容值與該細調電阻值,並將此提供給該功能性電路。
- 如請求項5所述之自我校正式系統單晶片,其中該計數器為移位暫存器(shift register)。
- 如請求項1所述之自我校正式系統單晶片,其中該循環振盪器更接收一參考時脈訊號,該預設時段為該參考時脈訊號之週期,且該振盪頻率大於該參考時脈訊號之參考頻率。
- 如請求項7所述之自我校正式系統單晶片,其中該循環振盪器更電性連接一石英晶體振盪器,該石英晶體振盪器產生該參考時脈訊號。
- 如請求項1所述之自我校正式系統單晶片,其中該脈衝之該數量 小於該預設值時,該控制電路與該功能性電路降低該功能參數,該脈衝之該數量大於該預設值時,該控制電路與該功能性電路增加該功能參數。
- 如請求項1所述之自我校正式系統單晶片,其中該粗調電容值與該粗調電阻值形成一第一時間常數,該細調電容值與該細調電阻值形成一第二時間常數,該第一時間常數除以該第二時間常數之數值大於或等於10。
- 如請求項1所述之自我校正式系統單晶片,其中該功能性電路為類比電路、射頻電路、數位電路、處理器、靜態隨機存取記憶體或快閃記憶體。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108144123A TWI730523B (zh) | 2019-12-03 | 2019-12-03 | 自我校正式系統單晶片 |
CN202010175821.4A CN112908380A (zh) | 2019-12-03 | 2020-03-13 | 自我校正式系统单晶片 |
JP2020076305A JP6887702B2 (ja) | 2019-12-03 | 2020-04-22 | 自己補正式Soc |
US16/867,785 US11334100B2 (en) | 2019-12-03 | 2020-05-06 | Self-calibrated system on a chip (SoC) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108144123A TWI730523B (zh) | 2019-12-03 | 2019-12-03 | 自我校正式系統單晶片 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI730523B true TWI730523B (zh) | 2021-06-11 |
TW202123619A TW202123619A (zh) | 2021-06-16 |
Family
ID=76091431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108144123A TWI730523B (zh) | 2019-12-03 | 2019-12-03 | 自我校正式系統單晶片 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11334100B2 (zh) |
JP (1) | JP6887702B2 (zh) |
CN (1) | CN112908380A (zh) |
TW (1) | TWI730523B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116318120B (zh) * | 2023-03-30 | 2024-05-03 | 归芯科技(深圳)有限公司 | Rc振荡时钟的校准电路、校准方法、芯片和电子设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060133175A1 (en) * | 2004-12-17 | 2006-06-22 | Vadim Gutnik | RFID tags with electronic fuses for storing component configuration data |
US20080159454A1 (en) * | 2006-12-27 | 2008-07-03 | National Taiwan University | Network on chip device and on-chip data transmission device |
US20100327902A1 (en) * | 2009-06-25 | 2010-12-30 | Uniram Technology, Inc. | Power saving termination circuits for dram modules |
TWI570389B (zh) * | 2015-12-08 | 2017-02-11 | 財團法人工業技術研究院 | 振幅校正電路及其應用的信號校正電路 |
CN107888180A (zh) * | 2016-09-30 | 2018-04-06 | 扬智科技股份有限公司 | 系统芯片及其终端阻抗元件的校正方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5689203A (en) * | 1995-11-20 | 1997-11-18 | Geist; Jon | Self-calibration circuit for pulse-train tranducer signals |
JP2002100962A (ja) * | 2000-09-21 | 2002-04-05 | Texas Instr Japan Ltd | 周波数特性調整回路 |
JP2004110490A (ja) * | 2002-09-19 | 2004-04-08 | Renesas Technology Corp | タイミング制御回路装置 |
JP2005244413A (ja) * | 2004-02-25 | 2005-09-08 | Rohm Co Ltd | 時定数自動調整回路 |
US7756663B2 (en) * | 2005-06-27 | 2010-07-13 | Georgia Tech Research Corporation | Self-calibration systems and methods |
EP1962421A1 (en) * | 2007-02-23 | 2008-08-27 | STMicroelectronics S.r.l. | Calibration circuit for calibrating an adjustable capacitance of an integrated circuit having a time constant depending on said capacitance |
JP5104851B2 (ja) * | 2007-03-19 | 2012-12-19 | 富士通株式会社 | 電圧制御発振器およびシンセサイザ回路 |
US8102187B2 (en) * | 2008-05-02 | 2012-01-24 | Texas Instruments Incorporated | Localized calibration of programmable digital logic cells |
JP2009296375A (ja) * | 2008-06-05 | 2009-12-17 | Toshiba Corp | デジタル制御発振器及びこれを用いた位相同期回路 |
US8552742B2 (en) * | 2011-01-27 | 2013-10-08 | Yuan Ze University | Calibration method for radio frequency scattering parameter measurements |
WO2013099035A1 (ja) * | 2011-12-29 | 2013-07-04 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
JP6247763B2 (ja) * | 2013-11-27 | 2017-12-13 | テレフオンアクチーボラゲット エルエム エリクソン(パブル) | キャリブレーション測定のための回路、方法、コンピュータプログラム及び電子デバイス |
US9331677B2 (en) * | 2014-02-24 | 2016-05-03 | Fujitsu Limited | Oscillator with adjustable frequency |
JP2017010297A (ja) * | 2015-06-23 | 2017-01-12 | セイコーエプソン株式会社 | クロック信号生成回路、半導体集積回路装置、及び、電子機器 |
-
2019
- 2019-12-03 TW TW108144123A patent/TWI730523B/zh active
-
2020
- 2020-03-13 CN CN202010175821.4A patent/CN112908380A/zh active Pending
- 2020-04-22 JP JP2020076305A patent/JP6887702B2/ja active Active
- 2020-05-06 US US16/867,785 patent/US11334100B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060133175A1 (en) * | 2004-12-17 | 2006-06-22 | Vadim Gutnik | RFID tags with electronic fuses for storing component configuration data |
US20080159454A1 (en) * | 2006-12-27 | 2008-07-03 | National Taiwan University | Network on chip device and on-chip data transmission device |
US20100327902A1 (en) * | 2009-06-25 | 2010-12-30 | Uniram Technology, Inc. | Power saving termination circuits for dram modules |
TWI570389B (zh) * | 2015-12-08 | 2017-02-11 | 財團法人工業技術研究院 | 振幅校正電路及其應用的信號校正電路 |
CN107888180A (zh) * | 2016-09-30 | 2018-04-06 | 扬智科技股份有限公司 | 系统芯片及其终端阻抗元件的校正方法 |
Also Published As
Publication number | Publication date |
---|---|
TW202123619A (zh) | 2021-06-16 |
CN112908380A (zh) | 2021-06-04 |
JP6887702B2 (ja) | 2021-06-16 |
US20210165434A1 (en) | 2021-06-03 |
US11334100B2 (en) | 2022-05-17 |
JP2021090184A (ja) | 2021-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7679463B2 (en) | Multi-terminal harmonic oscillator integrated circuit with frequency calibration and frequency configuration | |
US7548125B2 (en) | Frequency calibration for a monolithic clock generator and timing/frequency reference | |
TWI426710B (zh) | 分離的時脈產生器及時序/頻率參考器 | |
US8102216B1 (en) | Voltage controlled oscillator having reduced phase noise | |
US20060158268A1 (en) | Discrete clock generator and timing/frequency reference | |
US20090231047A1 (en) | Multi-phase voltage-control oscillator | |
US9608647B1 (en) | System and method for voltage-controlled oscillator calibration | |
US7268635B2 (en) | Circuits for voltage-controlled ring oscillators and method of generating a periodic signal | |
US20080012654A1 (en) | Linearized variable-capacitance module and lc resonance circuit using the same | |
US9899991B2 (en) | Circuits and methods of synchronizing differential ring-type oscillators | |
CN102938644B (zh) | 数字控制振荡器 | |
US9407199B2 (en) | Integrated circuit comprising a frequency dependent circuit, wireless device and method of adjusting a frequency | |
TWI730523B (zh) | 自我校正式系統單晶片 | |
US20020159555A1 (en) | Frequency synthesizer with phase restart | |
US9602051B1 (en) | Transforming voltage in a voltage controlled oscillator for wireless sensor devices | |
US9129940B2 (en) | RF calibration through-chip inductive coupling | |
JP2019506078A (ja) | 無線センサデバイスの電圧制御発振器におけるスイッチドキャパシタバンクの制御 | |
US9473152B2 (en) | Coupling structure for inductive device | |
US7724102B2 (en) | Oscillator circuit | |
US10658975B2 (en) | Semiconductor device and method | |
TW202139605A (zh) | 用於時鐘產生的裝置 | |
Hung et al. | A first RF digitally-controlled oscillator for SAW-less TX in cellular systems | |
JP2021150914A (ja) | 半導体装置、デジタル制御発振器、周波数シンセサイザ、及び半導体装置の制御方法 | |
Moreira | Low power digitally controlled oscillator for IoT applications | |
KR20050082556A (ko) | 듀얼모드 튜닝을 갖는 크리스탈 오실레이터 |