WO2005085415A1 - Novel transformant and process for producing polyester by using the same - Google Patents

Novel transformant and process for producing polyester by using the same Download PDF

Info

Publication number
WO2005085415A1
WO2005085415A1 PCT/JP2005/003589 JP2005003589W WO2005085415A1 WO 2005085415 A1 WO2005085415 A1 WO 2005085415A1 JP 2005003589 W JP2005003589 W JP 2005003589W WO 2005085415 A1 WO2005085415 A1 WO 2005085415A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
yeast
disrupted
dna
ura3
Prior art date
Application number
PCT/JP2005/003589
Other languages
French (fr)
Japanese (ja)
Inventor
Yuji Okubo
Keiji Matsumoto
Masamichi Takagi
Akinori Ohta
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to US10/591,248 priority Critical patent/US20080233620A1/en
Priority to EP05719893A priority patent/EP1726637A4/en
Priority to JP2006510712A priority patent/JPWO2005085415A1/en
Publication of WO2005085415A1 publication Critical patent/WO2005085415A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1096Transferases (2.) transferring nitrogenous groups (2.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • C12P7/625Polyesters of hydroxy carboxylic acids

Definitions

  • the present invention relates to a gene-disrupted strain in which a specific chromosomal DNA of yeast is disrupted by the principle of homologous recombination. It also relates to the production of industrially useful substances using the disrupted strain.
  • the present invention relates to a gene required for enzymatically synthesizing the copolyester, a microorganism for fermenting and synthesizing the polyester using the gene, and a method for producing a polyester using the microorganism. Furthermore, the present invention relates to a method for breeding the microorganism.
  • yeasts can be cultured at a higher cell density than bacteria, which generally grow faster. Furthermore, yeast is easier to separate bacterial cells and culture liquid than bacteria, so that the process of extracting and purifying the product can be simplified. By virtue of these properties, yeast has been used as a host for producing useful products from recombinant DNA, and its usefulness has been demonstrated.
  • Candida yeast differs from Saccharomyces in that it does not produce ethanol in aerobic culture and does not inhibit growth due to it, so continuous culture at high density is possible. Thus, efficient cell production and substance production are possible.
  • the spore-free yeast Candida maltosa has a carbon chain C
  • 6-C straight chain hydrocarbons palm oil, coconut oil 40
  • Non-Patent Document 1 It has the property of assimilating and growing fats and oils as the only carbon source! Since this property is practically advantageous as a place for producing useful substances or converting by converting hydrophobic substances, it is expected to be used for production of various compounds (see Non-Patent Document 1). .
  • Candida's maltosa can be used for production of useful substances by genetic recombination by virtue of its properties, and gene expression systems for this purpose have been vigorously developed (Patent Document 1, 2).
  • Patent Document 3 Recently, it has been disclosed that Candida maltosa can be used for producing linear dicarboxylic acids by genetic recombination (see Patent Document 3) and biodegradable plastics (see Patent Document 4).
  • yeast When yeast is used as a host for substance production by genetic recombination, a selection marker (selection symbol) that can confirm that the target gene has been introduced is used, as in the case of using E. coli or the like.
  • a gene that imparts resistance such as cycloheximide ⁇ G418 or hygromycin B, is used as a selectable marker gene that imparts drug resistance.
  • cycloheximide ⁇ G418 or hygromycin B is used as a selectable marker gene that imparts drug resistance.
  • there are known problems such as the fact that bacteria that do not carry the target gene may grow slightly because there is no sharp drug for yeast, and that the degree of drug resistance gradually increases. I have.
  • the degree of drug resistance differs for each yeast strain, and the amount of expression of the drug resistance gene required for conferring drug resistance in yeast differs.
  • a promoter for expressing the drug resistance gene must be appropriately selected or prepared.
  • Candida's maltosa has a strong initial resistance to cycloheximide (see Non-Patent Document 3), and the degree of resistance to various drugs as described above is not known.
  • some yeast species, such as Candida maltosa are known to codon translation in a manner that is different from the general format of E. coli and humans. Reference 4). That is, there is a high possibility that the drug resistance gene cannot be used directly.
  • an appropriate auxotrophic selection marker is preferably used.
  • an auxotrophic selection marker it is necessary to obtain a mutant to which auxotrophy has been added.
  • a mutant strain has been obtained from auxotrophic rice cake by random mutagenesis using a mutagen such as nitrosoguanidine or ethyl methanesulfonic acid.
  • a mutagen such as nitrosoguanidine or ethyl methanesulfonic acid.
  • the target auxotroph can be obtained by this mutagenesis method, it cannot be denied that the mutation may be present at a site other than the target site. As described above, this is an obstacle to development using yeast as a host, and it can be said that utilization as a place for producing substances is delayed compared to E. coli and the like.
  • Another problem of the mutant strain obtained by random mutation is the natural return of the mutation site.
  • the productivity of the recombinant bacterium may decrease.
  • the reverted strain has a problem in terms of safety standards that have a high possibility of surviving and multiplying when it flows out into the natural world. Therefore, it is not appropriate to use a strain obtained by random mutagenesis as a place for producing a substance. Therefore, it is desired to obtain a disrupted strain in which only genes involved in the synthesis of specific amino acids, vitamins, and the like have been disrupted, and AC16 has been added as an auxotrophic candy by disrupting only the ADE1 gene.
  • a strain was produced (see Patent Document 5). However, this strain has a problem in that the gene that can be introduced is limited due to the single marker.
  • Methods for introducing a gene into yeast include a method using a plasmid vector and a method for incorporating the gene into a chromosomal gene.
  • Plasmid vectors which are genes capable of autonomous replication in yeast cells, are classified into two types: a type that has about one copy in one cell (YCp type) and a type that can have multiple copies (YRp type). Is being developed. Use of the latter plasmid vector Power that is considered to be advantageous for increasing the expression level of the target gene product In general, there are many problems with the stability of the plasmid vector, which is an industrial advantage In many cases, it cannot be used. In such a case, a promoter for expressing the target gene using YCp type It is considered to make one more powerful or to increase the number (copy number) of genes to be introduced.
  • Candida maltosa As described above, as mutants of Candida maltosa, gene mutations such as ADE1 gene, histidinol phosphate aminotransferase (HIS5 gene), orotidine 5, -phosphate decarboxylace (URA3 gene), etc. Many strains have been acquired (see Non-Patent Document 1). However, it was difficult to obtain Candida's maltosa to which multiple auxotrophy was added by specifically disrupting only a specific gene because the yeast showed a partial diploid. For this reason, in order to utilize the characteristics of yeast and to construct an industrially useful substance production system by gene recombination, it has been desired to develop a host having a plurality of selectable markers by gene disruption. Further, not only Candida maltosa but also such a gene-disrupted strain is desired.
  • Candida maltosa which has multiple selectable markers, produces industrially useful substances by utilizing the characteristics of assimilating and growing straight-chain hydrocarbons, palm oil, palm oil, and other fats and oils as the sole carbon source. Is expected.
  • PHA polyhydroxyalkanoic acid
  • 3HB 3-hydroxybutyric acid
  • P (3HB) poly-3-hydroxybutyric acid
  • Non-Patent Document 5 P (3HB) is a thermoplastic polymer, which has been attracting attention as an environmentally friendly plastic because it is biodegradable in the natural environment.
  • P (3HB) has high crystallinity and is hard and brittle, so its practical application is limited. For this reason, research has been conducted to improve this property.
  • P (3HB-CO-3HV) t a copolymer composed of 3-hydroxybutyric acid (3HB) and 3-hydroxyvaleric acid (hereinafter abbreviated as 3HV)
  • 3HV 3-hydroxyvaleric acid
  • Patent Documents 6, 7 This P (3HB-co-3HV) is considered to be applicable to a wide range of applications because it is more flexible than P (3HB).
  • P (3HB—co—3H V) actually increased the 3HV mole fraction!
  • the change in physical properties is not so good, and the flexibility is not improved as much as required especially for films, etc., so it is used in the field of rigid molded products such as shampoo bottles and disposable razor handles. It was not used.
  • P (3HB-CO-3HH) t a two-component copolymer polyester (hereinafter, referred to as P (3HB-CO-3HH) t) of 3HB and 3-hydroxyhexanoic acid (hereinafter, abbreviated as 3HH) and a method for producing the same have been described.
  • the method for producing P (3HB-co-3HH) in these patent documents is a method for fermentative production of oils and fats such as fatty acids such as oleic acid by using aeromonas caviae isolated from soil. Met.
  • studies have been made on the properties of P (3HB-co-3HH) (see Non-Patent Document 6). In this report, A.
  • caviae is cultured using fatty acids having 12 or more carbon atoms as the sole carbon source, and 3HH fermentatively produces 11 to 119 mol% of P (3HB-co-3HH).
  • P (3HB—CO-3HH) increases in mole fraction of 3HH, P (3HB) changes from hard and brittle properties to soft properties in turn, and P (3HB-CO-3HV) It was evident to show greater flexibility.
  • the bacterial mass was 4 gZL
  • the polymer content was 30%
  • the polymer productivity was low. Therefore, a method that could further increase the productivity for practical use was searched.
  • PHA synthase A polyhydroxyalkanoic acid synthase (hereinafter abbreviated as PHA synthase) gene has been cloned from Aeromonas' caviae, which produces P (3HB-co-3HH) ( See Patent Document 10 and Non-Patent Document 7). This gene was transformed into Ralstonia eutropha (formerly Alcaligenes eutrophus) and cultured using vegetable oil as a carbon source.As a result, the bacterial cell content was 4 g / L and the polymer content was 80%. Achieved (see Non-Patent Document 8). Also disclosed is a method for producing P (3HB-co-3HH) using a bacterium such as Escherichia coli or a plant as a host. The productivity is not described (for example, see Patent Document 11).
  • the above polyester P (3HB-CO-3HH) has a wide range of properties from a hard polymer to a soft polymer by changing the mole fraction of 3HH, and thus requires hardness like a TV housing. It is expected to be applied to a wide range of fields, from those that require flexibility such as yarns and films.
  • the productivity of P (3HB-co-3HH) is still low with the above-mentioned production method, and it is still insufficient as a production method for the practical use of P (3HB-co-3HH). I have to know.
  • Non-Patent Document 11 Under the pressure, these polymers were ⁇ (3 ⁇ ) with hard and brittle properties.
  • yeast Pichia Pastoris (Pichia Pastoris) with peromokinome, pseudomona Studies have been conducted on the orientation expression of a PHA synthase gene derived from Pseudomonas aeruginosa and production of polyester using oleic acid as a carbon source. This study shows that it accumulates 1% by weight of polymer per dry cell (see Non-Patent Document 12). However, this level of polymer productivity is completely inadequate for industrial production.
  • Yeasts are known to grow quickly and have high cell productivity.
  • yeast belonging to the genus Candida has attracted attention as a single cell protein in the past, and production of feed cells using normal paraffin as a carbon source has been studied.
  • a host vector system of the genus Candida has been developed, and production of a substance using gene recombination technology has been reported (see Non-Patent Document 13).
  • the productivity of ⁇ -amylase using Candida utilis as a host is as high as about 12.3 gZL.
  • the genus Candida which has such a high ability to produce substances, is expected as a host for polymer production. You.
  • the separation of bacterial cells and culture solution is easier than that of bacteria, it is possible to further simplify the process of polymer extraction and purification.
  • Vectors which are genes capable of autonomous replication in yeast cells, are classified into two types: a type in which about one copy exists in one cell (YCp type) and a type in which multiple copies can exist in one cell (YRp type). Is being developed.
  • YCp type a type in which about one copy exists in one cell
  • YRp type a type in which multiple copies can exist in one cell
  • TRA transformation-causing region
  • CEN centromeric sequence
  • TRA high-copy vector excluding the stable and low-copy vector having the entire TRA region and the CEN region where high expression of the transgene can be expected.
  • Several vectors have been developed (see Non-Patent Document 15). However, high copy vectors such as Candida's maltosa have stability problems. And cannot be used industrially advantageously. Therefore, using high copy number vectors
  • PGK phosphodalicerate kinase
  • Candida maltosa produces high levels of n-alkane oxidation enzymes in the presence of alkanes.
  • ALK cytochrome P450
  • these promoters also have lower activity compared to PGK and GAL promoters.
  • promoters such as the actin synthase 1 gene (hereinafter, abbreviated as ACT1) that is constitutively expressed do not have sufficient strength for activity.
  • a fatty acid or fatty acid or n-alkane suitable for the production of P (3HB-CO-3HH) is used as the carbon source, at present, there are multiple ARR (alkane responsible Region) sequences upstream of the ALK2 promoter.
  • ARR alkane responsible Region
  • No promoter has been developed that is more powerful than the ARR promoter (see Non-Patent Document 18) whose promoter activity has been improved by the addition thereof. Therefore, a method for increasing the amount of intracellular expression of an enzyme gene involved in PHA synthesis has been developed. It is not practical to use a strong promoter.
  • Non-Patent Document 19 a method for increasing the activity of a target enzyme by amplifying a gene has been reported (see Non-Patent Document 19).
  • a cycloheximide-resistant gene and a target gene are linked and introduced into a cycloheximide-sensitive yeast to obtain a high-concentration cycloheximide-resistant strain, thereby obtaining a strain with high expression of the target gene.
  • Candida maltosa is known to be resistant to cycloheximide, and such gene amplification using cycloheximide-resistant genes allows the transfer of enzymes involved in PHA synthesis. It is difficult to increase the amount of expression in the bacterial cells of the offspring.
  • the molecular weight of the polyester greatly affects the physical properties and the curability.
  • PHA in the production of PHA in microorganisms, it is known that if the number of enzyme molecules per cell is excessively increased, a substrate-limited state is reached, and the molecular weight of the produced polymer decreases (see Non-Patent Documents 20 and 21). Therefore, it has been desired to develop a method for controlling the molecular weight of the polyester produced in the cells.
  • the monomer composition greatly affects the physical properties and processability. Therefore, development of a method for controlling the monomer composition of the copolymerized polyester has been desired.
  • Candida maltosa having one type of genetic marker and improved in growth rate has also been developed (see Patent Document 5). It is considered difficult to add multiple gene markers while maintaining the growth rate of this strain while maintaining the same growth rate as that of the wild type strain, because the yeast has a diploid genome. Was done.
  • Patent Document 1 JP-A-62-74287
  • Patent Document 2 JP-A-62-74288
  • Patent Document 3 International Publication No. 99Z04014 pamphlet
  • Patent Document 4 International Publication No.01Z88144 pamphlet
  • Patent Document 5 JP-A-2002-209574
  • Patent Document 6 JP-A-57-150393
  • Patent Document 7 JP-A-59-220192
  • Patent Document 8 JP-A-5-93049
  • Patent Document 9 JP-A-7-265065
  • Patent Document 10 JP-A-10-108682
  • Patent Document 11 WO00Z43523 pamphlet
  • Non-Patent Document 1 Non-Conventional Yeasts in Biotechnology.A edited by Wolf K.
  • Non-Patent Document 2 Kawai S. et al., Agric. Biol. Chem., 55: 59-65 (1991)
  • Non-Patent Document 3 Takagi et al., J. Gen. Appl. Microbiol., 31: 267-275 (1985)
  • Non-Patent Document 4 Ohama T. et al., Nucleic Acid Res., 21: 40394045 (1993)
  • Non-Patent Document 5 M. Lemoigne, Ann.Inst. Pasteur, 39, 144 (1925)
  • Non-Patent Document 6 Y. Doi, S. Kitamura, H. Abe, Macromolecules, 28, 4822-4823 (1995)
  • Non-Patent Document 7 T. Fukui, Y. Doi, J. Bacteriol, vol. 179, No. 15, 4821-4830 (1997)
  • Non-patent document 8 T. Fukui et al., Appl. Microbiol. Biotecnol. 49, 333 (1998)
  • Non-patent document 9 Microbiology, vol. 142, ppl 169—1180 (1996)
  • Non-Patent Document 10 Poirier Y. et al., Appl. Microbiol. Biotecnol. 67, 5254-5260 (2001)
  • Non-patent literature ll Breuer U. et al., Macromol. Biossci., 2, pp380-386 (2002)
  • Non-patent literature 12 Poirier Y. et al., FEMS Microbiology Lett., Vol. 207, pp97-102 (2002)
  • Patent Document 13 Danigaku and Biology, vol. 38, No9, 614 (2000)
  • Non-Patent Document 14 M. Kawamura, et al., Gene, vol. 24, 157, (1983)
  • Non-Patent Document 15 M. Ohkuma, et al., Mol.Gen. Genet., Vol. 249, 447, (19
  • Non-Patent Document 16 S. M. Park, et al., Yeast, vol. 13, 21 (1997)
  • Non-Patent Document 17 M. Ohokuma, et al., DNA and Cell Biology, vol. 14, 16
  • Non-Patent Document 18 Kogure, 2002 Abstracts of Japanese Society of Agricultural Chemistry, pl91
  • Non-Patent Document 19 K. Kondo, et al., Nat.Biotechnol., Vol. 15, pp 453-457 (
  • Non-Patent Document 20 Sim S.J. et al., Nature Biotechnology, vol. 15, pp63-67 (1997).
  • Non-Patent Document 21 Gerngross T.U., Martin D.P., Proc.Natl.Acad.Sci.U SA, vol. 92, pp6279-6283 (1995)
  • the present invention has been made in view of the above-mentioned current situation, and it is possible to introduce a large number of various genes by constructing a multiple auxotrophic gene-disrupted strain in yeast, particularly in the genus Candida, and to efficiently produce a useful substance.
  • the present invention also provides a transformant obtained by transforming a plurality of expression cassettes of genes involved in PHA synthesis into an enzyme, and By culturing the transformed transformant, a polyester such as P (3HB-CO-3HH) having biodegradability and excellent physical properties can be produced.
  • the present invention also provides a method for breeding the microorganism. Means for solving the problem
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by making full use of genetic recombination techniques, the yeast phosphoribosylaminoimidazole-succinocarboxamide synthase (EC6 3.2.6) DNA encoding (ADE1 gene), DNA encoding histidinol-phosphate aminotransferase (EC 2.6.1.9) (HIS 5 gene), and orotidine 5, monophosphate decarboxylate Production of ADE1, HIS5 and URA3 gene disrupted strains by homologous recombination with chromosomal DNA using the DNA (URA3 gene) fragment encoding the race (EC 4.1.1.23) And succeeded in obtaining a gene-disrupted yeast requiring adenine, histidine and peracil.
  • the growth ability of the gene-disrupted yeast was compared to AC16 of the ADE1 gene-disrupted strain of Candida maltosa, and it was found that the growth ability was superior to that of CHA1 of the ADE1 gene-mutated strain by mutation treatment of Candida maltosa.
  • the present inventors have completed the present invention by showing that they are equivalent to the clarified AC16 strain.
  • the present inventors have also conducted intensive studies to solve the above-mentioned problems.
  • the gene recombination technique was used to obtain polyhydroxyalkanoate synthase gene (hereinafter abbreviated as phaC) and acetoacetyl CoA.
  • Transformants were prepared by introducing a plurality of reductase genes (EC 1. 1. 1. 36) (hereinafter abbreviated as phbB) into gene-disrupted strains of Candida maltosa.
  • 3HH 3-hydroxybutyrate
  • 3HH 3-hydroxyhexanoate
  • the first present invention relates to a yeast in which the URA3 gene of chromosomal DNA has been disrupted by homologous recombination with a URA3 DNA fragment; the HIS5 gene of chromosomal DNA has been homologously recombined with a HIS5 DNA fragment.
  • the present invention relates to a yeast in which both the ADE1 gene and the URA3 gene have been disrupted; a yeast in which both the ADE1 gene and the HIS5 gene have been disrupted; a yeast in which both the URA3 gene and the HIS5 gene have been disrupted; and the ADE1 gene and the URA3 gene. It relates to yeast in which the HIS5 gene has been disrupted.
  • the present invention relates to a transformant of the above-described gene-disrupted yeast transformed with a DNA sequence containing a homologous or heterologous gene.
  • the present invention provides a method for producing an industrially useful substance by obtaining a transformant in which a plurality of heterologous gene expression systems have been introduced into the gene-disrupted strain.
  • a transformant in which a plurality of heterologous gene expression systems have been introduced into the gene-disrupted strain.
  • 3HB 3-hydroxybutyrate
  • 3HB 3-hydroxyhexanoate
  • 3HB 3-hydroxyhexanoate
  • P (3HB-CO-3HH) a polyhydroxyalkanoic acid synthase gene which is an enzyme that synthesizes a two-component copolymerized polyester (hereinafter abbreviated as P (3HB-CO-3HH)).
  • P (3HB-co-3HH) can be efficiently produced using the transformant into which acetoacetyl CoA reductase gene (EC1.1.1.36) (hereinafter abbreviated as phbB) is preferably introduced.
  • phbB acetoacetyl CoA reductase gene
  • the present invention is not only a method for producing a gene expression product (especially, polyester) using a gene-disrupted yeast, but also a method for producing a polyester using a transformant into which a plurality of genes involved in polyester biosynthesis have been introduced. Further, the present invention is also a method for producing a polyester, wherein the polyester is collected from a culture obtained by culturing the above transformant.
  • the present invention is a method for producing a polyester in which the physical properties of the produced polyester are controlled.
  • the present invention also relates to a method for efficiently recovering a selection marker used for gene transfer.
  • the second present invention is a yeast transformant into which a polyhydroxyalkanoic acid synthase gene and an acetoacetyl CoA reductase gene have been introduced.
  • This is a yeast transformant characterized in that two or more copies have been introduced.
  • the present invention also relates to a method for producing a polyester using the yeast transformant, wherein the polyester is collected from a culture obtained by culturing the yeast transformant. is there.
  • the present invention is also a method for controlling the molecular weight of the polyester by controlling the number of acetoacetyl CoA reductase genes in the yeast transformant in the production of polyester using the yeast transformant.
  • the present invention is also a method for controlling the number of polyhydroxyalkanoic acid synthase genes in a yeast transformant in the production of a polyester using the yeast transformant, thereby controlling the hydroxyalkanoic acid composition of the polyester. .
  • the present invention also provides a method for recovering a selectable marker, which comprises removing the selectable marker gene by performing intramolecular homologous recombination with Candida maltosa having the selectable marker gene.
  • examples of the gene-disrupted yeast of the present invention include the following.
  • Adenine and peracil-requiring gene-disrupted yeast in which the A DEI gene and URA3 gene of chromosome DNA have been disrupted by homologous recombination with the ADE1 DNA fragment and URA3 DNA fragment;
  • Adenine- and histidine-requiring gene-disrupted yeast in which the ADEI gene and the HIS5 gene of chromosome DNA have been disrupted by homologous recombination with the ADE1 DNA fragment and the HIS5 DNA fragment;
  • a URA3 and histidine-requiring gene-disrupted yeast in which the URA3 gene and the HIS5 gene of chromosomal DNA have been disrupted by homologous recombination with the URA3 DNA fragment and the HIS5 DNA fragment;
  • yeast that disrupts the ADE1, URA3, and HIS5 genes by homologous recombination yeast that has been deposited with a strain depository (eg, IFO, ATCC, etc.) is used without any particular limitation. Can be.
  • a strain depository eg, IFO, ATCC, etc.
  • hydrophobic substances such as linear hydrocarbons
  • the genus Candida the genus Clavispora
  • the varieties of Calispora are used.
  • Genus Cryptococcus Genus Denoyomyces (Genus Debaryomyces), Genus Roderomyces (Genus Lodderomyces), Genus Metschnikowia (Genus Metschnikowia), Genus Pichia (Genus Pic hia), Genus Rhodosporidium (Genus Rhodosporidium) ), Yeasts of the genus Rhodotorula, genus Sporidiobolus, genus Stephanoascus (genus Stephanoascus) and genus Yarrowia can be used.
  • the genus Candida is more preferable, in particular, since the analysis of the chromosomal gene sequence has been advanced, a host-vector system can be used, and the ability to assimilate linear hydrocarbons and oils and fats is high.
  • Candida Among the genus Candida, albi cans3 ⁇ 4, ancuaensis3 ⁇ 4 ⁇ atmospnaenca, azyma, bertae, blankii3 ⁇ 4, butyri, conglobata, dendronema Species, ergastensis, fluviatilis, friearich 11, gropengiesseri, haemulonu, incommunis, insectrum, laureli, maltosa ⁇ a ⁇ melibiosica, membmnifaciens, me s enteric a3 ⁇ 4 ⁇ natal ensis, oregonolea, palmiole Species, parapsilosis, psudo intermedia ia, quercitrusa, rhagu ⁇ a, rugosa, saitoana, saketan, schatavii, seq uanensis ⁇ a ⁇ shehatae®, sorbophil
  • maltosa is particularly preferred because of its high growth rate when a straight-chain hydrocarbon is used as a carbon source and high safety, unlike albicans.
  • Candida's maltosa can be used as a preferred example of yeast.
  • the Candida 'Maltosa AC16 strain which is the ADE1 gene disrupting yeast used in the present invention, has the accession number of FERM BP-7366, and, as of November 15, 2000, 1-1 1-1 Tsukuba East, Ibaraki, Japan 1 It has been internationally deposited at the Patent Organism Depositary of the National Institute of Advanced Industrial Science and Technology (AIST) in the Central No. 6 based on the Budapest Treaty.
  • Candida maltosa U-35 strain a URA3 gene disrupting yeast (Accession No. FERM P-19435, deposited on July 18, 2003), HIS 5 gene disrupting yeast Candida maltosa CH-I strain (Accession No. FERM P 19434, deposited on July 18, 2003),
  • Candida maltosa UA-354 strain accesion No. FERM P-19436, deposited on July 18, 2003
  • Candida maltosa HU-591 strain which is a HIS5 and URA3 gene disrupting yeast (Accession number: FERM P-19545, deposited: October 1, 2003),
  • homologous recombination refers to recombination that occurs in a portion where the base sequence of DNA is similar or has the same sequence (homologous sequence).
  • Gene disruption refers to mutation of the base sequence of a gene, insertion of another DNA, or deletion of a portion of the gene so that the function of the gene cannot be performed.
  • the gene cannot be transcribed into mRNA, and the structural gene is not translated, or the transcribed mRNA is incomplete, resulting in mutation or deletion in the amino acid sequence of the translated structural protein. The function of is impossible.
  • the ADE1 gene refers to a 5 'untranslated region including a promoter region, a region encoding phosphoribosylaminoimidazo-l-succinocarboxamide synthase (EC 6.3.3.2.6), and a terminator region. The gene fragment containing the 3 'untranslated region is shown.
  • GenBank GenBank: D00855.
  • the URA3 gene refers to a 5, untranslated region including a promoter region, a region encoding orotidine 5, -phosphate decarboxylace (EC 4.1.1.23), and a non-translated region including one terminator. 1 shows a gene fragment consisting of a region.
  • Candida Maltosa The nucleotide sequence of the URA3 gene has been published in GenBank: D12720.
  • the HIS5 gene includes a 5 'untranslated region including a promoter region, a region encoding histidinol-phosphate aminotransferase (EC 2.6.1.9), and a 3' region including a terminator region. 1 shows a gene fragment consisting of an untranslated region.
  • the nucleotide sequence of the Candida maltosa HIS5 gene has been published in GenBank: X17310.
  • the ADE1 DNA fragment refers to a DNA capable of causing homologous recombination with the ADE1 gene on the chromosome in a microbial cell, thereby destroying the ADE1 gene.
  • a URA3 DNA fragment refers to a DNA that can cause homologous recombination with the URA3 gene on the chromosome in a microbial cell, thereby destroying the URA3 gene!
  • a HIS5 DNA fragment refers to a DNA that can undergo homologous recombination with the HIS5 gene on the chromosome in a microbial cell, thereby destroying the HIS5 gene!
  • the above-described gene-disrupted yeast is transformed with a DNA sequence containing a homologous or heterologous gene.
  • the homologous gene means a gene present on the chromosome of the host yeast or a partial DNA thereof.
  • a heterologous gene refers to a gene that is not originally present on the chromosome of the host yeast or a partial DNA thereof.
  • a gene expression cassette can also be used.
  • a gene expression cassette is a circular plasmid composed of a DNA sequence containing a transcription promoter DNA sequence, DNA encoding a gene to be expressed, and a terminator that terminates transcription. And those that integrate into chromosomal DNA.
  • a homologous or heterologous gene expression product is collected from a culture obtained by culturing the above transformant.
  • the gene expression product is particularly preferably polyester.
  • the gene expression product is itself a gene expression product when the substance expressed by the gene (gene expression product) is a desired protein or enzyme.
  • the gene expression products are various enzymes and coenzymes, and substances that are produced by the enzymes expressing catalytic activity in the host yeast and are directly different from the gene expression products are also gene expression products. It is.
  • PHA is an abbreviation for polyhydroxyalkanoate, and is a copolymer of 3-hydroxyalkanoic acid. 2 shows a combined, biodegradable polyester.
  • phaC indicates a polyhydroxyalkanoic acid synthase gene that synthesizes a biodegradable polyester copolymerized with 3-hydroxyalkanoic acid.
  • phbB refers to an acetoacetyl CoA reductase gene that reduces acetoacetyl CoA to synthesize 3-hydroxybutylyl-CoA.
  • a disrupted strain that does not express the URA3 enzyme is obtained.
  • gene disruption by homologous recombination is preferable because only a specific gene can be disrupted (Nickoloff JA, edited in Methods in Molecular Biology, 47: 291-). 302 (1995), Humana Press Inc., Totowa ⁇ NJ)).
  • homologous recombinants a disrupted strain that does not return spontaneously can be obtained, and as a result, when a strain is obtained with high safety in handling a recombinant, gene replacement disruption is preferred in terms of obtaining a strain.
  • URA3 DNA fragment to be used a DNA fragment in which a partial DNA inside a gene is removed and the remaining both ends are ligated again is used.
  • the part of DNA to be removed is a part where the URA3 gene can no longer exhibit enzymatic activity due to the removal, and has a length that does not restore the URA3 enzyme activity due to spontaneous reversion.
  • the chain length of such partial DNA is not particularly limited, it is preferably 50 bases or more, more preferably 100 bases or more. Also, DNA of any length may be inserted into the removed DNA site!
  • DNA fragments can be prepared by, for example, PCR (polymerase chain reaction), excision from a vector with a restriction enzyme, and religation.
  • PCR polymerase chain reaction
  • the length of the homology region at both ends of the URA3 DNA fragment is preferably at least 10 bases, more preferably at least 200 bases, and even more preferably at least 300 bases.
  • the homology of each end is preferably 90% or more, more preferably 95% or more.
  • a selection marker is not necessary when there is a method that can detect that the target disrupted gene has been disrupted.However, when two or more genes are disrupted in a chromosome, the selection marker is usually used as an indicator for the yeast chromosome. It is necessary to detect the homologous recombination of the gene to be destroyed. The force of using multiple selectable markers, or the work of destroying the first gene and then removing or destroying the used selectable marker gene, and then destroying the second and subsequent genes is required.
  • a method of inserting a gene that can be a selection marker such as ADE1 into the gene portion from which the URA3 DNA fragment has been removed can be used.
  • the length of the selection marker to be inserted is not particularly limited as long as it includes a promoter region, a structural gene region, and a terminator region that can function substantially in yeast. It does not work even if the genetic marker is derived from an organism different from the target yeast.
  • a hisG gene fragment (a fragment of the ATP phosphoribosyl transferase gene of Salmonella, a plasmid ⁇ ⁇ ⁇ ⁇ 09 containing this gene fragment is available from the ATCC (ATCC: 87624)) is inserted into both ends of the selectable marker gene, respectively. After gene disruption, the inserted marker gene can be removed by intramolecular homologous recombination (Alani et al., Genetics, 116: 541-545 (1987)). As described above, there is no particular restriction on the gene fragment used for removing the selectable marker gene, and homologous fragments of any gene may be arranged above and below the selectable marker. Therefore, it is also possible to use the sequence contained in the selectable marker.
  • the molecular fragment of the ADE1 gene 5, which is used as a marker is linked to the end of the ADE1 gene 3, so that the molecule can be used.
  • the internal homologous recombination has made it possible to remove the marker gene very efficiently.
  • There is no particular restriction on the gene fragment used for intramolecular homologous recombination of the marker A gene fragment which does not substantially function as a marker gene should be used. 3. Gene fragments at the end can also be used.
  • the DNA-1 for URA3 disruption is a DNA obtained by removing a DNA fragment encoding the URA3 enzyme of about 220 bp and ligating a DNA fragment of about 350 bp on the 5 ′ side and a DNA fragment of about 460 bp on the 3 ′ side (see FIG.
  • the portion removed from Do accounts for about 30% of the URA3 enzyme protein.
  • the homology between the 5′-side and 3′-side DNA fragments and the original URA3 gene is 100% for both DNAs.
  • the DNA-3 for URA3 disruption uses about 630 bp of the 5'-terminal part of the ADE1 gene as a sequence for causing intramolecular homologous recombination and restoring adenine requirement, and is connected downstream of the ADE1 gene. (Fig. 1).
  • the DNA fragment used in the present invention can be constructed on a general vector.
  • pUC-Nx is the DNA between the EcoRI and HindI sites of pUC19 (Edited by Sambrook et al., Molecular cloning: A Laboratory Manual ⁇ Second Edition I. ld, Cold Spring Harbor Laboratory Press (1989)), as SEQ ID NO: 1. This is a vector in which a restriction enzyme site has been newly constructed by substitution with the described DNA.
  • PCR was used to separately amplify the 5 'and 3' sides of the URA3 gene to form pUC-Nx Ligation was performed sequentially to prepare a vector containing DNA-1 for URA3 disruption.
  • ADE1 gene amplified by the PCR method was inserted into the vector, and a vector containing DNA-2 for URA3 disruption was prepared in this way.
  • the vector containing the DNA for disruption is introduced into an appropriate Escherichia coli, for example, «JM109 or DH5a, and the Escherichia coli is cultured.
  • Escherichia coli for example, «JM109 or DH5a
  • the Escherichia coli is cultured.
  • sambrook et al. Molecular cloning: A Laboratory Manual ⁇ Second Edition 1.42-1.47, Cold Spring Harbor Laboratory Press (198 9)
  • it is possible to use an alkali method or the like (Brinbioim HC, etc.). Nucleic Acids Res. 7: 1513-1523 (1979)).
  • This vector can be used directly for gene disruption, but It is desirable to cut out a homologous portion containing the URA3 region from the vector with an appropriate restriction enzyme, and use that as the DNA for disruption. It is also possible to amplify using the PCR method.
  • the URA3 gene could be disrupted by homologous recombination by cutting with restriction enzymes Sphl and Swal and introducing the DNA fragment into the cells without purification.
  • Candida * maltosa transformation methods include the protoplast method, lithium acetate method (Taka gi M. et al., J Bacteriol, 167: 551-5 (1986)), and electric pulse method (Kasuske A. et al. : 691-697 (1992))
  • the known force is used in the present invention.
  • Commercial equipment can be used to generate electric noise.
  • ELECTRO CELL MANIPULATOR 600 manufactured by BTX (San Diego, CA USA) was used.
  • the cuvette used was BM6200 (2 mm gap blue cap) manufactured by BIO MEDICAL CORPORATION CO. LTD (Tokyo Japan).
  • Competent cells were prepared from 16 AC strains, and after electropulsing with DNA-2 for URA3 disruption, cultured in an adenine-free medium, and from the resulting colonies, the disrupted strain in which the target URA3 gene was inserted into the target URA3 gene was obtained. Screen.
  • the gene may be inserted into a part other than the target, for example, an unknown part with high homology. May not be confirmed. In this case, it can be confirmed by performing a genomic Southern hybridization method or a PCR method using a gene sequence existing outside the portion used for homologous recombination of the gene to be disrupted.
  • URA3 disrupting DNA-2 was transformed into URA3 disrupting strain, and URA3 disrupting DNA-1 was electrotransferred into the strain that became non-adenine-requiring, and the first URA3 gene was disrupted to contain adenine.
  • Adenine-requiring strains can be obtained by applying to a minimal medium and selecting the red colonies that appear.
  • An ADE1 DNA fragment can also be used (JP-A-2002-209574). Then, work to destroy the second URA3 gene.
  • nystatin enrichment Snow R. Nature 211: 206-207 (1966)
  • This method has been developed to efficiently select mutant strains obtained by random mutation in yeast, but can also be applied to gene-disrupted strains.
  • the cultured cells are inoculated into YM medium or the like and cultured. After washing the bacteria and culturing in a minimal medium without a nitrogen source, cultivate briefly in a minimal medium with a nitrogen source. Wild strains can be preferentially killed by adding nystatin directly to this culture and aerobically culturing at 30 ° C for 1 hour. This bacterial solution is spread on an appropriate agar plate containing adenine and cultured at 30 ° C for about 2 days to obtain red colonies.
  • the obtained adenine-requiring strain can be confirmed by a PCR method.
  • agarose gel electrophoresis can detect DNA bands of normal size in the original strain.
  • ADE1-disrupted strain a band shorter than the deletion is also detected.
  • the disruption of the second URA3 gene includes the URA3 disruption DNA-3 containing the ADE1 gene, which can remove the marker gene by intramolecular homologous recombination. Was used.
  • the disrupting gene is electrotransformed into the strain and colonies are formed in a selective medium containing peridine or peracil.
  • the resulting colonies are replicated on a medium containing no lysine peracil to select periracil-requiring strains.
  • the obtained chromosome gene of the auxotroph is analyzed by PCR, etc., and the gene corresponding to the normal URA3 is not amplified, and only the gene containing the inserted gene and the gene containing the deletion are amplified. Select a stock. At this stage, the URA3-disrupted strain is completed.
  • the cultured cells are inoculated on a YM medium or the like, cultured, washed, cultured in a minimal medium without a nitrogen source, and then cultured in a minimal medium with a nitrogen source for a short time.
  • the strain containing the ADE1 gene can be preferentially killed.
  • this bacterial solution is spread on a suitable agar plate containing adenine and cultured at 30 ° C for about 2 days, red colonies are obtained.
  • the obtained adenine-requiring strain can be confirmed by a PCR method or the like.
  • agarose gel electrophoresis detected a DNA band with the inserted size of the ADE1 gene and the ADE1 fragment gene and a DNA with the size of the URA3 gene with a deletion in the original strain.
  • ADE1-disrupted strain a DNA band of the size of the URA3 gene with the deletion and a DNA band of the size of the ADE1 gene fragment added to the DNA of the size of the URA3 gene with the deletion are also detected. Is done. At this stage, ADE1 and URA3 gene disrupted strains are produced.
  • HIS5 gene-disrupted yeast and HIS5'ADE1 gene-disrupted yeast can also be prepared from the AC16 strain using the method described in (1) above.
  • the HIS5 gene to be used is pUC119-HIS5 (Hikiji. Et al., Curr. Genet., 16: 261-2. 66 (1989)). That is, HIS5 gene disruption DNA or the like in which the 5 'side DNA fragment of the HIS5 gene and the 3' side DNA fragment are linked to both ends of a gene in which the 5 'side fragment of the ADE1 gene is connected to the 3' side of the ADE1 gene. ( Figure 1).
  • the ability to use a DNA fragment of about 500 bp on the 5 ′ side and 3 ′ side of the HIS5 gene is not particularly limited.
  • the above gene was electrotransformed into 16 strains of AC, and a strain in which the HIS5 gene was disrupted was selected from the obtained adenine non-auxotrophs by PCR or the like, and then homologous intramolecularly by nystatin enrichment. A strain whose adenine requirement has been restored by recombination can be easily obtained.
  • adenine-histidine double auxotrophs can be obtained by repeating this step.
  • a URA3-HIS5 gene disrupted strain and a URA3'HIS5'ADE1 gene disrupted strain can be prepared by the method described in (2). .
  • it can be prepared using the method of (1) based on the strain obtained in (2).
  • a homologous gene or a heterologous gene can be introduced multiple times depending on the number of available markers, or can be introduced repeatedly by recovering the markers.
  • the target gene can be introduced more than ever before and can be expressed in large amounts.
  • yeast can secrete a glycosylated protein, which cannot be produced by Escherichia coli, into a medium, such a protein can be produced using a gene-disrupted strain. Further, since the yeast of the present invention has a plurality of gene markers, it can express several kinds of proteins, and can perform complicated reactions involving a plurality of enzymes. It is also useful for manufacturing.
  • the homologous gene that can be introduced is not particularly limited.For example, by introducing a P450 enzyme gene derived from the same strain into Candida's maltosa as disclosed in WO99Z04014 as a production example of an industrially useful product. , The production of dicarboxylic acids Further, the heterologous gene is not particularly limited, and examples thereof include production of the protein by introducing an antibody gene, a lipase gene, an amylase gene, and the like. Polyester production by introducing a polyhydroxyalkanoic acid synthase gene or an enzyme gene for synthesizing a substrate for polyhydroxyalkanoic acid synthesis is also included.
  • the number of target genes to be introduced per yeast cell is determined by the properties of the target gene product and the strength of the promoter used. For example, in the case of a protein translated from an expression cassette into which a target gene product has been introduced, any number of simple proteins may be used, but in the case of a protein to which a sugar chain is added, translation of an excess protein is rate-limited by sugar chain modification. Which gives a heterogeneous product. Therefore, the introduction of a limited number of expression cassettes is preferred.
  • Candida yeasts such as Candida maltosa used in the present invention
  • the manner in which some codons are translated differs from that of other organisms. It is known.
  • the leucine codon CUG is translated into serine (Ohama T. et al., Nucleic Acid Res., 21: 40394045 (1993)), so the lacZ gene from E. coli is translated into active j8 galactosidase. No (Sugiyama H. et al., Yeast 11: 43-52 (1995)).
  • a heterologous gene in this way, there is no guarantee that it will be translated into a functional protein in Candida maltosa.
  • a biodegradable polyester is produced as a gene expression product.
  • a method for producing polyester will be described.
  • an enzyme gene involved in polyester synthesis such as a polyhydroxyalkanoic acid synthase gene (phaC) or an enzyme gene involved in the synthesis of a molecule serving as a substrate for polyester synthesis is replaced with the above-described gene-disrupted yeast.
  • the enzyme gene involved in polyester synthesis is not particularly limited, but is preferably an enzyme gene involved in synthesis of a polyester obtained by copolymerizing 3-hydroxyalkanoic acid represented by the following general formula (1).
  • copolymerized polyester P (3HB—co—3HH) obtained by copolymerizing 3-hydroxybutyric acid represented by the following formula (2) and 3-hydroxyhexanoic acid represented by the following formula (3) More preferably, it is an enzyme gene.
  • polyester synthase gene described in JP-A-10-108682 can be used.
  • genes include, for example, (R) -form-specific enolyl CoA hydratase (Fukui), which converts enolyl CoA, an intermediate of the j8 oxidation pathway, to (R) -3-hydroxyacyl-CoA.
  • (R) -form-specific enolyl CoA hydratase (Fukui), which converts enolyl CoA, an intermediate of the j8 oxidation pathway, to (R) -3-hydroxyacyl-CoA.
  • 13 ketothiolase that dimerizes acetyl-CoA to synthesize 3-hydroxybutylyl-CoA, depends on NADPH Sex reductase gene (Peoples OP et al., J. Biol. Chem. 264: 15298-15303 (1989)).
  • 3-ketoacido-CoA-acyl carrier protein reductase (Taguchi K. et al., FEMS Microbiology
  • both the polyester synthase gene and the acetoacetyl-CoA reductase gene can be used.
  • a gene encoding phaC derived from Aeromonas' rabies was designed to be expressed in Candida's maltosa, and was prepared to replace asparagine at the 149th position from the amino terminal in the amino acid sequence with serine.
  • the nucleotide sequence of the obtained DNA (phaCacl49NS) is shown in SEQ ID NO: 2.
  • the nucleotide sequence of a DNA designed to express the gene encoding phbB derived from Ralstonia eutropha in Candida maltosa is shown in SEQ ID NO: 3.
  • nucleotide sequence shown in these SEQ ID NOs is not limited thereto, and any nucleotide sequence may be used as long as the amino acid sequence of the enzyme is a nucleotide sequence expressed in Candida maltosa.
  • (serine Z alanine Z cysteine) means serine, alanine or cysteine. V, which means that it is misaligned (WO03Z033707).
  • the gene expression cassette in yeast is obtained by ligating a DNA sequence such as a promoter, 5, an upstream activating sequence (UAS), etc., to the 5 'side of the gene, and a poly A It is prepared by ligating DNA sequences such as additional signal and terminator. Any of these DNA sequences can be used as long as they function in the yeast.
  • the promoter and terminator used can be any sequence as long as it functions in yeast. Promoters include those that express constitutively and those that express inductively, and any promoter may be used. In the present invention, the promoter and terminator preferably function in Candida maltosa, and the promoter and terminator are more preferably derived from Candida maltosa. More preferably, it is a promoter having strong activity in the carbon source used.
  • the promoters include the ALK1 gene (GenBank: D00481) promoter ALKlp (WOO 1Z88144) and the ALK2 gene (GenBank: X55881) promoter ALK2p of Candida maltosa. Can be.
  • a promoter Kogure, Abstracts of 2002 Annual Meeting of the Japanese Society of Agricultural Chemistry, pl91 with improved promoter activity by adding multiple ARR (alkane responsible Region) sequences upstream of these promoters Number 4
  • terminator ALKlt (WO01Z88144) of the ALK1 gene of Candida maltosa can be used.
  • the base sequence of the promoter and Z or the terminator may be a base sequence in which one or more bases are deleted, substituted and Z or added, as long as the sequence functions in Canzaida maltosa. Is also good.
  • the promoter is 5 ′ upstream of a gene encoding an enzyme involved in the synthesis of a polyester to which a DNA encoding a peroxisome orientation signal is added, and the terminator is a polyester having a DNA encoding a peroxisome orientation signal. Each is linked to the 3 'downstream of the gene encoding the enzyme involved in the synthesis.
  • the promoter and terminator are linked to the structural gene, and the gene expression cassette of the present invention is ligated.
  • the method of constructing the kit is not particularly limited.
  • a PCR method can also be used to prepare a restriction enzyme site.
  • the method described in WO01Z88144 can be used.
  • a gene fragment having a sequence homologous to the chromosomal gene to be introduced is placed at both ends of the DNA in which the expression cassette and the gene serving as the selection marker are linked.
  • the ADE1 gene or the like that can be naturally deleted by intramolecular homologous recombination described in (1) above can also be used.
  • the number of expression cassettes in the DNA for introduction is not limited, and shoes may be used if they can be produced.
  • the sequence of the gene has been elucidated! It can be used at any location as long as it is located. Even if the gene sequence is unknown, it is possible to analyze the gene sequence based on the chromosomal gene sequence of a closely related yeast of which the gene sequence is known, so it can be inserted into virtually all gene sites It is.
  • As a method for analyzing the gene sequence it is possible to obtain from the yeast chromosome DNA library to be introduced using the Saccharomyces cerevisiae whose sequence has been analyzed or a homologous gene fragment of Candida albicans as a probe using the hybridization method. it can. Probes can be prepared using PCR or the like.
  • the chromosomal DNA library can be prepared by a method known to those skilled in the art.
  • the HIS5 gene is inserted as a marker gene into the URA3 disruption DNA-1 used for the URA3 gene disruption described in (1), and is involved in polyester synthesis between the URA3 gene fragment site and the HIS5 gene.
  • DNA can be prepared that specifically inserts the target gene into the disrupted URA3 site on the yeast chromosome using histidine requirement as a marker.
  • the method for electrotransfer described in (1) can be used as a method for electrotransfer described in (1).
  • the strain of the present invention can be transformed using a plurality of selectable markers to produce various strains into which a plurality of gene expression cassettes have been introduced. If the ADE1 gene, etc., which can be naturally deleted by intramolecular homologous recombination, is used, it is possible to restore the selectable marker, so that gene transfer can be performed at many places. In addition, a plasmid capable of autonomous replication in yeast can be used together. [0092] Polyester production by culturing yeast transformed with a gene expression cassette involved in polyester synthesis can be performed as follows.
  • any carbon source can be used as long as yeast can assimilate.
  • an inducer may be added at an appropriate time.
  • Inducers may be the primary carbon source.
  • a medium containing a nitrogen source, inorganic salts, and other organic nutrients can be used.
  • the culture temperature may be any temperature at which the bacteria can grow, but is preferably 20 ° C to 40 ° C.
  • the culture time is not particularly limited, but may be about 17 days. Thereafter, the polyester may be recovered from the obtained cultured cells or culture.
  • oils and oils can be used as the carbon source.
  • oils and fats include rapeseed oil, coconut oil, palm oil, palm kernel oil and the like.
  • Fatty acids include saturated and unsaturated fatty acids such as butanoic acid, hexanoic acid, octanoic acid, decanoic acid, lauric acid, oleic acid, palmitic acid, linoleic acid, linolenic acid, and myristic acid, and esters and salts of these fatty acids. And the like. These can be mixed and used.
  • V that cannot be assimilated or oil or fat that cannot be efficiently assimilated
  • it can be improved by adding lipase to the medium.
  • lipase gene fat-and-oil assimilation ability can be imparted.
  • Examples of the nitrogen source include ammonia, ammonium chloride, ammonium sulfate, ammonium phosphate, and other ammonium salts, as well as peptone, meat extract, yeast extract, and the like.
  • inorganic salts examples include potassium phosphate monobasic, potassium phosphate dibasic, magnesium phosphate, magnesium sulfate, sodium salt, and the like.
  • organic nutrients include, for example, amino acids such as glycine, alanine, serine, threonine, and proline; vitamins such as vitamin B1, vitamin B12, biotin, nicotinamide, pantothenic acid, and vitamin C.
  • amino acids such as glycine, alanine, serine, threonine, and proline
  • vitamins such as vitamin B1, vitamin B12, biotin, nicotinamide, pantothenic acid, and vitamin C.
  • Examples of the inducer include glucose and galactose.
  • a number of methods have been reported for the recovery of bacterial cell strength.
  • the following method can be used.
  • the cells are separated and recovered from the culture solution using a centrifuge or the like, and the cells are washed with distilled water, methanol and the like, and then dried.
  • a step of disrupting the cells may be added.
  • Polyester is extracted from the dried cells using an organic solvent such as chloroform.
  • Cell components are removed from the organic solvent solution containing the polyester by filtration or the like, and a poor solvent such as methanol or hexane is added to the filtrate to precipitate the polyester.
  • the supernatant is removed by filtration or centrifugation, and the precipitated polyester is dried to recover the polyester.
  • the obtained polyester can be analyzed by, for example, gas chromatography, nuclear magnetic resonance, or the like.
  • the second present invention is a yeast transformant into which a polyhydroxyalkanoic acid synthase gene and an acetoacetyl CoA reducing enzyme gene have been introduced, wherein two or more of these genes have been introduced. It is a yeast transformant characterized by having. (I) Host
  • yeast or the like deposited with a depository of a strain for example, IFO, ATCC, etc.
  • a depository of a strain for example, IFO, ATCC, etc.
  • Candida Candida
  • Clavispora Clavispora
  • Taliptococcus Cryptococcus
  • Denoriomyces Denoriomyces in terms of resistance to hydrophobic substances such as linear hydrocarbons.
  • Genus Debaryomyces genus Roderomyces, genus Pichia, genus Rhodotorula, genus Sporidiobolus, genus Stephanoascus, genus Yarr owia ) Can be used.
  • the genus Candida is particularly preferred in that the analysis of the chromosomal gene sequence has been advanced, a host-vector system can be used, and the ability to assimilate linear hydrocarbons and oils and fats is high.
  • Candida it is preferable to use the species exemplified in the first aspect of the present invention, particularly in view of high assimilation ability of linear hydrocarbons and fats and oils.
  • the growth rate and infectivity are particularly preferred, especially the maltosa species.
  • the yeast transformant of the present invention if a selectable marker gene having properties such as drug resistance and nutritional requirement is also introduced into the host at the time of the transformation, the selection after transformation can be achieved. Only transformed strains can be selected by utilizing drug resistance and auxotrophy due to the expression of the marker gene.
  • selectable marker gene a gene that imparts resistance to cycloheximide-G418, hygromycin B, or the like can be used.
  • a gene that complements auxotrophy can be used as a selection marker. These may be used alone or in combination.
  • auxotrophic disrupted strains are not limited to those in which the target mutations can be obtained by random mutagenesis using a mutagen such as nitrosoguanidine or ethyl methanesulfonic acid.
  • the host prepared by the gene disruption method by homologous recombination described in the first present invention is considered to have a high possibility of being contained, and as a result may be affected by a growth rate or the like. It is preferable to use.
  • the type of the marker according to the number of times of the transformation is required.
  • a multiple auxotrophic gene-disrupted strain was used.
  • the DNA for gene transfer can cause homologous recombination with a gene on a chromosome in a microbial cell. Shows the DNA into which the target gene can be inserted.
  • the Candida maltosa AHU-71 strain which is a ADE1, HIS5 and URA3 gene disruption strain, used in the examples of the present invention, was produced in the first present invention, and is Candida 'maltosa. It was prepared by the method described in Example 3 below using 16 strains of AC. In particular, when performing multiple transformations in the above-described host, if the yeast can use a plurality of selectable marker genes from the beginning without disrupting genes such as auxotrophy, the yeast transformant of the present invention can be efficiently used. Can be made.
  • the PHA synthase gene is not particularly limited, but a synthase gene for synthesizing a polyester obtained by copolymerizing 3-hydroxyalkanoic acid represented by the above general formula (1) is preferable, and It is a synthase gene for a copolymerized polyester P (3HB-CO-3HH) obtained by copolymerizing the 3-hydroxybutyric acid represented by the formula and the 3-hydroxyhexanoic acid represented by the formula (3).
  • a synthase gene for synthesizing a polyester obtained by copolymerizing 3-hydroxyalkanoic acid represented by the above general formula (1) is preferable, and It is a synthase gene for a copolymerized polyester P (3HB-CO-3HH) obtained by copolymerizing the 3-hydroxybutyric acid represented by the formula and the 3-hydroxyhexanoic acid represented by the formula (3).
  • the PHA synthase gene for example, the PHA synthase gene described in JP-A-10-108682 can be used.
  • an acetoacetyl CoA reductase gene is used together with the PHA synthase gene.
  • the acetoacetyl-CoA reductase gene any enzyme gene that has the activity of reducing acetoacetyl-CoA and synthesizing (R) -3-hydroxybutyryl-CoA can be used.
  • Ralstonia-eutropha GenBank: A AA21973
  • Pseudomonas sp. 61-3 GenBank: T44361
  • Zoogloea Lamigera GenBank: P23238
  • enzyme genes derived from Alkali Genes latus SH-69 GenBank: AAB65780
  • genes involved in PHA synthesis include, for example, the (R) -body-specific enolyl CoA hydratase (Fukui T) that converts enolyl CoA, an intermediate in the j8 oxidation pathway, to (R) -3-hydroxyacyl-CoA. Et al., FEMS Microbiology Letters, 170: 69-75 (1999), JP-A-10-108682), and j8 ketothiolase (Peoples OP, etc.) for dimerizing acetyl-CoA to synthesize 3-hydroxybutylyl-CoA. J. Biol. Chem.
  • 3-ketoacyl-CoA acyl carrier protein reductase gene (Taguchi K. et al., FEMS Microbiology Letters, 176: 183-190 (1999)).
  • an enzyme gene having activity for synthesizing (R) -3-hydroxyhexanoyl-CoA is preferable.
  • the present invention uses a PHA synthase gene (phaC) and an acetoacetyl-CoA reductase gene (phbB) simultaneously.
  • phaC derived from Aeromonas' cabies JP-A-10-108682, Fukui T., et al., FEMS Microbiology Letters, 170: 69-75 (1999)
  • phbB GenBank: J04987
  • the phaC is one encoding an enzyme or a mutant derived from Aeromonas radiata having the amino acid sequence represented by SEQ ID NO: 5, and the above phbB is preferably SEQ ID NO: 6.
  • Those encoding an enzyme or a mutant derived from Ralstonia eutropha consisting of the amino acid sequence represented by are preferred.
  • the PHA synthase gene can be prepared and used by modifying the amino acid sequence to obtain a mutant having improved properties such as enzyme activity, substrate specificity, and thermal stability.
  • a variety of useful mutation methods are known in the art.
  • molecular evolution engineering techniques Japanese Patent Application Laid-Open No. 2002-199890
  • a desired mutant can be quickly obtained.
  • synthase mutants have been found in the past, and it has been confirmed that the activity of Escherichia coli is higher than that of the wild-type enzyme (T. Kichise et al., Appl. Environ. Microbiolol). 68, 2411-2419 (2002), Amara A. A. et al. Appl. Microbiol. Biotechnol. 59, 477-482 (2002)).
  • a useful amino acid mutation on the basis of a three-dimensional structure of an enzyme gene or a predicted three-dimensional structure on a computer by using, for example, a program Vietnameseke (Japanese Patent Application Laid-Open No. 2001-184831). It is possible.
  • phaC in the present invention for example, PHA synthase obtained by performing at least one of the following (a)-(h) amino acid substitutions obtained by using these methods on the amino acid sequence of a PHA synthase gene derived from Monas caviae Those encoding the mutant can be used.
  • Asn-149 means the 149th asparagine in the amino acid sequence of SEQ ID NO: 5, and the amino acid substitution in (a) converts the 149th asparagine into serine.
  • Examples of phaC and phbB include those of SEQ ID NOs: 2 and 3 exemplified in the first invention.
  • the amino acid sequence of the enzyme gene is expressed in Candida 'maltosa. If it is a nucleotide sequence, V, such a nucleotide sequence can also be used.
  • phaC and phbB are expressed in cytosolic substrates (cytosol, cytosol), these genes can be used as they are by modifying these genes into genes that are localized in peroxinorm (WO03 / 033707).
  • the method described in the first present invention can be used.
  • the nine amino acid sequences “(arginine Z lysine) (leucine Z valine Z isoleucine) (5 amino acids) (histidine Z glutamine) (leucine Z alanine)” present near the N-terminus are also used as luxosome orientation signals. Known! / By inserting and adding DNAs encoding these sequences to genes involved in PHA synthesis, the enzyme genes can also be localized in the peroxinin.
  • these genes were mitochondrial so that phaC and phbB would be expressed in mitochondria. It can also be used after being modified into a gene to be orientated.
  • a protein expressed and localized in mitochondria may be bound to the amino terminal. Examples include cytochrome oxidase and TCA cycle-related enzymes.
  • a gene encoding at least 15 residues, preferably at least 40 residues from the amino terminal of the protein expressed in mitochondria is shifted in frame to the 5 'upstream of the gene involved in PHA synthesis. What is the use of the linked genes?
  • a linker sequence may be inserted between the added fusion gene and the gene involved in PHA synthesis to avoid unnecessary collision of amino acid residues.
  • the gene used for the fusion gene is preferably derived from the host yeast used for the transformation of the present invention, but is not particularly limited.
  • genes designed to be oriented to the cytosol, peroxynome, and mitochondria can be used alone or in combination of two or more.
  • phaC and phbB those with a peroxisome orientation signal added are preferred! /.
  • the expression cassette for the PHA synthase gene and the acetoacetyl CoA reductase gene used in the present invention is obtained by ligating a DNA sequence such as a promoter and a 5 ′ upstream activation sequence (UAS) at the 5 ′ side upstream of the gene. It can be prepared by connecting a DNA sequence such as a polyA addition signal and a terminator to the 3 ′ downstream of the gene.
  • UAS upstream activation sequence
  • a promoter and a terminator that function in yeast are connected to the PHA synthase gene and the acetoacetyl CoA reductase gene.
  • the promoter and terminator to be used may be any sequence as long as it functions in yeast. Promoters include those that express constitutively and those that express inductively, and any promoter may be used. As the above-mentioned promoter, a promoter having a strong and active carbon source used for culturing transformants is preferable. For example,
  • the promoter described in the first invention can be used as the promoter.
  • the terminator ALKlt (WO01Z88144) of the ALK1 gene of Candida maltosa
  • the above promoter and The base sequence of Z or one of the terminators may be a base sequence in which one or more bases are deleted, substituted and Z or added, as long as they are sequences that function in the host used.
  • the promoter and the terminator preferably function in Candida and more preferably function in Candida maltosa. More preferably, it is derived from Da'maltosa.
  • the promoter is a PHA synthase gene to which a DNA encoding a peroxisome orientation signal has been added, and an acetoacetyl CoA reductase to which a DNA encoding a peroxisome orientation signal has been added.
  • the terminator is linked to the 5 'upstream of the gene, the terminator is a PHA synthase gene to which DNA encoding a peroxisome orientation signal is added, and the acetoacetyl CoA to which DNA encoding a peroxisome orientation signal is added. It is linked to the downstream of the reductase gene at 3, respectively (WO03Z033707).
  • the method for linking the promoter and terminator to phaC and phbB to construct the gene expression cassette of the present invention is not particularly limited, and the same method as in the first present invention can be used.
  • the number of introduced expression cassettes per yeast cell in the desirable form of the present invention is strong under a carbon source such as hydrocarbons and fatty acids, even when the ARR promoter used is used. Although the gene expression was induced, one copy was not sufficient, and the present invention showed that either the number of the expression cassettes for phaC or the number of expression cassettes for phbB required at least two copies. Unless the amount of substrate supplied for host PHA synthesis is rate-limiting, the number of expression cassettes to be introduced is preferably as large as possible. The preferred number of expression cassettes depends on the type of promoter used.When promoter ARRp is used, it is preferable to introduce two or more copies at the same time, and it is more preferable to introduce three or more copies at the same time.
  • This expression cassette can be inserted into a vector capable of autonomous replication in yeast and introduced into host yeast. It can also be inserted into the host yeast chromosome. Both introduction methods They can be used simultaneously.
  • a method of inserting an expression cassette into a chromosome for example, homologous recombination can be used.
  • the gene replacement method is preferred because a transgenic strain that does not return spontaneously can be obtained.
  • the expression cassette and the gene to be the selection marker are linked, and then the expression cassette and the gene to be the selection marker are linked to both ends of the DNA to be introduced.
  • DNA gene transfer DNA
  • the site on the chromosome into which the expression cassette or the like is inserted is not particularly limited as long as it has no irreversible effect on the host.
  • the length of the region of homology to the gene on the chromosome to be transferred, which is bonded to both ends of the DNA for gene transfer, is preferably at least 10 bases, more preferably at least 200 bases, and still more preferably at least 300 bases. Further, the homology of each end is preferably 90% or more, more preferably 95% or more. That is, at the site where the gene sequence is analyzed, the gene can be used as it is, or even if the gene sequence is unknown, the chromosomal gene sequence of a closely related yeast having a known gene sequence is used. This comes out.
  • the gene at the introduced site on the chromosome can be cloned and used.
  • the entire sequence of the chromosomal gene is analyzed and PCR primers are designed based on the sequences of Saccharomyces cerevisiae and Candida albicans to increase the gene. You just have to do the width.
  • a yeast chromosome DNA library to be introduced can also be used.
  • the number of expression cassettes in the DNA for gene transfer is not limited and may be any number as long as it can be produced.
  • a gene that complements auxotrophy as described above can be used as the selection marker gene.
  • a gene imparting resistance such as cycloheximide G418 or hygromycin B can also be used.
  • These selectable marker genes can be used in a form that can be naturally deleted by intramolecular homologous recombination described later. In this case, since the selectable marker gene can be recovered, the DNA for gene transfer using the same selectable marker gene can be introduced many times, and the transformation can be easily performed.
  • DNA for gene transfer for introducing these expression cassettes into a yeast host can be prepared by a method known to those skilled in the art using a plasmid or the like that grows autonomously in E. coli or the like.
  • the HIS5 gene is inserted as a selectable marker gene into the URA3 disruption DNA-1 described in Example 1 described later, and a phaC expression cassette and a phbB expression cassette are inserted between the URA3 gene fragment site.
  • histidine requirement can be used as a marker to produce a gene transfer DNA that specifically inserts the target gene into the URA3 site on the yeast chromosome.
  • a plasmid containing the DNA for gene transfer can be prepared in the same manner as in the first present invention.
  • This plasmid can be used directly for yeast transformation.However, a homologous portion including the chromosome transfer region is cut out from a purified vector with an appropriate restriction enzyme, and then used as DNA for gene transfer. Desired ⁇ . It is also possible to amplify using PCR method.
  • yeast transformation method examples include the method exemplified in the first present invention, and the electric pulse method is preferable in the present invention.
  • Screening of the target gene-introduced strain can also be performed in the same manner as in the first present invention.
  • the transformant of the present invention can be produced by introducing the phaC expression cassette and the phbB expression cassette until the target expression cassette number is reached using the above method.
  • a wild-type strain or a strain having no auxotrophy and having no auxotrophy is involved in the PHA synthesis of the present invention.
  • a yeast transformant into which the gene has been introduced multiple times can be obtained. For example, when introducing DNA for gene transfer using a drug resistance marker gene as a selectable marker gene, the concentration of the drug used for selecting a transformant may be increased each time the DNA for gene transfer is transformed. .
  • the selective gene introduced into the chromosome after the single transformation is removed, it can be used again as a marker for gene introduction, and a large number of DNAs for gene introduction can be introduced.
  • a gene disruption method described in JP-A-2002-209574 can be used.
  • the DNA for gene transfer is prepared so that the marker gene inserted by intramolecular homologous recombination can be removed after gene transfer. (Alani et al. Genetics, 116: 541-545 (1987)).
  • CM313—X2B strain (Accession number: FE RM BP-08622) was patented on February 13, 2004 by the National Institute of Advanced Industrial Science and Technology (AIST). It has been internationally deposited at the Biological Depository Center under the Budapest Treaty.
  • the method for recovering a selectable marker of the present invention is characterized in that the ADE1 gene is removed by performing intramolecular homologous recombination with Candida 'maltosa having the ADE1 gene as a selectable marker gene. When further transformation is performed by removing the ADE1 gene, the ADE1 gene can be used again as a selectable marker gene.
  • the method of removing the selectable marker gene by intramolecular homologous recombination in Candida maltosa is as follows. Unknown power. As described above, a drug resistance gene or a gene that complements auxotrophy can be used as the selectable marker gene. Examples of the selectable marker gene include the ADE1 gene, the URA3 gene, the HIS5 gene, and the like. Gene removal is color selectable Use the appropriate ADE1 gene.
  • the ADE1 gene can be removed by intramolecular homologous recombination even when a gene homologous to the ADE1 gene is bound, but a portion of the ADE1 gene is located upstream or downstream of the ADE1 gene. It is preferable in that it is easier to produce and does not leave extra genes on the yeast chromosome.
  • the gene fragment used for intramolecular homologous recombination of the selectable marker gene there is no particular limitation on the gene fragment used for intramolecular homologous recombination of the selectable marker gene.
  • a gene fragment in which the selectable marker gene does not substantially function may be used.
  • a gene fragment at the 5 'end of the ADE1 gene was used, but a gene fragment at the 3' end can also be used.
  • the marker single gene fragment linked to the selectable marker gene preferably has at least 10 bases, more preferably at least 200 bases, and even more preferably at least 300 bases. That is, a marker gene fragment may be inserted at the 5 'end or the 3' end of the selectable marker gene in the DNA for gene transfer described in (IV) above!
  • the ADE1 gene preferably has a base sequence represented by SEQ ID NO: 7.
  • the nucleotide sequence represented by SEQ ID NO: 7 is derived from Candida maltosa. This method can be applied to marker genes other than the ADE1 gene.
  • Fig. 4 shows a model of marker recovery by intramolecular homologous recombination.
  • the numbers in parentheses indicate the numbers from the 5 ′ end of the sequence registered in GenBank of the ADE1 gene!
  • Strains from which the inserted selectable marker gene has been removed by intramolecular homologous recombination can be concentrated and selected by various methods. For example, a nystatin enrichment method can be used. The cells cultured in an appropriate medium are inoculated into a minimal medium or the like and cultured. After washing the bacteria and culturing in a minimal medium without a nitrogen source, cultivate briefly in a minimal medium with a nitrogen source. By directly adding nystatin to this culture solution and aerobically culturing at 30 ° C for 1 hour, the strain having the marker gene can be preferentially killed. Spread this bacterial solution on an appropriate agar plate and incubate at 30 ° C for about 2 days.
  • the selectable marker gene to be removed is the ADE1 gene that requires adenine
  • the precursor substance accumulates when the ADE1 gene is disrupted and the yeast stains red.
  • the marker gene is the URA3 gene, ⁇ ⁇ Select a colony that grows in a medium in the presence of racil and 5-FOA (5-Fluoro-Orotic-Acid). If there is no such selection method, a replica method can be used.
  • the method of controlling the molecular weight of the polyester of the present invention is characterized in that, in the production of a polyester using a yeast transformant, the number of acetoacetyl-CoA reductase genes in the yeast transformant is controlled. It is.
  • the method for controlling the hydroxyalkanoic acid composition of the polyester of the present invention controls the number of polyhydroxyalkanoic acid synthase genes in the yeast transformant in the production of the polyester using the yeast transformant. It is characterized by the following.
  • the composition and molecular weight of the hydroxyalkanoic acid of the polyester which is the target product of the present invention can be controlled by adjusting the expression levels of phaC and phbB.
  • the phaC expression cassette and the phbB expression cassette using the same promoter are used, in order to increase the composition of hydroxyhexanoic acid, the number of phaC expression cassettes must be This can be done by increasing the number.
  • the molecular weight can be increased by increasing the number of introduced phbB expression cassettes relative to the number of introduced phaC expression cassettes.
  • a transformant having such characteristics can be prepared by the method described in (IV) above. Further, even when the number of introduced expression cassettes is the same, control of the hydroxyalkanoic acid composition and molecular weight can be achieved by changing the strength of the promoter used.
  • the method for producing a polyester of the present invention is characterized in that the polyester is collected from a culture obtained by culturing the above yeast transformant.
  • the culturing of the yeast transformed with the PHA synthase gene and the expression cassette of phbB can be carried out in the same manner as the method for culturing the transformed yeast described in the first aspect of the present invention.
  • the GPC method can be used for measuring the weight average molecular weight.
  • the solution can be analyzed using a GPC system manufactured by Shimadzu Corporation equipped with Shodex K805L (manufactured by Showa Denko KK) using the chromate form as a mobile phase.
  • Shodex K805L manufactured by Showa Denko KK
  • a commercially available standard polystyrene or the like can be used as the molecular weight standard sample.
  • the yeast having a plurality of markers produced by gene disruption of the present invention can be expected to be used as a gene recombination host for highly efficient gene expression and production of gene expression products. Furthermore, it is also possible to add a marker by gene disruption, which leads to the development of a better host. Further, according to the present invention, it has become possible to efficiently produce a copolymerized polyester obtained by copolymerizing 3-hydroxyalkanoic acid, which has biodegradability and excellent physical properties, in yeast. Furthermore, it became possible to control the physical properties of the copolymerized polyester. In addition, it has become possible to efficiently perform gene transfer multiple times in yeast.
  • Reagents used for culturing yeast were commercially available from Wako Pure Chemicals unless otherwise noted.
  • LB medium 10 g / L tryptone, 5 g / L yeast extract, 5 g / L salt.
  • agar 10g / L tryptone, 5 g / L yeast extract, 5 g / L salt.
  • YPD medium lOgZL yeast extract, 20gZL polypeptone, 20gZL glucose.
  • agar is kneaded to 20 gZL.
  • YM medium 3gZL yeast extract, 3gZL malt extract, 5gZL bactopeptone, lOgZL group Lucas.
  • SD medium 6.7 g / L amino acid-free yeast-trogen base (YNB), 20 g / L glucose.
  • YNB yeast-trogen base
  • adenine-containing medium add 24 mg / L of adenine.
  • ⁇ -lysine-containing medium add 0.1 lg / L of L-lysine.
  • a histidine-containing medium add 5 OmgZL of histidine.
  • SD plate add agar to 20gZL.
  • M medium 0.5 g ZL magnesium sulfate, 0.5 lg ZL salt, 0.4 mg ZL thiamine, 0.4 mg ZL pyridoxine, 0.4 mg ZL calcium pantothenate, 2 mg ZL inositol, 0.002 mg ZL biotin, 0.05 mg ZL salt glide Iron, 0.07 mg ZL zinc sulfate, 0.1 OlmgZL boric acid, 0.1 OlmgZL copper sulfate, 0.1 OlmgZL potassium iodide, 87.5 mgZL potassium dihydrogen phosphate, 12.5 mg ZL monopotassium hydrogen phosphate, 0.1 lgZL Calcium chloride, 20g ZL glucose.
  • M medium containing ammonium sulfate lg / L ammonium sulfate is added.
  • M medium containing ammonium sulfate and adenine add lgZL ammonium sulfate and 24 mg / L adenine to the M medium.
  • M medium containing ammonium sulfate and adenine peridine add lgZL ammonium sulfate, 24 mg ZL adenine, and 0.1 lgZL peridine to the M medium.
  • M medium containing ammonium sulfate and adenine histidine add lgZL ammonium sulfate, 24 mg ZL adenine, and 50 mg ZL histidine to the M medium.
  • M medium containing ammonium sulfate and adenine 'peridine' histidine add lgZL of ammonium sulfate, 24 mgZL of adenine, 0.1 lgZL of lysine, and 50 mgZL of histidine to the M medium.
  • M2 medium (12.75 g ZL ammonium sulfate, 1.56 g ZL potassium dihydrogen phosphate, 0.33 g ZL potassium monohydrogen phosphate trihydrate, 0.08 g ZL potassium dihydrogen salt, 0.5 g ZL Shiojiri sodium, 0.41 gZL magnesium sulfate ⁇ 7 hydrate, 0.4 gZL calcium nitrate ⁇ 7 hydrate, 0.
  • Liquid culture of yeast was performed using a 50 ml test tube, a 500 ml Sakaguchi flask, a 2 L Sakaguchi flask, or a mini jar.
  • 50ml test tube 300rpm
  • 2 L Sakaguchi flask Shaking culture at 90-100 rpm.
  • the culture temperature is 30 ° C for both liquid culture and plate culture.
  • restriction enzyme treatment was performed under the reaction conditions recommended by the manufacturer, or in Molecular Cloning: A Laboratory Manual ⁇ Second Edition ⁇ old spring Harbor Laboratory Press (1989), edited by Sambrook et al.
  • pUTU-1 which is a vector for Candida maltosa having the URA3 gene as a marker and provided by the University of Tokyo as a marker
  • a vector in which the Sail restriction enzyme site in the URA3 gene has been disrupted by the Stratagene quick change kit using the primers (del-sal-5, del-sal-3) described in SEQ ID NOs: 8 and 9 pUTU-delsal was prepared.
  • the URA3 gene was cut out with Sail and Xhol, and the cut out fragment was again introduced into the Xhol site of pUT U-1 to prepare a plasmid pUTU-2.
  • the ADE1 gene on pUTA-1 (described in WO01 / 88144) was cloned into the Xhol site of pUTU-2 to prepare pUTU-2-Ade.
  • the HIS5 gene cloned into pUC119 was cloned into the Sail site of the multicloning site of pUTU-1 to produce pUTUl-His. Further, the HIS5 gene was cloned at the Sail site of the multicloning site of pUTU-2-Ade to produce pUTU-2-Ade-His.
  • the pUC19 multicloning site was changed to Notl-Sphl-Sail-Xhol-Nhel-Swal-EcoRI, and the pUC-Nx Sphl-Sall site was replaced with the 5 'end of the URA3 gene, about 350 bases.
  • primers ura-sph-5, ura-sal-3 described in SEQ ID NOS: 10 and 11, plasmid pUTU-delsaU was amplified and cloned.
  • the plasmid containing DNA-3 for URA3 disruption was prepared by substituting approximately 630 bases at the 5 'end of the ADE1 gene with the primers (ade-xho-5, ade-nhe The DNA was amplified by PCR using -3) and cloned into the Xhol-Nhel site of the plasmid containing DNA-2 for URA3 disruption to complete it.
  • the plasmid containing DNA for HIS5 disruption was prepared using the primer (his-sph-5) of SEQ ID NOS: 18 and 19 containing about 500 bases at the 5 'end of the HIS5 gene cloned into pUC119.
  • the primers (his-nhe-5, his-swa-3) described in SEQ ID NOs: 20 and 21 URA3 was disrupted from the 3, terminal portion of the HIS5 gene using the primers (his-nhe-5, his-swa-3).
  • the plasmids were prepared by sequentially closing each of the plasmids containing DNA-3 for Sphl-Sail site and Nhel-Swal site.
  • AC 16 strain was cultured overnight in YPD medium in a 10-ml large test tube.
  • the pre-cultured yeast was inoculated into YM medium so as to form a 1 ml ZlOOml Sakaguchi flask, and after culturing for 6 hours, the cells were collected.
  • the bacteria were suspended in 20 ml of 1 M Sorbitol and washed three times. Finally, the cells were suspended in 0.5 ml of 1 M Sorbitol to obtain a competent cell.
  • 0.1 mg of DNA obtained by treating a plasmid containing DNA-2 for disrupting URA3 of Example 1 with Sphl and Swal, and adding 0.1 mg of the DNA was subjected to gene transfer by an electric pulse method. After applying electric noise, 1 ml of 1 M Sorbitol was added to the cuvette, left for 1 hour under ice-cooling, and sown on an SD plate. Chromosome DNA was extracted from the resulting colonies using a chromosome extraction kit Gentle-kun (Takara Shuzo).
  • Each 5 ⁇ g of the obtained chromosomal DNA was digested with restriction enzymes using three methods, Scal, EcoT14I, ScaI + EcoT14I, cut, and electrophoresed on a 0.8% agarose gel.
  • Molecular cloning 1 Laboratory transfer from Genore to Hybond N + filter (Amersham) according to A Laboratory Manual ⁇ second Edition 9.31-9.57, Cold Spring Harbor Laboratory Press (1989).
  • the probe for Southern blot detection used was a Seal-Ndel fragment (340 bp), which is a sequence in the URA3 gene, which was enzymatically labeled with a Genelmage Labeling 'detection kit (Amersham).
  • the cells were transferred to M medium (with ammonium sulfate), cultured for 6 hours, nystatin was added to a final concentration of 0.1 OlmgZml, and the cells were further cultured for 1 hour.
  • the cells were washed and spread on an SD plate containing adenine. Genomic DNA was extracted from the red colonies that appeared.
  • the genome of the adenine-requiring strain obtained here was amplified using primers ura3-5 and ura3-3 described in SEQ ID NOs: 22 and 23, and the 0.9 kbp of the URA3 gene that was intact in the original strain was obtained. 2.3 kbp of DNA was lost, and 0.7 kbp of DNA was amplified instead.
  • a competent cell was prepared. 0.1 ml of this combined cell, and a plasmid containing DNA-3 for URA3 disruption treated with restriction enzymes SphI and Swal, were added with 0.04 mg of purified DNA, and gene transfer was performed by the electric pulse method. The cells were spread on an SD plate containing Perysin and incubated at 30 ° C. The emerged colonies were replicated on an SD plate and an SD plate containing Perysin, and a Periracil-requiring strain was selected.
  • Candida's maltosa U-35 strain was cultured overnight in 10 ml of YPD medium. After harvesting, the cells were cultured in M medium (without ammonium sulfate) for 1). After recovery of the cells, the cells were transferred to a peridine-containing M medium (with ammonium sulfate), cultured for 7 hours, and nystatin was added to a final concentration of 0.1 Olmg / ml, followed by further 1 hour of culture. After washing the cells, the cells were cultured in an M medium containing adenine and peridine (with ammonium sulfate) for 1 hour.
  • the ADE1 gene was introduced into the URA3 gene. Band disappeared, and instead, 1.2 kbp, the size of the ADE1 gene fragment remaining in the URA3 gene, was amplified.
  • the parent strain was amplified by the ADE1 gene 1.5 kbp. 1. Only the Okbp band, which is the size of the ADE1-disrupted gene, was observed.
  • Example 2 Prepare competent cells from the U-1 strain prepared in Example 2 and contain HIS5 disruption DNA
  • the plasmid was treated with the restriction enzymes Sphl and Swal, and purified DNA04 (0.4 mg) was used for gene transfer by the electric pulse method.
  • the conditions are the same as in Example 2.
  • the cells were spread on a histidine-containing SD plate and incubated at 30 ° C. Genomic DNA was recovered from the colonies that appeared.
  • the primers for the flanking site of the homology with the HIS 5 gene of the disrupting gene in the HIS 5 gene that is, the primers for the HIS 5 gene not included in the disrupting gene, his-sal2 and his- 1900 (When genomic DNA was amplified using SEQ ID NOs: 26 and 27), a strain was selected that amplifies 3.4 kbp, the size of HIS5 disruption DNA, along with an intact HIS5 gene size of 1.9 kbp band. .
  • nystatin was concentrated in the same manner as described in Example 2.
  • genomic DNA was extracted from the resulting red colonies, and genomic DNA was amplified using primers his-sal2 and his-1900 (SEQ ID NOs: 26 and 27). Amplification of only the 1.9 kbp band, which is the size of the HIS5 gene, was observed, and 3.4 kbp, the size containing the disrupting gene, was not amplified.
  • a competent cell was prepared from the obtained adenine-requiring strain, and a plasmid containing DNA for disrupting HIS5 was treated with the restriction enzymes Sphl and Swal, and purified DNA05. Gene transfer was performed. The cells were spread on an SD plate containing histidine and incubated at 30 ° C. The emerging colony was replicated on an SD plate and an SD plate containing histidine to obtain a histidine-requiring strain. Genomic DNA was extracted from the obtained histidine-auxotrophic strain, and genomic DNA was amplified using primers his-sal2 and his-1900 (SEQ ID NOs: 26 and 27).
  • the ADE1 gene was integrated into the HIS5 gene by PCR using primers his-sal2 and ade-xho-3 (SEQ ID NOs: 26 and 15). I confirmed that.
  • This histidine-requiring strain was named Candida maltosa CH-I strain.
  • nystatin was concentrated in the same manner as described in Example 2.
  • a competent cell was prepared from the AH-15 strain, a plasmid containing DNA-3 for URA3 disruption treatment was treated with the restriction enzymes Sphl and Swal, and purified DNA was collected at 0.025 mg, followed by an electric pulse method. Was introduced. The cells were spread on an SD plate containing peridine and histidine, and incubated at 30 ° C for 2 days. The emerging colonies were replicated on SD plates containing histidine and SD plates containing peridine and histidine, and strains requiring periracil were selected. From this, chromosomal DNA was recovered and subjected to PCR amplification using primers ura3-5 and ura3-3 (SEQ ID NOs: 22 and 23).
  • nystatin was concentrated in the same manner as described in Example 2.
  • the cells were spread on an SD plate containing adenine, histidine and peridine, and genomic DNA was extracted from the obtained red colonies.
  • PCR amplification was performed using primers ura3-5 and ura3-3 (SEQ ID NOs: 22 and 23).
  • the ADE1 gene was introduced into the URA3 gene.
  • a strain in which 1.2 kbp was amplified was selected.
  • the requirements for perylase, histidine, and adenine are as follows: SD plate containing adenine, histidine and peridine, S plate containing histidine and peridine Confirmed by replicating to D plate, SD plate containing adenine and peridine, SD plate containing adenine and histidine, SD plate containing adenine, SD plate containing histidine, SD plate containing peridine, and SD plate, and adenine 'histidine' A triple auxotroph was completed.
  • This strain was named Candida maltosa AHU-71.
  • the frequency of occurrence of adenine-requiring strains is similar to that when adenine-destroying DNA is used, but the time required to obtain the target strain is about half. could be shortened. Furthermore, it was easy to analyze without having to consider insertion into the target external site when introducing the disrupted gene.
  • marker genes can be easily recovered using intramolecular homologous recombination.
  • jar culture was performed to confirm that there was no problem with growth when using oils and fats as a carbon source.
  • the AHU-71 strain was transformed with the plasmid pUTU2-Ade-His, and colonies were formed on SD plates.
  • a control obtained by transforming the plasmid pUTA-1 into the AC16 strain was used.
  • Seeds were prepared by culturing in a Sakaguchi flask using 150 ml of SD medium.
  • the jar culture was performed by charging 1.8 L of the M2 medium into a 3 L jar arm Düsseldorfr manufactured by Malvisi.
  • the temperature was 32 ° C., the number of agitation was 500 rpm, and the aeration rate was lwm. Palm kernel oil was fed as a carbon source at 1.9 mlZh up to 11 hours from the start of cultivation, 3.8 mlZh up to 24 hours, and 5.7 mlZh thereafter. Over time, 10 ml of the culture was sampled, washed with methanol, dried, and the amount of dry cells was measured. As shown in FIG. 2, the AHU-71 strain showed the same growth as the AC 16 strain. From this, it was confirmed that this strain was able to disrupt the gene without impairing the ability to utilize fats and oils.
  • ALK2 gene (GenBank: X55881) promoter ARRp, a promoter with an ARR sequence added upstream, was ligated, and ALKlt, a terminator of the ALK1 gene of Candida maltosa (GenBank: D00481), was linked 3 ′ downstream.
  • ARRp binds the EcoRI Xhol linker to the Pstl site of the gene (SEQ ID NO: 4) donated by the University of Tokyo, and binds the synthetic DNA shown in SEQ ID NO: 28 to the EcoT14I site.
  • pUAL1 (WO01 / 88144) was cut with EcoRI, blunt ends were performed and ligation was performed to prepare pUAL2 from which the EcoRI cleavage site had been removed.
  • pUAL2 was digested with PuvIlZPuvI and bound to the SmalZPuvII site of pSTV28 (Takara Shuzo) to produce pSTALl.
  • This pSTALl was digested with EcoRlZNdel and ligated with ARRp as described above to produce pSTARR.
  • a peroxisome orientation signal was added to the carboxy terminus so that the phaCacl49NS of SEQ ID NO: 2 was oriented to the peroxinorme.
  • Ser-Lys-Leu (SKL) amino acid at the carboxy terminus was used as the peroxisome orientation signal after the addition.
  • phaCacl49NS that had been closed to pUCNT was transformed into type III, and the gene was amplified using the primers of SEQ ID NOs: 29 and 30 and ligated to the Ndel and Pstl sites of pSTARR to construct pSTARR-phaCacl49NS.
  • the nucleotide sequence was confirmed using the primers of SEQ ID NOs: 31 to 35.
  • the nucleotide sequence was determined using a DNA sequencer 310 Genetic Analyzer manufactured by PERIKIN ELMER APPLIED BIOSYSTEMS.
  • acetoacetyl CoA reductase gene derived from Ralstonia eutropha II H16 strain (ATCC17699) derived from Ralstonia eutropha H16 (ATCC17699) described in SEQ ID NO: 3 in which codons were converted for chemically synthesized Candida maltosa was added by amplifying a peroxisome orientation signal with the primers of SEQ ID NOs: 36 and 37, and then binding to the Ndel and Pstl sites of pSTARR described above to construct pSTARR-phbB.
  • the nucleotide sequence was confirmed by the same method as described above.
  • DNA for introducing a heterologous gene into the disrupted HIS5 gene portion on the chromosome of Candida maltosa was prepared using the DNA for disrupting HIS5 described in Example 1 .
  • the HIS5 disruption DNA was cut with Sail and Xhol to remove the ADE1 gene, and instead a plasmid was prepared in which pUTU-delsal was introduced with the URA3 gene cut with Sail and Xhol.
  • An expression cassette was cut out from the above pSTARR-phaCacl49NS with Sail and Xhoi at the Sail site of this vector, and ligated.
  • the expression cassette was excised from pS TARR-phaCacl49NS with Sail and Xhol at the Xhol site of this plasmid and ligated to prepare a plasmid containing DNA-1 for introduction.
  • a phbB expression cassette cut out from pSTARR-phbB with Sail and Xhol was bound to the Xhol site of the plasmid containing the DNA-1 for introduction to prepare a plasmid containing the DNA-2 for introduction.
  • DNA for introduction of a heterologous gene into the disrupted URA3 gene portion on the chromosome of Candida maltosa was used for the introduction of a plasmid containing DNA-1 for URA3 disruption described in Example 1 Produced.
  • a plasmid was prepared in which the HIS5 gene amplified by PCR with the primers of SEQ ID NOs: 38 and 39 was introduced into the Sail-XhoI site of the plasmid containing DNA-1 for URA3 disruption.
  • An expression cassette was cut out from the above pSTARR-pha Cacl49NS with Sail and Xhol at the Sail site of this plasmid and ligated.
  • an expression cassette was excised from pSTARR-phbB at the Xhol site of this vector using Sail and Xhol and ligated to prepare a plasmid containing DNA-3 for introduction.
  • a plasmid containing an introductory DNA-4 linked with a phbB expression cassette was also prepared.
  • FIG. 3 A schematic diagram of the prepared DNA for gene transfer 1-4 is shown in FIG.
  • the numbers in parentheses indicate the numbers from the 5 ′ end of the gene registered in GenBank of the used gene fragment.
  • ADE1 gene D00855, URA3 gene: D12720, HIS5 gene: XI 7310.
  • the thick frame indicates a homologous site with chromosomal DNA.
  • Example 6 Construction of recombinant strain
  • the competent cells for electrotransduction were prepared by the method described in Example 2.
  • 0.05 mg of DNA-1 and 2 for introduction treated with restriction enzymes Notl and Swal were electrotransformed and spread on an SD plate containing adenine and histidine.
  • Chromosomal DNA was prepared from the colonies that appeared, and PCR was performed using the primers represented by SEQ ID NOS: 26 and 27.
  • a colony in which a gene having a size corresponding to DNA-1 and 2 for introduction was amplified was selected as a strain introduced into the HIS5 gene site.
  • PCR using various primers confirmed that the introduced genes had no deletions.
  • the Candida 'maltosa AC16 strain was transformed with the pARR-149NSx2-phbB prepared in Example 5, and the strain into which two copies of the phaCacl49NS expression cassette and one copy of the phbB expression cassette were inserted was used as strain A. .
  • a strain prepared by inserting DNA-1 and 4 into the Candida maltosa AHU-71 strain and having two copies of the phaCacl49NS expression cassette and two copies of the phbB expression cassette inserted on the chromosome was designated as strain B.
  • strain C A strain prepared by using DNA-1 and 3 for introduction into Candida's maltosa AHU-71 strain and having 3 copies of the phaCacl49NS expression set and 1 copy of the phbB expression cassette inserted on the chromosome was designated as strain C.
  • strain D A strain in which 3 copies of the phaCacl 49NS expression cassette and 2 copies of the phbB expression cassette were inserted into the chromosome of Candida maltosa AHU-71 strain using DNA-2 and 3 for transfer was designated as strain D. It was.
  • the C strain was transformed with pARR-149NSx2-phbB to prepare an E strain into which 5 copies of the phaCacl49NS expression cassette and 2 copies of the phbB expression cassette were introduced.
  • the D strain was transformed with pARR-14 9NSx2-phbB to prepare an F strain in which 5 copies of the phaCacl49NS expression cassette and 3 copies of the phbB expression cassette were introduced. Transformation of pARR-149NSx2-phbB into a strain in which two copies of the phaCacl49NS expression cassette and three copies of the phbB expression cassette have been inserted into the chromosome prepared using the transfer DNAs 2 and 4, and 4 copies of the phaCacl49NS expression cassette Then, a G strain was prepared in which 4 copies of the phbB expression cassette were introduced. This G strain was named CM313-X2B and deposited internationally (FERM BP-08622).
  • control-1 a strain in which pUTA-1 was transformed into 16 Candida's maltosa AC strain (control-1) and a strain in which pARR-149NSx2 was transformed (control-2) were also prepared. Table 1 summarizes the strains produced.
  • a recombinant Candida maltosa strain into which a gene required for polymer production was introduced was cultured as follows.
  • As the medium SD medium was used for pre-culture, and M2 medium containing palm kernel oil as a carbon source was used as a production medium.
  • the glycerol stock 5001 of each recombinant strain was inoculated into a 500 ml Sakaguchi flask containing 50 ml of the preculture medium, cultured for 20 hours, and 10 vZv% was inoculated into a 2 L Sakaguchi flask containing 300 ml of the production medium. This was cultured under the conditions of a culture temperature of 30 ° C, a shaking speed of 90 rpm, and culture for 2 days.
  • the cells are collected from the culture by centrifugation, suspended in 80 ml of distilled water, and suspended in an ultrahigh-pressure homogenizer (APV, Rannie 2000, 1). (5000 Psi for 15 minutes), and then centrifuged. The obtained precipitate was washed with methanol and lyophilized. The obtained dried cells were pulverized and lg was weighed. To this, 100 ml of black form was added, and the mixture was stirred overnight to extract. The cells were removed by filtration, the filtrate was concentrated to 10 ml with an evaporator, and about 50 ml of hexane was added to the concentrate to precipitate a polymer, followed by drying.
  • API ultrahigh-pressure homogenizer
  • the composition of the obtained polymer was analyzed by NMR analysis (ClEOL, JNM-EX400).
  • the weight-average molecular weight was measured by dissolving 10 mg of the recovered dried polymer in 5 ml of black-mouthed form, and then using this solution on a Shimadzu GPC system equipped with Shodex K805L (300x8 mm, 2 tubes connected) (Showa Denko KK).
  • the form used was analyzed as the mobile phase.
  • a commercially available standard polystyrene was used as a molecular weight standard sample. Table 2 shows the results.
  • the yeast having a plurality of markers produced by gene disruption of the present invention It can be expected to be used as a recombinant host for highly efficient gene expression and production of gene expression products. Further, according to the present invention, it has become possible to efficiently produce a copolymerized polyester obtained by copolymerizing 3-hydroxyalkanoic acid having biodegradability and excellent physical properties in yeast. Furthermore, it is also possible to add a marker by gene disruption, which leads to the development of a better host.
  • a copolymerized polyester obtained by copolymerizing 3-hydroxyalkanoic acid represented by the general formula (1) having biodegradability and excellent physical properties is efficiently produced in yeast. It became possible. In addition, it has become possible to efficiently perform gene transfer multiple times in yeast.
  • FIG. 1 is a simple schematic diagram of a DNA for destruction prepared in an example.
  • FIG. 2 is a graph comparing the growth properties of novel gene-disrupted yeasts.
  • FIG. 3 is a schematic diagram of gene-transfer DNA-14 prepared and used in Example 4.
  • FIG. 4 is a schematic diagram of intramolecular homologous recombination.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

It is intended to provide a yeast which has an excellent cell productivity, can be easily handled in gene manipulation and has auxotrophy achieved by exclusively disrupting specific genes; a method of constructing the transformant; and a process for producing a gene expression product, in particular, a polyhydroxyalkanoic acid. Namely, a yeast in which a plural number of genes have been disrupted is constructed by homologous recombination. Further, genes of enzymes participating in the polyhdyroxyalkanoic acid synthesis (for example, polyhydroxyalkanoate synthase gene and acetoacetyl CoA reductase gene) are transferred into this yeast with gene disruption to give a transformant. Furthermore, this transformant is cultured so as to efficiently accumulate a polyester copolymer comprising the polyhydroxyalkanoic acid in the cells followed by the collection of the polymer from the culture.

Description

明 細 書  Specification
新規形質転換体およびそれを用いたポリエステルの製造方法  New transformant and method for producing polyester using the same
技術分野  Technical field
[0001] 本発明は、酵母のある特定の染色体 DNAを相同的組換えの原理により破壊した遺 伝子破壊株に関する。また、当該破壊株を用いた産業上有用な物質の生産に関す る。  The present invention relates to a gene-disrupted strain in which a specific chromosomal DNA of yeast is disrupted by the principle of homologous recombination. It also relates to the production of industrially useful substances using the disrupted strain.
また、本発明は、共重合ポリエステルを酵素合成するために必要な遺伝子、同遺伝 子を利用してポリエステルを発酵合成する微生物、及び、その微生物を用いたポリエ ステルの製造方法に関する。更に、同微生物の育種法にも関する。  Further, the present invention relates to a gene required for enzymatically synthesizing the copolyester, a microorganism for fermenting and synthesizing the polyester using the gene, and a method for producing a polyester using the microorganism. Furthermore, the present invention relates to a method for breeding the microorganism.
背景技術  Background art
[0002] 遺伝子組換え技術の発展により、原核生物や真核生物を利用して産業上有用な物 質を大量に製造することが可能となった。真核生物のうち酵母でもサッカロミセス属は 、古くから酒類等発酵性食品の生産に利用されてきたほか、キャンディダ'マルトーサ (Candida maltosa)では、かって微生物蛋白質として利用されたことがあり、酵母 自体の安全性も確かめられて 、る。  [0002] Advances in genetic recombination technology have made it possible to produce industrially useful substances in large quantities using prokaryotes and eukaryotes. Among eukaryotes, yeast, Saccharomyces, has long been used for the production of fermentable foods such as alcoholic beverages, and has been used as a microbial protein in Candida maltosa for a long time. The safety of this has been confirmed.
[0003] 酵母は増殖が速ぐ一般に細菌よりも高い細胞密度で培養することができる。さらに、 酵母は、細菌と比べて菌体と培養液との分離が容易であることから、生産物の抽出精 製工程をより簡単にすることも可能である。こうした特性を生力して、酵母は、組換え DNAによる有用生産物の製造宿主として利用されており、その有用性が実証されて いる。  [0003] Yeasts can be cultured at a higher cell density than bacteria, which generally grow faster. Furthermore, yeast is easier to separate bacterial cells and culture liquid than bacteria, so that the process of extracting and purifying the product can be simplified. By virtue of these properties, yeast has been used as a host for producing useful products from recombinant DNA, and its usefulness has been demonstrated.
[0004] 種々の酵母のうち、キャンディダ属酵母はサッカロミセス属と異なり、好気的条件下で の培養でエタノールを生成せず、それによる増殖阻害も受けないことから、高密度で の連続培養による効率的な菌体製造及び物質生産が可能である。さらに、無胞子酵 母キャンディダ'マルトーサは、炭素鎖 C  [0004] Among various yeasts, Candida yeast differs from Saccharomyces in that it does not produce ethanol in aerobic culture and does not inhibit growth due to it, so continuous culture at high density is possible. Thus, efficient cell production and substance production are possible. In addition, the spore-free yeast Candida maltosa has a carbon chain C
6一 C の直鎖炭化水素やパーム油、ヤシ油 40  6-C straight chain hydrocarbons, palm oil, coconut oil 40
等の油脂を唯一の炭素源として資化 ·生育できると 、う特性を有して!/、る。この特性 は、疎水性ィ匕学物質の変換による有用物質の生産や反応の場として実用上有利で あることから、種々の化合物の生産への利用が期待されている(非特許文献 1参照) 。また、その特性を生力してキャンディダ'マルトーサの遺伝子組換えによる有用物質 の生産への利用も期待されており、そのための遺伝子発現系の開発が精力的に行 われて来た (特許文献 1、 2参照)。最近では、キャンディダ'マルトーサは、遺伝子組 換えにより直鎖ジカルボン酸の生産 (特許文献 3参照)や生分解性プラスチック (特許 文献 4参照)に利用できることが公開されている。 It has the property of assimilating and growing fats and oils as the only carbon source! Since this property is practically advantageous as a place for producing useful substances or converting by converting hydrophobic substances, it is expected to be used for production of various compounds (see Non-Patent Document 1). . In addition, it is expected that Candida's maltosa can be used for production of useful substances by genetic recombination by virtue of its properties, and gene expression systems for this purpose have been vigorously developed (Patent Document 1, 2). Recently, it has been disclosed that Candida maltosa can be used for producing linear dicarboxylic acids by genetic recombination (see Patent Document 3) and biodegradable plastics (see Patent Document 4).
[0005] このように、キャンディダ'マルトーサ用の宿主ベクター系は早くから開発され、また、 突然変異誘起処理により栄養要求性が付加された変異株が多数取得されているに もかかわらず、組換え体を用いた新たな有用化学物質生産の工業ィ匕はされていない 。この理由に、野生株と同等の増殖能や直鎖炭化水素鎖の資化性能を持つ適当な 栄養要求性を持ったキャンディダ 'マルトーサが取得されていないことが挙げられる。 キャンディダ'マルトーサを突然変異処理することによって開発された CHA1株は、 A DEI遺伝子と HIS5遺伝子に変異があることが確認されているが(非特許文献 2参照 )、増殖能が野生株より劣る。これは目的の箇所以外の変異によるものと考えられて いる。 [0005] Thus, a host vector system for Candida maltosa was developed from an early stage, and despite the fact that many auxotrophic mutants were obtained by mutagenesis, There is no industrial drama of producing new useful chemical substances using the body. The reason for this is that no Candida maltosa with appropriate auxotrophy has been obtained that has the same growth ability as the wild type and the ability to assimilate linear hydrocarbon chains. The CHA1 strain developed by mutating Candida's maltosa has been confirmed to have mutations in the A DEI gene and the HIS5 gene (see Non-Patent Document 2), but its growth ability is inferior to that of the wild strain. . This is thought to be due to mutations other than the target.
[0006] 遺伝子組換えによる物質生産の宿主として酵母を用いる場合、大腸菌等を用いる場 合と同様、目的遺伝子が導入されたことを確認することのできる選択マーカー (選択 符号)を利用する。酵母の場合、薬剤耐性を付与する選択マーカー遺伝子としては、 シクロへキシミドゃ G418あるいはハイグロマイシン B等の耐性を付与する遺伝子等が 用いられる。しかしながら、酵母に対して切れのよい薬剤がないため目的遺伝子の導 入されていない菌も若干生育してしまう現象があること、徐々に薬剤耐性度が上昇す ること等の問題が知られている。更に、酵母の菌株ごとにその薬剤耐性の程度は異 なり、薬剤耐性を付与するために必要な薬剤耐性遺伝子の酵母中での発現量が異 なってくる。そのため、個々の酵母に薬剤耐性を付与するためには、薬剤耐性遺伝 子を発現させるためのプロモーターを適切に選択、あるいは作製しなければならない 。特にキャンディダ'マルトーサにおいてはシクロへキシミド耐性を初め力も持っており (非特許文献 3参照)、その他先に述べた様な各種薬剤に対する耐性の程度も知ら れていない。更にキャンディダ'マルトーサをはじめとして一部の酵母種は、コドンの 翻訳のされ方が大腸菌ゃヒト等の一般的な様式とは異なることが知られて 、る (非特 許文献 4参照)。即ち、薬剤耐性遺伝子を直接使用することができない可能性が高い [0006] When yeast is used as a host for substance production by genetic recombination, a selection marker (selection symbol) that can confirm that the target gene has been introduced is used, as in the case of using E. coli or the like. In the case of yeast, a gene that imparts resistance, such as cycloheximide ゃ G418 or hygromycin B, is used as a selectable marker gene that imparts drug resistance. However, there are known problems such as the fact that bacteria that do not carry the target gene may grow slightly because there is no sharp drug for yeast, and that the degree of drug resistance gradually increases. I have. Furthermore, the degree of drug resistance differs for each yeast strain, and the amount of expression of the drug resistance gene required for conferring drug resistance in yeast differs. Therefore, in order to impart drug resistance to each yeast, a promoter for expressing the drug resistance gene must be appropriately selected or prepared. In particular, Candida's maltosa has a strong initial resistance to cycloheximide (see Non-Patent Document 3), and the degree of resistance to various drugs as described above is not known. In addition, some yeast species, such as Candida maltosa, are known to codon translation in a manner that is different from the general format of E. coli and humans. Reference 4). That is, there is a high possibility that the drug resistance gene cannot be used directly.
[0007] そのため、適当な栄養要求性の選択マーカーが好んで使用される。栄養要求性の 選択マーカーを利用するためには、栄養要求性の付加された変異株を取得する必 要がある。従来、栄養要求性の付カ卩には、ニトロソグアジニンやェチルメタンスルホン 酸等の変異源を用いたランダム変異誘起処理によって変異株を取得して 、た。しか し、この変異導入法では目的の栄養要求株が取得できるが、変異が目的の箇所以 外にも入っている可能性が否定できない。この事が、先に述べたように酵母を宿主と して開発する場合の障害となり、物質生産の場としての利用が、大腸菌等と比較して 遅れている原因といえる。 [0007] Therefore, an appropriate auxotrophic selection marker is preferably used. In order to use an auxotrophic selection marker, it is necessary to obtain a mutant to which auxotrophy has been added. Conventionally, a mutant strain has been obtained from auxotrophic rice cake by random mutagenesis using a mutagen such as nitrosoguanidine or ethyl methanesulfonic acid. However, although the target auxotroph can be obtained by this mutagenesis method, it cannot be denied that the mutation may be present at a site other than the target site. As described above, this is an obstacle to development using yeast as a host, and it can be said that utilization as a place for producing substances is delayed compared to E. coli and the like.
[0008] さらに、ランダム変異により取得された変異株のもう一つの問題点に、変異箇所の自 然復帰がある。この場合、培養中に復帰株が優先的に増殖するため、組換え菌では 物質生産性が低下することがある。また、復帰株は、自然界に流出した場合、生存- 増殖する可能性が高ぐ安全規準の面から問題がある。従って、ランダム変異導入に より取得した菌株を物質の生産の場として利用するのは適当でない。そこで、特定の アミノ酸やビタミン等の合成に関与する遺伝子のみが破壊された破壊株の取得が望 まれており、 ADE1遺伝子のみを破壊することにより栄養要求性を付加したキャンデ イダ ·マルトーサとして、 AC16株が作製された (特許文献 5参照)。し力しながら、本 菌株ではマーカーが 1種類であることから導入できる遺伝子に限界があることが問題 であった。  [0008] Another problem of the mutant strain obtained by random mutation is the natural return of the mutation site. In this case, since the revertant strain grows preferentially during the culturing, the productivity of the recombinant bacterium may decrease. In addition, the reverted strain has a problem in terms of safety standards that have a high possibility of surviving and multiplying when it flows out into the natural world. Therefore, it is not appropriate to use a strain obtained by random mutagenesis as a place for producing a substance. Therefore, it is desired to obtain a disrupted strain in which only genes involved in the synthesis of specific amino acids, vitamins, and the like have been disrupted, and AC16 has been added as an auxotrophic candy by disrupting only the ADE1 gene. A strain was produced (see Patent Document 5). However, this strain has a problem in that the gene that can be introduced is limited due to the single marker.
[0009] 酵母中に遺伝子を導入する方法には、プラスミドベクターを用いる方法と染色体遺伝 子に組み込む方法がある。  [0009] Methods for introducing a gene into yeast include a method using a plasmid vector and a method for incorporating the gene into a chromosomal gene.
酵母の菌体内で自律複製の可能な遺伝子であるプラスミドベクターは、 1細胞に 1コ ピー程度存在する型 (YCp型)と、多コピー存在しうる型 (YRp型)がそれぞれの酵母 種に対して開発されつつある。後者のプラスミドベクターを用いる方力 目的遺伝子 産物の発現量を増カロさせるのに有利であると考えられる力 一般的にはプラスミドべ クタ一の安定性に問題があることが多ぐ産業上有利に利用することができない場合 が多い。このような場合、 YCp型を用い、目的遺伝子を発現させるためのプロモータ 一を強力なものにしたり、導入する遺伝子の数 (コピー数)を増加させることが検討さ れる。酵母でもプラスミドベクターを用いて遺伝子を導入する場合には、導入遺伝子 の大きさに制限を受けることが知られている。用いるプラスミドベクターの種類により異 なるが、複数種の遺伝子を導入したい場合や、単一の遺伝子でも複数個導入したい 場合等、あまりにも大きなサイズの遺伝子を含むベクターは、ベクター作製上の困難 さ、酵母へのベクターの導入効率の低下、酵母中での目的遺伝子の欠失等の点で 産業上有利とは言い難い。このような場合、染色体中に目的遺伝子を組み込むこと により解決することができる。また、染色体中に組み込んだ場合の方が、目的遺伝子 が高発現する場合もある。しかしながら、選択マーカーが 1種類しかない場合、 1度そ の選択マーカーを用いてしまうと、もはやその遺伝子組換え株は選択マーカーが無く 、複数回の遺伝子導入が不可能である。 Plasmid vectors, which are genes capable of autonomous replication in yeast cells, are classified into two types: a type that has about one copy in one cell (YCp type) and a type that can have multiple copies (YRp type). Is being developed. Use of the latter plasmid vector Power that is considered to be advantageous for increasing the expression level of the target gene product In general, there are many problems with the stability of the plasmid vector, which is an industrial advantage In many cases, it cannot be used. In such a case, a promoter for expressing the target gene using YCp type It is considered to make one more powerful or to increase the number (copy number) of genes to be introduced. It is known that when a gene is introduced into a yeast using a plasmid vector, the size of the introduced gene is limited. Depending on the type of plasmid vector used, it is difficult to prepare a vector containing too large a gene, such as when multiple types of genes are to be introduced or when a single gene is to be introduced. It is hardly industrially advantageous in that the efficiency of introduction of the vector into yeast decreases, the target gene is deleted in yeast, and the like. In such a case, the problem can be solved by integrating the target gene into the chromosome. Also, the target gene may be more highly expressed when integrated into the chromosome. However, when there is only one type of selectable marker, once the selectable marker is used, the transgenic strain no longer has the selectable marker, and multiple gene transfer is impossible.
これらのことから、栄養要求性マーカーを複数持つ遺伝子破壊酵母が望まれて!/ヽた  Therefore, a gene-disrupted yeast having multiple auxotrophic markers is desired!
[0010] 先に述べたように、キャンディダ'マルトーサの変異株として、 ADE1遺伝子やヒスチ ジノール ホスフェート アミノトランスフェラーゼ(HIS5遺伝子)、ォロチジン 5,—ホ スフエートデカルボキシレース (URA3遺伝子)等の遺伝子変異株が多数取得されて いる(非特許文献 1参照)。しかし、ある特定の遺伝子のみを特異的に破壊することに より複数の栄養要求性を付加したキャンディダ'マルトーサは、同酵母が部分二倍体 を示すことから取得することが困難であった。このため、酵母の特性を利用し、かつ遺 伝子組換えによる産業上有用な物質生産系を構築するためには、遺伝子破壊による 複数の選択マーカーを有する宿主の開発が望まれていた。また、キャンディダ'マル トーサに限らず、そのような遺伝子破壊株が望まれている。 [0010] As described above, as mutants of Candida maltosa, gene mutations such as ADE1 gene, histidinol phosphate aminotransferase (HIS5 gene), orotidine 5, -phosphate decarboxylace (URA3 gene), etc. Many strains have been acquired (see Non-Patent Document 1). However, it was difficult to obtain Candida's maltosa to which multiple auxotrophy was added by specifically disrupting only a specific gene because the yeast showed a partial diploid. For this reason, in order to utilize the characteristics of yeast and to construct an industrially useful substance production system by gene recombination, it has been desired to develop a host having a plurality of selectable markers by gene disruption. Further, not only Candida maltosa but also such a gene-disrupted strain is desired.
さらに、複数の選択マーカーを有するキャンディダ'マルトーサによる、直鎖炭化水素 、パーム油、ヤシ油等の油脂を唯一の炭素源として資化 ·生育するという特性を生か した産業上有用な物質の生産が期待されている。  In addition, Candida maltosa, which has multiple selectable markers, produces industrially useful substances by utilizing the characteristics of assimilating and growing straight-chain hydrocarbons, palm oil, palm oil, and other fats and oils as the sole carbon source. Is expected.
[0011] また、現在までに数多くの微生物において、エネルギー貯蔵物質としてポリヒドロキシ アルカン酸 (以下、 PHAと略す)などのポリエステルを菌体内に蓄積することが知られ ている。その代表例としては 3—ヒドロキシ酪酸(以下、 3HBと略す)のホモポリマーで あるポリ— 3—ヒドロキシ酪酸(以下、 P (3HB)と略す)であり、 1925年にバシラス'メガ テリゥム(Bacillus megaterium)で最初に発見された (非特許文献 5)。 P (3HB)は 熱可塑性高分子であり、自然環境中で生物的に分解されることから、環境にやさしい プラスチックとして注目されてきた。しかし、 P (3HB)は結晶性が高いため、硬くて脆 い性質を持っていることから実用的には応用範囲が限られる。この為、この性質の改 良を目的とした研究がなされてきた。 [0011] In addition, it is known that many microorganisms accumulate polyesters such as polyhydroxyalkanoic acid (hereinafter abbreviated as PHA) as an energy storage substance in cells. A typical example is a homopolymer of 3-hydroxybutyric acid (hereinafter abbreviated as 3HB). A poly-3-hydroxybutyric acid (hereinafter abbreviated as P (3HB)), which was first discovered in 1925 in Bacillus megaterium (Non-Patent Document 5). P (3HB) is a thermoplastic polymer, which has been attracting attention as an environmentally friendly plastic because it is biodegradable in the natural environment. However, P (3HB) has high crystallinity and is hard and brittle, so its practical application is limited. For this reason, research has been conducted to improve this property.
[0012] その中で、 3—ヒドロキシ酪酸(3HB)と 3—ヒドロキシ吉草酸(以下、 3HVと略す)とから なる共重合体 (以下、 P (3HB-CO-3HV) t 、う)の製造方法が開示されて!、る(特 許文献 6、 7)。この P (3HB— co—3HV)は P (3HB)に比べると柔軟性に富むため、 幅広い用途に応用できると考えられた。し力しながら、実際のところ P (3HB— co— 3H V)は 3HVモル分率を増力!]させても、それに伴う物性の変化が乏しぐ特にフィルム などに使用するのに要求される程、柔軟性が向上しないため、シャンプーボトルや使 い捨て剃刀の取っ手など硬質成型体の分野にし力利用されな力つた。  Among them, production of a copolymer (hereinafter, P (3HB-CO-3HV) t) composed of 3-hydroxybutyric acid (3HB) and 3-hydroxyvaleric acid (hereinafter abbreviated as 3HV) The method has been disclosed! (Patent Documents 6, 7). This P (3HB-co-3HV) is considered to be applicable to a wide range of applications because it is more flexible than P (3HB). As a matter of fact, P (3HB—co—3H V) actually increased the 3HV mole fraction! However, the change in physical properties is not so good, and the flexibility is not improved as much as required especially for films, etc., so it is used in the field of rigid molded products such as shampoo bottles and disposable razor handles. It was not used.
[0013] 近年、 3HBと 3—ヒドロキシへキサン酸(以下、 3HHと略す)との 2成分共重合ポリエス テル (以下、 P (3HB-CO-3HH) t 、う)およびその製造方法につ!、て研究がなされ た (たとえば、特許文献 8、 9参照)。これら特許文献の P (3HB— co— 3HH)の製造方 法は、土壌より単離されたァエロモナス 'キヤビエ(Aeromonas caviae)を用いてォ レイン酸等の脂肪酸ゃォリーブオイル等の油脂力 発酵生産するものであった。また 、 P (3HB— co— 3HH)の性質に関する研究もなされている(非特許文献 6参照)。こ の報告では、炭素数が 12個以上の脂肪酸を唯一の炭素源として A. caviaeを培養し 、 3HHが 11一 19mol%の P (3HB— co— 3HH)を発酵生産している。この P (3HB— CO-3HH)は 3HHモル分率の増加にしたがって、 P (3HB)の硬くて脆い性質から次 第に柔軟な性質を示すようになり、 P (3HB-CO-3HV)を上回る柔軟性を示すことが 明ら力にされた。し力しながら、上記製造方法では菌体量 4gZL、ポリマー含量 30% でありポリマー生産性が低いことから、実用化に向け更に高い生産性が得られる方法 が探索された。  [0013] In recent years, a two-component copolymer polyester (hereinafter, referred to as P (3HB-CO-3HH) t) of 3HB and 3-hydroxyhexanoic acid (hereinafter, abbreviated as 3HH) and a method for producing the same have been described. (See, for example, Patent Documents 8 and 9). The method for producing P (3HB-co-3HH) in these patent documents is a method for fermentative production of oils and fats such as fatty acids such as oleic acid by using aeromonas caviae isolated from soil. Met. Also, studies have been made on the properties of P (3HB-co-3HH) (see Non-Patent Document 6). In this report, A. caviae is cultured using fatty acids having 12 or more carbon atoms as the sole carbon source, and 3HH fermentatively produces 11 to 119 mol% of P (3HB-co-3HH). As P (3HB—CO-3HH) increases in mole fraction of 3HH, P (3HB) changes from hard and brittle properties to soft properties in turn, and P (3HB-CO-3HV) It was evident to show greater flexibility. However, with the above production method, the bacterial mass was 4 gZL, the polymer content was 30%, and the polymer productivity was low. Therefore, a method that could further increase the productivity for practical use was searched.
[0014] P (3HB— co— 3HH)を生産するァエロモナス'キヤビエ(A. caviae)より、ポリヒドロキ シアルカン酸合成酵素(以下、 PHA合成酵素と略す)遺伝子がクローニングされた( 特許文献 10、非特許文献 7参照)。本遺伝子をラルストニア'ユートロファ (Ralstonia eutropha,旧 Alcaligenes eutrophus)に導入した形質転^ ¾を用い、炭素源と して植物油脂を用いて培養した結果、菌体含量 4g/L、ポリマー含量 80%が達成さ れた (非特許文献 8参照)。また、大腸菌等の細菌や植物を宿主とした P (3HB— co— 3HH)の製造方法も開示されている力 その生産性は記載されていない (例えば、特 許文献 11参照)。 [0014] A polyhydroxyalkanoic acid synthase (hereinafter abbreviated as PHA synthase) gene has been cloned from Aeromonas' caviae, which produces P (3HB-co-3HH) ( See Patent Document 10 and Non-Patent Document 7). This gene was transformed into Ralstonia eutropha (formerly Alcaligenes eutrophus) and cultured using vegetable oil as a carbon source.As a result, the bacterial cell content was 4 g / L and the polymer content was 80%. Achieved (see Non-Patent Document 8). Also disclosed is a method for producing P (3HB-co-3HH) using a bacterium such as Escherichia coli or a plant as a host. The productivity is not described (for example, see Patent Document 11).
[0015] 上記ポリエステル P (3HB-CO-3HH)は 3HHモル分率を変えることで、硬質ポリマ 一から軟質ポリマーまで幅広 、物性を持っため、テレビの筐体などのように硬さを要 求されるものから糸やフィルムなどのような柔軟性を要求されるものまで、幅広 、分野 への応用が期待できる。し力しながら、先に述べた製造方法では P (3HB-co— 3HH )の生産性が依然として低ぐ P (3HB— co— 3HH)の実用化に向けた生産方法として は未だ不十分と 、わざるを得な 、。  [0015] The above polyester P (3HB-CO-3HH) has a wide range of properties from a hard polymer to a soft polymer by changing the mole fraction of 3HH, and thus requires hardness like a TV housing. It is expected to be applied to a wide range of fields, from those that require flexibility such as yarns and films. However, the productivity of P (3HB-co-3HH) is still low with the above-mentioned production method, and it is still insufficient as a production method for the practical use of P (3HB-co-3HH). I have to know.
[0016] 菌体生産性の高 、酵母を宿主とした生分解性ポリエステルの生産研究が幾つか報 告されている。 Leafらは、酵母の一種であるサッカロミセス'セレピシェ(Saccharom yces cerevisiae)にラルストニア ·ユートロファ(R. eutropha)の PHA合成酵素遺 伝子を導入して形質転換体を作製し、グルコースを炭素源として培養することによつ て P (3HB)の蓄積を確認している(非特許文献 9参照)。しかし、上記研究で生産さ れるポリマー含量は 0. 5%に留まり、そのポリマーは硬くて脆い性質を有する P (3H B)であった。  [0016] Several studies on the production of biodegradable polyester using yeast as a host have been reported. Leaf et al. Introduced a PHA synthase gene of R. eutropha into Saccharomyces cerevisiae, a type of yeast, to produce a transformant, and cultured it using glucose as a carbon source. Thus, accumulation of P (3HB) has been confirmed (see Non-Patent Document 9). However, the polymer content produced in the above study was only 0.5%, and the polymer was P (3H B), which was hard and brittle.
[0017] 脂肪酸を炭素源として、酵母サッカロミセス'セレピシェにシユードモナス属(Psudom onas aeruginosa)由来の PHA合成酵素遺伝子を発現させ、炭素数 5以上のモノ マーを含む共重合ポリマーを生産する検討もなされた。この場合も生産されるポリマ 一含量は 0. 5%に留まった (非特許文献 10参照)。  [0017] It has also been studied to produce a PHA synthase gene derived from Pseudomonas aeruginosa in yeast Saccharomyces cerevisiae using fatty acids as a carbon source to produce a copolymer containing a monomer having 5 or more carbon atoms. . Also in this case, the content of the produced polymer was 0.5% (see Non-Patent Document 10).
[0018] 別の検討によれば、 PHA合成酵素遺伝子と共に、ァセチルー CoAをニ量ィ匕して 3— ヒドロキシブチリルー CoAを合成する βケトチオラーゼ、 NADPH依存性還元酵素遺 伝子を導入し、菌体重量当たり 6. 7%のポリマーの蓄積を確認している(非特許文献 11)。し力しながら、これらのポリマーは硬くて脆い性質を有する Ρ (3ΗΒ)であった。  According to another study, along with the PHA synthase gene, β-ketothiolase, which synthesizes acetyl-CoA to synthesize 3-hydroxybutylyl-CoA, and NADPH-dependent reductase gene were introduced. It has been confirmed that 6.7% of the polymer is accumulated per body weight (Non-Patent Document 11). Under the pressure, these polymers were Ρ (3ΗΒ) with hard and brittle properties.
[0019] 更に、酵母ピキア'パストリス(Pichia Pastoris)のペルォキノームに、シユードモナ ス属(Psudomonas aeruginosa)由来の PHA合成酵素遺伝子を配向発現させ、 ォレイン酸を炭素源としてポリエステルを生産させる検討もなされて 、る。この研究に よれば乾燥菌体当たり 1重量%のポリマーを蓄積することが示されている (非特許文 献 12参照)。し力しこの程度のポリマー生産性では、工業的生産のためには全く不十 分である。 [0019] In addition, the yeast Pichia Pastoris (Pichia Pastoris) with peromokinome, pseudomona Studies have been conducted on the orientation expression of a PHA synthase gene derived from Pseudomonas aeruginosa and production of polyester using oleic acid as a carbon source. This study shows that it accumulates 1% by weight of polymer per dry cell (see Non-Patent Document 12). However, this level of polymer productivity is completely inadequate for industrial production.
[0020] 酵母は増殖が早く菌体生産性が高いことで知られている。その中でもキャンディダ (C andida)属に属する酵母は過去 Single Cell Proteinとして注目され、ノルマルパ ラフィンを炭素源とした飼料用菌体生産が研究されてきた。また、近年キャンディダ( Candida)属の宿主ベクター系が開発され、遺伝子組換え技術を用いた物質生産が 報告されている(非特許文献 13参照)。キャンディダ'ユーティリス(Candida utilis) を宿主とした αアミラーゼの生産性は約 12. 3gZLと高ぐこのように高い物質生産 能力を有するキャンディダ (Candida)属は、ポリマー生産用宿主として期待される。 さらに、細菌と比べて菌体と培養液との分離が容易であることから、ポリマーの抽出精 製工程をより簡単にすることも可能である。  [0020] Yeasts are known to grow quickly and have high cell productivity. Among them, yeast belonging to the genus Candida has attracted attention as a single cell protein in the past, and production of feed cells using normal paraffin as a carbon source has been studied. In recent years, a host vector system of the genus Candida has been developed, and production of a substance using gene recombination technology has been reported (see Non-Patent Document 13). The productivity of α-amylase using Candida utilis as a host is as high as about 12.3 gZL. The genus Candida, which has such a high ability to produce substances, is expected as a host for polymer production. You. Furthermore, since the separation of bacterial cells and culture solution is easier than that of bacteria, it is possible to further simplify the process of polymer extraction and purification.
そこで、優れた物性を有する P (3HB-CO-3HH)をキャンディダ (Candida)属酵母 などを用いて生産する方法が開発されているが、ポリマー生産性の点で更に改良を 加える必要があった (特許文献 11参照)。菌体当たりのポリマー生産量を向上させる 方法の一つとして、 PHA合成に関与する酵素遺伝子の菌体内発現量を増力!]させる 方法が想定された。  Therefore, a method has been developed to produce P (3HB-CO-3HH), which has excellent physical properties, using yeasts of the genus Candida, but it is necessary to make further improvements in terms of polymer productivity. (See Patent Document 11). One of the ways to increase the amount of polymer produced per cell is to increase the intracellular expression of enzyme genes involved in PHA synthesis! A method was assumed.
[0021] 酵母の菌体内で自律複製の可能な遺伝子であるベクターは、 1細胞に 1コピー程度 存在する型 (YCp型)と、多コピー存在しうる型 (YRp型)がそれぞれの酵母種に対し て開発されつつある。キャンディダ 'マルトーサにおいても M. Kawamuraらにより自 律的複製に関わる配列(Autonomously replicating sequence :以下 ARSと略 す)およびセントロメァ配列(以下 CENと略す)を含む高効率形質転換の原因領域( Transformation ability:以下 TRAと略す)が見出され(非特許文献 14参照)、 T RA全領域を有する安定性の高 、低コピーベクターと、導入遺伝子高発現が期待で きる CEN領域を除 、た高コピー数ベクターが開発されて 、る (非特許文献 15参照) 。し力しながら、キャンディダ'マルトーサなどの高コピーベクターは安定性に問題が あり、産業上有利に利用することができない。従って、高コピー数ベクターを利用して[0021] Vectors, which are genes capable of autonomous replication in yeast cells, are classified into two types: a type in which about one copy exists in one cell (YCp type) and a type in which multiple copies can exist in one cell (YRp type). Is being developed. In Candida's maltosa, M. Kawamura et al. Reported that the transformation-causing region (Autonomously replicating sequence: ARS) and the centromeric sequence (CEN) by highly efficient transformation (Transformation ability). (Hereinafter abbreviated as TRA) (see Non-Patent Document 14), and a high-copy vector excluding the stable and low-copy vector having the entire TRA region and the CEN region where high expression of the transgene can be expected. Several vectors have been developed (see Non-Patent Document 15). However, high copy vectors such as Candida's maltosa have stability problems. And cannot be used industrially advantageously. Therefore, using high copy number vectors
PHA合成に関与する酵素遺伝子の菌体内発現量を増加させることでポリマー生産 性を向上させることは困難であった。 It has been difficult to improve the productivity of polymers by increasing the expression level of the enzyme genes involved in PHA synthesis in cells.
[0022] また、 PHA合成に関与する酵素遺伝子の菌体内発現量を増カロさせる方法としては、 当該遺伝子を発現させるプロモーターを強力なものにする方法が考えられる。キャン デイダ 'マルトーサにおいて種々のプロモーターがクロー-ングされている。解糖系の 酵素として知られて 、るホスホダリセリン酸キナーゼ(以下 PGKと略す)のプロモータ 一は、グルコースの存在下で強力な遺伝子発現を誘導することが知られている。更に 、ガラクトース存在下にお ヽて強力な遺伝子発現誘導活性を有する GALプロモータ 一もクロー-ングされている(非特許文献 16参照)。し力しながら、一例として P (3HB -CO-3HH)の生産に好適な油脂'脂肪酸あるいはノルマルアルカン(n—アルカン) を炭素源とした場合に、これらのプロモーターはほとんど機能しない。更に GALプロ モーターはガラクトースを炭素源としたときにのみ誘導されることから、高価なガラタト ースを利用しなければならな 、点で工業生産には適さな 、と 、える。 [0022] As a method for increasing the amount of intracellular expression of an enzyme gene involved in PHA synthesis, a method of strengthening the promoter for expressing the gene can be considered. Various promoters have been cloned in Candida maltosa. Known as a glycolytic enzyme, a promoter of phosphodalicerate kinase (hereinafter abbreviated as PGK) is known to induce strong gene expression in the presence of glucose. Furthermore, a GAL promoter having a strong gene expression-inducing activity in the presence of galactose has also been cloned (see Non-Patent Document 16). However, these promoters hardly function when, for example, a fat or oil fatty acid or normal alkane (n-alkane) suitable for the production of P (3HB-CO-3HH) is used as a carbon source. Furthermore, since the GAL promoter is induced only when galactose is used as a carbon source, it is necessary to use expensive galatose, which means that it is suitable for industrial production.
[0023] キャンディダ'マルトーサは n—アルカン酸化系の酵素をアルカンの存在下に高生産 する。特に、アルカンの初発酸ィ匕を行うチトクローム P450をコードする遺伝子(以下 ALKと略す)が強く誘導される(非特許文献 17参照)。しかしながら、これらのプロモ 一ターでも PGKや GALプロモーターと比較するとその活性は低い。更に、構成的に 発現するァクチン合成酵素 1遺伝子(以下 ACT1と略す)などのプロモーターは、活 性として十分な強度を有して 、るとは言えな 、。一例として P (3HB-CO-3HH)の生 産に好適な油脂'脂肪酸あるいは n—アルカンを炭素源とした場合、現在の所、 ALK 2プロモーターの上流に ARR (アルカン レスポンシブル リージョン)配列を複数個 付加することによりプロモーター活性を向上させた ARRプロモーター(非特許文献 1 8参照)より強力なプロモーターは開発されておらず、従って、 PHA合成に関与する 酵素遺伝子の菌体内発現量を増カロさせる方法として強力なプロモーターを利用する ことは現実的でない。 [0023] Candida maltosa produces high levels of n-alkane oxidation enzymes in the presence of alkanes. In particular, a gene encoding cytochrome P450 (hereinafter abbreviated as ALK), which carries out the first acidification of alkanes, is strongly induced (see Non-Patent Document 17). However, these promoters also have lower activity compared to PGK and GAL promoters. Furthermore, promoters such as the actin synthase 1 gene (hereinafter, abbreviated as ACT1) that is constitutively expressed do not have sufficient strength for activity. As an example, if a fatty acid or fatty acid or n-alkane suitable for the production of P (3HB-CO-3HH) is used as the carbon source, at present, there are multiple ARR (alkane Responsible Region) sequences upstream of the ALK2 promoter. No promoter has been developed that is more powerful than the ARR promoter (see Non-Patent Document 18) whose promoter activity has been improved by the addition thereof. Therefore, a method for increasing the amount of intracellular expression of an enzyme gene involved in PHA synthesis has been developed. It is not practical to use a strong promoter.
[0024] これとは別に、ベクターに PHA合成に関与する酵素遺伝子の発現ユニットを多数導 入する方法なども考えられるが、酵母でもベクターを用いて遺伝子を導入する場合に は、導入遺伝子の大きさに制限を受けることが知られており、あまりにも大きなサイズ の遺伝子を含むベクターは、作製上の困難さ、酵母への導入効率、酵母中での安定 性などの点で産業上現実的とは言 ヽ難 、。 [0024] Separately from this, a method of introducing a large number of expression units of an enzyme gene involved in PHA synthesis into a vector can be considered. Is known to be limited by the size of the transgene, and vectors containing genes of too large a size are difficult to construct, transfer efficiency into yeast, and stability in yeast. It is difficult to say that it is industrially realistic.
[0025] また、遺伝子を増幅することにより、目的酵素活性を増加させる方法が報告されてい る(非特許文献 19参照)。これは、シクロへキシミド感受性の酵母に対して、シクロへ キシミド耐性遺伝子と目的遺伝子を連結して導入し、シクロへキシミド高濃度耐性株 を取得することにより目的遺伝子高発現株を取得している。し力しながら、キャンディ ダ.マルトーサはシクロへキシミド耐性を有していることが知られており、シクロへキシミ ド耐性遺伝子を利用したこのような遺伝子増幅により、 PHA合成に関与する酵素遺 伝子の菌体内発現量を増カロさせることは困難である。  [0025] In addition, a method for increasing the activity of a target enzyme by amplifying a gene has been reported (see Non-Patent Document 19). In this method, a cycloheximide-resistant gene and a target gene are linked and introduced into a cycloheximide-sensitive yeast to obtain a high-concentration cycloheximide-resistant strain, thereby obtaining a strain with high expression of the target gene. . However, Candida maltosa is known to be resistant to cycloheximide, and such gene amplification using cycloheximide-resistant genes allows the transfer of enzymes involved in PHA synthesis. It is difficult to increase the amount of expression in the bacterial cells of the offspring.
[0026] そこで、上記の問題を回避して、キャンディダ'マルトーサにおいて PHA合成に関与 する酵素遺伝子の菌体内発現量を増加させ、生分解性ポリエステルを高生産させる 方法の開発が望まれていた。  [0026] Therefore, it has been desired to develop a method for avoiding the above-described problems and increasing the intracellular expression level of an enzyme gene involved in PHA synthesis in Candida 'maltosa to produce high biodegradable polyester. .
[0027] 更に、一般的にポリエステルの分子量が物性やカ卩ェ性に大きな影響を与えることが 知られている。微生物における PHA生産においては、菌体当たりの酵素の分子数を 過度に増すと基質律速状態となり、生産されるポリマーの分子量低下が起こることが 知られている(非特許文献 20、 21参照)。従って、菌体内に生産されるポリエステル の分子量を制御する方法の開発が望まれていた。また生産されるポリエステルが、共 重合体である場合、モノマー組成が物性や加工性に大きく影響を与えることも知られ ている。このため、共重合ポリエステルのモノマー組成を制御する方法の開発も望ま れていた。  [0027] Further, it is generally known that the molecular weight of the polyester greatly affects the physical properties and the curability. In the production of PHA in microorganisms, it is known that if the number of enzyme molecules per cell is excessively increased, a substrate-limited state is reached, and the molecular weight of the produced polymer decreases (see Non-Patent Documents 20 and 21). Therefore, it has been desired to develop a method for controlling the molecular weight of the polyester produced in the cells. It is also known that when the produced polyester is a copolymer, the monomer composition greatly affects the physical properties and processability. Therefore, development of a method for controlling the monomer composition of the copolymerized polyester has been desired.
[0028] また、 PHA高生産株の育種のためには PHA合成に関与する酵素遺伝子の菌体内 発現量を増加させる必要があり、当該遺伝子群を導入した形質転換株の生産する P HAの生産性及び物性を考慮しながら、更に同遺伝子群の導入が必要な場合がある 。通常、形質転換株の取得においては、薬剤耐性や栄養要求性などのマーカーが 利用されている。このため、遺伝子導入回数に応じたマーカーの種類が必要である 力 現在までに開発された複数の遺伝子マーカーを有するキャンディダ'マルトーサ は、その生育速度において野性株と比較して大きく劣っており、 PHA生産株としての 利用が困難であった (非特許文献 2参照)。また、一種類の遺伝子マーカーを有する 生育速度の改善されたキャンディダ ·マルトーサも開発された (特許文献 5参照)。し 力しながら、本株に野性株と同等の生育速度を保持させながら、更に複数の遺伝子 マーカーを付与することは、同酵母が 2倍体のゲノムを有して 、ることから困難と考え られた。 [0028] In addition, in order to breed a PHA-high producing strain, it is necessary to increase the intracellular expression level of an enzyme gene involved in PHA synthesis, and to produce a PHA produced by a transformed strain into which the gene group has been introduced. In some cases, it is necessary to introduce the same gene group in consideration of the properties and physical properties. Usually, in obtaining a transformant, markers such as drug resistance and auxotrophy are used. For this reason, it is necessary to use different types of markers according to the number of gene introductions.Candida's maltosa, which has multiple gene markers developed to date, is significantly inferior to the wild type in its growth rate, As a PHA producer It was difficult to use (see Non-Patent Document 2). In addition, Candida maltosa having one type of genetic marker and improved in growth rate has also been developed (see Patent Document 5). It is considered difficult to add multiple gene markers while maintaining the growth rate of this strain while maintaining the same growth rate as that of the wild type strain, because the yeast has a diploid genome. Was done.
特許文献 1:特開昭 62— 74287公報 Patent Document 1: JP-A-62-74287
特許文献 2:特開昭 62- 74288号公報 Patent Document 2: JP-A-62-74288
特許文献 3:国際公開第 99Z04014号パンフレット Patent Document 3: International Publication No. 99Z04014 pamphlet
特許文献 4 :国際公開第 01Z88144号パンフレット Patent Document 4: International Publication No.01Z88144 pamphlet
特許文献 5:特開 2002— 209574号公報 Patent Document 5: JP-A-2002-209574
特許文献 6:特開昭 57— 150393号公報 Patent Document 6: JP-A-57-150393
特許文献 7:特開昭 59— 220192号公報 Patent Document 7: JP-A-59-220192
特許文献 8:特開平 5— 93049号公報 Patent Document 8: JP-A-5-93049
特許文献 9:特開平 7-265065号公報 Patent Document 9: JP-A-7-265065
特許文献 10:特開平 10- 108682公報 Patent Document 10: JP-A-10-108682
特許文献 11 :WO00Z43523号パンフレット Patent Document 11: WO00Z43523 pamphlet
非特許文献 1 : Wolf K.編 Nonconventional Yeasts in Biotechnology. ANon-Patent Document 1: Non-Conventional Yeasts in Biotechnology.A edited by Wolf K.
Handbook, Springer~Verlag、 Berlin (1996) p411—580) Handbook, Springer ~ Verlag, Berlin (1996) p411-580)
非特許文献 2 :Kawai S.等、 Agric. Biol. Chem.、 55 : 59-65 (1991) 非特許文献 3 :Takagi 等、 J. Gen. Appl. Microbiol.、 31 : 267-275 (1985) 非特許文献 4: Ohama T.等、 Nucleic Acid Res. , 21 :40394045 (1993) 非特許文献 5 : M. Lemoigne, Ann. Inst. Pasteur, 39, 144 (1925) Non-Patent Document 2: Kawai S. et al., Agric. Biol. Chem., 55: 59-65 (1991) Non-Patent Document 3: Takagi et al., J. Gen. Appl. Microbiol., 31: 267-275 (1985) Non-Patent Document 4: Ohama T. et al., Nucleic Acid Res., 21: 40394045 (1993) Non-Patent Document 5: M. Lemoigne, Ann.Inst. Pasteur, 39, 144 (1925)
非特許文献 6 : Y. Doi, S. Kitamura, H. Abe, Macromolecules, 28, 4822—4 823 (1995) Non-Patent Document 6: Y. Doi, S. Kitamura, H. Abe, Macromolecules, 28, 4822-4823 (1995)
非特許文献 7 :T. Fukui, Y. Doi, J. Bacteriol, vol. 179, No. 15, 4821—4830 (1997) Non-Patent Document 7: T. Fukui, Y. Doi, J. Bacteriol, vol. 179, No. 15, 4821-4830 (1997)
非特許文献 8 :T. Fukui等, Appl. Microbiol. Biotecnol. 49, 333 (1998) 非特許文献 9 : Microbiology, vol. 142, ppl 169— 1180 (1996) 非特許文献 10:Poirier Y.等, Appl. Microbiol. Biotecnol. 67, 5254-5260 ( 2001) Non-patent document 8: T. Fukui et al., Appl. Microbiol. Biotecnol. 49, 333 (1998) Non-patent document 9: Microbiology, vol. 142, ppl 169—1180 (1996) Non-Patent Document 10: Poirier Y. et al., Appl. Microbiol. Biotecnol. 67, 5254-5260 (2001)
非特許文献 ll:Breuer U.等, Macromol. Biossci. , 2, pp380-386 (2002) 非特許文献 12:Poirier Y.等, FEMS Microbiology Lett. , vol. 207, pp97 -102(2002) Non-patent literature ll: Breuer U. et al., Macromol. Biossci., 2, pp380-386 (2002) Non-patent literature 12: Poirier Y. et al., FEMS Microbiology Lett., Vol. 207, pp97-102 (2002)
特許文献 13:ィ匕学と生物, vol. 38, No9, 614(2000)  Patent Document 13: Danigaku and Biology, vol. 38, No9, 614 (2000)
非特許文献 14: M. Kawamura, et al. , Gene, vol. 24, 157, (1983) 非特許文献 15: M. Ohkuma, et al. , Mol. Gen. Genet. , vol. 249, 447, (19Non-Patent Document 14: M. Kawamura, et al., Gene, vol. 24, 157, (1983) Non-Patent Document 15: M. Ohkuma, et al., Mol.Gen. Genet., Vol. 249, 447, (19
95) 95)
非特許文献 16:S. M. Park, et al. , Yeast, vol. 13, 21(1997) Non-Patent Document 16: S. M. Park, et al., Yeast, vol. 13, 21 (1997)
非特許文献 17: M. Ohokuma, et al. , DNA and Cell Biology, vol. 14, 16Non-Patent Document 17: M. Ohokuma, et al., DNA and Cell Biology, vol. 14, 16
3, (1995) 3, (1995)
非特許文献 18:木暮ら、 2002年日本農芸化学大会講演要旨集、 pl91 Non-Patent Document 18: Kogure, 2002 Abstracts of Japanese Society of Agricultural Chemistry, pl91
非特許文献 19: K. Kondo, et al. , Nat. Biotechnol. , vol. 15, pp453~457(Non-Patent Document 19: K. Kondo, et al., Nat.Biotechnol., Vol. 15, pp 453-457 (
1997) 1997)
非特許文献 20:Sim S.J.等, Nature Biotechnology, vol. 15, pp63— 67(19 97) Non-Patent Document 20: Sim S.J. et al., Nature Biotechnology, vol. 15, pp63-67 (1997).
非特許文献 21:Gerngross T. U. , Martin D. P. , Proc. Natl. Acad. Sci. U SA, vol. 92, pp6279-6283(1995) Non-Patent Document 21: Gerngross T.U., Martin D.P., Proc.Natl.Acad.Sci.U SA, vol. 92, pp6279-6283 (1995)
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
本発明は、上記現状に鑑み、酵母、特にキャンディダ属において、多重栄養要求性 遺伝子破壊株を構築することにより、種々の遺伝子を多数導入することができ、高効 率に有用物質生産を行うことができる、産業上有益な新規宿主を提供するものである 本発明は、また、上記現状に鑑み、 PHA合成に関与する遺伝子の発現カセットを酵 母に複数形質転換した形質転換体、および得られた形質転換体を培養することによ り、生分解性かつ優れた物性を有する P (3HB-CO-3HH)等のポリエステルを製造 する方法を提供するものである。また、同微生物の育種方法も提供する。 課題を解決するための手段 The present invention has been made in view of the above-mentioned current situation, and it is possible to introduce a large number of various genes by constructing a multiple auxotrophic gene-disrupted strain in yeast, particularly in the genus Candida, and to efficiently produce a useful substance. In view of the above situation, the present invention also provides a transformant obtained by transforming a plurality of expression cassettes of genes involved in PHA synthesis into an enzyme, and By culturing the transformed transformant, a polyester such as P (3HB-CO-3HH) having biodegradability and excellent physical properties can be produced. To provide a way to: The present invention also provides a method for breeding the microorganism. Means for solving the problem
[0031] 本発明者等は、上記課題を解決すべく鋭意研究を重ねた結果、遺伝子組換えの手 法を駆使することにより、酵母のホスホリボシルァミノイミダゾールーサクシノカルボキ サミド合成酵素(EC6. 3. 2. 6)をコードする DNA(ADE1遺伝子)、ヒスチジノール —ホスフェート アミノトランスフェラーゼ(EC2. 6. 1. 9)をコードする DNA (HIS 5遺 伝子)、及びォロチジン 5,一ホスフェートデカルボキシレース(EC4. 1. 1. 23)をコ ードする DNA(URA3遺伝子)断片を用いた、染色体 DNAとの相同的組換えの原 理による、 ADE1遺伝子、 HIS5遺伝子及び URA3遺伝子破壊株の作製を行い、ァ デニン、ヒスチジン及びゥラシル要求性の遺伝子破壊酵母の取得に成功した。そして 、当該遺伝子破壊酵母の増殖能をキャンディダ ·マルトーサの ADE1遺伝子破壊株 の AC16と比較し、キャンディダ 'マルトーサの突然変異処理による ADE1遺伝子変 異株の CHA1より増殖能が優れていることが明らかにされている AC16株と同等であ ることを示すことにより、本発明を完成するに至った。  The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by making full use of genetic recombination techniques, the yeast phosphoribosylaminoimidazole-succinocarboxamide synthase (EC6 3.2.6) DNA encoding (ADE1 gene), DNA encoding histidinol-phosphate aminotransferase (EC 2.6.1.9) (HIS 5 gene), and orotidine 5, monophosphate decarboxylate Production of ADE1, HIS5 and URA3 gene disrupted strains by homologous recombination with chromosomal DNA using the DNA (URA3 gene) fragment encoding the race (EC 4.1.1.23) And succeeded in obtaining a gene-disrupted yeast requiring adenine, histidine and peracil. Then, the growth ability of the gene-disrupted yeast was compared to AC16 of the ADE1 gene-disrupted strain of Candida maltosa, and it was found that the growth ability was superior to that of CHA1 of the ADE1 gene-mutated strain by mutation treatment of Candida maltosa. The present inventors have completed the present invention by showing that they are equivalent to the clarified AC16 strain.
本発明者等は、また、上記課題を解決すべく鋭意研究を重ねた結果、遺伝子組換え の手法を駆使することにより、ポリヒドロキシアルカン酸合成酵素遺伝子(以下、 phaC と略記する)とァセトァセチル CoA還元酵素遺伝子 (EC 1. 1. 1. 36) (以下、 phbBと 略記する)をキャンディダ ·マルトーサの遺伝子破壊株に複数導入した形質転換体を 作製した。これにより、生分解性ポリエステルとして有用性のある 3—ヒドロキシブチレ ート(以下、 3HBと略記する)と 3-ヒドロキシへキサノエート(以下、 3HHと略記する) との 2成分共重合ポリエステル (以下、 P (3HB-co— 3HH)と略記する)を効率的に 生産することに成功した。  The present inventors have also conducted intensive studies to solve the above-mentioned problems. As a result, the gene recombination technique was used to obtain polyhydroxyalkanoate synthase gene (hereinafter abbreviated as phaC) and acetoacetyl CoA. Transformants were prepared by introducing a plurality of reductase genes (EC 1. 1. 1. 36) (hereinafter abbreviated as phbB) into gene-disrupted strains of Candida maltosa. As a result, a two-component copolymerized polyester (hereinafter abbreviated as 3HH) and 3-hydroxybutyrate (hereinafter abbreviated as 3HB) and 3-hydroxyhexanoate (hereinafter abbreviated as 3HH) useful as a biodegradable polyester can be obtained. , P (abbreviated as 3HB-co—3HH) was successfully produced.
[0032] 即ち、第一の本発明は、 URA3DNA断片との相同的組換えにより、染色体 DNAの URA3遺伝子が破壊された酵母; HIS 5DNA断片との相同的組換えにより、染色体 DNAの HIS5遺伝子が破壊された酵母に関する。同様に本発明は、 ADE1遺伝子 と URA3遺伝子が共に破壊された酵母; ADE1遺伝子と HIS5遺伝子が共に破壊さ れた酵母; URA3遺伝子と HIS5遺伝子が共に破壊された酵母; ADE1遺伝子と UR A3遺伝子と HIS5遺伝子が共に破壊された酵母に関する。 また、本発明は、同種又は異種の遺伝子を含む DNA配列で形質転換された上記遺 伝子破壊酵母の形質転換体に関する。 That is, the first present invention relates to a yeast in which the URA3 gene of chromosomal DNA has been disrupted by homologous recombination with a URA3 DNA fragment; the HIS5 gene of chromosomal DNA has been homologously recombined with a HIS5 DNA fragment. For destroyed yeast. Similarly, the present invention relates to a yeast in which both the ADE1 gene and the URA3 gene have been disrupted; a yeast in which both the ADE1 gene and the HIS5 gene have been disrupted; a yeast in which both the URA3 gene and the HIS5 gene have been disrupted; and the ADE1 gene and the URA3 gene. It relates to yeast in which the HIS5 gene has been disrupted. Further, the present invention relates to a transformant of the above-described gene-disrupted yeast transformed with a DNA sequence containing a homologous or heterologous gene.
[0033] さらに、本発明は、当該遺伝子破壊株に、複数の異種遺伝子発現系を導入した形質 転換体を取得することにより、産業上有用な物質の生産方法を提供する。具体的に は、一例として、本発明の当該遺伝子破壊キャンディダ 'マルトーサ株に、生分解性 ポリエステルとして有用性のある 3—ヒドロキシプチレート(以下、 3HBと略記する)と 3 ーヒドロキシへキサノエート(以下、 3HHと略記する)との 2成分共重合ポリエステル( 以下、 P (3HB-CO-3HH)と略記する)を合成する酵素であるポリヒドロキシアルカン 酸合成酵素遺伝子(以下、 phaCと略記する)と、ァセトァセチル CoA還元酵素遺伝 子 (EC1. 1. 1. 36) (以下、 phbBと略記する)を、好ましくは複数導入した当該形質 転換体を用いて、 P (3HB— co— 3HH)を効率的に生産することに成功した。 Further, the present invention provides a method for producing an industrially useful substance by obtaining a transformant in which a plurality of heterologous gene expression systems have been introduced into the gene-disrupted strain. Specifically, as an example, 3-hydroxybutyrate (hereinafter abbreviated as 3HB) and 3-hydroxyhexanoate (hereinafter abbreviated as 3HB), which are useful as a biodegradable polyester, are added to the gene disrupted Candida maltosa strain of the present invention. , 3HH) and a polyhydroxyalkanoic acid synthase gene (hereinafter abbreviated as phaC) which is an enzyme that synthesizes a two-component copolymerized polyester (hereinafter abbreviated as P (3HB-CO-3HH)). P (3HB-co-3HH) can be efficiently produced using the transformant into which acetoacetyl CoA reductase gene (EC1.1.1.36) (hereinafter abbreviated as phbB) is preferably introduced. Was successfully produced.
即ち、本発明は、遺伝子破壊酵母を用いた遺伝子発現産物 (特にポリエステル)の 製造方法であると同時に、ポリエステル生合成に関与する遺伝子を複数導入した形 質転換体を用いるポリエステルの製造方法でもあって、上記形質転換体を培養して 得られる培養物から、ポリエステルを採取するポリエステルの製造方法でもある。  That is, the present invention is not only a method for producing a gene expression product (especially, polyester) using a gene-disrupted yeast, but also a method for producing a polyester using a transformant into which a plurality of genes involved in polyester biosynthesis have been introduced. Further, the present invention is also a method for producing a polyester, wherein the polyester is collected from a culture obtained by culturing the above transformant.
[0034] さら〖こ、本発明は生産されるポリエステルの物性が制御されたポリエステルの製造方 法である。また、本発明は遺伝子導入に使用する選択マーカーの効率的な回復方 法にも関する。 [0034] Furthermore, the present invention is a method for producing a polyester in which the physical properties of the produced polyester are controlled. The present invention also relates to a method for efficiently recovering a selection marker used for gene transfer.
[0035] すなわち、第二の本発明は、ポリヒドロキシアルカン酸合成酵素遺伝子とァセトァセ チル CoA還元酵素遺伝子とが導入されて 、る酵母形質転換体であって、これらの遺 伝子の両方又は何れかが 2コピー以上導入されていることを特徴とする酵母形質転 換体である。  [0035] That is, the second present invention is a yeast transformant into which a polyhydroxyalkanoic acid synthase gene and an acetoacetyl CoA reductase gene have been introduced. This is a yeast transformant characterized in that two or more copies have been introduced.
本発明は、また、上記酵母形質転換体を用いるポリエステルの製造方法であって、 上記酵母形質転換体を培養して得られる培養物から、ポリエステルを採取することを 特徴とするポリエステルの製造方法である。  The present invention also relates to a method for producing a polyester using the yeast transformant, wherein the polyester is collected from a culture obtained by culturing the yeast transformant. is there.
本発明は、また、上記酵母形質転換体を用いるポリエステルの製造において、酵母 形質転換体のァセトァセチル CoA還元酵素遺伝子の数を制御することによりポリエ ステルの分子量を制御する方法である。 本発明は、また、上記酵母形質転換体を用いるポリエステルの製造において、酵母 形質転換体のポリヒドロキシアルカン酸合成酵素遺伝子の数を制御することによりポ リエステルのヒドロキシアルカン酸組成を制御する方法である。 The present invention is also a method for controlling the molecular weight of the polyester by controlling the number of acetoacetyl CoA reductase genes in the yeast transformant in the production of polyester using the yeast transformant. The present invention is also a method for controlling the number of polyhydroxyalkanoic acid synthase genes in a yeast transformant in the production of a polyester using the yeast transformant, thereby controlling the hydroxyalkanoic acid composition of the polyester. .
本発明は、また、選択マーカー遺伝子を持つキャンディダ'マルトーサで分子内相同 組換えを行うことにより、当該選択マーカー遺伝子を除去することを特徴とする選択 マーカーの回復方法である。  The present invention also provides a method for recovering a selectable marker, which comprises removing the selectable marker gene by performing intramolecular homologous recombination with Candida maltosa having the selectable marker gene.
[0036] 以下、本発明について詳細に説明する。  Hereinafter, the present invention will be described in detail.
まず、第一の本発明の遺伝子破壊酵母としては、以下のものが挙げられる。  First, examples of the gene-disrupted yeast of the present invention include the following.
URA3DNA断片との相同的組換えにより、染色体 DNAの URA3遺伝子が破壊さ れたゥラシル要求性の遺伝子破壊酵母;  Peracil-requiring gene-disrupted yeast in which the URA3 gene of chromosomal DNA has been disrupted by homologous recombination with a URA3 DNA fragment;
HIS 5DNA断片との相同的組換えにより、染色体 DNAの HIS 5遺伝子が破壊され たヒスチジン要求性の遺伝子破壊酵母;  A histidine-requiring gene-disrupted yeast in which the HIS5 gene of chromosomal DNA has been disrupted by homologous recombination with a HIS5 DNA fragment;
ADE1DNA断片及び URA3DNA断片との相同的組換えにより、染色体 DN Aの A DEI遺伝子及び URA3遺伝子が破壊されたアデニン及びゥラシル要求性の遺伝子 破壊酵母;  Adenine and peracil-requiring gene-disrupted yeast in which the A DEI gene and URA3 gene of chromosome DNA have been disrupted by homologous recombination with the ADE1 DNA fragment and URA3 DNA fragment;
ADE1DNA断片及び HIS5DNA断片との相同的組換えにより、染色体 DN Aの A DEI遺伝子及び HIS5遺伝子が破壊されたアデニン及びヒスチジン要求性の遺伝 子破壊酵母;  Adenine- and histidine-requiring gene-disrupted yeast in which the ADEI gene and the HIS5 gene of chromosome DNA have been disrupted by homologous recombination with the ADE1 DNA fragment and the HIS5 DNA fragment;
URA3DNA断片及び HIS 5DNA断片との相同的組換えにより、染色体 DNAの U RA3遺伝子及び HIS5遺伝子が破壊されたゥラシル及びヒスチジン要求性の遺伝子 破壊酵母;  A URA3 and histidine-requiring gene-disrupted yeast in which the URA3 gene and the HIS5 gene of chromosomal DNA have been disrupted by homologous recombination with the URA3 DNA fragment and the HIS5 DNA fragment;
ADE1DNA断片、 URA3DNA断片及び HIS5DNA断片との相同的組換えにより 、染色体 DNAの ADE1遺伝子、 URA3遺伝子及び HIS 5遺伝子が破壊されたアデ ニン、ゥラシル及びヒスチジン要求性の遺伝子破壊酵母。  A gene-disrupted yeast requiring adenine, peracil, and histidine in which the ADE1 gene, URA3 gene, and HIS5 gene of chromosomal DNA have been disrupted by homologous recombination with the ADE1 DNA fragment, URA3 DNA fragment, and HIS5 DNA fragment.
[0037] 相同的組換えによる ADE1遺伝子、 URA3遺伝子、 HIS 5遺伝子の破壊を行う酵母 には特に制限はなぐ菌株の寄託機関(例えば IFO、 ATCC等)に寄託されている酵 母を使用することができる。好ましくは、直鎖炭化水素等の疎水性物質等の資化性 の点で、キャンディダ属(Candida属)、クラビスポラ属(Clavispora属)、タリプトコッ カス属 (Cryptococcus属)、デノ リオマイセス属 (Debaryomyces属)、ロデロマイセ ス属 (Lodderomyces属)、メトシュニコウイァ属 (Metschnikowia属)、ピキア属 (Pic hia属)、ロドスポリディウム属 (Rhodosporidium属)、ロドトノレラ属 (Rhodotorula属) 、スポリディオボラス属 (Sporidiobolus属)、ステファノァスカス属 (Stephanoascus 属)、ャロウィァ属 (Yarrowia属)等の酵母を使用することができる。 [0037] For yeast that disrupts the ADE1, URA3, and HIS5 genes by homologous recombination, yeast that has been deposited with a strain depository (eg, IFO, ATCC, etc.) is used without any particular limitation. Can be. Preferably, in terms of assimilation of hydrophobic substances such as linear hydrocarbons, the genus Candida, the genus Clavispora, and the varieties of Calispora are used. Genus Cryptococcus, Genus Denoyomyces (Genus Debaryomyces), Genus Roderomyces (Genus Lodderomyces), Genus Metschnikowia (Genus Metschnikowia), Genus Pichia (Genus Pic hia), Genus Rhodosporidium (Genus Rhodosporidium) ), Yeasts of the genus Rhodotorula, genus Sporidiobolus, genus Stephanoascus (genus Stephanoascus) and genus Yarrowia can be used.
これら酵母の中でも、特に、染色体遺伝子配列の解析が進んでおり、宿主 -ベクター 系も利用できること、また、直鎖炭化水素や油脂等の資化能力が高い点で、キャンデ イダ属がより好ましい。  Among these yeasts, the genus Candida is more preferable, in particular, since the analysis of the chromosomal gene sequence has been advanced, a host-vector system can be used, and the ability to assimilate linear hydrocarbons and oils and fats is high.
[0038] キャンディダ属の中でも、特に直鎖炭化水素や油脂等の資化能力が高い点で、 albi cans¾、 ancuaensis¾^ atmospnaenca種、 azyma種、 bertae種、 blankii¾、 bu tyri種、 conglobata種、 dendronema種、 ergastensis種、 fluviatilis種、 friearich 11植、 gropengiesseri種、 haemulonu植、 incommunis種、 insectrum植、 laureli 種、 maltosa^a^ melibiosica種、 membmnifaciens種、 me s enteric a¾ ^ natal ensis種、 oregonensis種、 palmioleophila種、 parapsilosis種、 psudo intermedia ia、 quercitrusa種、 rhagu^a、 rugosa種、 saitoana種、 sake但、 schatavii種、 seq uanensis^a^ shehatae®、 sorbophila種、 tropicalis種、 valdiviana種、 viswanat hii種等を用いることがさらに好ま 、。  [0038] Among the genus Candida, albi cans¾, ancuaensis¾ ^ atmospnaenca, azyma, bertae, blankii¾, butyri, conglobata, dendronema Species, ergastensis, fluviatilis, friearich 11, gropengiesseri, haemulonu, incommunis, insectrum, laureli, maltosa ^ a ^ melibiosica, membmnifaciens, me s enteric a¾ ^ natal ensis, oregonolea, palmiole Species, parapsilosis, psudo intermedia ia, quercitrusa, rhagu ^ a, rugosa, saitoana, saketan, schatavii, seq uanensis ^ a ^ shehatae®, sorbophila, tropicalis, valdiviana, viswanat hii, etc. More preferred to use.
これらの種の中でも、直鎖炭化水素を炭素源としたときの増殖速度や、 albicans種等 と異なり安全性が高 、ことから、特にマルトーサ(maltosa)種が好まし 、。  Among these species, maltosa is particularly preferred because of its high growth rate when a straight-chain hydrocarbon is used as a carbon source and high safety, unlike albicans.
[0039] また、本発明の ADE1、 URA3、 HIS 5遺伝子破壊株の作製及びその利用に関して 、酵母の好ましい 1例として、キャンディダ'マルトーサを用いることができる。 [0039] Further, with respect to the production and use of the ADE1, URA3, and HIS5 gene-disrupted strains of the present invention, Candida's maltosa can be used as a preferred example of yeast.
本発明に用いる ADE1遺伝子破壊酵母であるキャンディダ 'マルトーサ AC16株は、 FERM BP— 7366の受託番号で、平成 12年 11月 15日付けで、 日本国茨城県つく ば巿東 1丁目 1番地 1中央第 6にある独立行政法人産業技術総合研究所特許生物 寄託センターに、ブダペスト条約に基づいて国際寄託されている。  The Candida 'Maltosa AC16 strain, which is the ADE1 gene disrupting yeast used in the present invention, has the accession number of FERM BP-7366, and, as of November 15, 2000, 1-1 1-1 Tsukuba East, Ibaraki, Japan 1 It has been internationally deposited at the Patent Organism Depositary of the National Institute of Advanced Industrial Science and Technology (AIST) in the Central No. 6 based on the Budapest Treaty.
また、後述のようにして本発明で得られた各遺伝子破壊酵母、つまり、  In addition, each gene disrupted yeast obtained in the present invention as described below, that is,
URA3遺伝子破壊酵母であるキャンディダ ·マルトーサ U-35株(受託番号 FERM P - 19435、寄託日平成 15年 7月 18日)、 HIS 5遺伝子破壊酵母であるキャンディダ ·マルトーサ CH— I株(受託番号 FERM P 19434、寄託日平成 15年 7月 18日)、 Candida maltosa U-35 strain, a URA3 gene disrupting yeast (Accession No. FERM P-19435, deposited on July 18, 2003), HIS 5 gene disrupting yeast Candida maltosa CH-I strain (Accession No. FERM P 19434, deposited on July 18, 2003),
ADE1及びURA3遺伝子破壊酵母でぁるキャンディダ·マルトーサUA—354株(受 託番号 FERM P— 19436、寄託日平成 15年 7月 18日)、  ADE1 and URA3 gene disrupting yeast strain Candida maltosa UA-354 strain (Accession No. FERM P-19436, deposited on July 18, 2003),
ADE1及び HIS 5遺伝子破壊酵母であるキャンディダ'マルトーサ AH— 15株(受託 番号 FERM P— 19433、寄託曰平成 15年 7月 18曰)、  ADE1 and HIS5 gene-disrupted yeast, Candida 'maltosa AH-15 strain (Accession No. FERM P-19433, deposited on July 18, 2003),
HIS5及び URA3遺伝子破壊酵母であるキャンディダ ·マルトーサ HU— 591株(受託 番号 FERM P— 19545、寄託曰平成 15年 10月 1曰)、  Candida maltosa HU-591 strain, which is a HIS5 and URA3 gene disrupting yeast (Accession number: FERM P-19545, deposited: October 1, 2003),
ADE1及び HIS 5及び URA3遺伝子破壊酵母であるキャンディダ ·マルトーサ AHU —71株(受託番号 FERM BP - 10205、寄託日平成 15年 8月 15日)、  ADE1 and HIS5 and URA3 gene disrupting yeast, Candida maltosa AHU-71 strain (Accession No. FERM BP-10205, deposited on August 15, 2003),
はそれぞれ、 日本国茨城県つくば巿東 1丁目 1番地 1中央第 6にある独立行政法人 産業技術総合研究所特許生物寄託センターに寄託されている。  Are deposited with the National Institute of Advanced Industrial Science and Technology, Patent Organism Depositary, located at 1-1, Tsukuba-Higashi, Ibaraki, Japan.
[0040] ここで、相同的組換えとは、 DNAの塩基配列が類似の配列又は同じ配列(相同配列 )を持つ部分で起こる組換えを示す。 [0040] Here, homologous recombination refers to recombination that occurs in a portion where the base sequence of DNA is similar or has the same sequence (homologous sequence).
遺伝子破壊とは、ある遺伝子の機能が発揮できないようにするために、その遺伝子の 塩基配列に変異を入れる、別の DNAを挿入する、あるいは、遺伝子のある部分を欠 失させることを示す。遺伝子破壊の結果、その遺伝子が mRNAへ転写できなくなり、 構造遺伝子が翻訳されない、あるいは、転写された mRNAが不完全なため、翻訳さ れた構造蛋白質のアミノ酸配列に変異又は欠失が生じ、本来の機能の発揮が不可 會 になる。  Gene disruption refers to mutation of the base sequence of a gene, insertion of another DNA, or deletion of a portion of the gene so that the function of the gene cannot be performed. As a result of gene disruption, the gene cannot be transcribed into mRNA, and the structural gene is not translated, or the transcribed mRNA is incomplete, resulting in mutation or deletion in the amino acid sequence of the translated structural protein. The function of is impossible.
[0041] ADE1遺伝子とは、プロモーター領域を含む 5'非翻訳領域、ホスホリボシルアミノィ ミダゾ一ルーサクシノカルボキサミド合成酵素(EC6. 3. 2. 6)をコードする領域、並 びにターミネータ一領域を含む 3'非翻訳領域力 なる遺伝子断片を示す。キャンデ イダ ·マルトーサの ADE1遺伝子の塩基配列は GenBank: D00855に公開されてい る。  [0041] The ADE1 gene refers to a 5 'untranslated region including a promoter region, a region encoding phosphoribosylaminoimidazo-l-succinocarboxamide synthase (EC 6.3.3.2.6), and a terminator region. The gene fragment containing the 3 'untranslated region is shown. The nucleotide sequence of the Candida maltosa ADE1 gene has been published in GenBank: D00855.
[0042] URA3遺伝子とは、プロモーター領域を含む 5,非翻訳領域、ォロチジン 5,ーホスフ エートデカルボキシレース(EC4. 1. 1. 23)をコードする領域、並びにターミネータ 一領域を含む 3,非翻訳領域からなる遺伝子断片を示す。キャンディダ ·マルトーサの URA3遺伝子の塩基配列は GenBank: D12720に公開されている。 [0042] The URA3 gene refers to a 5, untranslated region including a promoter region, a region encoding orotidine 5, -phosphate decarboxylace (EC 4.1.1.23), and a non-translated region including one terminator. 1 shows a gene fragment consisting of a region. Candida Maltosa The nucleotide sequence of the URA3 gene has been published in GenBank: D12720.
[0043] HIS5遺伝子とは、プロモーター領域を含む 5'非翻訳領域、ヒスチジノールーホスフ エートーアミノトランスフェラーゼ(EC2. 6. 1. 9)をコードする領域、並びにターミネ一 ター領域を含む 3 '非翻訳領域からなる遺伝子断片を示す。キャンディダ ·マルトーサ の HIS5遺伝子の塩基配列は GenBank:X17310に公開されている。  [0043] The HIS5 gene includes a 5 'untranslated region including a promoter region, a region encoding histidinol-phosphate aminotransferase (EC 2.6.1.9), and a 3' region including a terminator region. 1 shows a gene fragment consisting of an untranslated region. The nucleotide sequence of the Candida maltosa HIS5 gene has been published in GenBank: X17310.
[0044] ADE1DNA断片とは、微生物細胞内で染色体上の ADE1遺伝子と相同的組換え を起こすことができ、それによつて ADE1遺伝子を破壊できる DNAを示して!/、る。 URA3DNA断片とは、微生物細胞内で染色体上の URA3遺伝子と相同的組換え を起こすことができ、それによつて URA3遺伝子を破壊できる DNAを示して!/、る。 HIS 5DNA断片とは、微生物細胞内で染色体上の HIS 5遺伝子と相同的組換えを 起こすことができ、それによつて HIS5遺伝子を破壊できる DNAを示して!/、る。  [0044] The ADE1 DNA fragment refers to a DNA capable of causing homologous recombination with the ADE1 gene on the chromosome in a microbial cell, thereby destroying the ADE1 gene. A URA3 DNA fragment refers to a DNA that can cause homologous recombination with the URA3 gene on the chromosome in a microbial cell, thereby destroying the URA3 gene! A HIS5 DNA fragment refers to a DNA that can undergo homologous recombination with the HIS5 gene on the chromosome in a microbial cell, thereby destroying the HIS5 gene!
[0045] 次に、本発明の形質転換体としては、上記遺伝子破壊酵母を、同種又は異種の遺 伝子を含む DNA配列で形質転換したものである。  Next, as the transformant of the present invention, the above-described gene-disrupted yeast is transformed with a DNA sequence containing a homologous or heterologous gene.
[0046] 同種遺伝子とは、宿主酵母の染色体上に存在している遺伝子又はその一部の DNA を意味する。異種遺伝子とは、宿主酵母の染色体上に本来存在しない遺伝子又は その一部の DNAを意味する。  [0046] The homologous gene means a gene present on the chromosome of the host yeast or a partial DNA thereof. A heterologous gene refers to a gene that is not originally present on the chromosome of the host yeast or a partial DNA thereof.
[0047] また、遺伝子発現カセットを用いることもできる。遺伝子発現カセットとは、転写プロモ 一ター DNA配列、発現を目的とする遺伝子をコードする DNA、及び転写を終結す るターミネータ一を含む DNA力 構成される環状プラスミド状のもので、染色体外で 機能するものと、染色体 DNAに組み込むタイプがある。  [0047] A gene expression cassette can also be used. A gene expression cassette is a circular plasmid composed of a DNA sequence containing a transcription promoter DNA sequence, DNA encoding a gene to be expressed, and a terminator that terminates transcription. And those that integrate into chromosomal DNA.
[0048] 次に、本発明の遺伝子発現産物の製造方法としては、上記形質転換体を培養して 得られる培養物から、同種又は異種の遺伝子発現産物を採取するものである。 また、当該遺伝子発現産物としては、特にポリエステルであることが好ましい。  Next, as a method for producing a gene expression product of the present invention, a homologous or heterologous gene expression product is collected from a culture obtained by culturing the above transformant. The gene expression product is particularly preferably polyester.
[0049] 遺伝子発現産物とは、遺伝子によって発現される物質 (遺伝子発現物)が所望の蛋 白質や酵素の場合、それ自体が遺伝子発現産物である。また、遺伝子発現物が各 種酵素類や補酵素類であり、該酵素類が宿主酵母内で触媒活性を発現することによ り生産される、遺伝子発現物とは直接異なる物質も遺伝子発現産物である。  [0049] The gene expression product is itself a gene expression product when the substance expressed by the gene (gene expression product) is a desired protein or enzyme. In addition, the gene expression products are various enzymes and coenzymes, and substances that are produced by the enzymes expressing catalytic activity in the host yeast and are directly different from the gene expression products are also gene expression products. It is.
[0050] PHAとは、ポリヒドロキシアルカノエートの略であり、 3—ヒドロキシアルカン酸の共重 合した、生分解性ポリエステルを示す。 [0050] PHA is an abbreviation for polyhydroxyalkanoate, and is a copolymer of 3-hydroxyalkanoic acid. 2 shows a combined, biodegradable polyester.
phaCは、 3—ヒドロキシアルカン酸の共重合した生分解性ポリエステルを合成する、 ポリヒドロキシアルカン酸合成酵素遺伝子を示す。  phaC indicates a polyhydroxyalkanoic acid synthase gene that synthesizes a biodegradable polyester copolymerized with 3-hydroxyalkanoic acid.
phbBとは、ァセトァセチル CoAを還元して 3—ヒドロキシブチリルー CoAを合成する、 ァセトァセチル CoA還元酵素遺伝子を示す。  phbB refers to an acetoacetyl CoA reductase gene that reduces acetoacetyl CoA to synthesize 3-hydroxybutylyl-CoA.
[0051] 以下に、 ADE1、 URA3、 HIS5遺伝子破壊株の作製方法、該破壊株によるポリエス テルの製造方法を具体的に説明する。 [0051] Hereinafter, a method for producing an ADE1, URA3, and HIS5 gene-disrupted strain and a method for producing a polyester using the disrupted strain will be specifically described.
(1) URA3遺伝子破壊株、 URA3 · ADE1遺伝子破壊株の作製方法  (1) Method for producing URA3 gene-disrupted strain, URA3 / ADE1 gene-disrupted strain
URA3遺伝子破壊株作製に関しては、 URA3酵素が発現しな ヽ破壊株が得られれ ば 、かなる方法も用いることが可能である。遺伝子破壊の方法は種々の方法が報告 されているが、ある特定の遺伝子のみ破壊できるという点で、相同的組換えによる遺 伝子破壊が好ましい(Nickoloff J. A.編 Methods in Molecular Biology, 47 : 291— 302 (1995)、 Humana Press Inc. , Totowaゝ NJ) )。相同的糸且換え の中でも、自然復帰しない破壊株が取得でき、その結果、組換え体を取り扱う上で安 全性が高 、菌株が得られると 、う点で、遺伝子置換破壊が好ま 、。  Regarding the production of a URA3 gene disrupted strain, such a method can be used if a disrupted strain that does not express the URA3 enzyme is obtained. Although various methods for gene disruption have been reported, gene disruption by homologous recombination is preferable because only a specific gene can be disrupted (Nickoloff JA, edited in Methods in Molecular Biology, 47: 291-). 302 (1995), Humana Press Inc., Totowa ゝ NJ)). Among homologous recombinants, a disrupted strain that does not return spontaneously can be obtained, and as a result, when a strain is obtained with high safety in handling a recombinant, gene replacement disruption is preferred in terms of obtaining a strain.
[0052] 使用する URA3DNA断片は、通常、遺伝子内部の部分 DNAを除去し、残った両 端部分を再度連結した形の DNA断片が用いられる。 [0052] As the URA3 DNA fragment to be used, a DNA fragment in which a partial DNA inside a gene is removed and the remaining both ends are ligated again is used.
除去する部分 DNAは、除去により URA3遺伝子が酵素活性を発揮できなくなる部 分であり、且つ自然復帰により URA3酵素活性が回復しない長さの DNAである。こ のような部分 DNAの鎖長は特に限定されないが、好ましくは 50塩基以上、より好まし くは 100塩基以上である。また、除去された DNAの部位にいかなる長さの DNAが揷 入されて!ヽてもかまわな!/、。  The part of DNA to be removed is a part where the URA3 gene can no longer exhibit enzymatic activity due to the removal, and has a length that does not restore the URA3 enzyme activity due to spontaneous reversion. Although the chain length of such partial DNA is not particularly limited, it is preferably 50 bases or more, more preferably 100 bases or more. Also, DNA of any length may be inserted into the removed DNA site!
[0053] これら DNA断片は、例えば、 PCR法 (ポリメラーゼ連鎖反応法)や、ベクターからの 制限酵素による切り出しと再連結等によって調製できる。 [0053] These DNA fragments can be prepared by, for example, PCR (polymerase chain reaction), excision from a vector with a restriction enzyme, and religation.
URA3DNA断片の両端の相同性領域長は、 10塩基以上あればよぐ好ましくは 20 0塩基以上、より好ましくは 300塩基以上である。  The length of the homology region at both ends of the URA3 DNA fragment is preferably at least 10 bases, more preferably at least 200 bases, and even more preferably at least 300 bases.
また、両端それぞれの相同性は、好ましくは 90%以上、より好ましくは 95%以上であ る。 [0054] URA3遺伝子は、キャンディダ*マルトーサ染色体中に 2個以上存在することが予想 されていた。 目的破壊遺伝子が破壊されたことを検出できる手法が存在する場合に は選択マーカーは不要であるが、通常染色体中に 2個以上ある遺伝子を破壊する場 合等では、選択マーカーを指標として酵母染色体中の破壊対象遺伝子の相同組換 えを検出する必要がある。複数の選択マーカーを用いる力、あるいは 1個目の遺伝 子を破壊した後、用いた選択マーカー遺伝子を除去あるいは破壊した後に、 2個目 以降の遺伝子を破壊する作業が必要となる。 Further, the homology of each end is preferably 90% or more, more preferably 95% or more. [0054] It was expected that two or more URA3 genes would be present in the Candida maltosa chromosome. A selection marker is not necessary when there is a method that can detect that the target disrupted gene has been disrupted.However, when two or more genes are disrupted in a chromosome, the selection marker is usually used as an indicator for the yeast chromosome. It is necessary to detect the homologous recombination of the gene to be destroyed. The force of using multiple selectable markers, or the work of destroying the first gene and then removing or destroying the used selectable marker gene, and then destroying the second and subsequent genes is required.
[0055] 従って、 URA3DNA断片の除去した遺伝子部分に、 ADE1等の選択マーカーとな り得る遺伝子を挿入する方法を用いることが出来る。挿入する選択マーカーの長さに は特に制限はなぐ酵母中で実質的に機能しうるプロモーター領域、構造遺伝子領 域、ターミネータ一領域を含んでいればよい。遺伝子マーカーが、目的酵母とは異な る生物由来でも力まわない。  [0055] Therefore, a method of inserting a gene that can be a selection marker such as ADE1 into the gene portion from which the URA3 DNA fragment has been removed can be used. The length of the selection marker to be inserted is not particularly limited as long as it includes a promoter region, a structural gene region, and a terminator region that can function substantially in yeast. It does not work even if the genetic marker is derived from an organism different from the target yeast.
[0056] 更に、選択マーカー遺伝子の両端に、 hisG遺伝子断片(サルモネラ菌 ATP phosp horibosyl transferase遺伝子の断片、この遺伝子断片を含むプラスミド ρΝΚΥΙΟ 09は ATCCより入手可能 (ATCC: 87624) )をそれぞれ挿入することで、遺伝子破 壊を行った後に、分子内相同組換えにより挿入したマーカー遺伝子を除去可能にで きる(Alani等 Genetics、 116 : 541—545 (1987) )。このように選択マーカー遺伝 子の除去に用いる遺伝子断片に特に制限はなぐ選択マーカーの上 ·下流にいかな る遺伝子の相同断片を配置してもよい。従って、選択マーカーに含まれる配列を使 用することも可能であり、本発明においては、マーカーとして用いる ADE1遺伝子の 5,末端部分の遺伝子断片を ADE1遺伝子 3,の末端に結合することで、分子内相同 組換えによりマーカー遺伝子が極めて効率的に除去可能となった。マーカーの分子 内相同組換えに用いる遺伝子断片に特に制限はなぐマーカー遺伝子が実質的に 機能しな 、遺伝子断片を用いればょ ヽ。 3,末端部分の遺伝子断片を用いることもで きる。  Further, a hisG gene fragment (a fragment of the ATP phosphoribosyl transferase gene of Salmonella, a plasmid ρ 遺 伝 子 09 containing this gene fragment is available from the ATCC (ATCC: 87624)) is inserted into both ends of the selectable marker gene, respectively. After gene disruption, the inserted marker gene can be removed by intramolecular homologous recombination (Alani et al., Genetics, 116: 541-545 (1987)). As described above, there is no particular restriction on the gene fragment used for removing the selectable marker gene, and homologous fragments of any gene may be arranged above and below the selectable marker. Therefore, it is also possible to use the sequence contained in the selectable marker. In the present invention, the molecular fragment of the ADE1 gene 5, which is used as a marker, is linked to the end of the ADE1 gene 3, so that the molecule can be used. The internal homologous recombination has made it possible to remove the marker gene very efficiently. There is no particular restriction on the gene fragment used for intramolecular homologous recombination of the marker. A gene fragment which does not substantially function as a marker gene should be used. 3. Gene fragments at the end can also be used.
[0057] 本発明では、 3種類の URA3破壊用 DNAを用いた。  [0057] In the present invention, three types of URA3 disrupting DNA were used.
URA3破壊用 DNA— 1は、約 220bpの URA3酵素をコードする DNA断片を除去し 、 5 '側約 350bpDNA断片と 3 '側約 460bpの DNA断片を連結した DNAである(図 D o除去した部分は URA3酵素蛋白質の約 30%にあたる。また、 5 '側及び 3 '側の DNA断片と元の URA3遺伝子との相同性は両 DNAとも 100%である。 The DNA-1 for URA3 disruption is a DNA obtained by removing a DNA fragment encoding the URA3 enzyme of about 220 bp and ligating a DNA fragment of about 350 bp on the 5 ′ side and a DNA fragment of about 460 bp on the 3 ′ side (see FIG. The portion removed from Do accounts for about 30% of the URA3 enzyme protein. The homology between the 5′-side and 3′-side DNA fragments and the original URA3 gene is 100% for both DNAs.
[0058] URA3破壊用 DNA— 2は、 URA3破壊用 DNA— 1の除去された URA3DNA断片 の代わりに、キャンディダ ·マルトーサ由来 ADE1遺伝子を挿入した(図 1)。  [0058] In the DNA-2 for URA3 disruption, the ADE1 gene derived from Candida maltosa was inserted instead of the URA3 DNA fragment from which the DNA-1 for URA3 disruption had been removed (Fig. 1).
URA3破壊用 DNA— 3は、分子内相同組換えを起こしアデニン要求性を回復させる 為の配列として、 ADE1遺伝子の 5 '末端部分約 630bpを用いることとし、 ADE1遺 伝子の下流に接続して 、る(図 1)。  The DNA-3 for URA3 disruption uses about 630 bp of the 5'-terminal part of the ADE1 gene as a sequence for causing intramolecular homologous recombination and restoring adenine requirement, and is connected downstream of the ADE1 gene. (Fig. 1).
[0059] 本発明に用いる DNA断片は、一般的なベクター上に構築することができる。  [0059] The DNA fragment used in the present invention can be constructed on a general vector.
本発明においては pUC— Nxを用いて行った。 pUC— Nxは、 pUC 19 (Sambrook等 編、 Molecular cloning: A Laboratory Manual^ Second Edition 丄. ld、 Cold Spring Harbor Laboratory Press (1989) )のEcoRIとHindIΠのサィト の間の DNAを、配列番号 1に記載の DNAで置換し、制限酵素サイトを新規に構築 したベクターである。  In the present invention, pUC-Nx was used. pUC—Nx is the DNA between the EcoRI and HindI sites of pUC19 (Edited by Sambrook et al., Molecular cloning: A Laboratory Manual ^ Second Edition I. ld, Cold Spring Harbor Laboratory Press (1989)), as SEQ ID NO: 1. This is a vector in which a restriction enzyme site has been newly constructed by substitution with the described DNA.
pUC 119-URA3 (Ohkuma M.等、 Curr. Genet.、 23 : 205— 210 (1993) )より 、 PCRを用いて URA3遺伝子の 5 '側と 3 '側を別々に増幅し、 pUC— Nxに順次連結 し、 URA3破壊用 DNA-1を含むベクターを作製した。  From pUC 119-URA3 (Ohkuma M. et al., Curr. Genet., 23: 205-210 (1993)), PCR was used to separately amplify the 5 'and 3' sides of the URA3 gene to form pUC-Nx Ligation was performed sequentially to prepare a vector containing DNA-1 for URA3 disruption.
次に、同ベクター中に、 PCR法により増幅した ADE1遺伝子を挿入し、このようにし て URA3破壊用 DNA— 2を含むベクターを作製した。  Next, the ADE1 gene amplified by the PCR method was inserted into the vector, and a vector containing DNA-2 for URA3 disruption was prepared in this way.
更に、このベクター中の ADE1遺伝子 3 '末端に、 PCRにより増幅した ADE15 '末端 部分配列約 630bpを挿入することにより、マーカー遺伝子除去が可能な URA3破壊 用 DNA— 3を含むベクターが作製された。  Further, by inserting about 630 bp of the ADE15 'terminal partial sequence amplified by PCR into the ADE1 gene 3' end of this vector, a vector containing URA3 disrupting DNA-3 capable of removing the marker gene was prepared.
[0060] 破壊用 DN Aを含むベクターは適当な大腸菌、例え «JM109や DH5 aに導入し、 該大腸菌を培養し、それより塩ィ匕セシウム超遠心法により高純度のプラスミドを大量 調 する (sambrook等編、 Molecular cloning: A Laboratory Manual^ Sec ond Edition 1. 42— 1. 47、 Cold Spring Harbor Laboratory Press (198 9) ) 0また、アルカリ法等を用いても可能である(Brinbioim H. C. ,等 Nucleic Acids Res. 7 : 1513— 1523 (1979) )。市販のプラスミド精製キット等を用いても 十分可能である。このベクターを直接遺伝子破壊に用いることができるが、精製した ベクターより URA3領域を含む相同性のある部分を適当な制限酵素で切り出し、そ れを破壊用 DNAとして利用するのが望ましい。 PCR法を用いて増幅することも可能 である。本発明では、制限酵素 Sphl及び Swalで切断し、 DNA断片を精製すること なく菌体内に導入することにより、相同的組換えによって URA3遺伝子を破壊するこ とができた。 [0060] The vector containing the DNA for disruption is introduced into an appropriate Escherichia coli, for example, «JM109 or DH5a, and the Escherichia coli is cultured. sambrook et al., Molecular cloning: A Laboratory Manual ^ Second Edition 1.42-1.47, Cold Spring Harbor Laboratory Press (198 9)) 0 Alternatively, it is possible to use an alkali method or the like (Brinbioim HC, etc.). Nucleic Acids Res. 7: 1513-1523 (1979)). It is also possible to use a commercially available plasmid purification kit or the like. This vector can be used directly for gene disruption, but It is desirable to cut out a homologous portion containing the URA3 region from the vector with an appropriate restriction enzyme, and use that as the DNA for disruption. It is also possible to amplify using the PCR method. In the present invention, the URA3 gene could be disrupted by homologous recombination by cutting with restriction enzymes Sphl and Swal and introducing the DNA fragment into the cells without purification.
[0061] キャンディダ*マルトーサの形質転換法には、プロトプラスト法、酢酸リチウム法 (Taka gi M.等、 J Bacteriol、 167 : 551— 5 (1986) )、電気パルス法 (Kasuske A.等 Yeast 8 : 691— 697 (1992) )が知られている力 本発明では電気パルス法を用 いて行った。電気ノ ルス発生には市販の機器が利用できる。本発明では、 BTX社( San Diego, CA USA)製の ELECTRO CELL MANIPULATOR 600を用 いた。キュベットは BIO MEDICAL CORPORATION CO. LTD (Tokyo Jap an)製の BM6200 (2mm gap blue cap)を用いた。  [0061] Candida * maltosa transformation methods include the protoplast method, lithium acetate method (Taka gi M. et al., J Bacteriol, 167: 551-5 (1986)), and electric pulse method (Kasuske A. et al. : 691-697 (1992)) The known force is used in the present invention. Commercial equipment can be used to generate electric noise. In the present invention, ELECTRO CELL MANIPULATOR 600 manufactured by BTX (San Diego, CA USA) was used. The cuvette used was BM6200 (2 mm gap blue cap) manufactured by BIO MEDICAL CORPORATION CO. LTD (Tokyo Japan).
AC 16株よりコンピテント細胞を調製し、 URA3破壊用 DNA— 2と共に電気パルス後 、アデニンを含まない培地で培養し、出現するコロニーより目的の URA3遺伝子に A DEI遺伝子が挿入された破壊株をスクリーニングする。  Competent cells were prepared from 16 AC strains, and after electropulsing with DNA-2 for URA3 disruption, cultured in an adenine-free medium, and from the resulting colonies, the disrupted strain in which the target URA3 gene was inserted into the target URA3 gene was obtained. Screen.
[0062] 目的遺伝子破壊株のスクリーニングは、得られたコロニーから、 PCR法ゃゲノミツクサ ザンハイブリダィゼーシヨン法(Sambrook等編、 Molecular cloning : A Laborat ory Manual^ Second Edition 9. 3丄一 9. 57、し old spring Harbor Labor atory Press (1989) )により容易に行うことができる。 PCR法では、 URA3遺伝子の 両端をプライマーに用いると、ァガロースゲル電気泳動において、野生株では正常な 大きさの DNAバンドが検出される力 破壊株では挿入遺伝子分だけ大き ヽバンドも 検出される。本発明では、約 lkbpと 2kbpの DNAバンドが検出された。しかし、遺伝 子破壊等の染色体 DNAとの置換や組み込みの場合、遺伝子が目的以外の箇所、 例えば相同性の高い未知の部分に挿入される可能性を想定すべきであり、その場合 、 PCR法では確認できない場合がある。この場合、ゲノミツクサザンノヽイブリダィゼー シヨン法や、破壊対象遺伝子の相同組換えに用いた部分より外部に存在する遺伝子 配列を用いて PCR法を行うことにより、確認することが出来る。  [0062] Screening of the target gene-disrupted strain is performed by PCR from the obtained colonies using the Genomics Southern Hybridization method (edited by Sambrook et al., Molecular cloning: A Laboratory Manual ^ Second Edition 9.3-9-1. 57, old spring Harbor Laboratory Press (1989)). In the PCR method, when both ends of the URA3 gene are used as primers, in agarose gel electrophoresis, a normal size DNA band is detected in a wild type strain, and a large band is detected in a force-disrupted strain by the amount of the inserted gene. In the present invention, DNA bands of about lkbp and 2 kbp were detected. However, in the case of substitution or integration with chromosomal DNA such as gene disruption, it is necessary to assume that the gene may be inserted into a part other than the target, for example, an unknown part with high homology. May not be confirmed. In this case, it can be confirmed by performing a genomic Southern hybridization method or a PCR method using a gene sequence existing outside the portion used for homologous recombination of the gene to be disrupted.
[0063] URA3遺伝子は、キャンディダ*マルトーサ染色体に 2個以上存在することが予想さ れた。実際、 URA3破壊用 DNA— 2を形質転換して得られた株は、ゥラシル要求性 を示さず、 2個目の URA3遺伝子を破壊しなければ、ゥラシル要求性を付与する事 ができない。 2個目の URA3遺伝子を破壊するためには、挿入した ADE1遺伝子を 破壊した後に、もう一度 1個目の URA3遺伝子を破壊した手法を用いる力、あるいは 、 URA3破壊用 DNA— 1等で形質転換後、ゥリジンあるいはゥラシルと 5— FOA (5— Fluoro— Orotic— Acid)の共存下で生育してくるコロニーを選択することで達成され る。本発明においては前者の手法を用いた。即ち、 URA3破壊用 DNA-2を形質転 換してアデニン非要求性となった株に URA3破壊用 DNA— 1を電気導入してもう一 度 1個目の URA3遺伝子を破壊し、アデニンを含む最少培地に塗布し、出現する赤 色コロニーを選択することで、アデニン要求性株が取得できる。 ADE1DNA断片を 用いることもできる(特開 2002— 209574号公報)。その後、 2個目の URA3遺伝子 を破壊する作業を行う。 [0063] It is expected that two or more URA3 genes are present on the Candida * maltosa chromosome. Was. In fact, the strain obtained by transforming the DNA-2 for URA3 disruption does not exhibit the requirement for peracil, and unless the second URA3 gene is disrupted, it will not be able to confer the requirement for peracil. In order to disrupt the second URA3 gene, disrupt the inserted ADE1 gene and then use the technique of disrupting the first URA3 gene again, or after transforming with URA3 disrupting DNA-1 etc. This can be achieved by selecting colonies that grow in the presence of peridine, peridine or peracil and 5-FOA (5-Fluoro-Orotic-Acid). In the present invention, the former method is used. That is, URA3 disrupting DNA-2 was transformed into URA3 disrupting strain, and URA3 disrupting DNA-1 was electrotransferred into the strain that became non-adenine-requiring, and the first URA3 gene was disrupted to contain adenine. Adenine-requiring strains can be obtained by applying to a minimal medium and selecting the red colonies that appear. An ADE1 DNA fragment can also be used (JP-A-2002-209574). Then, work to destroy the second URA3 gene.
[0064] この際、スクリーニングを効率的に行うための濃縮工程を用いることが好ましい。例え ば、ナイスタチン濃縮(Snow R. Nature 211 : 206— 207 (1966) )と呼ばれる方 法を利用することができる。本法は、酵母力 ランダム変異により得られる変異株を効 率的に選択するために開発された方法であるが、遺伝子破壊株にも応用できる。例 えば、遺伝子導入後、培養した菌体を YM培地等に植菌し培養する。菌を洗浄し、 窒素源不含最少培地で培養後、窒素源含有最少培地で短時間培養する。この培養 液に直接ナイスタチンを添加し、 30°Cで 1時間、好気的に培養することにより、野生 株を優先的に殺傷できる。この菌液を、アデニンを含有する適当な寒天培地プレート に塗抹し、 30°Cで 2日間程度培養すると、赤色コロニーが得られる。  At this time, it is preferable to use a concentration step for performing screening efficiently. For example, a method called nystatin enrichment (Snow R. Nature 211: 206-207 (1966)) can be used. This method has been developed to efficiently select mutant strains obtained by random mutation in yeast, but can also be applied to gene-disrupted strains. For example, after gene transfer, the cultured cells are inoculated into YM medium or the like and cultured. After washing the bacteria and culturing in a minimal medium without a nitrogen source, cultivate briefly in a minimal medium with a nitrogen source. Wild strains can be preferentially killed by adding nystatin directly to this culture and aerobically culturing at 30 ° C for 1 hour. This bacterial solution is spread on an appropriate agar plate containing adenine and cultured at 30 ° C for about 2 days to obtain red colonies.
[0065] 得られたアデニン要求性株は、 PCR法により確認する事が出来る。 URA3遺伝子の 両端をプライマーに用いると、ァガロースゲル電気泳動において、元株では正常な大 きさの DNAバンドが検出される力 ADE1破壊株では欠失部分だけ短いバンドも検 出される。  [0065] The obtained adenine-requiring strain can be confirmed by a PCR method. When both ends of the URA3 gene are used as primers, agarose gel electrophoresis can detect DNA bands of normal size in the original strain. In the ADE1-disrupted strain, a band shorter than the deletion is also detected.
[0066] 次に、この URA3遺伝子が 1個破壊され、アデニン要求性を回復した株に対して、上 記の方法を繰り返すことで 2個目の URA3遺伝子が破壊され、ゥラシル要求性となつ た株を取得することができる。その後再び ADE1遺伝子を破壊することで 2重栄養要 求性株を取得することができる力 本発明においては、 2個目の URA3遺伝子の破 壊には、分子内相同組換えによるマーカー遺伝子除去が可能な ADE1遺伝子を含 む URA3破壊用 DNA— 3を用いた。この破壊用遺伝子を、本株に電気導入し、ゥリ ジンあるいはゥラシルを含む選択培地にてコロニーを形成させる。得られたコロニー をゥリジンゃゥラシルを含まな ヽ培地にレプリカする事により、ゥラシル要求性株を選 択する。得られた要求性株の染色体遺伝子を PCR法等により解析し、正常な URA3 に相当する遺伝子が増幅せず、挿入遺伝子を含むサイズの遺伝子、及び、欠失を 含むサイズの遺伝子のみを増幅する株を選択する。この段階で URA3破壊株が完 成する。 [0066] Next, one strain of this URA3 gene was disrupted, and the above-mentioned method was repeated for a strain in which adenine auxotrophy was restored, whereby the second URA3 gene was disrupted to become peracilotropic. You can get shares. After that, double nutrition is required by destroying the ADE1 gene again. Ability to Obtain Requirement Strain In the present invention, the disruption of the second URA3 gene includes the URA3 disruption DNA-3 containing the ADE1 gene, which can remove the marker gene by intramolecular homologous recombination. Was used. The disrupting gene is electrotransformed into the strain and colonies are formed in a selective medium containing peridine or peracil. The resulting colonies are replicated on a medium containing no lysine peracil to select periracil-requiring strains. The obtained chromosome gene of the auxotroph is analyzed by PCR, etc., and the gene corresponding to the normal URA3 is not amplified, and only the gene containing the inserted gene and the gene containing the deletion are amplified. Select a stock. At this stage, the URA3-disrupted strain is completed.
[0067] 次に、挿入した ADE1遺伝子を除去する。この方法として、分子内相同組換えにより ADE1遺伝子を自然欠失した株を、ナイスタチン濃縮法を応用することにより、簡便 に作製することが可能である。本発明の好ましい態様によれば、培養した菌体を YM 培地等に植菌し培養後、菌を洗浄し、窒素源不含最少培地で培養後、窒素源含有 最少培地で短時間培養する。この培養液に直接ナイスタチンを添加し、 30°Cで 1時 間、好気的に培養することにより、 ADE1遺伝子を含む株を優先的に殺傷できる。こ の菌液をアデニンを含有する適当な寒天培地プレートに塗抹し、 30°Cで 2日間程度 培養すると、赤色コロニーが得られる。  Next, the inserted ADE1 gene is removed. As this method, a strain in which the ADE1 gene has been naturally deleted by intramolecular homologous recombination can be easily prepared by applying the nystatin enrichment method. According to a preferred embodiment of the present invention, the cultured cells are inoculated on a YM medium or the like, cultured, washed, cultured in a minimal medium without a nitrogen source, and then cultured in a minimal medium with a nitrogen source for a short time. By directly adding nystatin to this culture and aerobically culturing at 30 ° C for 1 hour, the strain containing the ADE1 gene can be preferentially killed. When this bacterial solution is spread on a suitable agar plate containing adenine and cultured at 30 ° C for about 2 days, red colonies are obtained.
[0068] 得られたアデニン要求性株は、 PCR法等により確認する事が出来る。 URA3遺伝子 の両端をプライマーに用いると、ァガロースゲル電気泳動において、元株では、 AD E1遺伝子と ADE1断片遺伝子の挿入された大きさの DNAバンドと欠失を持つ UR A3遺伝子の大きさの DNAが検出される力 ADE1破壊株では、欠失を持つ URA3 遺伝子の大きさの DNAと欠失を持つ URA3遺伝子の大きさの DNAに ADE1遺伝 子断片の大きさをカ卩えたサイズの DNAバンドもが検出される。この段階で ADE1及 び URA3遺伝子破壊株が作製される。  [0068] The obtained adenine-requiring strain can be confirmed by a PCR method or the like. When both ends of the URA3 gene were used as primers, agarose gel electrophoresis detected a DNA band with the inserted size of the ADE1 gene and the ADE1 fragment gene and a DNA with the size of the URA3 gene with a deletion in the original strain. In the ADE1-disrupted strain, a DNA band of the size of the URA3 gene with the deletion and a DNA band of the size of the ADE1 gene fragment added to the DNA of the size of the URA3 gene with the deletion are also detected. Is done. At this stage, ADE1 and URA3 gene disrupted strains are produced.
[0069] (2) HIS5遺伝子破壊株、 HIS5 · ADE1遺伝子破壊株の作製方法  (2) Method for producing HIS5 gene-disrupted strain, HIS5-ADE1 gene-disrupted strain
HIS5遺伝子破壊酵母、及び、 HIS5 'ADE1遺伝子破壊酵母についても、上記(1) に記載の方法を用 、て AC 16株より作製することが出来る。  HIS5 gene-disrupted yeast and HIS5'ADE1 gene-disrupted yeast can also be prepared from the AC16 strain using the method described in (1) above.
用いる HIS5遺伝子は、 pUC119— HIS5 (Hikiji.等、 Curr. Genet.、 16 : 261—2 66 (1989) )より調製することが出来る。即ち、 ADE1遺伝子の 3'側に ADE1遺伝子 5 '側断片を接続した遺伝子の両端に、 HIS5遺伝子の 5 '側 DNA断片と 3 '側の DN A断片を連結した HIS5遺伝子破壊用 DNA等を用いることができる(図 1)。本発明 においては、 HIS5遺伝子の 5'側及び 3'側の約 500bpの DNA断片を用いた力 特 に限定されるものではない。 The HIS5 gene to be used is pUC119-HIS5 (Hikiji. Et al., Curr. Genet., 16: 261-2. 66 (1989)). That is, HIS5 gene disruption DNA or the like in which the 5 'side DNA fragment of the HIS5 gene and the 3' side DNA fragment are linked to both ends of a gene in which the 5 'side fragment of the ADE1 gene is connected to the 3' side of the ADE1 gene. (Figure 1). In the present invention, the ability to use a DNA fragment of about 500 bp on the 5 ′ side and 3 ′ side of the HIS5 gene is not particularly limited.
[0070] 上記遺伝子を AC 16株に電気導入し、得られたアデニン非要求性株より HIS5遺伝 子が破壊された株を PCR法等により選択し、その後、ナイスタチン濃縮法により、分 子内相同組換えによりアデニン要求性を回復した株を簡便に取得することができる。 HIS5遺伝子が複数存在する場合には、本工程を繰り返し行うことで、アデニン、ヒス チジン 2重栄養要求性株が取得できる。  [0070] The above gene was electrotransformed into 16 strains of AC, and a strain in which the HIS5 gene was disrupted was selected from the obtained adenine non-auxotrophs by PCR or the like, and then homologous intramolecularly by nystatin enrichment. A strain whose adenine requirement has been restored by recombination can be easily obtained. When there are a plurality of HIS5 genes, adenine-histidine double auxotrophs can be obtained by repeating this step.
[0071] (3) URA3 'HIS5遺伝子破壊株、 URA3 'HIS5 'ADE1遺伝子破壊株の作製方法  (3) Method for producing URA3 'HIS5 gene-disrupted strain, URA3' HIS5 'ADE1 gene-disrupted strain
(1)で得られた URA3 'ADE1破壊株を元にして、(2)に記載の方法で、 URA3 -HI S5遺伝子破壊株、及び URA3 'HIS5 'ADE1遺伝子破壊株を作製することが出来 る。また、(2)で得られた株を元にして、(1)の方法を用いても作製可能である。  Based on the URA3'ADE1 disrupted strain obtained in (1), a URA3-HIS5 gene disrupted strain and a URA3'HIS5'ADE1 gene disrupted strain can be prepared by the method described in (2). . Alternatively, it can be prepared using the method of (1) based on the strain obtained in (2).
[0072] (4)遺伝子破壊株による異種遺伝子発現  (4) Expression of heterologous gene by gene-disrupted strain
本発明で得た遺伝子破壊株を用いて、同種遺伝子あるいは異種遺伝子を、利用可 能なマーカーの数に応じて複数回導入することや、マーカーを回復させることで何度 でも導入することが可能となり、目的遺伝子を従来以上に導入でき多量に発現させる ことができる。  Using the gene-disrupted strain obtained in the present invention, a homologous gene or a heterologous gene can be introduced multiple times depending on the number of available markers, or can be introduced repeatedly by recovering the markers. Thus, the target gene can be introduced more than ever before and can be expressed in large amounts.
酵母は、大腸菌ではできない糖鎖付加蛋白質を培地中に分泌することができるため 、遺伝子破壊株を用いてこのような蛋白質の生産が可能である。また、本発明の酵母 は、遺伝子マーカーが複数存在するため、数種の蛋白質を発現させることができ、複 数の酵素が関与するような複雑な反応を行うことも可能であり、化学品の製造にも有 用である。  Since yeast can secrete a glycosylated protein, which cannot be produced by Escherichia coli, into a medium, such a protein can be produced using a gene-disrupted strain. Further, since the yeast of the present invention has a plurality of gene markers, it can express several kinds of proteins, and can perform complicated reactions involving a plurality of enzymes. It is also useful for manufacturing.
導入できる同種遺伝子は特に限定されないが、例えば、産業上有用な生産物の製 造例として、 WO99Z04014に公開されているような、キャンディダ 'マルトーサに同 株由来の P450酵素遺伝子を導入することによる、ジカルボン酸の製造が挙げられる また、異種遺伝子も特に限定はされないが、例えば、抗体遺伝子、リパーゼ遺伝子、 アミラーゼ遺伝子等の導入による、当該蛋白質の製造が挙げられる。ポリヒドロキシァ ルカン酸合成酵素遺伝子や、ポリヒドロキシアルカン酸合成の基質を合成する酵素 遺伝子を導入することによる、ポリエステルの製造も挙げられる。 The homologous gene that can be introduced is not particularly limited.For example, by introducing a P450 enzyme gene derived from the same strain into Candida's maltosa as disclosed in WO99Z04014 as a production example of an industrially useful product. , The production of dicarboxylic acids Further, the heterologous gene is not particularly limited, and examples thereof include production of the protein by introducing an antibody gene, a lipase gene, an amylase gene, and the like. Polyester production by introducing a polyhydroxyalkanoic acid synthase gene or an enzyme gene for synthesizing a substrate for polyhydroxyalkanoic acid synthesis is also included.
[0073] 酵母 1細胞当たりの目的遺伝子の導入数は、目的遺伝子産物の性質と、用いるプロ モーターの強さにより決定される。例えば、目的遺伝子産物が導入した発現カセット より翻訳される蛋白質の場合、単純蛋白質の場合は何個でもよいが、糖鎖を付加さ れる蛋白質の場合、過剰な蛋白質の翻訳は糖鎖修飾が律速となり不均一な産物を 与えることになる。従って、制限された数の発現カセットの導入が好ましい。  [0073] The number of target genes to be introduced per yeast cell is determined by the properties of the target gene product and the strength of the promoter used. For example, in the case of a protein translated from an expression cassette into which a target gene product has been introduced, any number of simple proteins may be used, but in the case of a protein to which a sugar chain is added, translation of an excess protein is rate-limited by sugar chain modification. Which gives a heterogeneous product. Therefore, the introduction of a limited number of expression cassettes is preferred.
[0074] 本発明に用いたキャンディダ'マルトーサ等の一部のキャンディダ属酵母においては 、 mRNAから蛋白質が翻訳される段階で、一部コドンの翻訳のされ方が他の生物と 異なっていることが知られている。キャンディダ'マルトーサではロイシンコドンの CUG がセリンに翻訳されるため(Ohama T.等、 Nucleic Acid Res.、 21 : 4039404 5 (1993) )、大腸菌由来 lacZ遺伝子が、活性を持つ j8ガラクトシダーゼに翻訳され ない(Sugiyama H.等、 Yeast 11 : 43— 52 (1995) )。このように異種遺伝子を発 現させる場合には、それがキャンディダ ·マルトーサ内で機能を持つ蛋白質に翻訳さ れるという保証はない。従って、キャンディダ'マルトーサを宿主として異種遺伝子を 発現させる場合、原則としてロイシンコドンのみ変換すれば良いが、さらに効率よく発 現させるため他のアミノ酸コドンをキャンディダ ·マルトーサのものに合わせても良!、。 コドンの変換は、例えば Wolf K.編 Nonconventional Yeasts in Biotechn ology.の中の Mauersberger S.等著、 Candida maltosa p524— 527を参考 にして行えば良い。  [0074] In some Candida yeasts such as Candida maltosa used in the present invention, at the stage where protein is translated from mRNA, the manner in which some codons are translated differs from that of other organisms. It is known. In Candida's maltosa, the leucine codon CUG is translated into serine (Ohama T. et al., Nucleic Acid Res., 21: 40394045 (1993)), so the lacZ gene from E. coli is translated into active j8 galactosidase. No (Sugiyama H. et al., Yeast 11: 43-52 (1995)). When expressing a heterologous gene in this way, there is no guarantee that it will be translated into a functional protein in Candida maltosa. Therefore, when expressing a heterologous gene using Candida maltosa as a host, only leucine codon should be converted in principle, but other amino acid codons may be adjusted to those of Candida maltosa for more efficient expression. !,. The codon conversion may be performed with reference to, for example, Candida maltosa p524-527, by Mauersberger S. in Nonconventional Yeasts in Biotechnology, edited by Wolf K.
[0075] 本発明の好ましい実施形態では、遺伝子発現産物として生分解性ポリエステルが生 産される。以下、ポリエステルの生産方法について記述する。  [0075] In a preferred embodiment of the present invention, a biodegradable polyester is produced as a gene expression product. Hereinafter, a method for producing polyester will be described.
本発明においては、例えば、ポリヒドロキシアルカン酸合成酵素遺伝子 (phaC)や、 ポリエステルの合成の基質となる分子の合成に関与する酵素遺伝子等のポリエステ ル合成に関与する酵素遺伝子を、上記遺伝子破壊酵母に複数組み込んで形質転 換体とし、当該形質転換体を培養して得られる培養物から、ポリエステルを採取する [0076] ポリエステル合成に関与する酵素遺伝子としては特に限定されないが、下記一般式 ( 1)で示される 3—ヒドロキシアルカン酸を共重合してなるポリエステルの合成に関与す る酵素遺伝子が好ましぐ下記式(2)で示される 3 -ヒドロキシ酪酸と下記式(3)で示 される 3—ヒドロキシへキサン酸とを共重合してなる共重合ポリエステル P (3HB— co— 3HH)の合成に関与する酵素遺伝子であることがより好ま 、。 In the present invention, for example, an enzyme gene involved in polyester synthesis such as a polyhydroxyalkanoic acid synthase gene (phaC) or an enzyme gene involved in the synthesis of a molecule serving as a substrate for polyester synthesis is replaced with the above-described gene-disrupted yeast. Into a transformant, and collect the polyester from the culture obtained by culturing the transformant. [0076] The enzyme gene involved in polyester synthesis is not particularly limited, but is preferably an enzyme gene involved in synthesis of a polyester obtained by copolymerizing 3-hydroxyalkanoic acid represented by the following general formula (1). Involved in the synthesis of copolymerized polyester P (3HB—co—3HH) obtained by copolymerizing 3-hydroxybutyric acid represented by the following formula (2) and 3-hydroxyhexanoic acid represented by the following formula (3) More preferably, it is an enzyme gene.
[0077] [化 1]  [0077] [Formula 1]
Figure imgf000027_0001
Figure imgf000027_0001
[0078] [化 2]  [0078] [Formula 2]
CH3 CH 3
HO— CH ~ CHり一 C——OH ( 2 )  HO— CH ~ CH Riichi C——OH (2)
II  II
o  o
[0079] [化 3] [0079] [Formula 3]
Figure imgf000027_0002
Figure imgf000027_0002
[0080] 例えば、特開平 10-108682号公報に記載されているポリエステル合成酵素遺伝子 を用いることができる。 [0080] For example, the polyester synthase gene described in JP-A-10-108682 can be used.
[0081] また、本ポリエステル合成酵素遺伝子と共に、ポリエステル合成の基質となる (R)—3 —ヒドロキシブチリルー CoAや、(R)—3—ヒドロキシブチリへキサノィルー CoAに関与す る遺伝子を導入しても良い。  [0081] In addition to the present polyester synthase gene, a gene relating to (R) -3-hydroxybutylyl-CoA or (R) -3-hydroxybutylylhexanoyl-CoA, which is a substrate for polyester synthesis, was introduced. Is also good.
これらの遺伝子としては、例えば、 j8酸ィ匕経路の中間体のエノィルー CoAを (R)— 3— ヒドロキシァシルー CoAに変換する(R)体特異的エノィルー CoAヒドラターゼ(Fukui T.等、 FEMS Microbiology Letters, 170 : 69— 75 (1999)、特開平 10— 108 682号公報)や、ァセチルー CoAを二量化して 3—ヒドロキシブチリルー CoAを合成す る 13ケトチオラーゼ、 NADPH依存性リダクターゼ遺伝子(Peoples OP等、 J. Biol . Chem. 264 : 15298— 15303 (1989) )等力 S挙げ、られる。更に、 3—ケトアシノレ一 Co A—ァシルキャリアープロテイン還元酵素(Taguchi K.等、 FEMS MicrobiologyThese genes include, for example, (R) -form-specific enolyl CoA hydratase (Fukui), which converts enolyl CoA, an intermediate of the j8 oxidation pathway, to (R) -3-hydroxyacyl-CoA. T. et al., FEMS Microbiology Letters, 170: 69-75 (1999), JP-A-10-108682), 13 ketothiolase that dimerizes acetyl-CoA to synthesize 3-hydroxybutylyl-CoA, depends on NADPH Sex reductase gene (Peoples OP et al., J. Biol. Chem. 264: 15298-15303 (1989)). Furthermore, 3-ketoacido-CoA-acyl carrier protein reductase (Taguchi K. et al., FEMS Microbiology
Letters 176: 183— 190 (1999)を用いることも有用である。 It is also useful to use Letters 176: 183-190 (1999).
これらの遺伝子は、実質的な酵素活性を有する限り、当該遺伝子の塩基配列に欠失 、置換、挿入等の変異が生じていても良いものとする。但し、異種遺伝子の場合、上 記したようにキャンディダ ·マルトーサ内で機能を持つ蛋白質に翻訳される t ヽぅ保証 はな 、ため、アミノ酸コドンを変更することが望ま 、。  As long as these genes have substantial enzymatic activity, mutations such as deletions, substitutions, and insertions may occur in the nucleotide sequences of the genes. However, in the case of a heterologous gene, there is no guarantee that it will be translated into a protein having a function in Candida maltosa as described above, so it is desirable to change the amino acid codon.
より好ましくは、ポリエステル合成酵素遺伝子とァセトァセチルー CoA還元酵素遺伝 子を共に用いることができる。  More preferably, both the polyester synthase gene and the acetoacetyl-CoA reductase gene can be used.
[0082] 本発明では、ァエロモナス'キヤビエ由来の phaC (特開平 10— 108682公報、 Fukui [0082] In the present invention, a phaC derived from Aeromonas serrata (Japanese Unexamined Patent Publication No. 10-108682, Fukui
T.等、 FEMS Microbiology Letters, 170 : 69— 75 (1999) )と、ラルストニア' ユートロファ由来の phbB (GenBank: J04987)を用いた。  T. et al., FEMS Microbiology Letters, 170: 69-75 (1999)) and phbB (GenBank: J04987) derived from Ralstonia'eutropha.
[0083] ァエロモナス 'キヤビエ由来の phaCをコードする遺伝子を、キャンディダ 'マルトーサ で発現するように設計し、且つアミノ酸配列上ァミノ末端より 149番目に存在するァス パラギンをセリンに置換するように作製した DNA(phaCacl49NS)の塩基配列を配 列番号 2に示した。 [0083] A gene encoding phaC derived from Aeromonas' rabies was designed to be expressed in Candida's maltosa, and was prepared to replace asparagine at the 149th position from the amino terminal in the amino acid sequence with serine. The nucleotide sequence of the obtained DNA (phaCacl49NS) is shown in SEQ ID NO: 2.
ラルストニア .ユートロファ由来の phbBをコードする遺伝子を、キャンディダ ·マルトー サで発現するように設計した DNAの塩基配列を配列番号 3に示した。  The nucleotide sequence of a DNA designed to express the gene encoding phbB derived from Ralstonia eutropha in Candida maltosa is shown in SEQ ID NO: 3.
[0084] ただし、これらの配列番号に示した塩基配列は、これに限定されるものではなぐ当 該酵素のアミノ酸配列がキャンディダ ·マルトーサ内で発現される塩基配列であれば 、いかなる塩基配列でも用いることができる。より好ましくは、これらポリエステル合成 に関与する遺伝子のカルボキシル末端にペルォキシソーム配向シグナルとして 3つ のアミノ酸配列力も成る「(セリン Zァラニン Zシスティン)— (リジン Zアルギニン Zヒス チジン)一口イシン」をコードする遺伝子を付加されているものを用いることができる。こ こで、例えば、(セリン Zァラニン Zシスティン)とはセリン、ァラニン又はシスティンの V、ずれかであると 、うことを意味する(WO03Z033707)。 [0084] However, the nucleotide sequence shown in these SEQ ID NOs is not limited thereto, and any nucleotide sequence may be used as long as the amino acid sequence of the enzyme is a nucleotide sequence expressed in Candida maltosa. Can be used. More preferably, a gene encoding “(serine Z alanine Z cystine) — (lysine Z arginine Z histidine) bite isine”, which also has three amino acid sequences as peroxisome orientation signals at the carboxyl terminus of these genes involved in polyester synthesis. Can be used. Here, for example, (serine Z alanine Z cysteine) means serine, alanine or cysteine. V, which means that it is misaligned (WO03Z033707).
[0085] 酵母における遺伝子発現カセットは、当該遺伝子の 5'側上流に、プロモーター、 5, 上流域活性ィ匕配列 (UAS)等の DNA配列を連結し、当該遺伝子の 3 '下流に、ポリ A付加シグナル、ターミネータ一等の DNA配列を連結して作製する。これらの DNA 配列は、当該酵母で機能する配列であればどのような配列でも利用できる。  [0085] The gene expression cassette in yeast is obtained by ligating a DNA sequence such as a promoter, 5, an upstream activating sequence (UAS), etc., to the 5 'side of the gene, and a poly A It is prepared by ligating DNA sequences such as additional signal and terminator. Any of these DNA sequences can be used as long as they function in the yeast.
[0086] 使用するプロモーター、ターミネータ一は、酵母で機能するものであればどのような 配列でも利用できる。プロモーターには構成的に発現を行うものや誘導的に発現を 行うものがあるが、いずれのプロモーターも用いてもよい。本発明においては、上記 プロモーター、ターミネータ一が、キャンディダ 'マルトーサで機能するものであること が好ましぐ上記プロモーター、ターミネータ一が、キャンディダ'マルトーサ由来であ ることがより好ましい。さらに好ましくは、用いる炭素源で強い活性を持つプロモータ 一である。  [0086] The promoter and terminator used can be any sequence as long as it functions in yeast. Promoters include those that express constitutively and those that express inductively, and any promoter may be used. In the present invention, the promoter and terminator preferably function in Candida maltosa, and the promoter and terminator are more preferably derived from Candida maltosa. More preferably, it is a promoter having strong activity in the carbon source used.
例えば、油脂等を炭素源として用いる場合には、プロモーターとしては、キャンディダ •マルトーサの ALK1遺伝子(GenBank: D00481)のプロモーター ALKlp (WOO 1Z88144)、 ALK2遺伝子(GenBank:X55881)のプロモーター ALK2p等を用 いることができる。更に、これらのプロモーターの上流に ARR (アルカン レスポンシ ブル リージョン)配列を複数個付加することによりプロモーター活性を向上させたプ 口モーター (木暮ら、 2002年日本農芸化学大会講演要旨集、 pl91) (配列番号 4) を利用することもできる。また、ターミネータ一としては、キャンディダ 'マルトーサの A LK1遺伝子のターミネータ一 ALKlt (WO0lZ88144)等を用いることができる。 なお、上記プロモーター及び Z又はターミネータ一の塩基配列は、キャンザイダ ·マ ルトーサで機能する配列であれば、 1つ若しくは複数個の塩基が欠失、置換及び Z 又は、付加された塩基配列であってもよい。  For example, when oils and fats are used as the carbon source, the promoters include the ALK1 gene (GenBank: D00481) promoter ALKlp (WOO 1Z88144) and the ALK2 gene (GenBank: X55881) promoter ALK2p of Candida maltosa. Can be. In addition, a promoter (Kogure, Abstracts of 2002 Annual Meeting of the Japanese Society of Agricultural Chemistry, pl91) with improved promoter activity by adding multiple ARR (alkane Responsible Region) sequences upstream of these promoters Number 4) can also be used. As the terminator, terminator ALKlt (WO01Z88144) of the ALK1 gene of Candida maltosa can be used. The base sequence of the promoter and Z or the terminator may be a base sequence in which one or more bases are deleted, substituted and Z or added, as long as the sequence functions in Canzaida maltosa. Is also good.
上記プロモーターは、ペルォキシソーム配向シグナルをコードする DNAが付加され たポリエステル合成に関与する酵素をコードする遺伝子の 5'上流に、ターミネータ一 は、ペルォキシソーム配向シグナルをコードする DNAが付カ卩されたポリエステルの 合成に関与する酵素をコードする遺伝子の 3'下流に、それぞれ連結される。  The promoter is 5 ′ upstream of a gene encoding an enzyme involved in the synthesis of a polyester to which a DNA encoding a peroxisome orientation signal is added, and the terminator is a polyester having a DNA encoding a peroxisome orientation signal. Each is linked to the 3 'downstream of the gene encoding the enzyme involved in the synthesis.
[0087] プロモーター及びターミネータ一と構造遺伝子を連結し、本発明の遺伝子発現カセ ットを構築する方法は、特に限定されるものではない。本実施例の他にも制限酵素部 位を作製するために PCR法も利用できる。例えば、 WO01Z88144に記載の方法 が使用できる。 [0087] The promoter and terminator are linked to the structural gene, and the gene expression cassette of the present invention is ligated. The method of constructing the kit is not particularly limited. In addition to the present example, a PCR method can also be used to prepare a restriction enzyme site. For example, the method described in WO01Z88144 can be used.
[0088] この発現カセットを酵母染色体に部位特異的に組み込むためには、発現カセットと選 択マーカーとなる遺伝子を結合させた DNAの両端に、導入する染色体遺伝子と相 同な配列を持つ遺伝子断片を結合させた DNA (導入用 DNA)を用いることができる 。選択マーカーとして、上記(1)に記載の分子内相同組換えにより自然欠失可能な ADE1遺伝子等を利用する事も可能である。導入用 DNA中の発現カセットの数に は限定が無く、作製可能であれば 、くつでもよ 、。  [0088] In order to integrate this expression cassette into the yeast chromosome in a site-specific manner, a gene fragment having a sequence homologous to the chromosomal gene to be introduced is placed at both ends of the DNA in which the expression cassette and the gene serving as the selection marker are linked. Can be used. As a selectable marker, the ADE1 gene or the like that can be naturally deleted by intramolecular homologous recombination described in (1) above can also be used. The number of expression cassettes in the DNA for introduction is not limited, and shoes may be used if they can be produced.
[0089] 目的遺伝子を挿入させる場所としては、遺伝子配列の解明されて!ヽる場所であれば いかなる部位でも利用できる。遺伝子配列が未知であっても、遺伝子配列の知られ た近縁種酵母の染色体遺伝子配列を元に遺伝子配列の解析が可能であるので、実 質的に、全ての遺伝子部位への挿入が可能である。遺伝子配列の解析法としては、 導入対象酵母染色体 DNAライブラリーより、配列の解析されているサッカロミセス'セ レビシェや、キャンディダ ·アルビカンスの相同遺伝子断片をプローブとしてハイブリ ダイゼイシヨン法を用いて取得することができる。プローブは、 PCR等を用いて作製 できる。染色体 DNAライブラリ一は、当業者にとって公知の方法で作製できる。  [0089] As a place for inserting the target gene, the sequence of the gene has been elucidated! It can be used at any location as long as it is located. Even if the gene sequence is unknown, it is possible to analyze the gene sequence based on the chromosomal gene sequence of a closely related yeast of which the gene sequence is known, so it can be inserted into virtually all gene sites It is. As a method for analyzing the gene sequence, it is possible to obtain from the yeast chromosome DNA library to be introduced using the Saccharomyces cerevisiae whose sequence has been analyzed or a homologous gene fragment of Candida albicans as a probe using the hybridization method. it can. Probes can be prepared using PCR or the like. The chromosomal DNA library can be prepared by a method known to those skilled in the art.
[0090] 一例としては、(1)に記載の URA3遺伝子破壊に用いた URA3破壊用 DNA— 1中 に、マーカー遺伝子として HIS5遺伝子を挿入し、 URA3遺伝子断片部位との間に ポリエステル合成に関与する遺伝子の発現カセットを挿入すると、ヒスチジン要求性 をマーカーとして、酵母染色体上の破壊された URA3部位に特異的に目的遺伝子 を挿入させる DNAを作製することができる。遺伝子の導入法としては、(1)に記載の 電気導入法等が利用できる。  [0090] As an example, the HIS5 gene is inserted as a marker gene into the URA3 disruption DNA-1 used for the URA3 gene disruption described in (1), and is involved in polyester synthesis between the URA3 gene fragment site and the HIS5 gene. By inserting a gene expression cassette, DNA can be prepared that specifically inserts the target gene into the disrupted URA3 site on the yeast chromosome using histidine requirement as a marker. As a method for introducing a gene, the method for electrotransfer described in (1) can be used.
[0091] 本発明の菌株は、複数の選択マーカーを利用して、形質転換することにより、遺伝子 発現カセットを複数導入した様々な株を作製することができる。分子内相同組換えに より自然欠失可能な ADE1遺伝子等を利用すれば、選択マーカーの回復が可能で あるので何力所にも遺伝子導入が可能である。また、酵母内において自律複製可能 なプラスミドも共に利用することができる。 [0092] ポリエステル合成に関与する遺伝子発現カセットで形質転換された酵母を培養する ことによるポリエステルの製造は、次のようにして行うことができる。 [0091] The strain of the present invention can be transformed using a plurality of selectable markers to produce various strains into which a plurality of gene expression cassettes have been introduced. If the ADE1 gene, etc., which can be naturally deleted by intramolecular homologous recombination, is used, it is possible to restore the selectable marker, so that gene transfer can be performed at many places. In addition, a plasmid capable of autonomous replication in yeast can be used together. [0092] Polyester production by culturing yeast transformed with a gene expression cassette involved in polyester synthesis can be performed as follows.
培養に用いる炭素源としては、酵母が資化できるものであればどのようなものでも良 い。また、プロモーターの発現が誘導型である場合には、適時誘導物質を添加すれ ば良い。誘導物質が主要炭素源である場合もある。炭素源以外の栄養源としては、 窒素源、無機塩類、その他の有機栄養源を含む培地が使用できる。培養温度はそ の菌の生育可能な温度であれば良いが、 20°Cから 40°Cが好ましい。培養時間には 特に制限はないが、 1一 7日程度で良い。その後、得られた培養菌体又は培養物か らポリエステルを回収すれば良 、。  As the carbon source used for the culture, any carbon source can be used as long as yeast can assimilate. When the expression of the promoter is inducible, an inducer may be added at an appropriate time. Inducers may be the primary carbon source. As a nutrient other than the carbon source, a medium containing a nitrogen source, inorganic salts, and other organic nutrients can be used. The culture temperature may be any temperature at which the bacteria can grow, but is preferably 20 ° C to 40 ° C. The culture time is not particularly limited, but may be about 17 days. Thereafter, the polyester may be recovered from the obtained cultured cells or culture.
[0093] 本発明の好ましい形態としては、炭素源として、油脂類、脂肪酸類、アルコール類さ らには n—アルカン等を用いることができる。油脂類としては、例えばナタネ油、ヤシ油 、パーム油、パーム核油等が挙げられる。脂肪酸類としては、ブタン酸、へキサン酸、 オクタン酸、デカン酸、ラウリン酸、ォレイン酸、パルミチン酸、リノール酸、リノレン酸、 ミリスチン酸等の飽和 ·不飽和脂肪酸、またこれら脂肪酸のエステルや塩等の脂肪酸 誘導体等が挙げられる。これらを混合して使用することもできる。また、資化ができな V、か又は効率よく資化できな 、油脂の場合、培地中にリパーゼを添加することによつ て改善することもできる。さら〖こ、リパーゼ遺伝子を形質転換することにより、油脂資化 能を付与することもできる。  [0093] In a preferred embodiment of the present invention, fats and oils, fatty acids, alcohols, n-alkanes and the like can be used as the carbon source. Examples of oils and fats include rapeseed oil, coconut oil, palm oil, palm kernel oil and the like. Fatty acids include saturated and unsaturated fatty acids such as butanoic acid, hexanoic acid, octanoic acid, decanoic acid, lauric acid, oleic acid, palmitic acid, linoleic acid, linolenic acid, and myristic acid, and esters and salts of these fatty acids. And the like. These can be mixed and used. In addition, in the case of V that cannot be assimilated or oil or fat that cannot be efficiently assimilated, it can be improved by adding lipase to the medium. Furthermore, by transforming the lipase gene, fat-and-oil assimilation ability can be imparted.
[0094] 窒素源としては、例えばアンモニア、塩化アンモ-ゥム、硫酸アンモ-ゥム、リン酸ァ ンモ -ゥム等のアンモ-ゥム塩の他、ペプトン、肉エキス、酵母エキス等が挙げられる  [0094] Examples of the nitrogen source include ammonia, ammonium chloride, ammonium sulfate, ammonium phosphate, and other ammonium salts, as well as peptone, meat extract, yeast extract, and the like. Be
無機塩類としては、例えばリン酸第一カリウム、リン酸第二カリウム、リン酸マグネシゥ ム、硫酸マグネシウム、塩ィ匕ナトリウム等が挙げられる。 Examples of the inorganic salts include potassium phosphate monobasic, potassium phosphate dibasic, magnesium phosphate, magnesium sulfate, sodium salt, and the like.
その他の有機栄養源としては、例えば、グリシン、ァラニン、セリン、スレオニン、プロリ ン等のアミノ酸類;ビタミン Bl、ビタミン B 12、ピオチン、ニコチン酸アミド、パントテン 酸、ビタミン C等のビタミン類等が挙げられる。  Other organic nutrients include, for example, amino acids such as glycine, alanine, serine, threonine, and proline; vitamins such as vitamin B1, vitamin B12, biotin, nicotinamide, pantothenic acid, and vitamin C. Can be
また、誘導物質としては、グルコースやガラクトース等が挙げられる。  Examples of the inducer include glucose and galactose.
[0095] ポリエステルの菌体力もの回収は多くの方法が報告されている。本発明においては、 例えば、次のような方法が使用できる。培養終了後、培養液から、遠心分離器等で菌 体を分離'回収し、その菌体を蒸留水及びメタノール等により洗浄した後、乾燥させる 。この段階に菌体を破砕する工程を加えることもできる。この乾燥菌体から、クロロホ ルム等の有機溶剤を用いてポリエステルを抽出する。このポリエステルを含んだ有機 溶剤溶液から、濾過等によって菌体成分を除去し、そのろ液にメタノールやへキサン 等の貧溶媒を加えてポリエステルを沈殿させる。次いで、濾過や遠心分離によってそ の上澄み液を除去し、沈殿したポリエステルを乾燥させて、ポリエステルを回収するこ とがでさる。 [0095] A number of methods have been reported for the recovery of bacterial cell strength. In the present invention, For example, the following method can be used. After completion of the culture, the cells are separated and recovered from the culture solution using a centrifuge or the like, and the cells are washed with distilled water, methanol and the like, and then dried. At this stage, a step of disrupting the cells may be added. Polyester is extracted from the dried cells using an organic solvent such as chloroform. Cell components are removed from the organic solvent solution containing the polyester by filtration or the like, and a poor solvent such as methanol or hexane is added to the filtrate to precipitate the polyester. Then, the supernatant is removed by filtration or centrifugation, and the precipitated polyester is dried to recover the polyester.
[0096] 得られたポリエステルの分析は、例えば、ガスクロマトグラフ法や核磁気共鳴法等に より行うことができる。  [0096] The obtained polyester can be analyzed by, for example, gas chromatography, nuclear magnetic resonance, or the like.
[0097] 次に第二の本発明である、新規酵母形質転換体について述べる。  [0097] Next, the novel yeast transformant of the second invention will be described.
第二の本発明は、ポリヒドロキシアルカン酸合成酵素遺伝子とァセトァセチル CoA還 元酵素遺伝子とが導入されて 、る酵母形質転換体であって、これら遺伝子の両方又 は何れかが 2コピー以上導入されていることを特徴とする酵母形質転換体である。 (I)宿主  The second present invention is a yeast transformant into which a polyhydroxyalkanoic acid synthase gene and an acetoacetyl CoA reducing enzyme gene have been introduced, wherein two or more of these genes have been introduced. It is a yeast transformant characterized by having. (I) Host
第二の本発明でいう酵母としては、複数の遺伝子を導入'形質転換できればよぐ菌 株の寄託機関 (例えば IFO、 ATCC等)に寄託されている酵母等を使用することがで きる。好ましくは、直鎖炭化水素の様な疎水性物資に耐性を有する点で、キャンディ ダ属(Candida属)、クラビスポラ属(Clavispora属)、タリプトコッカス属(Cryptococ cus属)、デノ リオマイセス属 (Debaryomyces属)、ロデロマイセス属 (Lodderomyc es属)、ピキア属(Pichia属)、ロドトルラ属(Rhodotorula属)、スポリディオボラス属( Sporidiobolus属)、ステファノァスカス属 (Stephanoascus属)、ャロウィァ属 (Yarr owia属)などの酵母を使用することができる。  As the yeast referred to in the second aspect of the present invention, a yeast or the like deposited with a depository of a strain (for example, IFO, ATCC, etc.) that can introduce and transform a plurality of genes can be used. Preferably, Candida (Candida), Clavispora (Clavispora), Taliptococcus (Cryptococcus), and Denoriomyces (Denoliomyces) in terms of resistance to hydrophobic substances such as linear hydrocarbons. Genus Debaryomyces, genus Roderomyces, genus Pichia, genus Rhodotorula, genus Sporidiobolus, genus Stephanoascus, genus Yarr owia ) Can be used.
これら酵母の中でも、特に、染色体遺伝子配列の解析が進んでおり、宿主 -ベクター 系も利用できること、また、直鎖炭化水素や油脂等の資化能力が高い点で、キャンデ イダ属が好ましい。  Among these yeasts, the genus Candida is particularly preferred in that the analysis of the chromosomal gene sequence has been advanced, a host-vector system can be used, and the ability to assimilate linear hydrocarbons and oils and fats is high.
[0098] キャンディダ属の中でも、特に直鎖炭化水素や油脂等の資化能力が高い点で、第一 の本発明で例示した種を用いることが好ま 、。 これらの種の中でも、増殖速度や感染性の点力 特にマルトーサ(maltosa)種が好 ましい。 [0098] Among the genus Candida, it is preferable to use the species exemplified in the first aspect of the present invention, particularly in view of high assimilation ability of linear hydrocarbons and fats and oils. Among these species, the growth rate and infectivity are particularly preferred, especially the maltosa species.
[0099] 本発明の酵母形質転換体の作製において、形質転換する際に、薬剤耐性や栄養要 求性等の性質を有する選択マーカー遺伝子も同時に宿主に導入しておけば、形質 転換後にその選択マーカー遺伝子が発現することによる薬剤耐性や栄養要求性等 を利用して形質転換株のみを選択することができる。  [0099] In the production of the yeast transformant of the present invention, if a selectable marker gene having properties such as drug resistance and nutritional requirement is also introduced into the host at the time of the transformation, the selection after transformation can be achieved. Only transformed strains can be selected by utilizing drug resistance and auxotrophy due to the expression of the marker gene.
選択マーカー遺伝子としては、シクロへキシミドゃ G418、ハイグロマイシン Bなどへ の耐性を付与する遺伝子を用いることができる。また、栄養要求性を相補する遺伝子 を選択マーカーとして用いることもできる。これらは、単独で使用してもよいし、組み合 わせて使用することもできる。  As a selectable marker gene, a gene that imparts resistance to cycloheximide-G418, hygromycin B, or the like can be used. In addition, a gene that complements auxotrophy can be used as a selection marker. These may be used alone or in combination.
[0100] しかしながら、例えば、栄養要求性を相補する遺伝子を選択マーカー遺伝子として 用いる場合は、その選択マーカー遺伝子と同様の作用をする、宿主が元来有する遺 伝子が実質的に機能しない栄養要求性破壊株が必要である。このような栄養要求性 破壊株 (変異株)は、ニトロソグアジニンやェチルメタンスルホン酸などの変異源を用 いたランダム変異誘起処理によって取得することができる力 変異が目的の箇所以 外にも入っている可能性が高ぐその結果生育速度等に影響を受ける場合があること から、本発明においては、第一の本発明で述べた、相同的組換えによる遺伝子破壊 法によって作製された宿主を用いる方が好ま 、。 [0100] However, for example, when a gene that complements auxotrophy is used as a selectable marker gene, an auxotroph that functions similarly to the selectable marker gene and whose host gene does not function substantially does not function. A sex-disrupting strain is required. Such auxotrophic disrupted strains (mutants) are not limited to those in which the target mutations can be obtained by random mutagenesis using a mutagen such as nitrosoguanidine or ethyl methanesulfonic acid. In the present invention, the host prepared by the gene disruption method by homologous recombination described in the first present invention is considered to have a high possibility of being contained, and as a result may be affected by a growth rate or the like. It is preferable to use.
なお、複数回形質転換を行う場合は、その回数に応じたマーカーの種類が必要であ る。又は、後述のように、選択マーカー遺伝子を含む遺伝子導入用 DNAを宿主に 導入したのち、選択マーカー遺伝子を除去することにより、選択マーカーを回復する 必要がある。本発明の実施例においては、多重栄養要求性遺伝子破壊株を用いた ここで、遺伝子導入用 DNAとは、微生物細胞内で染色体上の遺伝子と相同的組換 えを起こすことができ、それによつて目的遺伝子を挿入できる DNAを示す。  In the case of performing the transformation a plurality of times, the type of the marker according to the number of times of the transformation is required. Alternatively, as described below, it is necessary to restore the selection marker by removing the selection marker gene after introducing the gene-introducing DNA containing the selection marker gene into the host. In the examples of the present invention, a multiple auxotrophic gene-disrupted strain was used. Here, the DNA for gene transfer can cause homologous recombination with a gene on a chromosome in a microbial cell. Shows the DNA into which the target gene can be inserted.
[0101] 本発明の実施例で用いた、 ADE1、 HIS 5及び URA3遺伝子破壊株であるキャンデ イダ.マルトーサ AHU— 71株は、第一の本発明で作製されたものであり、キャンディ ダ'マルトーサ AC 16株を使用し、後述の実施例 3に記載の方法で作製した。 特に上記宿主において、複数回形質転換を行う際、栄養要求性等の遺伝子破壊を 行わなくても初めから複数の選択マーカー遺伝子を利用できるものの場合は、効率 的に本発明の酵母形質転換体を作製することができる。 [0101] The Candida maltosa AHU-71 strain, which is a ADE1, HIS5 and URA3 gene disruption strain, used in the examples of the present invention, was produced in the first present invention, and is Candida 'maltosa. It was prepared by the method described in Example 3 below using 16 strains of AC. In particular, when performing multiple transformations in the above-described host, if the yeast can use a plurality of selectable marker genes from the beginning without disrupting genes such as auxotrophy, the yeast transformant of the present invention can be efficiently used. Can be made.
[0102] (II) PHA合成酵素遺伝子とァセトァセチル CoA還元酵素遺伝子  [0102] (II) PHA synthase gene and acetoacetyl CoA reductase gene
PHA合成酵素遺伝子としては特に限定されないが、上記一般式(1)で示される 3—ヒ ドロキシアルカン酸を共重合してなるポリエステルを合成する合成酵素遺伝子が好ま しく、上記式(2)で示される 3—ヒドロキシ酪酸と上記式(3)で示される 3—ヒドロキシへ キサン酸とを共重合してなる共重合ポリエステル P (3HB-CO-3HH)の合成酵素遺 伝子であることがより好ま 、。  The PHA synthase gene is not particularly limited, but a synthase gene for synthesizing a polyester obtained by copolymerizing 3-hydroxyalkanoic acid represented by the above general formula (1) is preferable, and It is a synthase gene for a copolymerized polyester P (3HB-CO-3HH) obtained by copolymerizing the 3-hydroxybutyric acid represented by the formula and the 3-hydroxyhexanoic acid represented by the formula (3). Like,.
[0103] 上記 PHA合成酵素遺伝子として、例えば、特開平 10-108682号公報に記載され て 、る PHA合成酵素遺伝子を用いることができる。 [0103] As the PHA synthase gene, for example, the PHA synthase gene described in JP-A-10-108682 can be used.
また、第二の本発明においては、上記 PHA合成酵素遺伝子と共に、ァセトァセチル Co A還元酵素遺伝子を用いる。ァセトァセチルー CoA還元酵素遺伝子としては、ァ セトァセチルー Co Aを還元し、 (R)—3—ヒドロキシブチリルー CoAを合成する活性を有 している酵素遺伝子であればよぐ例えば、ラルストニア ·ユートロファ(GenBank:A AA21973)、シユードモナス sp. 61— 3 (GenBank:T44361)、ズーグロエア'ラミゲ ラ(GenBank: P23238)、アルカリジエネス ·ラタス SH— 69 (GenBank: AAB6578 0)由来の酵素遺伝子などが利用できる。  In the second invention, an acetoacetyl CoA reductase gene is used together with the PHA synthase gene. As the acetoacetyl-CoA reductase gene, any enzyme gene that has the activity of reducing acetoacetyl-CoA and synthesizing (R) -3-hydroxybutyryl-CoA can be used. For example, Ralstonia-eutropha (GenBank: A AA21973), Pseudomonas sp. 61-3 (GenBank: T44361), Zoogloea Lamigera (GenBank: P23238), and enzyme genes derived from Alkali Genes latus SH-69 (GenBank: AAB65780) can be used.
更に、上記遺伝子に加えて、他の PHA合成に関与する遺伝子を用いることができる 。他の PHA合成に関与する遺伝子としては、たとえば、 j8酸化経路の中間体のエノ ィルー CoAを (R)—3—ヒドロキシァシルー CoAに変換する(R)体特異的エノィルー Co Aヒドラターゼ(Fukui T.等、 FEMS Microbiology Letters, 170 : 69-75 (19 99)、特開平 10— 108682号公報)や、ァセチルー CoAを二量化して 3—ヒドロキシブ チリルー CoAを合成する j8ケトチオラーゼ(Peoples OP等、 J. Biol. Chem. 264 : 15298—15303 (1989) )、 3—ケトァシルー CoA ァシルキャリアープロテイン還元酵 素遺伝子(Taguchi K.等、 FEMS Microbiology Letters, 176: 183— 190 (1 999)などが挙げられる。特に、(R)— 3—ヒドロキシへキサノィルー CoAを合成する活 性を有して ヽる酵素遺伝子が好まし ヽ。 [0104] 本発明は、 PHA合成酵素遺伝子 (phaC)とァセトァセチルー CoA還元酵素遺伝子( phbB)を同時に用いるものである。 Further, in addition to the above genes, other genes involved in PHA synthesis can be used. Other genes involved in PHA synthesis include, for example, the (R) -body-specific enolyl CoA hydratase (Fukui T) that converts enolyl CoA, an intermediate in the j8 oxidation pathway, to (R) -3-hydroxyacyl-CoA. Et al., FEMS Microbiology Letters, 170: 69-75 (1999), JP-A-10-108682), and j8 ketothiolase (Peoples OP, etc.) for dimerizing acetyl-CoA to synthesize 3-hydroxybutylyl-CoA. J. Biol. Chem. 264: 15298-15303 (1989)), 3-ketoacyl-CoA acyl carrier protein reductase gene (Taguchi K. et al., FEMS Microbiology Letters, 176: 183-190 (1999)). In particular, an enzyme gene having activity for synthesizing (R) -3-hydroxyhexanoyl-CoA is preferable. The present invention uses a PHA synthase gene (phaC) and an acetoacetyl-CoA reductase gene (phbB) simultaneously.
本発明では、ァエロモナス 'キヤビエ由来の phaC (特開平 10— 108682公報、 Fukui T.等、 FEMS Microbiology Letters、 170 : 69— 75 (1999) )とラロスト-ァ 'ュ 一トロファ由来の phbB (GenBank: J04987)を用いることができ、上記 phaCとして は、配列番号 5で表されるアミノ酸配列力 なるァエロモナス ·キヤビエ由来の酵素又 は変異体をコードするものが好ましぐ上記 phbBとしては、配列番号 6で表されるアミ ノ酸配列からなるラルストニア ·ユートロファ由来の酵素又は変異体をコードするもの が好ましい。  In the present invention, phaC derived from Aeromonas' cabies (JP-A-10-108682, Fukui T., et al., FEMS Microbiology Letters, 170: 69-75 (1999)) and phbB (GenBank: J04987) can be used.Preferable as the phaC is one encoding an enzyme or a mutant derived from Aeromonas radiata having the amino acid sequence represented by SEQ ID NO: 5, and the above phbB is preferably SEQ ID NO: 6. Those encoding an enzyme or a mutant derived from Ralstonia eutropha consisting of the amino acid sequence represented by are preferred.
これらの遺伝子は、実質的な酵素活性を有する限り、当該遺伝子の塩基配列に欠失 、置換、挿入等の変異が生じていても良いものとする。但し、異種遺伝子の場合、宿 主酵母内で機能を持つ蛋白質に効率的に翻訳されるという保証はないため、ァミノ 酸コドンを最適化することが望まし 、。  As long as these genes have substantial enzymatic activity, mutations such as deletions, substitutions, and insertions may occur in the nucleotide sequences of the genes. However, in the case of a heterologous gene, there is no guarantee that it will be efficiently translated into a protein having a function in the host yeast. Therefore, it is desirable to optimize the codon of amino acid.
[0105] なお、第一の本発明で上述したように、キャンディダ'マルトーサを宿主として異種遺 伝子を発現させる場合、原則としてロイシンコドン (CUG)のみ変換することが好ましく 、さらに効率よく発現させるため他のアミノ酸コドンをキャンディダ'マルトーサのもの に合わせても良い。 [0105] As described above in the first present invention, when a heterologous gene is expressed using Candida's maltosa as a host, it is preferable to convert only leucine codon (CUG) in principle, and more efficient expression Other amino acid codons may be matched to those of Candida's Maltosa to achieve this.
[0106] PHA合成酵素遺伝子は、アミノ酸配列を改変し、酵素活性 ·基質特異性 ·熱安定性 などの性質の改良された変異体を取得'作製し利用することができる。有用な変異の 方法は種々知られている力 特に分子進化工学的手法 (特開 2002— 199890号公 報)などが、迅速に所望の変異体を得られることから有用性が高い。これらの手法を 利用して、過去、いくつかの合成酵素変異体が見出され、大腸菌において野生型酵 素より活性が向上することが確認されている(T. Kichise等 Appl. Environ. Micr obiol. 68, 2411— 2419 (2002)、 AmaraA. A.等 Appl. Microbiol. Biotechn ol. 59, 477—482 (2002) )。  [0106] The PHA synthase gene can be prepared and used by modifying the amino acid sequence to obtain a mutant having improved properties such as enzyme activity, substrate specificity, and thermal stability. A variety of useful mutation methods are known in the art. In particular, molecular evolution engineering techniques (Japanese Patent Application Laid-Open No. 2002-199890) are highly useful because a desired mutant can be quickly obtained. Using these techniques, several synthase mutants have been found in the past, and it has been confirmed that the activity of Escherichia coli is higher than that of the wild-type enzyme (T. Kichise et al., Appl. Environ. Microbiolol). 68, 2411-2419 (2002), Amara A. A. et al. Appl. Microbiol. Biotechnol. 59, 477-482 (2002)).
[0107] また、コンピュータ上で酵素遺伝子の立体構造、または予想される立体構造を基に、 有用なアミノ酸変異を特定することも、例えばプログラム Shrike (特開 2001— 18483 1号公報)などを用いて可能である。本発明における phaCとしては、例えば、ァエロ モナス ·キヤビエ由来の PHA合成酵素遺伝子のアミノ酸配列に、これらの手法を利 用して得られる、以下の(a)—(h)いずれかのアミノ酸置換を少なくとも一つ以上行つ た PHA合成酵素変異体をコードするものを用いることができる。 [0107] Further, it is also possible to identify a useful amino acid mutation on the basis of a three-dimensional structure of an enzyme gene or a predicted three-dimensional structure on a computer by using, for example, a program Shrike (Japanese Patent Application Laid-Open No. 2001-184831). It is possible. As phaC in the present invention, for example, PHA synthase obtained by performing at least one of the following (a)-(h) amino acid substitutions obtained by using these methods on the amino acid sequence of a PHA synthase gene derived from Monas caviae Those encoding the mutant can be used.
(a) Asn— 149を Ser  (a) Asn—149 to Ser
(b) Asp—171を Gly  (b) Asp—171 Gly
(c) Phe— 246を Serまたは Gin  (c) Phe—246 to Ser or Gin
(d) Tyr-318^Ala  (d) Tyr-318 ^ Ala
(e) Ile— 320を Ser、 Alaまたは Val  (e) Ile—320 for Ser, Ala or Val
(f) Leu— 350を Val  (f) Leu—350 to Val
(g) Phe— 353を Thr、 Serまたは His  (g) Phe—353 to Thr, Ser or His
(h) Phe— 518を lie  (h) Phe—lie 518
[0108] ここで、例えば、「Asn— 149」というのは、配列番号 5のアミノ酸配列において 149番 目のァスパラギンを意味し、 (a)のアミノ酸置換は 149番目のァスパラギンをセリンに 変換することを意味する。  [0108] Here, for example, "Asn-149" means the 149th asparagine in the amino acid sequence of SEQ ID NO: 5, and the amino acid substitution in (a) converts the 149th asparagine into serine. Means
[0109] phaC、 phbBとしては、第一の本発明で例示した配列番号 2、 3のものが挙げられる 力 これらに限定されず、当該酵素遺伝子のアミノ酸配列がキャンディダ 'マルトーサ 内で発現される塩基配列であれば、 V、かなる塩基配列でも用いることができる。  [0109] Examples of phaC and phbB include those of SEQ ID NOs: 2 and 3 exemplified in the first invention. [0109] The amino acid sequence of the enzyme gene is expressed in Candida 'maltosa. If it is a nucleotide sequence, V, such a nucleotide sequence can also be used.
[0110] phaC、 phbBを細胞質基質 (サイトゾル、 cytosol)で発現させる場合にはこのまま用 いる力 これらの遺伝子をペルォキシノームに局在させる遺伝子に改変して使用する こともできる (WO03/033707)。  [0110] When phaC and phbB are expressed in cytosolic substrates (cytosol, cytosol), these genes can be used as they are by modifying these genes into genes that are localized in peroxinorm (WO03 / 033707).
phaC、 phbBをペルォキシノームに局在させる方法しては、第一の本発明で記載し た方法を用いることができる。  As a method for localizing phaC and phbB to peroxinorm, the method described in the first present invention can be used.
[0111] また、 N末端付近に存在する 9つのアミノ酸配列「(アルギニン Zリジン)(ロイシン Zバ リン Zイソロイシン)(5アミノ酸)(ヒスチジン Zグルタミン)(ロイシン Zァラニン)」もぺ ルォキシソーム配向シグナルとして知られて!/、る。これらの配列をコードする DNAを PHA合成に関与する遺伝子に挿入、付加することによつても、同酵素遺伝子をペル ォキシノームに局在させることができる。  [0111] In addition, the nine amino acid sequences “(arginine Z lysine) (leucine Z valine Z isoleucine) (5 amino acids) (histidine Z glutamine) (leucine Z alanine)” present near the N-terminus are also used as luxosome orientation signals. Known! / By inserting and adding DNAs encoding these sequences to genes involved in PHA synthesis, the enzyme genes can also be localized in the peroxinin.
[0112] 更に、ミトコンドリアで phaC、 phbBが発現するように、これらの遺伝子をミトコンドリア に配向させる遺伝子に改変し使用することもできる。これらの遺伝子をミトコンドリアに 局在させるためには、ァミノ末端にミトコンドリアに局在して発現している蛋白質を結 合させればよ 、。例えばチトクロームォキシダーゼや TCAサイクル関連酵素などが 挙げられる。例えば、ミトコンドリアに局在して発現している蛋白質のァミノ末端から 15 残基以上、望ましくは 40残基以上をコードする遺伝子を、 PHA合成に関与する遺伝 子の 5 '側上流にフレームがずれな 、ように結合させた遺伝子を用いればょ 、。この 時付加する融合遺伝子と PHA合成に関与する遺伝子の間にアミノ酸残基の不必要 な衝突を避けるためのリンカ一配列を挿入することもできる。融合遺伝子に使用する 遺伝子は、本発明の形質転換に用いる宿主酵母由来のものが好ましいが、特に限 定されるものではない。 [0112] Furthermore, these genes were mitochondrial so that phaC and phbB would be expressed in mitochondria. It can also be used after being modified into a gene to be orientated. In order to localize these genes to mitochondria, a protein expressed and localized in mitochondria may be bound to the amino terminal. Examples include cytochrome oxidase and TCA cycle-related enzymes. For example, a gene encoding at least 15 residues, preferably at least 40 residues from the amino terminal of the protein expressed in mitochondria is shifted in frame to the 5 'upstream of the gene involved in PHA synthesis. What is the use of the linked genes? At this time, a linker sequence may be inserted between the added fusion gene and the gene involved in PHA synthesis to avoid unnecessary collision of amino acid residues. The gene used for the fusion gene is preferably derived from the host yeast used for the transformation of the present invention, but is not particularly limited.
[0113] これら、サイトゾル、ペルォキシノーム、ミトコンドリアに配向するように設計された遺伝 子は単独で用いることもできる力 二種以上を用いることもできる。 phaC、 phbBとし ては、ペルォキシソーム配向シグナルが付加されて 、るものが好まし!/、。  [0113] These genes designed to be oriented to the cytosol, peroxynome, and mitochondria can be used alone or in combination of two or more. As phaC and phbB, those with a peroxisome orientation signal added are preferred! /.
[0114] (III)遺伝子発現カセット  [0114] (III) Gene expression cassette
本発明に用いる PHA合成酵素遺伝子とァセトァセチル CoA還元酵素遺伝子の発 現カセットは、当該遺伝子の 5'側上流にプロモーター、 5'上流域活性ィ匕配列 (UAS )等の DNA配列を連結し、当該遺伝子の 3'下流にポリ A付加シグナル、ターミネ一 ター等の DNA配列を連結して作製することができる。  The expression cassette for the PHA synthase gene and the acetoacetyl CoA reductase gene used in the present invention is obtained by ligating a DNA sequence such as a promoter and a 5 ′ upstream activation sequence (UAS) at the 5 ′ side upstream of the gene. It can be prepared by connecting a DNA sequence such as a polyA addition signal and a terminator to the 3 ′ downstream of the gene.
本発明にお 、ては、 PHA合成酵素遺伝子とァセトァセチル CoA還元酵素遺伝子に 、酵母で機能するプロモーター及びターミネータ一が接続されて 、ることが好ま U、。  In the present invention, it is preferable that a promoter and a terminator that function in yeast are connected to the PHA synthase gene and the acetoacetyl CoA reductase gene.
[0115] 使用するプロモーター、ターミネータ一は酵母で機能するものであればどのような配 列でも利用できる。プロモーターには構成的に発現を行うものや誘導的に発現を行う ものがあるが、いずれのプロモーターも用いてもよい。上記プロモーターとしては、形 質転換体の培養に用いる炭素源に強 、活性を持つプロモーターが好まし 、。例えば[0115] The promoter and terminator to be used may be any sequence as long as it functions in yeast. Promoters include those that express constitutively and those that express inductively, and any promoter may be used. As the above-mentioned promoter, a promoter having a strong and active carbon source used for culturing transformants is preferable. For example
、油脂などを炭素源として用いる場合にはプロモーターとしては、第一の本発明で記 載したもの等を用いることができる。 When oil or fat is used as a carbon source, the promoter described in the first invention can be used as the promoter.
[0116] また、ターミネータ一としてはキャンディダ 'マルトーサの ALK1遺伝子のターミネータ 一 ALKlt (WO0lZ88144)等を用いることができる。なお、上記プロモーター及び Z又はターミネータ一の塩基配列は、使用宿主で機能する配列であれば、 1つ若しく は複数個の塩基が欠失、置換及び Z又は、付加された塩基配列であってもよい。 本発明においては、上記プロモーター、ターミネータ一が、キャンディダ属で機能す るものであることが好ましぐキャンディダ ·マルトーサで機能するものであることがより 好ましぐ上記プロモーター、ターミネータ一がキャンディダ'マルトーサ由来であるこ とが更に好ましい。 [0116] As the terminator, the terminator ALKlt (WO01Z88144) of the ALK1 gene of Candida maltosa can be used. The above promoter and The base sequence of Z or one of the terminators may be a base sequence in which one or more bases are deleted, substituted and Z or added, as long as they are sequences that function in the host used. In the present invention, the promoter and the terminator preferably function in Candida and more preferably function in Candida maltosa. More preferably, it is derived from Da'maltosa.
[0117] 本発明の好ましい形態において、上記プロモーターは、ペルォキシソーム配向シグ ナルをコードする DNAが付加された PHA合成酵素遺伝子、並びに、ペルォキシソ 一ム配向シグナルをコードする DNAが付加されたァセトァセチル CoA還元酵素遺 伝子の 5'上流にそれぞれ連結され、ターミネータ一は、ペルォキシソーム配向シグ ナルをコードする DNAが付加された PHA合成酵素遺伝子、並びに、ペルォキシソ 一ム配向シグナルをコードする DNAが付加されたァセトァセチル CoA還元酵素遺 伝子の 3,下流に、それぞれ連結される(WO03Z033707)。  [0117] In a preferred embodiment of the present invention, the promoter is a PHA synthase gene to which a DNA encoding a peroxisome orientation signal has been added, and an acetoacetyl CoA reductase to which a DNA encoding a peroxisome orientation signal has been added. The terminator is linked to the 5 'upstream of the gene, the terminator is a PHA synthase gene to which DNA encoding a peroxisome orientation signal is added, and the acetoacetyl CoA to which DNA encoding a peroxisome orientation signal is added. It is linked to the downstream of the reductase gene at 3, respectively (WO03Z033707).
[0118] プロモーターとターミネータ一とを phaC、 phbBに連結し、本発明の遺伝子発現カセ ットを構築する方法は、特に限定されるものではなぐ第一の本発明と同様の方法が 使用できる。  [0118] The method for linking the promoter and terminator to phaC and phbB to construct the gene expression cassette of the present invention is not particularly limited, and the same method as in the first present invention can be used.
[0119] (IV)形質転換体  (IV) Transformant
上記発現カセットの酵母 1細胞当たりの導入数は、本発明における望ましい形態に お!、て用いた ARRプロモーターを利用した場合であっても、炭化水素や脂肪酸'油 脂等の炭素源下で強く遺伝子発現が誘導されるものの 1コピーでは不十分であり、 p haCの発現カセットの数と phbBの発現カセットの数は、何れかが 2コピー以上必要で あることが本発明により示された。宿主の PHA合成の基質供給量が律速とならな ヽ 限り導入する発現カセットの数に制限はなぐ多い方が望ましい。好ましい発現カセッ ト数は、用いるプロモーターの種類にもよる力 プロモーター ARRpを用いた場合、共 に 2コピー以上導入することが好ましぐ共に 3コピー以上導入することがより好ましい  The number of introduced expression cassettes per yeast cell in the desirable form of the present invention is strong under a carbon source such as hydrocarbons and fatty acids, even when the ARR promoter used is used. Although the gene expression was induced, one copy was not sufficient, and the present invention showed that either the number of the expression cassettes for phaC or the number of expression cassettes for phbB required at least two copies. Unless the amount of substrate supplied for host PHA synthesis is rate-limiting, the number of expression cassettes to be introduced is preferably as large as possible. The preferred number of expression cassettes depends on the type of promoter used.When promoter ARRp is used, it is preferable to introduce two or more copies at the same time, and it is more preferable to introduce three or more copies at the same time.
この発現カセットは、酵母内において自律複製可能なベクターに挿入して宿主酵母 に導入することができる。また、宿主酵母染色体に挿入することもできる。両導入法は 同時に用いることもできる。 This expression cassette can be inserted into a vector capable of autonomous replication in yeast and introduced into host yeast. It can also be inserted into the host yeast chromosome. Both introduction methods They can be used simultaneously.
[0120] ベクターを用いて宿主酵母に導入する場合は、例えば、キャンディダ'マルトーサに おいて自律増殖可能な pUTUl (M. Ohkuma, et  [0120] When the vector is introduced into a host yeast, for example, pUTUl (M. Ohkuma, et al.) Capable of autonomous replication in Candida 'maltosa
al j. Biol. Chem. , vol. 273, 3948— 3953 (1998) )などのベクター中に発現力 セットを複数挿入した発現ベクターを作製すればょ 、。  al j. Biol. Chem., vol. 273, 3948—3953 (1998)) and the like.
[0121] 発現カセットを染色体に挿入する方法を用いる場合は、例えば、相同的組換えが利 用できる。相同的組換えの中でも、自然復帰しない導入株が取得できるという点で、 遺伝子置換法が好ま ヽ。遺伝子置換法による発現カセットの染色体への挿入には 、まず発現カセットと選択マーカーとなる遺伝子を結合させ、次いで発現カセットと選 択マーカーとなる遺伝子を結合させた DNAの両端に、導入する染色体上の遺伝子 と相同な配列を持つ遺伝子断片を結合させた DNA (遺伝子導入用 DNA)を用いる ことができる。 [0121] When a method of inserting an expression cassette into a chromosome is used, for example, homologous recombination can be used. Among homologous recombination, the gene replacement method is preferred because a transgenic strain that does not return spontaneously can be obtained. To insert the expression cassette into the chromosome by the gene replacement method, first, the expression cassette and the gene to be the selection marker are linked, and then the expression cassette and the gene to be the selection marker are linked to both ends of the DNA to be introduced. DNA (gene transfer DNA) to which a gene fragment having a sequence homologous to the above-mentioned gene has been linked can be used.
[0122] 発現カセットなどを挿入させる染色体上の部位は、宿主に回復不可能な影響を与え ない限り、特に制限はない。遺伝子導入用 DNAの両端に結合させた、導入する染 色体上の遺伝子との相同性領域長は、好ましくは 10塩基以上、より好ましくは 200塩 基以上、更に好ましくは 300塩基以上である。また、両端それぞれの相同性は、好ま しくは 90%以上、より好ましくは 95%以上である。即ち、遺伝子配列の解析されてい る部位においては、当該遺伝子をそのまま利用することができるし、遺伝子配列が未 知であっても遺伝子配列の知られた近縁種酵母の染色体遺伝子配列を利用するこ とがでさる。  [0122] The site on the chromosome into which the expression cassette or the like is inserted is not particularly limited as long as it has no irreversible effect on the host. The length of the region of homology to the gene on the chromosome to be transferred, which is bonded to both ends of the DNA for gene transfer, is preferably at least 10 bases, more preferably at least 200 bases, and still more preferably at least 300 bases. Further, the homology of each end is preferably 90% or more, more preferably 95% or more. That is, at the site where the gene sequence is analyzed, the gene can be used as it is, or even if the gene sequence is unknown, the chromosomal gene sequence of a closely related yeast having a known gene sequence is used. This comes out.
[0123] 相同性が低く相同組換えが起こりにくい場合には、染色体上の導入部位の遺伝子を クロー-ングして使用することができる。染色体上の導入部位の遺伝子をクローニン グするためには、染色体遺伝子の全配列が解析されて!ヽるサッカロミセス ·セレビシ ェゃ、キャンディダ ·アルビカンスの配列を元に PCR用プライマーを設計し遺伝子増 幅を行えばよい。また、第一の本発明と同様に、導入対象酵母染色体 DNAライブラ リーを利用することもできる。  [0123] When the homology is low and homologous recombination is unlikely to occur, the gene at the introduced site on the chromosome can be cloned and used. In order to clone the gene at the transfer site on the chromosome, the entire sequence of the chromosomal gene is analyzed and PCR primers are designed based on the sequences of Saccharomyces cerevisiae and Candida albicans to increase the gene. You just have to do the width. Further, similarly to the first present invention, a yeast chromosome DNA library to be introduced can also be used.
遺伝子導入用 DNA中の発現カセットの数には限定が無ぐ作製可能であればいく つでもよい。 [0124] 遺伝子導入用 DNA中の選択マーカー遺伝子としては、上述のように栄養要求性を 相補する遺伝子を選択マーカー遺伝子として用いることができる。また、シクロへキシ ミドゃ G418あるいはハイグロマイシン Bなどの耐性を付与する遺伝子を用いることも できる。これらの選択マーカー遺伝子は、後述の分子内相同組換えにより自然欠失 可能な形態にして利用する事も可能である。この場合、選択マーカー遺伝子の回復 が可能であるので、何度でも同じ選択マーカー遺伝子を用いた遺伝子導入用 DNA を導入することができ、形質転 ·の作製を簡便に行うことができる。 The number of expression cassettes in the DNA for gene transfer is not limited and may be any number as long as it can be produced. [0124] As the selection marker gene in the DNA for gene transfer, a gene that complements auxotrophy as described above can be used as the selection marker gene. Further, a gene imparting resistance such as cycloheximide G418 or hygromycin B can also be used. These selectable marker genes can be used in a form that can be naturally deleted by intramolecular homologous recombination described later. In this case, since the selectable marker gene can be recovered, the DNA for gene transfer using the same selectable marker gene can be introduced many times, and the transformation can be easily performed.
[0125] これらの発現カセットを酵母宿主に導入するための遺伝子導入用 DNAは、大腸菌 などにお!、て自律増殖するプラスミドなどを用いて、当業者に公知の方法で作製する ことができる。一例としては、後述の実施例 1に記載の URA3破壊用 DNA— 1中に選 択マーカー遺伝子として HIS5遺伝子を挿入し、 URA3遺伝子断片部位との間に ph aCの発現カセット及び phbBの発現カセットを挿入すると、ヒスチジン要求性をマーカ 一として、酵母染色体上の URA3部位に特異的に目的遺伝子を挿入させる遺伝子 導入用 DNAを作製することができる。  [0125] DNA for gene transfer for introducing these expression cassettes into a yeast host can be prepared by a method known to those skilled in the art using a plasmid or the like that grows autonomously in E. coli or the like. As an example, the HIS5 gene is inserted as a selectable marker gene into the URA3 disruption DNA-1 described in Example 1 described later, and a phaC expression cassette and a phbB expression cassette are inserted between the URA3 gene fragment site. When inserted, histidine requirement can be used as a marker to produce a gene transfer DNA that specifically inserts the target gene into the URA3 site on the yeast chromosome.
[0126] 遺伝子導入用 DNAを含むプラスミドは、第一の本発明と同様な方法で調製すること ができる。このプラスミドを直接酵母の形質転換に用いることができるが、精製したベ クタ一より染色体導入領域を含む相同性のある部分を適当な制限酵素で切り出し、 それを遺伝子導入用 DNAとして利用するのが望ま ヽ。 PCR法を用いて増幅して 使用することも可能である。  [0126] A plasmid containing the DNA for gene transfer can be prepared in the same manner as in the first present invention. This plasmid can be used directly for yeast transformation.However, a homologous portion including the chromosome transfer region is cut out from a purified vector with an appropriate restriction enzyme, and then used as DNA for gene transfer. Desired ヽ. It is also possible to amplify using PCR method.
[0127] 酵母の形質転換法には、第一の本発明で例示した方法が挙げられ、本発明では電 気パルス法が好ましい。宿主株よりコンビテント細胞を調製し、遺伝子導入用 DNAと 共に電気パルス後、選択マーカー遺伝子を含まな!/ヽ形質転換体が増殖しな!ヽ培地 で培養し、出現するコロニーより目的の染色体部位に遺伝子導入用 DNAが挿入さ れた株をスクリ一二ングする。  [0127] Examples of the yeast transformation method include the method exemplified in the first present invention, and the electric pulse method is preferable in the present invention. Prepare competent cells from the host strain, and after electropulsing together with the DNA for gene transfer, do not include the selectable marker gene! / ヽ Transformants do not proliferate! ヽ Culture in medium and screen for strains in which the DNA for gene transfer has been inserted into the desired chromosomal site from the appearing colonies.
目的遺伝子導入株のスクリーニングも、第一の本発明と同様の方法で行うことができ る。  Screening of the target gene-introduced strain can also be performed in the same manner as in the first present invention.
[0128] 上記の方法を用いて、 phaC発現カセット及び phbB発現カセットの導入を目的発現 カセット数になるまで行うことにより、本発明の形質転換体が作製できる。 [0129] 本発明の実施例で用いた多重栄養要求性遺伝子破壊株を使用する代わりに、野性 株や栄養要求性を 1つしカゝ持たない株を用いても本発明の PHA合成に関与する遺 伝子を複数回導入した酵母形質転換体を取得することができる。例えば、選択マー カー遺伝子として薬剤耐性マーカー遺伝子を用いて遺伝子導入用 DNAを導入する 場合、形質転換株の選択に用いる薬剤の濃度を、遺伝子導入用 DNAで形質転換 するごとに上昇させればよい。また、 1回の形質転換後に染色体に導入された選択マ 一力一遺伝子を除去すれば、再び遺伝子導入のマーカーとして使用することができ 、多数の遺伝子導入用 DNAを導入することができる。この方法は、例えば特開 200 2-209574号公報に記載の遺伝子破壊法などが利用できる。更に、選択マーカー 遺伝子の両端に hisG遺伝子断片をそれぞれ挿入することで、遺伝子導入を行った 後に、分子内相同組換えにより挿入したマーカー遺伝子を除去する事が出来る形に 遺伝子導入用 DNA作製することもできる(Alani等 Genetics、 116 : 541—545 (1 987) )。 [0128] The transformant of the present invention can be produced by introducing the phaC expression cassette and the phbB expression cassette until the target expression cassette number is reached using the above method. [0129] Instead of using the multiple auxotrophic gene-disrupted strain used in the examples of the present invention, a wild-type strain or a strain having no auxotrophy and having no auxotrophy is involved in the PHA synthesis of the present invention. A yeast transformant into which the gene has been introduced multiple times can be obtained. For example, when introducing DNA for gene transfer using a drug resistance marker gene as a selectable marker gene, the concentration of the drug used for selecting a transformant may be increased each time the DNA for gene transfer is transformed. . Further, if the selective gene introduced into the chromosome after the single transformation is removed, it can be used again as a marker for gene introduction, and a large number of DNAs for gene introduction can be introduced. For this method, for example, a gene disruption method described in JP-A-2002-209574 can be used. Furthermore, by inserting hisG gene fragments at both ends of the selectable marker gene, the DNA for gene transfer is prepared so that the marker gene inserted by intramolecular homologous recombination can be removed after gene transfer. (Alani et al. Genetics, 116: 541-545 (1987)).
[0130] 本発明で得られたポリエステル生産株の 1つである CM313— X2B株(受託番号: FE RM BP - 08622)は、 2004年 2月 13日付で、独立行政法人産業技術総合研究所 特許生物寄託センターにブダペスト条約に基づいて国際寄託されている。  [0130] One of the polyester producing strains obtained by the present invention, CM313—X2B strain (Accession number: FE RM BP-08622) was patented on February 13, 2004 by the National Institute of Advanced Industrial Science and Technology (AIST). It has been internationally deposited at the Biological Depository Center under the Budapest Treaty.
[0131] (V)選択マーカーの回復方法  [0131] (V) Recovery method of selection marker
本発明の選択マーカーの回復方法は、選択マーカー遺伝子として ADE1遺伝子を 持つキャンディダ'マルトーサで分子内相同組換えを行うことにより、当該 ADE1遺伝 子を除去することを特徴とするものである。当該 ADE1遺伝子を除去することにより、 更に形質転換を行う場合、 ADE1遺伝子を再び選択マーカー遺伝子として用いるこ とがでさる。  The method for recovering a selectable marker of the present invention is characterized in that the ADE1 gene is removed by performing intramolecular homologous recombination with Candida 'maltosa having the ADE1 gene as a selectable marker gene. When further transformation is performed by removing the ADE1 gene, the ADE1 gene can be used again as a selectable marker gene.
これまで、サッカロミセス ·セレピシェなどで分子内相同組換えにより選択マーカー遺 伝子を除去することは公知であった力 キャンディダ ·マルトーサにおいて分子内相 同組換えにより選択マーカー遺伝子を除去する方法は、知られていな力つた。選択 マーカー遺伝子としては、上述のように、薬剤耐性遺伝子や栄養要求性を相補する 遺伝子を用いることができ、例えば ADE1遺伝子、 URA3遺伝子、 HIS5遺伝子等 が挙げられるが、本発明においては、選択マーカー遺伝子の除去がカラー選択可能 な ADE1遺伝子を用いる。 Until now, it has been known to remove the selectable marker gene by intramolecular homologous recombination in Saccharomyces cerevisiae etc.The method of removing the selectable marker gene by intramolecular homologous recombination in Candida maltosa is as follows. Unknown power. As described above, a drug resistance gene or a gene that complements auxotrophy can be used as the selectable marker gene. Examples of the selectable marker gene include the ADE1 gene, the URA3 gene, the HIS5 gene, and the like. Gene removal is color selectable Use the appropriate ADE1 gene.
本発明の方法においては、 ADE1遺伝子に相同な遺伝子を結合させたものでも分 子内相同組換えにより当該 ADE 1遺伝子を除去することができるが、 ADE 1遺伝子 の上流または下流に ADE1遺伝子の一部分を結合させたものの方力 作製が容易 であり、余分な遺伝子を酵母染色体に残さな 、点で好ま ヽ。 In the method of the present invention, the ADE1 gene can be removed by intramolecular homologous recombination even when a gene homologous to the ADE1 gene is bound, but a portion of the ADE1 gene is located upstream or downstream of the ADE1 gene. It is preferable in that it is easier to produce and does not leave extra genes on the yeast chromosome.
選択マーカー遺伝子の分子内相同組換えに用いる遺伝子断片に特に制限はなぐ 選択マーカー遺伝子が実質的に機能しない遺伝子断片を用いればよい。本発明の 実施例においては ADE1遺伝子の 5'末端部分の遺伝子断片を用いたが、 3'末端 部分の遺伝子断片を用いることもできる。選択マーカー遺伝子に連結させるマーカ 一遺伝子断片は、好ましくは 10塩基以上、より好ましくは 200塩基以上、更に好まし くは 300塩基以上である。即ち、上記 (IV)に記載の、遺伝子導入用 DNA中の選択 マーカー遺伝子の 5 '末端あるいは 3,末端にマーカー遺伝子断片を挿入すればよ!ヽ 。本発明の方法において、 ADE1遺伝子は、配列番号 7で示される塩基配列からな るものが好ましい。配列番号 7で示される塩基配列は、 Candida maltosa由来のも のである。この方法は、 ADE1遺伝子以外のマーカー遺伝子にも応用できる。 There is no particular limitation on the gene fragment used for intramolecular homologous recombination of the selectable marker gene. A gene fragment in which the selectable marker gene does not substantially function may be used. In the examples of the present invention, a gene fragment at the 5 'end of the ADE1 gene was used, but a gene fragment at the 3' end can also be used. The marker single gene fragment linked to the selectable marker gene preferably has at least 10 bases, more preferably at least 200 bases, and even more preferably at least 300 bases. That is, a marker gene fragment may be inserted at the 5 'end or the 3' end of the selectable marker gene in the DNA for gene transfer described in (IV) above! In the method of the present invention, the ADE1 gene preferably has a base sequence represented by SEQ ID NO: 7. The nucleotide sequence represented by SEQ ID NO: 7 is derived from Candida maltosa. This method can be applied to marker genes other than the ADE1 gene.
図 4に分子内相同組換えによるマーカーの回復の模式を示す。図 4において、括弧 内の数字は、 ADE1遺伝子の GenBankに登録されて!、る配列の 5 '末端からの番号 を示している。 Fig. 4 shows a model of marker recovery by intramolecular homologous recombination. In FIG. 4, the numbers in parentheses indicate the numbers from the 5 ′ end of the sequence registered in GenBank of the ADE1 gene!
分子内相同組換えにより、挿入した選択マーカー遺伝子が除去された株は種々の方 法で濃縮'選択することができる。例えば、ナイスタチン濃縮法を利用することができ る。適当な培地にて培養した菌体を最少培地等に植菌し培養する。菌を洗浄し、窒 素源不含最少培地で培養後、窒素源含有最少培地で短時間培養する。この培養液 に直接ナイスタチンを添加し、 1時間、 30°Cで好気的に培養することにより、マーカー 遺伝子を有する株を優先的に殺傷できる。この菌液を適当な寒天培地プレートに塗 抹し、 30°Cで 2日間程度培養する。除去する選択マーカー遺伝子がアデニン要求性 を示す ADE1遺伝子である場合は、 ADE1遺伝子を破壊すると前駆体物質が蓄積 し、酵母が赤く染まるため、アデニン含有最小培地寒天プレートを用いれば赤色コロ ニーとして得られる。マーカー遺伝子が URA3遺伝子の場合には、ゥリジンあるいは ゥラシルと 5— FOA (5— Fluoro— Orotic— Acid)の共存下の培地で生育してくるコロ ニーを選択すればよい。このような選択法がない場合は、レプリカ法を用いることがで きる。 Strains from which the inserted selectable marker gene has been removed by intramolecular homologous recombination can be concentrated and selected by various methods. For example, a nystatin enrichment method can be used. The cells cultured in an appropriate medium are inoculated into a minimal medium or the like and cultured. After washing the bacteria and culturing in a minimal medium without a nitrogen source, cultivate briefly in a minimal medium with a nitrogen source. By directly adding nystatin to this culture solution and aerobically culturing at 30 ° C for 1 hour, the strain having the marker gene can be preferentially killed. Spread this bacterial solution on an appropriate agar plate and incubate at 30 ° C for about 2 days. If the selectable marker gene to be removed is the ADE1 gene that requires adenine, the precursor substance accumulates when the ADE1 gene is disrupted and the yeast stains red. Can be If the marker gene is the URA3 gene, コ ロ Select a colony that grows in a medium in the presence of racil and 5-FOA (5-Fluoro-Orotic-Acid). If there is no such selection method, a replica method can be used.
[0133] (VI)ポリエステルの物性コントロール法  (VI) Method for Controlling Physical Properties of Polyester
また、本発明のポリエステルの分子量を制御する方法は、酵母形質転換体を用いる ポリエステルの製造にお 、て、酵母形質転換体のァセトァセチル CoA還元酵素遺伝 子の数を制御することを特徴とするものである。  Further, the method of controlling the molecular weight of the polyester of the present invention is characterized in that, in the production of a polyester using a yeast transformant, the number of acetoacetyl-CoA reductase genes in the yeast transformant is controlled. It is.
また、本発明のポリエステルのヒドロキシアルカン酸組成を制御する方法は、酵母形 質転換体を用いるポリエステルの製造にぉ 、て、酵母形質転換体のポリヒドロキシァ ルカン酸合成酵素遺伝子の数を制御することを特徴とするものである。  Further, the method for controlling the hydroxyalkanoic acid composition of the polyester of the present invention controls the number of polyhydroxyalkanoic acid synthase genes in the yeast transformant in the production of the polyester using the yeast transformant. It is characterized by the following.
[0134] すなわち、本発明の目的産物であるポリエステルのヒドロキシアルカン酸組成と分子 量は、 phaCと phbBの発現量を調節することによってコントロールすることができる。 それぞれ同じプロモーターを用いた phaCの発現カセット及び phbBの発現カセットを 用いた場合、ヒドロキシへキサン酸の組成を高くするためには、 phbBの発現カセット の導入数に対して、 phaCの発現カセットの導入数を高くすることによって行うことがで きる。また、分子量を増加させるためには、 phaCの発現カセットの導入数に対して、 p hbBの発現カセットの導入数を高くすることによって行うことができる。 That is, the composition and molecular weight of the hydroxyalkanoic acid of the polyester which is the target product of the present invention can be controlled by adjusting the expression levels of phaC and phbB. When the phaC expression cassette and the phbB expression cassette using the same promoter are used, in order to increase the composition of hydroxyhexanoic acid, the number of phaC expression cassettes must be This can be done by increasing the number. In addition, the molecular weight can be increased by increasing the number of introduced phbB expression cassettes relative to the number of introduced phaC expression cassettes.
このような特性を持つ形質転換体は、上述の (IV)に記載の方法により作製すること ができる。また、発現カセットの導入数が同じ場合でも、用いるプロモーターの強さを 変えること〖こよって、ヒドロキシアルカン酸組成と分子量の制御を達成できる。  A transformant having such characteristics can be prepared by the method described in (IV) above. Further, even when the number of introduced expression cassettes is the same, control of the hydroxyalkanoic acid composition and molecular weight can be achieved by changing the strength of the promoter used.
[0135] (VII)培養精製 (VII) Culture purification
本発明のポリエステルの製造方法は、上記酵母形質転換体を培養して得られる培養 物から、ポリエステルを採取することを特徴とするものである。  The method for producing a polyester of the present invention is characterized in that the polyester is collected from a culture obtained by culturing the above yeast transformant.
PHA合成酵素遺伝子及び phbBの発現カセットで形質転換された酵母の培養は、 第一の本発明で述べた、形質転換された酵母を培養方法と同様に行うことができる。  The culturing of the yeast transformed with the PHA synthase gene and the expression cassette of phbB can be carried out in the same manner as the method for culturing the transformed yeast described in the first aspect of the present invention.
[0136] ポリエステルの菌体力もの回収は、多くの方法が報告されており、例えば、第一の本 発明で述べた方法を用いることができる。  [0136] A number of methods have been reported for recovering the cell virulence of polyester. For example, the method described in the first present invention can be used.
[0137] 得られたポリエステルの分析は、例えば、ガスクロマトグラフ法や核磁気共鳴法などに より行うことができる。重量平均分子量の測定には、 GPC法が利用できる。例えば、 回収した乾燥ポリマーを、クロ口ホルム溶解したのち、この溶液を Shodex K805L( 昭和電工社製)を装着した島津製作所製 GPCシステムを用いクロ口ホルムを移動相 として分析する事が出来る。分子量標準サンプルには市販の標準ポリスチレンなどが 使用できる。 [0137] Analysis of the obtained polyester is performed by, for example, gas chromatography or nuclear magnetic resonance. More can be done. The GPC method can be used for measuring the weight average molecular weight. For example, after the recovered dried polymer is dissolved in chloroform, the solution can be analyzed using a GPC system manufactured by Shimadzu Corporation equipped with Shodex K805L (manufactured by Showa Denko KK) using the chromate form as a mobile phase. A commercially available standard polystyrene or the like can be used as the molecular weight standard sample.
発明の効果  The invention's effect
[0138] 本発明の遺伝子破壊によって作製された複数のマーカーを有する酵母は、遺伝子 組換え用宿主として、高効率な遺伝子発現や遺伝子の発現産物の製造に用いること が期待できる。更に、遺伝子破壊によるマーカーを付加することも可能であり、より優 れた宿主の開発に繋がる。また、本発明により、生分解性かつ優れた物性を有する、 3—ヒドロキシアルカン酸を共重合してなる共重合ポリエステルを酵母において効率的 に生産することが可能になった。更に、共重合ポリエステルの物性を制御することも 可能となった。また、酵母において複数回の遺伝子導入を効率的に行うことが可能と なった。  [0138] The yeast having a plurality of markers produced by gene disruption of the present invention can be expected to be used as a gene recombination host for highly efficient gene expression and production of gene expression products. Furthermore, it is also possible to add a marker by gene disruption, which leads to the development of a better host. Further, according to the present invention, it has become possible to efficiently produce a copolymerized polyester obtained by copolymerizing 3-hydroxyalkanoic acid, which has biodegradability and excellent physical properties, in yeast. Furthermore, it became possible to control the physical properties of the copolymerized polyester. In addition, it has become possible to efficiently perform gene transfer multiple times in yeast.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0139] 以下、実施例により本発明をさらに具体的に説明する。ただし、本発明は、これら実 施例にその技術範囲を限定するものではな 、。 Hereinafter, the present invention will be described more specifically with reference to Examples. However, the present invention does not limit the technical scope to these embodiments.
なお、酵母菌の培養用に使用した試薬は、特に断らない限り和光純薬力 販売され ているものを用いた。  Reagents used for culturing yeast were commercially available from Wako Pure Chemicals unless otherwise noted.
また、本発明の実施において、多くの市販のキットを用いたが、特に断らない限り添 付の使用説明書に従って行った。  Further, in the practice of the present invention, many commercially available kits were used, and the procedures were carried out according to the attached instructions unless otherwise specified.
[0140] (培地組成) [0140] (Medium composition)
LB培地: 10g/Lトリプトン、 5g/L酵母エキス、 5g/L食塩。 LBプレートの場合は、 寒天を 16gZLになるように加える。  LB medium: 10 g / L tryptone, 5 g / L yeast extract, 5 g / L salt. In case of LB plate, add agar to 16gZL.
YPD培地: lOgZL酵母エキス、 20gZLポリペプトン、 20gZLグルコース。 YPDプ レートの場合は、寒天を 20gZLになるようにカ卩える。アデニン含有 YPD培地の場合 は、アデニンを 0. lgZL加える。  YPD medium: lOgZL yeast extract, 20gZL polypeptone, 20gZL glucose. In the case of a YPD plate, agar is kneaded to 20 gZL. For adenine-containing YPD medium, add 0.1 lgZL of adenine.
YM培地: 3gZL酵母エキス、 3gZLマルトエキス、 5gZLバクトペプトン、 lOgZLグ ルコース。 YM medium: 3gZL yeast extract, 3gZL malt extract, 5gZL bactopeptone, lOgZL group Lucas.
SD培地: 6. 7g/Lアミノ酸不含イースト-トロジェンベース(YNB)、 20g/Lグルコ ース。アデニン含有培地の場合はアデニンを 24mg/L添加する。ゥリジン含有培地 の場合はゥリジンを 0. lg/L添加する。ヒスチジン含有培地の場合はヒスチジンを 5 OmgZL添加する。 SDプレートの場合は寒天を 20gZLになるように加える。  SD medium: 6.7 g / L amino acid-free yeast-trogen base (YNB), 20 g / L glucose. In the case of adenine-containing medium, add 24 mg / L of adenine. In the case of ゥ -lysine-containing medium, add 0.1 lg / L of L-lysine. In the case of a histidine-containing medium, add 5 OmgZL of histidine. In case of SD plate, add agar to 20gZL.
[0141] M培地: 0. 5gZL硫酸マグネシウム、 0. lgZL食塩、 0. 4mgZLチアミン、 0. 4mg ZLピリドキシン、 0. 4mgZLパントテン酸カルシウム、 2mgZLイノシトール、 0. 002 mgZLピオチン、 0. 05mgZL塩ィ匕鉄、 0. 07mgZL硫酸亜鉛、 0. OlmgZLホウ 酸、 0. OlmgZL硫酸銅、 0. OlmgZLヨウ化カリウム、 87. 5mgZLリン酸 2水素力 リウム、 12. 5mgZLリン酸 1水素 2カリウム、 0. lgZL塩化カルシウム、 20gZLグル コース。硫酸アンモ-ゥム含有 M培地の場合は、 lg/L硫酸アンモ-ゥムをカ卩える。 硫酸アンモ-ゥム及びアデニン含有 M培地の場合は、 M培地に lgZLの硫酸アンモ -ゥムと 24mg/Lのアデニンを加える。硫酸アンモ-ゥム及びアデニン'ゥリジン含 有 M培地の場合は、 M培地に lgZLの硫酸アンモ-ゥムと 24mgZLのアデニンと 0 . lgZLのゥリジンを加える。硫酸アンモ-ゥム及びアデニン'ヒスチジン含有 M培地 の場合は、 M培地に lgZLの硫酸アンモ-ゥムと 24mgZLのアデニンと 50mgZL のヒスチジンをカ卩える。硫酸アンモ-ゥム及びアデニン'ゥリジン'ヒスチジン含有 M培 地の場合は、 M培地に lgZLの硫酸アンモ-ゥムと 24mgZLのアデニンと 0. lgZ Lのゥリジンと 50mgZLのヒスチジンをカ卩える。  [0141] M medium: 0.5 g ZL magnesium sulfate, 0.5 lg ZL salt, 0.4 mg ZL thiamine, 0.4 mg ZL pyridoxine, 0.4 mg ZL calcium pantothenate, 2 mg ZL inositol, 0.002 mg ZL biotin, 0.05 mg ZL salt glide Iron, 0.07 mg ZL zinc sulfate, 0.1 OlmgZL boric acid, 0.1 OlmgZL copper sulfate, 0.1 OlmgZL potassium iodide, 87.5 mgZL potassium dihydrogen phosphate, 12.5 mg ZL monopotassium hydrogen phosphate, 0.1 lgZL Calcium chloride, 20g ZL glucose. In the case of M medium containing ammonium sulfate, lg / L ammonium sulfate is added. In the case of M medium containing ammonium sulfate and adenine, add lgZL ammonium sulfate and 24 mg / L adenine to the M medium. In the case of M medium containing ammonium sulfate and adenine peridine, add lgZL ammonium sulfate, 24 mg ZL adenine, and 0.1 lgZL peridine to the M medium. In the case of M medium containing ammonium sulfate and adenine histidine, add lgZL ammonium sulfate, 24 mg ZL adenine, and 50 mg ZL histidine to the M medium. In the case of M medium containing ammonium sulfate and adenine 'peridine' histidine, add lgZL of ammonium sulfate, 24 mgZL of adenine, 0.1 lgZL of lysine, and 50 mgZL of histidine to the M medium.
[0142] M2培地(12. 75gZL硫酸アンモ-ゥム、 1. 56gZLリン酸 2水素カリウム、 0. 33g ZLリン酸 1水素カリウム · 3水和物、 0. 08gZL塩ィ匕カリウム、 0. 5gZL塩ィ匕ナトリウ ム、 0. 41gZL硫酸マグネシウム · 7水和物、 0. 4gZL硝酸カルシウム · 7水和物、 0 . OlgZL塩ィ匕鉄 (ΠΙ) ·4水和物)に、 2wZv%パームオイルと塩酸に溶解したトレー スエレメント(lgZmL硫酸鉄(Π) · 7水和物、 8gZmL硫酸亜鉛 (Π) · 7水和物、 6. 4 gZmL硫酸マンガン (Π) ·4水和物、 0. 8gZmL硫酸銅(Π) · 5水和物) 0. 45ml/L を添加する。炭素源として、油脂を 20gZL添加する。  [0142] M2 medium (12.75 g ZL ammonium sulfate, 1.56 g ZL potassium dihydrogen phosphate, 0.33 g ZL potassium monohydrogen phosphate trihydrate, 0.08 g ZL potassium dihydrogen salt, 0.5 g ZL Shiojiri sodium, 0.41 gZL magnesium sulfate · 7 hydrate, 0.4 gZL calcium nitrate · 7 hydrate, 0. OlgZL Shiridani (ΠΙ) · tetrahydrate), 2 wZv% palm oil And trace elements dissolved in hydrochloric acid (lgZmL iron sulfate (Π) · heptahydrate, 8 gZmL zinc sulfate (Π) · heptahydrate, 6.4 gZmL manganese sulfate (Π) · tetrahydrate, 0.1 g 8gZmL Copper sulfate (Π) · pentahydrate) Add 0.45ml / L. Add 20 g ZL of fats and oils as a carbon source.
[0143] 酵母の液体培養は、 50ml試験管、 500ml坂口フラスコ、 2L坂口フラスコあるいはミ 二ジャーを用いて行った。 50ml試験管の場合 300rpm、 500ml坂口フラスコの場合 100— 110rpm、 2L坂口フラスコの場合 90— lOOrpmで振とう培養した。培養温度 は、液体培養とプレート培養ともに 30°Cである。 [0143] Liquid culture of yeast was performed using a 50 ml test tube, a 500 ml Sakaguchi flask, a 2 L Sakaguchi flask, or a mini jar. For 50ml test tube 300rpm, 500ml Sakaguchi flask 100-110 rpm, 2 L Sakaguchi flask Shaking culture at 90-100 rpm. The culture temperature is 30 ° C for both liquid culture and plate culture.
[0144] (制限酵素処理)  [0144] (Restriction enzyme treatment)
制限酵素処理は、メーカーの推奨する反応条件、あるいは Sambrook等編、 Molec ular cloning: A Laboratory Manual^ Second Edition^し old spring Har bor Laboratory Press (1989)【こ記載の方法【こ従って行った。  The restriction enzyme treatment was performed under the reaction conditions recommended by the manufacturer, or in Molecular Cloning: A Laboratory Manual ^ Second Edition ^ old spring Harbor Laboratory Press (1989), edited by Sambrook et al.
[0145] (実施例 1)相補ベクター、破壊用遺伝子及びマーカー回復型破壊用遺伝子の作製 東京大学より分与された URA3遺伝子をマーカーとして持つキャンディダ ·マルトー サ用ベクターである pUTU— 1を、配列番号 8及び 9に記載のプライマー(del— sal— 5 , del— sal— 3)を用いて、 Stratagene社製クイックチェンジキットにより、 URA3遺伝 子中の Sail制限酵素サイトを破壊したベクター pUTU— delsalを作製した。この pUT U— delsalから、 Sailと Xholで URA3遺伝子を切り出し、切り出した断片を再び pUT U—1の Xholサイトに導入したプラスミド pUTU— 2を作製した。 pUTA— 1 (WO01/ 88144に記載)上の ADE1遺伝子を、 pUTU— 2の Xholサイトにクローユングし、 pU TU— 2— Adeを作製した。 pUTU— 1のマルチクロー-ングサイトの Sailサイトに、 pU C 119にクロー-ングされて!/、た HIS 5遺伝子をクローユングし、 pUTUl— Hisを作 製した。更に、 pUTU— 2— Adeのマルチクロー-ングサイトの Sailサイトに、 HIS5遺 伝子をクローユングし、 pUTU— 2— Ade— Hisを作製した。  Example 1 Preparation of Complementary Vector, Disruption Gene and Marker-Recovery Disruption Gene [0145] pUTU-1, which is a vector for Candida maltosa having the URA3 gene as a marker and provided by the University of Tokyo as a marker, A vector in which the Sail restriction enzyme site in the URA3 gene has been disrupted by the Stratagene quick change kit using the primers (del-sal-5, del-sal-3) described in SEQ ID NOs: 8 and 9 pUTU-delsal Was prepared. From this pUT U-delsal, the URA3 gene was cut out with Sail and Xhol, and the cut out fragment was again introduced into the Xhol site of pUT U-1 to prepare a plasmid pUTU-2. The ADE1 gene on pUTA-1 (described in WO01 / 88144) was cloned into the Xhol site of pUTU-2 to prepare pUTU-2-Ade. The HIS5 gene cloned into pUC119 was cloned into the Sail site of the multicloning site of pUTU-1 to produce pUTUl-His. Further, the HIS5 gene was cloned at the Sail site of the multicloning site of pUTU-2-Ade to produce pUTU-2-Ade-His.
[0146] pUC19のマルチクロー-ングサイトを Notl— Sphl— Sail— Xhol— Nhel— Swal— Eco RIに変更したプラスミド pUC— Nxの Sphl—Sallサイトに、 URA3遺伝子の 5,末端部 分約 350baseを、配列番号 10及び 11に記載のプライマー(ura— sph— 5, ura— sal— 3)を用いて、プラスミド pUTU— delsaUり増幅しクローユングした。このベクターの N hel - Swalサイトに、 URA3遺伝子の 3'末端部分約 460baseを、配列番号 12及び 1 3に記載のプライマー(ura— nhe— 5, ura— swa— 3)を用いて、 PCR増幅しクローニン グした。このようにして、 URA3破壊用 DNA— 1を含むプラスミドを作製した。  [0146] The pUC19 multicloning site was changed to Notl-Sphl-Sail-Xhol-Nhel-Swal-EcoRI, and the pUC-Nx Sphl-Sall site was replaced with the 5 'end of the URA3 gene, about 350 bases. Using the primers (ura-sph-5, ura-sal-3) described in SEQ ID NOS: 10 and 11, plasmid pUTU-delsaU was amplified and cloned. PCR amplification of about 460 bases at the 3 'end of the URA3 gene at the Nhel-Swal site of this vector using the primers (ura-nhe-5, ura-swa-3) described in SEQ ID NOs: 12 and 13. Cloning. Thus, a plasmid containing DNA-1 for URA3 disruption was prepared.
[0147] 次に、 URA3破壊用 DNA— 1を含むプラスミドの Sail— Xholサイトに、 pUTA— 1の A DEI遺伝子全長を、配列番号 14及び 15に記載のプライマー(ade— sal— 5, ade— x ho— 3)を用いて PCR増幅 '挿入して、 URA3破壊用 DNA— 2を含むプラスミドを作 製した。 [0147] Next, the full length of the A DEI gene of pUTA-1 was placed in the Sail-Xhol site of the plasmid containing DNA-1 for URA3 disruption, using the primers (ade-sal-5, ade- x Amplification using ho-3) to produce a plasmid containing DNA-2 for URA3 disruption Made.
[0148] URA3破壊用 DNA— 3 (マーカー回復型)を含むプラスミドは、 ADE1遺伝子の5 '末 端部分約 630baseを、配列番号 16及び 17に記載のプライマー(ade— xho— 5, ade -nhe-3)を用いて PCR増幅し、 URA3破壊用 DNA— 2を含むプラスミドの Xhol— N helサイトにクローユングして完成させた。  [0148] The plasmid containing DNA-3 for URA3 disruption (marker recovery type) was prepared by substituting approximately 630 bases at the 5 'end of the ADE1 gene with the primers (ade-xho-5, ade-nhe The DNA was amplified by PCR using -3) and cloned into the Xhol-Nhel site of the plasmid containing DNA-2 for URA3 disruption to complete it.
[0149] HIS5破壊用 DNA (マーカー回復型)を含むプラスミドは、 pUC119にクロー-ング されている HIS5遺伝子の 5 '末端部分約 500baseを配列番号 18及び 19に記載の プライマー(his— sph— 5, his— sal— 3)を用いて、 HIS5遺伝子の 3,末端部分約 560 baseを配列番号 20及び 21に記載のプライマー(his— nhe— 5, his—swa—3)を用い て、 URA3破壊用 DNA— 3を含むプラスミドの Sphl— Sailサイト、 Nhel— Swalサイト を入れ替える形で、それぞれ順次クローユングする事により作製した。  [0149] The plasmid containing DNA for HIS5 disruption (marker recovery type) was prepared using the primer (his-sph-5) of SEQ ID NOS: 18 and 19 containing about 500 bases at the 5 'end of the HIS5 gene cloned into pUC119. Using the primers (his-nhe-5, his-swa-3) described in SEQ ID NOs: 20 and 21, URA3 was disrupted from the 3, terminal portion of the HIS5 gene using the primers (his-nhe-5, his-swa-3). The plasmids were prepared by sequentially closing each of the plasmids containing DNA-3 for Sphl-Sail site and Nhel-Swal site.
[0150] (実施例 2) AC16株の URA3遺伝子破壊  (Example 2) URA3 gene disruption of AC16 strain
AC 16株を 10mlの大試験管で YPD培地で終夜培養した。この前培養した酵母を 1 mlZlOOml坂口フラスコとなるよう YM培地に植菌し、 6時間培養後、集菌した。菌を 20mlの 1M Sorbitolに懸濁し、 3回洗浄した。最後に菌体を 1M Sorbitol 0. 5 mlに懸濁し、コンビテント細胞とした。このコンビテント細胞 0. 1mlに、実施例 1の UR A3破壊用 DNA— 2を含むプラスミドを Sphlと Swalで制限酵素処理した DNAを 0. 1 mg加え、電気パルス法による遺伝子導入を行った。電気ノ ルスをかけた後、キュべ ットに 1M Sorbitolを lml入れ、氷冷下 1時間放置し、 SDプレートに蒔いた。出現し たコロニーより、染色体抽出キットのジェントルくん(宝酒造社製)を用いて染色体 DN Aを抽出した。得られた染色体 DNA5 μ gずつを、 3種類の方法 Scal、 EcoT14I、 S caI + EcoT14Iで制限酵素処理して切断し、 0. 8%ァガロースゲルで電気泳動を行 つた。 Molecular cloning: A Laboratory Manual^ second Edition 9. 31 —9. 57、 Cold Spring Harbor Laboratory Press (1989)に従って、ゲノレから ハイボンド N +フィルター(アマシャム社製)に 1晚トランスファーした。サザンブロット 検出用プローブは、 URA3遺伝子内の配列である Seal— Ndel断片(340bp)を、 Ge nelmageラベリング '検出キット (アマシャム社製)で酵素標識したものを用いた。ノ、ィ ブリダィズ後、洗浄し、同キットの蛍光発色試薬で DNAバンドを検出した。検出バン ドを野生株 IAM12247のものと比較したところ、野性株では約 570bpのバンドを示 す Seal + EcoT14I処理した DNAが新たに ADE 1遺伝子の URA3遺伝子中への 挿入を示す 1840bpのバンドも示す株を選択した。この株は、 Sealや EcoT14I処理 のバンドでも理論値を示し、 URA3遺伝子の一つが ADE1遺伝子により正確に破壊 されたと確認された。 AC 16 strain was cultured overnight in YPD medium in a 10-ml large test tube. The pre-cultured yeast was inoculated into YM medium so as to form a 1 ml ZlOOml Sakaguchi flask, and after culturing for 6 hours, the cells were collected. The bacteria were suspended in 20 ml of 1 M Sorbitol and washed three times. Finally, the cells were suspended in 0.5 ml of 1 M Sorbitol to obtain a competent cell. To 0.1 ml of the competent cells, 0.1 mg of DNA obtained by treating a plasmid containing DNA-2 for disrupting URA3 of Example 1 with Sphl and Swal, and adding 0.1 mg of the DNA, was subjected to gene transfer by an electric pulse method. After applying electric noise, 1 ml of 1 M Sorbitol was added to the cuvette, left for 1 hour under ice-cooling, and sown on an SD plate. Chromosome DNA was extracted from the resulting colonies using a chromosome extraction kit Gentle-kun (Takara Shuzo). Each 5 μg of the obtained chromosomal DNA was digested with restriction enzymes using three methods, Scal, EcoT14I, ScaI + EcoT14I, cut, and electrophoresed on a 0.8% agarose gel. Molecular cloning: 1 Laboratory transfer from Genore to Hybond N + filter (Amersham) according to A Laboratory Manual ^ second Edition 9.31-9.57, Cold Spring Harbor Laboratory Press (1989). The probe for Southern blot detection used was a Seal-Ndel fragment (340 bp), which is a sequence in the URA3 gene, which was enzymatically labeled with a Genelmage Labeling 'detection kit (Amersham). After washing, washing was performed, and DNA bands were detected with the fluorescent coloring reagent of the same kit. Detection van When the wild type strain was compared with that of the wild type strain IAM12247, the wild-type strain showed a band of about 570 bp.The DNA treated with Seal + EcoT14I also showed a new 1840 bp band indicating the insertion of the ADE1 gene into the URA3 gene. Selected. This strain showed theoretical values even in bands treated with Seal or EcoT14I, confirming that one of the URA3 genes was correctly destroyed by the ADE1 gene.
[0151] 次に、この株より上記と同様に調製したコンビテント細胞に、 URA3破壊用 DNA-2 を含むプラスミドを配列番号 10及び 13に記載のプライマーで PCR法により増幅した DNAを 0. 5mgカ卩え、上記と同様に電気ノ ルス法による遺伝子導入を行った。パル スをかけた後に YM培地 100mlに植菌し、 1晚培養した。菌体を回収し、 M培地(硫 酸アンモ-ゥムなし)で 1晚培養した。菌体回収後、 M培地 (硫酸アンモ-ゥム有り)に 移し、 6時間晚培養後に、ナイスタチンを終濃度 0. OlmgZmlになるように加え、更 に 1時間培養した。菌体を洗浄し、菌体をアデニン入り SDプレートにスプレッドした。 出現した赤色コロニーよりゲノム DNAを抽出した。ここで得られたアデニン要求性株 のゲノムは、配列番号 22及び 23に記載のプライマー ura3— 5と ura3— 3を用いて増 幅を行ったところ、元株でインタタトな URA3遺伝子の 0. 9kbpの増幅と共に増幅す る 2. 3kbpの DNA力 S消失し、代わりに 0. 7kbpの DNAが増幅した。配列番号 24及 び 25に記載のプライマー adeYl lO— 5と adeY1670— 3を用いて増幅を行ったところ 、 1. Okbpの DNAのみが増幅した。これらのことから、部位特異的に 1つ目の URA3 遺伝子破壊に用いた ADE1遺伝子全領域が特異的に除去されていると判断した。こ のアデニン要求性株の内の一株を U— 1株と命名し、以下の実験に用いた。  Next, 0.5 mg of DNA obtained by amplifying a plasmid containing DNA-2 for URA3 disruption by PCR with the primers of SEQ ID NOS: 10 and 13 was added to the competent cells prepared from this strain in the same manner as described above. Then, gene transfer was performed by the electric nosling method in the same manner as described above. After applying the pulse, the cells were inoculated into 100 ml of YM medium and cultured for 1 晚. The cells were collected and cultured for 1 hour in M medium (without ammonium sulfate). After recovering the cells, the cells were transferred to M medium (with ammonium sulfate), cultured for 6 hours, nystatin was added to a final concentration of 0.1 OlmgZml, and the cells were further cultured for 1 hour. The cells were washed and spread on an SD plate containing adenine. Genomic DNA was extracted from the red colonies that appeared. The genome of the adenine-requiring strain obtained here was amplified using primers ura3-5 and ura3-3 described in SEQ ID NOs: 22 and 23, and the 0.9 kbp of the URA3 gene that was intact in the original strain was obtained. 2.3 kbp of DNA was lost, and 0.7 kbp of DNA was amplified instead. When amplification was performed using the primers adeYlO-5 and adeY1670-3 described in SEQ ID NOS: 24 and 25, 1. Only Okbp DNA was amplified. From these facts, it was determined that the entire region of the ADE1 gene used for site-specific URA3 gene disruption was specifically removed. One of the adenine-requiring strains was named U-1 strain and used in the following experiments.
[0152] 次に、 U— 1株を用いて得られたクローンを用いて、コンビテント細胞を調製した。この コンビテント細胞 0. 1ml〖こ、 URA3破壊用 DNA— 3を含むプラスミドを制限酵素 Sph Iと Swalで処理し精製した DNAを 0. 04mg加え、電気パルス法による遺伝子導入を 行った。この菌体を、ゥリジンを含む SDプレートにスプレッドし、 30°Cでインキュベー トした。出現したコロニーを、 SDプレートとゥリジンを含む SDプレートにレプリカし、ゥ ラシル要求性株を選択した。これより染色体 DNAを回収し、配列番号 22及び 23に 記載のプライマー ura3— 5と ura3— 3を用いて PCR増幅を行ったところ、インタタトな URA3遺伝子の 0. 9kbpのバンドが消失し、代わりに URA3破壊用 DNA— 3のサイ ズである 2. 9kbpが増幅していた。配列番号 24及び 25に記載のプライマー adeYl l 0— 5と adeY1670— 3を用いて増幅を行ったところ、元株では増幅しない ADE1遺伝 子 1. 5kbpが増幅した。これらのことから、 URA3遺伝子特異的に破壊用遺伝子 3が 導入され、 URA3遺伝子が全て破壊され、ゥラシル要求性を獲得したものと判断した 。得られた株の栄養要求性は、ベクター pUTU— 2で相補されることを確認した。この ゥラシル要求性株をキャンディダ ·マルトーサ U-35と命名した。 Next, using the clone obtained using the U-1 strain, a competent cell was prepared. 0.1 ml of this combined cell, and a plasmid containing DNA-3 for URA3 disruption treated with restriction enzymes SphI and Swal, were added with 0.04 mg of purified DNA, and gene transfer was performed by the electric pulse method. The cells were spread on an SD plate containing Perysin and incubated at 30 ° C. The emerged colonies were replicated on an SD plate and an SD plate containing Perysin, and a Periracil-requiring strain was selected. From this, chromosomal DNA was recovered and subjected to PCR amplification using the primers ura3-5 and ura3-3 described in SEQ ID NOs: 22 and 23, and the 0.9 kbp band of the intact URA3 gene disappeared. DNA for URA3 destruction—3 rhinoceros 2.9 kbp was amplified. When amplification was performed using primers adeYl10-5 and adeY1670-3 described in SEQ ID NOS: 24 and 25, 1.5 kbp of the ADE1 gene, which was not amplified in the original strain, was amplified. Based on these facts, it was determined that the disruption gene 3 was introduced specifically for the URA3 gene, all the URA3 genes were disrupted, and the requirement for peracil was obtained. The auxotrophy of the obtained strain was confirmed to be complemented by the vector pUTU-2. This ゥ rasil-requiring strain was named Candida maltosa U-35.
[0153] 次に、キャンディダ'マルトーサ U-35株を YPD培地 10mlで終夜培養した。集菌後、 M培地 (硫酸アンモニゥムなし)で 1晚培養した。菌体回収後、ゥリジン含有 M培地( 硫酸アンモ-ゥムあり)に移し、 7時間晚培養後にナイスタチンを終濃度 0. Olmg/ mlになるように加え、更に 1時間培養した。菌体を洗浄後、アデニン及びゥリジン含 有 M培地 (硫酸アンモニゥムあり)で 1晚培養した。菌体を回収し、 M培地 (硫酸アン モ -ゥムなし)で 1晚培養後、ゥリジン含有 M培地 (硫酸アンモ-ゥムあり)に移して 7 時間培養し、先ほどと同様にナイスタチン処理を行い、アデニン及びゥリジンを含む S Dプレートにスプレッドした。培養後、得られた赤色コロニーを、 SDプレート、ゥリジン を含む SDプレート、並びにアデニン及びゥリジンを含む SDプレートにレプリカし、ァ デニンとゥラシルの両栄養要求性を示すクローンであることを確認した。この株よりゲ ノム DNAを抽出し、配列番号 22及び 23に記載のプライマー ura 3—5と ura 3— 3を用 いて PCR増幅を行ったところ、 URA3遺伝子に ADE1遺伝子が導入された 2. 9kbp のバンドが消失し、代わりに URA3遺伝子中に ADE1遺伝子断片が残ったサイズで ある 1. 2kbpが増幅していた。配列番号 24及び 25に記載のプライマー adeYl 10—5 と adeY1670— 3を用いて増幅を行ったところ、親株では増幅する ADE1遺伝子 1. 5 kbpが増幅した力 得られた栄養要求性株は、元々の ADE1破壊遺伝子のサイズで ある 1. Okbpのバンドのみを認めた。これらのことから、 URA3遺伝子中の ADE1遺 伝子と ADE1遺伝子断片が同一遺伝子内で相同組換えにより自然に ADE1遺伝子 を失ったものであり、簡便に遺伝子マーカーが回復されることが示された。このアデ- ン ·ゥラシルの 2重栄養要求性株をキャンディダ ·マルトーサ UA— 354と命名した。  Next, Candida's maltosa U-35 strain was cultured overnight in 10 ml of YPD medium. After harvesting, the cells were cultured in M medium (without ammonium sulfate) for 1). After recovery of the cells, the cells were transferred to a peridine-containing M medium (with ammonium sulfate), cultured for 7 hours, and nystatin was added to a final concentration of 0.1 Olmg / ml, followed by further 1 hour of culture. After washing the cells, the cells were cultured in an M medium containing adenine and peridine (with ammonium sulfate) for 1 hour. Collect the cells, culture them in M medium (without ammonium sulfate), transfer them to M medium containing peridine (with ammonium sulfate), culture them for 7 hours, and treat them with nystatin as before. And spread it on an SD plate containing adenine and peridine. After culturing, the obtained red colonies were replicated on an SD plate, an SD plate containing peridine, and an SD plate containing adenine and peridine, and confirmed to be a clone showing both auxotrophy for adenine and peracil. Genomic DNA was extracted from this strain and subjected to PCR amplification using the primers ura 3-5 and ura 3-3 shown in SEQ ID NOs: 22 and 23. As a result, the ADE1 gene was introduced into the URA3 gene. Band disappeared, and instead, 1.2 kbp, the size of the ADE1 gene fragment remaining in the URA3 gene, was amplified. When amplification was performed using the primers adeYl10-5 and adeY1670-3 described in SEQ ID NOs: 24 and 25, the parent strain was amplified by the ADE1 gene 1.5 kbp. 1. Only the Okbp band, which is the size of the ADE1-disrupted gene, was observed. These results indicate that the ADE1 gene and the ADE1 gene fragment in the URA3 gene naturally lost the ADE1 gene by homologous recombination within the same gene, and that the gene marker was easily recovered. . This double auxotroph of Aden-Peracil was named Candida maltosa UA-354.
[0154] (実施例 3)AC16株の HIS5遺伝子破壊とマーカーの回復法  (Example 3) HIS5 gene disruption in AC16 strain and marker recovery method
実施例 2で作製した U— 1株よりコンビテント細胞を調製し、 HIS5破壊用 DNAを含む プラスミドを制限酵素 Sphlと Swalで処理し精製した DNAO. 04mgをカ卩え、電気パ ルス法による遺伝子導入を行った。条件は実施例 2と同じである。この菌体を、ヒスチ ジン含有 SDプレートにスプレッドし、 30°Cでインキュベートした。出現したコロニーよ りゲノム DNAを回収した。 HIS 5遺伝子中の破壊用遺伝子の HIS 5遺伝子と相同性 のある部分のフランキング部位のプライマー、即ち破壊用遺伝子には含まれていな い HIS5遺伝子のプライマーである his— sal2と his— 1900 (配列番号 26及び 27)を 用いてゲノム DNA増幅を行ったところ、インタタトな HIS5遺伝子のサイズである 1. 9 kbpのバンドと共に HIS5破壊用 DNAのサイズである 3. 4kbpが増幅する株を選択 した。 Prepare competent cells from the U-1 strain prepared in Example 2 and contain HIS5 disruption DNA The plasmid was treated with the restriction enzymes Sphl and Swal, and purified DNA04 (0.4 mg) was used for gene transfer by the electric pulse method. The conditions are the same as in Example 2. The cells were spread on a histidine-containing SD plate and incubated at 30 ° C. Genomic DNA was recovered from the colonies that appeared. The primers for the flanking site of the homology with the HIS 5 gene of the disrupting gene in the HIS 5 gene, that is, the primers for the HIS 5 gene not included in the disrupting gene, his-sal2 and his- 1900 ( When genomic DNA was amplified using SEQ ID NOs: 26 and 27), a strain was selected that amplifies 3.4 kbp, the size of HIS5 disruption DNA, along with an intact HIS5 gene size of 1.9 kbp band. .
[0155] この株を用い、実施例 2に示した方法と同様の方法でナイスタチン濃縮を行った。ァ デニン含有 SDプレートにスプレッドし、得られた赤色コロニーよりゲノム DNAを抽出 し、プライマー his— sal2と his— 1900 (配列番号 26及び 27)を用いてゲノム DNA増 幅を行ったところ、インタタトな HIS5遺伝子のサイズである 1. 9kbpのバンドのみの 増幅を認め、破壊用遺伝子を含んだサイズである 3. 4kbpは増幅しなカゝつた。プライ マー ade— xho— 5と his— swa— 3 (配列番号 16及び 21)を用いて PCR増幅を行ったと ころ、 HIS5遺伝子に ADE1遺伝子断片が結合した 1. 2kbpのバンドが増幅していた 。このことから、得られたアデニン要求性株は、リバ一タントではなぐ分子内相同組 換えの結果得られたものであると確認された。  [0155] Using this strain, nystatin was concentrated in the same manner as described in Example 2. Spread on an adenine-containing SD plate, genomic DNA was extracted from the resulting red colonies, and genomic DNA was amplified using primers his-sal2 and his-1900 (SEQ ID NOs: 26 and 27). Amplification of only the 1.9 kbp band, which is the size of the HIS5 gene, was observed, and 3.4 kbp, the size containing the disrupting gene, was not amplified. When PCR amplification was performed using the primers ade-xho-5 and his-swa-3 (SEQ ID NOs: 16 and 21), a 1.2 kbp band in which the ADE1 gene fragment was bound to the HIS5 gene was amplified. From this, it was confirmed that the obtained adenine-requiring strain was obtained as a result of intramolecular homologous recombination that could not be achieved with Rivalant.
[0156] 次に、得られたアデニン要求性株よりコンビテント細胞を調製し、 HIS5破壊用 DNA を含むプラスミドを制限酵素 Sphlと Swalで処理し精製した DNAO. 05mgをカロえ、 電気パルス法による遺伝子導入を行った。この菌体を、ヒスチジンを含む SDプレート にスプレッドし、 30°Cでインキュベートした。出現コロニーを、 SDプレートとヒスチジン を含む SDプレートにレプリカし、ヒスチジン要求性株を得た。得られたヒスチジン要求 性株よりゲノム DN Aを抽出し、プライマー his— sal2と his— 1900 (配列番号 26及び 2 7)を用いてゲノム DNA増幅を行ったところ、親株で増幅する破壊された HIS 5遺伝 子のサイズである 1. 9kbpのバンド以外に破壊用遺伝子を含んだサイズである 3. 4k bpが増幅する株を選択した。この株は、プライマー his— sal2と ade— xho— 3 (配列番 号 26及び 15)を用いた PCRにより、 HIS5遺伝子中に ADE1遺伝子が組み込まれ たことを確かめた。このヒスチジン要求性株をキャンディダ ·マルトーサ CH— I株と命名 した。 [0156] Next, a competent cell was prepared from the obtained adenine-requiring strain, and a plasmid containing DNA for disrupting HIS5 was treated with the restriction enzymes Sphl and Swal, and purified DNA05. Gene transfer was performed. The cells were spread on an SD plate containing histidine and incubated at 30 ° C. The emerging colony was replicated on an SD plate and an SD plate containing histidine to obtain a histidine-requiring strain. Genomic DNA was extracted from the obtained histidine-auxotrophic strain, and genomic DNA was amplified using primers his-sal2 and his-1900 (SEQ ID NOs: 26 and 27). A strain that amplifies 3.4 kbp, a size containing a disrupting gene in addition to the 1.9 kbp band, which is the size of 5 genes, was selected. In this strain, the ADE1 gene was integrated into the HIS5 gene by PCR using primers his-sal2 and ade-xho-3 (SEQ ID NOs: 26 and 15). I confirmed that. This histidine-requiring strain was named Candida maltosa CH-I strain.
[0157] CH— I株を用い、実施例 2に示した方法と同様の方法でナイスタチン濃縮を行った。  [0157] Using the CH-I strain, nystatin was concentrated in the same manner as described in Example 2.
アデニン及びヒスチジン含有 SDプレートにスプレッドし、得られた赤色コロニーよりゲ ノム DNAを抽出した。このゲノム DNAをプライマー his— sal2と his— 1900 (配列番号 26及び 27)を用いてゲノム DNA増幅を行ったところ、すべての株で親株の破壊され た HIS5遺伝子のサイズである 1. 9kbpのバンドのみの増幅を認め、破壊用遺伝子 を含んだサイズである 3. 4kbpは増幅しなかった。ヒスチジン及びアデニン要求性を 、 SDプレート、ヒスチジン含有 SDプレート、並びにアデニン及びヒスチジン含有 SD プレートにレプリカする事で確認し、アデニン 'ヒスチジンの 2重栄養要求性株の完成 とした。この内の 1株をキャンディダ ·マルトーサ AH— 15株と命名した。  It was spread on an SD plate containing adenine and histidine, and genomic DNA was extracted from the obtained red colonies. When genomic DNA was amplified using the primers his-sal2 and his-1900 (SEQ ID NOs: 26 and 27), the 1.9 kbp band, the size of the parental disrupted HIS5 gene in all strains, was obtained. Only 3.4 kbp, the size containing the disrupting gene, was not amplified. Histidine and adenine auxotrophy were confirmed by replicating to an SD plate, a histidine-containing SD plate, and an adenine and histidine-containing SD plate, and a double auxotroph of adenine 'histidine was completed. One of them was named Candida maltosa AH-15 strain.
[0158] 次に、 AH— 15株よりコンビテント細胞を調製し、 URA3破壊用 DNA— 3を含むプラス ミドを制限酵素 Sphlと Swalで処理し精製した DNAを 0. 025mgカロえ、電気パルス 法による遺伝子導入を行った。この菌体を、ゥリジンとヒスチジンを含む SDプレート〖こ スプレッドし、 30°Cで 2日間インキュベートした。出現コロニーを、ヒスチジンを含む S Dプレートと、ゥリジンとヒスチジンを含む SDプレートにレプリカし、ゥラシル要求性株 を選択した。これより染色体 DNAを回収し、プライマー ura3— 5と ura3— 3 (配列番号 22及び 23)を用いて PCR増幅を行ったところ、インタタトな URA3遺伝子の 0. 9kbp のバンドが消失し、代わりに破壊用遺伝子のサイズである 2. 9kbpの増幅を確認した 。このヒスチジン 'ゥラシル 2重要求性株の内の 1つを、キャンディダ 'マルトーサ HU— 591と命名した。  [0158] Next, a competent cell was prepared from the AH-15 strain, a plasmid containing DNA-3 for URA3 disruption treatment was treated with the restriction enzymes Sphl and Swal, and purified DNA was collected at 0.025 mg, followed by an electric pulse method. Was introduced. The cells were spread on an SD plate containing peridine and histidine, and incubated at 30 ° C for 2 days. The emerging colonies were replicated on SD plates containing histidine and SD plates containing peridine and histidine, and strains requiring periracil were selected. From this, chromosomal DNA was recovered and subjected to PCR amplification using primers ura3-5 and ura3-3 (SEQ ID NOs: 22 and 23). As a result, the 0.9 kbp band of the intact URA3 gene disappeared and was instead destroyed. Amplification of 2.9 kbp, which is the size of the gene for use, was confirmed. One of the histidine 'Duracil dual auxotrophs was designated Candida' Maltosa HU-591.
[0159] HU— 591株を用い、実施例 2に示した方法と同様の方法でナイスタチン濃縮を行つ た。アデニン、ヒスチジン及びゥリジン含有 SDプレートにスプレッドし、得られた赤色 コロニーよりゲノム DNAを抽出した。プライマー ura3— 5と ura3— 3 (配列番号 22及び 23)を用いて PCR増幅を行い、 URA3遺伝子に ADE1遺伝子が導入された 2. 9kb pのバンドが消失し、代わりに URA3遺伝子に ADE1遺伝子断片が残ったサイズで ある 1. 2kbpが増幅している株を選択した。ゥラシル、ヒスチジン及びアデニン要求性 を、アデニン、ヒスチジン及びゥリジン含有 SDプレート、ヒスチジン及びゥリジン含有 S Dプレート、アデニン及びゥリジン含有 SDプレート、アデニン及びヒスチジン含有 SD プレート、アデニン含有 SDプレート、ヒスチジン含有 SDプレート、ゥリジン含有 SDプ レート、及び SDプレートにレプリカする事で確認し、アデニン'ヒスチジン'ゥラシルの 3重栄養要求性株を完成した。この株をキャンディダ ·マルトーサ AHU— 71と命名し た。 [0159] Using the HU-591 strain, nystatin was concentrated in the same manner as described in Example 2. The cells were spread on an SD plate containing adenine, histidine and peridine, and genomic DNA was extracted from the obtained red colonies. PCR amplification was performed using primers ura3-5 and ura3-3 (SEQ ID NOs: 22 and 23). The ADE1 gene was introduced into the URA3 gene. The 2.9 kbp band disappeared, and the ADE1 gene fragment was replaced with the URA3 gene. A strain in which 1.2 kbp was amplified was selected. The requirements for perylase, histidine, and adenine are as follows: SD plate containing adenine, histidine and peridine, S plate containing histidine and peridine Confirmed by replicating to D plate, SD plate containing adenine and peridine, SD plate containing adenine and histidine, SD plate containing adenine, SD plate containing histidine, SD plate containing peridine, and SD plate, and adenine 'histidine' A triple auxotroph was completed. This strain was named Candida maltosa AHU-71.
[0160] マーカー回復型破壊用遺伝子を用いた場合、アデニン要求性株の出現頻度は、ァ デニン破壊用 DNAを用いた場合と同程度であるが、 目的株取得までに要する時間 は約半分に短縮することができた。更に、破壊遺伝子の導入時の目的外部位への挿 入を考えなくても良ぐ解析も容易であった。  [0160] When the marker-recovery-type disruption gene is used, the frequency of occurrence of adenine-requiring strains is similar to that when adenine-destroying DNA is used, but the time required to obtain the target strain is about half. Could be shortened. Furthermore, it was easy to analyze without having to consider insertion into the target external site when introducing the disrupted gene.
[0161] この実施例に示されるように、分子内相同組換えを用いて簡便にマーカー遺伝子を 回復することができることが示された。  [0161] As shown in this example, it was shown that marker genes can be easily recovered using intramolecular homologous recombination.
[0162] (実施例 4)油脂資化能の確認  (Example 4) Confirmation of the ability to utilize fats and oils
最終的に完成した 3重栄養要求性株である AHU— 71株を用いて、油脂を炭素源と したときの生育に問題がないことを確認するために、ジャー培養を実施した。 AHU- 71株にプラスミド pUTU2— Ade— Hisを形質転換し、 SDプレートにコロニーを形成さ せた。対照としては AC16株にプラスミド pUTA— 1を形質転換したものを用いた。種 母は、 150mlの SD培地を用い、坂口フラスコで培養し、調製した。ジャー培養は、マ ルビシ社製 3Lジャーフアーメンターに 1. 8Lの M2培地を仕込んで行った。温度は 3 2°C、攪拌数は 500rpmとし、通気量は lwmとした。炭素源はパーム核オイルを、培 養開始より 11時間目までは 1. 9mlZhで、 24時間目までは 3. 8mlZhで、それ以降 は 5. 7mlZhでフィードした。経時的に 10mlの培養液をサンプリングし、メタノールで 洗浄後、乾燥させ、ドライ菌体量を測定した。図 2に示すように、 AHU— 71株は、 AC 16株と同様の生育を示した。このことより、本株が油脂資化能を損なうことなく遺伝子 破壊が出来て 、ることが確認された。  Using the finally completed triple auxotroph AHU-71 strain, jar culture was performed to confirm that there was no problem with growth when using oils and fats as a carbon source. The AHU-71 strain was transformed with the plasmid pUTU2-Ade-His, and colonies were formed on SD plates. A control obtained by transforming the plasmid pUTA-1 into the AC16 strain was used. Seeds were prepared by culturing in a Sakaguchi flask using 150 ml of SD medium. The jar culture was performed by charging 1.8 L of the M2 medium into a 3 L jar arm amenter manufactured by Malvisi. The temperature was 32 ° C., the number of agitation was 500 rpm, and the aeration rate was lwm. Palm kernel oil was fed as a carbon source at 1.9 mlZh up to 11 hours from the start of cultivation, 3.8 mlZh up to 24 hours, and 5.7 mlZh thereafter. Over time, 10 ml of the culture was sampled, washed with methanol, dried, and the amount of dry cells was measured. As shown in FIG. 2, the AHU-71 strain showed the same growth as the AC 16 strain. From this, it was confirmed that this strain was able to disrupt the gene without impairing the ability to utilize fats and oils.
[0163] (実施例 5)ポリエステルの合成に関与する酵素遺伝子発現カセットの構築  (Example 5) Construction of expression cassette for enzyme gene involved in synthesis of polyester
キャンディダ 'マルトーサでポリエステル合成酵素を発現させるために、それぞれの 5 ,上流にキャンディダ ·マルトーサ由来プロモーターを、 3,下流にターミネータ一を連 結した。プロモーターとしては、 ALK2遺伝子(GenBank:X55881)のプロモーター の上流に ARR配列を付カ卩したプロモーター ARRpを、 3'下流には共にキャンディダ •マルトーサの ALK1遺伝子(GenBank: D00481)のターミネータ一 ALKltを連結 した。 ARRpは、東京大学より分与された遺伝子 (配列番号 4)の Pstlサイトに EcoRI Xholリンカ一を結合させ、 EcoT14Iサイトに配列番号 28に示した合成 DNAを結 合させること〖こより、 Xhol及び Ndelで切り出すことの出来る形に変換した。 pUALl ( WO01/88144)を EcoRIで切断後、平滑末端化しライゲーシヨンを行うことにより、 EcoRI切断部位を除去した pUAL2を作製した。 pUAL2を PuvIlZPuvIで切断し、 pSTV28 (宝酒造社製)の SmalZPuvIIサイトに結合させ、 pSTALlを作製した。こ の pSTALlを EcoRlZNdelで切断し、先に述べた ARRpと結合させ、 pSTARRを 作製した。 In order to express polyester synthase in Candida maltosa, a promoter derived from Candida maltosa was connected upstream, and a terminator was connected downstream, respectively. ALK2 gene (GenBank: X55881) promoter ARRp, a promoter with an ARR sequence added upstream, was ligated, and ALKlt, a terminator of the ALK1 gene of Candida maltosa (GenBank: D00481), was linked 3 ′ downstream. ARRp binds the EcoRI Xhol linker to the Pstl site of the gene (SEQ ID NO: 4) donated by the University of Tokyo, and binds the synthetic DNA shown in SEQ ID NO: 28 to the EcoT14I site. Was converted into a form that can be cut out with. After pUAL1 (WO01 / 88144) was cut with EcoRI, blunt ends were performed and ligation was performed to prepare pUAL2 from which the EcoRI cleavage site had been removed. pUAL2 was digested with PuvIlZPuvI and bound to the SmalZPuvII site of pSTV28 (Takara Shuzo) to produce pSTALl. This pSTALl was digested with EcoRlZNdel and ligated with ARRp as described above to produce pSTARR.
[0164] 配列番号 2に記載の phaCacl49NSがペルォキシノームに配向するように、カルボ キシ末端にペルォキシソーム配向シグナルを付カ卩した。付カ卩したペルォキシソーム 配向シグナルとしては、カルボキシ末端に Ser~Lys— Leu (SKL)のアミノ酸を使用し た。次に、 pUCNTにクローユングされていた phaCacl49NSを铸型にして、配列番 号 29と 30のプライマーを用いて遺伝子増幅し、 pSTARRの Ndel、 Pstlサイトに結 合させ、 pSTARR— phaCacl49NSを構築した。配列番号 31から 35のプライマーを 使用し、塩基配列を確認した。塩基配列決定は、 PERIKIN ELMER APPLIED BIOSYSTEMS社製のDNAシークェンサー310 Genetic Analyzerを用いた  [0164] A peroxisome orientation signal was added to the carboxy terminus so that the phaCacl49NS of SEQ ID NO: 2 was oriented to the peroxinorme. Ser-Lys-Leu (SKL) amino acid at the carboxy terminus was used as the peroxisome orientation signal after the addition. Next, phaCacl49NS that had been closed to pUCNT was transformed into type III, and the gene was amplified using the primers of SEQ ID NOs: 29 and 30 and ligated to the Ndel and Pstl sites of pSTARR to construct pSTARR-phaCacl49NS. The nucleotide sequence was confirmed using the primers of SEQ ID NOs: 31 to 35. The nucleotide sequence was determined using a DNA sequencer 310 Genetic Analyzer manufactured by PERIKIN ELMER APPLIED BIOSYSTEMS.
[0165] 次に、化学合成したキャンディダ'マルトーサ用にコドンを変換した配列番号 3に記載 のラルストニア'ユートロファ(Ralstonia eutrophaゝ H16株、 ATCC17699)由来 のァセトァセチル CoA還元酵素遺伝子(phbB)のカルボキシ末端に、ペルォキシソ 一ム配向シグナルを配列番号 36及び 37に記載のプライマーで増幅することにより付 加し、次に、上記の pSTARRの Ndel、 Pstlサイトに結合させ、 pSTARR— phbBを 構築した。塩基配列は、上記と同様の方法で確認した。 Next, the carboxy terminus of the acetoacetyl CoA reductase gene (phbB) derived from Ralstonia eutropha II H16 strain (ATCC17699) derived from Ralstonia eutropha H16 (ATCC17699) described in SEQ ID NO: 3 in which codons were converted for chemically synthesized Candida maltosa Was added by amplifying a peroxisome orientation signal with the primers of SEQ ID NOs: 36 and 37, and then binding to the Ndel and Pstl sites of pSTARR described above to construct pSTARR-phbB. The nucleotide sequence was confirmed by the same method as described above.
[0166] キャンディダ 'マルトーサ用ベクターである pUTA— 1の Sailサイトに、 pSTARR— pha Cacl49NSより Sailと Xholで切り出した合成酵素発現カセットを 2個導入し、 pARR — 149NSx2を作製した。 更に、このベクターの Sailサイトに、 pSTARR— phbBより Sailと Xholで切り出した ph bB発現カセットを 1個導入し、 pARR-149NSx2-phbBを作製した。 [0166] Two synthetic enzyme expression cassettes cut out from pSTARR-pha Cacl49NS with Sail and Xhol were introduced into the Sail site of pUTA-1 which is a vector for Candida's maltosa, to prepare pARR-149NSx2. Further, one phbB expression cassette cut out from pSTARR-phbB with Sail and Xhol was introduced into the Sail site of this vector to prepare pARR-149NSx2-phbB.
[0167] キャンディダ 'マルトーサの染色体上の破壊された HIS5遺伝子部分に、異種遺伝子 を導入するための導入用 DNAを、実施例 1に記載の HIS 5破壊用 DNAを用 Vヽて作 製した。 HIS5破壊用 DNAを Sailと Xholで切断し、 ADE1遺伝子を除去し、代わり に pUTU— delsalから Sailと Xholで切断した URA3遺伝子を導入したプラスミドを作 製した。このベクターの Sailサイトに、上記の pSTARR— phaCacl49NSより Sailと X hoiで発現カセットを切り出し、結合させた。次に、このプラスミドの Xholサイトに、 pS TARR— phaCacl49NSより Sailと Xholで発現カセットを切り出し結合させ、導入用 DNA-1を含むプラスミドを作製した。 [0167] DNA for introducing a heterologous gene into the disrupted HIS5 gene portion on the chromosome of Candida maltosa was prepared using the DNA for disrupting HIS5 described in Example 1 . The HIS5 disruption DNA was cut with Sail and Xhol to remove the ADE1 gene, and instead a plasmid was prepared in which pUTU-delsal was introduced with the URA3 gene cut with Sail and Xhol. An expression cassette was cut out from the above pSTARR-phaCacl49NS with Sail and Xhoi at the Sail site of this vector, and ligated. Next, the expression cassette was excised from pS TARR-phaCacl49NS with Sail and Xhol at the Xhol site of this plasmid and ligated to prepare a plasmid containing DNA-1 for introduction.
さらに pSTARR-phbBより Sailと Xholで切り出した phbB発現カセットを、導入用 D NA— 1を含むプラスミドの Xholサイトに結合させ、導入用 DNA— 2を含むプラスミドを 作製した。  Further, a phbB expression cassette cut out from pSTARR-phbB with Sail and Xhol was bound to the Xhol site of the plasmid containing the DNA-1 for introduction to prepare a plasmid containing the DNA-2 for introduction.
[0168] キャンディダ 'マルトーサの染色体上の破壊された URA3遺伝子部分に、異種遺伝 子を導入するための導入用 DNAを、実施例 1に記載の URA3破壊用 DNA— 1を含 むプラスミドを用いて作製した。 URA3破壊用 DNA— 1を含むプラスミドの Sail— Xho Iサイトに、配列番号 38及び 39に記載のプライマーで PCR増幅した HIS5遺伝子を 導入したプラスミドを作製した。このプラスミドの Sailサイトに、上記の pSTARR-pha Cacl49NSより Sailと Xholで発現カセットを切り出し、結合させた。次に、このべクタ 一の Xholサイトに、 pSTARR— phbBより Sailと Xholで発現カセットを切り出し、結合 させ、導入用 DNA-3含むプラスミドを作製した。この Sailサイトに、 phaC発現カセッ トの代わりに、 phbBの発現カセットを結合させた導入用 DNA-4を含むプラスミドも 作製した。  [0168] DNA for introduction of a heterologous gene into the disrupted URA3 gene portion on the chromosome of Candida maltosa was used for the introduction of a plasmid containing DNA-1 for URA3 disruption described in Example 1 Produced. A plasmid was prepared in which the HIS5 gene amplified by PCR with the primers of SEQ ID NOs: 38 and 39 was introduced into the Sail-XhoI site of the plasmid containing DNA-1 for URA3 disruption. An expression cassette was cut out from the above pSTARR-pha Cacl49NS with Sail and Xhol at the Sail site of this plasmid and ligated. Next, an expression cassette was excised from pSTARR-phbB at the Xhol site of this vector using Sail and Xhol and ligated to prepare a plasmid containing DNA-3 for introduction. At this Sail site, instead of the phaC expression cassette, a plasmid containing an introductory DNA-4 linked with a phbB expression cassette was also prepared.
作製した、遺伝子導入用 DNA— 1一 4の略図を図 3に示した。図 3において、括弧内 の数字は、それぞれ用いた遺伝子断片の GenBankに登録されている遺伝子の 5' 末端からの番号を示している。 ADE1遺伝子: D00855、 URA3遺伝子: D12720、 HIS 5遺伝子: XI 7310である。太枠部位は、染色体 DNAとの相同部位を示してい る。 [0169] (実施例 6)組換え株の構築 A schematic diagram of the prepared DNA for gene transfer 1-4 is shown in FIG. In FIG. 3, the numbers in parentheses indicate the numbers from the 5 ′ end of the gene registered in GenBank of the used gene fragment. ADE1 gene: D00855, URA3 gene: D12720, HIS5 gene: XI 7310. The thick frame indicates a homologous site with chromosomal DNA. (Example 6) Construction of recombinant strain
実施例 3にお 、て作製したキャンディダ ·マルトーサ AHU— 71株を用い、実施例 2に 記載の方法で電気導入用コンビテント細胞を調製した。このコンビテント細胞に、制 限酵素 Notlと Swalで処理した 0. 05mgの導入用 DNA— 1及び 2を電気導入し、ァ デニン及びヒスチジン含有 SDプレートにスプレッドした。出現したコロニーより染色体 DNAを調製し、配列番号 26及び 27で示されるプライマーを用いて PCRを行った。 破壊された HIS5遺伝子に相当する 1. 9kbpの遺伝子の他に、導入用 DNA— 1及び 2に相当する大きさの遺伝子が増幅するコロニーを HIS5遺伝子部位に導入された 株として選択した。更に、種々のプライマーを用いた PCRにより、これら導入した遺伝 子に欠失がないことなどを確認した。  Using the Candida maltosa AHU-71 strain prepared in Example 3, the competent cells for electrotransduction were prepared by the method described in Example 2. To the competent cells, 0.05 mg of DNA-1 and 2 for introduction treated with restriction enzymes Notl and Swal were electrotransformed and spread on an SD plate containing adenine and histidine. Chromosomal DNA was prepared from the colonies that appeared, and PCR was performed using the primers represented by SEQ ID NOS: 26 and 27. In addition to the 1.9 kbp gene corresponding to the disrupted HIS5 gene, a colony in which a gene having a size corresponding to DNA-1 and 2 for introduction was amplified was selected as a strain introduced into the HIS5 gene site. Furthermore, PCR using various primers confirmed that the introduced genes had no deletions.
次に、これらの株より、同様に電気導入用コンビテント細胞を調製した。このコンビテ ント細胞に、制限酵素 Notlと Swalで処理した 0. 05mgの導入用 DNA— 3及び 4を 電気導入し、アデニン含有 SDプレートにスプレッドした。出現したコロニーより染色体 DNAを調製し、配列番号 22及び 23で示されるプライマーを用いて PCRを行った。 破壊された URA3遺伝子に相当する 0. 7kbp及び 1. 2kbpの遺伝子の内、どちらか の遺伝子の増幅を認めず、代わりに導入用 DNA— 3及び 4に相当する大きさの遺伝 子が増幅するコロニーを URA3遺伝子部位に導入された株として選択した。更に、 種々のプライマーを用いた PCRにより、これら導入した遺伝子に欠失がないこと等を 確認した。  Next, from these strains, similarly, competent cells for electrotransfer were prepared. 0.05 mg of the transfection DNA-3 and 4 treated with the restriction enzymes Notl and Swal were electrotransformed into the resulting combinant cells and spread on an adenine-containing SD plate. Chromosomal DNA was prepared from the colonies that appeared, and PCR was performed using the primers represented by SEQ ID NOS: 22 and 23. Of the 0.7 kbp and 1.2 kbp genes corresponding to the disrupted URA3 gene, amplification of either gene was not observed, and instead, genes having sizes equivalent to the transfer DNA-3 and 4 were amplified. Colonies were selected as strains that were introduced at the URA3 gene site. Furthermore, it was confirmed by PCR using various primers that there was no deletion in these introduced genes.
[0170] キャンディダ'マルトーサ AC16株に、実施例 5で作製した pARR— 149NSx2— phbB を形質転換し、 phaCacl49NS発現カセットが 2コピー、 phbB発現カセットが 1コピ 一挿入された株を A株とした。キャンディダ 'マルトーサ AHU— 71株に、導入用 DNA —1と 4を用いて作製した、染色体上に phaCacl49NS発現カセットが 2コピー、 phb B発現カセットが 2コピー挿入された株を B株とした。キャンディダ 'マルトーサ AHU— 71株に、導入用 DNA-1と 3を用いて作製した、染色体上に phaCacl49NS発現力 セットが 3コピー、 phbB発現カセットが 1コピー挿入された株を C株とした。キャンディ ダ'マルトーサ AHU—71株に、導入用 DNA— 2と 3を用いて、染色体上に phaCacl 49NS発現カセットが 3コピー、 phbB発現カセットが 2コピー挿入された株を D株とし た。 C株に pARR— 149NSx2— phbBを形質転換し、 phaCacl49NS発現カセットが 5コピー、 phbB発現カセットが 2コピー導入された E株を作製した。 D株に pARR-14 9NSx2— phbBを形質転換し、 phaCacl49NS発現カセットが 5コピー、 phbB発現 カセットが 3コピー導入された株された F株を作製した。導入用 DNA— 2と 4を用いて 作製した染色体上に phaCacl49NS発現カセットが 2コピー、 phbB発現カセットが 3 コピー挿入された株に pARR— 149NSx2— phbBを形質転換し、 phaCacl49NS発 現カセットが 4コピー、 phbB発現カセットが 4コピー導入された株された G株を作製し た。この G株を CM313— X2Bと命名し国際寄託(FERM BP— 08622)した。同様 にコントロールとして、キャンディダ 'マルトーサ AC 16株に pUTA— 1を形質転換した 株(control— 1)、 pARR— 149NSx2を形質転換した株(control— 2)も作製した。作 製した株の概要を表 1に示した。 [0170] The Candida 'maltosa AC16 strain was transformed with the pARR-149NSx2-phbB prepared in Example 5, and the strain into which two copies of the phaCacl49NS expression cassette and one copy of the phbB expression cassette were inserted was used as strain A. . A strain prepared by inserting DNA-1 and 4 into the Candida maltosa AHU-71 strain and having two copies of the phaCacl49NS expression cassette and two copies of the phbB expression cassette inserted on the chromosome was designated as strain B. A strain prepared by using DNA-1 and 3 for introduction into Candida's maltosa AHU-71 strain and having 3 copies of the phaCacl49NS expression set and 1 copy of the phbB expression cassette inserted on the chromosome was designated as strain C. A strain in which 3 copies of the phaCacl 49NS expression cassette and 2 copies of the phbB expression cassette were inserted into the chromosome of Candida maltosa AHU-71 strain using DNA-2 and 3 for transfer was designated as strain D. It was. The C strain was transformed with pARR-149NSx2-phbB to prepare an E strain into which 5 copies of the phaCacl49NS expression cassette and 2 copies of the phbB expression cassette were introduced. The D strain was transformed with pARR-14 9NSx2-phbB to prepare an F strain in which 5 copies of the phaCacl49NS expression cassette and 3 copies of the phbB expression cassette were introduced. Transformation of pARR-149NSx2-phbB into a strain in which two copies of the phaCacl49NS expression cassette and three copies of the phbB expression cassette have been inserted into the chromosome prepared using the transfer DNAs 2 and 4, and 4 copies of the phaCacl49NS expression cassette Then, a G strain was prepared in which 4 copies of the phbB expression cassette were introduced. This G strain was named CM313-X2B and deposited internationally (FERM BP-08622). Similarly, as a control, a strain in which pUTA-1 was transformed into 16 Candida's maltosa AC strain (control-1) and a strain in which pARR-149NSx2 was transformed (control-2) were also prepared. Table 1 summarizes the strains produced.
[0171] [表 1] [0171] [Table 1]
Figure imgf000056_0001
Figure imgf000056_0001
[0172] (実施例 7)組換え株を使用したポリマー生産 (Example 7) Polymer production using recombinant strain
ポリマー生産に必要な遺伝子を導入したキャンディダ ·マルトーサ組換え株を次のよ うに培養した。培地は SD培地を前培養に、炭素源としてパーム核油を含む M2培地 を生産培地として使用した。各組換え株のグリセロールストック 500 1を、 50mlの前 培地が入った 500ml坂口フラスコに接種して、 20時間培養し、 300mLの生産培地 を入れた2 L坂口フラスコに 10vZv%接種した。これを培養温度 30°C、振盪速度 90 rpm、 2日間培養という条件で培養した。培養液から、遠心分離によって菌体を回収 し、 80mlの蒸留水に懸濁して超高圧ホモジナイザー(APV社製、 Rannie2000、 1 5000Psiで 15分間)で破砕した後、遠心分離を行い、得られた沈殿物をメタノールで 洗浄した後、凍結乾燥した。得られた乾燥菌体を粉砕し、 lgを秤量した。これに、クロ 口ホルムを 100ml添加し、一晩攪拌して抽出した。濾過して菌体を除去し、ろ液をェ バポレーターで 10mlにまで濃縮し、濃縮液に約 50mlのへキサンを添カ卩して、ポリマ 一を析出させ乾燥させた。得られたポリマーは、 NMR分析 ClEOL、 JNM— EX400) にて組成分析を行った。重量平均分子量の測定は、回収した乾燥ポリマー 10mgを 、クロ口ホルム 5mlに溶解したのち、この溶液を Shodex K805L (300x8mm、 2本 連結)(昭和電工社製)を装着した島津製作所製 GPCシステムを用いクロ口ホルムを 移動相として分析した。分子量標準サンプルには市販の標準ポリスチレンを用いた。 結果を表 2に示した。 A recombinant Candida maltosa strain into which a gene required for polymer production was introduced was cultured as follows. As the medium, SD medium was used for pre-culture, and M2 medium containing palm kernel oil as a carbon source was used as a production medium. The glycerol stock 5001 of each recombinant strain was inoculated into a 500 ml Sakaguchi flask containing 50 ml of the preculture medium, cultured for 20 hours, and 10 vZv% was inoculated into a 2 L Sakaguchi flask containing 300 ml of the production medium. This was cultured under the conditions of a culture temperature of 30 ° C, a shaking speed of 90 rpm, and culture for 2 days. The cells are collected from the culture by centrifugation, suspended in 80 ml of distilled water, and suspended in an ultrahigh-pressure homogenizer (APV, Rannie 2000, 1). (5000 Psi for 15 minutes), and then centrifuged. The obtained precipitate was washed with methanol and lyophilized. The obtained dried cells were pulverized and lg was weighed. To this, 100 ml of black form was added, and the mixture was stirred overnight to extract. The cells were removed by filtration, the filtrate was concentrated to 10 ml with an evaporator, and about 50 ml of hexane was added to the concentrate to precipitate a polymer, followed by drying. The composition of the obtained polymer was analyzed by NMR analysis (ClEOL, JNM-EX400). The weight-average molecular weight was measured by dissolving 10 mg of the recovered dried polymer in 5 ml of black-mouthed form, and then using this solution on a Shimadzu GPC system equipped with Shodex K805L (300x8 mm, 2 tubes connected) (Showa Denko KK). The form used was analyzed as the mobile phase. A commercially available standard polystyrene was used as a molecular weight standard sample. Table 2 shows the results.
[0173] [表 2] [0173] [Table 2]
Figure imgf000057_0001
Figure imgf000057_0001
[0174] 上記結果より、本発明の新規遺伝子破壊酵母、新規変異株を用いることにより、極め て効率的に PHAを生産できることが明ら力となった。また、ポリエステル生合成に関 与する遺伝子の 、ずれかを 2コピー以上導入することが、ポリエステルの効率的な生 産に極めて重要であること、発現カセットの導入数により分子量や組成が制御可能で あることが明らカ^なつた。 [0174] The above results clearly show that the use of the novel gene-disrupted yeast and the novel mutant of the present invention enables extremely efficient production of PHA. Also, the introduction of two or more copies of the gene involved in polyester biosynthesis is extremely important for efficient production of polyester, and the molecular weight and composition can be controlled by the number of expression cassettes introduced. It was clear that there was something.
産業上の利用可能性  Industrial applicability
[0175] 本発明の遺伝子破壊によって作製された複数のマーカーを有する酵母は、遺伝子 組換え用宿主として、高効率な遺伝子発現や遺伝子の発現産物の製造に用いること が期待できる。また、本発明により、生分解性かつ優れた物性を有する 3—ヒドロキシ アルカン酸を共重合してなる共重合ポリエステルを、酵母において効率的に生産す ることが可能になった。さらに、遺伝子破壊によるマーカーを付加することも可能であ り、より優れた宿主の開発に繋がる。 [0175] The yeast having a plurality of markers produced by gene disruption of the present invention It can be expected to be used as a recombinant host for highly efficient gene expression and production of gene expression products. Further, according to the present invention, it has become possible to efficiently produce a copolymerized polyester obtained by copolymerizing 3-hydroxyalkanoic acid having biodegradability and excellent physical properties in yeast. Furthermore, it is also possible to add a marker by gene disruption, which leads to the development of a better host.
本発明により、生分解性かつ優れた物性を有する上記一般式(1)で示される 3—ヒド ロキシアルカン酸を共重合してなる共重合ポリエステルを、酵母にお 、て効率的に生 産することが可能になった。また、酵母において複数回の遺伝子導入を効率的に行 うことが可能となった。 According to the present invention, a copolymerized polyester obtained by copolymerizing 3-hydroxyalkanoic acid represented by the general formula (1) having biodegradability and excellent physical properties is efficiently produced in yeast. It became possible. In addition, it has become possible to efficiently perform gene transfer multiple times in yeast.
図面の簡単な説明 Brief Description of Drawings
[図 1]実施例において作製した破壊用 DNAの簡単な模式図である。 FIG. 1 is a simple schematic diagram of a DNA for destruction prepared in an example.
[図 2]新規遺伝子破壊酵母の増殖性を比較した図である。 FIG. 2 is a graph comparing the growth properties of novel gene-disrupted yeasts.
[図 3]実施例 4において作製し、用いた遺伝子導入用 DNA— 1一 4の模式図である。  FIG. 3 is a schematic diagram of gene-transfer DNA-14 prepared and used in Example 4.
[図 4]分子内相同組換えの模式図である。 FIG. 4 is a schematic diagram of intramolecular homologous recombination.

Claims

請求の範囲 The scope of the claims
[1] URA3DNA断片との相同的組換えにより、染色体 DNAの URA3遺伝子が破壊さ れたゥラシル要求性の遺伝子破壊酵母。  [1] Peracil-requiring gene-disrupted yeast in which the URA3 gene of chromosomal DNA has been disrupted by homologous recombination with a URA3 DNA fragment.
[2] HIS5DNA断片との相同的組換えにより、染色体 DNAの HIS5遺伝子が破壊され たヒスチジン要求性の遺伝子破壊酵母。 [2] A histidine-requiring gene-disrupted yeast in which the HIS5 gene of chromosomal DNA has been disrupted by homologous recombination with a HIS5 DNA fragment.
[3] ADE1DNA断片及び URA3DNA断片との相同的組換えにより、染色体 DN Aの A[3] By homologous recombination with ADE1 DNA fragment and URA3 DNA fragment,
DEI遺伝子及び URA3遺伝子が破壊されたアデニン及びゥラシル要求性の遺伝子 破壊酵母。 An adenine- and peracil-required gene-disrupted yeast in which the DEI gene and the URA3 gene have been disrupted.
[4] ADE1DNA断片及び HIS5DNA断片との相同的組換えにより、染色体 DN Aの A DEI遺伝子及び HIS5遺伝子が破壊されたアデニン及びヒスチジン要求性の遺伝 子破壊酵母。  [4] A gene-disrupting yeast requiring adenine and histidine, in which the ADEI gene and the HIS5 gene of chromosome DNA have been disrupted by homologous recombination with the ADE1 DNA fragment and the HIS5 DNA fragment.
[5] URA3DNA断片及び HIS5DNA断片との相同的組換えにより、染色体 DNAの U RA3遺伝子及び HIS5遺伝子が破壊されたゥラシル及びヒスチジン要求性の遺伝子 破壊酵母。  [5] A gene-disrupted yeast requiring peracil and histidine, wherein the URA3 gene and the HIS5 gene of chromosomal DNA have been disrupted by homologous recombination with a URA3 DNA fragment and a HIS5 DNA fragment.
[6] ADE1DNA断片、 URA3DNA断片及び HIS5DNA断片との相同的組換えにより 、染色体 DNAの ADE1遺伝子、 URA3遺伝子及び HIS 5遺伝子が破壊されたアデ ニン、ゥラシル及びヒスチジン要求性の遺伝子破壊酵母。  [6] A gene-disrupting yeast requiring adenine, peracil, and histidine, wherein the ADE1 gene, URA3 gene, and HIS5 gene of chromosomal DNA have been disrupted by homologous recombination with the ADE1 DNA fragment, URA3 DNA fragment, and HIS5 DNA fragment.
[7] 酵母が、キャンディダ属、クラビスボラ属、タリプトコッカス属、デバリオマイセス属、口 デロマイセス属、メトシュニコウイァ属、ピキア属、ロドスポリディウム属、ロドトノレラ属、 スポリディオボラス属、ステファノァスカス属、又はャロウィァ属のいずれかである請求 項 1一 6のいずれか 1項に記載の遺伝子破壊酵母。  [7] Yeasts of the genus Candida, Clavisbora, Talyptococcus, Debaryomyces, Mouth Delomyces, Metoshnikouia, Pichia, Rhodosporidium, Rhodotonorella, Spolidiobolas, Stefano The gene-disrupted yeast according to any one of claims 16 to 17, which belongs to the genus Acasus or the genus Yarrowia.
[8] 酵母がキャンディダ属である請求項 1一 6の 、ずれか 1項に記載の遺伝子破壊酵母。  [8] The gene-disrupted yeast according to any one of [16] to [16], wherein the yeast is of the genus Candida.
[9」 酵母力 キャンティタ属の albicans種、 ancudensis種、 atmosphaerica種、 azyma ia、 bertae種、 olanku 、 butyri種、 conglobata種、 dendronemaia、 ergastensi s種、 fluviatilis種、 iriearichii種、 gropengiesseri種、 haemulonii種、 incommun is種、 insectrum種、 laureliae種、 maltosa種、 melibiosica但、 membranifaciens ia、 mesenterica種、 natalensis種、 oregonensis種、 palmioleophila種、 parapsi losis植、 psudointermedia植、 quercitrusa種、 rhagu種、 rugosa植、 saitoana種 、 sake種、 schatavu^a、 sequanensis®、 shehatae但、 sorbophila種、 tropicalis 種、 valdiviana種、又は viswanathii種のいずれかである請求項 1一 6のいずれか 1 項に記載の遺伝子破壊酵母。 [9] Yeast power Alcantans, ancudensis, atmosphaerica, azyma ia, bertae, olanku, butyri, conglobata, dendronemaia, ergastensi s, fluviatilis, iriearichii, gropengiesseii, cantita incommun is, insectrum, laureliae, maltosa, melibiosica, membranifaciens ia, mesenterica, natalensis, oregonensis, palmioleophila, parapsi losis, psudointermedia, quercitrusa, rhagu, rugosa, saitoana The gene-disrupted yeast according to any one of claims 16 to 17, which is any one of, sake, schatavu ^ a, sequanensis®, shehatae, sorbophila, tropicalis, valdiviana, and viswanathii.
[10] 酵母がキャンディダ.マルトーサ(maltosa)である請求項 1一 6のいずれ力 1項に記 載の遺伝子破壊酵母。 [10] The gene-disrupted yeast according to any one of claims 16 to 16, wherein the yeast is Candida maltosa.
[11] キャンディダ'マルトーサ U—35 (FERM P—19435)である請求項 1記載の URA3 遺伝子破壊酵母。  [11] The URA3 gene-disrupted yeast according to claim 1, which is Candida's maltosa U-35 (FERM P-19435).
[12] キャンディダ'マルトーサ CH— I (FERM P— 19434)である請求項 2記載の HIS5遺 伝子破壊酵母。  [12] The HIS5 gene disrupting yeast according to claim 2, which is Candida's maltosa CH-I (FERM P-19434).
[13] キャンディダ'マルトーサ UA— 354 (FERM P— 19436)である請求項 3記載の AD [13] The AD according to claim 3, which is Candida 'Maltosa UA-354 (FERM P-19436).
El遺伝子及び URA3遺伝子破壊酵母。 El gene and URA3 gene disrupted yeast.
[14] キャンディダ.マルトーサ AH— I5 (FERM P— 19433)である請求項 4記載の ADE1 遺伝子及び HIS5遺伝子破壊酵母。 [14] The ADE1 gene and HIS5 gene-disrupted yeast according to claim 4, which is Candida maltosa AH-I5 (FERM P-19433).
[15] キャンディダ'マルトーサ HU—591 (FERM P— 19545)である請求項 5記載の UR[15] The UR according to claim 5, which is Candida 'Maltosa HU-591 (FERM P-19545).
A3遺伝子及び HIS5遺伝子破壊酵母。 A3 gene and HIS5 gene disrupted yeast.
[16] キャンディダ'マルトーサ AHU—71 (FERM BP— 10205)である請求項 6記載の A[16] A according to claim 6, which is Candida's maltosa AHU-71 (FERM BP-10205).
DE 1遺伝子及び URA3遺伝子及び HIS 5遺伝子破壊酵母。 DE 1 gene, URA3 gene and HIS 5 gene disrupted yeast.
[17] 同種又は異種の遺伝子を含む DNA配列で形質転換された請求項 1一 16のいずれ 力 1項に記載の遺伝子破壊酵母の形質転換体。 [17] The transformant of the gene-disrupted yeast according to any one of [1] to [16], which is transformed with a DNA sequence containing a homologous or heterologous gene.
[18] 請求項 17に記載の形質転換体を培養して得られる培養物から、同種又は異種の遺 伝子発現産物を採取することを特徴とする、遺伝子発現産物の製造方法。 [18] A method for producing a gene expression product, comprising collecting a homologous or heterologous gene expression product from a culture obtained by culturing the transformant according to claim 17.
[19] 遺伝子発現産物がポリエステルであることを特徴とする、請求項 18記載の遺伝子発 現産物の製造方法。 [19] The method for producing a gene expression product according to claim 18, wherein the gene expression product is a polyester.
[20] ポリヒドロキシアルカン酸合成酵素遺伝子とァセトァセチル CoA還元酵素遺伝子とが 導入されて 、る酵母形質転換体であって、これら遺伝子の両方又は何れかが 2コピ 一以上導入されて!ゝることを特徴とする酵母形質転換体。  [20] A yeast transformant into which a polyhydroxyalkanoic acid synthase gene and an acetoacetyl CoA reductase gene have been introduced, wherein at least two or more of these genes have been introduced. A yeast transformant characterized by the following.
[21] ポリヒドロキシアルカン酸合成酵素遺伝子とァセトァセチル CoA還元酵素遺伝子に、 ペルォキシソーム配向シグナルが付加されている請求項 20に記載の酵母形質転換 体。 21. The yeast transformation according to claim 20, wherein a peroxisome orientation signal is added to the polyhydroxyalkanoate synthase gene and the acetoacetyl CoA reductase gene. body.
[22] ポリヒドロキシアルカン酸合成酵素遺伝子とァセトァセチル CoA還元酵素遺伝子に、 酵母で機能するプロモーター及びターミネータ一が接続されている請求項 20又は 2 1記載の酵母形質転換体。  22. The yeast transformant according to claim 20, wherein a promoter and a terminator that function in yeast are connected to the polyhydroxyalkanoate synthase gene and the acetoacetyl CoA reductase gene.
[23] 酵母が、キャンディダ属である請求項 20から 22のいずれか 1項に記載の酵母形質転 換体。  [23] The yeast transformant according to any one of claims 20 to 22, wherein the yeast is of the genus Candida.
[24」 酵母力 Sキャンディダ属の albicans種、 ancudensis種、 atmosphaerica種、 azyma ia、 bertae種、 olanku 、 butyri種、 conglobata種、 dendronemaia、 ergastensi s種、 fluviatilis種、 iriearichii種、 gropengiesseri種、 haemulonii種、 incommun is種、 insectrum種、 laureliae種、 maltosa種、 melibiosica但、 membranifaciens ia、 mesenterica種、 natalensis種、 oregonensis種、 palmioleophila種、 parapsi losis植、 psudointermedia植、 quercitrusa種、 rhagu種、 rugosa植、 saitoana種 、 sake^a、 schatavu^a、 sequanensis®、 shehatae但、 sorbophila種、 tropicalis 種、 valdiviana種又は viswanathii種の 、ずれかである請求項 20から 22の 、ずれ 力 1項に記載の酵母形質転換体。  [24] Yeast power Albicans, ancudensis, atmosphaerica, azyma ia, bertae, olanku, butyri, conglobata, dendronemaia, ergastensi s, fluviatilis, iriearichii, gropengiesseii, sp. , Incommun is, insectrum, laureliae, maltosa, melibiosica, membranifaciens, mesenterica, natalensis, oregonensis, palmioleophila, parapsi losis, psudointermedia, quercitrusa, rhagu, rugosa, saito , Sake ^ a, schatavu ^ a, sequanensis®, shehatae, but sorbophila species, tropicalis species, valdiviana species or viswanathii species, wherein the yeast transformant according to claim 20 to 22, wherein the shear force is 1. .
[25] 酵母が、キャンディダ'マルトーサである請求項 20から 22のいずれ力 1項に記載の酵 母形質転換体。  [25] The yeast transformant according to any one of claims 20 to 22, wherein the yeast is Candida maltosa.
[26] ポリヒドロキシアルカン酸合成酵素遺伝子が、配列番号 5で表されるアミノ酸配列から なるァエロモナス ·キヤビエ由来の酵素又は変異体をコードするものである請求項 20 力も 25のいずれか 1項に記載の酵母形質転換体。  [26] The polyhydroxyalkanoate synthase gene encodes an enzyme or a mutant derived from Aeromonas californiae having the amino acid sequence represented by SEQ ID NO: 5; Yeast transformant.
[27] ァエロモナス'キヤビエ由来のポリヒドロキシアルカン酸合成酵素遺伝子力 以下の(a ) - (h) V、ずれかのアミノ酸置換を少なくとも一つ以上行ったポリヒドロキシアルカン酸 合成酵素変異体をコードするものである請求項 26に記載の酵母形質転換体。  [27] Genetic power of polyhydroxyalkanoic acid synthase derived from Aeromonas' rabies The following (a)-(h) V encodes a polyhydroxyalkanoic acid synthase mutant having at least one amino acid substitution 27. The yeast transformant according to claim 26, which is a yeast transformant.
(a) Asn— 149を Ser  (a) Asn—149 to Ser
(b) Asp—171を Gly  (b) Asp—171 Gly
(c) Phe— 246を Serまたは Gin  (c) Phe—246 to Ser or Gin
(d) Tyr-318^Ala  (d) Tyr-318 ^ Ala
(6) 116—320を361:、 Alaまたは Val (f) Leu— 350を Val (6) 361 116-320: Ala or Val (f) Leu—350 to Val
(g) Phe— 353を Thr、 Serまたは His  (g) Phe—353 to Thr, Ser or His
(h) Phe—518を lie  (h) Phe—518 lie
[28] ァセトァセチル CoA還元酵素遺伝子力 配列番号 6で表されるアミノ酸配列力 なる ラルストニア ·ユートロファ由来の酵素又は変異体をコードするものである請求項 20 一 27のいずれか 1項に記載の酵母形質転換体。  [28] the yeast trait according to any one of claims 20 to 27, which encodes an enzyme or a mutant derived from Ralstonia eutropha having the amino acid sequence represented by SEQ ID NO: 6; Convertible.
[29] ポリヒドロキシアルカン酸が、下記一般式(1)で示される 3—ヒドロキシアルカン酸を共 重合してなる共重合体である請求項 20— 28記載のいずれ力 1項に記載の酵母形質 転換体。  [29] The yeast trait according to [20], wherein the polyhydroxyalkanoic acid is a copolymer obtained by copolymerizing a 3-hydroxyalkanoic acid represented by the following general formula (1). Convertible.
[化 1]  [Chemical 1]
Figure imgf000062_0001
Figure imgf000062_0001
(式中、 Rは、炭素数 1一 13のアルキル基を表す。 )  (In the formula, R represents an alkyl group having 113 carbon atoms.)
[30] ポリヒドロキシアルカン酸が、下記一般式(2)で示される 3—ヒドロキシ酪酸と下記一般 式(3)で示される 3—ヒドロキシへキサン酸とを共重合してなる共重合ポリエステルであ る請求項 20— 28記載のいずれ力 1項に記載の酵母形質転換体。  [30] A polyhydroxyalkanoic acid is a copolymer polyester obtained by copolymerizing 3-hydroxybutyric acid represented by the following general formula (2) and 3-hydroxyhexanoic acid represented by the following general formula (3). 30. The yeast transformant according to claim 20, wherein the yeast transformant is a yeast transformant.
[化 2]  [Formula 2]
CH3 CH 3
HO—— CH ~ CH2-C— OH ( 2 ) HO—— CH ~ CH 2 -C— OH (2)
II  II
o  o
[化 3] [Formula 3]
C3H7 C3H7
HO—— CH—— CH2— C— OH ( 3 ) HO—— CH—— CH 2 — C— OH (3)
II  II
o o
[31] 請求項 20— 30のいずれか 1項に記載の酵母形質転換体を用いるポリエステルの製 造方法であって、前記酵母形質転換体を培養して得られる培養物から、ポリエステル を採取することを特徴とするポリエステルの製造方法。 [31] A method for producing a polyester using the yeast transformant according to any one of claims 20 to 30, wherein the polyester is collected from a culture obtained by culturing the yeast transformant. A method for producing a polyester, comprising:
[32] 請求項 20から 30のいずれ力 1項に記載の酵母形質転換体を用いるポリエステルの
Figure imgf000063_0001
、て、酵母形質転換体のァセトァセチル CoA還元酵素遺伝子の数を制御 することによりポリエステルの分子量を制御する方法。
[32] A method for producing a polyester using the yeast transformant according to any one of claims 20 to 30.
Figure imgf000063_0001
A method for controlling the molecular weight of polyester by controlling the number of acetoacetyl-CoA reductase genes in a yeast transformant.
[33] 請求項 20から 30のいずれ力 1項に記載の酵母形質転換体を用いるポリエステルの 製造にお 1ヽて、酵母形質転換体のポリヒドロキシアルカン酸合成酵素遺伝子の数を 制御することによりポリエステルのヒドロキシアルカン酸組成を制御する方法。 [33] In the production of a polyester using the yeast transformant according to any one of claims 20 to 30, by controlling the number of polyhydroxyalkanoate synthase genes in the yeast transformant. A method for controlling the hydroxyalkanoic acid composition of a polyester.
[34] 選択マーカー遺伝子として ADE1遺伝子を持つキャンディダ'マルトーサで分子内 相同組換えを行うことにより、当該 ADE1遺伝子を除去することを特徴とする選択マ 一力一の回復方法。 [34] A method of recovering the selection ability, which comprises removing the ADE1 gene by performing intramolecular homologous recombination with Candida maltosa having the ADE1 gene as a selection marker gene.
[35] ADE1遺伝子の上流または下流に ADE1遺伝子の一部が連結されている請求項 3 [35] The method according to claim 3, wherein a part of the ADE1 gene is linked upstream or downstream of the ADE1 gene.
4記載の選択マーカーの回復方法。 4. The method for recovering the selection marker according to 4.
[36] ADE1遺伝子力 配列番号 7で示される塩基配列力 なるものである請求項 34又は[36] the ADE1 gene strength, or the base sequence strength represented by SEQ ID NO: 7;
35記載の選択マーカーの回復方法。 35. The method for recovering a selection marker according to 35.
PCT/JP2005/003589 2004-03-04 2005-03-03 Novel transformant and process for producing polyester by using the same WO2005085415A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/591,248 US20080233620A1 (en) 2004-03-04 2005-03-03 Novel Transformant and Process for Producing Polyester Using the Same
EP05719893A EP1726637A4 (en) 2004-03-04 2005-03-03 Novel transformant and process for producing polyester by using the same
JP2006510712A JPWO2005085415A1 (en) 2004-03-04 2005-03-03 Novel transformant and method for producing polyester using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-061291 2004-03-04
JP2004061291 2004-03-04
JP2004-062812 2004-03-05
JP2004062812 2004-03-05

Publications (1)

Publication Number Publication Date
WO2005085415A1 true WO2005085415A1 (en) 2005-09-15

Family

ID=34921689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003589 WO2005085415A1 (en) 2004-03-04 2005-03-03 Novel transformant and process for producing polyester by using the same

Country Status (5)

Country Link
US (1) US20080233620A1 (en)
EP (1) EP1726637A4 (en)
JP (1) JPWO2005085415A1 (en)
TW (1) TW200610821A (en)
WO (1) WO2005085415A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007111015A (en) * 2005-10-24 2007-05-10 Kao Corp Method for deleting to-be-deleted region of host dna
WO2007096654A3 (en) * 2006-02-27 2007-10-18 Unichema Chemie Bv Methods for production of dioic acids
WO2010113497A1 (en) 2009-03-31 2010-10-07 株式会社カネカ Method for culturing microorganism, and process for producing substance with microorganism
CN102212546A (en) * 2011-02-28 2011-10-12 福建福大百特科技发展有限公司 Integrative Candida maltose gene expression system and applications thereof
WO2014045962A1 (en) 2012-09-20 2014-03-27 株式会社カネカ Emulsion for microbial growth, method for growing microorganisms by using said emulsion, and method for producing microbial metabolite

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA016258B1 (en) * 2005-03-18 2012-03-30 Микробиа, Инк. Recombinant fungus producing carotenoids and methods of use thereof
US8691555B2 (en) 2006-09-28 2014-04-08 Dsm Ip Assests B.V. Production of carotenoids in oleaginous yeast and fungi
WO2015163945A1 (en) * 2014-04-25 2015-10-29 BP Biofuels UK Limited Development of molecular biology tools for basidiomycete 'red' yeast, sporidiobolus pararoseus engineering
US20230313240A1 (en) 2019-04-26 2023-10-05 Fuence Co., Ltd. Gene for synthesizing high molecular weight copolymer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002209571A (en) * 2001-01-22 2002-07-30 Ishii Iron Works Co Ltd Infrared light-irradiated wine and apparatus for producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11276180A (en) * 1998-03-31 1999-10-12 Rikagaku Kenkyusho Plant having ability to synthesize polyester and production of polyester
JP2002209574A (en) * 2001-01-19 2002-07-30 Kanegafuchi Chem Ind Co Ltd Gene-broken yeast
AU2002255657A1 (en) * 2001-03-02 2002-09-19 Ross Carlson Production of polyhydroxyalkanoates
JP2004229609A (en) * 2003-01-31 2004-08-19 Kanegafuchi Chem Ind Co Ltd Method for enzyme modification and variant polyhydroxyalkanoic acid synthetase
RU2005139128A (en) * 2003-05-15 2006-05-27 Канека Корпорейшн (Jp) ADVANCED TRANSFORMANT AND METHOD FOR PRODUCING COMPLEX POLYESTER USING THE SPECIFIED TRANSFORMANT

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002209571A (en) * 2001-01-22 2002-07-30 Ishii Iron Works Co Ltd Infrared light-irradiated wine and apparatus for producing the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALANI E. ET AL: "A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains.", GENETICS., vol. 116, no. 4, August 1987 (1987-08-01), pages 541 - 545, XP002108451 *
OHKUMA M. ET AL: "Cloning of the C-URA3 gene and construction of a triple auxotroph(his5, adel, ura3) as a useful host for the genetic engineering.", CURR.GENET., vol. 23, no. 3, 1993, pages 205 - 210, XP002989637 *
See also references of EP1726637A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007111015A (en) * 2005-10-24 2007-05-10 Kao Corp Method for deleting to-be-deleted region of host dna
JP4721868B2 (en) * 2005-10-24 2011-07-13 花王株式会社 Method for deleting a target region of host DNA deletion
WO2007096654A3 (en) * 2006-02-27 2007-10-18 Unichema Chemie Bv Methods for production of dioic acids
WO2010113497A1 (en) 2009-03-31 2010-10-07 株式会社カネカ Method for culturing microorganism, and process for producing substance with microorganism
US10533197B2 (en) 2009-03-31 2020-01-14 Kaneka Corporation Method for culturing microorganism, and process for producing substance with microorganism
CN102212546A (en) * 2011-02-28 2011-10-12 福建福大百特科技发展有限公司 Integrative Candida maltose gene expression system and applications thereof
CN102212546B (en) * 2011-02-28 2013-04-17 福建福大百特科技发展有限公司 Integrative Candida maltose gene expression system and applications thereof
WO2014045962A1 (en) 2012-09-20 2014-03-27 株式会社カネカ Emulsion for microbial growth, method for growing microorganisms by using said emulsion, and method for producing microbial metabolite

Also Published As

Publication number Publication date
EP1726637A1 (en) 2006-11-29
JPWO2005085415A1 (en) 2007-12-13
TW200610821A (en) 2006-04-01
US20080233620A1 (en) 2008-09-25
EP1726637A4 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
Lu et al. Biosynthesis of monomers for plastics from renewable oils
RU2758138C2 (en) Recombinant yeast cells producing polylactic acid and their use
WO2005085415A1 (en) Novel transformant and process for producing polyester by using the same
US20120244588A1 (en) Method of producing 3-hydroxypropionic acid using malonic semialdehyde reducing pathway
EP2963120B1 (en) Method for production of polylactate using recombinant microorganism
US10370686B2 (en) Yeast cell modified to overproduce fatty acid and fatty acid-derived compounds
KR20190115447A (en) Gene-Optimized Microorganisms for the Generation of Target Molecules
WO2018188617A1 (en) Recombinant bacteria for producing 3-hydroxy propionic acid, preparation method therefor, and applications thereof
CN105209626B (en) 3- hydracrylic acid is produced by recombination yeast
JP2008029329A (en) Method for producing yeast and l-lactic acid
US10415064B2 (en) Mutant yeasts capable of producing an unusual fatty acid
US10053714B2 (en) Acid-tolerant yeast cell, method of producing organic acid using the same, and method of producing the yeast cell
Terentiev et al. Non-conventional yeasts as producers of polyhydroxyalkanoates—genetic engineering of Arxula adeninivorans
CN105296371B (en) Yeast with improved productivity and method for producing product
US9453246B2 (en) Yeast cell having reduced ethanol productivity and use of the yeast cell
JPWO2008090873A1 (en) Process for producing polyhydroxyalkanoate
CN1800349B (en) Synthesis of polyhydroxyalkanoates in the cytosol of yeast
EP1626087A1 (en) Improved transformant and process for producing polyester using the same
US9340809B2 (en) Microbial conversion of sugar acids and means therein
JP6723002B2 (en) Oil and fat manufacturing method
CN112410233B (en) Recombinant candida strain and preparation method and application thereof
KR101686899B1 (en) Novel Kluyveromyces marxianus MJ1 and use thereof
CN105189744A (en) Promoter exhibiting high expression activity in mortierella microorganisms
WO2010095751A1 (en) High-efficiency lactic acid manufacturing method using candida utilis
JPWO2003085111A1 (en) New promoter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510712

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005719893

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10591248

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005719893

Country of ref document: EP