TWI730383B - Recombinant strain of candida spp., and the preparation process and uses thereof - Google Patents
Recombinant strain of candida spp., and the preparation process and uses thereof Download PDFInfo
- Publication number
- TWI730383B TWI730383B TW108129823A TW108129823A TWI730383B TW I730383 B TWI730383 B TW I730383B TW 108129823 A TW108129823 A TW 108129823A TW 108129823 A TW108129823 A TW 108129823A TW I730383 B TWI730383 B TW I730383B
- Authority
- TW
- Taiwan
- Prior art keywords
- candida
- lactic acid
- fermentation
- sequence
- protein
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
- C12N15/81—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
- C12N15/902—Stable introduction of foreign DNA into chromosome using homologous recombination
- C12N15/905—Stable introduction of foreign DNA into chromosome using homologous recombination in yeast
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
- C12N15/81—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
- C12N15/815—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases RNAses, DNAses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/56—Lactic acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
- C12Y101/01028—D-Lactate dehydrogenase (1.1.1.28)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/14—Fungi; Culture media therefor
- C12N1/16—Yeasts; Culture media therefor
- C12N1/165—Yeast isolates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1137—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/20—Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/645—Fungi ; Processes using fungi
- C12R2001/72—Candida
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y401/00—Carbon-carbon lyases (4.1)
- C12Y401/01—Carboxy-lyases (4.1.1)
- C12Y401/01001—Pyruvate decarboxylase (4.1.1.1)
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Plant Pathology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
本發明是有關於一種重組型假絲酵母菌菌株暨其製備方法。本發明亦有關於使用該重組型假絲酵母菌菌株來產生D-乳酸的方法。The invention relates to a recombinant Candida strain and its preparation method. The present invention also relates to a method of using the recombinant Candida strain to produce D-lactic acid.
乳酸(lactic acid)具有D-乳酸(D-lactic acid)(亦被稱為右旋乳酸)與L-乳酸(L-lactic acid)(亦被稱為左旋乳酸)這兩種立體異構物(stereoisomer),它們被廣泛地應用於食品、化妝品(cosmetic)、藥品(pharmaceutical)以及化學工業(chemical industry),因而已被視為是一種具有發展價值的化合物。特別地,在化學工業中,經常藉由調控D-乳酸與L-乳酸各自聚合而成的聚右乳酸(poly-D-lactic acid, PDLA)與聚左乳酸(poly-L-lactic acid, PLLA)的比例來合成出具有不同性質[熱化學性質(thermochemical properties)、物理性質(physical properties)以及生物降解率(biodegradation rate)]的生物可降解塑膠(biodegradable plastics),以因應不同需求。因此,如何大量地生產單一種類的乳酸立體異構物已逐漸成為本技術領域的研究人員所關注與研究的重點。Lactic acid has two stereoisomers (D-lactic acid) (also known as D-lactic acid) and L-lactic acid (also known as L-lactic acid) ( Stereoisomers), which are widely used in food, cosmetics, pharmaceuticals, and chemical industry, and therefore have been regarded as a kind of compounds with developmental value. In particular, in the chemical industry, it is often used to regulate the polymerization of D-lactic acid and L-lactic acid to form poly-D-lactic acid (PDLA) and poly-L-lactic acid (PLLA). ) Ratio to synthesize biodegradable plastics with different properties [thermochemical properties, physical properties, and biodegradation rate] to meet different needs. Therefore, how to produce a single type of lactic acid stereoisomers in large quantities has gradually become the focus and research focus of researchers in this technical field.
目前已有許多研究是藉由對酵母菌進行基因修飾(gene modification)來使其具有生產單一種類的乳酸立體異構物的能力。例如,EP 1513923 B1揭示對馬克斯克魯維酵母菌(Kluyveromyces marxianus ) CD21菌株進行內生性pdc1 基因[其編碼丙酮酸去羧酶1 (pyruvate decarboxylase 1, PDC1)]的刪除以及外源性d-ldh 基因[其編碼D-乳酸去氫酶(D-lactate dehydrogenase, D-LDH)]的導入而得到一會表現d-ldh 基因的Δpdc1 重組型馬克斯克魯維酵母菌。該重組型馬克斯克魯維酵母菌在一具有葡萄糖與CaCO3 的培養條件下歷經54小時的發酵,可以達到92-95%的D-乳酸產率(以單位重量的葡萄糖所產生之乳酸重量來計算)。At present, there have been many studies on the ability to produce a single kind of lactic acid stereoisomer by gene modification of yeast. For example, EP 1513923 B1 discloses the deletion of the endogenous pdc1 gene [which encodes pyruvate decarboxylase 1, PDC1] and the exogenous d-ldh on the Kluyveromyces marxianus CD21 strain gene [encoding a D- lactate dehydrogenase (D-lactate dehydrogenase, D- LDH)] is obtained Δ pdc1 introduced recombinant Kluyveromyces marxianus may exhibit a d-ldh gene. The recombinant Kluyveromyces marxianus can reach 92-95% D-lactic acid yield (based on the weight of lactic acid produced per unit weight of glucose) after 54 hours of fermentation under a culture condition with glucose and CaCO 3 Calculation).
US 2012/0058529 A1揭示對一具有優異的碳同化作用(carbon assimilation)的高蛋白假絲酵母菌(Candida utilis )進行基因修飾而得到一具有生產L-乳酸之能力的菌株。該基因修飾的步驟包括先藉由使用Cre-lox系統來對該高蛋白假絲酵母菌進行內生性pdc 基因的多次破壞,而得到一內生性pdc 基因完全被剔除的Cu8402g菌株,接著,同樣藉由使用Cre-lox系統對Cu8402g菌株進行外源性l-ldh 基因[其編碼L-乳酸去氫酶(L-lactate dehydrogenase, L-LDH)]的多次導入,而得到一表現外源性l-ldh 基因且內生性pdc 基因完全被剔除的Pj0957菌株。Pj0957菌株經由實驗而被證實具有良好的L-乳酸生產能力。但由於高蛋白假絲酵母菌為多套染色體(hyperploid)而帶有四個內生性pdc 基因的複本,因此,使用Cre-lox系統的基因修飾時,需要進行多次的轉形,才可使pdc 基因完全被剔除。US 2012/0058529 A1 discloses genetic modification of Candida utilis with excellent carbon assimilation to obtain a strain capable of producing L-lactic acid. The step of genetic modification includes first using the Cre-lox system to destroy the endogenous pdc gene of the high protein Candida spp. to obtain a Cu8402g strain with the endogenous pdc gene completely deleted, and then, the same By using the Cre-lox system to introduce the exogenous l-ldh gene [which encodes L-lactate dehydrogenase (L-LDH)] multiple times into the Cu8402g strain, an exogenous expression is obtained. The Pj0957 strain with the l-ldh gene and the endogenous pdc gene completely deleted. The Pj0957 strain has been proved to have good L-lactic acid production capacity through experiments. But because Candida high protein has multiple sets of chromosomes (hyperploid) and carries four copies of endogenous pdc genes, when using Cre-lox system genetic modification, multiple transformations are required to make The pdc gene was completely eliminated.
另外,為了進一步提高上述基因修飾的效率,已有研究是利用CRISPR/Cas9系統的技術來達到一次性刪除或插入多個目標基因的效用。例如,在Ozaki A.et al . (2017),Metab. Eng. Commun ., 5:60-67中,Ozaki A.等人使用CRISPR/Cas9系統來對裂殖性酵母菌(Saccharomyces pombe ) FY12804菌株進行多個基因的置換與破壞,包括將eutE 基因與mhpF 基因分別導入至pdc101 基因位置與pdc202 基因位置、將d-ldh 基因導入至gpd2 基因位置,以及刪除l-ldh 基因與adh SPBC337.11 基因,所得到的裂殖性酵母菌轉形株ATR5-LA1在葡萄糖的存在下歷經55小時的發酵,僅可達到33%的D-乳酸產率(以單位重量的葡萄糖所產生之乳酸重量來計算)。Ozaki A.等人進一步將d-ldh 基因導入至該裂殖性酵母菌轉形株ATR5-LA1的adh8 基因位置,而所得到的裂殖性酵母菌轉形株ATR5-LA2在歷經55小時的發酵,則可以達到71%的D-乳酸產率。In addition, in order to further improve the efficiency of the above-mentioned gene modification, existing studies have used the technology of the CRISPR/Cas9 system to achieve the effect of deleting or inserting multiple target genes at one time. For example, in Ozaki A. et al . (2017), Metab. Eng. Commun ., 5:60-67, Ozaki A. et al. used the CRISPR/Cas9 system to analyze fission yeast ( Saccharomyces pombe ) FY12804 strain Perform multiple gene replacement and destruction, including introducing eutE gene and mhpF gene into pdc101 gene position and pdc202 gene position respectively, introducing d-ldh gene into gpd2 gene position, and deleting l-ldh gene and adh SPBC337.11 gene , The obtained fission yeast transformed strain ATR5-LA1 can only reach 33% D-lactic acid yield (calculated based on the weight of lactic acid produced by unit weight of glucose) after 55 hours of fermentation in the presence of glucose ). Ozaki A. et al. further introduced the d-ldh gene into the adh8 gene position of the fissionable yeast transformed strain ATR5-LA1, and the resulting fissionable yeast transformed strain ATR5-LA2 had a 55-hour Fermentation can achieve a D-lactic acid yield of 71%.
然而,這些先前研究因需要較長的發酵時間才可達致較高的D-乳酸產率而提高了所需的成本,不敷產業上的實際應用。因此,若能利用CRISPR/Cas9系統並使用特定的導引RNA (guide RNA)來製備出一能夠在短時間內生產大量D-乳酸的重組型假絲酵母菌菌株以供產業界之所需,會是吾人所企望達成的。However, these previous studies have increased the required cost due to the longer fermentation time required to achieve a higher D-lactic acid yield, which is not sufficient for practical industrial applications. Therefore, if we can use the CRISPR/Cas9 system and use a specific guide RNA to prepare a recombinant Candida strain capable of producing a large amount of D-lactic acid in a short time for the needs of the industry, It will be what we hope to achieve.
發明概要Summary of the invention
於是,在第一個方面,本發明提供一種用於製備一具有D-乳酸生產能力的重組型假絲酵母菌菌株的方法,該方法包括: 將一CRISPR/Cas9系統導入至一親代假絲酵母菌細胞中,而使得該親代假絲酵母菌細胞的一內生性pdc 基因的所有複本皆被置換為外源性d -ldh 基因,其中該CRISPR/Cas9系統包含有: (a) 一導引RNA (guide RNA),其包含有一選自於由下列所構成的群組中的導引序列(guide sequence):序列辨識編號:22、序列辨識編號:23、序列辨識編號:24以及序列辨識編號:25; (b) 一Cas9蛋白質;以及 (c) 一同源重組片段(homologous recombination fragment),沿一轉錄方向依序地包含有:一5’同源臂(5' homology arm)、該外源性d -ldh 基因以及一3’同源臂(3' homology arm),其中,該5’同源臂具有一對應於pdc 基因的上游至少100 bp的序列,該3’同源臂具有一對應於pdc 基因的下游至少100 bp的序列。Therefore, in the first aspect, the present invention provides a method for preparing a recombinant Candida strain capable of producing D-lactic acid, the method comprising: introducing a CRISPR/Cas9 system into a parent Candida In yeast cells, all copies of an endogenous pdc gene of the parental Candida cell are replaced with exogenous d - ldh genes, wherein the CRISPR/Cas9 system includes: (a) A guide Guide RNA (guide RNA) includes a guide sequence selected from the group consisting of: sequence identification number: 22, sequence identification number: 23, sequence identification number: 24, and sequence identification Number: 25; (b) a Cas9 protein; and (c) a homologous recombination fragment, which sequentially includes a 5'homology arm, a 5'homology arm, and a homologous recombination fragment along a transcription direction. The exogenous d - ldh gene and a 3'homology arm, wherein the 5'homology arm has a sequence corresponding to at least 100 bp upstream of the pdc gene, and the 3'homology arm has One corresponds to a sequence of at least 100 bp downstream of the pdc gene.
在第二個方面,本發明提供一種重組型假絲酵母菌菌株,它是藉由使用一如上所述的方法而被生成。In the second aspect, the present invention provides a recombinant Candida strain which is produced by using a method as described above.
在第三個方面,本發明提供一種重組型高蛋白假絲酵母菌轉形株D813,它以寄存編號BCRC 920114被寄存於食品工業發展研究所的生物資源保存及研究中心。In the third aspect, the present invention provides a recombinant high-protein Candida strain D813, which is deposited with the Biological Resources Conservation and Research Center of the Food Industry Development Institute under the deposit number BCRC 920114.
在第四個方面,本發明提供一種從一含有可發酵糖的基質中來產生D-乳酸的方法,其包含以一如上所述的重組型高蛋白假絲酵母菌轉形株D813來對該基質進行發酵。In a fourth aspect, the present invention provides a method for producing D-lactic acid from a matrix containing fermentable sugars, which comprises using a recombinant high-protein Candida strain D813 as described above for the production of D-lactic acid. The substrate is fermented.
發明的詳細說明Detailed description of the invention
要被瞭解的是:若有任何一件前案刊物在此被引述,該前案刊物不構成一個下述承認:在台灣或任何其他國家之中,該前案刊物形成本技藝中的常見一般知識之一部分。It should be understood that if any previous case publication is quoted here, the previous case publication does not constitute a recognition: in Taiwan or any other country, the previous case publication forms a common general in the art. Part of knowledge.
為了這本說明書之目的,將被清楚地瞭解的是:文字“包含有(comprising)”意指“包含但不限於”,以及文字“包括(comprises)”具有一對應的意義。For the purpose of this specification, it will be clearly understood that the word "comprising" means "including but not limited to", and the word "comprises" has a corresponding meaning.
除非另外有所定義,在本文中所使用的所有技術性與科學術語具有熟悉本發明所屬技藝的人士所共同瞭解的意義。一熟悉本技藝者會認知到許多與那些被描述於本文中者相似或等效的方法和材料,它們可被用於實施本發明。當然,本發明決不受到所描述的方法和材料之限制。為表清楚,下面的界定被使用於本文中。Unless otherwise defined, all technical and scientific terms used in this article have meanings commonly understood by those familiar with the art of the present invention. A person familiar with the art will recognize that many methods and materials similar or equivalent to those described herein can be used to implement the present invention. Of course, the present invention is by no means restricted by the described methods and materials. For clarity, the following definitions are used in this article.
如本文中所使用的,“核酸”、“核酸序列”或“核苷酸序列”等術語意指呈單股或雙股形式的去氧核糖核苷酸序列或核糖核苷酸序列,且當中包含有已知的天然存在的核苷酸(naturally occurring nucleotides)或人造化學仿效物(artificial chemical mimics)。如本文中所使用的,“核酸”此術語可與“基因”、“DNA”、“cDNA”、“mRNA”、“寡核苷酸”和“聚核苷酸”交換使用。As used herein, terms such as "nucleic acid", "nucleic acid sequence" or "nucleotide sequence" mean a deoxyribonucleotide sequence or ribonucleotide sequence in single-stranded or double-stranded form, and among them Contains known naturally occurring nucleotides (naturally occurring nucleotides) or artificial chemical mimics (artificial chemical mimics). As used herein, the term "nucleic acid" can be used interchangeably with "gene", "DNA", "cDNA", "mRNA", "oligonucleotide" and "polynucleotide".
如本文中所使用的,術語“核酸片段”與“DNA片段”可被互換地使用,並且意指一種DNA聚合物(DNA polymer),該DNA聚合物是呈一獨立節段(separate segment)的形式或者是作為一較大的DNA建構物(DNA construct)的一組分(component),其可以是衍生自經分離的DNA (isolated DNA)或是藉由本技術領域中所熟知的方法而被化學地或酵素地合成。As used herein, the terms "nucleic acid fragment" and "DNA fragment" are used interchangeably, and mean a DNA polymer, which is a separate segment. The form or as a component of a larger DNA construct, which can be derived from isolated DNA or be chemically modified by methods well known in the art. Ground or enzyme synthesis.
除非另有指明,一核酸序列除了於本文中所揭示的特定序列外,亦涵蓋其互補序列(complementary sequences),以及它們的守恆性類似物(conservative analogs)、相關的自然存在的結構變異體和/或合成的非天然存在的類似物。Unless otherwise specified, in addition to the specific sequences disclosed herein, a nucleic acid sequence also encompasses its complementary sequences, as well as their conservative analogs (conservative analogs), related naturally occurring structural variants and / Or synthetic non-naturally occurring analogues.
如本文中所使用的,術語“轉形(transformation)”與術語“轉染(transfection)”可被交替地使用,並且泛指將一外源性核酸分子引入一選定的宿主細胞內的方式。依據本技藝中已知的技術,一核酸分子(例如,一重組型DNA建構物或一重組型載體)可藉由多種方式而被引入至一選定的宿主細胞內,例如磷酸鈣或氯化鈣媒介的轉染作用(transfection)、電穿孔法(electroporation)、微注射法(microinjection)、粒子撞擊法(particle bombardment)、脂質體媒介的轉染作用(liposome-mediated transfection)、利用細菌噬菌體的轉染作用或其他方法。As used herein, the term "transformation" and the term "transfection" may be used interchangeably, and generally refer to a method of introducing an exogenous nucleic acid molecule into a selected host cell. According to techniques known in the art, a nucleic acid molecule (for example, a recombinant DNA construct or a recombinant vector) can be introduced into a selected host cell in a variety of ways, such as calcium phosphate or calcium chloride Transfection, electroporation, microinjection, particle bombardment, liposome-mediated transfection, transfection using bacteriophage Dyeing or other methods.
如本文中所使用的,“細胞”、“宿主細胞(host cell)”、“轉形宿主細胞(transformed host cell)”與“重組型宿主細胞(recombinant host cell)”等術語可被交替地使用,而且不僅指特定的個體細胞(individual cells)還包括其繼代培養的子代(sub-cultured offsprings)或可能的子代(potential offsprings)。繼代培養的子代細胞可能在後續世代中因為突變作用或環境影響而包括特定的遺傳修飾(genetic modification),而致使子代細胞事實上可能與母細胞並不完全一致,但子代細胞仍被涵蓋在本文中所用的術語的範疇內。As used herein, the terms "cell", "host cell", "transformed host cell" and "recombinant host cell" may be used interchangeably , And not only refers to specific individual cells (individual cells) but also includes its sub-cultured offsprings or potential offsprings. Subcultured progeny cells may include specific genetic modifications in subsequent generations due to mutations or environmental influences, so that the progeny cells may in fact not be exactly the same as the parent cells, but the progeny cells are still Covered in the scope of the terms used in this article.
如本文中所使用的,術語“親代假絲酵母菌細胞(parentCandida cell)”與“假絲酵母菌母株(Candida mother strain)”可被交替地使用,並且意指一被使用來進行一或多個基因修飾處理的假絲酵母菌細胞。適用於本發明的親代假絲酵母菌細胞可以是未轉形的細胞(non-transformed cells),或是已被至少一種其它重組型核酸序列轉形的細胞(transformed cells)。As used herein, the terms "parent Candida cell" and " Candida mother strain" can be used interchangeably, and mean that one is used to perform One or more genetically modified Candida cells. The parental Candida cells suitable for use in the present invention may be non-transformed cells or transformed cells that have been transformed by at least one other recombinant nucleic acid sequence.
依據本發明,適用於本發明的親代假絲酵母菌細胞包括,但不限於,源自於下列的細胞:高蛋白假絲酵母菌(Candida utilis )、博伊丁假絲酵母(Candida boidinii )、熱帶念珠菌(Candida tropicalis )以及近平滑念珠菌(Candida parapsilosis )。在本發明的一個較佳具體例中,該親代假絲酵母菌細胞是高蛋白假絲酵母菌。According to the present invention is applicable to the present invention, the parent of Candida yeast cells include, but are not limited to, cells derived from the following: protein Candida (Candida utilis), Candida boidinii (Candida boidinii) , Candida tropicalis and Candida parapsilosis . In a preferred embodiment of the present invention, the parental Candida cell is Candida high protein.
本發明提供一種用於製備一具有D-乳酸生產能力的重組型假絲酵母菌菌株的方法,該方法包括: 將一CRISPR/Cas9系統導入至一親代假絲酵母菌細胞中,而使得該親代假絲酵母菌細胞的一內生性pdc 基因的所有複本皆被置換為外源性d -ldh 基因,其中該CRISPR/Cas9系統包含有: (a) 一導引RNA (guide RNA),其包含有一選自於由下列所構成的群組中的導引序列(guide sequence):序列辨識編號:22、序列辨識編號:23、序列辨識編號:24以及序列辨識編號:25; (b) 一Cas9蛋白質;以及 (c) 一同源重組片段(homologous recombination fragment),沿一轉錄方向依序地包含有:一5’同源臂(5' homology arm)、該外源性d -ldh 基因以及一3’同源臂(3' homology arm),其中,該5’同源臂具有一對應於pdc 基因的上游至少100 bp的序列,該3’同源臂具有一對應於pdc 基因的下游至少100 bp的序列。The present invention provides a method for preparing a recombinant Candida strain capable of producing D-lactic acid. The method includes: introducing a CRISPR/Cas9 system into a parental Candida cell to make the All copies of an endogenous pdc gene of the parental Candida cell are replaced with exogenous d - ldh genes. The CRISPR/Cas9 system includes: (a) a guide RNA, which Contains a guide sequence selected from the group consisting of: sequence identification number: 22, sequence identification number: 23, sequence identification number: 24, and sequence identification number: 25; (b) One Cas9 protein; and (c) a homologous recombination fragment, which sequentially includes a 5'homology arm, the exogenous d - ldh gene, and A 3'homology arm, wherein the 5'homology arm has a sequence corresponding to at least 100 bp upstream of the pdc gene, and the 3'homology arm has a sequence corresponding to at least the downstream of the pdc gene. 100 bp sequence.
較佳地,該內生性pdc 基因具有多個複本。在本發明的一個較佳具體例中,該內生性pdc 基因具有四個複本。Preferably, the endogenous pdc gene has multiple copies. In a preferred embodiment of the present invention, the endogenous pdc gene has four copies.
在本發明的一個較佳具體例中,該親代假絲酵母菌細胞是高蛋白假絲酵母菌BCRC 20325。In a preferred embodiment of the present invention, the parental Candida cell is Candida high protein BCRC 20325.
如本文中所使用的,術語“導引RNA (guide RNA, gRNA)”意指一在CRISPR/Cas9系統中將一CRISPR蛋白質(例如,Cas9或Cas9相關的多肽)標靶至一目標DNA內的一特定位置來進行基因編輯(gene editing)的RNA分子,其包含有:一導引序列,它含有一與該目標DNA互補的核苷酸序列;一tracr序列(tracr sequence),它作用於與該CRISPR蛋白質結合,亦被稱為轉錄-活化的crRNA (trans-activating crRNA, tracrRNA);以及一tracr-配對序列(tracr-mate sequence),它融合至該導引序列之3’端[這兩個序列一起被稱為CRISPR RNA (crRNA)],並且可與該tracrRNA雜交。該crRNA與該tracrRNA可以是呈分開(separate)的兩個RNA分子,或是被融合成一個單一的RNA分子[亦被稱為單一導引RNA (single guide RNA, sgRNA)]。As used herein, the term "guide RNA (gRNA)" means a CRISPR/Cas9 system that targets a CRISPR protein (for example, Cas9 or Cas9-related polypeptides) into a target DNA An RNA molecule for gene editing at a specific location contains: a guide sequence, which contains a nucleotide sequence complementary to the target DNA; a tracr sequence, which acts on The CRISPR protein combines, also known as transcription-activated crRNA (trans-activating crRNA, tracrRNA); and a tracr-mate sequence (tracr-mate sequence), which is fused to the 3'end of the guide sequence [both Together, these sequences are called CRISPR RNA (crRNA)] and can hybridize to this tracrRNA. The crRNA and the tracrRNA may be two separate RNA molecules, or may be fused into a single RNA molecule [also known as single guide RNA (sgRNA)].
依據本發明,該tracr序列的選用可以是自行設計的,或者是商業上可購得的產品,例如,Edit-R tracrRNA (廠牌為Dharmacon,貨號為U-002005-20)、Alt-R™ CRISPR tracrRNA (廠牌為Integrated DNA Technologies,貨號為1072532)以及SygRNA® SpCas9 tracrRNA (廠牌為Merck,貨號為TRACRRNA05N-5NMOL)。該tracr-配對序列的選用則視所採用的tracr序列而定。在本發明的一個較佳具體例中,該tracr序列是Edit-R tracrRNA。According to the present invention, the selection of the tracr sequence can be self-designed or commercially available products, for example, Edit-R tracrRNA (brand name is Dharmacon, article number is U-002005-20), Alt-R™ CRISPR tracrRNA (brand name is Integrated DNA Technologies, item number 1072532) and SygRNA ® SpCas9 tracrRNA (brand name is Merck, item number TRACRRNA05N-5NMOL). The selection of the tracr-matching sequence depends on the tracr sequence used. In a preferred embodiment of the present invention, the tracr sequence is Edit-R tracrRNA.
在本發明的一個較佳具體例中,該CRISPR/Cas9系統包含有一第一導引RNA與一第二導引RNA,該第一導引RNA包含有序列辨識編號:22所示的導引序列以及該第二導引RNA包含有序列辨識編號:25所示的導引序列。In a preferred embodiment of the present invention, the CRISPR/Cas9 system includes a first guide RNA and a second guide RNA, and the first guide RNA includes the guide sequence shown in SEQ ID NO: 22 And the second guide RNA contains the guide sequence shown by the sequence identification number: 25.
依據本發明,該CRISPR/Cas9系統的導入可以採用熟習此項技藝者所詳知且慣用的技術來進行。According to the present invention, the introduction of the CRISPR/Cas9 system can be carried out using techniques well-known and used by those skilled in the art.
可瞭解到的是,有關該CRISPR/Cas9系統的操作條件會進一步隨著所使用的導引RNA、CRISPR蛋白質以及所欲表現的外源性基因的種類與用量比例等因素而被變動,以便達致最佳的基因修飾(gene modification)效果。而這些操作條件的選擇是熟習此項技藝者能例行性地自行決定的。It can be understood that the operating conditions of the CRISPR/Cas9 system will be further changed according to factors such as the guide RNA used, the CRISPR protein, and the type and dosage ratio of the exogenous gene to be expressed, so as to achieve Resulting in the best gene modification effect. The choice of these operating conditions is routinely determined by those who are familiar with the art.
依據本發明,該同源重組片段中的5’同源臂、外源性d -ldh 基因以及3’同源臂的核酸序列分別是藉由使用熟習此項技藝者所熟知且慣用的DNA選殖(DNA cloning)或基因合成(gene synthesis)的相關技術而被選殖或合成。參見,例如,US 20120058529 A1以及US 20160177321 A1等。According to the present invention, the 5'homologous arm, exogenous d - ldh gene and 3'homologous arm nucleic acid sequences in the homologous recombination fragment are respectively selected by using DNA which is well-known and customary by those skilled in the art. The technology of DNA cloning or gene synthesis is selected or synthesized. See, for example, US 20120058529 A1 and US 20160177321 A1, etc.
較佳地,該5’同源臂具有一對應於pdc 基因的上游100 bp至2,000 bp範圍內的序列。在本發明的一個較佳具體例中,該5’同源臂具有一如序列辨識編號:16所示的序列。Preferably, the 5'homology arm has a sequence corresponding to the range of 100 bp to 2,000 bp upstream of the pdc gene. In a preferred embodiment of the present invention, the 5'homology arm has a sequence as shown in sequence identification number: 16.
較佳地,該3’同源臂具有一對應於pdc 基因的下游100 bp至2,000 bp範圍內的序列。在本發明的一個較佳具體例中,該3’同源臂具有一如序列辨識編號:19所示的序列。Preferably, the 3'homology arm has a sequence corresponding to the range of 100 bp to 2,000 bp downstream of the pdc gene. In a preferred embodiment of the present invention, the 3'homology arm has a sequence as shown in sequence identification number: 19.
依據本發明,適用於本發明的d-ldh 基因是源自於:腸膜明串珠菌腸膜亞種(Leuconostoc mesenteroides subsp.Mesenteroides )、胚芽乳桿菌(Lactobacillus plantarum )、戴白氏乳桿菌保加利亞亞種(Lactobacillus delbrueckii subsp.bulgaricus )、紅麵包黴菌(Neurospora crassa )、嗜酸乳桿菌(Lactobacillus acidophilus )以及乳酸乳球菌(Lactococcus lactis )。在本發明的一個較佳具體例中,該d-ldh 基因是源自於腸膜明串珠菌腸膜亞種。According to the present invention, the d-ldh gene suitable for the present invention is derived from: Leuconostoc mesenteroides subsp. Mesenteroides , Lactobacillus plantarum , Lactobacillus plantarum, Lactobacillus bulgaricus Species ( Lactobacillus delbrueckii subsp. bulgaricus ), red bread mold ( Neurospora crassa ), Lactobacillus acidophilus (Lactobacillus acidophilus) and Lactococcus lactis (Lactococcus lactis). In a preferred embodiment of the present invention, the d-ldh gene is derived from Leuconostoc mesenteroides subspecies mesenteric.
在本發明的一個較佳具體例中,該d-ldh 基因具有一如序列辨識編號:1所示的序列。In a preferred embodiment of the present invention, the d-ldh gene has a sequence as shown in the sequence identification number: 1.
本發明亦提供一種重組型假絲酵母菌菌株,它是藉由使用一如上所述的方法而被生成。The present invention also provides a recombinant Candida strain, which is generated by using a method as described above.
在本發明的一個較佳具體例中,該重組型假絲酵母菌菌株為一寄存編號為BCRC 920114 (寄存於BCRC)或者CCTCC M 2019431 (寄存於CCTCC)的重組型高蛋白假絲酵母菌轉形株D813。In a preferred embodiment of the present invention, the recombinant Candida strain is a recombinant high-protein Candida strain with a deposit number of BCRC 920114 (deposited in BCRC) or CCTCC M 2019431 (deposited in CCTCC). Shaped strain D813.
本發明亦提供一種從一含有可發酵糖的基質中來產生D-乳酸的方法,其包含以一如上所述的重組型高蛋白假絲酵母菌轉形株D813來對該基質進行發酵。The present invention also provides a method for producing D-lactic acid from a substrate containing fermentable sugars, which comprises fermenting the substrate with a recombinant high-protein Candida strain D813 as described above.
依據本發明,該含有可發酵糖的基質可以是一糖液或纖維素水解液(cellulosic hydrolysate)。According to the present invention, the substrate containing fermentable sugars can be a sugar liquid or a cellulosic hydrolysate (cellulosic hydrolysate).
依據本發明,該纖維素水解液是藉由對一纖維素生質(cellulosic biomass)依序地進行一前處理及一水解處理而被製得。According to the present invention, the cellulose hydrolyzate is prepared by sequentially performing a pretreatment and a hydrolysis treatment on a cellulosic biomass.
如本文中所使用的,術語“纖維素水解液”與“木質纖維素水解液(lignocellulosic hydrolysate)”和“生質水解液(biomass hydrolysate)”係可被交替地使用,並且意指由生質之糖化(saccharification)所產生的產物。As used herein, the terms "cellulosic hydrolysate" and "lignocellulosic hydrolysate" and "biomass hydrolysate" can be used interchangeably, and mean The product produced by saccharification.
依據本發明,該可發酵糖是選自於由下列所構成的群組:葡萄糖、蔗糖、果糖(fructose)、阿拉伯糖(arabinose)、半乳糖(galactose)、甘露糖(mannose)、纖維雙糖(cellobiose),以及它們的組合。According to the present invention, the fermentable sugar is selected from the group consisting of glucose, sucrose, fructose, arabinose, galactose, mannose, cellobiose (cellobiose), and their combination.
在本發明的一個較佳具體例中,該含有可發酵糖的基質是一含有葡萄糖的糖液,當使用本發明的重組型假絲酵母菌菌株來對該含有葡萄糖的糖液進行發酵時,可得到一至少約為82.5%的D-乳酸產率;較佳地,可得到一至少約為90%的D-乳酸產率;更佳地,可得到一約為97.2%的D-乳酸產率。In a preferred embodiment of the present invention, the substrate containing fermentable sugar is a sugar liquid containing glucose. When the recombinant Candida strain of the present invention is used to ferment the sugar liquid containing glucose, A D-lactic acid yield of at least about 82.5% can be obtained; preferably, a D-lactic acid yield of at least about 90% can be obtained; more preferably, a D-lactic acid yield of about 97.2% can be obtained. rate.
在本發明的另一個較佳具體例中,該含有可發酵糖的基質是一含有蔗糖的糖液,當使用本發明的重組型假絲酵母菌菌株來對該含有蔗糖的糖液進行發酵時,可得到一至少約為86.56%的D-乳酸產率;較佳地,可得到一至少約為90%的D-乳酸產率;更佳地,可得到一約為94.32%的D-乳酸產率。In another preferred embodiment of the present invention, the substrate containing fermentable sugar is a sugar liquid containing sucrose, when the recombinant Candida strain of the present invention is used to ferment the sugar liquid containing sucrose , A D-lactic acid yield of at least about 86.56% can be obtained; preferably, a D-lactic acid yield of at least about 90% can be obtained; more preferably, a D-lactic acid yield of about 94.32% can be obtained Yield.
依據本發明,在該發酵之前或在該發酵的期間,該基質可進一步被添加以一選自於由下列所構成之群組中的中和劑,而使得該基質的pH值在該發酵的期間被維持在5至7的範圍內:CaCO3 、NH4 OH、NaOH,以及它們的組合。較佳地,在該發酵的期間,對該基質添加以45 g/L CaCO3 ,而使得該基質的pH值在該發酵的期間被維持在pH 6。According to the present invention, before the fermentation or during the fermentation, the substrate can be further added with a neutralizing agent selected from the group consisting of the following, so that the pH value of the substrate is at the level of the fermentation The period is maintained in the range of 5 to 7: CaCO 3 , NH 4 OH, NaOH, and combinations thereof. Preferably, during the fermentation, 45 g/L CaCO 3 is added to the substrate, so that the pH value of the substrate is maintained at pH 6 during the fermentation.
依據本發明,該發酵是在一範圍落在25℃至37℃的溫度下被進行歷時18至60小時。According to the present invention, the fermentation is carried out at a temperature ranging from 25°C to 37°C for 18 to 60 hours.
較佳地,該發酵是在30℃下被進行歷時48小時。Preferably, the fermentation is carried out at 30°C for 48 hours.
較佳地,該發酵是在35℃下被進行歷時22小時。更佳地,該發酵是在35℃下被進行歷時26小時。Preferably, the fermentation is carried out at 35°C for 22 hours. More preferably, the fermentation is carried out at 35°C for 26 hours.
依據本發明,該發酵是在一範圍落在0.1 vvm至1 vvm的通氣量下被進行。較佳地,該發酵是在一範圍落在0.5 vvm至1 vvm的通氣量下被進行。更佳地,該發酵是在1 vvm的通氣量下被進行。According to the present invention, the fermentation is performed under an aeration volume ranging from 0.1 vvm to 1 vvm. Preferably, the fermentation is performed under an aeration volume ranging from 0.5 vvm to 1 vvm. More preferably, the fermentation is performed under an aeration of 1 vvm.
較佳實施例之詳細說明Detailed description of the preferred embodiment
本發明將就下面的實施例來做進一步說明,但應瞭解的是,該等實施例僅是供例示說明用,而不應被解釋為本發明的實施上的限制。實施例 一般實驗材料: 1. 下面實施例中被使用來進行聚合酶鏈反應的引子(primers)是委託明欣生物科技有限公司來代為合成。 2. 在下面的實施例中,所使用到的高蛋白假絲酵母菌(Candida utilis )是購自於台灣的食品工業發展研究所(Food Industry Research and Development Institute, FIRDI)的生物資源保存及研究中心(Biosource Collection and Research Center, BCRC)(300新竹市食品路331號,台灣),其包括: (1) 高蛋白假絲酵母菌BCRC 20325 (對應於ATCC 9950); (2) 高蛋白假絲酵母菌BCRC 21691 (對應於ATCC 36178);以及 (3) 高蛋白假絲酵母菌BCRC 21645 (對應於DSM 70163)。 3. 在下面實施例中所使用的葡萄糖、蛋白腖以及酵母萃取物分別是購自於景明化工股份有限公司(Echo Chemical Co., LTD)、上鼎生技有限公司(ST BIO, INC.)以及精展生物科技有限公司(Genezyme biotech)。 4. 在下面實施例中所使用的CaCO3 、NH4 OH以及NaOH皆購自於Sigma-Aldrich。 一般實驗方法: 1. 除非另有指明,在本發明中所採用的實驗方法是使用本領域中熟悉此項技術人士所詳知的技術或者依據製造商所提供的操作指南來進行,例如下列DNA選殖(DNA cloning)的相關技術:基因組DNA的萃取(extraction of genomic DNA)、使用限制酶的DNA切割反應(DNA cleavage reaction by restriction enzymes)、使用T4 DNA接合酶的DNA接合反應(DNA ligation with T4 DNA ligase)以及瓊脂糖凝膠電泳(agarose gel electrophoresis)。 2. 聚合酶鏈反應(PCR):The present invention will be further described with respect to the following embodiments, but it should be understood that these embodiments are only for illustrative purposes and should not be construed as limitations on the implementation of the present invention. Examples General experimental materials: 1. The primers used in the following examples for polymerase chain reaction were commissioned by Mingxin Biotechnology Co., Ltd. to be synthesized. 2. In the following examples, the Candida utilis used is the biological resource preservation and research purchased from the Food Industry Research and Development Institute (FIRDI) in Taiwan Center (Biosource Collection and Research Center, BCRC) (No. 331, Food Road, Hsinchu City, Taiwan), which includes: (1) High-protein Candida BCRC 20325 (corresponding to ATCC 9950); (2) High-protein Candida Yeast BCRC 21691 (corresponding to ATCC 36178); and (3) Candida high protein BCRC 21645 (corresponding to DSM 70163). 3. The glucose, eggplant and yeast extract used in the following examples were purchased from Echo Chemical Co., LTD, ST BIO, INC. and Genezyme biotech. 4. CaCO 3 , NH 4 OH and NaOH used in the following examples are all purchased from Sigma-Aldrich. General experimental methods: 1. Unless otherwise specified, the experimental methods used in the present invention are carried out using techniques well known to those skilled in the art or in accordance with the operating instructions provided by the manufacturer, such as the following DNA Related technologies for DNA cloning: extraction of genomic DNA, DNA cleavage reaction by restriction enzymes, DNA ligation with T4 DNA ligase T4 DNA ligase) and agarose gel electrophoresis (agarose gel electrophoresis). 2. Polymerase chain reaction (PCR):
在下面實施例中所使用的PCR是藉由使用KOD DNA聚合酶(KOD DNA polymerase)(台灣默克股份有限公司)並依照製造商所提供的操作指南來進行。 3. 高效能液相層析(high performance liquid chromatography, HPLC)分析:The PCR used in the following examples is carried out by using KOD DNA polymerase (KOD DNA polymerase) (Taiwan Merck Co., Ltd.) and following the operating instructions provided by the manufacturer. 3. High performance liquid chromatography (HPLC) analysis:
在下面的實施例中,被拿來進行HPLC分析的待測樣品中所含有的D-乳酸及其濃度(g/L)是藉由使用一配備有一個DAD-3000 UV偵測器(DAD-3000 UV detector)的HPLC儀器(DIONEX Ultimate 3000)來進行測定,其中所使用的管柱以及操作條件如下:分析管柱為SUMICHIRAL OA-6000管柱,溫度設定為38℃;流動相:2 mM CuSO4 / 5%乙腈(acetonitrile);流速被控制為0.8 mL/分鐘;樣品注射體積為20 μL;以及偵測波長為UV-254 nm。In the following example, the D-lactic acid and its concentration (g/L) contained in the sample to be tested for HPLC analysis are determined by using a DAD-3000 UV detector (DAD-3000). 3000 UV detector) HPLC instrument (DIONEX Ultimate 3000), the column used and operating conditions are as follows: the analytical column is SUMICHIRAL OA-6000 column, the temperature is set to 38℃; mobile phase: 2 mM CuSO 4 / 5% acetonitrile; the flow rate is controlled to 0.8 mL/min; the sample injection volume is 20 μL; and the detection wavelength is UV-254 nm.
此外,為供比對,使用不同濃度的D-乳酸(0.5至12 mg/mL)(購自於Sigma-Aldrich)來分別作為對照標準品(control standard)並進行相同的分析。實施例1. 具有D- 乳酸生產能力的高蛋白假絲酵母菌轉形株的製備與篩選 In addition, for comparison, different concentrations of D-lactic acid (0.5 to 12 mg/mL) (purchased from Sigma-Aldrich) were used as control standards and the same analysis was performed. Example 1. Preparation and screening of transformant strains of Candida high protein with D-lactic acid production capacity
為了得到一能夠表現外源性d- ldh 基因且全套內生性pdc 基因完全被剔除的轉形株,申請人構築一帶有d-ldh 基因的同源重組片段(homologous recombination fragment),接著使用CRISPR/Cas9系統的技術來進行同源重組,以將高蛋白假絲酵母菌的基因體內的pdc 基因[其編碼丙酮酸去羧酶(pyruvate decarboxylase , PDC)]置換為d- ldh 基因[其編碼D-乳酸去氫酶(D-lactate dehydrogenase, D-LDH)]。 實驗材料: 1. 勝任高蛋白假絲酵母菌細胞的製備(preparation of competentCandida utilis cells):In order to obtain a transformed strain capable of expressing the exogenous d- ldh gene and completely knocking out the full set of endogenous pdc genes, the applicant constructed a homologous recombination fragment with the d-ldh gene, and then used CRISPR/ Homologous recombination is performed using the Cas9 system technology to replace the pdc gene [which codes for pyruvate decarboxylase (PDC)] in the gene of Candida high protein with the d- ldh gene [which codes for D- Lactate dehydrogenase (D-lactate dehydrogenase, D-LDH)]. Experimental materials: 1. Preparation of competent Candida utilis cells:
首先,將高蛋白假絲酵母菌BCRC 20325、21691以及21645分別接種至如下面表1中所示的YPD20培養基中,並於30℃下以200 rpm進行震盪培養直到該培養物的OD600
值達至1.3-1.5 (約0.32 g菌體/L)。
表1. YPD20培養基的配方
接著,將適量的培養物吸取至無菌離心管中,繼而於4℃下以6,000 g來進行離心歷時6分鐘。之後,倒除上澄液並加入10 mL的轉形溶液(transformation solution)[含有100 mM乙酸鋰(lithium acetate, LiAc)、10 mM Tris-HCl以及1 mM EDTA]以充份懸浮菌體,並於30℃下以200 rpm進行震盪培養歷時1小時,然後加入1 mL的1 M DTT並繼續進行震盪培養歷時30分鐘,繼而在4℃下以6,000 g來進行離心歷時6分鐘,接著,倒除上澄液並加入20 mL的冰冷二次水(ddH2 O)以充份懸浮菌體,繼而在4℃下以6,000 g來進行離心歷時6分鐘,然後倒除上澄液並加入15 mL的冰冷二次水以充份懸浮菌體,繼而在4℃下以6,000 g來進行離心歷時6分鐘。Next, an appropriate amount of culture was pipetted into a sterile centrifuge tube, followed by centrifugation at 6,000 g at 4°C for 6 minutes. After that, pour off the top solution and add 10 mL of transformation solution (containing 100 mM lithium acetate (LiAc), 10 mM Tris-HCl and 1 mM EDTA) to fully suspend the bacteria, and Perform shaking culture at 30°C and 200 rpm for 1 hour, then add 1 mL of 1 M DTT and continue shaking culture for 30 minutes, then centrifuge at 6,000 g at 4°C for 6 minutes, and then discard Add 20 mL of ice-cold secondary water (ddH 2 O) to fully suspend the bacteria, then centrifuge at 6,000 g at 4°C for 6 minutes, then pour out the supernatant and add 15 mL of The ice-cold secondary water was used to fully suspend the bacteria, and then centrifuged at 6,000 g at 4°C for 6 minutes.
之後,倒除上澄液並加入1 mL的冰冷山梨糖醇(sorbitol)(1 M)以充份懸浮菌體,繼而在4℃下以6,000 g來進行離心歷時6分鐘,然後倒除上澄液並加入80 μL的冰冷山梨糖醇(1 M)以充份懸浮菌體,藉此而得到3種含有經山梨糖醇處理的勝任高蛋白假絲酵母菌細胞(sorbitol-treated competentCandida utilis cell)的懸浮液。最後,將所得到的3種含有勝任高蛋白假絲酵母菌細胞的懸浮液分裝至微量離心管(每管約70 μL)並且保存於-80℃下備用。 實驗方法: A、 最適化 d-ldh 基因的基因合成 (gene synthesis) : After that, pour the supernatant liquid and add 1 mL of ice-cold sorbitol (1 M) to fully suspend the bacteria, and then centrifuge at 6,000 g at 4°C for 6 minutes, then pour out the supernatant And add 80 μL of ice-cold sorbitol (1 M) to fully suspend the bacteria, thereby obtaining 3 sorbitol-treated competent Candida utilis cells (sorbitol-treated competent Candida utilis cells). ) Suspension. Finally, the obtained 3 kinds of suspensions containing competent high-protein Candida cells were dispensed into microcentrifuge tubes (about 70 μL per tube) and stored at -80° C. for later use. Experimental Method: A, optimized gene synthesis d-ldh gene (gene synthesis):
首先,為了得到一可在高蛋白假絲酵母菌中表現的最適化d-ldh 基因,申請人將腸膜明串珠菌腸膜亞種(Leuconostoc mesenteroides subsp.Mesenteroides )的d- ldh 基因的完整編碼序列(complete coding sequence)(GenBank登錄編號:AB233384.1)作鹼基的最適化調整,藉此而得到一如序列辨識編號:1所示之最適化d-ldh 基因的核苷酸序列(996 bp)。該最適化d-ldh 基因的核苷酸序列是委託明欣生物科技有限公司來進行合成。接著,以所得到的合成產物作為模板,藉由使用1組具有如下所示之核苷酸序列的引子對(其中底線表示限制酶切割位址)並依據上面“一般實驗方法”的第2項「聚合酶鏈反應」當中所述的方法來進行PCR,藉此而得到一帶有最適化d-ldh 基因的核苷酸序列以及Pac I/Sal I切割位址的PCR產物A1 (1,022 bp)。 前向引子D-LDH-PacI-F 5’-gataccttaattaa atgaagatttttgcttac-3’ (序列辨識編號:2)Pac I 反向引子D-LDH-SalI-R 5’-ttgcaggtcgac ttaatattcaacagcaatagctg-3’Sal I (序列辨識編號:3)B、 分別選殖 PGK 終結子 (PGK terminator) 、 PGK 啟動子 (PGK promoter) 以及 GAP 終結子 ( GAP terminator) 片段 : First of all, in order to obtain an optimal d-ldh gene that can be expressed in Candida high protein, the applicant encoded the complete d- ldh gene of Leuconostoc mesenteroides subsp. Mesenteroides. The sequence (complete coding sequence) (GenBank accession number: AB233384.1) was optimized for base adjustment to obtain the nucleotide sequence of the optimized d-ldh gene as shown in the sequence identification number: 1 (996 bp). The nucleotide sequence of the optimized d-ldh gene was synthesized by Mingxin Biotechnology Co., Ltd. Next, use the obtained synthetic product as a template, by using a set of primer pairs with the nucleotide sequence shown below (where the bottom line indicates the restriction enzyme cleavage address) and according to item 2 of the "General Experimental Method" above Perform PCR using the method described in "Polymerase Chain Reaction" to obtain a PCR product A1 (1,022 bp) with the nucleotide sequence of the optimized d-ldh gene and the Pac I/ Sal I cleavage site. Forward primer D-LDH-PacI-F 5'-gatacc ttaattaa atgaagatttttgcttac-3' (Sequence ID: 2) Pac I reverse primer D-LDH-SalI-R 5'-ttgcag gtcgac ttaatattcaacagcaatagctg-3' Sal I ( sequence identification number: 3) B, respectively PGK termination sub-cloning (PGK terminator), PGK promoter (PGK promoter), and termination sub GAP (GAP Terminator) fragment:
有關PGK終結子、PGK啟動子以及GAP終結子的選殖大體上是參考US 20120058529 A1當中所述的方法而被進行。簡言之,申請人取適量之高蛋白假絲酵母菌BCRC 20325的培養物並使用UniversAll™組織萃取緩衝液來進行基因組DNA的萃取,繼而以所得到的基因組DNA作為模板,並且分別使用針對PGK終結子、PGK啟動子以及GAP終結子所設計出之具有如下面表2中所示之3組引子對並依據上面“一般實驗方法”的第2項「聚合酶鏈反應」當中所述的方法來進行PCR,藉此而擴增出一帶有PGK終結子以及Sal
I/Not
I切割位址的PCR產物A2 (906 bp)、一帶有PGK啟動子以及Not
I/Kpn
I切割位址的PCR產物A3 (1,406 bp)以及一帶有GAP終結子以及Bam
HI/Bsi
WI切割位址的PCR產物A4 (859 bp)。
表2. 被設計用於擴增PGK終結子、PGK啟動子以及GAP終結子的引子對
有關KanMX片段的選殖大體上是參照US 20160177321 A1當中所述的方法而被進行。簡言之,以pFA6a-link-yEGFP-Kan載體作為模板,並且使用1組針對該載體中所含之KanMX抗性基因(序列辨識編號:13)所設計出之具有如下所示之核苷酸序列的引子對(其中底線表示限制酶切割位址)並依據上面“一般實驗方法”的第2項「聚合酶鏈反應」當中所述的方法來進行PCR,藉此而擴增出一帶有KanMX片段以及Kpn I/Bam HI切割位址的PCR產物A5 (834 bp)。 前向引子KanMX-KpnI-F 5’-ataaagggtacc atgggtaaggaaaagac-3’ (序列辨識編號:14)Kpn I 反向引子KanMX-BamHI-R 5’-tacaatggatcc ttagaaaaactcatcgag-3’ (序列辨識編號:15)Bam HID、 分別選殖 PDC1 啟動子 以及 PDC1 終結子 片段 : The selection of KanMX fragments is generally carried out with reference to the method described in US 20160177321 A1. In short, use the pFA6a-link-yEGFP-Kan vector as a template, and use a set of nucleotides designed for the KanMX resistance gene contained in the vector (SEQ ID NO: 13) with the following nucleotides Sequence primer pair (where the bottom line indicates the restriction enzyme cleavage address) and perform PCR according to the method described in the second item "Polymerase Chain Reaction" of the "General Experimental Methods" above, thereby amplifying a KanMX Fragment and PCR product A5 (834 bp) with Kpn I/ Bam HI cleavage site. Forward primer KanMX-KpnI-F 5'-ataaag ggtacc atgggtaaggaaaagac-3' (SEQ ID NO: 14) Kpn I reverse primer KanMX-BamHI-R 5'-tacaat ggatcc ttagaaaaactcatcgag-3' (SEQ ID NO: 15) Bam HI D, respectively select PDC1 promoter and PDC1 terminator fragments :
首先,為了選殖出高蛋白假絲酵母菌BCRC 20325的pdc1
基因的啟動子(下稱PDC1啟動子)與終結子(下稱PDC1終結子)(分別對應於NCBI登錄編號AB489119.1當中所示的核苷酸殘基位置1660至2246處與4192至4701處),申請人分別設計出如下面表3中所示之2組引子對。
表3. 被設計用於擴增PDC1啟動子與PDC1終結子的引子對
之後,取適量之高蛋白假絲酵母菌BCRC 20325的培養物並使用UniversAll™組織萃取緩衝液來進行基因組DNA的萃取,繼而以所得到的基因組DNA作為模板,並且分別使用如上面表3所示的2組引子對並依據上面“一般實驗方法”的第2項「聚合酶鏈反應」當中所述的方法來進行PCR,藉此而擴增出一帶有PDC1啟動子以及Apa I/Pac I切割位址的PCR產物A6 (613 bp)以及一帶有PDC1終結子以及Bsi WI/Avr II切割位址的PCR產物A7 (534 bp)。E、 帶有 d-ldh 基因的同源重組片段的構築: After that, take an appropriate amount of the culture of Candida high protein BCRC 20325 and use UniversAll™ tissue extraction buffer to extract genomic DNA, and then use the obtained genomic DNA as a template, and use them as shown in Table 3 above. PCR was performed according to the method described in the 2nd “Polymerase Chain Reaction” of the “General Experimental Methods” above, and amplified a PDC1 promoter and Apa I/ Pac I cleavage PCR products addresses A6 (613 bp) and a PCR product with termination PDC1 promoter and Bsi WI / Avr II cleavage addresses A7 (534 bp). E. Construction of homologous recombination fragment with d-ldh gene:
使用T4 DNA接合酶(購自於益生生技開發股份有限公司,貨號為FYC003)來將上面第A至D項當中所得到的PCR產物A1至A7進行接合(ligation),藉此而得到一帶有d-ldh 基因的同源重組片段(6,050 bp,其架構如圖1所示)。F、 使用 CRISPR/Cas9 系統來將同源重組片段轉形 (transformation) 至高蛋白假絲酵母菌中: Use T4 DNA ligase (purchased from Probiotics Technology Development Co., Ltd., the product number is FYC003) to ligate the PCR products A1 to A7 obtained in items A to D above, thereby obtaining a band The homologous recombination fragment of d-ldh gene (6,050 bp, its structure is shown in Figure 1). F, using the CRISPR / Cas9 system the homologous recombination fragment Transformation (transformation) to the protein in Candida:
首先,申請人委託Dharmacon公司來合成4個依據NCBI登錄編AB489119.1 {杰丁畢赤酵母菌(Pichia jadinii
)[它為高蛋白假絲酵母菌的無性型(anamorph)]中針對丙酮酸去羧酶(pyruvate decarboxylase, PDC)的CuPDC1基因的完整序列(complete sequence)}當中所示的核苷酸序列所設計的CRISPR RNA (crRNA)(下稱crRNA1至4),而有關該等crRNA的相關資訊(包括:核苷酸序列、對應於標的基因的所在位置等)已被整合於下面表4中。
表4. 被設計用於CRISPR/Cas9系統的crRNA
接著,將該等crRNA與轉錄-活化的crRNA (購自於Dharmacon公司,貨號為U-002005-20)[這兩者被使用作為導引RNA (guide RNA)]、Cas9核酸酶蛋白質(Cas9 nuclease protein)(購自於Dharmacon,生產批號為CAS 11201)以及在上面第E項中所得到的同源重組片段依據下面表5所示用量進行混合,藉此而分別得到混合物1與2。
表5. 被使用於CRISPR/Cas9系統的混合物
接著,該混合物1是藉由使用電穿孔法(electroporation)(操作參數為:0.75 kV、25 μF以及800 Ω)而被轉形至依照上面“實驗材料”的第1項「勝任高蛋白假絲酵母菌細胞的製備」中所得到的3種勝任高蛋白假絲酵母菌細胞中。Next, the mixture 1 was transformed by using electroporation (operating parameters: 0.75 kV, 25 μF, and 800 Ω) to conform to the first item of "experimental materials" above, "Competent high protein false silk" "Preparation of Yeast Cells" among the three competent high-protein Candida cells.
之後,使用一含有適當抗生素濃度(200 μg/mL G418)的YPD固態培養基進行篩選,並且使用1組依據NCBI登錄編號AB489119.1 [杰丁畢赤酵母菌(Pichia jadinii )(它為高蛋白假絲酵母菌的無性型)中針對丙酮酸去羧酶(PDC)的CuPDC1基因的完整序列]當中所示的核苷酸序列而被設計出之具有如下所示之核苷酸序列的引子對(分別對應於NCBI登錄編號AB489119.1當中所示的核苷酸殘基位置2247至2268處與3030至3006處)並依據上面“一般實驗方法”的第2項「聚合酶鏈反應」當中所述的方法來進行PCR,藉此來確認所得到的高蛋白假絲酵母菌轉形株中原有的4套pdc 基因是否完全被剔除。 前向引子PDC1-1-F 5’-atgagcgaaatcacattgggac-3’ (序列辨識編號:26) 反向引子PDC1-784-R 5’-caccaccgaatcttgggtgttgttc-3’ (序列辨識編號:27)After that, a YPD solid medium containing an appropriate antibiotic concentration (200 μg/mL G418) was used for screening, and a group was used according to the NCBI accession number AB489119.1 [ Pichia jadinii (Pichia jadinii) (it is a high-protein false The asexual form of silk yeast) is designed for the nucleotide sequence shown in the complete sequence of the CuPDC1 gene of pyruvate decarboxylase (PDC)], and a primer pair with the nucleotide sequence shown below is designed (Corresponding to the nucleotide residue positions 2247 to 2268 and 3030 to 3006 shown in the NCBI accession number AB489119.1) and according to the second "polymerase chain reaction" in the "General Experimental Methods" above The method described above is used to perform PCR to confirm whether the original 4 sets of pdc genes in the obtained high protein Candida transformed strain have been completely eliminated. Forward primer PDC1-1-F 5'-atgagcgaaatcacattgggac-3' (Sequence ID number: 26) Reverse primer PDC1-784-R 5'-caccaccgaatcttgggtgttgttc-3' (Sequence ID number: 27)
接著,所有的高蛋白假絲酵母菌轉形株中全套pdc
基因完全被剔除者所佔的比率[亦即剔除率(%)]被計算出。所得到的結果被顯示於下面的表6中。從表6可見,使用高蛋白假絲酵母菌BCRC 20325、21691以及21645來進行轉形皆能夠得到全套pdc
基因完全被剔除的高蛋白假絲酵母菌轉形株,其中又以使用高蛋白假絲酵母菌BCRC 20325所得到的剔除率最高。
表6. 高蛋白假絲酵母菌BCRC 20325、21691以及21645的pdc
基因的剔除情形
此外,該混合物2亦被拿來進行相同的實驗,不同之處在於:只有對高蛋白假絲酵母菌BCRC 20325進行轉形。而所得到的結果顯示,使用該混合物2來進行轉形也能夠得到全套pdc 基因完全被剔除的高蛋白假絲酵母菌轉形株(剔除率為0.5%)。In addition, the mixture 2 was also used for the same experiment, the difference is that only the high protein Candida BCRC 20325 was transformed. The results obtained show that using the mixture 2 for transformation can also obtain transformed strains of Candida high protein with a complete set of pdc genes deleted (the elimination rate is 0.5%).
綜合以上的實驗結果可知:使用混合物1與混合物2來對高蛋白假絲酵母菌進行轉形皆能夠得到全套pdc 基因完全被置換為d-ldh 基因的高蛋白假絲酵母菌轉形株,其中選用crRNA1與crRNA4以及高蛋白假絲酵母菌BCRC 20325能夠獲致最佳的置換率。G、 篩選具有高 D- 乳酸生產能力的高蛋白假絲酵母菌轉形株: Based on the above experimental results, it can be seen that the use of mixture 1 and mixture 2 to transform Candida high protein can obtain a full set of transformed strains of Candida high protein with the pdc gene completely replaced with the d-ldh gene. The best replacement rate can be obtained by using crRNA1 and crRNA4 and high protein Candida BCRC 20325. G. Screening transformed strains of high-protein Candida with high D-lactic acid production capacity:
首先,申請人從在上面第F項中所得到的45株高蛋白假絲酵母菌BCRC 20325轉形株中隨機挑選出39株轉形株並將它們分別接種至一含有10 mL YPD60培養基(添加有1%酵母菌萃取物、2%蛋白腖以及6%葡萄糖)的50 mL試管中,並在30℃以及200 rpm下進行培養歷時48小時。接著,對所得到的各個培養物分別各取0.9-1.2 mL並以12,000 rpm來進行離心歷時5分鐘,接著收集上澄液來作為待測樣品並依據上面“一般實驗方法”的第3項「高效能液相層析分析」當中所述的方法來進行D-乳酸含量的分析。First, the applicant randomly selected 39 transformed strains from the 45 strains of Candida high protein BCRC 20325 transformed strains obtained in item F above and inoculated them into a medium containing 10 mL YPD60 (addition In a 50 mL test tube containing 1% yeast extract, 2% egg whites and 6% glucose), the culture was carried out at 30°C and 200 rpm for 48 hours. Next, take 0.9-1.2 mL of each of the obtained cultures and centrifuge at 12,000 rpm for 5 minutes, and then collect the supernatant as the sample to be tested and follow item 3 of the “General Experimental Method” above. The method described in "High Performance Liquid Chromatography Analysis" is used for the analysis of D-lactic acid content.
D-乳酸產率是藉由將所測得的D-乳酸含量以及發酵前發酵培養基中所含有的葡萄糖含量代入下列公式(1)而被計算出:公式 (1) : A = ( B/C)×100 其中:A=D-乳酸產率(%) B=所測得的D-乳酸含量(g) C=發酵前發酵培養基中所含有的葡萄糖含量(g)The D-lactic acid yield is calculated by substituting the measured D-lactic acid content and the glucose content in the fermentation medium before fermentation into the following formula (1): Formula (1) : A = ( B/C )×100 where: A=D-lactic acid yield (%) B=measured D-lactic acid content (g) C=glucose content in the fermentation medium before fermentation (g)
所得到的結果被顯示於下面的表7中。從表7可見,各個高蛋白假絲酵母菌BCRC 20325轉形株皆具有生產D-乳酸的能力,特別地,高蛋白假絲酵母菌BCRC 20325轉形株D813 (下稱高蛋白假絲酵母菌轉形株D813)的D-乳酸產率高達82.5%,明顯優於其他高蛋白假絲酵母菌BCRC 20325轉形株所具者。申請人據此而認為:高蛋白假絲酵母菌轉形株D813具有開發潛力。高蛋白假絲酵母菌轉形株D813已於西元2019年4月22日以寄存編號BCRC 920114被寄存於財團法人食品工業發展研究所的生物資源保存及研究中心(BCRC of FIRDI)(300新竹市食品路331號,台灣),以及於西元2019年6月5日以寄存編號CCTCC M 2019431被寄存於中國典型培養物保藏中心(China Center for Type Culture Collection, CCTCC)。
表7. 各個高蛋白假絲酵母菌BCRC 20325轉形株的D-乳酸產率
首先,將依據上面實施例1的第G項所得到的高蛋白假絲酵母菌轉形株D813的培養物以2×108
細胞/mL的接種量接種於一含有100 mL的如下面表8中所示的發酵培養基的錐形瓶中,然後於一好氧條件下以及一恆溫培養箱(35℃、80 rpm)中進行發酵反應歷時26小時。
表8. 用於發酵培養高蛋白假絲酵母菌轉形株D813的發酵培養基的配方
之後,所得到的發酵培養物是參照實施例1當中所述的方式來進行D-乳酸含量的分析以及D-乳酸產率的計算。而實驗結果顯示:高蛋白假絲酵母菌轉形株D813在歷經26小時的發酵後,其D-乳酸產率可高達97.2%。實施例3. 不同 的 發酵條件 對於 高蛋白假絲酵母菌轉形株D813 發酵 產D- 乳酸的影響 實驗方法: A、 使用不同中和劑 (neutralizing agent) 來調控 pH 值對於高蛋白假絲酵母菌轉形株 D813 發酵產 D- 乳酸的影響: After that, the obtained fermentation culture was analyzed with reference to the method described in Example 1 for the analysis of the D-lactic acid content and the calculation of the D-lactic acid yield. The experimental results show that the high-protein Candida transformed strain D813 has a D-lactic acid yield as high as 97.2% after 26 hours of fermentation. Example 3. Fermentation conditions for different protein Transformation Candida strains D813 D- lactic acid fermentation impact test method: A, the use of different neutralizers (neutralizing agent) to regulate the pH of the protein for Candida The effect of D- lactic acid production by the transformed strain D813:
首先,將依據上面實施例1的第G項所得到的高蛋白假絲酵母菌轉形株D813的培養物分成4組,其中包括3個實驗組(亦即實驗組1至3)以及1個對照組。接著,將各組培養物分別接種至上面實施例1的第G項中所使用的YPD60培養基(2 L)中。First of all, the culture of the transformed strain D813 of Candida high protein obtained according to item G of Example 1 above was divided into 4 groups, including 3 experimental groups (ie, experimental groups 1 to 3) and 1 Control group. Next, each group of cultures were respectively inoculated into the YPD60 medium (2 L) used in item G of Example 1 above.
接著,將各組培養物分別置於發酵槽(購自於一升科技股份有限公司)中,並在一為30℃的溫度、一為1 vvm的通氣量以及一為400 rpm的攪拌速率下進行培養歷時21-27小時,而使得該培養物的OD600
值能達至10 (約2×108
細胞/mL)。接著,所形成的細胞培養物以6,000 g來進行離心歷時6分鐘,去除上澄液並加入一含有2 L的如下面表9中所示的發酵培養基的發酵槽中,繼而在一為35℃的溫度、一為1 vvm的通氣量以及一為250 rpm的攪拌速率下進行發酵反應歷時22小時。在整個發酵期間,對實驗組1至3分別適時地添加以45 g/L CaCO3
、250 g/L NH4
OH以及5 N NaOH來將pH值控制在5至7的範圍內。
表9. 用於發酵培養高蛋白假絲酵母菌轉形株D813的發酵培養基的配方
之後,所得到的各組發酵培養物是參照實施例1當中所述的方式來進行D-乳酸含量的分析以及D-乳酸產率的計算。B、 不同通氣條件對於高蛋白假絲酵母菌轉形株 D813 發酵產 D- 乳酸 的影響 After that, the obtained fermentation cultures of each group were analyzed with reference to the method described in Example 1 for the analysis of the D-lactic acid content and the calculation of the D-lactic acid yield. B, effect of different aeration conditions protein Transformation Candida strains D813 D- lactic acid fermentation
首先,將依據上面實施例1的第G項所得到的高蛋白假絲酵母菌轉形株D813的培養物分成3個實驗組(亦即實驗組4至6)。接著,依照上面第A項當中所述的方式來進行發酵反應、D-乳酸含量的分析以及D-乳酸產率的計算,不同之處在於:各組發酵培養基皆被添加以45 g/L CaCO3 ,以及實驗組4至6分別是在0.5、0.75以及1 vvm的通氣量下進行發酵。C、 不同溫度條件對於高蛋白假絲酵母菌轉形株 D813 發酵產 D- 乳酸的影響 First, the culture of the transformed strain D813 of Candida high protein obtained according to item G of Example 1 above was divided into 3 experimental groups (ie, experimental groups 4 to 6). Then, the fermentation reaction, the analysis of D-lactic acid content, and the calculation of D-lactic acid yield were carried out in accordance with the method described in item A above. The difference is that each group of fermentation medium was added with 45 g/L CaCO 3 , and experimental groups 4 to 6 were fermented at 0.5, 0.75 and 1 vvm ventilation respectively. C. The effect of different temperature conditions on the fermentation of high-protein Candida strain D813 to produce D- lactic acid
首先,將依據上面實施例1的第G項所得到的高蛋白假絲酵母菌轉形株D813的培養物分成2個實驗組(亦即實驗組7與8)。接著,依照上面第A項當中所述的方式來進行發酵反應、D-乳酸含量的分析以及D-乳酸產率的計算,不同之處在於:各組發酵培養基的110 g/L葡萄糖被替換為100 g/L蔗糖,並且皆被添加以45 g/L CaCO3 ,以及實驗組7與8分別是在30℃與35℃的溫度下進行發酵。 結果: A、 使用不同中和劑來調控 pH 值對於高蛋白假絲酵母菌轉形株 D813 發酵產 D- 乳酸的影響: First, the culture of the transformed strain D813 of Candida high protein obtained according to item G of Example 1 above was divided into two experimental groups (ie, experimental groups 7 and 8). Then, the fermentation reaction, the analysis of D-lactic acid content and the calculation of D-lactic acid yield were carried out in accordance with the method described in item A above. The difference is that the 110 g/L glucose of each group of fermentation medium was replaced with 100 g/L sucrose was added with 45 g/L CaCO 3 , and experimental groups 7 and 8 were fermented at 30°C and 35°C, respectively. Results: A. The effect of using different neutralizers to adjust the pH value on the fermentation production of D- lactic acid by the transformed strain of Candida high protein strain D813:
本實驗所測得的結果被顯示於表10中。從表10可見,在高蛋白假絲酵母菌轉形株D813發酵產D-乳酸的期間,分別使用CaCO3
、NH4
OH以及NaOH來調整pH值所得到的D-乳酸產率皆能夠達至85%以上,至於未使用中和劑所得到的D-乳酸產率則僅有57.09%。這個實驗結果顯示,在存在有中和劑的發酵條件下皆能夠有效地提升發酵製程的D-乳酸產率,其中以CaCO3
的效果最佳。
表10. 各組所測得的D-乳酸產率
本實驗所測得的結果被顯示於表11中。從表11可見,在0.5、0.75以及1 vvm的通氣量下進行高蛋白假絲酵母菌轉形株D813發酵產D-乳酸所得到的D-乳酸產率皆能夠達至92%以上。這個實驗結果顯示,在0.5至1 vvm的通氣量下皆能夠有效地提升發酵製程的D-乳酸產率,其中以1 vvm的通氣量的效果最佳。
表11. 各組所測得的D-乳酸產率
本實驗所測得的結果被顯示於12中。從表12可見,在30℃與35℃的溫度下進行高蛋白假絲酵母菌轉形株D813發酵產D-乳酸所得到的D-乳酸產率皆能夠達至86%以上。這個實驗結果顯示,在30℃至35℃的溫度下皆能夠有效地提升發酵製程的D-乳酸產率,其中以35℃的溫度的效果最佳。
表12. 各組所測得的D-乳酸產率
基於上述的實驗結果,申請人認為:在一為35℃的溫度以及一為1 vvm的通氣量的發酵條件下,使用CaCO3 來調控發酵期間的發酵培養基的pH值,在高蛋白假絲酵母菌轉形株D813發酵產D-乳酸上能夠得到最佳的D-乳酸產率。 Based on the above experimental results, the applicant believes that the use of CaCO 3 to regulate the pH value of the fermentation medium during fermentation under a fermentation condition of a temperature of 35°C and an aeration of 1 vvm. The best D-lactic acid yield can be obtained on the fermentation of the transformed strain D813 to produce D-lactic acid.
於本說明書中被引述之所有專利和文獻以其整體被併入本案作為參考資料。若有所衝突時,本案詳細說明(包含界定在內)將佔上風。All patents and documents cited in this specification are incorporated into this case as reference materials in their entirety. If there is a conflict, the detailed description of the case (including definitions) will prevail.
雖然本發明已參考上述特定的具體例被描述,明顯地在不背離本發明之範圍和精神之下可作出很多的修改和變化。因此意欲的是,本發明僅受如隨文檢附之申請專利範圍所示者之限制。Although the present invention has been described with reference to the above specific specific examples, it is obvious that many modifications and changes can be made without departing from the scope and spirit of the present invention. Therefore, it is intended that the present invention is only limited by the scope of the patent application attached hereto.
本發明的上述以及其它目的、特徵與優點,在參照以下的詳細說明與較佳實施例和隨文檢附的圖式後,將變得明顯,其中: 圖1是帶有d-ldh 基因的同源重組片段的一架構圖。The above and other objectives, features and advantages of the present invention will become apparent with reference to the following detailed description and preferred embodiments and the attached drawings, in which: Figure 1 is a d-ldh gene A structural diagram of the homologous recombination fragment.
TW中華民國;食品工業發展研究所生物資源保存及研究中心(BCRC of FIRDI);2019/04/22;BCRC 920114。TW Republic of China; Bioresource Conservation and Research Center of Food Industry Development Institute (BCRC of FIRDI); 2019/04/22; BCRC 920114.
CN中國大陸;中國典型培養物保藏中心(CCTCC);2019/06/05;CCTCC M 2019431。CN Mainland China; China Center for Type Culture Collection (CCTCC); 2019/06/05; CCTCC M 2019431.
Claims (6)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108129823A TWI730383B (en) | 2019-08-21 | 2019-08-21 | Recombinant strain of candida spp., and the preparation process and uses thereof |
CN201910966090.2A CN112410233B (en) | 2019-08-21 | 2019-10-12 | Recombinant candida strain and preparation method and application thereof |
US16/745,983 US11667923B2 (en) | 2019-08-21 | 2020-01-17 | Recombinant Candida cell and preparation process and use thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108129823A TWI730383B (en) | 2019-08-21 | 2019-08-21 | Recombinant strain of candida spp., and the preparation process and uses thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202108755A TW202108755A (en) | 2021-03-01 |
TWI730383B true TWI730383B (en) | 2021-06-11 |
Family
ID=74646835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108129823A TWI730383B (en) | 2019-08-21 | 2019-08-21 | Recombinant strain of candida spp., and the preparation process and uses thereof |
Country Status (3)
Country | Link |
---|---|
US (1) | US11667923B2 (en) |
CN (1) | CN112410233B (en) |
TW (1) | TWI730383B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120058529A1 (en) * | 2008-08-25 | 2012-03-08 | Kirin Holdings Kabushiki Kaisha | Method for highly efficient production of lactic acid using candida utilis |
CN109715783A (en) * | 2016-04-18 | 2019-05-03 | 隐花果乳酸有限责任公司 | Method for producing lactic acid |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7141410B2 (en) * | 2000-11-22 | 2006-11-28 | Natureworks Llc | Methods and materials for the production of organic products in cells of Candida species |
EP1513940A4 (en) * | 2002-05-30 | 2006-10-25 | Cargill Dow Llc | Methods and materials for the production of lactic acid in yeast |
CN101886048B (en) * | 2010-07-21 | 2012-05-30 | 江南大学 | Lactic acid-producing engineering bacteria, constructing method thereof and application thereof |
KR101704212B1 (en) * | 2015-06-12 | 2017-02-08 | 씨제이제일제당 (주) | A microorganism producing lactic acid and method for producing lactic acid using the same |
CN107916235B (en) * | 2017-11-15 | 2020-12-18 | 天津大学 | Recombinant yeast strain and microorganism mixed strain electricity generation method |
-
2019
- 2019-08-21 TW TW108129823A patent/TWI730383B/en active
- 2019-10-12 CN CN201910966090.2A patent/CN112410233B/en active Active
-
2020
- 2020-01-17 US US16/745,983 patent/US11667923B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120058529A1 (en) * | 2008-08-25 | 2012-03-08 | Kirin Holdings Kabushiki Kaisha | Method for highly efficient production of lactic acid using candida utilis |
CN109715783A (en) * | 2016-04-18 | 2019-05-03 | 隐花果乳酸有限责任公司 | Method for producing lactic acid |
Non-Patent Citations (3)
Title |
---|
Ozaki et al.,"Metabolic engineering of Schizosaccharomyces pombe via CRISPR-Cas9 genome editing for lactic acid production from glucose and cellobiose" Metabolic Engineering Communications 5 (2017) 60–67 |
Ozaki et al.,"Metabolic engineering of Schizosaccharomyces pombe via CRISPR-Cas9 genome editing for lactic acid production from glucose and cellobiose" Metabolic Engineering Communications 5 (2017) 60–67 Stovicek et al., "CRISPR/Cas system for yeast genome engineering: advances and applications" FEMS Yeast Research, 17, 2017 * |
Stovicek et al., "CRISPR/Cas system for yeast genome engineering: advances and applications" FEMS Yeast Research, 17, 2017 |
Also Published As
Publication number | Publication date |
---|---|
CN112410233A (en) | 2021-02-26 |
TW202108755A (en) | 2021-03-01 |
US20210054387A1 (en) | 2021-02-25 |
CN112410233B (en) | 2021-11-02 |
US11667923B2 (en) | 2023-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sun et al. | Metabolic engineering of an acid-tolerant yeast strain Pichia kudriavzevii for itaconic acid production | |
CN1238490C (en) | Stable recombinant yeasts for fermenting xylose to ethanol | |
CN101287824A (en) | Genetically modified yeast of the species issatchenkia orientalis and closely related species and fermentation processes using same | |
EP2281881B1 (en) | Yeast mutant and substance production method using the same | |
KR102281701B1 (en) | Method for producing acetoin | |
CN107709540A (en) | Novel warehouse Delhi A Ziweishi Pichia pastoris strains NG7 and application thereof | |
AU2016361425B2 (en) | Genetically modified yeasts and fermentation processes using genetically modified yeasts | |
US8198089B2 (en) | Flocculent yeast and method for production thereof | |
CN101356273A (en) | Global transcription machinery engineering | |
EP4257681A1 (en) | Recombinant bacterium with a high pha yield and the construction method thereof | |
CN110804561B (en) | Saccharomyces cerevisiae with high yield of C6-C10 ethyl ester and construction method and application thereof | |
WO2005085415A1 (en) | Novel transformant and process for producing polyester by using the same | |
CN108913610A (en) | The building and application of the engineered strain of xylitol are generated using glucose and xylose altogether | |
TW201437367A (en) | Yeast strain for lactic acid production by using pentose and hexose | |
TWI730383B (en) | Recombinant strain of candida spp., and the preparation process and uses thereof | |
US20210309982A1 (en) | Materials and methods for creating strains of saccharomyces cerevisiae that exhibit an increased ability to ferment oligosaccharides into ethanol | |
JP2010136627A (en) | Method for making yeast to utilize galactose | |
Stewart et al. | Current developments in the genetic manipulation of brewing yeast strains—A review | |
US7393669B2 (en) | Metabolically engineered micro-organisms having improved galactose uptake | |
JP7452900B2 (en) | Yeast with improved lactic acid tolerance and its use | |
CN112538451B (en) | Clostridium beijerinckii for producing butyl acetate by over-expressing ATF gene | |
KR101383829B1 (en) | Mutant Strains for Producing 2,3-butanediol | |
CN116478893A (en) | Construction and application of engineering probiotics for producing propionic acid | |
KR0140306B1 (en) | Mutated yeast strain with a weakened cell wall caused by the inagivation of knr gene and process of protein | |
CN118599744A (en) | Halophilic microorganism for producing PHA by using crude glycerol and application thereof |