WO2010095751A1 - High-efficiency lactic acid manufacturing method using candida utilis - Google Patents

High-efficiency lactic acid manufacturing method using candida utilis Download PDF

Info

Publication number
WO2010095751A1
WO2010095751A1 PCT/JP2010/052753 JP2010052753W WO2010095751A1 WO 2010095751 A1 WO2010095751 A1 WO 2010095751A1 JP 2010052753 W JP2010052753 W JP 2010052753W WO 2010095751 A1 WO2010095751 A1 WO 2010095751A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
strain
seq
medium
lactic acid
Prior art date
Application number
PCT/JP2010/052753
Other languages
French (fr)
Japanese (ja)
Inventor
茂仁 生嶋
敏雄 藤井
統 小林
洋史 足海
Original Assignee
キリンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009039820A external-priority patent/JP2010075171A/en
Application filed by キリンホールディングス株式会社 filed Critical キリンホールディングス株式会社
Priority to US13/202,820 priority Critical patent/US20120058529A1/en
Priority to AU2010216617A priority patent/AU2010216617A1/en
Priority to CA2761724A priority patent/CA2761724A1/en
Publication of WO2010095751A1 publication Critical patent/WO2010095751A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/56Lactic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • C12N1/18Baker's yeast; Brewer's yeast
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts

Definitions

  • the present invention relates to a method for producing lactic acid using Candida utilis which is a club tree negative yeast as a host.
  • Biodegradable plastics can circulate resources naturally and have a low impact on the environment because they decompose naturally.
  • Polylactic acid which is a typical raw material for biodegradable plastics, is produced by polymerizing L-lactic acid. The higher the optical purity of lactic acid, the more stable polylactic acid can be produced.
  • lactic acid is obtained as a metabolite of a microorganism using a carbohydrate such as glucose as a substrate.
  • lactic acid bacteria a group of bacteria called lactic acid bacteria has long been known to specifically produce lactic acid, and is involved in the production of yogurt and the like.
  • lactic acid bacteria by-produce several percent of D-lactic acid in addition to L-lactic acid during the fermentation process, the optical purity of the produced lactic acid is lowered.
  • yeast is often used for the production of useful substances.
  • yeast can be cultured at a higher cell density than bacteria, and continuous culture is also possible.
  • Yeast secretes proteins into the medium, and the secreted proteins are modified by sugar chains. For this reason, protein production by yeast is advantageous when such modifications are important for biological activity.
  • yeasts that have been most well studied to date and have accumulated genetic knowledge, there is a yeast of the genus Saccharomyces, which has been studied as a host for the production of various substances.
  • methods for transforming several species such as Pichia yeast, Hansenula yeast, Kluyveromyces yeast, Candida yeast as yeast other than Saccharomyces yeast have been developed and are useful substances. It has been studied as a production host.
  • Candida yeast has characteristics that are not found in Saccharomyces yeast, such as a wide carbon utilization range.
  • Candida utilis exhibits excellent assimilability to pentose including xylose.
  • Saccharomyces yeast ethanol is not produced by culturing under aerobic conditions and growth inhibition is not caused thereby, so that efficient microbial cell production by continuous culture at high density is possible. Therefore, Candida utilis has once attracted attention as a protein source, and industrial production of microbial cells using a saccharified solution of broad-leaved trees containing a large amount of pentose and a sulfite pulp waste solution as a sugar source has been performed.
  • Candida utilis is manufactured in various countries around the world, including Germany, the United States, Taiwan, and Brazil, and is used as a diet. In addition to its use as a microbial protein, Candida utilis has been widely used in industry as a production strain for pentose and xylose fermentation strains, ethyl acetate, L-glutamine, glutathione, invertase and the like. .
  • yeast As an attempt to produce lactic acid using yeast, a technology for producing lactic acid by introducing a gene encoding a polypeptide having an activity of an exogenous lactate dehydrogenase (LDH) into yeast that does not have the ability to produce lactic acid has been developed.
  • LDH lactate dehydrogenase
  • Yeast that has been subjected to such genetic manipulation can produce lactic acid from glucose via pyruvic acid.
  • Saccharomyces cerevisiae Saccharomyces cerevisiae
  • Saccharomyces cerevisiae which is the most studied in yeast, has a strong ability to perform alcoholic fermentation to produce ethanol from pyruvic acid via acetaldehyde, thus reducing the efficiency of lactic acid production from glucose as a substrate Resulting in.
  • Candida recombinant yeast which is a clubtree-negative yeast
  • Candida sonorensis Japanese Patent Laid-Open No. 2007-1111054; Special Table 2005. No. 518197
  • the lactic acid production efficiency is low, the concentration of lactic acid produced is low, or it takes a long time to produce lactic acid.
  • the present inventors have produced a yeast strain of Candida utilis comprising a gene encoding a polypeptide having lactate dehydrogenase activity so that it can be expressed by transformation, and cultivating the yeast strain. It has been found that lactic acid can be produced efficiently.
  • the present invention is based on this finding.
  • the present invention provides a yeast strain produced using Candida utilis which is a club tree effect negative yeast and producing lactic acid with high efficiency, and a method for producing lactic acid with low cost and high yield. Objective.
  • the yeast strain according to the present invention is transformed with at least one copy of the gene operably linked to a promoter sequence enabling expression of a gene encoding a polypeptide having lactate dehydrogenase activity.
  • the yeast strain of Candida utilis is transformed with at least one copy of the gene operably linked to a promoter sequence enabling expression of a gene encoding a polypeptide having lactate dehydrogenase activity.
  • the method for producing lactic acid according to the present invention comprises culturing the yeast strain according to the present invention.
  • a novel Candida utilis strain having lactic acid-producing ability is provided, and L-lactic acid can be efficiently produced in a short time by using this yeast strain for fermentation under appropriate conditions. It becomes possible.
  • the production of lactic acid in the lactic acid production method using Candida utilis, which is a club tree effect negative yeast, the production of lactic acid can be greatly improved while suppressing the production of by-products such as ethanol and various organic acids. .
  • SEQ ID NO: 36 a nucleotide sequence (codon optimized sequence) from the 13th a to the 1011st a (upstream TGA of the two translation termination codons) and the sequence represented by SEQ ID NO: 38 (bovine It is a figure which shows the alignment of the (wild-type sequence derived). It is a figure which shows the structure of plasmid pCU563. It is a figure which shows the structure of plasmid pCU595. It is a figure which shows the annealing site
  • Hygr and G418s strain (lane 2) in which one copy of CuURA3 gene derived from NBRC0988 strain (lane 1), CuURA3 gene derived from NBRC0988 strain was disrupted, and one copy of CuURA3 gene in Hygs having pCU595 and G418r were disrupted .
  • a strain (lane 3) is a Hygs and G418s strain (lane 4) in which one copy of the CuURA3 gene from which pCU595 has been eliminated is disrupted.
  • M is DNA obtained by digesting Lamda DNA with Sty I. It is a figure which shows the result of having performed PCR using IM-63 (sequence number 58) and IM-223 (sequence number 60) as a primer.
  • IM-63 sequence number 58
  • IM-223 sequence number 60
  • Hygr and G418s strain (lane 2) in which one copy of CuURA3 gene derived from NBRC0988 strain (lane 1), CuURA3 gene derived from NBRC0988 strain was disrupted, and one copy of CuURA3 gene in Hygs having pCU595 and G418r were disrupted .
  • a strain (lane 3) is a Hygs and G418s strain (lane 4) in which one copy of the CuURA3 gene from which pCU595 has been eliminated is disrupted.
  • M is DNA obtained by digesting Lamda DNA with Sty I. It is a figure which shows the growth ability in the non-selective culture medium of the NBRC0988 strain and the CuURA3 gene disruption strain which made the NBRC0988 strain a host, and a selective culture medium. It is a figure which shows the analysis result by the Southern hybridization method for investigating how many types of PDC genes exist in Candida utilis.
  • Lane 1 is a sample obtained by digesting genomic DNA extracted from Saccharomyces cerevisiae S288C with Hind III.
  • genomic DNA extracted from Candida utilis NBRC0988 strain was extracted from Xba I (lane 2), Hind III (lane 3), Bgl II (lane 4), Eco RI (lane 5), Bam HI (lane 6). , Pst I (lane 7) digested sample.
  • Primers IKSM-29 (SEQ ID NO: 1) and IKSM-30 (SEQ ID NO: 2) were prepared, and a DNA fragment of approximately 220 bp (SEQ ID NO: 3) amplified by PCR using the genome of NBRC0988 strain as a probe was probed Used as DNA. It is a figure which shows the annealing part of the primer utilized for destruction of CuPDC1 gene.
  • Candida utilis Since the yeast used in the present invention, Candida utilis, is produced for food and feed, it is known that the yeast is highly safe.
  • the yeast strain according to the present invention is a strain of Candida utilis comprising at least one of the genes operably linked to a promoter sequence that enables expression of a gene encoding a polypeptide having lactate dehydrogenase activity. It was obtained by transformation with one copy.
  • Candida utilis has at least one gene encoding a polypeptide having pyruvate decarboxylase activity by analysis using Southern hybridization ( CuPDC1 gene).
  • CuPDC1 gene Southern hybridization
  • the reaction in which pyruvic acid is converted to acetaldehyde does not proceed, so alcohol fermentation, which is a subsequent metabolic pathway, is not performed, and ethanol is hardly produced.
  • a yeast that disrupts a gene encoding a polypeptide having pyruvate decarboxylase activity is used as a host for lactic acid-producing yeast, an excess substance for ethanol-producing lactic acid is not produced, and lactic acid is efficiently produced. Can be manufactured.
  • a yeast strain that is capable of expressing a gene encoding a polypeptide having no or reduced activity of pyruvate decarboxylase and having lactate dehydrogenase activity. Is done.
  • this yeast strain it is preferable that the endogenous gene encoding the polypeptide having pyruvate decarboxylase activity is disrupted.
  • the gene encoding a polypeptide having lactate dehydrogenase activity is preferably provided so as to be expressed under the control of a promoter of a gene encoding a polypeptide having pyruvate decarboxylase activity, More preferably, it is provided so that it can be expressed under the control of a promoter of a gene encoding a polypeptide having a pyruvate decarboxylase activity on the yeast chromosome.
  • a gene encoding a polypeptide having pyruvate decarboxylase activity on the chromosome is disrupted, and the promoter of the disrupted gene is A yeast strain is provided that is capable of expressing a gene encoding a polypeptide having the activity of lactate dehydrogenase under control.
  • the gene encoding the polypeptide having pyruvate decarboxylase activity is preferably pyruvate decarboxylase gene 1 ( CuPDC1 gene), and the lactate dehydrogenase
  • the polypeptide having the enzyme activity is preferably derived from bovine.
  • the lactic acid produced by the yeast strain according to the present invention may be any of L-lactic acid, D-lactic acid, and DL-lactic acid, but is preferably L-lactic acid.
  • yeast strain according to the present invention will be described, and a method for producing lactic acid using the yeast will be described.
  • the yeast strain according to the present invention is a transformed yeast having a gene encoding a polypeptide having the activity of an exogenous lactate dehydrogenase.
  • the yeast used for the production of lactic acid is Candida utilis, which is a club tree negative yeast.
  • the strain of Candida utilis may be various strains known in the art, for example, NBRC0626 strain, NBRC0639 strain, NBRC0988 strain, NBRC1086 strain and the like, and preferably NBRC0988 strain.
  • Pyruvate decarboxylase The yeast strain according to the present invention preferably has no or reduced pyruvate decarboxylase (PDC) activity.
  • PDC pyruvate decarboxylase
  • This enzyme is an enzyme that converts pyruvate to acetaldehyde in the alcohol fermentation pathway, and yeast that performs alcohol fermentation inherently has a gene encoding a polypeptide having pyruvate decarboxylase activity on its chromosome.
  • Saccharomyces cerevisiae has three types of genes ( ScPDC1 , ScPDC5, and ScPDC6 ) encoding polypeptides having pyruvate decarboxylase activity, and these function by a so-called autoregulation mechanism.
  • homology at the nucleotide level of each gene is as high as 70% or more.
  • the proteins encoded by these genes are composed of an N-terminal TPP binding region and a C-terminal PDC active region.
  • the gene encoding PDC is also present in other yeasts.
  • the KlPDC1 gene of Kluyveromyces lactis has high homology with the ScPDC1 gene.
  • Candida utilis has one type of gene ( CuPDC1 ) encoding a polypeptide having pyruvate decarboxylase activity, and there may be another similar gene, but at least CuPDC1 Alcohol fermentation is almost never performed by destroying the gene.
  • “there is no or reduced PDC activity” means that there is no PDC activity, the enzyme having an activity lower than that of the wild type is produced, or the production amount of the enzyme is wild type. Means less than.
  • the yeast strain having no or reduced PDC activity may be obtained by artificial manipulation or may be found by screening. Artificial manipulations for extinction or reduction of enzyme activity include RNAi, replacement with other genes such as all or part of the selectable marker, and insertion of meaningless sequences inside the gene. It can carry out by a method well-known in this technical field. Among these, it is preferable to destroy (knock out) the gene encoding the polypeptide having the enzyme activity. As such a method, among the above-mentioned methods, all or a part of the sequence of the selectable marker is used. And a method of exchanging the gene of PDC with a gene encoding PDC.
  • the gene encoding the polypeptide having the activity of pyruvate decarboxylase to be destroyed originally exists in Candida utilis.
  • the example described in the present invention is CuPDC1 present in NBRC0988 strain.
  • One of the alleles of a gene, the nucleotide sequence of which is represented by SEQ ID NO: 63, and the encoded amino acid sequence is represented by SEQ ID NO: 64.
  • NBRC0626 strain, NBRC0639 strain, NBRC1086 strain, etc. even if they are different from the sequences, there are those having equivalent functions, that is, activities. It can be targeted for destruction.
  • the endogenous gene encoding a polypeptide having pyruvate decarboxylase activity to be destroyed is a gene encoding a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 64 More preferably, the gene comprises the nucleotide sequence represented by SEQ ID NO: 63.
  • Lactate dehydrogenase The yeast strain according to the present invention retains a gene ( LDH gene) encoding a polypeptide having lactate dehydrogenase activity. Since yeast originally has no ability to produce lactic acid, the gene ( LDH ) encoding the polypeptide having the lactate dehydrogenase activity of the yeast strain according to the present invention is foreign. LDH has various congeners depending on the type of organism or in vivo, and L-LDH or D-LDH may be used in the present invention. -LDH. Further, the gene encoding a polypeptide having lactate dehydrogenase activity used in the present invention includes naturally occurring LDH, as well as LDH artificially synthesized by chemical synthesis or genetic engineering techniques. Yes.
  • LDH lactate dehydrogenase
  • the polypeptide having lactate dehydrogenase activity is a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 37.
  • the polypeptide having lactate dehydrogenase activity includes an amino acid sequence in which one or several amino acids are deleted, substituted, added or inserted in the amino acid sequence represented by SEQ ID NO: 37, and lactate dehydration. It may be a polypeptide having an enzyme activity.
  • amino acid deletion, substitution, addition, or insertion can be performed by modifying a gene encoding the above polypeptide by a technique known in the art.
  • Mutation can be introduced into a gene by a known method such as the Kunkel method or Gapped-duplex method or a method similar thereto, for example, a mutation introduction kit using site-directed mutagenesis, such as Mutant-K (Takara Bio Inc.), Mutant-G (Takara Bio Inc.), etc., or using Takara Bio Inc.
  • LA PCR in vitro Mutageness series kit, KOD-Plus-Mutageness Kit (TOYOBO), etc. be able to.
  • the activity of lactate dehydrogenase can be confirmed by a technique known in the art.
  • the gene encoding a polypeptide having the activity of lactate dehydrogenase to be introduced into the host is cattle described in SEQ ID NO: 35 (Bos taurus) amino acid sequence derived from the enzyme (DDBJ / EMBL / GenBank Accession number : AAI46211.
  • the nucleotide sequence corresponding to 1) is preferably artificially synthesized in consideration of the Candida utilis codon usage. Such artificial synthesis can be appropriately performed by those skilled in the art, but a particularly preferred nucleotide sequence is the nucleotide sequence from the 13th a to the 1,011st a in SEQ ID NO: 36. .
  • sequences before and after that are restriction enzyme recognition sites, respectively, a Kpn I recognition site (sequence from the first g to the 6th c in the nucleotide sequence of SEQ ID NO: 36), and an Xba I recognition site (SEQ ID NO: 36). sequences from the seventh t in the nucleotide sequence up to 12 th a), sequences from 1,015 th g in the nucleotide sequence of Bam HI recognition site (SEQ ID NO: 36 to 1,020 th c), and Sac I recognition site (sequence from 1,021st g to 1,025th c in the nucleotide sequence of SEQ ID NO: 36).
  • SEQ ID NO: 36 a nucleotide sequence (codon optimized sequence: SEQ ID NO: 36) from the 13th a to the 1,011st a (upstream tga of two translation termination codons) and SEQ ID NO: 38
  • the alignment of the nucleotide sequence represented by (wild-type sequence derived from bovine) is shown in FIG. Both sequences had the same 751 bases out of 999 bases, and the homology was 75%.
  • the upper sequence is a nucleotide sequence from the 13th a to the 1011st a (upstream tga of two translation termination codons) in SEQ ID NO: 36.
  • L-LDH-A gene derived from Bos taurus represented by SEQ ID NO: 38 (extracted from DDBJ / EMBL / GenBank Accession number: BC146210.1). No. 35).
  • the gene encoding the artificially synthesized polypeptide having the lactate dehydrogenase activity is optimized for codon usage in Candida utilis. L-lactic acid can be produced with high efficiency.
  • the gene encoding a polypeptide having lactate dehydrogenase activity has a nucleotide sequence from the 13th a to the 1,011st a in SEQ ID NO: 36. It is considered as a gene containing or equivalent thereof.
  • This equivalent is a gene in which some nucleotide residues are different on the condition that it has a function equivalent to that of a gene containing a nucleotide sequence from the 13th a to the 1011st a in SEQ ID NO: 36. means.
  • Such an equivalent includes a nucleotide sequence from the 13th a to the 1011st a in SEQ ID NO: 36 and 70% or more, preferably 80% or more, more preferably 85% or more, and still more preferably Examples thereof include a gene comprising a nucleotide sequence encoding a polypeptide having 90% or more homology, most preferably 95% or more, and having lactate dehydrogenase activity.
  • the equivalent further hybridizes with the nucleotide sequence from the 13th a to the 1,011st a or its complementary sequence in SEQ ID NO: 36 under stringent conditions, and the activity of lactate dehydrogenase And a gene containing a nucleotide sequence encoding a polypeptide having The equivalent further includes a sequence in which one or several nucleotide residues are deleted, substituted, added, or inserted in the nucleotide sequence from the 13th a to the 1011st a in SEQ ID NO: 36. And a gene comprising a nucleotide sequence encoding a polypeptide having lactate dehydrogenase activity.
  • the gene encoding a polypeptide having lactate dehydrogenase activity is a nucleotide sequence from the 13th a to the 1,011st a in SEQ ID NO: 36. It is considered as a gene containing
  • deletion, substitution, addition or insertion of nucleotide residues can be performed by modifying a gene containing the above sequence by a technique known in the art.
  • Mutation can be introduced into a gene by a known method such as the Kunkel method or Gapped-duplex method, or a method equivalent thereto, for example, a mutation introduction kit using site-directed mutagenesis may be used.
  • a mutation introduction kit using site-directed mutagenesis may be used.
  • Mutant-K (Takara Bio) or Mutant-G (Takara Bio)
  • Takara Bio's LA ⁇ ⁇ ⁇ PCR in vitro Mutageness series kit
  • KOD-Plus-Mutageness Kit TOYOBO
  • Mutations can be introduced.
  • the activity of lactate dehydrogenase can be confirmed by a technique known in the art.
  • the numerical value (%) indicating homology is calculated using default (initial setting) parameters using a base sequence comparison program such as GENETYX-WIN 7.0.0. That is, each gene on the yeast chromosome may be replaced by a gene encoding a polypeptide that is not identical but has an equivalent function, ie, each activity, through homologous recombination or the like.
  • the activity of lactate dehydrogenase can be confirmed by a technique known in the art.
  • the stringent conditions include, for example, Rapid-Hyb Buffer (manufactured by GE Healthcare Bioscience), the temperature condition is preferably 40 to 70 ° C., more preferably 60 ° C., and others are performed according to the attached protocol. Hybridization conditions. Then, for example using a general method of the person skilled in the art, washing for 5 minutes with a solution consisting of 2 ⁇ SSC and 0.1% (w / v) SDS, followed by 1 ⁇ SSC and 0.1% (w / v) v) Refers to washing for 10 minutes with a solution consisting of SDS, and further washing for 10 minutes with a solution consisting of 0.1 ⁇ SSC and 0.1% (w / v) SDS.
  • Rapid-Hyb Buffer manufactured by GE Healthcare Bioscience
  • DNA containing a base sequence having the above homology can be cloned.
  • the gene thus obtained may be replaced by homologous recombination or the like with a gene that encodes a polypeptide that is not identical in sequence but has an equivalent function, that is, each activity.
  • the activity of lactate dehydrogenase can be confirmed by a technique known in the art.
  • a gene encoding a polypeptide having the activity of a promoter lactate dehydrogenase used for expression of a structural gene is preferably provided so that it can be expressed under the control of a promoter having a strong promoter activity.
  • the promoter of the GAP gene encoding a polypeptide having the activity of glyceraldehyde-3-phosphate dehydrogenase of Candida utilis encodes a polypeptide having the activity of phosphoglycerate kinase.
  • the promoter of PGK gene, the promoter of PMA gene encoding a polypeptide having plasma membrane proton ATPase activity (above, JP-A-2003-144185) and the like are exemplified, but more preferably pyruvate decarboxylase It is a promoter of gene 1 ( CuPDC1 gene) encoding a polypeptide having activity.
  • a promoter of gene 1 CuPDC1 gene
  • the gene encoding a polypeptide having lactate dehydrogenase activity is preferably provided so that it can be expressed under the control of the CuPDC1 gene promoter on the yeast chromosome.
  • Candida utilis used as a host of the yeast strain according to the present invention is presumed to have at least one PDC gene ( CuPDC1 gene).
  • CuPDC1 gene controlled by the CuPDC1 gene promoter encoding a polypeptide having a disrupted by activity of lactate dehydrogenase is expressed in place, lowering the lactic acid effectively pyruvate decarboxylase activity
  • the dehydrogenase activity can be expressed at the same time.
  • the promoter sequence is a promoter portion of an endogenous gene encoding pyruvate decarboxylase, and more preferably includes a nucleotide sequence represented by SEQ ID NO: 3. .
  • this promoter sequence may be an equivalent in which some nucleotide residues are different on the condition that it has a function equivalent to that including the nucleotide sequence represented by SEQ ID NO: 3.
  • Such an equivalent includes 70% or more, preferably 80% or more, more preferably 85% or more, still more preferably 90% or more, most preferably 95% or more homology with the nucleotide sequence represented by SEQ ID NO: 3.
  • DNA having a promoter activity includes 70% or more, preferably 80% or more, more preferably 85% or more, still more preferably 90% or more, most preferably 95% or more homology with the nucleotide sequence represented by SEQ ID NO: 3.
  • the equivalent further includes DNA that hybridizes with the nucleotide sequence represented by SEQ ID NO: 3 or its complementary sequence under stringent conditions and has promoter activity.
  • Examples of the equivalent further include DNA having a promoter activity, including a sequence in which one or several nucleotide residues are deleted, substituted, added, or inserted in the nucleotide sequence represented by SEQ ID NO: 3. .
  • deletion, substitution, addition, or insertion of a nucleotide residue can be performed by modifying the above sequence by a technique known in the art.
  • Mutation can be introduced into a gene by a known method such as the Kunkel method or Gapped-duplex method or a method similar thereto, for example, a mutation introduction kit using site-directed mutagenesis, such as Mutant-K (Takara Bio Inc.), Mutant-G (Takara Bio Inc.), etc., or using Takara Bio Inc.
  • LA PCR in vitro Mutageness series kit, KOD-Plus-Mutageness Kit (TOYOBO), etc. be able to.
  • Promoter activity, ie, transcription activity can be confirmed by a technique known in the art.
  • the numerical value (%) indicating homology is calculated using default (initial setting) parameters using a base sequence comparison program such as GENETYX-WIN 7.0.0. That is, each gene on the yeast chromosome may be replaced by a gene that is not identical but has an equivalent function, that is, each activity, through homologous recombination or the like. Promoter activity, ie, transcription activity, can be confirmed by a technique known in the art.
  • the stringent conditions include, for example, Rapid-Hyb Buffer (manufactured by GE Healthcare Bioscience), the temperature condition is preferably 40 to 70 ° C., more preferably 60 ° C., and others are performed according to the attached protocol. Hybridization conditions. Then, for example using a general method of the person skilled in the art, washing for 5 minutes with a solution consisting of 2 ⁇ SSC and 0.1% (w / v) SDS, followed by 1 ⁇ SSC and 0.1% (w / v) v) Refers to washing for 10 minutes with a solution consisting of SDS, and further washing for 10 minutes with a solution consisting of 0.1 ⁇ SSC and 0.1% (w / v) SDS.
  • Rapid-Hyb Buffer manufactured by GE Healthcare Bioscience
  • DNA containing a base sequence having the above homology can be cloned.
  • the gene thus obtained may be replaced by homologous recombination or the like with a gene that is not identical in sequence but has an equivalent function, that is, each activity.
  • Promoter activity, ie, transcription activity can be confirmed by a technique known in the art.
  • Molecular Breeding of Yeast Strain can be performed by introducing a gene encoding a polypeptide having lactate dehydrogenase activity into a host yeast in a state where it can be expressed. In that case, it is preferable that the host yeast is accompanied by the destruction of the gene encoding PDC.
  • a DNA construct for PDC disruption has a gene sequence for homologous recombination to be introduced into a specific gene site to destroy the gene.
  • the gene sequence for homologous recombination here is a gene sequence that is homologous to a target site that is a PDC gene to be destroyed or a gene in the vicinity thereof.
  • two types of gene sequences for homologous recombination are made homologous to the upstream and downstream genes of the target gene on the chromosome, and the gene is destroyed between these gene sequences for homologous recombination.
  • the gene at the target site can be destroyed by introducing a DNA fragment comprising the gene for the purpose into the yeast chromosome by homologous recombination.
  • Selection of a gene sequence for homologous recombination to realize such integration on a chromosome is well known to those skilled in the art, and those skilled in the art can select an appropriate gene sequence for homologous recombination as necessary.
  • a DNA fragment for homologous recombination can be constructed.
  • the endogenous gene encoding a polypeptide having pyruvate decarboxylase activity is disrupted by deletion of the gene by insertion of a selectable marker sequence.
  • the PDC gene can be destroyed by incorporating a selectable marker sequence into the nucleotide sequence inserted in place of the PDC gene in the above homologous recombination.
  • the selectable marker is useful for selecting transformed cells.
  • the insertion of the selection marker sequence is not only the introduction of the entire sequence, but also the introduction of a part of the sequence to complete the selection marker sequence by combining this partial sequence with the sequence originally present in the yeast. Is also included.
  • any sequence that involves homologous recombination is introduced by introducing the missing partial sequence as a selectable marker sequence.
  • Gene disruption can be performed.
  • any gene with homologous recombination is introduced by introducing a gene for imparting resistance to these drugs. Can be destroyed. Therefore, according to one embodiment of the present invention, a yeast strain sensitive to hygromycin B and G418 described above is used as a host, and a gene imparting drug resistance that does not originally exist in the strain is used. It shall destroy the PDC gene.
  • the selection marker examples include a hygromycin B phosphotransferase gene ( HPT gene, a gene conferring resistance to hygromycin B, which was shown to be usable in the bacterial species in Japanese Patent Application Laid-Open No. 2003-144185. ) And aminoglycoside phosphotransferase ( APT gene, gene conferring resistance to G418).
  • HPT gene a gene conferring resistance to hygromycin B, which was shown to be usable in the bacterial species in Japanese Patent Application Laid-Open No. 2003-144185.
  • APT gene gene conferring resistance to G418
  • the position on the chromosome where the gene encoding a polypeptide having lactate dehydrogenase activity is integrated into the yeast genome is not particularly limited, but it encodes a polypeptide having pyruvate decarboxylase activity. It is advantageous to have a locus. Thereby, a gene encoding a polypeptide having lactate dehydrogenase activity can be placed under the control of the full-length promoter of the PDC gene, and thus high expression efficiency can be obtained.
  • the yeast strain according to the invention comprises an expression comprising a promoter sequence and a DNA sequence encoding a polypeptide having the activity of lactate dehydrogenase under the control of the promoter sequence. It is assumed that it has been transformed with a vector. Moreover, such an expression vector forms one embodiment of the present invention.
  • Candida utilis has high ploidy and does not form spores. When trying to introduce a mutation into a gene of a highly polyploid strain, it is necessary to add the mutation more severely than in a haploid strain. It is considered that the possibility of mutation is increased. Therefore, when introducing a mutation into the gene of Candida utilis, it is preferable to use a technique that can efficiently add multiple mutations only to the target gene.
  • a sequence homologous to the chromosomal DNA of Candida utilis and a selection marker gene are included, and a heterologous gene can be incorporated into the chromosomal DNA of Candida utilis by homologous recombination.
  • a DNA sequence that can be transformed into Candida utilis, or a DNA sequence having an autonomous replication function in Candida utilis and a selectable marker gene, has been developed.
  • a selectable marker gene that can be used in the Candida utilis transformation system is a drug resistance marker that can function in Candida utilis, preferably a cycloheximide-resistant L41 gene, a gene conferring geneticin (G418) resistance, or hygromycin There are genes that confer B resistance.
  • a gene that confers geneticin (G418) resistance or a gene that confers hygromycin B resistance is a sequence that does not exist in wild yeast, and is therefore considered to have a high probability of being incorporated into a target locus.
  • Cre-loxP system derived from bacteriophage P1. This is a site-specific recombination system between the loxP sequences of the two 34 bp, this recombination is catalyzed by Cre recombinase which Cre gene.
  • This system has also been reported to function in yeast cells such as Saccharomyces cerevisiae, and it is known that a selectable marker gene placed between two loxP sequences is removed by recombination between loxP sequences. (Guldener, U., et al., Nucleic Acids Res., 24, 2519-24., 1996). This system is used in several yeast species other than Candida utilis, such as Kluyveromyces lactis (Steensma, HY et al., Yeast, 18, 469-72., 2001). .
  • lactic acid which is a fermentation product of lactic acid dehydrogenase can be produced in the culture.
  • lactic acid can be obtained by carrying out the step of separating lactic acid from the culture system.
  • the culture includes cultured cells or microbial cells, cells or disrupted microbial cells, in addition to the culture supernatant.
  • a culture method and culture conditions can be selected according to the type of yeast.
  • a liquid culture method using a test tube, a flask or a jar fermenter can be mentioned, and a culture format such as batch culture or semi-batch culture can be adopted.
  • Conditions of an amplitude of 35 mm are suitable for culturing in test tubes and flasks, and such culturing can be performed with a table culture apparatus manufactured by TAITEC.
  • the composition of the medium is not particularly limited as long as it is a composition containing various nutrients that allow yeast to grow and produce lactic acid.
  • the assimilating carbon source contained in the medium for example, xylose or sucrose can be used in addition to glucose as long as it can be assimilated.
  • glucose or sucrose is used as the carbon source, more preferably glucose.
  • a nutrient source contained in the medium for example, yeast extract, peptone, whey and the like are used, but a medium obtained by adding the above assimilable carbon source to YP (10 g / L yeast extract, 20 g / L peptone),
  • YP 10 g / L yeast extract, 20 g / L peptone
  • YPD (20 g / L glucose, 10 g / L yeast extract, 20 g / L peptone
  • YPX (20 g / L xylose, 10 g / L yeast extract, 20 g / L peptone
  • YPSuc10 medium 100 g / L sucrose, 10 g / L
  • yeast extract (20 g / L peptone
  • inorganic nitrogen such as ammonium salts such as ammonium sulfate and urea are preferred for a medium that is inexpensive and does not impose a burden on the purification process.
  • inorganic nutrient source for example, potassium phosphate, magnesium sulfate, Fe (iron), Mn (manganese) compound, or the like is also used.
  • the culture medium may contain a pH adjuster.
  • Fermentation temperature can be selected within the range where the lactic acid-producing yeast to be used can grow.
  • the fermentation temperature can be, for example, about 15 to 45 ° C., more preferably 25 to 40 ° C., still more preferably 27 to 40 ° C., and most preferably 35 ° C.
  • the pH of the medium during the fermentation process is preferably maintained at 3 to 8, more preferably pH 4 to 7, most preferably pH 6, and neutralization of lactic acid as a fermentation product may be performed as necessary. it can.
  • the neutralizing agent to be used include calcium carbonate, sodium hydroxide, potassium hydroxide and the like, and calcium carbonate is preferable.
  • reaction time required for the production of lactic acid is not particularly limited, and the reaction is carried out at any reaction time as long as the effect of the present invention is recognized. Those skilled in the art can easily optimize these conditions.
  • lactic acid when growing yeast first, it is preferable to carry out pre-culture and pre-culture, and then carry out lactic acid production by fermentation culture.
  • YPD agar medium As pre-culture conditions, cells grown on a YPD agar medium at 30 ° C. for 1 to 3 days are scraped with a sterilized toothpick to obtain. This is preferably cultured using 3 to 5 mL of YPD liquid medium added to a 15 mL tube under shaking conditions of 120 to 150 rpm.
  • Pre-culture conditions include 50 to 100 mL of YPD liquid medium, YPX10 liquid medium (100 g / L xylose, 10 g / L yeast extract, 20 g / L peptone) or YPSuc10 liquid medium (100 g / L sucrose, 10 g / L).
  • Yeast extract, 20 g / L peptone inoculate the pre-cultured cells into a new medium so that the OD600 is about 0.1, and then culture at 120 to 150 rpm, 30 ° C. for usually 16 to 30 hours.
  • the culture is preferably performed until the logarithmic growth phase or stationary phase where OD600 is 10 to 25.
  • the medium contains glucose, xylose or sucrose at a concentration of 95 to 115 g / L (preferably 100 to 115 g / L), and 3 to 5% of calcium carbonate as a neutralizing agent.
  • YPD10 medium 100 g / L glucose, 10 g / L yeast extract, 20 g / L peptone
  • YPX10 medium 100 g / L xylose, 10 g / L yeast extract, 20 g / L peptone
  • it is preferable to use YPSuc10 medium 100 g / L sucrose, 10 g / L yeast extract, 20 g / L peptone
  • culture under aeration conditions 70 to 150 rpm, 15 to 45 ° C., and 10 to 40 mL.
  • OD600 is adjusted to 5 to 25, more preferably 5-15, and most preferably OD600 of about 10.
  • lactic acid In the production of lactic acid at a medium scale of 500 mL or more, when growing yeast, it is preferable to carry out pre-culture, pre-culture, and pre-culture in a liquid medium, and then carry out lactic acid production by fermentation culture. It is preferable to use a jar fermenter in the test on the scale.
  • the cells grown on the YPD agar medium at 30 ° C. for 1 to 3 days are scraped with a sterilized toothpick.
  • This is preferably cultured under shaking conditions using 3 to 5 mL of YPD liquid medium added to a 15 mL tube at 120 to 150 rpm and 30 ° C. for usually 6 to 30 hours.
  • the pre-culture conditions are as follows: 50 mL to 100 mL of YPD liquid medium is used as the medium, and the pre-culture cells are inoculated into a new medium so that the OD600 is about 0.1, and then 120 to 150 rpm.
  • the culture is preferably carried out at 30 ° C. for usually 10 to 30 hours, and further to the logarithmic growth phase or stationary phase where OD600 is 10 to 25.
  • a Sakaguchi flask is preferably used.
  • a jar fermenter capable of adjusting temperature, aeration amount, stirring speed and the like.
  • Use 500 mL to 2.5 L YPD liquid medium as the medium add 20 to 100 mL of the culture medium in advance, inoculate a new medium so that the OD600 is about 0.1, and then stir at a speed of 300 to 400 rpm.
  • a jar fermenter that can adjust temperature, aeration rate, stirring speed, pH control, and the like.
  • YPD10 medium 100 g / L glucose, 10 g / L yeast extract
  • glucose or sucrose as a medium at a concentration of 50 to 220 g / L, preferably 100 to 115 g / L, and 3 to 5% of calcium carbonate medium as a neutralizing agent.
  • YPD10 medium or YPSuc10 medium in a damp state under the conditions of a stirring rate of 100 to 300 rpm, 15 to 45 ° C., and 500 mL to 2.5 L of liquid. More preferably, they are 200 to 250 rpm, 27 to 37 ° C., and 1.5 to 2 L.
  • OD600 it is preferable to adjust OD600 to 1 to 30 (preferably 1 to 20) as an initial amount of bacterial cells from the viewpoint that lactic acid can be efficiently produced in a shorter time, and more preferably, OD600 is adjusted to 5 to 15 and most preferably an OD600 of about 10.
  • the aeration conditions during fermentation are preferably aerobic conditions, particularly microaerobic conditions.
  • the target lactic acid is produced with high efficiency by culturing for 24 to 48 hours.
  • the lactic acid component thus produced is separated and collected from the medium, but the separation and collection method is not particularly limited.
  • a known method used in a conventional production process by lactic acid fermentation can be used as a means for separating and concentrating lactic acid components.
  • known methods for example, 1) calcium lactate recrystallization method comprising adding lime milk to neutralize, 2) organic solvent extraction method using a solvent such as ether, 3) purified lactic acid with alcohol Examples thereof include an esterification separation method for esterification, 4) a chromatographic separation method using an ion exchange resin, and 5) an electrodialysis method using an ion exchange membrane.
  • the lactic acid component obtained by the method for producing lactic acid according to the present invention may be in the form of not only free lactic acid but also salts such as sodium and potassium, and esters such as methyl ester and ethyl ester.
  • the ability to produce lactic acid in yeast Candida utilis having the ability to produce lactic acid can be improved, and as a result, lactic acid can be produced in a high yield in a short time.
  • the lactic acid production method according to the present invention can improve the lactic acid production ability of yeast having lactic acid production ability, regardless of the composition of the medium used. Therefore, according to the lactic acid production method of the present invention, it is possible to achieve an improvement in lactic acid production ability even in a poorly nutrient medium such as a relatively inexpensive synthetic medium, and to reduce the cost of lactic acid production. .
  • lactic acid production method of the present invention ethanol production is inhibited when a microorganism having ethanol production ability, such as yeast introduced with a gene encoding a polypeptide having lactate dehydrogenase activity, is used.
  • a microorganism having ethanol production ability such as yeast introduced with a gene encoding a polypeptide having lactate dehydrogenase activity
  • lactic acid can be produced with high yield.
  • various organic acids such as D-lactic acid, which is a by-product other than ethanol
  • lactic acid contained in the medium can be more easily recovered.
  • the steps required for recovery and purification of lactic acid can be simplified, and the cost required for lactic acid production can be suppressed.
  • Such by-products can be analyzed and evaluated according to known techniques.
  • ethanol can be analyzed and evaluated by gas chromatography (GC) or high performance liquid chromatography (HPLC), various aromatic components such as acetaldehyde can be analyzed by GC, and various organic acids such as pyruvic acid can be analyzed and evaluated by HPLC.
  • Glucose is quantified by HPLC or Biochemistry Analyzer (hereinafter BA) (Wyeth Japan)
  • L-lactic acid is HPLC or BA
  • D-lactic acid is combined with HPLC or L-lactic acid
  • JK International L-lactic acid
  • pyruvic acid and various organic acids such as citric acid, malic acid, and succinic acid in the culture solution were measured by organic acid analysis by HPLC (detection by electrical conductivity).
  • HPLC detection by electrical conductivity
  • methods for measuring other substances such as ethanol are described in the following examples.
  • the present specification further relates to a yeast strain of Candida utilis in which an endogenous gene encoding a polypeptide having pyruvate decarboxylase activity is disrupted, wherein the lactate dehydrogenase activity is increased. It has been found that pyruvic acid is produced in large quantities by culturing a yeast strain into which a gene encoding the polypeptide it has is not introduced.
  • a Candida utilis yeast strain in which an endogenous gene encoding a polypeptide having pyruvate decarboxylase activity is disrupted, and There is provided a method for producing pyruvic acid comprising culturing the yeast strain. Since pyruvic acid has high reactivity and is used as a synthetic substrate for pharmaceuticals, agricultural chemicals, etc., it is regarded as an important intermediate in the fine chemical field.
  • the endogenous gene encoding the polypeptide having pyruvate decarboxylase activity in the yeast strain of Candida utilis and the details of the disruption are as described above.
  • a method for purifying pyruvic acid any method known as a method for purifying organic compounds may be used.
  • a method by distillation described in JP-A No. 2007-169244 may be used. Distillation can be performed, for example, under the reduced pressure condition or vacuum condition of 70 to 80 ° C. as the first distillation and under the reduced pressure condition or vacuum condition of 90 to 100 ° C. as the second distillation.
  • the pyruvic acid obtained by distillation can be separated from a product such as lactic acid and recovered by appropriately performing treatment with activated carbon, dehydration, deacetic acid and the like.
  • the pyruvic acid thus purified can be used in the fine chemical field as described above.
  • GeneAmp PCR System 9700 PE Applied Biosystems
  • Gentoru-kun manufactured by TaKaRa or the potassium acetate method was used for extraction of genomic DNA from yeast.
  • Alkaline Phosphatase ( E. coli C75) manufactured by TaKaRa or Alkaline Phosphatase (Shripmp) manufactured by TaKaRa was used for the dephosphorylation of DNA, and the Ligation Kit ver. 2 and the method followed the attached protocol.
  • Competent cells of DH5 ⁇ were used for transformation of E. coli, and the method followed the attached protocol. For selection of E.
  • coli transformants an LB plate containing 100 ⁇ g / mL of ampicillin (LB + amp plate) or an LB plate containing 50 ⁇ g / mL of kanamycin is used according to the drug resistance marker gene contained in the plasmid. Blue-white selection with 20 ⁇ g / mLX-gal and 0.1 mM IPTG was performed.
  • QIAprep Spin Miniprep Kit manufactured by QIAGEN was used, and the method followed the attached protocol. Transformation of Saccharomyces cerevisiae was performed by the lithium method (Ito et al., J. Bacteriol., 153, 163, 1983).
  • Transformation of Candida utilis was performed by partially modifying the method described in JP-A No. 2003-144185.
  • the base sequence was determined by the following method. PCR was performed using BigDye Terminator v3.1 manufactured by Applied Biosystems, and the method followed the attached protocol. For removal of unreacted BigDye Terminator, CENTRI-SEP COLUMNS (PRINCETON SEPARATIONS) was used, and the method followed the attached protocol. For determination of the base sequence, 3100 Genetic Analyzer manufactured by Applied Biosystems was used, and the method followed the attached protocol.
  • Transformation of the Candida utilis strain by electric pulse was performed by partially modifying the method described in Japanese Patent Application Laid-Open No. 2003-144185.
  • the cells are washed once with 100 ml of ice-cooled sterilized water, then once with 40 ml of ice-cold sterilized water, and then once with 40 ml of ice-cooled 1M sorbitol.
  • the cells are suspended in 10 ml of 1M sorbitol, transferred to a sterile polypropylene tube, and collected again by centrifugation at 1,100 ⁇ g for 5 minutes. After removing the supernatant, the suspension is suspended in ice-cooled 1 M sorbitol so that the final cell volume is 2.5 ml.
  • Transformation experiments with electric pulses are performed using a Bio-Rad gene pulser. 50 ⁇ l of the bacterial solution, 5 ⁇ l of DNA sample containing 100 ng to 10 ⁇ g of DNA, and 5 ⁇ l of 2.0 mg / ml salmon testis-derived carrier DNA were mixed, and then placed in a 0.2 cm disposable cuvette. Apply electrical pulses.
  • the electric capacity is 25 ⁇ F
  • the resistance value is 600 to 1000 ohms
  • the voltage is 0.75 to 5 KV / cm.
  • G418 was added to the YPD medium at a concentration of 200 ⁇ g / ml.
  • each medium is referred to as a HygB medium and a G418 medium.
  • the resistance to hygromycin B is expressed as HygBr
  • the sensitivity to hygromycin B is expressed as HygBs
  • the resistance to G418 is expressed as G418r
  • the sensitivity to G418 is expressed as G418s.
  • Example 1 Development of Candida utilis transformation system using Cre-loxP system 1-1. Construction of Plasmid Required for Multiple Transformation System Using Cre-lox System Plasmid pCU563 for preparing a DNA fragment for gene disruption was constructed by the following procedure. Using the plasmid pGKHPT1 having the PGK gene promoter and hygromycin resistance gene HPT gene described in Shimada et al. (Appl. Environ. Microbiol.
  • IM-53 SEQ ID NO: 16
  • IM-57 By performing PCR (elongation reaction 1.5 minutes) with the primer set of (SEQ ID NO: 17), a DNA fragment consisting of loxP (SEQ ID NO: 18), PGK gene promoter, and HPT gene in this order was amplified.
  • PCR extension reaction 30 seconds
  • IM-54 SEQ ID NO: 19
  • IM-55 SEQ ID NO: 20
  • the expression plasmid pCU595 for Cre recombinase was constructed by the following procedure. S. (1) IM-49 (SEQ ID NO: 23) and IM-50 (SEQ ID NO: 23) using as a template the plasmid pSH65 (Gueldener, U., et al., Nucleic Acids Res. 30 (6), E23, 2002) for expressing Cre in cerevisiae 24), (2) PCR was carried out with two types of primer sets, IM-51 (SEQ ID NO: 25) and IM-52 (SEQ ID NO: 26) (both extended for 30 seconds).
  • Each amplified DNA fragment was mixed and then subjected to PCR using IM-49 (SEQ ID NO: 23) and IM-52 (SEQ ID NO: 26) to amplify the gene fragment encoding Cre recombinase.
  • the Cre gene was thus, Bam HI recognition sequence present in the Cre gene pSH65 (GGATCC) is, without changing the amino acid sequence, which is arranged and (GCATAC) that the enzyme does not recognize. Further, a DNA fragment obtained by digesting this with Xba I and Bam HI was inserted into the Xba I- Bam HI gap of pPMAPPT1 (Japanese Patent Laid-Open No. 2003-144185).
  • a Cre expression module obtained by treating this plasmid with Not I that is, a DNA fragment comprising a PMA gene promoter, a Cre gene, and a PMA gene terminator in this order, pCARS7 (Japanese Patent Laid-Open No. 2003-144185) having an autonomously replicating sequence CuARS2 It was inserted into DNA partially digested with Not I.
  • the plasmid thus obtained was named pCU595 (FIG. 3).
  • This plasmid has an APT gene, and when Candida utilis is transformed with this plasmid, cells into which the plasmid has been introduced grow, for example, in a medium containing G418 at a concentration of 200 ⁇ g / ml that cannot be grown in a wild strain. It becomes possible.
  • CuURA3 gene Multiple disruption of Candida utilis URA3 gene (hereinafter referred to as CuURA3 gene) described in JP-A-2003-144185 Tried.
  • the gene encodes orotidine-5′-phosphate decarboxylase, and a strain in which all the functional gene in the cell is lost becomes uracil-requiring. That is, it is thought that it cannot grow on a medium not containing uracil.
  • a DNA fragment for disrupting the first and second copies of the CuURA3 gene was prepared as follows. First, two types of PCR shown in the following (1), (2) and (3) were performed: (1) pCU563 was used as a template, and IM-1 (SEQ ID NO: 21) and IM-2 (primers were used as primers. (SEQ ID NO: 22), and the extension reaction time was 2 minutes; (2) NBRC0988 strain genomic DNA was used as a template, and primers IM-59 (SEQ ID NO: 54) and IM-60 (SEQ ID NO: 55) were used.
  • the extension reaction time was 30 seconds; (3) NBRC0988 strain genomic DNA was used as a template, IM-61 (SEQ ID NO: 56) and IM-62 (SEQ ID NO: 57) were used as primers, and the extension reaction time was 30 seconds. It was. In (2) and (3), the upstream part and the downstream part of the CuURA3 gene are amplified. Further, PCR of the following (4) was carried out: (4) Using a mixture of the three kinds of DNA amplified in the above (1), (2) and (3) as a template, IM-59 (sequence) as a primer No. 54) and IM-62 (SEQ ID NO: 57) were used, and the extension reaction time was 3 minutes.
  • the NBRC0988 strain was transformed with 1 ⁇ g of the first and second fragments of CuURA3 disrupted as a DNA fragment. As a result, 119 clones of HygBr transformants were obtained. Genomic DNA was extracted from transformants of 11 clones arbitrarily selected from the NBRC0988 strain and 119 clones, and PCR was performed with IM-63 (SEQ ID NO: 58) and IM-92 (SEQ ID NO: 59) using this as a template ( Elongation reaction 3.5 minutes). As shown in FIG. 4, these primers anneal outside the homologous recombination region.
  • Genomic DNA was extracted from HygBr's CuURA3 gene 1-copy disrupted strain and HygBs' 1st-copy disrupted strain of CuURA3 gene, and this was used as a template for PCR with IM-63 (SEQ ID NO: 58) and IM-92 (SEQ ID NO: 59). (Elongation reaction 3.5 minutes). When subjected to 0.8% agarose gel electrophoresis, DNA fragments of 3.2 kb and 2.3 kb were amplified in the former strain, and 2.3 kb and 1.1 kb in the latter strain. A strain from which the HPT gene was removed as intended was obtained.
  • HydBs CuURA3 gene 1-copy disrupted strain was cultured overnight in YPD liquid medium, and a portion thereof was applied to YPD medium. After 1 to 3 days, a plurality of single colonies were separated and applied to G418 medium and YPD medium. As a result, most clones grew on the YPD medium but did not grow on the G418 medium.
  • IM-63 (SEQ ID NO: 58) anneals outside the homologous recombination region
  • IM-223 SEQ ID NO: 60
  • Cre-loxP system was similar to the results of IM-63 (SEQ ID NO: 58) and IM-92 (SEQ ID NO: 59). Was found to work with Candida utilis.
  • PCR was performed with certain IM-49 (SEQ ID NO: 23) and IM-52 (SEQ ID NO: 26) (extension reaction: 1 minute).
  • IM-49 SEQ ID NO: 23
  • IM-52 SEQ ID NO: 26
  • a disrupted strain of HygBs and G418s with 1 copy of the CuURA3 gene was transformed.
  • Genomic DNA was extracted from the obtained transformant, and PCR was carried out with IM-63 (SEQ ID NO: 58) and IM-92 (SEQ ID NO: 59) using this as a template (extension reaction 3.5 minutes).
  • IM-63 SEQ ID NO: 58
  • IM-92 SEQ ID NO: 59
  • HygBs CuURA3 gene 2-copy disrupted strain was cultured overnight in YPD liquid medium, and a portion thereof was applied to YPD medium. Two days later, single colonies were isolated and spread on YPD medium and G418 medium. Then, clones that grew on the YPD medium but did not grow on the G418 medium were isolated. A strain from which pCU595 was eliminated, that is, a disrupted strain of HygBs and G418s in the second copy of the CuURA3 gene could be obtained.
  • a DNA fragment for disrupting the 3rd and 4th copies of the CuURA3 gene was prepared as follows. First, three types of PCR shown in the following (1), (2) and (3) were performed: (1) pCU563 was used as a template, IM-1 (SEQ ID NO: 21) and IM-2 (primers were used as primers. (SEQ ID NO: 22) and the extension reaction time was 2 minutes; (2) NBRC0988 strain genomic DNA was used as a template, and primers were used with IM-295 (SEQ ID NO: 61) and IM-296 (SEQ ID NO: 62).
  • the extension reaction time was 30 seconds; (3) NBRC0988 strain genomic DNA was used as a template, IM-61 (SEQ ID NO: 56) and IM-62 (SEQ ID NO: 57) were used as primers, and the extension reaction time was 30 seconds. It was.
  • the upstream part and the downstream part of the CuURA3 gene are amplified.
  • PCR of the following (4) was carried out: (4) Using a mixture of the three types of DNA amplified in the above (1), (2) and (3) as a template, IM-295 (sequence) as a primer No. 61) and IM-62 (SEQ ID NO: 57) were used, and the extension reaction time was 3 minutes.
  • the upstream region of CuURA3 gene amplified by (3), the deleted regions in the transformation for one copy first and two copies th CuURA3 gene disruption was performed using the CuURA3 destruction 1-second fragment Therefore, it is considered that the possibility of being incorporated into two copies of the destroyed allele can be reduced.
  • the CuURA3 gene 2 copy disrupted strain of HygBs and G418s was transformed for the 3rd copy of the CuURA3 gene disruption.
  • Genomic DNA was extracted from the obtained transformant, and PCR was carried out with IM-63 (SEQ ID NO: 58) and IM-92 (SEQ ID NO: 59) using this as a template (extension reaction 3.5 minutes).
  • IM-63 SEQ ID NO: 58
  • IM-92 SEQ ID NO: 59
  • HygBs CuURA3 gene 3-copy disrupted strain was cultured overnight in YPD liquid medium, and a portion thereof was applied to YPD medium. Two days later, single colonies were isolated and spread on YPD medium and G418 medium. Then, clones that grew on the YPD medium but did not grow on the G418 medium were isolated. A strain in which pCU595 was eliminated, that is, a strain in which the third copy of the CuURA3 gene of HygBs and G418s was disrupted was obtained.
  • HygBs CuURA3 gene 4 copy-disrupted strain was cultured overnight in YPD liquid medium, and a part thereof was applied to YPD medium. Two days later, single colonies were isolated and spread on YPD medium and G418 medium. Then, clones that grew on the YPD medium but did not grow on the G418 medium were isolated. A strain in which pCU595 was eliminated, that is, a disrupted strain of HygBs and G418s at the fourth copy of CuURA3 gene could be obtained.
  • SC medium SC-Ura medium (medium not containing uracil), which is a non-selective medium of a strain in which the CuURA3 gene is disrupted (HygBs and G418s from which the HPT gene and the APT gene have been removed) using the NBRC0988 strain and the NBRC0988 strain as hosts And the growth ability in 5-FOA medium was examined.
  • these culture medium compositions followed what was described in Methods In Yeast Genetics 1997 Edition (Cold Spring Harbor Laboratory Press). As shown in FIG. 7, only 4 copies of the CuURA3 gene, that is, all the disrupted strains, were different from the other 4 strains including the NBRC0988 strain, and could not grow on the SC-Ura medium, but could grow on the 5-FOA medium.
  • Example 2 Construction of a gene-disrupted strain encoding PDC 2-1. Cloning of a gene encoding PDC Primers IKSM-29 (SEQ ID NO: 1) and IKSM-30 (SEQ ID NO: 2) for amplifying a C-terminal base sequence having a lot of common sequences in ScPDC1 gene and KlPDC1 gene were prepared, and NBRC0988 PCR was performed using the strain genome as a template (elongation time 30 seconds). When the sequence of the amplified DNA fragment of about 220 bp (base pair) (hereinafter referred to as CuP-Fg) was decoded (SEQ ID NO: 3), it was found to be highly homologous to the ScPDC1 gene. From this, this DNA fragment was considered to be a part of the gene encoding PDC.
  • CuP-Fg base pair
  • genomic DNA extracted from Saccharomyces cerevisiae S288C strain (NBRC1136 strain) was digested with Hind III
  • genomic DNA extracted from Candida utilis NBRC0988 was digested with Xba I, Hind III, Bgl II, Eco RI, Bam HI, Digested with Pst I and subjected to 0.8% agarose gel electrophoresis.
  • the separated genomic DNA was transferred to Hybond N + nylon membrane manufactured by Amersham Biosciences according to a conventional method. Radiolabeling of the probe was performed using Random Primer DNA Labeling Kit Ver. The method followed the attached protocol.
  • dCTP As the labeled dCTP, 1.85 MBq of [ ⁇ -32P] dCTP manufactured by Amersham Biosciences was used. Hybridization was performed using Rapid-Hyb buffer according to the attached protocol. However, the hybridization temperature was 60 ° C. The result is shown in FIG.
  • a pBR322 was dephosphorylated after digestion with Bam HI (Nippon Gene), the reactions to link fragments of 5 ⁇ 10 kb of the partial digested DNA with Sau 3AI went. With this solution, 50,000 clones grown on LB + Amp agar were obtained. In addition, less than 5% of the clones were self-closed.
  • a plurality of clones containing a site homologous to the probe sequence were obtained by the colony hybridization method using the aforementioned DNA fragment CuP-Fg as a probe.
  • sequences of these clones were decoded by the primer walking method, one type of contig was completed (SEQ ID NO: 63).
  • SGD Sacharomyces Genome Database
  • sequence 2,246 bases in the upstream region of the gene ORF region described in SEQ ID NO: 63 correspond to the promoter region of the CuPDC1 gene, and the 1076 bases in the downstream region correspond to the terminator region of the CuPDC1 gene.
  • sequences reported here were all contained in the plasmid pCU530 obtained by the colony hybridization method.
  • Plasmid pCU546 for expressing the ScPDC1 gene in Saccharomyces cerevisiae was constructed as follows.
  • a centromeric plasmid pRS316 (Sikorski, R et al., Genetics. 122, 19-27.1989) (having the URA3 gene) that functions in Saccharomyces cerevisiae was cleaved with Cla I and Bam HI.
  • BY4741 Invitrogen
  • PCR was performed with a primer set of IM-135 (SEQ ID NO: 4) and IM-136 (SEQ ID NO: 5) (extension time: 3 minutes). This amplified fragment was digested with Cla I and Bam HI.
  • Plasmid pCU546 was constructed by ligating this DNA fragment with the plasmid fragment previously treated with the restriction enzyme.
  • the SGY107 strain was transformed with pCU546. This strain was transferred to a spore-forming agar medium (0.5 g / L glucose, 1 g / L Yeast Extract, 10 g / L potassium acetate, 20 g / L agarose) and allowed to stand at 25 ° C. for 3 days.
  • a spore-forming agar medium 0.5 g / L glucose, 1 g / L Yeast Extract, 10 g / L potassium acetate, 20 g / L agarose
  • the genomic DNA extracted from the obtained spore was used as a template and subjected to the following two types of PCR (extension time: 2 minutes): (1) IM-19 (SEQ ID NO: 6) and IM-331 (SEQ ID NO: 7) (About 1.5 kb DNA fragment is amplified only in the strain in which the ScPDC1 gene is disrupted in this combination); (2) IM-20 (SEQ ID NO: 8) and IM-334 (SEQ ID NO: 9) (In this combination, a DNA fragment of about 1.5 kb is amplified only in a strain in which the ScPDC5 gene is disrupted).
  • the SGY116 strain was obtained in which DNA fragments were amplified with both primer sets and pCU546 was retained.
  • a hybrid strain of SGY116 strain and BY4742-derived ScPDC6 gene disruption strain (Open BioSystems) was constructed. It was transferred to a sporulation medium and allowed to stand at 25 ° C. for 3 days.
  • the genomic DNA extracted from the obtained spore was used as a template for the following three types of PCR (extension time 2 minutes): (1) of IM-19 (SEQ ID NO: 6) and IM-331 (SEQ ID NO: 7) Primer set; (2) Primer set of IM-20 (SEQ ID NO: 8) and IM-334 (SEQ ID NO: 9); (3) Primer set of IM-339 (SEQ ID NO: 10) and IM-340 (SEQ ID NO: 11) (DNA fragment amplified from strain ScPDC6 gene is destroyed by this combination, larger DNA fragment ScPDC6 gene is amplified by the strain that has not been destroyed (approximately 3.4 kb)).
  • Plasmid pCU655 for expressing the CuPDC1 gene in Saccharomyces cerevisiae was constructed as follows. First, the following PCRs (1), (2) and (3) were performed: (1) IM-135 (SEQ ID NO: 4) and IM-147 (SEQ ID NO: 12) using BY4741 genomic DNA as a template (2) Using the BY4741 strain genomic DNA as a template, IM-150 (SEQ ID NO: 13) and IM-136 (SEQ ID NO: 5) as primers (extension reaction 1 minute) (3) IM-148 (SEQ ID NO: 14) and IM-149 (SEQ ID NO: 15) were used as primers with pCU530 having a putative ORF region of the CuPDC1 gene (extension reaction 2 minutes); Next, PCR was performed using the DNA fragments amplified in (1), (2) and (3) as templates and IM-135 (SEQ ID NO: 4) and IM-136 (SEQ ID NO: 5) as primers.
  • the SGY389 strain in which all of the ScPDC1 gene, ScPDC5 gene, and ScPDC6 gene were disrupted was transformed with pRS313 or pCU655 to obtain SGY393 strain and SGY392 strain, respectively.
  • the BY4741 strain, the BY4742 strain, the ScPDC1 gene disruption strain derived from the BY4741 strain, the ScPDC5 gene disruption strain derived from the BY4742 strain, and the ScPDC6 gene disruption strain derived from the BY4742 strain were able to grow. That is, these strains are uracil-requiring strains.
  • the SGY389 strain in which all of the ScPDC1 gene, the ScPDC5 gene, and the ScPDC6 gene were disrupted, and pRS313 was introduced into the SGY389 strain, which retained pCU546, and the SGY393 strain in which pRS313 was introduced could not grow in a 5-FOA medium.
  • the extension reaction time was 30 seconds; (3) NBRC0988 strain genomic DNA was used as a template, IM-279 (SEQ ID NO: 29) and IM-280 (SEQ ID NO: 30) were used as primers, and the extension reaction time was 30 seconds. It was.
  • the upstream part and the downstream part of the CuPDC1 gene are amplified.
  • PCR of the following (4) was performed: (4) Using a mixture of the three types of DNA amplified in the above (1), (2) and (3) as a template, and using IM-277 ( SEQ ID NO: 27) and IM-280 (SEQ ID NO: 30) were used, and the extension reaction time was 3 minutes.
  • this DNA fragment consisting of the upstream region of the CuPDC1 gene, the loxP, the PGK gene promoter, the HPT gene, the GAP gene terminator, the loxP, and the downstream region of the CuPDC1 gene was obtained in this order.
  • this DNA fragment is referred to as “ CuPDC1 disruption first and second fragment”. If the transformation using this DNA fragment, by duplex homologous recombination upstream region and downstream region of CuPDC1 gene occurs, it is possible to an allele of CuPDC1 gene partially deleted.
  • the NBRC0988 strain was transformed using the first and second fragments of CuPDC1 disrupted as DNA fragments.
  • Genomic DNA was extracted from the NBRC0988 strain and the resulting transformant, and PCR was carried out with IM-281 (SEQ ID NO: 31) and IM-282 (SEQ ID NO: 32) using this as a template (extension reaction: 4 minutes). As shown in FIG. 9, these primers anneal outside the homologous recombination region.
  • a 3.7 kb DNA fragment was amplified in the NBRC0988 strain, and a 3.9 kb and 3.7 kb DNA fragment was amplified in the plurality of transformants. From this, it was found that the desired HygBr CuPDC1 gene 1-copy disruption strain was obtained.
  • Genomic DNA was extracted from the HygBr CuPDC1 gene 1-copy disrupted strain and the HygBs CuPDC1 gene 1-copy disrupted strain. (Elongation reaction 4 minutes). When subjected to 0.8% agarose gel electrophoresis, DNA fragments of 3.9 kb and 3.7 kb were amplified in the former strain, and DNA fragments of 3.7 kb and 1.9 kb were amplified in the latter strain. A strain from which the HPT gene was removed as intended was obtained.
  • a disrupted strain of 1 copy of HyPBs CuPDC1 gene was cultured overnight in YPD liquid medium, and a portion thereof was applied to YPD medium. Two days later, single colonies were separated and applied to G418 medium and YPD medium. As a result, most clones grew on the YPD medium but did not grow on the G418 medium.
  • PCR was performed with certain IM-49 (SEQ ID NO: 23) and IM-52 (SEQ ID NO: 26) (extension reaction: 1 minute).
  • IM-49 SEQ ID NO: 23
  • IM-52 SEQ ID NO: 26
  • HydBs CuPDC1 gene 2-copy disrupted strain was cultured overnight in YPD liquid medium, and a portion thereof was applied to YPD medium. Two days later, single colonies were isolated and spread on YPD medium and G418 medium. Then, clones that grew on the YPD medium but did not grow on the G418 medium were isolated. A strain in which pCU595 was eliminated, that is, a disrupted strain of HyGBs and G418s in the second copy of the CuPDC1 gene could be obtained.
  • a DNA fragment for disrupting the third and fourth copies of the CuPDC1 gene was prepared as follows. First, three types of PCR shown in the following (1), (2) and (3) were performed: (1) pCU563 was used as a template, IM-1 (SEQ ID NO: 21) and IM-2 (primers were used as primers. (SEQ ID NO: 22), and the extension reaction time was 2 minutes; (2) genomic DNA of NBRC0988 strain was used as a template, and IM-277 (SEQ ID NO: 27) and IM-278 (SEQ ID NO: 28) were used as primers.
  • the extension reaction time was 30 seconds; (3) NBRC0988 strain genomic DNA was used as a template, IM-185 (SEQ ID NO: 33) and IM-168 (SEQ ID NO: 34) were used as primers, and the extension reaction time was 30 seconds. It was. In (2) and (3), the upstream part and the downstream part of the CuPDC1 gene are amplified. Furthermore, PCR of the following (4) was performed: (4) Using a mixture of the three types of DNA amplified in the above (1), (2) and (3) as a template, IM-277 ( SEQ ID NO: 27) and IM-168 (SEQ ID NO: 34) were used, and the extension reaction time was 3 minutes.
  • the CuPDC1 gene 2-copy disruption strain of HygBs and G418s was transformed for the third copy of the CuPDC1 gene.
  • Genomic DNA was extracted from the obtained transformant, and PCR was carried out using IM-281 (SEQ ID NO: 31) and IM-282 (SEQ ID NO: 32) as a template (extension reaction: 4 minutes).
  • IM-281 SEQ ID NO: 31
  • IM-282 SEQ ID NO: 32
  • HygBs CuPDC1 gene 3-copy disrupted strain was cultured overnight in YPD liquid medium, and a part thereof was applied to YPD medium. Two days later, single colonies were isolated and spread on YPD medium and G418 medium. Then, clones that grew on the YPD medium but did not grow on the G418 medium were isolated. A strain in which pCU595 was eliminated, that is, a strain in which the third copy of the CuPDC1 gene of HygBs and G418s was disrupted was obtained.
  • a CuPDC1 gene 3 copy disrupted strain of HygBs and G418s was transformed. Genomic DNA was extracted from the obtained transformant, and PCR was carried out using IM-281 (SEQ ID NO: 31) and IM-282 (SEQ ID NO: 32) as a template (extension reaction: 4 minutes). When subjected to 0.8% agarose gel electrophoresis, three types of DNA fragments of 4.4 kb, 2.4 kb, and 1.9 kb were amplified in a plurality of transformants. From this, it was found that the desired HygBr CuPDC1 gene 4 copy disruption strain was obtained. Also, DNA fragments of 3.7kb was observed in a wild strain NBRC0988 strain, that is, from the DNA fragment allele not destroyed is amplified is not detected, this strain is a CuPDC1 gene completely disrupted strain it was thought.
  • a 4 copy disrupted strain of HyPBs CuPDC1 gene was cultured overnight in a YPD liquid medium, and a portion thereof was applied to the YPD medium. Two days later, single colonies were isolated and spread on YPD medium and G418 medium. Then, clones that grew on the YPD medium but did not grow on the G418 medium were isolated. A strain from which pCU595 was eliminated, that is, a disrupted strain of HyGBs and G418s at the fourth copy of the CuPDC1 gene could be obtained. This strain was named Cu8402g strain.
  • CuPDC1 gene disrupted strain
  • the CuPDC1 gene is thought to encode a polypeptide having pyruvate decarboxylase activity that catalyzes the conversion of pyruvate to acetaldehyde.
  • acetaldehyde is further metabolized to ethanol by alcohol dehydrogenase. That is, it is expected that by destroying the CuPDC1 gene, the metabolic pathway to ethanol is shut down and the ethanol production ability is reduced.
  • the CuPDC1 gene 1-copy disrupted strain, the CuPDC1 gene 2-copy-disrupted strain, the CuPDC1 gene 3-copy-disrupted strain, and the CuPDC1 gene completely disrupted strain Cu8402g strain were subjected to fermentation tests (all strains of HygBs and G418s), ethanol production ability and organic acid was analyzed.
  • the yeast cells thus obtained were inoculated into 50 mL of YPD10 (100 g / L glucose, 10 g / L yeast extract, 20 g / L peptone) medium in a 100 mL Erlenmeyer flask with baffle so that the initial OD600 was 0.5. Then, the cells were cultured at 30 ° C. for 48 hours with an amplitude of 35 mm and a shaking speed of 80 rpm using a table culture apparatus manufactured by TAITEC. The culture solution was filtered through a 0.22 ⁇ m filter, and the ethanol concentration, aroma component concentration, and various organic acid concentrations in the medium were measured. The results are shown in Table 1. Various data are values calculated from the results of three independent trials.
  • NBRC0988 strain produced 3.96 g / L ethanol, but Cu8402g strain could not detect ethanol.
  • the concentrations of ethanol and acetic acid in which acetaldehyde was a precursor were both lower in the Cu8402g strain than in the NBRC0988 strain.
  • the pyruvate concentration of NBRC0988 strain 48 hours after the start of fermentation was 462.4 mg / L, whereas it was observed that 3659.9 mg / L was present in the Cu8402g strain.
  • the L-lactic acid concentration was lower in both the NBRC 0988 strain and the Cu8402g strain than in the medium without yeast added.
  • the concentration of D-lactic acid decreased in the NBRC0988 strain, but increased in the Cu8402g strain, compared to the medium without yeast added.
  • the CuPDC1 gene encodes pyruvate decarboxylase, which is involved in the conversion of pyruvate to acetaldehyde, and the activity of the enzyme in the cell is lost by completely deleting this gene. Or it is thought that it originates in having fallen.
  • the CuPDC1 gene 1-copy disrupted strain, the CuPDC1 gene 2-copy-disrupted strain, and the CuPDC1 gene 3-copy disrupted strain had the same ability to produce ethanol as the Candida utilis wild strain NBRC0988.
  • Example 3 Construction of Candida utilis strain into which L-LDH gene was introduced 3-1.
  • Design of DNA sequence of L-LDH gene encoding polypeptide having L-lactate dehydrogenase activity Polypeptide having L- lactate dehydrogenase activity derived from bovine, which is a higher eukaryote, is transformed into yeast Candida utilis.
  • the activity of lactate dehydrogenase described in JP-A No. 2003-259878 and described in the amino acid sequence of a bovine-derived enzyme (DDBJ / EMBL / GenBank Accession number: AAI46211.1) is used.
  • Takara Bio Inc. was requested to design and synthesize a new gene sequence that does not exist in nature, using the following items as design guidelines.
  • the Kpn I recognition site indicates the sequence GGTACC from the first g to the sixth c in the nucleotide sequence of SEQ ID NO: 36
  • the Xba I recognition site is from the seventh t in the nucleotide sequence of SEQ ID NO: 36.
  • the Bam HI recognition site represents the sequence GGATCC from the 1,015th g to the 1,020th c in the nucleotide sequence of SEQ ID NO: 36
  • the Sac I recognition site is The sequence GAGCTC from the 1,021st g to the 1,026th c in the nucleotide sequence of SEQ ID NO: 36 is shown.
  • the synthesized DNA sequence is shown in SEQ ID NO: 36.
  • the amino acid sequence corresponding to the nucleotide sequence from the 13th a to the 1,011st a encoding the above-mentioned polypeptide having the activity of L-lactate dehydrogenase is derived from bovine itself. (DDBJ / EMBL / GenBank Accession number: AAI46211.1). Note that the 1,009 to 1,011st TGAs of SEQ ID NO: 36 and the subsequent 1,012 to 1,014th TGAs are translation end codons.
  • the plasmid having this DNA fragment was named pCU669 (also known as GA07033).
  • SEQ ID NO: 36 the nucleotide sequence (codon optimized sequence) from the 13th a to the 1,011st a (upstream TGA of the two translation termination codons) is represented by SEQ ID NO: 38
  • the alignment of the nucleotide sequence (wild-type sequence derived from bovine) is shown in FIG. Both sequences had the same 751 bases out of 999 bases, and the homology was 75%.
  • the upper sequence is a nucleotide sequence from the 13th a to the 1011st a (upstream TGA of two translation termination codons) in SEQ ID NO: 36.
  • the lower sequence of FIG. 1 is the base sequence of L-LDH-A gene derived from Bos taurus represented by SEQ ID NO: 38 (extracted from DDBJ / EMBL / GenBank Accession number: BC146210.1). No. 35).
  • PCR was performed with IM-345 (SEQ ID NO: 39) and IM-346 (SEQ ID NO: 40) to amplify the downstream region of the CuPDC1 gene (extension reaction 1 minute). After digesting the amplified fragment with Bss HII, and ligated with pBluescriptIISK it was completely digested with Bss HII (+) (TOYOBO Co.). The resulting plasmid was named pCU670 (alias: pPt).
  • a plasmid pCU621 in which the PGK gene promoter of the plasmid pCU563 for preparing a DNA fragment for gene disruption was elongated was constructed by the following procedure. Using the plasmid pGKHPT1 having the PGK gene promoter and hygromycin resistance gene HPT gene described in Shimada et al. (Appl. Environ. Microbiol. 64, 2676-2680) as a template, By performing PCR (extension reaction 2 minutes) with the primer set of (SEQ ID NO: 17), DNA fragments consisting of loxP, PGK gene promoter, and HPT gene were sequentially amplified.
  • PCR extension reaction 30 seconds was carried out using the primer set of IM-54 (SEQ ID NO: 19) and IM-55 (SEQ ID NO: 20) using pGAPPT10 (Kondo et al., Nat. Biotechnol. 15, 453-457) as a template.
  • pGAPPT10 Kanet al., Nat. Biotechnol. 15, 453-457
  • a DNA fragment consisting of the GAP gene terminator and loxP was amplified.
  • IM-1 SEQ ID NO: 21
  • IM-2 SEQ ID NO: 22
  • pCU621 (alias: pNNLHL).
  • PCR was performed using pCU621 as a template and IM-349 (SEQ ID NO: 42) and IM-350 (SEQ ID NO: 43) as primers (extension reaction 2.5). Min); (2) PCR was carried out using pPGKPT2 (Japanese Patent Laid-Open No.
  • PCU672 (aka: pPGtH) PGK gene terminator was obtained by digesting with Bam HI and Cla I, loxP, PGK gene promoter, HPT gene, GAP gene terminator, a DNA fragment of about 3kbp consisting loxP, Bam HI and Cla
  • a new plasmid pCU675 (also known as pPGtHPt) was constructed by ligation to pCU670 digested with I.
  • PCR was performed using pCU530 as a template and IM-341 (SEQ ID NO: 46) and IM-342 (SEQ ID NO: 47) as primers (extension reaction 2 minutes), CuPDC1 gene promoter region was amplified; (2) PCR was performed using pCU669 (also known as GA07033) as a template and IM-343 (SEQ ID NO: 48) and IM-379 (SEQ ID NO: 49) as primers (extension reaction 1 min) L-LDH structural gene was amplified; (3) The DNA fragment amplified in (1) and (2) was used as a template, and IM-341 (SEQ ID NO: 46) and IM-379 (SEQ ID NO: 49) were used as primers.
  • PCR was performed using (extension reaction 3 minutes).
  • the DNA fragment amplified in (3) was digested with Not I and Bgl II, and the obtained DNA fragment was ligated to pCU675 (also called pPGtHPt) cleaved with Not I and BamH I.
  • the resulting plasmid PCU681 (aka: pPLPGtHPt) (FIG. 10) is the Bss HII site of pBluescriptIISK (+), in order CuPDC1 gene promoter region, L-LDH structural gene, PGK gene terminator, loxP, PGK gene promoter, HPT gene A DNA fragment consisting of the GAP gene terminator, loxP, and the downstream region of the CuPDC1 gene has been inserted.
  • NBRC0988 shares at Candida utilis pCU681 was digested with the introduction Bgl II of the L-LDH gene into the wild strain NBRC0988 Ltd. (pPLPGtHPt) 3 ⁇ g.
  • PCR was performed using the DNA extracted from the obtained transformant as a template and IM-362 (SEQ ID NO: 50) and IM-174 (SEQ ID NO: 51) as a primer set (extension reaction 4 minutes).
  • a transformant Pj0202 strain in which a 3.6 kb DNA fragment that is not amplified in the NBRC0988 strain was amplified was obtained.
  • PCR was carried out using IM-163 (SEQ ID NO: 52) and IM-164 (SEQ ID NO: 53) as a primer set (elongation reaction 30 seconds), a DNA fragment of about 500 bp was amplified. This indicates that the Pj0202 strain has at least one copy of the undisrupted CuPDC1 gene.
  • the Pj0404 strain is a strain into which at least one copy of the L-LDH gene has been introduced.
  • the HPT gene expressed in this study can select a transformant exhibiting the HygBr phenotype by introducing only one copy
  • the Pj0404 strain is a strain into which one copy of the L-LDH gene is incorporated. Conceivable.
  • IM-281 SEQ ID NO: 31
  • IM-282 SEQ ID NO: 32
  • the Pj0404 strain was transformed with the Cre recombinase expression plasmid pCU595 to obtain a HygBs and G418r clone.
  • the clone was cultured overnight in a YPD liquid medium, and a part thereof was applied to the YPD medium. Two days later, single colonies were isolated and spread on YPD medium and G418 medium. Then, clones that grew on the YPD medium but did not grow on the G418 medium were isolated.
  • Pj0707a strain As a result of PCR using DNA extracted from this clone Pj0707a strain as a template and IM-362 (SEQ ID NO: 50) and IM-174 (SEQ ID NO: 51) as a primer set (extension reaction 4 minutes), a DNA of 1.2 kb was amplified.
  • Pj0707a strain has a HygBs and G418s phenotype, destroyed all CuPDC1 gene and a strain CuPDC1 gene promoter inducible L-LDH gene integrated was introduced into CuPDC1 locus.
  • the Pj0707a strain was transformed with 3 ⁇ g of pCU681 (pPLPGtHPt) digested with Bgl II. PCR was carried out using the DNA extracted from the obtained HygBr transformant as a template and IM-362 (SEQ ID NO: 50) and IM-174 (SEQ ID NO: 51) as a primer set (extension reaction: 4 minutes). As a result, a transformant Pj0957 strain was obtained in which two types of DNA fragments of 3.6 kb and 1.2 kb were amplified.
  • This strain L-LDH gene is a strain incorporated in CuPDC1 locus different alleles and CuPDC1 locus L-LDH gene is integrated at Pj0457 strain. Expression of the L-LDH gene introduced by this transformation is also controlled by the original CuPDC1 gene promoter.
  • the Pj0957 strain is a strain into which at least two copies of the L-LDH gene have been introduced.
  • the HPT gene expressed in this study can select a transformant exhibiting a HygBr phenotype by introducing only one copy
  • the Pj0957 strain is a strain into which two copies of the L-LDH gene are incorporated. Conceivable.
  • Cre-loxP system in Candida utilis can be used not only for gene destruction but also for introduction of arbitrary genes.
  • Example 4 Fermentation Test in Flask As shown below, NBRC0988 strain and the newly constructed recombinant yeast strain were evaluated for lactic acid production ability.
  • the ethanol concentration in the medium was measured using GC or HPLC, and the glucose concentration and L-lactic acid concentration in the medium were measured using Biochemistry Analyzer (BA) manufactured by Wyeth Japan.
  • BA Biochemistry Analyzer
  • F-kit D-lactic acid / L-lactic acid manufactured by International Co., Ltd. the method followed the attached protocol.
  • Other various organic acid production amounts were performed using HPLC.
  • a culture solution previously filtered through a 0.22 ⁇ m filter was used as a sample subjected to analysis. Each type of data is an average of the results of independent trials at least three times.
  • the bacterial cells thus obtained were inoculated into a 15 mL medium containing 100 to 115 g / L glucose in a baffled 100 mL Erlenmeyer flask and fermented by a table culture apparatus manufactured by TAITEC at an amplitude of 35 mm and 80 rpm. .
  • the amount of cells to be inoculated for fermentation by the preculture was planted so that OD600 would be 10 unless otherwise specified.
  • calcium carbonate was added to the medium to a concentration of 4.5% (w / v) as a neutralizing agent.
  • the temperature at the time of fermentation was 25 degreeC, 30 degreeC, or 35 degreeC.
  • 10 g / L yeast extract and 20 g / L peptone are added to the medium, and the medium having this composition is hereinafter referred to as YPD10 medium.
  • the total sugar conversion rate (%) is a value obtained by dividing the weight of L-lactic acid in the medium by the initial glucose weight in the medium and multiplying by 100.
  • the optical purity (%) of L-lactic acid is a value obtained by dividing the value of L-lactic acid concentration by the value obtained by adding D-lactic acid concentration to L-lactic acid concentration and multiplying by 100.
  • NBRC0988 strain, Cu8402g strain, and Pj0202 strain were examined for glucose concentration, ethanol concentration, L-lactic acid concentration, D-lactic acid concentration, and other organic acid concentrations in the medium 24 hours after the start of fermentation.
  • Table 2 shows the results when the fermentation temperature was 30 ° C.
  • the wild strain NBRC0988 strain consumed almost all glucose and produced ethanol.
  • the concentration of L-lactic acid was decreased.
  • the Pj0202 strain is a strain having both the undisrupted CuPDC1 gene and the L-LDH gene, and the strain produced both ethanol and L-lactic acid.
  • the L-lactic acid concentration in the medium from 4 hours to 13 hours after the start of fermentation was measured every hour.
  • the Pj0404 strain was set to one condition of 30 ° C
  • the Pj0957 strain was set to two conditions of 30 ° C and 35 ° C.
  • a first-order approximation formula was also obtained for each data. The results are shown in FIG.
  • the glucose concentration, ethanol concentration, L-lactic acid concentration, D-lactic acid concentration, and other organic acid concentrations in the medium 24 hours after the start of fermentation were examined.
  • the Pj0404 strain was set to one condition of 30 ° C
  • the Pj0957 strain was set to two conditions of 30 ° C and 35 ° C. The results are listed in Table 3.
  • the amount of lactic acid produced was higher when the Pj0957 strain was cultured at 35 ° C than when the Pj0957 strain was cultured at 30 ° C. From this, it was considered that the fermentation temperature is preferably 35 ° C rather than 30 ° C for the production of L-lactic acid.
  • the Pj0957 strain was fermented under the conditions with and without the neutralizer.
  • the fermentation temperature was 35 ° C.
  • Table 4 shows the results of examining the glucose concentration, ethanol concentration, L-lactic acid concentration, D-lactic acid concentration, and other organic acid concentrations in the medium after 33 hours.
  • the Pj0957 strain in which the CuPDC1 gene has been completely disrupted and the L-LDH gene has been introduced is capable of rapidly removing L-lactic acid from a medium containing 108.7 g / L glucose at a high efficiency of 95.10% in terms of total sugar. Manufactured out of.
  • the initial OD was 10
  • the fermentation temperature was 25 ° C.
  • the concentration of L-lactic acid in YPD10 medium (containing 100 g / L glucose) supplemented with 4.5% (w / v) calcium carbonate was determined. Measurements were made every 2 hours from 4 hours to 12 hours after the start. The first-order approximate expression was obtained, and the L-lactic acid production rate per unit time was calculated to be 3.0 g / L / h. Further, when the L-lactic acid concentration at 33 hours after the start of fermentation was examined, the L-lactic acid concentration in the medium was 95 g / L. Although the L-lactic acid production rate was inferior to the conditions of 25 ° C. and 30 ° C. and 35 ° C., a considerable amount of L-lactic acid was produced. Therefore, it has been clarified that the Pj0957 strain can produce L-lactic acid with high efficiency at a wide temperature range of 25 ° C to 35 ° C.
  • the amount of cells used for fermentation was examined.
  • the Pj0404 strain and the Pj0957 strain were inoculated at an OD600 of 2, 5, or 10 at the start of fermentation, and the glucose concentration and L-lactic acid concentration in the medium 42.5 hours after the start of fermentation were examined.
  • a medium with a sugar concentration of 100 g / L was used.
  • the liquid volume was 15 mL.
  • the OD2 condition is 88.2 g / L
  • the OD5 condition is 92.0 g / L
  • the OD10 condition is 93.0 g / L
  • the Pj0957 strain is the OD2 condition, 93.8 g / L
  • the OD5 condition is It became 92.8 g / L on condition of 92.2 g / L and OD10. This indicates that even when the initial OD is lower than 10, L-lactic acid can be produced with the efficiency almost the same as the OD10 condition by increasing the fermentation time.
  • Example 5 Fermentation test using a jar fermenter As shown below, the lactic acid-producing ability of the Pj0957 strain was evaluated. The ethanol concentration in the medium was measured using GC or HPLC, and the glucose concentration and L-lactic acid concentration in the medium were measured using Biochemistry Analyzer (BA) manufactured by Wyeth Japan. For the discrimination of optical isomers, J. et al. K. Using F-kit D-lactic acid / L-lactic acid manufactured by International Co., Ltd., the method followed the attached protocol. Other various organic acid production amounts were performed using HPLC. As a sample subjected to analysis, a culture solution previously filtered through a 0.22 ⁇ m filter was used.
  • BA Biochemistry Analyzer
  • a 3 mL YPD liquid medium in a 15 mL tube from a yeast cell cultured on a YPD agar medium for 2 to 3 days at 30 ° C. with a platinum loop.
  • Pre-culture was performed for 6 to 15 hours at an amplitude of 35 mm, 130 rpm, and 30 ° C. using a culture apparatus.
  • 50 mL of YPD liquid medium is used as a medium, and the cells of the pre-pre-culture are inoculated into a new medium so that the OD600 is about 0.1, and usually at 130 rpm and 30 ° C.
  • the cells were cultured for 12 to 18 hours and cultured until the logarithmic growth phase or the stationary phase where OD600 was 10 to 25. In this culture, a Sakaguchi flask was used.
  • the pre-culture conditions for preparing the cells to be used for fermentation were as follows: YPD medium 2 in a 5 L jar fermenter (desktop culture device, Bioneer-C 5 L (S), manufactured by Maruhishi Bioengineering). 5 L was inoculated with the entire amount of the cells previously cultured and cultured at 400 rpm, 30 ° C., 1 vvm for 21 to 27 hours. At this time, the OD600 was usually 10-25. Then, the cells were collected by centrifugation under conditions of 4 ° C.
  • the bacterial cells thus obtained were inoculated into a 2 L medium containing 100 to 120 g / L glucose, and a 5 L capacity jar fermenter (desktop culture device, Bioneer-C 5 L (S), Maruhishi Bioengineering Co., Ltd. Made). In addition, it planted so that the quantity which inoculates the microbial cell obtained by preculture for fermentation may be set to OD600.10. Pj0957 strain was used for this fermentation test.
  • the stirring speed was 250 rpm, the temperature was 35 ° C., and the air flow rate was 1 vvm.
  • the total sugar conversion rate (%) is a value obtained by dividing the weight of L-lactic acid in the medium by the initial glucose weight in the medium and multiplying by 100.
  • the optical purity (%) of L-lactic acid is a value obtained by dividing the value of L-lactic acid concentration by the value obtained by adding D-lactic acid concentration to L-lactic acid concentration and multiplying by 100.
  • FIG. 12 shows the change over time in the amount of glucose and the amount of L-lactic acid in the medium.
  • FIG. 13B shows the results of three independent experiments.
  • the total sugar conversion rate after 24 hours of culture is 90.4 ⁇ 8.1%.
  • Example 6 Evaluation of L-lactic acid-producing ability of Pj0957 strain in a medium using sucrose as a single sugar source
  • the lactic acid-producing ability of Pj0957 strain was evaluated as described below.
  • the L-lactic acid concentration in the medium was measured using a biochemistry analyzer (BA) manufactured by Wyeth Japan.
  • BA biochemistry analyzer
  • F-kit D-lactic acid / L-lactic acid manufactured by International Co., Ltd. the method followed the attached protocol.
  • Other various organic acid production amounts were performed using HPLC.
  • a culture solution previously filtered through a 0.22 ⁇ m filter was used as a sample subjected to analysis. Each type of data is an average of the results of independent trials at least three times.
  • the bacterial cells thus obtained were inoculated into a 15 mL medium containing 100 g / L sucrose in a 100 mL Erlenmeyer flask with baffles, and fermented at 35 mm, 80 rpm, and 35 ° C. using a table-top culture apparatus manufactured by TAITEC. It was. The amount of cells to be inoculated for fermentation by the preculture was planted so that OD600 would be 10 unless otherwise specified. Unless otherwise specified, calcium carbonate was added to the medium to a concentration of 4.5% (w / v) as a neutralizing agent. The temperature during fermentation was 30 ° C. or 35 ° C. In addition to sucrose at the above concentration, 10 g / L yeast extract and 20 g / L peptone are added to the medium, and the medium having this composition is hereinafter referred to as YPsuc10 medium.
  • the total sugar conversion rate (%) is a value obtained by dividing the L-lactic acid weight in the medium by the initial sucrose weight in the medium, and further multiplying by (342/360) and 100.
  • the optical purity (%) of L-lactic acid is a value obtained by dividing the value of L-lactic acid concentration by the value obtained by adding D-lactic acid concentration to L-lactic acid concentration and multiplying by 100.
  • the total sugar conversion rate was 94.8 ⁇ 3.5%, and the optical purity of L-lactic acid exceeded 99.9%.
  • the ethanol concentration was quantified by HPLC, the ethanol concentration was less than the detection limit (less than 0.01 g / L).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Botany (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Disclosed is a strain of Candida utilis yeast produced by a promoter sequence that enables the expression of a gene that codes for a polypeptide that has lactic acid dehydrogenase activity being transformed by at least one copy of the gene that has been functionally bound. The yeast strain is useful for manufacturing lactic acid with high efficiency.

Description

キャンディダ・ユティリスによる高効率乳酸製造法Highly efficient lactic acid production method by Candida utilis 関連出願の参照Reference to related applications
 本特許出願は、先に出願された日本国における特許出願である特願2009-39820号(出願日:2009年2月23日)に基づく優先権の主張を伴うものである。この先の特許出願における全開示内容は、引用することにより本明細書の一部とされる。 This patent application is accompanied by a claim of priority based on Japanese Patent Application No. 2009-39820 (filing date: February 23, 2009) which is a previously filed Japanese patent application. The entire disclosure of this earlier patent application is hereby incorporated by reference.
発明の背景Background of the Invention
 技術分野
 本発明は、クラブトゥリー陰性酵母であるキャンディダ・ユティリス(Candida utilis)を宿主とした乳酸の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing lactic acid using Candida utilis which is a club tree negative yeast as a host.
 背景技術
 近年、環境問題への取り組みから、生分解性プラスチックへの関心が高まっている。生分解性プラスチックは資源を自然循環でき、自然に分解していく点から環境に対する負荷が少ない。代表的な生分解性プラスチックの原料であるポリ乳酸はL-乳酸を重合して製造するが、乳酸の光学純度が高いほど安定したポリ乳酸ができる。通常、乳酸はグルコース等の糖質を基質とした微生物の代謝産物として得られる。特に乳酸菌と呼ばれる一群の細菌類は乳酸を特異的に製造することが古くから知られており、ヨーグルト等の製造に関わっている。しかし、乳酸菌は発酵過程においてL-乳酸の他にD-乳酸も数%副生するので、製造した乳酸の光学純度が低下してしまう。
Background Art In recent years, interest in biodegradable plastics has increased due to environmental efforts. Biodegradable plastics can circulate resources naturally and have a low impact on the environment because they decompose naturally. Polylactic acid, which is a typical raw material for biodegradable plastics, is produced by polymerizing L-lactic acid. The higher the optical purity of lactic acid, the more stable polylactic acid can be produced. Usually, lactic acid is obtained as a metabolite of a microorganism using a carbohydrate such as glucose as a substrate. In particular, a group of bacteria called lactic acid bacteria has long been known to specifically produce lactic acid, and is involved in the production of yogurt and the like. However, since lactic acid bacteria by-produce several percent of D-lactic acid in addition to L-lactic acid during the fermentation process, the optical purity of the produced lactic acid is lowered.
 有用物質の製造には酵母がしばしば用いられている。酵母は一般に細菌よりも高い細胞密度で培養することができ、かつ連続培養も可能である。また、酵母は蛋白質を培地中に分泌し、分泌された蛋白質は糖鎖による修飾を受ける。このため、酵母による蛋白質の生産は、このような修飾が生物活性に重要である場合に有利である。 Yeast is often used for the production of useful substances. In general, yeast can be cultured at a higher cell density than bacteria, and continuous culture is also possible. Yeast secretes proteins into the medium, and the secreted proteins are modified by sugar chains. For this reason, protein production by yeast is advantageous when such modifications are important for biological activity.
 酵母のうち、今日まで最も良く研究され、遺伝学的知見が蓄積しているものにはサッカロマイセス属酵母があり、この酵母は種々の物質生産の宿主として検討がなされている。
また、近年、サッカロマイセス属酵母以外の酵母としてピキア属酵母、ハンセヌラ属酵母、クルイベロマイセス属酵母、キャンディダ属酵母などのいくつかの種について、それらを形質転換する手法が開発され、有用物質生産の宿主として検討されている。このうち、キャンディダ属酵母は、特に、炭素資化域が広いなど、サッカロマイセス属酵母にない特性を有している。
Among the yeasts that have been most well studied to date and have accumulated genetic knowledge, there is a yeast of the genus Saccharomyces, which has been studied as a host for the production of various substances.
In recent years, methods for transforming several species such as Pichia yeast, Hansenula yeast, Kluyveromyces yeast, Candida yeast as yeast other than Saccharomyces yeast have been developed and are useful substances. It has been studied as a production host. Among these, Candida yeast has characteristics that are not found in Saccharomyces yeast, such as a wide carbon utilization range.
 キャンディダ属酵母の中でも、キャンディダ・ユティリスは、キシロースをはじめとするペントースに対する優れた資化性を示す。また、サッカロマイセス酵母と異なり、好気的条件下での培養でエタノールを製造せず、それによる増殖阻害も受けないことから、高密度での連続培養による効率的な菌体製造が可能である。従って、キャンディダ・ユティリスは、かつて蛋白質源として注目され、ペントースを多く含む広葉樹の糖化液や亜硫酸パルプ廃液を糖源とした菌体の工業生産が行われていた。また、この酵母はアメリカFDA(Food and Drug Administration)により、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)、サッカロマイセス・フラジリス(Saccharomyces fragilis)とともに、食品添加物として安全に使用できる酵母として認められている。実際に、キャンディダ・ユティリスは、ドイツをはじめとして、アメリカや台湾、ブラジルなど世界各国で製造され、食飼料として使用されている。また、このような微生物蛋白質としての利用以外にも、キャンディダ・ユティリスは、ペントースやキシロースの発酵株、エチルアセテート、L-グルタミン、グルタチオン、インベルターゼ等の製造株として広く産業界で利用されてきた。 Among the Candida genus yeasts, Candida utilis exhibits excellent assimilability to pentose including xylose. In addition, unlike Saccharomyces yeast, ethanol is not produced by culturing under aerobic conditions and growth inhibition is not caused thereby, so that efficient microbial cell production by continuous culture at high density is possible. Therefore, Candida utilis has once attracted attention as a protein source, and industrial production of microbial cells using a saccharified solution of broad-leaved trees containing a large amount of pentose and a sulfite pulp waste solution as a sugar source has been performed. In addition, the yeast by the United States FDA (Food and Drug Administration), Saccharomyces cerevisiae (Saccharomyces cerevisiae), along with the Saccharomyces fragilis (Saccharomyces fragilis), has been recognized as safe yeast that can be used as a food additive. In fact, Candida utilis is manufactured in various countries around the world, including Germany, the United States, Taiwan, and Brazil, and is used as a diet. In addition to its use as a microbial protein, Candida utilis has been widely used in industry as a production strain for pentose and xylose fermentation strains, ethyl acetate, L-glutamine, glutathione, invertase and the like. .
 酵母を用いて乳酸を製造する試みとしては、乳酸製造能を持たない酵母に、外来の乳酸脱水素酵素(LDH)の活性を有するポリペプチドをコードする遺伝子を導入し乳酸を製造する技術が開発されている。このような遺伝子操作がなされた酵母は、グルコースからピルビン酸を経て、乳酸を製造することができる。酵母の中でも最も研究が進んでいるサッカロマイセス・セレビシエ(Saccharomyces cerevisiae)は、ピルビン酸からアセトアルデヒドを経てエタノールを製造するアルコール発酵を行う能力が旺盛であるため、基質となるグルコースからの乳酸製造効率が低下してしまう。そこでアルコール発酵を抑制するために、サッカロマイセス・セレビシエの染色体中のピルビン酸脱炭酸酵素(PDC)の活性を有するポリペプチドをコードする遺伝子を破壊することによって、その発現を抑制する試みがなされてきた(特表2001-516584号公報;特表2003-500062号公報)。しかしながら、サッカロマイセス・セレビシエは高グルコース下でエタノール発酵依存的生育を行う性質(クラブトゥリー陽性効果)を持つため、PDC遺伝子の破壊は乳酸製造に貢献したが、細胞増殖の抑制を同時に引き起こすという負の効果ももたらした。 As an attempt to produce lactic acid using yeast, a technology for producing lactic acid by introducing a gene encoding a polypeptide having an activity of an exogenous lactate dehydrogenase (LDH) into yeast that does not have the ability to produce lactic acid has been developed. Has been. Yeast that has been subjected to such genetic manipulation can produce lactic acid from glucose via pyruvic acid. Saccharomyces cerevisiae ( Saccharomyces cerevisiae ), which is the most studied in yeast, has a strong ability to perform alcoholic fermentation to produce ethanol from pyruvic acid via acetaldehyde, thus reducing the efficiency of lactic acid production from glucose as a substrate Resulting in. Therefore, in order to suppress alcohol fermentation, attempts have been made to suppress its expression by destroying a gene encoding a polypeptide having pyruvate decarboxylase (PDC) activity in the chromosome of Saccharomyces cerevisiae. (Japanese Patent Publication No. 2001-516584; Japanese Patent Publication No. 2003-500062). However, because Saccharomyces cerevisiae has the property of growing dependent on ethanol fermentation under high glucose (crab tree positive effect), the disruption of the PDC gene contributed to lactic acid production, but it also negatively caused the suppression of cell proliferation. The effect was also brought.
 一方、クラブトゥリー効果陰性酵母を用いた例としては、少なくともPDC遺伝子を破壊したクルイベロマイセス属酵母菌株を用いて乳酸を製造する試みがなされているが(特表2001-516584号公報;特表2005-528106号公報)、例えば攪拌タンク発酵槽での発酵時間が長い等の欠点があった。 On the other hand, as an example of using the club Tree effect negative yeast, at least a PDC gene using the disrupted Kluyveromyces yeast strain attempt to produce lactic acid it has been made (Kohyo 2001-516584 JP; Laid Table 2005-528106), for example, had a drawback such as a long fermentation time in a stirred tank fermenter.
 また、クラブトゥリー効果陰性酵母であるキャンディダ属の組換え酵母を宿主とした乳酸の製造例として、キャンディダ・ソノレンシスを用いた報告例があるが(特開2007-111054号公報;特表2005-518197号公報)、乳酸製造効率は低率であり、製造される乳酸の濃度は低く、あるいは乳酸製造に長時間を要する。 In addition, as an example of producing lactic acid using Candida recombinant yeast, which is a clubtree-negative yeast, as a host, there is a report using Candida sonorensis (Japanese Patent Laid-Open No. 2007-1111054; Special Table 2005). No. 518197), the lactic acid production efficiency is low, the concentration of lactic acid produced is low, or it takes a long time to produce lactic acid.
 さらに、このようなクラブトゥリー効果陰性の乳酸製造酵母を用いて、モラセスの主要構成糖であるスクロースを炭素源として含む培地において高い効率で乳酸を製造した例は報告されていない。 Furthermore, no example of producing lactic acid with high efficiency in a medium containing sucrose, which is a main constituent sugar of molasses, as a carbon source using such a lactic acid-producing yeast having a negative club tree effect has been reported.
 本発明者らは、乳酸脱水素酵素活性を有するポリペプチドをコードする遺伝子を発現可能に備えるキャンディダ・ユティリス(Candida utilis)の酵母菌株を形質転換により作出し、それを培養することで、より効率的に乳酸を製造しうることを見出した。本発明はこの知見に基づくものである。 The present inventors have produced a yeast strain of Candida utilis comprising a gene encoding a polypeptide having lactate dehydrogenase activity so that it can be expressed by transformation, and cultivating the yeast strain. It has been found that lactic acid can be produced efficiently. The present invention is based on this finding.
 従って、本発明は、クラブトゥリー効果陰性酵母であるキャンディダ・ユティリスを用いて作出した、乳酸を高い効率で製造する酵母菌株、ならびに低コストで高収率な乳酸の製造方法を提供することを目的とする。 Therefore, the present invention provides a yeast strain produced using Candida utilis which is a club tree effect negative yeast and producing lactic acid with high efficiency, and a method for producing lactic acid with low cost and high yield. Objective.
 そして、本発明による酵母菌株は、乳酸脱水素酵素の活性を有するポリペプチドをコードしている遺伝子の発現を可能にするプロモーター配列が機能的に結合した該遺伝子の少なくとも1コピーにより形質転換されてなる、キャンディダ・ユティリスの酵母菌株である。 The yeast strain according to the present invention is transformed with at least one copy of the gene operably linked to a promoter sequence enabling expression of a gene encoding a polypeptide having lactate dehydrogenase activity. The yeast strain of Candida utilis.
 さらに、本発明による乳酸製造法は、本発明による酵母菌株を培養することを含んでなる。 Furthermore, the method for producing lactic acid according to the present invention comprises culturing the yeast strain according to the present invention.
 本発明によれば、乳酸製造能を備えた新規キャンディダ・ユティリス株が提供され、この酵母菌株を適切な条件で発酵に用いることにより、L-乳酸を短時間で効率的に製造することが可能となる。本発明によれば、クラブトゥリー効果陰性酵母であるキャンディダ・ユティリスを用いた乳酸製造法において、エタノールや各種有機酸といった副産物の生成を抑えつつ、乳酸製造の効率を大幅に向上させることができる。 According to the present invention, a novel Candida utilis strain having lactic acid-producing ability is provided, and L-lactic acid can be efficiently produced in a short time by using this yeast strain for fermentation under appropriate conditions. It becomes possible. According to the present invention, in the lactic acid production method using Candida utilis, which is a club tree effect negative yeast, the production of lactic acid can be greatly improved while suppressing the production of by-products such as ethanol and various organic acids. .
配列番号36のうち、13番目のaから1011番目のa(2つの翻訳終了コドンのうち、上流域のTGA)までのヌクレオチド配列(コドン最適化配列)と配列番号38で表される配列(ウシ由来の野生型配列)のアライメントを示す図である。Among SEQ ID NO: 36, a nucleotide sequence (codon optimized sequence) from the 13th a to the 1011st a (upstream TGA of the two translation termination codons) and the sequence represented by SEQ ID NO: 38 (bovine It is a figure which shows the alignment of the (wild-type sequence derived). プラスミドpCU563の構造を示す図である。It is a figure which shows the structure of plasmid pCU563. プラスミドpCU595の構造を示す図である。It is a figure which shows the structure of plasmid pCU595. CuURA3遺伝子の破壊に利用したプライマーのアニーリング部位を示す図である。It is a figure which shows the annealing site | part of the primer utilized for destruction of a CuURA3 gene. IM-63(配列番号58)とIM-92(配列番号59)をプライマーとしてPCRを行った結果を示す図である。それぞれの鋳型DNAとしては、NBRC0988株(レーン1)、NBRC0988株由来のCuURA3遺伝子が1コピー破壊されたHygrかつG418s株(レーン2)、pCU595を有するHygsかつG418rのCuURA3遺伝子が1コピー破壊された株(レーン3)、pCU595が脱落したCuURA3遺伝子が1コピー破壊されたHygsかつG418sの株(レーン4)である。なお、MはLamdaDNAをStyIで消化したDNAである。It is a figure which shows the result of having performed PCR using IM-63 (sequence number 58) and IM-92 (sequence number 59) as a primer. As each template DNA, Hygr and G418s strain (lane 2) in which one copy of CuURA3 gene derived from NBRC0988 strain (lane 1), CuURA3 gene derived from NBRC0988 strain was disrupted, and one copy of CuURA3 gene in Hygs having pCU595 and G418r were disrupted . A strain (lane 3) is a Hygs and G418s strain (lane 4) in which one copy of the CuURA3 gene from which pCU595 has been eliminated is disrupted. M is DNA obtained by digesting Lamda DNA with Sty I. IM-63(配列番号58)とIM-223(配列番号60)をプライマーとしてPCRを行った結果を示す図である。それぞれの鋳型DNAとしては、NBRC0988株(レーン1)、NBRC0988株由来のCuURA3遺伝子が1コピー破壊されたHygrかつG418s株(レーン2)、pCU595を有するHygsかつG418rのCuURA3遺伝子が1コピー破壊された株(レーン3)、pCU595が脱落したCuURA3遺伝子が1コピー破壊されたHygsかつG418sの株(レーン4)である。なお、MはLamdaDNAをStyIで消化したDNAである。It is a figure which shows the result of having performed PCR using IM-63 (sequence number 58) and IM-223 (sequence number 60) as a primer. As each template DNA, Hygr and G418s strain (lane 2) in which one copy of CuURA3 gene derived from NBRC0988 strain (lane 1), CuURA3 gene derived from NBRC0988 strain was disrupted, and one copy of CuURA3 gene in Hygs having pCU595 and G418r were disrupted . A strain (lane 3) is a Hygs and G418s strain (lane 4) in which one copy of the CuURA3 gene from which pCU595 has been eliminated is disrupted. M is DNA obtained by digesting Lamda DNA with Sty I. NBRC0988株、およびNBRC0988株を宿主としたCuURA3遺伝子破壊株の非選択培地、および選択培地での生育能を示す図である。It is a figure which shows the growth ability in the non-selective culture medium of the NBRC0988 strain and the CuURA3 gene disruption strain which made the NBRC0988 strain a host, and a selective culture medium. キャンディダ・ユティリスにPDC遺伝子が何種類あるかを調べるためのサザンハイブリダイゼーション法による解析結果を示す図である。レーン1はサッカロマイセス・セレビシエS288Cから抽出したゲノムDNAをHindIIIで消化した試料である。その他のレーンはキャンディダ・ユティリスNBRC0988株から抽出したゲノムDNAをXbaI(レーン2)、HindIII(レーン3)、BglII(レーン4)、EcoRI(レーン5)、BamHI(レーン6)、PstI(レーン7)で消化した試料である。プライマーIKSM-29(配列番号1)とIKSM-30(配列番号2)を作製し、NBRC0988株のゲノムを鋳型としたPCRを行うことによって増幅された約220bpのDNA断片(配列番号3)をプローブDNAとして利用した。It is a figure which shows the analysis result by the Southern hybridization method for investigating how many types of PDC genes exist in Candida utilis. Lane 1 is a sample obtained by digesting genomic DNA extracted from Saccharomyces cerevisiae S288C with Hind III. For other lanes, genomic DNA extracted from Candida utilis NBRC0988 strain was extracted from Xba I (lane 2), Hind III (lane 3), Bgl II (lane 4), Eco RI (lane 5), Bam HI (lane 6). , Pst I (lane 7) digested sample. Primers IKSM-29 (SEQ ID NO: 1) and IKSM-30 (SEQ ID NO: 2) were prepared, and a DNA fragment of approximately 220 bp (SEQ ID NO: 3) amplified by PCR using the genome of NBRC0988 strain as a probe was probed Used as DNA. CuPDC1遺伝子の破壊に利用したプライマーのアニーリング部位を示す図である。It is a figure which shows the annealing part of the primer utilized for destruction of CuPDC1 gene. プラスミドpCU681の構造を示す図である。It is a figure which shows the structure of plasmid pCU681. Pj0404株およびPj0957株について、発酵開始4時間後から13時間後までの培地中のL-乳酸濃度の経時変化を示す図である。It is a figure which shows a time-dependent change of the L-lactic acid density | concentration in a culture medium from 4 hours after fermentation start to 13 hours after Pj0404 strain and Pj0957 strain. 中和剤として炭酸カルシウムを用いた試行において、発酵開始後24時間までに複数回のサンプリングを実施した。培地中のグルコース量とL-乳酸量の経時変化を示す図である。In a trial using calcium carbonate as a neutralizing agent, sampling was performed several times by 24 hours after the start of fermentation. It is a figure which shows the time-dependent change of the glucose level and L-lactic acid level in a culture medium. 中和剤として水酸化ナトリウムを用いた試行において、発酵開始後24時間までに複数回のサンプリングを実施した。培地中のグルコース量とL-乳酸量の経時変化を示す図である(n=2)。In a trial using sodium hydroxide as a neutralizing agent, sampling was performed a plurality of times by 24 hours after the start of fermentation. FIG. 2 is a graph showing changes over time in the amount of glucose and the amount of L-lactic acid in a medium (n = 2). 中和剤として水酸化ナトリウムを用いた試行において、発酵開始後24時間までに複数回のサンプリングを実施した。培地中のグルコース量とL-乳酸量の経時変化を示す図である(n=3)。In a trial using sodium hydroxide as a neutralizing agent, sampling was performed a plurality of times by 24 hours after the start of fermentation. FIG. 3 is a graph showing changes over time in the amount of glucose and the amount of L-lactic acid in a medium (n = 3).
発明の具体的説明DETAILED DESCRIPTION OF THE INVENTION
 本発明において使用される酵母、キャンディダ・ユティリス(Candida utilis)は食飼料用に生産されていることから、この酵母については安全性が高いことが知られている。 Since the yeast used in the present invention, Candida utilis, is produced for food and feed, it is known that the yeast is highly safe.
 本発明による酵母菌株は、このキャンディダ・ユティリスの菌株を、乳酸脱水素酵素の活性を有するポリペプチドをコードしている遺伝子の発現を可能にするプロモーター配列が機能的に結合した該遺伝子の少なくとも1コピーにより形質転換して得られたものである。 The yeast strain according to the present invention is a strain of Candida utilis comprising at least one of the genes operably linked to a promoter sequence that enables expression of a gene encoding a polypeptide having lactate dehydrogenase activity. It was obtained by transformation with one copy.
 さらに、キャンディダ・ユティリスは、サザンハイブリダイゼーション法を用いた解析により、ピルビン酸脱炭酸酵素の活性を有するポリペプチドをコードする遺伝子を少なくとも1種類有していることが示唆された(CuPDC1遺伝子)。CuPDC1遺伝子を破壊すると、ピルビン酸がアセトアルデヒドに変換される反応が進まなくなるため、その後の代謝経路であるアルコール発酵は行われず、エタノールをほとんど製造しない。本発明において、乳酸製造酵母の宿主としてピルビン酸脱炭酸酵素の活性を有するポリペプチドをコードする遺伝子を破壊した酵母を用いれば、エタノールという乳酸製造にとっての余剰物質が製造されず、高効率で乳酸を製造することが可能となる。 Furthermore, it was suggested that Candida utilis has at least one gene encoding a polypeptide having pyruvate decarboxylase activity by analysis using Southern hybridization ( CuPDC1 gene). . When the CuPDC1 gene is disrupted, the reaction in which pyruvic acid is converted to acetaldehyde does not proceed, so alcohol fermentation, which is a subsequent metabolic pathway, is not performed, and ethanol is hardly produced. In the present invention, if a yeast that disrupts a gene encoding a polypeptide having pyruvate decarboxylase activity is used as a host for lactic acid-producing yeast, an excess substance for ethanol-producing lactic acid is not produced, and lactic acid is efficiently produced. Can be manufactured.
 従って、本発明の好ましい実施態様によれば、ピルビン酸脱炭酸酵素の活性がないか、あるいは低下し、かつ乳酸脱水素酵素活性を有するポリペプチドをコードする遺伝子を発現可能に備える酵母菌株が提供される。この酵母菌株においては、ピルビン酸脱炭酸酵素の活性を有するポリペプチドをコードする内因性遺伝子が破壊されていることが好ましい。 Therefore, according to a preferred embodiment of the present invention, there is provided a yeast strain that is capable of expressing a gene encoding a polypeptide having no or reduced activity of pyruvate decarboxylase and having lactate dehydrogenase activity. Is done. In this yeast strain, it is preferable that the endogenous gene encoding the polypeptide having pyruvate decarboxylase activity is disrupted.
 さらに、前記乳酸脱水素酵素活性を有するポリペプチドをコードする遺伝子は、ピルビン酸脱炭酸酵素の活性を有するポリペプチドをコードする遺伝子のプロモーターの制御下で発現可能に備えられていることが好ましく、より好ましくは、酵母染色体上におけるピルビン酸脱炭酸酵素の活性を有するポリペプチドをコードする遺伝子のプロモーターの制御下で発現可能に備えられている。 Furthermore, the gene encoding a polypeptide having lactate dehydrogenase activity is preferably provided so as to be expressed under the control of a promoter of a gene encoding a polypeptide having pyruvate decarboxylase activity, More preferably, it is provided so that it can be expressed under the control of a promoter of a gene encoding a polypeptide having a pyruvate decarboxylase activity on the yeast chromosome.
 本発明の特に好ましい実施態様によれば、乳酸製造酵母であって、染色体上のピルビン酸脱炭酸酵素の活性を有するポリペプチドをコードする遺伝子が破壊されると共に、破壊された該遺伝子のプロモーターの制御下で乳酸脱水素酵素の活性を有するポリペプチドをコードする遺伝子を発現可能に備える酵母菌株が提供される。 According to a particularly preferred embodiment of the present invention, in the lactic acid-producing yeast, a gene encoding a polypeptide having pyruvate decarboxylase activity on the chromosome is disrupted, and the promoter of the disrupted gene is A yeast strain is provided that is capable of expressing a gene encoding a polypeptide having the activity of lactate dehydrogenase under control.
 これらのいずれかの実施態様の酵母菌株において、前記ピルビン酸脱炭酸酵素の活性を有するポリペプチドをコードする遺伝子はピルビン酸脱炭酸酵素遺伝子1(CuPDC1遺伝子)であることが好ましく、前記乳酸脱水素酵素の活性を有するポリペプチドはウシ由来であることが好ましい。 In the yeast strain of any one of these embodiments, the gene encoding the polypeptide having pyruvate decarboxylase activity is preferably pyruvate decarboxylase gene 1 ( CuPDC1 gene), and the lactate dehydrogenase The polypeptide having the enzyme activity is preferably derived from bovine.
 また、本発明による酵母菌株によって製造される乳酸は、L-乳酸、D-乳酸、およびDL-乳酸のいずれであってもよいが、好ましくはL-乳酸とされる。 The lactic acid produced by the yeast strain according to the present invention may be any of L-lactic acid, D-lactic acid, and DL-lactic acid, but is preferably L-lactic acid.
 以下、本発明による酵母菌株について説明すると共に、この酵母を用いた乳酸製造方法について説明する。 Hereinafter, the yeast strain according to the present invention will be described, and a method for producing lactic acid using the yeast will be described.
乳酸製造に用いる酵母
 本発明による酵母菌株は、外来の乳酸脱水素酵素の活性を有するポリペプチドをコードする遺伝子を有する形質転換酵母である。乳酸の製造に用いる酵母は、クラブトゥリー陰性酵母であるキャンディダ・ユティリスである。キャンディダ・ユティリスの菌株は当技術分野において公知の様々な株、例えば、NBRC0626株、NBRC0639株、NBRC0988株、NBRC1086株等であってよいが、好ましくはNBRC0988株とされる。
Yeast used for lactic acid production The yeast strain according to the present invention is a transformed yeast having a gene encoding a polypeptide having the activity of an exogenous lactate dehydrogenase. The yeast used for the production of lactic acid is Candida utilis, which is a club tree negative yeast. The strain of Candida utilis may be various strains known in the art, for example, NBRC0626 strain, NBRC0639 strain, NBRC0988 strain, NBRC1086 strain and the like, and preferably NBRC0988 strain.
ピルビン酸脱炭酸酵素
 本発明による酵母菌株においては、ピルビン酸脱炭酸酵素(PDC)活性がないか、または低下していることが好ましい。この酵素は、アルコール発酵経路においてピルビン酸をアセトアルデヒドに変換する酵素であり、アルコール発酵を行う酵母はピルビン酸脱炭酸酵素の活性を有するポリペプチドをコードする遺伝子を染色体上に本来的に有している。サッカロマイセス・セレビシエにはピルビン酸脱炭酸酵素の活性を有するポリペプチドをコードする遺伝子が3種類(ScPDC1ScPDC5およびScPDC6)存在し、これらはいわゆるオートレギュレーション機構により機能している。また、各遺伝子のヌクレオチドレベルでの相同性も70%以上と高い。これらの遺伝子がコードするタンパク質はN末端側のTPP結合領域とC末端側のPDC活性領域から構成されている。PDCをコードする遺伝子は他の酵母でも存在しており、例えば、クルイベロマイセス・ラクティスのKlPDC1遺伝子はScPDC1遺伝子との高い相同性を有する。一方、キャンディダ・ユティリスにはピルビン酸脱炭酸酵素の活性を有するポリペプチドをコードする1種類の遺伝子(CuPDC1)が存在し、他にも同様の遺伝子が存在する可能性があるが、少なくともCuPDC1遺伝子を破壊することによりアルコール発酵はほぼ全く行われなくなる。
Pyruvate decarboxylase The yeast strain according to the present invention preferably has no or reduced pyruvate decarboxylase (PDC) activity. This enzyme is an enzyme that converts pyruvate to acetaldehyde in the alcohol fermentation pathway, and yeast that performs alcohol fermentation inherently has a gene encoding a polypeptide having pyruvate decarboxylase activity on its chromosome. Yes. Saccharomyces cerevisiae has three types of genes ( ScPDC1 , ScPDC5, and ScPDC6 ) encoding polypeptides having pyruvate decarboxylase activity, and these function by a so-called autoregulation mechanism. In addition, homology at the nucleotide level of each gene is as high as 70% or more. The proteins encoded by these genes are composed of an N-terminal TPP binding region and a C-terminal PDC active region. The gene encoding PDC is also present in other yeasts. For example, the KlPDC1 gene of Kluyveromyces lactis has high homology with the ScPDC1 gene. On the other hand, Candida utilis has one type of gene ( CuPDC1 ) encoding a polypeptide having pyruvate decarboxylase activity, and there may be another similar gene, but at least CuPDC1 Alcohol fermentation is almost never performed by destroying the gene.
 ここで「PDC活性がないか、または低下している」とは、PDC活性が全くないか、または野生型よりも低い活性の該酵素が生産されているか、あるいは該酵素の生産量が野生型よりも少ないことを意味する。PDC活性がないか、または低下している酵母菌株は、人工的な操作により得られたものであっても、あるいはスクリーニングによって見出されたものであってもよい。このような酵素活性の消滅または低下のための人工的操作は、RNAiを利用する方法、選択マーカーの全部または一部の配列などの他の遺伝子と入れ替える方法、無意味な配列を遺伝子内部に挿入する方法など、当技術分野において周知の方法で行うことができる。この中でも、当該酵素の活性を有するポリペプチドをコードする遺伝子を破壊(ノックアウト)することが好ましく、このような方法として、上記の各手法のうち、選択マーカーの全部または一部の配列などの他の遺伝子とPDCをコードする遺伝子とを入れ替える方法が挙げられる。 Here, “there is no or reduced PDC activity” means that there is no PDC activity, the enzyme having an activity lower than that of the wild type is produced, or the production amount of the enzyme is wild type. Means less than. The yeast strain having no or reduced PDC activity may be obtained by artificial manipulation or may be found by screening. Artificial manipulations for extinction or reduction of enzyme activity include RNAi, replacement with other genes such as all or part of the selectable marker, and insertion of meaningless sequences inside the gene. It can carry out by a method well-known in this technical field. Among these, it is preferable to destroy (knock out) the gene encoding the polypeptide having the enzyme activity. As such a method, among the above-mentioned methods, all or a part of the sequence of the selectable marker is used. And a method of exchanging the gene of PDC with a gene encoding PDC.
 破壊対象のピルビン酸脱炭酸酵素の活性を有するポリペプチドをコードする遺伝子は、元々キャンディダ・ユティリスに存在するが、うち、本発明の実施例で記載されているのはNBRC0988株に存在するCuPDC1遺伝子のアレルのうちの1つであり、そのヌクレオチド配列は配列番号63で表され、コードされるアミノ酸配列は配列番号64で表される。キャンディダ・ユティリスの他の株、例えばNBRC0626株、NBRC0639株、NBRC1086株等を用いる場合には、仮に当該配列と相違していても、同等の機能、すなわち活性を有するものが存在していればそれを破壊対象とすることができる。 The gene encoding the polypeptide having the activity of pyruvate decarboxylase to be destroyed originally exists in Candida utilis. Among them, the example described in the present invention is CuPDC1 present in NBRC0988 strain. One of the alleles of a gene, the nucleotide sequence of which is represented by SEQ ID NO: 63, and the encoded amino acid sequence is represented by SEQ ID NO: 64. When using other strains of Candida utilis, for example, NBRC0626 strain, NBRC0639 strain, NBRC1086 strain, etc., even if they are different from the sequences, there are those having equivalent functions, that is, activities. It can be targeted for destruction.
 本発明の好ましい実施態様によれば、破壊対象となるピルビン酸脱炭酸酵素の活性を有するポリペプチドをコードする内因性遺伝子は、配列番号64で表されるアミノ酸配列を含むポリペプチドをコードする遺伝子、より好ましくは配列番号63で表されるヌクレオチド配列を含む遺伝子とされる。 According to a preferred embodiment of the present invention, the endogenous gene encoding a polypeptide having pyruvate decarboxylase activity to be destroyed is a gene encoding a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 64 More preferably, the gene comprises the nucleotide sequence represented by SEQ ID NO: 63.
乳酸脱水素酵素
 本発明による酵母菌株は、乳酸脱水素酵素の活性を有するポリペプチドをコードする遺伝子(LDH遺伝子)を保持している。酵母は元来乳酸製造能を持たないので、本発明による酵母菌株が有する乳酸脱水素酵素の活性を有するポリペプチドをコードする遺伝子(LDH)は外来性である。LDHには、生物の種類に応じて、あるいは生体内においても各種同属体が存在し、本発明に使用するのはL-LDHであってもD-LDHであってもよいが、好ましくはL-LDHである。また、本発明において使用する乳酸脱水素酵素の活性を有するポリペプチドをコードする遺伝子としては、天然由来のLDHの他、化学合成的或いは遺伝子工学的な手法により人工合成されたLDHも包含している。LDHをもつ生物としては、乳酸菌等の原核生物、カビ等の真核生物、植物や動物並びに昆虫等の高等真核生物などが挙げられる。本発明において使用するLDHとして好ましいのは高等真核生物由来であり、特にウシ由来のものが適している。ウシ由来の乳酸脱水素酵素(L-LDH)の活性を有するポリペプチドをコードする遺伝子のヌクレオチド配列は配列番号38で表されるものであり、これによりコードされるアミノ酸配列は配列番号35で表される。
Lactate dehydrogenase The yeast strain according to the present invention retains a gene ( LDH gene) encoding a polypeptide having lactate dehydrogenase activity. Since yeast originally has no ability to produce lactic acid, the gene ( LDH ) encoding the polypeptide having the lactate dehydrogenase activity of the yeast strain according to the present invention is foreign. LDH has various congeners depending on the type of organism or in vivo, and L-LDH or D-LDH may be used in the present invention. -LDH. Further, the gene encoding a polypeptide having lactate dehydrogenase activity used in the present invention includes naturally occurring LDH, as well as LDH artificially synthesized by chemical synthesis or genetic engineering techniques. Yes. Examples of organisms having LDH include prokaryotes such as lactic acid bacteria, eukaryotes such as fungi, and higher eukaryotes such as plants, animals and insects. The LDH used in the present invention is preferably derived from higher eukaryotes, particularly those derived from cattle. The nucleotide sequence of a gene encoding a polypeptide having the activity of bovine lactate dehydrogenase (L-LDH) is represented by SEQ ID NO: 38, and the amino acid sequence encoded thereby is represented by SEQ ID NO: 35. Is done.
 本発明の好ましい実施態様によれば、乳酸脱水素酵素の活性を有するポリペプチドは、配列番号37で表されるアミノ酸配列を含むポリペプチドとされる。また、乳酸脱水素酵素の活性を有するポリペプチドは、配列番号37で表されるアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、付加もしくは挿入されたアミノ酸配列を含み、かつ乳酸脱水素酵素の活性を有するポリペプチドであってもよい。 According to a preferred embodiment of the present invention, the polypeptide having lactate dehydrogenase activity is a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 37. The polypeptide having lactate dehydrogenase activity includes an amino acid sequence in which one or several amino acids are deleted, substituted, added or inserted in the amino acid sequence represented by SEQ ID NO: 37, and lactate dehydration. It may be a polypeptide having an enzyme activity.
 ここで、アミノ酸の欠失、置換、付加、又は挿入は、上記ポリペプチドをコードする遺伝子を、当技術分野で公知の手法によって改変することによって行うことができる。遺伝子に変異を導入するには、Kunkel法又はGapped duplex法等の公知手法又はこれに準ずる方法により行うことができ、例えば部位特異的突然変異誘発法を利用した変異導入用キット、例えばMutant-K(タカラバイオ社)やMutant-G(タカラバイオ社)などを用いて、あるいは、タカラバイオ社のLA PCR in vitro Mutagenesisシリーズキット、KOD-Plus-Mutagenesis Kit(TOYOBO)などを用いて変異を導入することができる。乳酸脱水素酵素の活性は、当技術分野において公知の手法により確認することができる。 Here, amino acid deletion, substitution, addition, or insertion can be performed by modifying a gene encoding the above polypeptide by a technique known in the art. Mutation can be introduced into a gene by a known method such as the Kunkel method or Gapped-duplex method or a method similar thereto, for example, a mutation introduction kit using site-directed mutagenesis, such as Mutant-K (Takara Bio Inc.), Mutant-G (Takara Bio Inc.), etc., or using Takara Bio Inc. LA PCR in vitro Mutageness series kit, KOD-Plus-Mutageness Kit (TOYOBO), etc. be able to. The activity of lactate dehydrogenase can be confirmed by a technique known in the art.
 さらに、宿主に導入する乳酸脱水素酵素の活性を有するポリペプチドをコードする遺伝子は、配列番号35に記載したウシ(Bos taurus)由来の酵素のアミノ酸配列(DDBJ/EMBL/GenBank Accession number:AAI46211.1)に対応するヌクレオチド配列をキャンディダ・ユティリスのコドン使用頻度を考慮して人工的に合成したものが好ましい。このような人工的な合成は当業者であれば適切に行うことができるが、特に好ましいヌクレオチド配列は、配列番号36のうち、13番目のaから1,011番目のaまでのヌクレオチド配列である。なお、その前後の配列は、制限酵素認識部位である、それぞれKpnI認識部位(配列番号36のヌクレオチド配列において1番目のgから6番目のcまでの配列)、Xba I認識部位(配列番号36のヌクレオチド配列において7番目のtから12番目のaまでの配列)、BamHI認識部位(配列番号36のヌクレオチド配列において1,015番目のgから1,020番目のcまでの配列)、およびSacI認識部位(配列番号36のヌクレオチド配列において1,021番目のgから1,025番目のcまでの配列)である。この配列番号36のうち、13番目のaから1,011番目のa(2つの翻訳終了コドンのうち、上流域のtga)までのヌクレオチド配列(コドン最適化配列:配列番号36)と配列番号38で表されるヌクレオチド配列(ウシ由来の野生型配列)のアライメントを図1に示す。両者の配列は999塩基中751塩基が等しく、相同性は75%であった。図1において、上側の配列は、配列番号36のうち、13番目のaから1,011番目のa(2つの翻訳終了コドンのうち、上流域のtga)までのヌクレオチド配列である。図1の下側の配列は配列番号38で表されるBos taurus由来のL-LDH-A遺伝子の塩基配列(DDBJ/EMBL/GenBank Accession number:BC146210.1より抜粋)である(翻訳産物は配列番号35となる)。このように人工的に合成された当該乳酸脱水素酵素の活性を有するポリペプチドをコードする遺伝子は、キャンディダ・ユティリスにおけるコドン使用頻度が最適化されているため、酵母に形質転換されると特にL-乳酸を高効率で製造することができる。 Furthermore, the gene encoding a polypeptide having the activity of lactate dehydrogenase to be introduced into the host is cattle described in SEQ ID NO: 35 (Bos taurus) amino acid sequence derived from the enzyme (DDBJ / EMBL / GenBank Accession number : AAI46211. The nucleotide sequence corresponding to 1) is preferably artificially synthesized in consideration of the Candida utilis codon usage. Such artificial synthesis can be appropriately performed by those skilled in the art, but a particularly preferred nucleotide sequence is the nucleotide sequence from the 13th a to the 1,011st a in SEQ ID NO: 36. . The sequences before and after that are restriction enzyme recognition sites, respectively, a Kpn I recognition site (sequence from the first g to the 6th c in the nucleotide sequence of SEQ ID NO: 36), and an Xba I recognition site (SEQ ID NO: 36). sequences from the seventh t in the nucleotide sequence up to 12 th a), sequences from 1,015 th g in the nucleotide sequence of Bam HI recognition site (SEQ ID NO: 36 to 1,020 th c), and Sac I recognition site (sequence from 1,021st g to 1,025th c in the nucleotide sequence of SEQ ID NO: 36). Among the SEQ ID NO: 36, a nucleotide sequence (codon optimized sequence: SEQ ID NO: 36) from the 13th a to the 1,011st a (upstream tga of two translation termination codons) and SEQ ID NO: 38 The alignment of the nucleotide sequence represented by (wild-type sequence derived from bovine) is shown in FIG. Both sequences had the same 751 bases out of 999 bases, and the homology was 75%. In FIG. 1, the upper sequence is a nucleotide sequence from the 13th a to the 1011st a (upstream tga of two translation termination codons) in SEQ ID NO: 36. The lower sequence of FIG. 1 is the base sequence of L-LDH-A gene derived from Bos taurus represented by SEQ ID NO: 38 (extracted from DDBJ / EMBL / GenBank Accession number: BC146210.1). No. 35). The gene encoding the artificially synthesized polypeptide having the lactate dehydrogenase activity is optimized for codon usage in Candida utilis. L-lactic acid can be produced with high efficiency.
 本発明の好ましい実施態様によれば、乳酸脱水素酵素の活性を有するポリペプチドをコードしている遺伝子は、配列番号36のうち、13番目のaから1,011番目のaまでのヌクレオチド配列を含む遺伝子、またはその同等物とされる。この同等物は、配列番号36のうち、13番目のaから1,011番目のaまでのヌクレオチド配列を含む遺伝子と同等の機能を有することを条件に、一部のヌクレオチド残基が異なる遺伝子を意味する。このような同等物としては、配列番号36のうち、13番目のaから1,011番目のaまでのヌクレオチド配列と70%以上、好ましくは80%以上、より好ましくは85%以上、さらに好ましくは90%以上、最も好ましくは95%以上の相同性があり、かつ乳酸脱水素酵素の活性を有するポリペプチドをコードするヌクレオチド配列を含む遺伝子が挙げられる。前記同等物としてはさらに、配列番号36のうち、13番目のaから1,011番目のaまでのヌクレオチド配列もしくはその相補配列とストリンジェントな条件下でハイブリダイズし、かつ乳酸脱水素酵素の活性を有するポリペプチドをコードするヌクレオチド配列を含む遺伝子が挙げられる。前記同等物としてはさらに、配列番号36のうち、13番目のaから1,011番目のaまでのヌクレオチド配列において1もしくは数個のヌクレオチド残基が欠失、置換、付加、または挿入された配列を含み、かつ乳酸脱水素酵素の活性を有するポリペプチドをコードするヌクレオチド配列を含む遺伝子が挙げられる。本発明の特に好ましい実施態様によれば、乳酸脱水素酵素の活性を有するポリペプチドをコードしている遺伝子は、配列番号36のうち、13番目のaから1,011番目のaまでのヌクレオチド配列を含む遺伝子とされる。 According to a preferred embodiment of the present invention, the gene encoding a polypeptide having lactate dehydrogenase activity has a nucleotide sequence from the 13th a to the 1,011st a in SEQ ID NO: 36. It is considered as a gene containing or equivalent thereof. This equivalent is a gene in which some nucleotide residues are different on the condition that it has a function equivalent to that of a gene containing a nucleotide sequence from the 13th a to the 1011st a in SEQ ID NO: 36. means. Such an equivalent includes a nucleotide sequence from the 13th a to the 1011st a in SEQ ID NO: 36 and 70% or more, preferably 80% or more, more preferably 85% or more, and still more preferably Examples thereof include a gene comprising a nucleotide sequence encoding a polypeptide having 90% or more homology, most preferably 95% or more, and having lactate dehydrogenase activity. As the equivalent, it further hybridizes with the nucleotide sequence from the 13th a to the 1,011st a or its complementary sequence in SEQ ID NO: 36 under stringent conditions, and the activity of lactate dehydrogenase And a gene containing a nucleotide sequence encoding a polypeptide having The equivalent further includes a sequence in which one or several nucleotide residues are deleted, substituted, added, or inserted in the nucleotide sequence from the 13th a to the 1011st a in SEQ ID NO: 36. And a gene comprising a nucleotide sequence encoding a polypeptide having lactate dehydrogenase activity. According to a particularly preferred embodiment of the present invention, the gene encoding a polypeptide having lactate dehydrogenase activity is a nucleotide sequence from the 13th a to the 1,011st a in SEQ ID NO: 36. It is considered as a gene containing
 ここで、ヌクレオチド残基の欠失、置換、付加、又は挿入は、上記配列を含む遺伝子を、当技術分野で公知の手法によって改変することによって行うことができる。遺伝子に変異を導入するには、Kunkel法又はGapped duplex法等の公知手法又はこれに準ずる方法により行うことができ、例えば部位特異的突然変異誘発法を利用した変異導入用キットを用いればよい。例えばMutant-K(タカラバイオ社)やMutant-G(タカラバイオ社)などを用いて、あるいは、タカラバイオ社のLA PCR in vitro Mutagenesisシリーズキット、KOD-Plus-Mutagenesis Kit(TOYOBO)などを用いて変異を導入することができる。乳酸脱水素酵素の活性は、当技術分野において公知の手法により確認することができる。 Here, deletion, substitution, addition or insertion of nucleotide residues can be performed by modifying a gene containing the above sequence by a technique known in the art. Mutation can be introduced into a gene by a known method such as the Kunkel method or Gapped-duplex method, or a method equivalent thereto, for example, a mutation introduction kit using site-directed mutagenesis may be used. For example, using Mutant-K (Takara Bio) or Mutant-G (Takara Bio), or using Takara Bio's LA バ イ オ PCR in vitro Mutageness series kit, KOD-Plus-Mutageness Kit (TOYOBO), etc. Mutations can be introduced. The activity of lactate dehydrogenase can be confirmed by a technique known in the art.
 相同性を示す数値(%)は、塩基配列比較用プログラム:例えばGENETYX-WIN7.0.0を用いて、デフォルト(初期設定)のパラメーターにより算出されるものである。すなわち、酵母染色体上の各遺伝子が、同一ではないが同等の機能、すなわち各活性を有するポリペプチドをコードする遺伝子によって相同組換え等を介して置換されていてもよい。乳酸脱水素酵素の活性は、当技術分野において公知の手法により確認することができる。 The numerical value (%) indicating homology is calculated using default (initial setting) parameters using a base sequence comparison program such as GENETYX-WIN 7.0.0. That is, each gene on the yeast chromosome may be replaced by a gene encoding a polypeptide that is not identical but has an equivalent function, ie, each activity, through homologous recombination or the like. The activity of lactate dehydrogenase can be confirmed by a technique known in the art.
 ストリンジェントな条件とは、例えば、Rapid-Hyb Buffer(GEヘルスケアバイオサイエンス社製)を用い、温度条件を好ましくは40~70℃、より好ましくは60℃として、その他は添付のプロトコールに従って行うハイブリダイゼーション条件である。その後、例えば当業者の一般的な方法を用い、2×SSCと0.1%(w/v)SDSから成り立つ溶液での5分間の洗浄、続いて1×SSCと0.1%(w/v)SDSから成り立つ溶液での10分間の洗浄、さらに0.1×SSCと0.1%(w/v)SDSから成り立つ溶液での10分間の洗浄を行うことを指す。ただしハイブリダイゼーション時の温度条件や、その後のメンブレンの洗浄に用いる溶液の塩濃度等の条件を適宜設定することにより、ある一定(70%、80%、85%、90%、95%のいずれか)以上の相同性を有する塩基配列を含むDNAをクローニングできる。そのようにして得られる遺伝子が、配列上は同一ではないが同等の機能、すなわち各活性を有するポリペプチドをコードする遺伝子によって相同組換え等を介して置換されていてもよい。乳酸脱水素酵素の活性は、当技術分野において公知の手法により確認することができる。 The stringent conditions include, for example, Rapid-Hyb Buffer (manufactured by GE Healthcare Bioscience), the temperature condition is preferably 40 to 70 ° C., more preferably 60 ° C., and others are performed according to the attached protocol. Hybridization conditions. Then, for example using a general method of the person skilled in the art, washing for 5 minutes with a solution consisting of 2 × SSC and 0.1% (w / v) SDS, followed by 1 × SSC and 0.1% (w / v) v) Refers to washing for 10 minutes with a solution consisting of SDS, and further washing for 10 minutes with a solution consisting of 0.1 × SSC and 0.1% (w / v) SDS. However, by setting conditions such as the temperature conditions during hybridization and the salt concentration of the solution used for the subsequent membrane washing, it can be set to a certain level (70%, 80%, 85%, 90%, or 95%). ) DNA containing a base sequence having the above homology can be cloned. The gene thus obtained may be replaced by homologous recombination or the like with a gene that encodes a polypeptide that is not identical in sequence but has an equivalent function, that is, each activity. The activity of lactate dehydrogenase can be confirmed by a technique known in the art.
構造遺伝子の発現のために利用するプロモーター
 乳酸脱水素酵素の活性を有するポリペプチドをコードする遺伝子は、強力なプロモーター活性を有するプロモーターの制御下で発現可能に備えられていることが好ましい。例えば、キャンディダ・ユティリスでは、キャンディダ・ユティリスのグリセロアルデヒド-3-リン酸脱水素酵素の活性を有するポリペプチドをコードするGAP遺伝子のプロモーター、ホスホグリセリン酸キナーゼの活性を有するポリペプチドをコードするPGK遺伝子のプロモーター、原形質膜プロトンATPaseの活性を有するポリペプチドをコードするPMA遺伝子のプロモーター(以上、特開2003-144185号公報)等が例示されるが、さらに好ましくはピルビン酸脱炭酸酵素の活性を有するポリペプチドをコードする遺伝子1(CuPDC1遺伝子)のプロモーターである。うち、本発明の実施例で記載されているのはキャンディダ・ユティリスNBRC0988株に存在するもの(配列番号3)である。キャンディダ・ユティリスの他の株、例えばNBRC0626株、NBRC0639株、NBRC1086株等を用いる場合には、仮に当該配列と相違していても同等の機能、すなわち活性を有するもの(他株配列)が存在していればそのまま使用することができる。当該他株配列は、当業者であれば公知の方法により確認することができる。
A gene encoding a polypeptide having the activity of a promoter lactate dehydrogenase used for expression of a structural gene is preferably provided so that it can be expressed under the control of a promoter having a strong promoter activity. For example, in Candida utilis, the promoter of the GAP gene encoding a polypeptide having the activity of glyceraldehyde-3-phosphate dehydrogenase of Candida utilis encodes a polypeptide having the activity of phosphoglycerate kinase. The promoter of PGK gene, the promoter of PMA gene encoding a polypeptide having plasma membrane proton ATPase activity (above, JP-A-2003-144185) and the like are exemplified, but more preferably pyruvate decarboxylase It is a promoter of gene 1 ( CuPDC1 gene) encoding a polypeptide having activity. Among them, what is described in the examples of the present invention is one existing in Candida utilis NBRC0988 strain (SEQ ID NO: 3). When using other strains of Candida utilis, for example, NBRC0626, NBRC0639, NBRC1086, etc., those having equivalent functions (ie, other strains) are present even if they differ from the sequences. You can use it as it is. The other strain sequence can be confirmed by a person skilled in the art by a known method.
 乳酸脱水素酵素の活性を有するポリペプチドをコードする遺伝子は、酵母染色体上のCuPDC1遺伝子プロモーターの制御下で発現可能に備えられていることが好ましい。本発明による酵母菌株の宿主として用いるキャンディダ・ユティリスは少なくとも1種類のPDC遺伝子を有していると推定される(CuPDC1遺伝子)。このCuPDC1遺伝子プロモーターによって制御されるCuPDC1遺伝子が破壊されて乳酸脱水素酵素の活性を有するポリペプチドをコードする遺伝子が代わりに発現されることで、効果的にピルビン酸脱炭酸酵素活性の低下と乳酸脱水素酵素活性の発現とを同時に実現できる。 The gene encoding a polypeptide having lactate dehydrogenase activity is preferably provided so that it can be expressed under the control of the CuPDC1 gene promoter on the yeast chromosome. Candida utilis used as a host of the yeast strain according to the present invention is presumed to have at least one PDC gene ( CuPDC1 gene). By gene CuPDC1 gene controlled by the CuPDC1 gene promoter encoding a polypeptide having a disrupted by activity of lactate dehydrogenase is expressed in place, lowering the lactic acid effectively pyruvate decarboxylase activity The dehydrogenase activity can be expressed at the same time.
 本発明の好ましい実施態様によれば、前記プロモーター配列は、ピルビン酸脱炭酸酵素をコードする内因性遺伝子のプロモーター部分とされ、より好ましくは配列番号3で表されるヌクレオチド配列を含むものとされる。あるいは、このプロモーター配列は、配列番号3で表されるヌクレオチド配列を含むものと同等の機能を有することを条件に、一部のヌクレオチド残基が異なる同等物であってもよい。このような同等物としては、配列番号3で表されるヌクレオチド配列と70%以上、好ましくは80%以上、より好ましくは85%以上、さらに好ましくは90%以上、最も好ましくは95%以上の相同性があり、かつプロモーター活性を有するDNAが挙げられる。前記同等物としてはさらに、配列番号3で表されるヌクレオチド配列もしくはその相補配列とストリンジェントな条件下でハイブリダイズし、かつプロモーター活性を有するDNAが挙げられる。前記同等物としてはさらに、配列番号3で表されるヌクレオチド配列において1もしくは数個のヌクレオチド残基が欠失、置換、付加、または挿入された配列を含み、かつプロモーター活性を有するDNAが挙げられる。 According to a preferred embodiment of the present invention, the promoter sequence is a promoter portion of an endogenous gene encoding pyruvate decarboxylase, and more preferably includes a nucleotide sequence represented by SEQ ID NO: 3. . Alternatively, this promoter sequence may be an equivalent in which some nucleotide residues are different on the condition that it has a function equivalent to that including the nucleotide sequence represented by SEQ ID NO: 3. Such an equivalent includes 70% or more, preferably 80% or more, more preferably 85% or more, still more preferably 90% or more, most preferably 95% or more homology with the nucleotide sequence represented by SEQ ID NO: 3. And DNA having a promoter activity. The equivalent further includes DNA that hybridizes with the nucleotide sequence represented by SEQ ID NO: 3 or its complementary sequence under stringent conditions and has promoter activity. Examples of the equivalent further include DNA having a promoter activity, including a sequence in which one or several nucleotide residues are deleted, substituted, added, or inserted in the nucleotide sequence represented by SEQ ID NO: 3. .
 ここで、ヌクレオチド残基の欠失、置換、付加、又は挿入は、上記配列を、当技術分野で公知の手法によって改変することによって行うことができる。遺伝子に変異を導入するには、Kunkel法又はGapped duplex法等の公知手法又はこれに準ずる方法により行うことができ、例えば部位特異的突然変異誘発法を利用した変異導入用キット、例えばMutant-K(タカラバイオ社)やMutant-G(タカラバイオ社)などを用いて、あるいは、タカラバイオ社のLA PCR in vitro Mutagenesisシリーズキット、KOD-Plus-Mutagenesis Kit(TOYOBO)などを用いて変異を導入することができる。プロモーター活性、すなわち転写活性は、当技術分野において公知の手法により確認することができる。 Here, deletion, substitution, addition, or insertion of a nucleotide residue can be performed by modifying the above sequence by a technique known in the art. Mutation can be introduced into a gene by a known method such as the Kunkel method or Gapped-duplex method or a method similar thereto, for example, a mutation introduction kit using site-directed mutagenesis, such as Mutant-K (Takara Bio Inc.), Mutant-G (Takara Bio Inc.), etc., or using Takara Bio Inc. LA PCR in vitro Mutageness series kit, KOD-Plus-Mutageness Kit (TOYOBO), etc. be able to. Promoter activity, ie, transcription activity, can be confirmed by a technique known in the art.
 相同性を示す数値(%)は、塩基配列比較用プログラム:例えばGENETYX-WIN7.0.0を用いて、デフォルト(初期設定)のパラメーターにより算出されるものである。すなわち、酵母染色体上の各遺伝子が、同一ではないが同等の機能、すなわち各活性を有する遺伝子によって相同組換え等を介して置換されていてもよい。プロモーター活性、すなわち転写活性は、当技術分野において公知の手法により確認することができる。 The numerical value (%) indicating homology is calculated using default (initial setting) parameters using a base sequence comparison program such as GENETYX-WIN 7.0.0. That is, each gene on the yeast chromosome may be replaced by a gene that is not identical but has an equivalent function, that is, each activity, through homologous recombination or the like. Promoter activity, ie, transcription activity, can be confirmed by a technique known in the art.
 ストリンジェントな条件とは、例えば、Rapid-Hyb Buffer(GEヘルスケアバイオサイエンス社製)を用い、温度条件を好ましくは40~70℃、より好ましくは60℃として、その他は添付のプロトコールに従って行うハイブリダイゼーション条件である。その後、例えば当業者の一般的な方法を用い、2×SSCと0.1%(w/v)SDSから成り立つ溶液での5分間の洗浄、続いて1×SSCと0.1%(w/v)SDSから成り立つ溶液での10分間の洗浄、さらに0.1×SSCと0.1%(w/v)SDSから成り立つ溶液での10分間の洗浄を行うことを指す。ただしハイブリダイゼーション時の温度条件や、その後のメンブレンの洗浄に用いる溶液の塩濃度等の条件を適宜設定することにより、ある一定(70%、80%、85%、90%、95%のいずれか)以上の相同性を有する塩基配列を含むDNAをクローニングできる。そのようにして得られる遺伝子が、配列上は同一ではないが同等の機能、すなわち各活性を有する遺伝子によって相同組換え等を介して置換されていてもよい。プロモーター活性、すなわち転写活性は、当技術分野において公知の手法により確認することができる。 The stringent conditions include, for example, Rapid-Hyb Buffer (manufactured by GE Healthcare Bioscience), the temperature condition is preferably 40 to 70 ° C., more preferably 60 ° C., and others are performed according to the attached protocol. Hybridization conditions. Then, for example using a general method of the person skilled in the art, washing for 5 minutes with a solution consisting of 2 × SSC and 0.1% (w / v) SDS, followed by 1 × SSC and 0.1% (w / v) v) Refers to washing for 10 minutes with a solution consisting of SDS, and further washing for 10 minutes with a solution consisting of 0.1 × SSC and 0.1% (w / v) SDS. However, by setting conditions such as the temperature conditions during hybridization and the salt concentration of the solution used for the subsequent membrane washing, it can be set to a certain level (70%, 80%, 85%, 90%, or 95%). ) DNA containing a base sequence having the above homology can be cloned. The gene thus obtained may be replaced by homologous recombination or the like with a gene that is not identical in sequence but has an equivalent function, that is, each activity. Promoter activity, ie, transcription activity, can be confirmed by a technique known in the art.
酵母菌株の分子育種
 本発明による酵母菌株の分子育種は、宿主酵母に対して乳酸脱水素酵素の活性を有するポリペプチドをコードする遺伝子を発現可能な状態で導入することによって行うことができる。その際に、宿主酵母に対してPDCをコードする遺伝子の破壊を伴っていることが好ましい。PDC破壊のためのDNA構築物は、特定の遺伝子部位に導入して遺伝子を破壊するための相同組換え用遺伝子配列を備えている。ここでいう相同組換え用遺伝子配列とは、破壊しようとするPDC遺伝子であるターゲット部位、或いはその近傍の遺伝子と相同な遺伝子配列である。例えば、2種類の相同組換え用遺伝子配列を、染色体上のターゲット遺伝子の上流側と下流側の遺伝子とのそれぞれに相同な遺伝子配列とし、これらの相同組換え用遺伝子配列の間に遺伝子を破壊するための遺伝子を備えるDNA断片を酵母染色体に相同組換えにより導入することでターゲット部位の遺伝子を破壊することができる。このような染色体上への組込みを実現するための相同組換え用遺伝子配列の選択は、当業者において周知であり、当業者であれば必要に応じて適切な相同組換え用遺伝子配列を選択して相同組換え用DNA断片を構成することができる。
Molecular Breeding of Yeast Strain Molecular breeding of a yeast strain according to the present invention can be performed by introducing a gene encoding a polypeptide having lactate dehydrogenase activity into a host yeast in a state where it can be expressed. In that case, it is preferable that the host yeast is accompanied by the destruction of the gene encoding PDC. A DNA construct for PDC disruption has a gene sequence for homologous recombination to be introduced into a specific gene site to destroy the gene. The gene sequence for homologous recombination here is a gene sequence that is homologous to a target site that is a PDC gene to be destroyed or a gene in the vicinity thereof. For example, two types of gene sequences for homologous recombination are made homologous to the upstream and downstream genes of the target gene on the chromosome, and the gene is destroyed between these gene sequences for homologous recombination. The gene at the target site can be destroyed by introducing a DNA fragment comprising the gene for the purpose into the yeast chromosome by homologous recombination. Selection of a gene sequence for homologous recombination to realize such integration on a chromosome is well known to those skilled in the art, and those skilled in the art can select an appropriate gene sequence for homologous recombination as necessary. Thus, a DNA fragment for homologous recombination can be constructed.
 本発明の好ましい実施態様によれば、ピルビン酸脱炭酸酵素の活性を有するポリペプチドをコードしている内因性遺伝子は、選択マーカー配列の挿入による該遺伝子の欠失によって破壊される。例えば、上記の相同組換えにおいてPDC遺伝子の代わりに挿入されるヌクレオチド配列中に選択マーカー配列を組込んでおくことにより、PDC遺伝子を破壊することができる。選択マーカーは、形質転換された菌体を選択する上で有用である。選択マーカー配列の挿入は、その配列全体を導入することだけでなく、一部の配列を導入することにより、この部分配列と酵母菌に元々存在する配列とを組み合わせて選択マーカー配列を完成させることをも含む。例えば、元々存在する選択マーカー配列の一部が欠落する酵母菌株を形質転換の宿主とする場合には、その欠落した一部の配列を選択マーカー配列として導入することによって、相同組換えを伴う任意の遺伝子破壊を実施することができる。または、ハイグロマイシンやジェネティシン(以下、G418とも表記する)などの薬剤に感受性の場合、これらの薬剤に対して耐性能を付与するための遺伝子を導入することによって、相同組換えを伴う任意の遺伝子の破壊を実施することができる。よって、本発明の一つの実施態様によれば、前述のハイグロマイシンBおよびG418に感受性の酵母菌株を宿主として、当該菌株に元々は存在しない薬剤耐性能を付与する遺伝子を用いて、当該菌株のPDC遺伝子を破壊するものとする。選択マーカーの具体例としては、特開2003-144185号公報において当該菌種で利用可能であることが示されたハイグロマイシンBホスフォトランスフェラーゼ遺伝子(HPT遺伝子、ハイグロマイシンBに対する耐性能を付与する遺伝子)およびアミノグリコシドホスフォトランスフェラーゼ(APT遺伝子、G418に対する耐性能を付与する遺伝子)が挙げられる。 According to a preferred embodiment of the present invention, the endogenous gene encoding a polypeptide having pyruvate decarboxylase activity is disrupted by deletion of the gene by insertion of a selectable marker sequence. For example, the PDC gene can be destroyed by incorporating a selectable marker sequence into the nucleotide sequence inserted in place of the PDC gene in the above homologous recombination. The selectable marker is useful for selecting transformed cells. The insertion of the selection marker sequence is not only the introduction of the entire sequence, but also the introduction of a part of the sequence to complete the selection marker sequence by combining this partial sequence with the sequence originally present in the yeast. Is also included. For example, in the case where a yeast strain lacking a part of the originally existing selectable marker sequence is used as a transformation host, any sequence that involves homologous recombination is introduced by introducing the missing partial sequence as a selectable marker sequence. Gene disruption can be performed. Or, when sensitive to drugs such as hygromycin and geneticin (hereinafter also referred to as G418), any gene with homologous recombination is introduced by introducing a gene for imparting resistance to these drugs. Can be destroyed. Therefore, according to one embodiment of the present invention, a yeast strain sensitive to hygromycin B and G418 described above is used as a host, and a gene imparting drug resistance that does not originally exist in the strain is used. It shall destroy the PDC gene. Specific examples of the selection marker include a hygromycin B phosphotransferase gene ( HPT gene, a gene conferring resistance to hygromycin B, which was shown to be usable in the bacterial species in Japanese Patent Application Laid-Open No. 2003-144185. ) And aminoglycoside phosphotransferase ( APT gene, gene conferring resistance to G418).
 乳酸脱水素酵素の活性を有するポリペプチドをコードしている遺伝子が酵母ゲノムに組込まれる染色体上の位置は特に制限されるものではないが、ピルビン酸脱炭酸酵素の活性を有するポリペプチドをコードする遺伝子座とすることが有利である。これにより、乳酸脱水素酵素の活性を有するポリペプチドをコードしている遺伝子を、PDC遺伝子の全長プロモーターの制御下におくことができ、よって、高い発現効率を得ることができる。 The position on the chromosome where the gene encoding a polypeptide having lactate dehydrogenase activity is integrated into the yeast genome is not particularly limited, but it encodes a polypeptide having pyruvate decarboxylase activity. It is advantageous to have a locus. Thereby, a gene encoding a polypeptide having lactate dehydrogenase activity can be placed under the control of the full-length promoter of the PDC gene, and thus high expression efficiency can be obtained.
 本発明の一つの実施態様によれば、本発明による酵母菌株は、プロモーター配列および該プロモーター配列の制御下にある乳酸脱水素酵素の活性を有するポリペプチドをコードしているDNA配列を含有する発現ベクターによって形質転換されたものとされる。また、このような発現ベクターは、本発明の一つの態様をなす。 According to one embodiment of the invention, the yeast strain according to the invention comprises an expression comprising a promoter sequence and a DNA sequence encoding a polypeptide having the activity of lactate dehydrogenase under the control of the promoter sequence. It is assumed that it has been transformed with a vector. Moreover, such an expression vector forms one embodiment of the present invention.
 キャンディダ・ユティリスは、その倍数性が高く、胞子を形成しない。倍数性の高い株の遺伝子に変異を導入しようとする場合、1倍体の株に比べて、その変異を重度に加える必要があるが、その際に、変異を与えたい遺伝子ではない遺伝子にも変異が加えられる可能性が高まると考えられる。従って、キャンディダ・ユティリスの遺伝子に変異を導入する場合には、標的とする遺伝子のみに効率よく多重に変異を加えることができる技術を用いることが好ましい。 Candida utilis has high ploidy and does not form spores. When trying to introduce a mutation into a gene of a highly polyploid strain, it is necessary to add the mutation more severely than in a haploid strain. It is considered that the possibility of mutation is increased. Therefore, when introducing a mutation into the gene of Candida utilis, it is preferable to use a technique that can efficiently add multiple mutations only to the target gene.
 キャンディダ・ユティリスの形質転換法としては、特開2003-144185号公報に記載の技術が挙げられる。この文献では、利用可能なベクターとして、キャンディダ・ユティリスの染色体DNAと相同な配列と、選択マーカー遺伝子とを含んでなり、相同組換えによって異種遺伝子をキャンディダ・ユティリスの染色体DNAに組込むことができるもの、あるいは、キャンディダ・ユティリスで自律複製機能を有するDNA配列と、選択マーカー遺伝子とを含んでなり、高い頻度でキャンディダ・ユティリスを形質転換できるものが開発されている。 As a method for transforming Candida utilis, there is a technique described in JP-A-2003-144185. In this document, as a usable vector, a sequence homologous to the chromosomal DNA of Candida utilis and a selection marker gene are included, and a heterologous gene can be incorporated into the chromosomal DNA of Candida utilis by homologous recombination. A DNA sequence that can be transformed into Candida utilis, or a DNA sequence having an autonomous replication function in Candida utilis and a selectable marker gene, has been developed.
 キャンディダ・ユティリスの形質転換系で利用可能な選択マーカー遺伝子は、キャンディダ・ユティリスで機能し得る薬剤耐性マーカー、好ましくはシクロヘキシミド耐性型L41遺伝子、ジェネティシン(G418)耐性を付与する遺伝子、またはハイグロマイシンB耐性を付与する遺伝子などがある。ジェネティシン(G418)耐性を付与する遺伝子、またはハイグロマイシンB耐性を付与する遺伝子は、野生の酵母には存在しない配列であるため、標的の遺伝子座に組込まれる確率が高いと考えられている。また、他の種の酵母では、その宿主の形質に与える影響も小さいと考えられている(Baganz Fら,13(16):1563-73.,1997)(Cordero Otero Rら,Appl Microbiol Biotechnol,46(2):143-8.,1996)。これらの特徴を有する当該遺伝子は、キャンディダ・ユティリスの育種においても有益であると考えられる。 A selectable marker gene that can be used in the Candida utilis transformation system is a drug resistance marker that can function in Candida utilis, preferably a cycloheximide-resistant L41 gene, a gene conferring geneticin (G418) resistance, or hygromycin There are genes that confer B resistance. A gene that confers geneticin (G418) resistance or a gene that confers hygromycin B resistance is a sequence that does not exist in wild yeast, and is therefore considered to have a high probability of being incorporated into a target locus. In addition, in other species of yeast, it is considered that the influence on the traits of the host is small (Baganz F et al., 13 (16): 1563-73., 1997) (Cordero Otero R et al., Appl Microbiol Biotechnol, 46 (2): 143-8., 1996). The gene having these characteristics is considered to be useful in breeding Candida utilis.
 他の形質転換系として、バクテリオファージP1由来のCre-loxP系が挙げられる。これは、2つの34bpのloxP配列間での部位特異的組換えシステムであり、この組換えはCre遺伝子がコードするCre組換え酵素によって触媒される。このシステムは、サッカロマイセス・セレビシエなどの酵母細胞においても機能することが報告されており、2つのloxP配列の間に配置された選択マーカー遺伝子は、loxP配列間の組換えによって除去されることが知られている(Guldener,U.ら,Nucleic Acids Res.,24,2519-24.,1996)。このシステムはクルイベロマイセス・ラクティス(Kluyveromyces lactis)など、キャンディダ・ユティリス以外の複数の酵母種で利用されている(Steensma,H.Y.ら,Yeast,18,469-72.,2001)。 Another transformation system is the Cre-loxP system derived from bacteriophage P1. This is a site-specific recombination system between the loxP sequences of the two 34 bp, this recombination is catalyzed by Cre recombinase which Cre gene. This system has also been reported to function in yeast cells such as Saccharomyces cerevisiae, and it is known that a selectable marker gene placed between two loxP sequences is removed by recombination between loxP sequences. (Guldener, U., et al., Nucleic Acids Res., 24, 2519-24., 1996). This system is used in several yeast species other than Candida utilis, such as Kluyveromyces lactis (Steensma, HY et al., Yeast, 18, 469-72., 2001). .
乳酸の製造方法
 本発明による酵母菌株を適当な炭素源の存在下で培養することにより、培養物中に乳酸脱水素酵素の発酵産物である乳酸を製造することができる。本発明による乳酸製造法によれば、培養系から乳酸を分離する工程を実施することにより、乳酸を得ることが出来る。
なお、本発明において培養物とは、培養上清の他、培養細胞あるいは菌体、細胞もしくは菌体の破砕物を包含している。
Method for Producing Lactic Acid By culturing the yeast strain according to the present invention in the presence of an appropriate carbon source, lactic acid which is a fermentation product of lactic acid dehydrogenase can be produced in the culture. According to the method for producing lactic acid according to the present invention, lactic acid can be obtained by carrying out the step of separating lactic acid from the culture system.
In the present invention, the culture includes cultured cells or microbial cells, cells or disrupted microbial cells, in addition to the culture supernatant.
 本発明による酵母菌株の培養にあたっては、酵母の種類に応じて培養方法や培養条件を選択することができる。例えば、試験管、フラスコあるいはジャーファーメンターを用いた液体培養法を挙げることができ、回分培養、半回分培養などの培養形式を採用できる。
試験管やフラスコでの培養では振幅35mmの条件が好適であり、このような培養は、TAITEC社製卓上培養装置により行うことができる。
In culturing the yeast strain according to the present invention, a culture method and culture conditions can be selected according to the type of yeast. For example, a liquid culture method using a test tube, a flask or a jar fermenter can be mentioned, and a culture format such as batch culture or semi-batch culture can be adopted.
Conditions of an amplitude of 35 mm are suitable for culturing in test tubes and flasks, and such culturing can be performed with a table culture apparatus manufactured by TAITEC.
 本発明による乳酸製造法において、培地の組成は、酵母が生育し、且つ乳酸を製造できる各種栄養素を含む組成であれば特に限定されない。培地に含まれる資化炭素源としては、例えば、グルコースのほかにもキシロースやスクロースでも資化できれば用いることができる。本発明の好ましい実施態様によれば、炭素源としてはグルコースまたはスクロースが用いられ、より好ましくはグルコースが用いられる。 In the method for producing lactic acid according to the present invention, the composition of the medium is not particularly limited as long as it is a composition containing various nutrients that allow yeast to grow and produce lactic acid. As the assimilating carbon source contained in the medium, for example, xylose or sucrose can be used in addition to glucose as long as it can be assimilated. According to a preferred embodiment of the present invention, glucose or sucrose is used as the carbon source, more preferably glucose.
 また、培地に含まれる栄養源としては、例えば、酵母エキス、ペプトン、ホエーなどが用いられるが、YP(10g/L酵母エキス、20g/Lペプトン)に上記の資化炭素源を加えた培地、例えばYPD(20g/Lグルコース、10g/L酵母エキス、20g/Lペプトン)、YPX(20g/Lキシロース、10g/L酵母エキス、20g/Lペプトン)、YPSuc10培地(100g/Lスクロース、10g/L酵母エキス、20g/Lペプトン)等の培地で、さらに適宜pH調整されたものが便利である。 Moreover, as a nutrient source contained in the medium, for example, yeast extract, peptone, whey and the like are used, but a medium obtained by adding the above assimilable carbon source to YP (10 g / L yeast extract, 20 g / L peptone), For example, YPD (20 g / L glucose, 10 g / L yeast extract, 20 g / L peptone), YPX (20 g / L xylose, 10 g / L yeast extract, 20 g / L peptone), YPSuc10 medium (100 g / L sucrose, 10 g / L It is convenient to use a medium such as yeast extract (20 g / L peptone), which has been further adjusted in pH.
 なお、安価で精製工程に負担がかからない培地にするには、硫酸アンモニウム等のアンモニウム塩などの無機態窒素や尿素の方が好ましい。また、無機物栄養源としては、例えば、リン酸カリウム、硫酸マグネシウムやFe(鉄)、Mn(マンガン)化合物なども使用される。さらに、培地には、pH調整剤が含まれていてもよい。 It should be noted that inorganic nitrogen such as ammonium salts such as ammonium sulfate and urea are preferred for a medium that is inexpensive and does not impose a burden on the purification process. Moreover, as an inorganic nutrient source, for example, potassium phosphate, magnesium sulfate, Fe (iron), Mn (manganese) compound, or the like is also used. Further, the culture medium may contain a pH adjuster.
 発酵温度は、用いる乳酸製造酵母の生育可能な範囲で選択することができる。発酵温度は、例えば、約15℃~45℃とすることができ、より好ましくは25~40℃、さらに好ましくは27~40℃、最も好ましくは35℃とする。また、発酵過程における培地のpHは3~8に保持することが好ましく、より好ましくはpH4~7、最も好ましくはpH6であり、必要に応じて発酵産物である乳酸等の中和を行うことができる。用いる中和剤としては、炭酸カルシウム、水酸化ナトリウム、水酸化カリウム等が挙げられるが、好ましくは炭酸カルシウムである。 Fermentation temperature can be selected within the range where the lactic acid-producing yeast to be used can grow. The fermentation temperature can be, for example, about 15 to 45 ° C., more preferably 25 to 40 ° C., still more preferably 27 to 40 ° C., and most preferably 35 ° C. Further, the pH of the medium during the fermentation process is preferably maintained at 3 to 8, more preferably pH 4 to 7, most preferably pH 6, and neutralization of lactic acid as a fermentation product may be performed as necessary. it can. Examples of the neutralizing agent to be used include calcium carbonate, sodium hydroxide, potassium hydroxide and the like, and calcium carbonate is preferable.
 乳酸製造に要する反応時間は特に限定されず、本発明の効果が認められる限り任意の反応時間で実施される。これらの条件の最適化は、当業者であれば容易に行うことができる。 The reaction time required for the production of lactic acid is not particularly limited, and the reaction is carried out at any reaction time as long as the effect of the present invention is recognized. Those skilled in the art can easily optimize these conditions.
 乳酸製造にあたり、まず酵母を増殖させる場合には、前々培養、前培養を行い、その後に発酵培養による乳酸製造を行うことが好ましい。 In the production of lactic acid, when growing yeast first, it is preferable to carry out pre-culture and pre-culture, and then carry out lactic acid production by fermentation culture.
 前々培養の条件としては、30℃で1~3日間YPD寒天培地上で生育させた菌体を、滅菌された爪楊枝で一掻きして取得する。これを15mLのチューブに加えられた3~5mLのYPD液体培地を用い、120~150rpmの振とう条件下で培養することが好ましい。 As pre-culture conditions, cells grown on a YPD agar medium at 30 ° C. for 1 to 3 days are scraped with a sterilized toothpick to obtain. This is preferably cultured using 3 to 5 mL of YPD liquid medium added to a 15 mL tube under shaking conditions of 120 to 150 rpm.
 前培養の条件としては、培地として50mL~100mLのYPD液体培地、YPX10液体培地(100g/Lキシロース、10g/L酵母エキス、20g/Lペプトン)またはYPSuc10液体培地(100g/Lスクロース、10g/L酵母エキス、20g/Lペプトン)を用い、前々培養の菌体を、OD600が約0.1になるよう新たな培地に接種したうえで120~150rpm、30℃で通常16~30時間培養し、OD600が10~25を示す対数増殖期または定常期まで培養することが好ましい。 Pre-culture conditions include 50 to 100 mL of YPD liquid medium, YPX10 liquid medium (100 g / L xylose, 10 g / L yeast extract, 20 g / L peptone) or YPSuc10 liquid medium (100 g / L sucrose, 10 g / L). Yeast extract, 20 g / L peptone), inoculate the pre-cultured cells into a new medium so that the OD600 is about 0.1, and then culture at 120 to 150 rpm, 30 ° C. for usually 16 to 30 hours. The culture is preferably performed until the logarithmic growth phase or stationary phase where OD600 is 10 to 25.
 発酵培養の条件としては、培地として、グルコース、キシロースまたはスクロースを95~115g/L(好ましくは100~115g/L)の濃度で含み、且つ、中和剤として炭酸カルシウムを3~5%含む培地、例えば、炭酸カルシウムを3~5%含むYPD10培地(100g/Lグルコース、10g/L酵母エキス、20g/Lペプトン)、YPX10培地(100g/Lキシロース、10g/L酵母エキス、20g/Lペプトン)またはYPSuc10培地(100g/Lスクロース、10g/L酵母エキス、20g/Lペプトン)を用い、70~150rpm、15~45℃、10~40mLの液量の通気条件下で培養することが好ましい。より好ましくは80~100rpm、25~40℃、10~20mL、さらに好ましくは80rpm、27~40℃、10~15mLである。なお発酵にはバッフル付の100mL三角フラスコを用い、これに10~40mLの培地および菌体を加えることが好ましい。特にこの段階では、初期の菌体量としてOD600を1~30(好ましくは1~20)に調整することが、より短時間で効率良く乳酸を製造できる点で好ましく、より好ましくはOD600を5~25、さらに好ましくは5~15とし、最も好ましくはOD600を約10とする。 As conditions for fermentation culture, the medium contains glucose, xylose or sucrose at a concentration of 95 to 115 g / L (preferably 100 to 115 g / L), and 3 to 5% of calcium carbonate as a neutralizing agent. For example, YPD10 medium (100 g / L glucose, 10 g / L yeast extract, 20 g / L peptone) containing 3-5% calcium carbonate, YPX10 medium (100 g / L xylose, 10 g / L yeast extract, 20 g / L peptone) Alternatively, it is preferable to use YPSuc10 medium (100 g / L sucrose, 10 g / L yeast extract, 20 g / L peptone) and culture under aeration conditions of 70 to 150 rpm, 15 to 45 ° C., and 10 to 40 mL. More preferably, it is 80-100 rpm, 25-40 ° C., 10-20 mL, and more preferably 80 rpm, 27-40 ° C., 10-15 mL. For fermentation, it is preferable to use a 100 mL Erlenmeyer flask with a baffle, and add 10 to 40 mL of medium and cells. In particular, at this stage, it is preferable to adjust OD600 to 1 to 30 (preferably 1 to 20) as an initial amount of bacterial cells from the viewpoint that lactic acid can be efficiently produced in a shorter time, and more preferably, OD600 is adjusted to 5 to 25, more preferably 5-15, and most preferably OD600 of about 10.
 500mL以上の培地スケールでの乳酸製造では、酵母を増殖させる場合に、液体培地で前前々培養、前々培養、前培養を行い、その後に発酵培養による乳酸製造を行うことが好ましい。当該規模での試験ではジャーファーメンターを用いることが好ましい。 In the production of lactic acid at a medium scale of 500 mL or more, when growing yeast, it is preferable to carry out pre-culture, pre-culture, and pre-culture in a liquid medium, and then carry out lactic acid production by fermentation culture. It is preferable to use a jar fermenter in the test on the scale.
 前前々培養での条件としては、30℃で1~3日間YPD寒天培地上で生育させた菌体を、滅菌された爪楊枝で一掻きして取得する。これを15mLのチューブに加えられた3~5mLのYPD液体培地を用い、120~150rpm、30℃で通常6~30時間、振とう条件下で培養することが好ましい。 As the pre-culture conditions, the cells grown on the YPD agar medium at 30 ° C. for 1 to 3 days are scraped with a sterilized toothpick. This is preferably cultured under shaking conditions using 3 to 5 mL of YPD liquid medium added to a 15 mL tube at 120 to 150 rpm and 30 ° C. for usually 6 to 30 hours.
 前前培養での条件としては、培地として50mL~100mLのYPD液体培地を用い、前前々培養の菌体を、OD600が約0.1になるよう新たな培地に接種したうえで120~150rpm、30℃で通常10~30時間培養し、OD600が10~25を示す対数増殖期または定常期まで培養することが好ましい。当該培養では坂口フラスコを用いることが好ましい。 The pre-culture conditions are as follows: 50 mL to 100 mL of YPD liquid medium is used as the medium, and the pre-culture cells are inoculated into a new medium so that the OD600 is about 0.1, and then 120 to 150 rpm. The culture is preferably carried out at 30 ° C. for usually 10 to 30 hours, and further to the logarithmic growth phase or stationary phase where OD600 is 10 to 25. In the culture, a Sakaguchi flask is preferably used.
 前培養での条件としては、温度、通気量や撹拌速度などが調整できるジャーファーメンターを用いることが好ましい。培地として500mL~2.5LのYPD液体培地を用い、前々培養液を20~100mL添加して、OD600が約0.1になるよう新たな培地に接種したうえで、撹拌速度を300~400rpm、温度を30℃、通気量を1.25vvmにして通常10~30時間培養し、OD600が10~25を示す対数増殖期または定常期まで培養することが好ましい。 As conditions for the pre-culture, it is preferable to use a jar fermenter capable of adjusting temperature, aeration amount, stirring speed and the like. Use 500 mL to 2.5 L YPD liquid medium as the medium, add 20 to 100 mL of the culture medium in advance, inoculate a new medium so that the OD600 is about 0.1, and then stir at a speed of 300 to 400 rpm. It is preferable to culture at a temperature of 30 ° C. and an aeration rate of 1.25 vvm for usually 10 to 30 hours, and to a logarithmic growth phase or a stationary phase where OD600 is 10 to 25.
 発酵培養での条件としては、温度、通気量、撹拌速度、pH制御などが調整できるジャーファーメンターを用いることが好ましい。培地としてグルコースまたはスクロースを50~220g/L、好ましくは100~115g/Lの濃度で含み且つ中和剤として炭酸カルシウム培地を3~5%含むYPD10培地(100g/Lグルコース、10g/L酵母エキス、20g/Lペプトン)またはYPSuc10培地(100g/Lスクロース、10g/L酵母エキス、20g/Lペプトン)、あるいはpHを水酸化ナトリウムあるいは水酸化カリウムなどの中和剤で発酵に適したpHに保たれた状態のYPD10培地またはYPSuc10培地、撹拌速度を100~300rpm、15~45℃、500mL~2.5Lの液量の条件下で培養することが好ましい。より好ましくは200~250rpm、27~37℃、1.5~2Lである。特にこの段階では、初期の菌体量としてOD600を1~30(好ましくは1~20)に調整することが、より短時間で効率良く乳酸を製造できる点で好ましく、より好ましくはOD600を5~15とし、最も好ましくはOD600を約10とする。 As conditions for fermentation culture, it is preferable to use a jar fermenter that can adjust temperature, aeration rate, stirring speed, pH control, and the like. YPD10 medium (100 g / L glucose, 10 g / L yeast extract) containing glucose or sucrose as a medium at a concentration of 50 to 220 g / L, preferably 100 to 115 g / L, and 3 to 5% of calcium carbonate medium as a neutralizing agent. 20 g / L peptone) or YPSuc10 medium (100 g / L sucrose, 10 g / L yeast extract, 20 g / L peptone), or the pH is maintained at a pH suitable for fermentation with a neutralizing agent such as sodium hydroxide or potassium hydroxide. It is preferable to cultivate the YPD10 medium or YPSuc10 medium in a damp state under the conditions of a stirring rate of 100 to 300 rpm, 15 to 45 ° C., and 500 mL to 2.5 L of liquid. More preferably, they are 200 to 250 rpm, 27 to 37 ° C., and 1.5 to 2 L. In particular, at this stage, it is preferable to adjust OD600 to 1 to 30 (preferably 1 to 20) as an initial amount of bacterial cells from the viewpoint that lactic acid can be efficiently produced in a shorter time, and more preferably, OD600 is adjusted to 5 to 15 and most preferably an OD600 of about 10.
 ここでいう発酵時の通気条件としては、好気条件、特に微好気の条件が好ましい。通常24~48時間培養することで目的とする乳酸が高効率で製造される。 Here, the aeration conditions during fermentation are preferably aerobic conditions, particularly microaerobic conditions. Usually, the target lactic acid is produced with high efficiency by culturing for 24 to 48 hours.
 本発明による乳酸製造法においては、このようにして製造した乳酸成分を培地から分離・回収するが、その分離・回収方法は特に限定されない。本発明による乳酸製造法では、例えば、乳酸成分の分離濃縮手段として従来の乳酸発酵による製造プロセスで用いられる公知の方法を用いることができる。そのような公知の方法としては、例えば、1)石灰乳を加えて中和することからなる乳酸カルシウム再結晶法、2)エーテルなどの溶媒を用いる有機溶媒抽出法、3)精製乳酸をアルコールでエステル化するエステル化分離法、4)イオン交換樹脂を用いるクロマトグラフィ分離法、5)イオン交換膜を用いる電気透析法などが挙げられる。従って、本発明による乳酸の製造方法により得られる乳酸成分は、遊離型の乳酸のみならず、ナトリウム、カリウムなどの塩や、メチルエステル、エチルエステルなどのエステルの形態であってもよい。 In the lactic acid production method according to the present invention, the lactic acid component thus produced is separated and collected from the medium, but the separation and collection method is not particularly limited. In the lactic acid production method according to the present invention, for example, a known method used in a conventional production process by lactic acid fermentation can be used as a means for separating and concentrating lactic acid components. As such known methods, for example, 1) calcium lactate recrystallization method comprising adding lime milk to neutralize, 2) organic solvent extraction method using a solvent such as ether, 3) purified lactic acid with alcohol Examples thereof include an esterification separation method for esterification, 4) a chromatographic separation method using an ion exchange resin, and 5) an electrodialysis method using an ion exchange membrane. Accordingly, the lactic acid component obtained by the method for producing lactic acid according to the present invention may be in the form of not only free lactic acid but also salts such as sodium and potassium, and esters such as methyl ester and ethyl ester.
 本発明による乳酸製造法によれば、乳酸製造能を有する酵母キャンディダ・ユティリスにおける乳酸製造能を向上させることができ、その結果、短時間に高収率で乳酸を製造することができる。本発明による乳酸製造法は、使用する培地の組成にかかわらず、乳酸製造能を有する酵母における乳酸製造能を向上させることができる。従って、本発明による乳酸製造法によれば、比較的安価な合成培地等の貧栄養な培地であっても乳酸製造能の向上を達成することができ、乳酸製造のコストを低減することができる。 According to the method for producing lactic acid according to the present invention, the ability to produce lactic acid in yeast Candida utilis having the ability to produce lactic acid can be improved, and as a result, lactic acid can be produced in a high yield in a short time. The lactic acid production method according to the present invention can improve the lactic acid production ability of yeast having lactic acid production ability, regardless of the composition of the medium used. Therefore, according to the lactic acid production method of the present invention, it is possible to achieve an improvement in lactic acid production ability even in a poorly nutrient medium such as a relatively inexpensive synthetic medium, and to reduce the cost of lactic acid production. .
 特に、本発明による乳酸製造法によれば、乳酸脱水素酵素の活性を有するポリペプチドをコードする遺伝子を導入した酵母等に代表されるエタノール生産能を併せ持つ微生物を用いた場合、エタノール製造を抑止し、且つ高収率で乳酸を製造することができる。また、エタノール以外の副産物であるD-乳酸等の各種有機酸の製造も抑えることによって、培地に含まれる乳酸をより簡易に回収することができる。言い換えれば、乳酸の回収及び精製に要する工程を簡略化することができ、乳酸製造に要するコストを抑制することができる。このような副産物は公知の手法に従い分析し評価することができる。例えば、エタノールはガスクロマトグラフィー(GC)あるいは高速液体クロマトグラフィー(HPLC)により、アセトアルデヒドなどの各種香気成分はGCにより、ピルビン酸などの各種有機酸はHPLCにより、それぞれ分析し、評価することができる。また、グルコースの定量はHPLCあるいはバイオケミストリーアナライザー(以下、BA)(ワイエスアイジャパン社)、L-乳酸はHPLCあるいはBA、D-乳酸はHPLCあるいはL-乳酸と合わせてF-キットD-乳酸/L-乳酸(J.K.インターナショナル社)を用いて、それぞれ分析し、評価することができる。各種分析に供する試料は、例えば、0.22μmのフィルターで濾過することにより、例えばカラムを詰まらせるなど、分析に悪影響を及ぼしうる夾雑物を除去することが好ましい。 In particular, according to the lactic acid production method of the present invention, ethanol production is inhibited when a microorganism having ethanol production ability, such as yeast introduced with a gene encoding a polypeptide having lactate dehydrogenase activity, is used. In addition, lactic acid can be produced with high yield. Further, by suppressing the production of various organic acids such as D-lactic acid, which is a by-product other than ethanol, lactic acid contained in the medium can be more easily recovered. In other words, the steps required for recovery and purification of lactic acid can be simplified, and the cost required for lactic acid production can be suppressed. Such by-products can be analyzed and evaluated according to known techniques. For example, ethanol can be analyzed and evaluated by gas chromatography (GC) or high performance liquid chromatography (HPLC), various aromatic components such as acetaldehyde can be analyzed by GC, and various organic acids such as pyruvic acid can be analyzed and evaluated by HPLC. . Glucose is quantified by HPLC or Biochemistry Analyzer (hereinafter BA) (Wyeth Japan), L-lactic acid is HPLC or BA, D-lactic acid is combined with HPLC or L-lactic acid and F-kit D-lactic acid / Each can be analyzed and evaluated using L-lactic acid (JK International). It is preferable to remove impurities that may adversely affect the analysis, such as clogging the column, by filtering the sample to be subjected to various analyzes, for example, by filtering with a 0.22 μm filter.
 なお、培養液中のピルビン酸およびクエン酸、リンゴ酸、コハク酸等の各種有機酸は、HPLCによる有機酸分析(電気伝導度による検出)により測定した。また、エタノール等、その他の物質の測定法は、以下の実施例に記載した。 Note that pyruvic acid and various organic acids such as citric acid, malic acid, and succinic acid in the culture solution were measured by organic acid analysis by HPLC (detection by electrical conductivity). In addition, methods for measuring other substances such as ethanol are described in the following examples.
 本明細書においては、さらに、ピルビン酸脱炭酸酵素の活性を有するポリペプチドをコードしている内因性遺伝子が破壊されているキャンディダ・ユティリスの酵母菌株であって、乳酸脱水素酵素の活性を有するポリペプチドをコードしている遺伝子が導入されていない酵母菌株を培養することにより、ピルビン酸が大量に生産されることが見出されている。 The present specification further relates to a yeast strain of Candida utilis in which an endogenous gene encoding a polypeptide having pyruvate decarboxylase activity is disrupted, wherein the lactate dehydrogenase activity is increased. It has been found that pyruvic acid is produced in large quantities by culturing a yeast strain into which a gene encoding the polypeptide it has is not introduced.
 従って、本発明の他の態様によれば、ピルビン酸脱炭酸酵素の活性を有するポリペプチドをコードしている内因性遺伝子が破壊されているキャンディダ・ユティリスの酵母菌株が提供され、さらには、該酵母菌株を培養することを含んでなる、ピルビン酸を製造する方法が提供される。ピルビン酸は反応性が高く、医薬、農薬等の合成の基質などに用いられるため、ファインケミカル分野においては重要な中間物質とされている。 Thus, according to another aspect of the present invention, there is provided a Candida utilis yeast strain in which an endogenous gene encoding a polypeptide having pyruvate decarboxylase activity is disrupted, and There is provided a method for producing pyruvic acid comprising culturing the yeast strain. Since pyruvic acid has high reactivity and is used as a synthetic substrate for pharmaceuticals, agricultural chemicals, etc., it is regarded as an important intermediate in the fine chemical field.
 キャンディダ・ユティリスの酵母菌株におけるピルビン酸脱炭酸酵素の活性を有するポリペプチドをコードしている内因性遺伝子およびその破壊の詳細は、上述したとおりである。ピルビン酸の精製方法としては、有機化合物の精製方法として知られるいかなる方法を用いてもよく、例えば、特開2007-169244号公報などに記載されている蒸留による方法を用いることができる。蒸留は、例えば、1回目の蒸留として70~80℃の減圧条件または真空条件下において、2回目の蒸留として90~100℃の減圧条件または真空条件下において行うことができる。蒸留により得られたピルビン酸は、さらに活性炭による処理、脱水、脱酢酸等の処理を適宜行うことにより、乳酸等の製造物から分離し、回収することができる。このようにして精製されたピルビン酸は、上述の通り、ファインケミカル分野において利用することができる。 The endogenous gene encoding the polypeptide having pyruvate decarboxylase activity in the yeast strain of Candida utilis and the details of the disruption are as described above. As a method for purifying pyruvic acid, any method known as a method for purifying organic compounds may be used. For example, a method by distillation described in JP-A No. 2007-169244 may be used. Distillation can be performed, for example, under the reduced pressure condition or vacuum condition of 70 to 80 ° C. as the first distillation and under the reduced pressure condition or vacuum condition of 90 to 100 ° C. as the second distillation. The pyruvic acid obtained by distillation can be separated from a product such as lactic acid and recovered by appropriately performing treatment with activated carbon, dehydration, deacetic acid and the like. The pyruvic acid thus purified can be used in the fine chemical field as described above.
 以下に本発明の具体例を記載するが、これにより本発明の技術的範囲につき何等制約を受けるものではない。 Specific examples of the present invention will be described below, but this does not impose any restrictions on the technical scope of the present invention.
 PCRによる遺伝子増幅には、特に述べない限りTaKaRa社製Ex TaqあるいはToyobo社製KOD-Plus-を使用し、方法は添付のプロトコールに従った。
PCR増幅反応は94℃で1分間の熱処理を行った後、変性工程:94℃で30秒、アニーリング工程:X℃で30秒(X℃はプライマーのTm値である。ただし特記しない限り55℃とした。)、伸長工程:72℃でY秒(ただし、Y秒は予想される増幅産物の大きさから1kbp(kilo base pair)につき約60秒として計算)の3工程を30サイクル繰り返し、最後に4℃とした。PCR増幅装置はGeneAmp PCR System 9700(PE Applied Biosystems社)を使用した。酵母からのゲノムDNAの抽出には、TaKaRa社製Genとるくん、もしくは酢酸カリウム法(Methods Enzymol.,65、404,1980)を用いた。
DNAの脱リン酸化反応にはTaKaRa社製Alkaline Phosphatase(E. coli C75)またはTaKaRa社製Alkaline Phosphatase(Shrimp)を使用し、ライゲーション反応にはTaKaRa社製Ligation Kit ver.2を使用し、方法は添付のプロトコールに従った。大腸菌の形質転換にはDH5α(TOYOBO社)のコンピテントセルを使用し、方法は添付のプロトコールに従った。大腸菌の形質転換体の選抜には、プラスミドに含まれる薬剤耐性マーカー遺伝子に応じて、アンピシリン100μg/mLを含むLBプレート(LB+ampプレート)またはカナマイシン50μg/mLを含むLBプレートを用い、必要に応じて20μg/mLX-gal及び0.1mMIPTGによる青白選択を行った。大腸菌からのプラスミドDNAの回収にはQIAGEN社製QIAprep Spin Miniprep Kitを使用し、方法は添付のプロトコールに従った。サッカロマイセス・セレビシエの形質転換はリチウム法(Itoら、 J.Bacteriol.,153、163,1983)により行った。キャンディダ・ユティリスの形質転換は特開2003-144185号公報に記載された方法を一部改変して行った。塩基配列の決定は以下の方法で行った。アプライドバイオシステムズ社製BigDye Terminator v3.1を用いてPCRを行い、方法は添付のプロトコールに従った。未反応BigDye Terminatorの除去にはCENTRI-SEP COLUMNS(PRINCETON SEPARATIONS)を用い、方法は添付のプロトコールに従った。塩基配列の決定には、アプライドバイオシステムズ社製3100 Genetic Analyzerを使用し、方法は添付のプロトコールに従った。なお、配列表に記載されている縮重プライマーの表記については、「W」が「A(アデニン)」と「T(チミン)」から、「R」は「A(アデニン)」と「G(グアニン)」、「Y」は「C(シトシン)」と「T(チミン)」、「M」は「A(アデニン)」と「C(シトシン)」からの混合物より、それぞれ成り立つことを示す。なお、表中の乳酸製造量等の各種数値は、平均値±標準誤差で示した。
For gene amplification by PCR, Ex Taq manufactured by TaKaRa or KOD-Plus- manufactured by Toyobo was used unless otherwise specified, and the method followed the attached protocol.
In the PCR amplification reaction, after heat treatment at 94 ° C. for 1 minute, denaturation step: 94 ° C. for 30 seconds, annealing step: X ° C. for 30 seconds (X ° C. is the Tm value of the primer. ), Extension process: Y cycle at 72 ° C. (however, Y second is calculated as about 60 seconds per kilobase pair) from the expected size of the amplified product). The temperature was 4 ° C. As a PCR amplification apparatus, GeneAmp PCR System 9700 (PE Applied Biosystems) was used. Gentoru-kun manufactured by TaKaRa or the potassium acetate method (Methods Enzymol., 65, 404, 1980) was used for extraction of genomic DNA from yeast.
Alkaline Phosphatase ( E. coli C75) manufactured by TaKaRa or Alkaline Phosphatase (Shripmp) manufactured by TaKaRa was used for the dephosphorylation of DNA, and the Ligation Kit ver. 2 and the method followed the attached protocol. Competent cells of DH5α (TOYOBO) were used for transformation of E. coli, and the method followed the attached protocol. For selection of E. coli transformants, an LB plate containing 100 μg / mL of ampicillin (LB + amp plate) or an LB plate containing 50 μg / mL of kanamycin is used according to the drug resistance marker gene contained in the plasmid. Blue-white selection with 20 μg / mLX-gal and 0.1 mM IPTG was performed. For recovering plasmid DNA from E. coli, QIAprep Spin Miniprep Kit manufactured by QIAGEN was used, and the method followed the attached protocol. Transformation of Saccharomyces cerevisiae was performed by the lithium method (Ito et al., J. Bacteriol., 153, 163, 1983). Transformation of Candida utilis was performed by partially modifying the method described in JP-A No. 2003-144185. The base sequence was determined by the following method. PCR was performed using BigDye Terminator v3.1 manufactured by Applied Biosystems, and the method followed the attached protocol. For removal of unreacted BigDye Terminator, CENTRI-SEP COLUMNS (PRINCETON SEPARATIONS) was used, and the method followed the attached protocol. For determination of the base sequence, 3100 Genetic Analyzer manufactured by Applied Biosystems was used, and the method followed the attached protocol. Regarding the notation of degenerate primers described in the sequence listing, “W” is from “A (adenine)” and “T (thymine)”, and “R” is “A (adenine)” and “G ( "Guanine)" and "Y" indicate that "C (cytosine)" and "T (thymine)" and "M" consist of a mixture of "A (adenine)" and "C (cytosine)", respectively. In addition, various numerical values, such as the lactic acid production amount in a table | surface, were shown by the average value +/- standard error.
 電気パルスによるキャンディダ・ユティリス株の形質転換は特開2003-144185号公報に記載された方法を一部改変して行った。YPDプレート上のコロニーを、5mlのYPD液体培地において、30℃で約8時間振盪培養した後、200mlのYPD液体培地にOD600が0.0024になるよう植菌して30℃で振盪培養する。約16時間後、対数増殖期(OD600=2.5)にまで菌体が増殖した後、1,400×gで5分間の遠心分離により集菌する。菌体は100mlの氷冷した滅菌水で1回、続いて40mlの氷冷した滅菌水で1回洗浄した後、氷冷した1Mソルビトール40mlで1回洗浄する。菌体を10mlの1Mソルビトールに懸濁した後、滅菌ポリプロピレンチューブに移し、再度1,100×gで5分間の遠心分離により集菌する。上清を除いた後、最終菌体液量が2.5mlになるよう、氷冷した1Mソルビトールに懸濁する。 Transformation of the Candida utilis strain by electric pulse was performed by partially modifying the method described in Japanese Patent Application Laid-Open No. 2003-144185. The colonies on the YPD plate are cultured with shaking in 5 ml of YPD liquid medium at 30 ° C. for about 8 hours, then inoculated into 200 ml of YPD liquid medium so that OD600 is 0.0024, and cultured at 30 ° C. with shaking. After about 16 hours, the cells grow to the logarithmic growth phase (OD600 = 2.5), and then are collected by centrifugation at 1,400 × g for 5 minutes. The cells are washed once with 100 ml of ice-cooled sterilized water, then once with 40 ml of ice-cold sterilized water, and then once with 40 ml of ice-cooled 1M sorbitol. The cells are suspended in 10 ml of 1M sorbitol, transferred to a sterile polypropylene tube, and collected again by centrifugation at 1,100 × g for 5 minutes. After removing the supernatant, the suspension is suspended in ice-cooled 1 M sorbitol so that the final cell volume is 2.5 ml.
 電気パルスによる形質転換実験はバイオラッド社のジーンパルサーを用いて行なう。50μlの菌液と、100ng~10μgのDNAを含む5μlのDNA試料、および2.0mg/mlのサケ精巣由来のキャリアーDNAを5μl混合した後、0.2cmのディスポーザブルキュベットに入れ、適当な条件の電気パルスを加える。例えば、本発明の好ましい態様によれば、電気容量が25μF、抵抗値が600~1000オーム、電圧が0.75~5KV/cmの条件とする。パルス後、1mlの氷冷した1Mソルビトールを含むYPD培地を加え、滅菌ポリプロピレンチューブに移した後、30℃で約6~15時間振盪培養する。培養後、選択マーカー遺伝子に応じて、菌液を適切な薬剤を含むYPD選択培地に塗布した後、プレートを28~30℃で3~4日保温して、形質転換体コロニーを得た。HPT遺伝子を選択マーカー遺伝子とする場合にはハイグロマイシンBを600~800μg/mlの濃度で、APT遺伝子を選択マーカー遺伝子とする場合にはG418を200μg/mlの濃度でYPD培地に加えた。以下、それぞれの培地をHygB培地およびG418培地と表記する。また、ハイグロマイシンBに耐性であることをHygBr、ハイグロマイシンBに感受性であることをHygBs、G418に耐性であることをG418r、G418に感受性であることをG418sと表記する。 Transformation experiments with electric pulses are performed using a Bio-Rad gene pulser. 50 μl of the bacterial solution, 5 μl of DNA sample containing 100 ng to 10 μg of DNA, and 5 μl of 2.0 mg / ml salmon testis-derived carrier DNA were mixed, and then placed in a 0.2 cm disposable cuvette. Apply electrical pulses. For example, according to a preferred embodiment of the present invention, the electric capacity is 25 μF, the resistance value is 600 to 1000 ohms, and the voltage is 0.75 to 5 KV / cm. After the pulse, 1 ml of ice-cooled YPD medium containing 1 M sorbitol is added, transferred to a sterile polypropylene tube, and cultured with shaking at 30 ° C. for about 6 to 15 hours. After culturing, the bacterial solution was applied to a YPD selection medium containing an appropriate drug according to the selection marker gene, and then the plate was incubated at 28-30 ° C. for 3-4 days to obtain transformant colonies. When the HPT gene was used as a selection marker gene, hygromycin B was added to the YPD medium at a concentration of 600 to 800 μg / ml. When the APT gene was used as a selection marker gene, G418 was added to the YPD medium at a concentration of 200 μg / ml. Hereinafter, each medium is referred to as a HygB medium and a G418 medium. In addition, the resistance to hygromycin B is expressed as HygBr, the sensitivity to hygromycin B is expressed as HygBs, the resistance to G418 is expressed as G418r, and the sensitivity to G418 is expressed as G418s.
実施例1:Cre-loxPシステムを利用したキャンディダ・ユティリスの形質転換系の開発
1-1.Cre-lox系を利用した多重形質転換系に必要なプラスミドの構築
 遺伝子破壊用のDNA断片を調製するためのプラスミドpCU563は次の手順で構築した。Shimadaら(Appl.Environ.Microbiol.64,2676-2680)に記載されたPGK遺伝子プロモーターとハイグロマイシン耐性遺伝子HPT遺伝子を有するプラスミドpGKHPT1を鋳型にして、IM-53(配列番号16)とIM-57(配列番号17)のプライマーセットでPCR(伸長反応1.5分)を行うことにより、順にloxP(配列番号18)、PGK遺伝子プロモーター、HPT遺伝子からなるDNA断片を増幅した。また、pGAPPT10(Kondoら,Nat.Biotechnol.15,453-457)を鋳型にして、IM-54(配列番号19)とIM-55(配列番号20)のプライマーセットでPCR(伸長反応30秒)を行うことにより、GAP遺伝子ターミネーターとloxPからなるDNA断片を増幅した。
これらを混合してIM-1(配列番号21)とIM-2(配列番号22)でPCR(伸長反応2分)を行うことによって、順にloxP、PGK遺伝子プロモーター、HPT遺伝子、GAP遺伝子ターミネーター、loxPからなるDNA断片を増幅した。得られたDNA断片をpCR2.1ベクター[Invitrogen:TAクローニングキット(pCR2.1vector)]にクローン化した。こうして得られたプラスミドをpCU563と名づけた(図2)。形質転換によって本モジュールが組込まれたキャンディダ・ユティリス細胞は、例えば野生株では生育できない600~800μg/mlの濃度でHygBを含む培地で生育可能となる。
Example 1: Development of Candida utilis transformation system using Cre-loxP system
1-1. Construction of Plasmid Required for Multiple Transformation System Using Cre-lox System Plasmid pCU563 for preparing a DNA fragment for gene disruption was constructed by the following procedure. Using the plasmid pGKHPT1 having the PGK gene promoter and hygromycin resistance gene HPT gene described in Shimada et al. (Appl. Environ. Microbiol. 64, 2676-2680) as templates, IM-53 (SEQ ID NO: 16) and IM-57 By performing PCR (elongation reaction 1.5 minutes) with the primer set of (SEQ ID NO: 17), a DNA fragment consisting of loxP (SEQ ID NO: 18), PGK gene promoter, and HPT gene in this order was amplified. In addition, PCR (extension reaction 30 seconds) was performed using primer sets of IM-54 (SEQ ID NO: 19) and IM-55 (SEQ ID NO: 20) using pGAPPT10 (Kondo et al., Nat. Biotechnol. 15, 453-457) as a template. Was performed to amplify a DNA fragment consisting of the GAP gene terminator and loxP.
By mixing these and performing PCR (extension reaction 2 minutes) with IM-1 (SEQ ID NO: 21) and IM-2 (SEQ ID NO: 22), loxP, PGK gene promoter, HPT gene, GAP gene terminator, loxP A DNA fragment consisting of was amplified. The obtained DNA fragment was cloned into a pCR2.1 vector [Invitrogen: TA cloning kit (pCR2.1 vector)]. The plasmid thus obtained was named pCU563 (FIG. 2). Candida utilis cells into which this module has been incorporated by transformation can grow in a medium containing HygB at a concentration of 600 to 800 μg / ml, which cannot grow in a wild strain, for example.
 Cre組換え酵素の発現プラスミドpCU595は以下の手順で構築した。S.cerevisiaeでCreを発現させるプラスミドpSH65(Gueldener,U.ら, Nucleic Acids Res.30 (6),E23,2002)を鋳型として、(1)IM-49(配列番号23)とIM-50(配列番号24)、(2)IM-51(配列番号25)とIM-52(配列番号26)の2種のプライマーセットでPCRを行った(共に伸長反応30秒)。それぞれの増幅DNA断片を混合した後にIM-49(配列番号23)とIM-52(配列番号26)を用いたPCRを行うことによって、Cre組換え酵素をコードする遺伝子断片を増幅した。こうしてできたCre遺伝子では、pSH65のCre遺伝子内に存在するBamHI認識配列(GGATCC)が、アミノ酸配列を変化させずに、当該酵素が認識しない配列(GCATAC)となっている。さらにこれをXbaIとBamHIで消化して得たDNA断片を、pPMAPT1(特開2003-144185号公報)のXbaI-BamHIギャップに挿入した。このプラスミドをNotIで処理して得たCre発現モジュール、すなわち順にPMA遺伝子プロモーター、Cre遺伝子、PMA遺伝子ターミネーターからなるDNA断片を、自律複製配列CuARS2を有するpCARS7(特開2003-144185号公報)をNotIで部分消化したDNAに挿入した。こうして得られたプラスミドをpCU595と名づけた(図3)。本プラスミドはAPT遺伝子を有しており、これでキャンディダ・ユティリスの形質転換を行うと、プラスミドが導入された細胞は、例えば野生株では生育できない200μg/mlの濃度でG418を含む培地で生育可能となる。 The expression plasmid pCU595 for Cre recombinase was constructed by the following procedure. S. (1) IM-49 (SEQ ID NO: 23) and IM-50 (SEQ ID NO: 23) using as a template the plasmid pSH65 (Gueldener, U., et al., Nucleic Acids Res. 30 (6), E23, 2002) for expressing Cre in cerevisiae 24), (2) PCR was carried out with two types of primer sets, IM-51 (SEQ ID NO: 25) and IM-52 (SEQ ID NO: 26) (both extended for 30 seconds). Each amplified DNA fragment was mixed and then subjected to PCR using IM-49 (SEQ ID NO: 23) and IM-52 (SEQ ID NO: 26) to amplify the gene fragment encoding Cre recombinase. The Cre gene was thus, Bam HI recognition sequence present in the Cre gene pSH65 (GGATCC) is, without changing the amino acid sequence, which is arranged and (GCATAC) that the enzyme does not recognize. Further, a DNA fragment obtained by digesting this with Xba I and Bam HI was inserted into the Xba I- Bam HI gap of pPMAPPT1 (Japanese Patent Laid-Open No. 2003-144185). A Cre expression module obtained by treating this plasmid with Not I, that is, a DNA fragment comprising a PMA gene promoter, a Cre gene, and a PMA gene terminator in this order, pCARS7 (Japanese Patent Laid-Open No. 2003-144185) having an autonomously replicating sequence CuARS2 It was inserted into DNA partially digested with Not I. The plasmid thus obtained was named pCU595 (FIG. 3). This plasmid has an APT gene, and when Candida utilis is transformed with this plasmid, cells into which the plasmid has been introduced grow, for example, in a medium containing G418 at a concentration of 200 μg / ml that cannot be grown in a wild strain. It becomes possible.
1-2.Cre-lox系を利用したCuURA3遺伝子の多重破壊
 Cre-loxP系が機能するかどうかを調べるために、特開2003-144185号公報で記載されたCandida utilis URA3遺伝子(以下、CuURA3遺伝子)の多重破壊を試みた。当該遺伝子はオロチジン―5’―リン酸脱炭酸酵素をコードしており、細胞内にある機能性の当該遺伝子が全て失われた株は、ウラシル要求性となる。すなわちウラシルを含まない培地で生育できなくなると考えられる。
1-2. Multiple disruption of CuURA3 gene using Cre-lox system In order to investigate whether the Cre-loxP system functions , multiple disruption of Candida utilis URA3 gene (hereinafter referred to as CuURA3 gene) described in JP-A-2003-144185 Tried. The gene encodes orotidine-5′-phosphate decarboxylase, and a strain in which all the functional gene in the cell is lost becomes uracil-requiring. That is, it is thought that it cannot grow on a medium not containing uracil.
 1コピー目と2コピー目のCuURA3遺伝子を破壊するためのDNA断片の調製を次のようにして行った。まず、次の(1)、(2)および(3)に示した2種類のPCRを実施した:(1)鋳型としてpCU563を用い、プライマーとしてIM-1(配列番号21)とIM-2(配列番号22)を用い、伸長反応時間を2分とした;(2)鋳型としてNBRC0988株のゲノムDNAを用い、プライマーとしてIM-59(配列番号54)とIM-60(配列番号55)を用い、伸長反応時間を30秒とした;(3)鋳型としてNBRC0988株ゲノムDNAを用い、プライマーとしてIM-61(配列番号56)とIM-62(配列番号57)を用い、伸長反応時間を30秒とした。なお、(2)および(3)ではCuURA3遺伝子の上流部分と下流部分が増幅される。さらに以下の(4)のPCRを実施した:(4)鋳型として先述の(1)、(2)および(3)で増幅された3種類のDNAの混合物を用い、プライマーとしてIM-59(配列番号54)とIM-62(配列番号57)を用い、伸長反応時間を3分とした。これにより、順にCuURA3遺伝子の上流領域、loxP、PGK遺伝子プロモーター、HPT遺伝子、GAP遺伝子ターミネーター、loxP、CuURA3遺伝子の下流領域からなるDNA断片を取得した。以下、このDNA断片を「CuURA3破壊1・2回目断片」と表記する。
本DNA断片を用いて形質転換をすれば、CuURA3遺伝子の上流領域と下流領域で二重鎖相同組換えが起こることにより、CuURA3遺伝子のアレルを部分的に欠失させることが可能である。
A DNA fragment for disrupting the first and second copies of the CuURA3 gene was prepared as follows. First, two types of PCR shown in the following (1), (2) and (3) were performed: (1) pCU563 was used as a template, and IM-1 (SEQ ID NO: 21) and IM-2 (primers were used as primers. (SEQ ID NO: 22), and the extension reaction time was 2 minutes; (2) NBRC0988 strain genomic DNA was used as a template, and primers IM-59 (SEQ ID NO: 54) and IM-60 (SEQ ID NO: 55) were used. The extension reaction time was 30 seconds; (3) NBRC0988 strain genomic DNA was used as a template, IM-61 (SEQ ID NO: 56) and IM-62 (SEQ ID NO: 57) were used as primers, and the extension reaction time was 30 seconds. It was. In (2) and (3), the upstream part and the downstream part of the CuURA3 gene are amplified. Further, PCR of the following (4) was carried out: (4) Using a mixture of the three kinds of DNA amplified in the above (1), (2) and (3) as a template, IM-59 (sequence) as a primer No. 54) and IM-62 (SEQ ID NO: 57) were used, and the extension reaction time was 3 minutes. Thereby, a DNA fragment consisting of the upstream region of the CuURA3 gene, the loxP, the PGK gene promoter, the HPT gene, the GAP gene terminator, the loxP, and the downstream region of the CuURA3 gene in this order was obtained. Hereinafter, this DNA fragment is referred to as “ CuURA3 disruption first / second fragment”.
If the transformation using this DNA fragment, by occurring double stranded homologous recombination upstream region and downstream region of CuURA3 gene, it is possible to partially deleted allele of CuURA3 gene.
 DNA断片としてCuURA3破壊1・2回目断片1μgを用いて、NBRC0988株の形質転換を行った。その結果、119クローンのHygBrの形質転換体が得られた。NBRC0988株および119クローンから任意に選抜した11クローンの形質転換体からゲノムDNAを抽出し、これを鋳型としてIM-63(配列番号58)とIM-92(配列番号59)でPCRを行った(伸長反応3.5分)。図4に示したとおり、これらのプライマーは相同組換え領域の外側にアニーリングする。0.8%アガロースゲル電気泳動に供したところ、NBRC0988株では2.3kb、11クローン全ての形質転換体では3.2kbと2.3kbのDNA断片が増幅されていた(図5)。このことから、目的とするHygBrのCuURA3遺伝子1コピー破壊株が得られたことがわかった。また、形質転換体から陽性のクローンを選抜できる確率も高いことが明らかになった。 The NBRC0988 strain was transformed with 1 μg of the first and second fragments of CuURA3 disrupted as a DNA fragment. As a result, 119 clones of HygBr transformants were obtained. Genomic DNA was extracted from transformants of 11 clones arbitrarily selected from the NBRC0988 strain and 119 clones, and PCR was performed with IM-63 (SEQ ID NO: 58) and IM-92 (SEQ ID NO: 59) using this as a template ( Elongation reaction 3.5 minutes). As shown in FIG. 4, these primers anneal outside the homologous recombination region. When subjected to 0.8% agarose gel electrophoresis, DNA fragments of 2.3 kb and 2.3 kb were amplified in the NBRC0988 strain with 2.3 kb and in all 11 clones (FIG. 5). From this, it was found that the desired HygBr CuURA3 gene 1-copy disrupted strain was obtained. It was also revealed that there was a high probability that positive clones could be selected from the transformants.
 HygBrのCuURA3遺伝子1コピー破壊株の形質転換をCre発現用プラスミドであるpCU595で行った。G418を含む培地では、DNAを加えなかった陰性対照ではコロニーが形成されなかったのに対し、pCU595を加えた試料では1,000以上の形質転換体が得られた。このうちの30株について、G418培地あるいはHygB培地に塗布した結果、全てG418培地では生育可能であったが、HygB培地では生育できなかった。 Transformation of one copy disrupted strain of HygBr with CuURA3 gene was performed with Cre expression plasmid pCU595. In the medium containing G418, colonies were not formed in the negative control to which DNA was not added, whereas in the sample to which pCU595 was added, 1,000 or more transformants were obtained. As a result of applying 30 strains of these to G418 medium or HygB medium, all of them were able to grow on G418 medium, but could not grow on HygB medium.
 HygBrのCuURA3遺伝子1コピー破壊株と、HygBsのCuURA3遺伝子1コピー目の破壊株からゲノムDNAを抽出し、これを鋳型としてIM-63(配列番号58)とIM-92(配列番号59)でPCRを行った(伸長反応3.5分)。0.8%アガロースゲル電気泳動に供したところ、前者の株では3.2kbと2.3kb、後者の株では2.3kbと1.1kbのDNA断片が増幅されていた。目的のとおりHPT遺伝子が除去された株が取得された。 Genomic DNA was extracted from HygBr's CuURA3 gene 1-copy disrupted strain and HygBs' 1st-copy disrupted strain of CuURA3 gene, and this was used as a template for PCR with IM-63 (SEQ ID NO: 58) and IM-92 (SEQ ID NO: 59). (Elongation reaction 3.5 minutes). When subjected to 0.8% agarose gel electrophoresis, DNA fragments of 3.2 kb and 2.3 kb were amplified in the former strain, and 2.3 kb and 1.1 kb in the latter strain. A strain from which the HPT gene was removed as intended was obtained.
 HygBsのCuURA3遺伝子1コピーの破壊株をYPD液体培地で1晩培養後、その一部をYPD培地に塗布した。1~3日後にシングルコロニーを複数分離し、G418培地とYPD培地に塗布した。その結果、ほとんどのクローンが、YPD培地では生育したが、G418培地では生育しなかった。 HydBs CuURA3 gene 1-copy disrupted strain was cultured overnight in YPD liquid medium, and a portion thereof was applied to YPD medium. After 1 to 3 days, a plurality of single colonies were separated and applied to G418 medium and YPD medium. As a result, most clones grew on the YPD medium but did not grow on the G418 medium.
 NBRC0988株、NBRC0988株由来のCuURA3遺伝子が1コピー破壊されたHygrかつG418s株、続いてCre発現プラスミドを導入して構築されたHygsかつG418rの株、さらにCre発現プラスミドが脱落したHygsかつG418s株から抽出したDNAを鋳型、IM-63(配列番号58)とIM-92(配列番号59)をプライマーとしてPCRを実施した結果を図5に示した(伸長反応3.5分)。順にレーン1、レーン2、レーン3、レーン4に相当する。 From the NBRC0988 strain, the Hygr and G418s strain in which one copy of the CuURA3 gene derived from the NBRC0988 strain was disrupted, the Hygs and G418r strain constructed by introducing the Cre expression plasmid, and the Hygs and G418s strain from which the Cre expression plasmid was dropped The results of PCR using the extracted DNA as a template and IM-63 (SEQ ID NO: 58) and IM-92 (SEQ ID NO: 59) as primers are shown in FIG. 5 (extension reaction 3.5 minutes). This corresponds to Lane 1, Lane 2, Lane 3, and Lane 4 in this order.
 NBRC0988株、NBRC0988株由来のCuURA3遺伝子が1コピー破壊されたHygrかつG418s株、続いてCre発現プラスミドを導入して構築されたHygsかつG418rの株、さらにCre発現プラスミドが脱落したHygsかつG418s株から抽出したDNAを鋳型とし、IM-63(配列番号58)とIM-223(配列番号60)をプラスミドとしてPCRを実施した結果を図6に示した(伸長反応2分)。
順にレーン1、レーン2、レーン3、レーン4に相当する。図4に示したとおり、IM-63(配列番号58)は相同組換え領域の外側に、IM-223(配列番号60)はHPT遺伝子内部にアニーリングする。Hygrの株を鋳型としたレーン2のみで1.4kbのDNA断片が増幅されたことから、IM-63(配列番号58)とIM-92(配列番号59)の結果と同様、Cre-loxPシステムがキャンディダ・ユティリスでも機能することが明らかになった。
From the NBRC0988 strain, the Hygr and G418s strain in which one copy of the CuURA3 gene derived from the NBRC0988 strain was disrupted, the Hygs and G418r strain constructed by introducing the Cre expression plasmid, and the Hygs and G418s strain from which the Cre expression plasmid was dropped The results of PCR using the extracted DNA as a template and IM-63 (SEQ ID NO: 58) and IM-223 (SEQ ID NO: 60) as plasmids are shown in FIG. 6 (extension reaction 2 minutes).
This corresponds to Lane 1, Lane 2, Lane 3, and Lane 4 in this order. As shown in FIG. 4, IM-63 (SEQ ID NO: 58) anneals outside the homologous recombination region, and IM-223 (SEQ ID NO: 60) anneals inside the HPT gene. Since the 1.4 kb DNA fragment was amplified only in lane 2 using the Hygr strain as a template, the Cre-loxP system was similar to the results of IM-63 (SEQ ID NO: 58) and IM-92 (SEQ ID NO: 59). Was found to work with Candida utilis.
 HygBsのCuURA3遺伝子1コピーが破壊されてはいるが、G418を含む培地での生育能が異なるG418r株とG418s株からゲノムDNAを抽出し、これを鋳型としてCre遺伝子を増幅するためのプライマーセットであるIM-49(配列番号23)とIM-52(配列番号26)でPCRを行った(伸長反応1分)。その結果、G418r株では1kbのDNA断片が増幅されたが、G418s株では増幅されなかった。このことからpCU595が脱落し、HygBsかつG418sのCuURA3遺伝子1コピー目の破壊株が得られたことを確認した。 A primer set for amplifying the Cre gene by extracting genomic DNA from the G418r and G418s strains, which have different growth potentials in a medium containing G418, although one copy of the HyURABs CuURA3 gene has been destroyed. PCR was performed with certain IM-49 (SEQ ID NO: 23) and IM-52 (SEQ ID NO: 26) (extension reaction: 1 minute). As a result, a 1 kb DNA fragment was amplified in the G418r strain, but not amplified in the G418s strain. From this, it was confirmed that pCU595 was dropped and a disrupted strain of HygBs and G418s in the first copy of CuURA3 gene was obtained.
 DNA断片としてCuURA3破壊1・2回目断片を用いて、HygBsかつG418sのCuURA3遺伝子1コピーの破壊株の形質転換を行った。得られた形質転換体からゲノムDNAを抽出し、これを鋳型としてIM-63(配列番号58)とIM-92(配列番号59)でPCRを行った(伸長反応3.5分)。0.8%アガロースゲル電気泳動に供したところ、3.2kb、2.3kb、1.1kbの3種類DNA断片が増幅される株が複数存在した。このことから目的とするHygBrのCuURA3遺伝子2コピーの破壊株が得られたことがわかった。 Using the CuURA3 disruption 1st and 2nd fragment as a DNA fragment, a disrupted strain of HygBs and G418s with 1 copy of the CuURA3 gene was transformed. Genomic DNA was extracted from the obtained transformant, and PCR was carried out with IM-63 (SEQ ID NO: 58) and IM-92 (SEQ ID NO: 59) using this as a template (extension reaction 3.5 minutes). When subjected to 0.8% agarose gel electrophoresis, there were several strains in which three types of DNA fragments of 3.2 kb, 2.3 kb, and 1.1 kb were amplified. From this, it was found that the target HygBr disrupted strain of CuURA3 gene 2 copies was obtained.
 HygBrのCuURA3遺伝子2コピー破壊株の形質転換を、Cre発現用プラスミドであるpCU595で行った。得られた形質転換体をG418培地およびHygB培地に塗布したところ、全てG418培地では生育可能であったが、HygB培地では生育できなかった。このHygBsかつG418rの形質転換体から抽出したゲノムDNAを鋳型として、IM-63(配列番号58)とIM-92(配列番号59)でPCRを行った(伸長反応3.5分)。0.8%アガロースゲル電気泳動に供したところ、2.3kbと1.1kbの2種類DNA断片が増幅されていた。HPT遺伝子を除去できたことがわかった。 Transformation of HygBr's CuURA3 gene 2-copy disrupted strain was carried out with pCU595, a Cre expression plasmid. When the obtained transformants were applied to G418 medium and HygB medium, they could all grow on G418 medium, but could not grow on HygB medium. Using genomic DNA extracted from this HygBs and G418r transformant as a template, PCR was performed with IM-63 (SEQ ID NO: 58) and IM-92 (SEQ ID NO: 59) (extension reaction: 3.5 minutes). When subjected to 0.8% agarose gel electrophoresis, two kinds of DNA fragments of 2.3 kb and 1.1 kb were amplified. It was found that the HPT gene could be removed.
 HygBsのCuURA3遺伝子2コピー破壊株をYPD液体培地で1晩培養後、その一部をYPD培地に塗布した。2日後にシングルコロニーを分離し、YPD培地とG418培地に塗布した。そしてYPD培地では生育するが、G418培地では生育しないクローンを分離した。pCU595が脱落した株、すなわち、HygBsかつG418sのCuURA3遺伝子2コピー目の破壊株を取得できた。 HygBs CuURA3 gene 2-copy disrupted strain was cultured overnight in YPD liquid medium, and a portion thereof was applied to YPD medium. Two days later, single colonies were isolated and spread on YPD medium and G418 medium. Then, clones that grew on the YPD medium but did not grow on the G418 medium were isolated. A strain from which pCU595 was eliminated, that is, a disrupted strain of HygBs and G418s in the second copy of the CuURA3 gene could be obtained.
 3コピー目と4コピー目のCuURA3遺伝子を破壊するためのDNA断片の調製を次のようにして行った。まず、次の(1)、(2)および(3)に示した3種類のPCRを実施した:(1)鋳型としてpCU563を用い、プライマーとしてIM-1(配列番号21)とIM-2(配列番号22)を用い、伸長反応時間を2分とした;(2)鋳型としてNBRC0988株のゲノムDNAを用い、プライマーとしてIM-295(配列番号61)とIM-296(配列番号62)を用い、伸長反応時間を30秒とした;(3)鋳型としてNBRC0988株ゲノムDNAを用い、プライマーとしてIM-61(配列番号56)とIM-62(配列番号57)を用い、伸長反応時間を30秒とした。なお、(2)および(3)ではCuURA3遺伝子の上流部分と下流部分が増幅される。さらに以下の(4)のPCRを実施した:(4)鋳型として先述の(1)、(2)および(3)で増幅された3種類のDNAの混合物を用い、プライマーとしてIM-295(配列番号61)とIM-62(配列番号57)を用い、伸長反応時間を3分とした。これにより、順にCuURA3遺伝子の上流領域、loxP、PGK遺伝子プロモーター、HPT遺伝子、GAP遺伝子ターミネーター、loxP、CuURA3遺伝子の下流領域からなるDNA断片を取得した。以下、このDNA断片を「CuURA3破壊3・4回目断片」と表記する。本DNA断片を用いて形質転換をすれば、CuURA3遺伝子の上流領域と下流領域で二重鎖相同組換えが起こることにより、CuURA3遺伝子のアレルを部分的に欠失させることが可能である。また、(3)で増幅されるCuURA3遺伝子の上流領域は、CuURA3破壊1・2回目断片を用いて行った1コピー目および2コピー目のCuURA3遺伝子破壊のための形質転換において欠失された領域であるので、2コピーの破壊されたアレルに組込まれる可能性を減らすことができると考えられる。 A DNA fragment for disrupting the 3rd and 4th copies of the CuURA3 gene was prepared as follows. First, three types of PCR shown in the following (1), (2) and (3) were performed: (1) pCU563 was used as a template, IM-1 (SEQ ID NO: 21) and IM-2 (primers were used as primers. (SEQ ID NO: 22) and the extension reaction time was 2 minutes; (2) NBRC0988 strain genomic DNA was used as a template, and primers were used with IM-295 (SEQ ID NO: 61) and IM-296 (SEQ ID NO: 62). The extension reaction time was 30 seconds; (3) NBRC0988 strain genomic DNA was used as a template, IM-61 (SEQ ID NO: 56) and IM-62 (SEQ ID NO: 57) were used as primers, and the extension reaction time was 30 seconds. It was. In (2) and (3), the upstream part and the downstream part of the CuURA3 gene are amplified. Furthermore, PCR of the following (4) was carried out: (4) Using a mixture of the three types of DNA amplified in the above (1), (2) and (3) as a template, IM-295 (sequence) as a primer No. 61) and IM-62 (SEQ ID NO: 57) were used, and the extension reaction time was 3 minutes. Thereby, a DNA fragment consisting of the upstream region of the CuURA3 gene, the loxP, the PGK gene promoter, the HPT gene, the GAP gene terminator, the loxP, and the downstream region of the CuURA3 gene in this order was obtained. Hereinafter, this DNA fragment is referred to as “ CuURA3 disrupted third and fourth fragment”. If the transformation using this DNA fragment, by occurring double stranded homologous recombination upstream region and downstream region of CuURA3 gene, it is possible to partially deleted allele of CuURA3 gene. Further, the upstream region of CuURA3 gene amplified by (3), the deleted regions in the transformation for one copy first and two copies th CuURA3 gene disruption was performed using the CuURA3 destruction 1-second fragment Therefore, it is considered that the possibility of being incorporated into two copies of the destroyed allele can be reduced.
 DNA断片としてCuURA3破壊3・4回目断片を用いて、3コピー目のCuURA3遺伝子の破壊のために、HygBsかつG418sのCuURA3遺伝子2コピー破壊株の形質転換を行った。得られた形質転換体からゲノムDNAを抽出し、これを鋳型としてIM-63(配列番号58)とIM-92(配列番号59)でPCRを行った(伸長反応3.5分)。0.8%アガロースゲル電気泳動に供したところ、3.6kb、2.3kb、1.1kbの3種類DNA断片が増幅される株があった。このことから、目的とするHygBrのCuURA3遺伝子3コピー目の破壊株が得られたことがわかった。 Using the CuURA3 disrupted 3rd and 4th fragment as a DNA fragment, the CuURA3 gene 2 copy disrupted strain of HygBs and G418s was transformed for the 3rd copy of the CuURA3 gene disruption. Genomic DNA was extracted from the obtained transformant, and PCR was carried out with IM-63 (SEQ ID NO: 58) and IM-92 (SEQ ID NO: 59) using this as a template (extension reaction 3.5 minutes). When subjected to 0.8% agarose gel electrophoresis, there were strains in which three types of DNA fragments of 3.6 kb, 2.3 kb, and 1.1 kb were amplified. From this, it was found that the disrupted strain of the target HygBr in the third copy of the CuURA3 gene was obtained.
 HygBrのCuURA3遺伝子3コピー破壊株の形質転換をCre発現用プラスミドであるpCU595で行った。得られた形質転換体をG418培地およびHygB培地に塗布した結果、全てG418培地では生育可能であったが、HygB培地では生育できなかった。このHygBsかつG418rの形質転換体から抽出したゲノムDNAを鋳型として、IM-63(配列番号58)とIM-92(配列番号59)でPCRを行った(伸長反応3.5分)。0.8%アガロースゲル電気泳動に供したところ、2.3kb、1.5kb、1.1kbの3種類DNA断片が増幅されていた。HPT遺伝子を除去できたことがわかった。 Transformation of the HyURA Br CuURA3 gene 3-copy disruption strain was performed with Cre expression plasmid pCU595. As a result of applying the obtained transformant to G418 medium and HygB medium, all were able to grow on G418 medium, but were not able to grow on HygB medium. Using genomic DNA extracted from this HygBs and G418r transformant as a template, PCR was performed with IM-63 (SEQ ID NO: 58) and IM-92 (SEQ ID NO: 59) (extension reaction: 3.5 minutes). When subjected to 0.8% agarose gel electrophoresis, three types of DNA fragments of 2.3 kb, 1.5 kb, and 1.1 kb were amplified. It was found that the HPT gene could be removed.
 HygBsのCuURA3遺伝子3コピー破壊株をYPD液体培地で1晩培養後、その一部をYPD培地に塗布した。2日後にシングルコロニーを分離し、YPD培地とG418培地に塗布した。そしてYPD培地では生育するが、G418培地では生育しないクローンを分離した。pCU595が脱落した株、すなわち、HygBsかつG418sのCuURA3遺伝子3コピー目の破壊株を取得できた。 HygBs CuURA3 gene 3-copy disrupted strain was cultured overnight in YPD liquid medium, and a portion thereof was applied to YPD medium. Two days later, single colonies were isolated and spread on YPD medium and G418 medium. Then, clones that grew on the YPD medium but did not grow on the G418 medium were isolated. A strain in which pCU595 was eliminated, that is, a strain in which the third copy of the CuURA3 gene of HygBs and G418s was disrupted was obtained.
 DNA断片としてCuURA3破壊3・4回目断片を用いて、HygBsかつG418sのCuURA3遺伝子3コピー破壊株の形質転換を行った。得られた形質転換体からゲノムDNAを抽出し、これを鋳型として、IM-63(配列番号58)とIM-92(配列番号59)でPCRを行った(伸長反応3.5分)。0.8%アガロースゲル電気泳動に供したところ、複数の形質転換体では3.6kb、1.5kb、1.1kbの3種類DNA断片が増幅されていた。このことから目的とするHygBrのCuURA3遺伝子4コピー破壊株が得られたことがわかった。また、野生株であるNBRC0988株でみられた2.3kbのDNA断片、すなわち破壊されていないアレルが増幅されたDNA断片が検出されなかったことから、この株はCuURA3遺伝子完全破壊株であると考えられた。 Using CuURA3 fracture 3-fourth fragment as DNA fragment, was transformed HygBs and G418s of CuURA3 gene 3 copies disrupted strain. Genomic DNA was extracted from the obtained transformant, and PCR was performed using this as a template with IM-63 (SEQ ID NO: 58) and IM-92 (SEQ ID NO: 59) (extension reaction: 3.5 minutes). When subjected to 0.8% agarose gel electrophoresis, three types of DNA fragments of 3.6 kb, 1.5 kb and 1.1 kb were amplified in a plurality of transformants. From this, it was found that the desired HygBr CuURA3 gene 4 copy disruption strain was obtained. Also, DNA fragments of 2.3kb was observed in a wild strain NBRC0988 strain, that is, from the DNA fragment allele not destroyed is amplified is not detected, this strain when is CuURA3 gene completely disrupted strain it was thought.
 HygBrのCuURA3遺伝子4コピー破壊株の形質転換をCre発現用プラスミドであるpCU595で行った。得られた形質転換体をG418培地およびHygB培地に塗布した結果、全てG418培地では生育可能であったが、HygB培地では生育できなかった。このHygBsかつG418rの形質転換体から抽出したゲノムDNAを鋳型として、IM-63(配列番号58)とIM-92(配列番号59)でPCRを行った(伸長反応3.5分)。0.8%アガロースゲル電気泳動に供したところ、1.5kbと1.1kbの2種類のDNA断片が増幅される株が複数存在した。HPT遺伝子を除去できたことがわかった。 Transformation of the HygBr CuURA3 gene 4 copy disruption strain was carried out with pCU595, a plasmid for Cre expression. As a result of applying the obtained transformant to G418 medium and HygB medium, all were able to grow on G418 medium, but were not able to grow on HygB medium. Using genomic DNA extracted from this HygBs and G418r transformant as a template, PCR was performed with IM-63 (SEQ ID NO: 58) and IM-92 (SEQ ID NO: 59) (extension reaction: 3.5 minutes). When subjected to 0.8% agarose gel electrophoresis, there were several strains in which two kinds of DNA fragments of 1.5 kb and 1.1 kb were amplified. It was found that the HPT gene could be removed.
 HygBsのCuURA3遺伝子4コピー破壊株をYPD液体培地で1晩培養後、その一部をYPD培地に塗布した。2日後にシングルコロニーを分離し、YPD培地とG418培地に塗布した。そしてYPD培地では生育するが、G418培地では生育しないクローンを分離した。pCU595が脱落した株、すなわち、HygBsかつG418sのCuURA3遺伝子4コピー目の破壊株を取得できた。 HygBs CuURA3 gene 4 copy-disrupted strain was cultured overnight in YPD liquid medium, and a part thereof was applied to YPD medium. Two days later, single colonies were isolated and spread on YPD medium and G418 medium. Then, clones that grew on the YPD medium but did not grow on the G418 medium were isolated. A strain in which pCU595 was eliminated, that is, a disrupted strain of HygBs and G418s at the fourth copy of CuURA3 gene could be obtained.
 NBRC0988株、およびNBRC0988株を宿主として、順にCuURA3遺伝子を破壊した株(HPT遺伝子およびAPT遺伝子を除去したHygBsかつG418s)の非選択培地であるSC培地、SC-Ura培地(ウラシルを含まない培地)および5-FOA培地における生育能を調べた。なお、これらの培地組成はMethods In Yeast Genetics 1997 Edition(Cold Spring Harbor Laboratory Press)に記載されたものに従った。図7に示したとおり、CuURA3遺伝子4コピー、すなわち全て破壊した株だけが、NBRC0988株を含める他の4株と異なり、SC-Ura培地で生育できず、5-FOA培地で生育できた。 SC medium, SC-Ura medium (medium not containing uracil), which is a non-selective medium of a strain in which the CuURA3 gene is disrupted (HygBs and G418s from which the HPT gene and the APT gene have been removed) using the NBRC0988 strain and the NBRC0988 strain as hosts And the growth ability in 5-FOA medium was examined. In addition, these culture medium compositions followed what was described in Methods In Yeast Genetics 1997 Edition (Cold Spring Harbor Laboratory Press). As shown in FIG. 7, only 4 copies of the CuURA3 gene, that is, all the disrupted strains, were different from the other 4 strains including the NBRC0988 strain, and could not grow on the SC-Ura medium, but could grow on the 5-FOA medium.
 組換えDNA技術を用いてCuURA3遺伝子の全アレルを破壊し、ウラシル要求性株の取得に成功した。これはキャンディダ・ユティリスにおいて、細胞内に4つのアレルが存在していることが示された初めての報告である。選択マーカー遺伝子をくり返し利用しながら目的の遺伝子を効率よく破壊することが可能となったCre-loxP系を利用したキャンディダ・ユティリスの形質転換システムが、意義あるものであると考えられた。 Using the recombinant DNA technology, the entire allele of the CuURA3 gene was disrupted and a uracil-requiring strain was successfully obtained. This is the first report of Candida utilis showing that there are four alleles in the cell. The Candida utilis transformation system using the Cre-loxP system, which enabled efficient destruction of the target gene while repeatedly using the selectable marker gene, was considered significant.
実施例2:PDCをコードする遺伝子破壊株の構築
2-1.PDCをコードする遺伝子のクローニング
 ScPDC1遺伝子やKlPDC1遺伝子で共通の配列が多いC末端側の塩基配列を増幅するプライマーIKSM-29(配列番号1)とIKSM-30(配列番号2)を作製し、NBRC0988株のゲノムを鋳型としたPCRを行った(伸長時間30秒)。増幅された約220bp(base pair)のDNA断片(以下、CuP-Fgと呼ぶ)のシークエンスを解読したところ(配列番号3)、ScPDC1遺伝子との相同性が高いことがわかった。このことから、このDNA断片はPDCをコードする遺伝子の一部であると考えられた。
Example 2: Construction of a gene-disrupted strain encoding PDC
2-1. Cloning of a gene encoding PDC Primers IKSM-29 (SEQ ID NO: 1) and IKSM-30 (SEQ ID NO: 2) for amplifying a C-terminal base sequence having a lot of common sequences in ScPDC1 gene and KlPDC1 gene were prepared, and NBRC0988 PCR was performed using the strain genome as a template (elongation time 30 seconds). When the sequence of the amplified DNA fragment of about 220 bp (base pair) (hereinafter referred to as CuP-Fg) was decoded (SEQ ID NO: 3), it was found to be highly homologous to the ScPDC1 gene. From this, this DNA fragment was considered to be a part of the gene encoding PDC.
 このDNA断片をプローブとしてサザン解析を行った。まず、サッカロマイセス・セレビシエS288C株(NBRC1136株)から抽出したゲノムDNAをHindIIIで消化し、、キャンディダ・ユティリスNBRC0988から抽出したゲノムDNAをXbaI、HindIII、BglII、EcoRI、BamHI、PstIで消化し、これらを0.8%アガロースゲル電気泳動に供した。分離したゲノムDNAを、定法に従ってアマシャム・バイオサイエンス社製Hybond N+ナイロンメンブレンにトランスファーした。プローブの放射性標識にはTaKaRa社製Random Primer DNA Labelling Kit Ver.2を用い、方法は添付のプロトコールに従った。標識dCTPにはアマシャム・バイオサイエンス社製〔α-32P〕dCTPを1.85MBq用いた。ハイブリダイゼーションはRapid-Hyb bufferを用い、添付のプロトコールに従って行った。ただし、ハイブリダイゼーションの温度を60℃として行った。その結果を図8に示す。 Southern analysis was performed using this DNA fragment as a probe. First, genomic DNA extracted from Saccharomyces cerevisiae S288C strain (NBRC1136 strain) was digested with Hind III, and genomic DNA extracted from Candida utilis NBRC0988 was digested with Xba I, Hind III, Bgl II, Eco RI, Bam HI, Digested with Pst I and subjected to 0.8% agarose gel electrophoresis. The separated genomic DNA was transferred to Hybond N + nylon membrane manufactured by Amersham Biosciences according to a conventional method. Radiolabeling of the probe was performed using Random Primer DNA Labeling Kit Ver. The method followed the attached protocol. As the labeled dCTP, 1.85 MBq of [α-32P] dCTP manufactured by Amersham Biosciences was used. Hybridization was performed using Rapid-Hyb buffer according to the attached protocol. However, the hybridization temperature was 60 ° C. The result is shown in FIG.
 サッカロマイセス・セレビシエでは3種のPDC遺伝子(ScPDC1遺伝子、ScPDC5遺伝子、ScPDC6遺伝子)由来であると考えられる3本のバンドがそれぞれ検出された(レーン1)。これに対して、キャンディダ・ユティリスNBRC0988株では、プローブ内に制限酵素認識部位があるBglII(レーン4)、およびEcoRI(レーン5)以外の試料では1本のバンドしか検出されなかった。このことからNBRC0988においてPDC活性を持つ遺伝子は1種類であることが示唆された。なお、当該プローブ内にはEcoRI認識配列は存在しないが、当該プローブがハイブリダイズする領域の近傍に、相同染色体のアレル間でEcoRI認識配列が存在する遺伝子座と存在しないへテロな領域が存在している可能性が考えられた。 In Saccharomyces cerevisiae, three bands thought to be derived from three types of PDC genes ( ScPDC1 gene, ScPDC5 gene, ScPDC6 gene) were detected (lane 1). In contrast, in the Candida utilis NBRC0988 strain, Bgl II (lane 4) there is a restriction enzyme recognition site in the probe, and the sample except Eco RI (lane 5) was detected only one band. This suggested that there was one kind of gene having PDC activity in NBRC0988. Although there is no Eco RI recognition sequence in the probe, there is a locus where the Eco RI recognition sequence exists and a heterogeneous region where there is no Eco RI recognition sequence between alleles of homologous chromosomes in the vicinity of the region where the probe hybridizes. The possibility that it existed was considered.
 コロニーハイブリダイゼーションに利用するゲノムライブラリーとして、BamHIで消化後に脱リン酸化させたpBR322(ニッポン・ジーン)に、Sau3AIで部分消化したDNAのうち5~10kbの断片を連結するための反応を行った。この溶液でLB+Amp寒天培地に生育した50,000クローンを取得した。なお、自己閉環したクローンは5%に満たなかった。 As genomic library to be used for colony hybridization, a pBR322 was dephosphorylated after digestion with Bam HI (Nippon Gene), the reactions to link fragments of 5 ~ 10 kb of the partial digested DNA with Sau 3AI went. With this solution, 50,000 clones grown on LB + Amp agar were obtained. In addition, less than 5% of the clones were self-closed.
 さらに、前述のDNA断片CuP-Fgをプローブとして用いたコロニーハイブリダイゼーション法によって、プローブ配列との相同部位を含むクローンを複数取得した。そして、プライマーウォーキング法でこれらのクローンの配列を解読したところ、1種類のコンティグができあがった(配列番号63)。これをSGD(Saccharomyces Genome Database)のBLAST検索に供したところ、ScPDC1遺伝子やScPDC5遺伝子との相同性が高かったので、本遺伝子をCuPDC1遺伝子と名づけた。このDNA断片をNCBI(National Center for Biotechnology Information)のBLASTで相同性検索したところ、種々の酵母のピルビン酸脱炭酸酵素の活性を有するポリペプチドをコードする遺伝子と高い相同性が認められた。さらにNCBIのデータベースを利用して、本配列と他生物種のPDC遺伝子との相同性検索を行うことにより、ORF(Open Reading Frame)領域の特定を試みたところ、CuPDC1遺伝子のORFは1,692nt(nucleotides)であると推察された(配列番号63)。当該遺伝子の配列は、ScPDC1遺伝子とはアミノ酸レベルでの相同性は76%であり、PDC活性を有している可能性が高いと考えられた。なお、配列番号63に記載の当該遺伝子ORF領域の上流領域の配列2,246塩基はCuPDC1遺伝子のプロモーター領域、下流領域の1,076塩基はCuPDC1遺伝子のターミネーター領域に相当すると考えられた。なお、ここで報告した配列は、コロニーハイブリダイゼーション法で取得したプラスミドpCU530に全て含まれた。 Further, a plurality of clones containing a site homologous to the probe sequence were obtained by the colony hybridization method using the aforementioned DNA fragment CuP-Fg as a probe. When the sequences of these clones were decoded by the primer walking method, one type of contig was completed (SEQ ID NO: 63). When this was subjected to BLAST search of SGD (Saccharomyces Genome Database), it was highly homologous to the ScPDC1 gene and the ScPDC5 gene, so this gene was named CuPDC1 gene. When this DNA fragment was subjected to homology search by NCBI (National Center for Biotechnology Information) BLAST, high homology was recognized with genes encoding polypeptides having pyruvate decarboxylase activity of various yeasts. Further by utilizing the database of NCBI, by performing a homology search of the PDC gene of the present sequence and other species, we try to control certain ORF (Open Reading Frame) region, ORF of CuPDC1 gene 1,692nt (Nucleotides) (SEQ ID NO: 63). The sequence of the gene was 76% homologous to the ScPDC1 gene at the amino acid level, and was considered to have a high possibility of having PDC activity. In addition, it was considered that the sequence 2,246 bases in the upstream region of the gene ORF region described in SEQ ID NO: 63 correspond to the promoter region of the CuPDC1 gene, and the 1076 bases in the downstream region correspond to the terminator region of the CuPDC1 gene. The sequences reported here were all contained in the plasmid pCU530 obtained by the colony hybridization method.
 ORFの上流領域1.2kbのプロモーター領域について、転写制御に関わるシスエレメントの有無を調べた。ORFの転写開始ATGのAの直前の塩基を「-1」として、位置づけをした。その結果、-149付近にTATATAAからなるTATAボックスであると考えられる配列が存在した。サッカロマイセス・セレビシエやクルイベロマイセス・ラクティスのPDC遺伝子の転写活性化に必要であると考えられているUAS-PDC配列(GCACCATACCTT)(Butler G.ら,Curr Genet.,14(5):405-12.,1988)と相同性の高い配列が少なくとも3つ見出された(-1,084付近、-998付近、-812付近)。さらにそれらとは重複しないGcr1結合ドメインは少なくとも4つ(-1,538付近、-556付近、-518付近、-430付近)、CAAT配列は少なくとも5つ(-1,224付近、-1,116付近、-979付近、-658付近、-556付近)局在していると考えられた。 The presence or absence of a cis element involved in transcriptional control was examined in the 1.2 kb promoter region upstream of the ORF. ORF transcription start ATG was positioned with the base immediately before ATG as “−1”. As a result, there was a sequence considered to be a TATA box composed of TATATAA in the vicinity of -149. UAS-PDC sequence (GCACCACTACCTT) (Butler G. et al., Curr Genet., 14 (5): 405), which is considered necessary for the transcriptional activation of the PDC genes of Saccharomyces cerevisiae and Kluyveromyces lactis 12., 1988) at least three sequences having high homology were found (near -1,084, -998, and -812). Furthermore, there are at least 4 Gcr1 binding domains that do not overlap with them (near -1,538, -556, -518, -430), and at least 5 CAAT sequences (near -1,224, -1,116). Near, -979, -658, -556)).
 DNA断片CuP-Fgを用いて、NBRC0626株、NBRC0639株、NBRC1086株等のキャンディダ・ユティリス株から抽出したゲノムDNAをHindIIIで消化した試料についてサザンハイブリダイゼーションを行ったところ、全てNBRC0988と同じ位置にバンドが検出された。また、CuPDC1遺伝子の塩基配列には、NBRC0626株、NBRC0988株、およびNBRC1086株の間に一塩基多型が見出された。 Southern hybridization was performed on samples digested with Hind III of genomic DNA extracted from Candida utilis strains such as NBRC0626, NBRC0639, and NBRC1086 using the DNA fragment CuP-Fg. A band was detected. Moreover, in the nucleotide sequence of the CuPDC1 gene, a single nucleotide polymorphism was found among the NBRC0626 strain, the NBRC0988 strain, and the NBRC1086 strain.
 CuPDC1遺伝子の機能を解析するため、CuPDC1遺伝子をScPDC1遺伝子プロモーターで発現させることにより、サッカロマイセス・セレビシエにおけるScPDC1遺伝子とScPDC5遺伝子の二重破壊の致死性を抑圧できるかを調べた。そこでまず、酵母・全遺伝子破壊株シリーズのBY4741由来(ura3遺伝子およびhis3遺伝子変異株)のScPDC1遺伝子破壊株(Invitrogen)と、BY4742由来(ura3遺伝子およびhis3遺伝子変異株)のScPDC5遺伝子破壊株(Open BioSystems)の交雑株SGY107株を構築した。 In order to analyze the function of the CuPDC1 gene, it was examined whether the lethality of the double disruption of the ScPDC1 gene and the ScPDC5 gene in Saccharomyces cerevisiae can be suppressed by expressing the CuPDC1 gene with the ScPDC1 gene promoter. Therefore, first, BY4741 origin of the yeast-all gene-disrupted strain series (ura3 gene and his3 gene mutant strain) of ScPDC1 gene disrupted strain and (Invitrogen), ScPDC5 gene disrupted strain (Open from BY4742 (ura3 gene and his3 gene mutant strain) BioSystems) hybrid strain SGY107 was constructed.
 ScPDC1遺伝子をサッカロマイセス・セレビシエで発現させるためのプラスミドpCU546は次のようにして構築した。サッカロマイセス・セレビシエで機能するセントロメリック型のプラスミドpRS316(Sikorski,Rら,Genetics.122,19―27.1989)(URA3遺伝子を有する)をClaIとBamHIで切断した。BY4741(Invitrogen)を鋳型として、IM―135(配列番号4)とIM-136(配列番号5)のプライマーセットでPCRを行った(伸長時間3分)。この増幅断片をClaIとBamHIで消化した。このDNA断片を、先に制限酵素処理したプラスミド断片と連結したプラスミドpCU546を構築した。 Plasmid pCU546 for expressing the ScPDC1 gene in Saccharomyces cerevisiae was constructed as follows. A centromeric plasmid pRS316 (Sikorski, R et al., Genetics. 122, 19-27.1989) (having the URA3 gene) that functions in Saccharomyces cerevisiae was cleaved with Cla I and Bam HI. Using BY4741 (Invitrogen) as a template, PCR was performed with a primer set of IM-135 (SEQ ID NO: 4) and IM-136 (SEQ ID NO: 5) (extension time: 3 minutes). This amplified fragment was digested with Cla I and Bam HI. Plasmid pCU546 was constructed by ligating this DNA fragment with the plasmid fragment previously treated with the restriction enzyme.
 次に、SGY107株をpCU546で形質転換した。この株を胞子形成寒天培地(0.5g/Lグルコース、1g/L Yeast Extract、10g/L酢酸カリウム、20g/Lアガロース)にうつして25℃で3日間静置した。得られた胞子から抽出したゲノムDNAを鋳型にして、次の2種類のPCRに供した(伸長時間2分):(1)IM-19(配列番号6)とIM-331(配列番号7)のプライマーセット(この組み合わせではScPDC1遺伝子が破壊されている株のみ、約1.5kbのDNA断片が増幅される);(2)IM-20(配列番号8)とIM-334(配列番号9)のプライマーセット(この組み合わせではScPDC5遺伝子が破壊されている株のみ、約1.5kbのDNA断片が増幅される)。両方のプライマーセットでDNA断片が増幅され、かつ、pCU546を保持するSGY116株を取得した。 Next, the SGY107 strain was transformed with pCU546. This strain was transferred to a spore-forming agar medium (0.5 g / L glucose, 1 g / L Yeast Extract, 10 g / L potassium acetate, 20 g / L agarose) and allowed to stand at 25 ° C. for 3 days. The genomic DNA extracted from the obtained spore was used as a template and subjected to the following two types of PCR (extension time: 2 minutes): (1) IM-19 (SEQ ID NO: 6) and IM-331 (SEQ ID NO: 7) (About 1.5 kb DNA fragment is amplified only in the strain in which the ScPDC1 gene is disrupted in this combination); (2) IM-20 (SEQ ID NO: 8) and IM-334 (SEQ ID NO: 9) (In this combination, a DNA fragment of about 1.5 kb is amplified only in a strain in which the ScPDC5 gene is disrupted). The SGY116 strain was obtained in which DNA fragments were amplified with both primer sets and pCU546 was retained.
 SGY116株と、BY4742由来のScPDC6遺伝子破壊株(Open BioSystems)の交雑株を構築した。胞子形成培地にうつして25℃で3日間静置した。得られた胞子から抽出したゲノムDNAを鋳型にして次の3種類のPCRに供した(伸長時間2分):(1)IM-19(配列番号6)とIM-331(配列番号7)のプライマーセット;(2)IM-20(配列番号8)とIM-334(配列番号9)のプライマーセット;(3)IM-339(配列番号10)とIM-340(配列番号11)のプライマーセット(この組み合わせではScPDC6遺伝子が破壊されている株から増幅されるDNA断片は、ScPDC6遺伝子が破壊されていない株で増幅されるDNA断片(約3.4kb)より大きい)。その結果、(1)および(2)のPCRでは約1.5kbのDNA断片が、(3)のPCRでは3.4kbより大きいDNA断片が増幅された。つまり、ScPDC1遺伝子、ScPDC5遺伝子、およびScPDC6遺伝子全てが破壊され、かつpCU546を保持するSGY389株を取得した。 A hybrid strain of SGY116 strain and BY4742-derived ScPDC6 gene disruption strain (Open BioSystems) was constructed. It was transferred to a sporulation medium and allowed to stand at 25 ° C. for 3 days. The genomic DNA extracted from the obtained spore was used as a template for the following three types of PCR (extension time 2 minutes): (1) of IM-19 (SEQ ID NO: 6) and IM-331 (SEQ ID NO: 7) Primer set; (2) Primer set of IM-20 (SEQ ID NO: 8) and IM-334 (SEQ ID NO: 9); (3) Primer set of IM-339 (SEQ ID NO: 10) and IM-340 (SEQ ID NO: 11) (DNA fragment amplified from strain ScPDC6 gene is destroyed by this combination, larger DNA fragment ScPDC6 gene is amplified by the strain that has not been destroyed (approximately 3.4 kb)). As a result, in the PCRs (1) and (2), a DNA fragment of about 1.5 kb was amplified, and in the PCR of (3), a DNA fragment larger than 3.4 kb was amplified. That is, the SGY389 strain in which all of the ScPDC1 gene, ScPDC5 gene, and ScPDC6 gene were destroyed and pCU546 was retained was obtained.
 CuPDC1遺伝子をサッカロマイセス・セレビシエで発現させるためのプラスミドpCU655は次のようにして構築した。まず、次の(1)、(2)および(3)のPCRを行った:(1)BY4741株のゲノムDNAを鋳型とし、IM-135(配列番号4)とIM-147(配列番号12)をプライマーとした(伸長反応1分);(2)BY4741株のゲノムDNAを鋳型として、IM-150(配列番号13)とIM-136(配列番号5)をプライマーとした(伸長反応1分);(3)CuPDC1遺伝子の推定ORF領域を有するpCU530を鋳型として、IM-148(配列番号14)とIM-149(配列番号15)をプライマーとした(伸長反応2分)。次に、(1)、(2)および(3)で増幅したDNA断片を鋳型として、IM-135(配列番号4)とIM-136(配列番号5)をプライマーとしてPCRを行った。この結果、順にScPDC1遺伝子、CuPDC1遺伝子の推定ORF領域、およびScPDC1遺伝子のターミネーター領域からなるDNA断片を取得した。なお、全てのPCRはKOD-Plus-を用いて行った。この断片を、サッカロマイセス・セレビシエで機能するセントロメリック型のプラスミドpRS313(Sikorski,Rら,Genetics.122,19―27.1989)(HIS3遺伝子を有する)をSmaIで切断して得られたDNA断片と連結した。得られたプラスミドをpCU655と名づけた。 Plasmid pCU655 for expressing the CuPDC1 gene in Saccharomyces cerevisiae was constructed as follows. First, the following PCRs (1), (2) and (3) were performed: (1) IM-135 (SEQ ID NO: 4) and IM-147 (SEQ ID NO: 12) using BY4741 genomic DNA as a template (2) Using the BY4741 strain genomic DNA as a template, IM-150 (SEQ ID NO: 13) and IM-136 (SEQ ID NO: 5) as primers (extension reaction 1 minute) (3) IM-148 (SEQ ID NO: 14) and IM-149 (SEQ ID NO: 15) were used as primers with pCU530 having a putative ORF region of the CuPDC1 gene (extension reaction 2 minutes); Next, PCR was performed using the DNA fragments amplified in (1), (2) and (3) as templates and IM-135 (SEQ ID NO: 4) and IM-136 (SEQ ID NO: 5) as primers. Consequently, in order ScPDC1 gene, to obtain DNA fragments consisting predicted ORF region of CuPDC1 gene, and ScPDC1 gene terminator region. All PCRs were performed using KOD-Plus-. A DNA fragment obtained by digesting this fragment with Sma I from a centromeric type plasmid pRS313 (Sikorski, R. et al., Genetics. 122, 19-27.1989 ) (having the HIS3 gene) that functions in Saccharomyces cerevisiae. And linked. The resulting plasmid was named pCU655.
 ScPDC1遺伝子、ScPDC5遺伝子、およびScPDC6遺伝子の全てが破壊されているSGY389株を、pRS313またはpCU655で形質転換し、それぞれSGY393株およびSGY392株を取得した。 The SGY389 strain in which all of the ScPDC1 gene, ScPDC5 gene, and ScPDC6 gene were disrupted was transformed with pRS313 or pCU655 to obtain SGY393 strain and SGY392 strain, respectively.
 5-FOA培地において、BY4741株、BY4742株、BY4741株由来のScPDC1遺伝子破壊株、BY4742株由来のScPDC5遺伝子破壊株、BY4742株由来のScPDC6遺伝子破壊株は生育可能であった。つまり、これらの株はウラシル要求性の株であることを示している。次に、ScPDC1遺伝子、ScPDC5遺伝子、およびScPDC6遺伝子の全てが破壊され、かつpCU546を保持するSGY389株、およびSGY389株にpRS313を導入したSGY393株は、5-FOA培地で生育できなかった。これは、ScPDC1遺伝子を発現させているpCU546が脱落できないことを示している。つまり、5-FOA培地においては、PDC活性を有するポリペプチドをコードする遺伝子を発現させることが、生育に必須であることを示している。一方、SGY389株にpCU655を導入したSGY392株(CuPDC1遺伝子を発現する株)は、5-FOA培地で生育することが可能であった。これは、pCU655に含まれるCuPDC1遺伝子が、pCU547に含まれるScPDC1遺伝子が有するPDCの機能を保持していることを示している。従って、CuPDC1遺伝子がコードするポリペプチドはPDCであることが示唆された。 In the 5-FOA medium, the BY4741 strain, the BY4742 strain, the ScPDC1 gene disruption strain derived from the BY4741 strain, the ScPDC5 gene disruption strain derived from the BY4742 strain, and the ScPDC6 gene disruption strain derived from the BY4742 strain were able to grow. That is, these strains are uracil-requiring strains. Next, the SGY389 strain in which all of the ScPDC1 gene, the ScPDC5 gene, and the ScPDC6 gene were disrupted, and pRS313 was introduced into the SGY389 strain, which retained pCU546, and the SGY393 strain in which pRS313 was introduced could not grow in a 5-FOA medium. This indicates that pCU546 expressing the ScPDC1 gene cannot be removed. That is, it is shown that expression of a gene encoding a polypeptide having PDC activity is essential for growth in a 5-FOA medium. On the other hand, the SGY392 strain (a strain that expresses the CuPDC1 gene) obtained by introducing pCU655 into the SGY389 strain was able to grow on a 5-FOA medium. This indicates that the CuPDC1 gene contained in pCU655 retains the PDC function of the ScPDC1 gene contained in pCU547 . Therefore, it was suggested that the polypeptide encoded by the CuPDC1 gene is PDC.
2-2.Cre-lox系を利用したCuPDC1遺伝子の多重破壊
 1コピー目と2コピー目のCuPDC1遺伝子を破壊するためのDNA断片の調製を次のようにして行った。まず、次の(1)、(2)および(3)に示した3種類のPCRを実施した:(1)鋳型としてpCU563を用い、プライマーとしてIM-1(配列番号21)とIM-2(配列番号22)を用い、伸長反応時間を2分とした;(2)鋳型としてNBRC0988株のゲノムDNAを用い、プライマーとしてIM-277(配列番号27)とIM-278(配列番号28)を用い、伸長反応時間を30秒とした;(3)鋳型としてNBRC0988株ゲノムDNAを用い、プライマーとしてIM-279(配列番号29)とIM-280(配列番号30)を用い、伸長反応時間を30秒とした。なお、(2)および(3)ではCuPDC1遺伝子の上流部分と下流部分が増幅される。さらに、以下の(4)のPCRを実施した:(4)鋳型として先述の(1)、(2)および(3)で増幅された3種類のDNAの混合物を用い、プライマーとしてIM-277(配列番号27)とIM-280(配列番号30)を用い、伸長反応時間を3分とした。これにより、順にCuPDC1遺伝子の上流領域、loxP、PGK遺伝子プロモーター、HPT遺伝子、GAP遺伝子ターミネーター、loxP、CuPDC1遺伝子の下流領域からなるDNA断片を取得した。以下、このDNA断片を「CuPDC1破壊1・2回目断片」と表記する。本DNA断片を用いて形質転換をすれば、CuPDC1遺伝子の上流領域と下流領域で二重鎖相同組換えが起こることにより、CuPDC1遺伝子のアレルを部分的に欠失させることが可能である。
2-2. Preparation of a DNA fragment for disrupting the first and second copies of the CuPDC1 gene using the Cre-lox system was performed as follows. First, three types of PCR shown in the following (1), (2) and (3) were performed: (1) pCU563 was used as a template, and IM-1 (SEQ ID NO: 21) and IM-2 (primers were used as primers. (SEQ ID NO: 22) and the extension reaction time was 2 minutes; (2) NBRC0988 strain genomic DNA was used as a template, and primers IM-277 (SEQ ID NO: 27) and IM-278 (SEQ ID NO: 28) were used. The extension reaction time was 30 seconds; (3) NBRC0988 strain genomic DNA was used as a template, IM-279 (SEQ ID NO: 29) and IM-280 (SEQ ID NO: 30) were used as primers, and the extension reaction time was 30 seconds. It was. In (2) and (3), the upstream part and the downstream part of the CuPDC1 gene are amplified. Furthermore, PCR of the following (4) was performed: (4) Using a mixture of the three types of DNA amplified in the above (1), (2) and (3) as a template, and using IM-277 ( SEQ ID NO: 27) and IM-280 (SEQ ID NO: 30) were used, and the extension reaction time was 3 minutes. Thereby, a DNA fragment consisting of the upstream region of the CuPDC1 gene, the loxP, the PGK gene promoter, the HPT gene, the GAP gene terminator, the loxP, and the downstream region of the CuPDC1 gene was obtained in this order. Hereinafter, this DNA fragment is referred to as “ CuPDC1 disruption first and second fragment”. If the transformation using this DNA fragment, by duplex homologous recombination upstream region and downstream region of CuPDC1 gene occurs, it is possible to an allele of CuPDC1 gene partially deleted.
 DNA断片としてCuPDC1破壊1・2回目断片を用いて、NBRC0988株の形質転換を行った。NBRC0988株および得られた形質転換体からゲノムDNAを抽出し、これを鋳型としてIM-281(配列番号31)とIM-282(配列番号32)でPCRを行った(伸長反応4分)。図9に示したとおり、これらのプライマーは相同組換え領域の外側にアニーリングする。0.8%アガロースゲル電気泳動に供したところ、NBRC0988株では3.7kbのDNA断片、複数の形質転換体では3.9kbと3.7kbのDNA断片が増幅されていた。このことから、目的とするHygBrのCuPDC1遺伝子1コピー破壊株が得られたことがわかった。 The NBRC0988 strain was transformed using the first and second fragments of CuPDC1 disrupted as DNA fragments. Genomic DNA was extracted from the NBRC0988 strain and the resulting transformant, and PCR was carried out with IM-281 (SEQ ID NO: 31) and IM-282 (SEQ ID NO: 32) using this as a template (extension reaction: 4 minutes). As shown in FIG. 9, these primers anneal outside the homologous recombination region. When subjected to 0.8% agarose gel electrophoresis, a 3.7 kb DNA fragment was amplified in the NBRC0988 strain, and a 3.9 kb and 3.7 kb DNA fragment was amplified in the plurality of transformants. From this, it was found that the desired HygBr CuPDC1 gene 1-copy disruption strain was obtained.
 HygBrのCuPDC1遺伝子1コピー破壊株の形質転換をCre発現用プラスミドであるpCU595で行った。G418を含む培地では、DNAを加えなかった陰性対照ではコロニーが形成されなかったのに対し、pCU595を加えた試料では1,000以上の形質転換体が得られた。このうちの任意の30株をG418培地またはHygB培地に塗布した結果、全てG418培地では生育可能であったが、HygB培地では生育できなかった。 Transformation of a HyPd CuPDC1 gene 1-copy disrupted strain was performed with Cre expression plasmid pCU595. In the medium containing G418, colonies were not formed in the negative control to which DNA was not added, whereas in the sample to which pCU595 was added, 1,000 or more transformants were obtained. As a result of applying 30 of these strains to the G418 medium or HygB medium, all of them were able to grow on the G418 medium, but could not grow on the HygB medium.
 HygBrのCuPDC1遺伝子1コピー破壊株と、HygBsのCuPDC1遺伝子1コピー目の破壊株からゲノムDNAを抽出し、これを鋳型としてIM-281(配列番号31)とIM-282(配列番号32)でPCRを行った(伸長反応4分)。0.8%アガロースゲル電気泳動に供したところ、前者の株では3.9kbと3.7kbのDNA断片、後者の株では3.7kbと1.9kbのDNA断片が増幅されていた。目的のとおりHPT遺伝子が除去された株が取得された。 Genomic DNA was extracted from the HygBr CuPDC1 gene 1-copy disrupted strain and the HygBs CuPDC1 gene 1-copy disrupted strain. (Elongation reaction 4 minutes). When subjected to 0.8% agarose gel electrophoresis, DNA fragments of 3.9 kb and 3.7 kb were amplified in the former strain, and DNA fragments of 3.7 kb and 1.9 kb were amplified in the latter strain. A strain from which the HPT gene was removed as intended was obtained.
 HygBsのCuPDC1遺伝子1コピーの破壊株をYPD液体培地で1晩培養後、その一部をYPD培地に塗布した。2日後にシングルコロニーを複数分離し、G418培地とYPD培地に塗布した。その結果、ほとんどのクローンが、YPD培地では生育したが、G418培地では生育しなかった。 A disrupted strain of 1 copy of HyPBs CuPDC1 gene was cultured overnight in YPD liquid medium, and a portion thereof was applied to YPD medium. Two days later, single colonies were separated and applied to G418 medium and YPD medium. As a result, most clones grew on the YPD medium but did not grow on the G418 medium.
 HygBsのCuPDC1遺伝子1コピーが破壊されてはいるが、G418を含む培地での生育能が異なるG418r株とG418s株からゲノムDNAを抽出し、これを鋳型としてCre遺伝子を増幅するためのプライマーセットであるIM-49(配列番号23)とIM-52(配列番号26)でPCRを行った(伸長反応1分)。その結果、G418r株では1kbのDNA断片が増幅されたが、G418s株では増幅されなかった。このことから、pCU595が脱落し、HygBsかつG418sのCuPDC1遺伝子1コピー目の破壊株が得られた。 A primer set for amplifying the Cre gene by extracting genomic DNA from G418r and G418s strains, which have different growth potentials in a medium containing G418, although one copy of the HyPB1 CuPDC1 gene is destroyed. PCR was performed with certain IM-49 (SEQ ID NO: 23) and IM-52 (SEQ ID NO: 26) (extension reaction: 1 minute). As a result, a 1 kb DNA fragment was amplified in the G418r strain, but not amplified in the G418s strain. From this, pCU595 was lost, and a disrupted strain of HygBs and G418s CuPDC1 gene in the first copy was obtained.
 DNA断片としてCuPDC1破壊1・2回目断片を用いて、HygBsかつG418sのCuPDC1遺伝子1コピーの破壊株の形質転換を行った。得られた形質転換体からゲノムDNAを抽出し、これを鋳型としてIM-281(配列番号31)とIM-282(配列番号32)でPCRを行った(伸長反応4分)。0.8%アガロースゲル電気泳動に供したところ、3.9kb、3.7kb、1.9kbの3種類DNA断片が増幅される株が複数存在した。このことから、目的とするHygBrのCuPDC1遺伝子2コピーの破壊株が得られたことがわかった。 Using the CuPDC1 disruption 1st and 2nd fragment as a DNA fragment, transformation of a HydBs and G418s CuPDC1 gene disrupted one copy was performed. Genomic DNA was extracted from the obtained transformant, and PCR was carried out using IM-281 (SEQ ID NO: 31) and IM-282 (SEQ ID NO: 32) as a template (extension reaction: 4 minutes). When subjected to 0.8% agarose gel electrophoresis, there were several strains in which three types of DNA fragments of 3.9 kb, 3.7 kb, and 1.9 kb were amplified. From this, it was found that the target HygBr disrupted strain of CuPDC1 gene 2 copies was obtained.
 HygBrのCuPDC1遺伝子2コピー破壊株の形質転換をCre発現用プラスミドであるpCU595で行った。得られた形質転換体をG418培地およびHygB培地に塗布したところ、全てG418培地では生育可能であったが、HygB培地では生育できなかった。このHygBsかつG418rの形質転換体から抽出したゲノムDNAを鋳型として、IM-281(配列番号31)とIM-282(配列番号32)でPCRを行った(伸長反応4分)。0.8%アガロースゲル電気泳動に供したところ、3.7kbおよび1.9kbの2種類のDNA断片が増幅されていた。HPT遺伝子を除去できたことがわかった。 Transformation of the HyPd CuPDC1 gene 2-copy disruption strain was carried out with pCU595, a Cre expression plasmid. When the obtained transformants were applied to G418 medium and HygB medium, they could all grow on G418 medium, but could not grow on HygB medium. Using genomic DNA extracted from this HygBs and G418r transformant as a template, PCR was performed with IM-281 (SEQ ID NO: 31) and IM-282 (SEQ ID NO: 32) (extension reaction: 4 minutes). When subjected to 0.8% agarose gel electrophoresis, two kinds of DNA fragments of 3.7 kb and 1.9 kb were amplified. It was found that the HPT gene could be removed.
 HygBsのCuPDC1遺伝子2コピー破壊株をYPD液体培地で1晩培養後、その一部をYPD培地に塗布した。2日後にシングルコロニーを分離し、YPD培地とG418培地に塗布した。そして、YPD培地では生育するが、G418培地では生育しないクローンを分離した。pCU595が脱落した株、すなわち、HygBsかつG418sのCuPDC1遺伝子2コピー目の破壊株を取得できた。 HydBs CuPDC1 gene 2-copy disrupted strain was cultured overnight in YPD liquid medium, and a portion thereof was applied to YPD medium. Two days later, single colonies were isolated and spread on YPD medium and G418 medium. Then, clones that grew on the YPD medium but did not grow on the G418 medium were isolated. A strain in which pCU595 was eliminated, that is, a disrupted strain of HyGBs and G418s in the second copy of the CuPDC1 gene could be obtained.
 3コピー目と4コピー目のCuPDC1遺伝子を破壊するためのDNA断片の調製を次のようにして行った。まず、次の(1)、(2)および(3)に示した3種類のPCRを実施した:(1)鋳型としてpCU563を用い、プライマーとしてIM-1(配列番号21)とIM-2(配列番号22)を用い、伸長反応時間を2分とした;(2)鋳型としてNBRC0988株のゲノムDNAを用い、プライマーとしてIM-277(配列番号27)とIM-278(配列番号28)を用い、伸長反応時間を30秒とした;(3)鋳型としてNBRC0988株ゲノムDNAを用い、プライマーとしてIM-185(配列番号33)とIM-168(配列番号34)を用い、伸長反応時間を30秒とした。なお、(2)および(3)ではCuPDC1遺伝子の上流部分と下流部分が増幅される。さらに、以下の(4)のPCRを実施した:(4)鋳型として先述の(1)、(2)および(3)で増幅された3種類のDNAの混合物を用い、プライマーとしてIM-277(配列番号27)とIM-168(配列番号34)を用い、伸長反応時間を3分とした。これにより、順にCuPDC1遺伝子の上流領域、loxP、PGK遺伝子プロモーター、HPT遺伝子、GAP遺伝子ターミネーター、loxP、CuPDC1遺伝子の下流領域からなるDNA断片を取得した。以下、このDNA断片を「CuPDC1破壊3・4回目断片」と表記する。本DNA断片を用いて形質転換をすれば、CuPDC1遺伝子の上流領域と下流領域で二重鎖相同組換えが起こることにより、CuPDC1遺伝子のアレルを部分的に欠失させることが可能である。また、(3)で増幅されるCuPDC1遺伝子の下流領域は、CuPDC1破壊1・2回目断片を用いて行った1コピー目および2コピー目のCuPDC1遺伝子破壊のための形質転換において欠失された領域がほとんどであるので、2コピーの破壊されたアレルに組込まれる可能性を大きく減らすことができると考えられる。 A DNA fragment for disrupting the third and fourth copies of the CuPDC1 gene was prepared as follows. First, three types of PCR shown in the following (1), (2) and (3) were performed: (1) pCU563 was used as a template, IM-1 (SEQ ID NO: 21) and IM-2 (primers were used as primers. (SEQ ID NO: 22), and the extension reaction time was 2 minutes; (2) genomic DNA of NBRC0988 strain was used as a template, and IM-277 (SEQ ID NO: 27) and IM-278 (SEQ ID NO: 28) were used as primers. The extension reaction time was 30 seconds; (3) NBRC0988 strain genomic DNA was used as a template, IM-185 (SEQ ID NO: 33) and IM-168 (SEQ ID NO: 34) were used as primers, and the extension reaction time was 30 seconds. It was. In (2) and (3), the upstream part and the downstream part of the CuPDC1 gene are amplified. Furthermore, PCR of the following (4) was performed: (4) Using a mixture of the three types of DNA amplified in the above (1), (2) and (3) as a template, IM-277 ( SEQ ID NO: 27) and IM-168 (SEQ ID NO: 34) were used, and the extension reaction time was 3 minutes. Thereby, a DNA fragment consisting of the upstream region of the CuPDC1 gene, the loxP, the PGK gene promoter, the HPT gene, the GAP gene terminator, the loxP, and the downstream region of the CuPDC1 gene was obtained in this order. Hereinafter, this DNA fragment is referred to as “ CuPDC1 disruption 3rd and 4th fragment”. If the transformation using this DNA fragment, by duplex homologous recombination upstream region and downstream region of CuPDC1 gene occurs, it is possible to an allele of CuPDC1 gene partially deleted. The downstream region of CuPDC1 gene amplified by (3), the deleted regions in the transformation for one copy first and two copies th CuPDC1 gene disruption was performed using the CuPDC1 destruction 1-second fragment Is likely to greatly reduce the possibility of incorporation into two copies of a destroyed allele.
 DNA断片としてCuPDC1破壊3・4回目断片を用いて、3コピー目のCuPDC1遺伝子の破壊のために、HygBsかつG418sのCuPDC1遺伝子2コピー破壊株の形質転換を行った。得られた形質転換体からゲノムDNAを抽出し、これを鋳型としてIM-281(配列番号31)とIM-282(配列番号32)でPCRを行った(伸長反応4分)。0.8%アガロースゲル電気泳動に供したところ、4.4kb、3.7kb、1.9kbの3種類DNA断片が増幅される株があった。このことから、目的とするHygBrのCuPDC1遺伝子3コピー目の破壊株が得られたことがわかった。 Using the CuPDC1 disruption 3rd and 4th fragment as a DNA fragment, the CuPDC1 gene 2-copy disruption strain of HygBs and G418s was transformed for the third copy of the CuPDC1 gene. Genomic DNA was extracted from the obtained transformant, and PCR was carried out using IM-281 (SEQ ID NO: 31) and IM-282 (SEQ ID NO: 32) as a template (extension reaction: 4 minutes). When subjected to 0.8% agarose gel electrophoresis, there were strains in which three types of DNA fragments of 4.4 kb, 3.7 kb, and 1.9 kb were amplified. From this, it was found that the target HygBr disrupted strain of the third copy of the CuPDC1 gene was obtained.
 HygBrのCuPDC1遺伝子3コピー破壊株の形質転換をCre発現用プラスミドであるpCU595で行った。得られた形質転換体をG418培地およびHygB培地に塗布した結果、全てG418培地では生育可能であったが、HygB培地では生育できなかった。このHygBsかつG418rの形質転換体から抽出したゲノムDNAを鋳型として、IM-281(配列番号31)とIM-282(配列番号32)でPCRを行った(伸長反応4分)。0.8%アガロースゲル電気泳動に供したところ、3.7kb、2.4kb、1.9kbの3種類DNA断片が増幅されていた。HPT遺伝子を除去できたことがわかった。 Transformation of a HyPd CuPDC1 gene 3 copy disruption strain was carried out with pCU595, a plasmid for Cre expression. As a result of applying the obtained transformant to G418 medium and HygB medium, all were able to grow on G418 medium, but were not able to grow on HygB medium. Using genomic DNA extracted from this HygBs and G418r transformant as a template, PCR was performed with IM-281 (SEQ ID NO: 31) and IM-282 (SEQ ID NO: 32) (extension reaction: 4 minutes). When subjected to 0.8% agarose gel electrophoresis, three types of DNA fragments of 3.7 kb, 2.4 kb, and 1.9 kb were amplified. It was found that the HPT gene could be removed.
 HygBsのCuPDC1遺伝子3コピー破壊株をYPD液体培地で1晩培養後、その一部をYPD培地に塗布した。2日後にシングルコロニーを分離し、YPD培地とG418培地に塗布した。そして、YPD培地では生育するが、G418培地では生育しないクローンを分離した。pCU595が脱落した株、すなわち、HygBsかつG418sのCuPDC1遺伝子3コピー目の破壊株を取得できた。 HygBs CuPDC1 gene 3-copy disrupted strain was cultured overnight in YPD liquid medium, and a part thereof was applied to YPD medium. Two days later, single colonies were isolated and spread on YPD medium and G418 medium. Then, clones that grew on the YPD medium but did not grow on the G418 medium were isolated. A strain in which pCU595 was eliminated, that is, a strain in which the third copy of the CuPDC1 gene of HygBs and G418s was disrupted was obtained.
 DNA断片としてCuPDC1破壊3・4回目断片を用いて、HygBsかつG418sのCuPDC1遺伝子3コピー破壊株の形質転換を行った。得られた形質転換体からゲノムDNAを抽出し、これを鋳型としてIM-281(配列番号31)とIM-282(配列番号32)でPCRを行った(伸長反応4分)。0.8%アガロースゲル電気泳動に供したところ、複数の形質転換体では4.4kb、2.4kb、1.9kbの3種類DNA断片が増幅されていた。このことから、目的とするHygBrのCuPDC1遺伝子4コピー破壊株が得られたことがわかった。また、野生株であるNBRC0988株でみられた3.7kbのDNA断片、すなわち破壊されていないアレルが増幅されたDNA断片が検出されなかったことから、この株がCuPDC1遺伝子完全破壊株であると考えられた。 Using the CuPDC1 disrupted 3rd and 4th fragment as a DNA fragment, a CuPDC1 gene 3 copy disrupted strain of HygBs and G418s was transformed. Genomic DNA was extracted from the obtained transformant, and PCR was carried out using IM-281 (SEQ ID NO: 31) and IM-282 (SEQ ID NO: 32) as a template (extension reaction: 4 minutes). When subjected to 0.8% agarose gel electrophoresis, three types of DNA fragments of 4.4 kb, 2.4 kb, and 1.9 kb were amplified in a plurality of transformants. From this, it was found that the desired HygBr CuPDC1 gene 4 copy disruption strain was obtained. Also, DNA fragments of 3.7kb was observed in a wild strain NBRC0988 strain, that is, from the DNA fragment allele not destroyed is amplified is not detected, this strain is a CuPDC1 gene completely disrupted strain it was thought.
 HygBrのCuPDC1遺伝子4コピー破壊株の形質転換をCre発現用プラスミドであるpCU595で行った。得られた形質転換体をG418培地およびHygB培地に塗布した結果、全てG418培地では生育可能であったが、HygB培地では生育できなかった。このHygBsかつG418rの形質転換体から抽出したゲノムDNAを鋳型として、IM-281(配列番号31)とIM-282(配列番号32)でPCRを行った(伸長反応4分)。0.8%アガロースゲル電気泳動に供したところ、2.4kbと1.9kbの2種類のDNA断片が増幅される株が複数存在した。HPT遺伝子を除去できたことがわかった。 Transformation of HygBr CuPDC1 gene 4 copy disruption strain was performed with Cre expression plasmid pCU595. As a result of applying the obtained transformant to G418 medium and HygB medium, all were able to grow on G418 medium, but were not able to grow on HygB medium. Using genomic DNA extracted from this HygBs and G418r transformant as a template, PCR was performed with IM-281 (SEQ ID NO: 31) and IM-282 (SEQ ID NO: 32) (extension reaction: 4 minutes). When subjected to 0.8% agarose gel electrophoresis, there were several strains in which two types of DNA fragments of 2.4 kb and 1.9 kb were amplified. It was found that the HPT gene could be removed.
 HygBsのCuPDC1遺伝子4コピー破壊株をYPD液体培地で1晩培養後、その一部をYPD培地に塗布した。2日後にシングルコロニーを分離し、YPD培地とG418培地に塗布した。そして、YPD培地では生育するが、G418培地では生育しないクローンを分離した。pCU595が脱落した株、すなわち、HygBsかつG418sのCuPDC1遺伝子4コピー目の破壊株を取得できた。この株をCu8402g株と名づけた。 A 4 copy disrupted strain of HyPBs CuPDC1 gene was cultured overnight in a YPD liquid medium, and a portion thereof was applied to the YPD medium. Two days later, single colonies were isolated and spread on YPD medium and G418 medium. Then, clones that grew on the YPD medium but did not grow on the G418 medium were isolated. A strain from which pCU595 was eliminated, that is, a disrupted strain of HyGBs and G418s at the fourth copy of the CuPDC1 gene could be obtained. This strain was named Cu8402g strain.
2-3. CuPDC1遺伝子破壊株の特性評価
 CuPDC1遺伝子は、ピルビン酸からアセトアルデヒドへの変換を触媒するピルビン酸脱炭酸酵素の活性を有するポリペプチドをコードすると考えられる。発酵経路においては、アセトアルデヒドは、アルコール脱水素酵素によりさらにエタノールへと代謝される。すなわち、CuPDC1遺伝子を破壊することにより、エタノールへの代謝経路がシャットダウンされ、エタノール製造能が低下することが期待される。そこで、CuPDC1遺伝子1コピー破壊株、CuPDC1遺伝子2コピー破壊株、CuPDC1遺伝子3コピー破壊株、CuPDC1遺伝子完全破壊株Cu8402g株を発酵試験に供し(全てHygBsかつG418sの株)、エタノール製造能および有機酸の分析を行った。
2-3. Characterization of CuPDC1 gene disrupted strain The CuPDC1 gene is thought to encode a polypeptide having pyruvate decarboxylase activity that catalyzes the conversion of pyruvate to acetaldehyde. In the fermentation pathway, acetaldehyde is further metabolized to ethanol by alcohol dehydrogenase. That is, it is expected that by destroying the CuPDC1 gene, the metabolic pathway to ethanol is shut down and the ethanol production ability is reduced. Therefore, the CuPDC1 gene 1-copy disrupted strain, the CuPDC1 gene 2-copy-disrupted strain, the CuPDC1 gene 3-copy-disrupted strain, and the CuPDC1 gene completely disrupted strain Cu8402g strain were subjected to fermentation tests (all strains of HygBs and G418s), ethanol production ability and organic acid Was analyzed.
 Cu8402g株のエタノール製造能、香気成分製造能および有機酸製造能を調べる目的で、野生株NBRC0988株およびCu8402g株を、培地として50mL~100mLのYPD液体培地を用い、1~3日間YPD寒天培地で生育させた菌体を、OD600が約0.1になるように新たな培地に接種し、TAITEC社製卓上培養装置により振幅35mm、120~150rpm、30℃で16~30時間培養した。そして、4℃、3,000rpm、5分間の条件で遠心分離によって集菌し、さらに上清を除した後、発酵に用いる培地(中和剤は含まない)で洗浄した。こうして得られた酵母菌体を、バッフル付きの100mL三角フラスコでYPD10(100g/Lグルコース、10g/L酵母エキス、20g/Lペプトン)培地50mLに初期OD600が0.5になるようにそれぞれ植菌し、TAITEC社製卓上培養装置を用いて30℃で48時間35mmの振幅、80rpmの振とう速度で培養した。培養液を0.22μmのフィルターで濾過し、培地中のエタノール濃度、香気成分濃度および各種有機酸濃度を測定した。結果を表1に示した。なお、各種データは、独立に3回試行した結果から算出した値である。 For the purpose of investigating the ethanol production ability, aroma component production ability and organic acid production ability of the Cu8402g strain, the wild strain NBRC0988 strain and the Cu8402g strain were used in a YPD agar medium for 1 to 3 days using a 50 mL to 100 mL YPD liquid medium as a medium. The grown cells were inoculated into a new medium so that the OD600 was about 0.1, and cultured for 16 to 30 hours at 30 ° C. with an amplitude of 35 mm, 120 to 150 rpm, using a table culture apparatus manufactured by TAITEC. Then, the cells were collected by centrifugation under conditions of 4 ° C. and 3,000 rpm for 5 minutes, and after removing the supernatant, the cells were washed with a medium used for fermentation (not including a neutralizing agent). The yeast cells thus obtained were inoculated into 50 mL of YPD10 (100 g / L glucose, 10 g / L yeast extract, 20 g / L peptone) medium in a 100 mL Erlenmeyer flask with baffle so that the initial OD600 was 0.5. Then, the cells were cultured at 30 ° C. for 48 hours with an amplitude of 35 mm and a shaking speed of 80 rpm using a table culture apparatus manufactured by TAITEC. The culture solution was filtered through a 0.22 μm filter, and the ethanol concentration, aroma component concentration, and various organic acid concentrations in the medium were measured. The results are shown in Table 1. Various data are values calculated from the results of three independent trials.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 発酵開始から48時間後、NBRC0988株では3.96g/Lのエタノールを製造していたが、Cu8402g株ではエタノールを検出できなかった。 48 hours after the start of fermentation, NBRC0988 strain produced 3.96 g / L ethanol, but Cu8402g strain could not detect ethanol.
 発酵開始から48時間後、アセトアルデヒドについてはNBRC0988株では26.2mg/Lを製造していたが、Cu8402g株では1.14mg/Lであった。 48 hours after the start of fermentation, as for acetaldehyde, 26.2 mg / L was produced in the NBRC0988 strain, but 1.14 mg / L in the Cu8402g strain.
 発酵開始から48時間後、酢酸についてはNBRC0988株では660.3mg/Lを製造していたが、Cu8402g株では273.1mg/Lであった。 48 hours after the start of fermentation, 660.3 mg / L of acetic acid was produced for NBRC0988 strain, but 273.1 mg / L for Cu8402g strain.
 発酵開始から48時間後、アセトアルデヒドが前躯体であるエタノールと酢酸の濃度はともに、NBRC0988株よりもCu8402g株で低かった。 48 hours after the start of fermentation, the concentrations of ethanol and acetic acid in which acetaldehyde was a precursor were both lower in the Cu8402g strain than in the NBRC0988 strain.
 発酵開始から48時間後におけるNBRC0988株のピルビン酸濃度は462.4mg/Lであったのに対し、Cu8402g株では3659.9mg/L存在していることが観察された。L-乳酸濃度はNBRC0988株およびCu8402g株の両株が、酵母を加えていない培地よりも低下していた。D-乳酸の濃度については、酵母を加えていない培地に比べ、NBRC0988株では低下していたが、Cu8402g株では上昇していた。 The pyruvate concentration of NBRC0988 strain 48 hours after the start of fermentation was 462.4 mg / L, whereas it was observed that 3659.9 mg / L was present in the Cu8402g strain. The L-lactic acid concentration was lower in both the NBRC 0988 strain and the Cu8402g strain than in the medium without yeast added. The concentration of D-lactic acid decreased in the NBRC0988 strain, but increased in the Cu8402g strain, compared to the medium without yeast added.
 Cu8402g株の特徴として、CuPDC1遺伝子を破壊することにより、ピルビン酸からアセトアルデヒドへ変換する経路がシャットダウンされ、これによりピルビン酸が代謝されずに蓄積し、さらにこのことが影響して、メチルグリオキサール経路においてはピルビン酸の前駆体であるD-乳酸が蓄積しやすくなったと考えられる。 As a characteristic of the Cu8402g strain, by disrupting the CuPDC1 gene, the pathway for converting pyruvate to acetaldehyde is shut down, thereby accumulating pyruvate without being metabolized, which further affects the methylglyoxal pathway. It is considered that D-lactic acid, which is a precursor of pyruvic acid, is easy to accumulate.
 以上の結果は、CuPDC1遺伝子が、ピルビン酸からアセトアルデヒドへの変換に関わるピルビン酸脱炭酸酵素をコードしており、本遺伝子を完全に欠損することにより、細胞内における当該酵素の活性がなくなった、あるいは低下したことに起因すると考えられる。 The above results indicate that the CuPDC1 gene encodes pyruvate decarboxylase, which is involved in the conversion of pyruvate to acetaldehyde, and the activity of the enzyme in the cell is lost by completely deleting this gene. Or it is thought that it originates in having fallen.
 目的産物であるL-乳酸を精製する工程において、培養上清に炭酸カルシウムを加え、L-乳酸カルシウム塩として回収する手法が広く用いられている。エタノールやTCA回路の各種有機酸濃度が野生株に比べて大きく減少していることは、この工程でL-乳酸塩以外の副産物の産生を低減化できる可能性を示していることから、乳酸製造能を評価するうえで有用な指標となる形質であると考えられる。 In the process of purifying the target product L-lactic acid, a technique of adding calcium carbonate to the culture supernatant and recovering it as an L-calcium lactate salt is widely used. The fact that the concentration of various organic acids in ethanol and TCA cycle is greatly reduced compared to the wild type strain indicates that it is possible to reduce the production of by-products other than L-lactate in this process. It is considered to be a trait that is a useful index for evaluating performance.
 発酵開始から48時間後にはCuPDC1遺伝子1コピー破壊株、CuPDC1遺伝子2コピー破壊株、CuPDC1遺伝子3コピー破壊株は、キャンディダ・ユティリス野生株NBRC0988株と同じ程度エタノール製造能を有していた。 After 48 hours from the start of fermentation, the CuPDC1 gene 1-copy disrupted strain, the CuPDC1 gene 2-copy-disrupted strain, and the CuPDC1 gene 3-copy disrupted strain had the same ability to produce ethanol as the Candida utilis wild strain NBRC0988.
実施例3:L-LDH遺伝子を導入したキャンディダ・ユティリス株の構築
3-1.L-乳酸脱水素酵素の活性を有するポリペプチドをコードするL-LDH遺伝子のDNA配列の設計
 高等真核生物であるウシ由来L-乳酸脱水素酵素の活性を有するポリペプチドを酵母キャンディダ・ユティリスで効率よく発現させるために、特開2003-259878号公報に記載され、ウシ由来の酵素のアミノ酸配列(DDBJ/EMBL/GenBank Accession number:AAI46211.1)に記載された乳酸脱水素酵素の活性を有するポリペプチドをコードする遺伝子に対して、以下の項目を設計指針として、タカラバイオ社に天然に存在しない新規な遺伝子配列の設計及び合成を依頼した。
Example 3: Construction of Candida utilis strain into which L-LDH gene was introduced
3-1. Design of DNA sequence of L-LDH gene encoding polypeptide having L-lactate dehydrogenase activity Polypeptide having L- lactate dehydrogenase activity derived from bovine, which is a higher eukaryote, is transformed into yeast Candida utilis. In order to efficiently express the protein, the activity of lactate dehydrogenase described in JP-A No. 2003-259878 and described in the amino acid sequence of a bovine-derived enzyme (DDBJ / EMBL / GenBank Accession number: AAI46211.1) is used. With respect to the gene encoding the polypeptide possessed, Takara Bio Inc. was requested to design and synthesize a new gene sequence that does not exist in nature, using the following items as design guidelines.
(イ)キャンディダ・ユティリスにおいて多用されているコドンを用いた。
(ロ)mRNAの不安定配列や繰り返し配列を出来る限り排除した。
(ハ)全領域にわたってGC含量の偏りに差がでないようにした。
(ニ)設計した配列中に遺伝子クローニングに不適当な制限酵素部位ができないようにした。
(ホ)L-LDH遺伝子発現用ベクターに組込むための両末端に有用な制限酵素部位を付加した(L-LDHコード領域上流:KpnI、XbaI;L-LDHコード領域下流:BamHI、SacI)。ここで、KpnI認識部位は、配列番号36のヌクレオチド配列において1番目のgから6番目のcまでの配列GGTACCを示し、Xba I認識部位は、配列番号36のヌクレオチド配列において7番目のtから12番目のaまでの配列TCTAGAを示し、BamHI認識部位は、配列番号36のヌクレオチド配列において1,015番目のgから1,020番目のcまでの配列GGATCCを示し、SacI認識部位は、配列番号36のヌクレオチド配列において1,021番目のgから1,026番目のcまでの配列GAGCTCを示す。
(A) Codons frequently used in Candida utilis were used.
(B) The unstable sequences and repetitive sequences of mRNA were eliminated as much as possible.
(C) There was no difference in the GC content bias over the entire region.
(D) Restricted restriction enzyme sites that are inappropriate for gene cloning were made in the designed sequence.
(E) A useful restriction enzyme site was added to both ends for incorporation into an L-LDH gene expression vector (upstream of L-LDH coding region: Kpn I, Xba I; downstream of L-LDH coding region: Bam HI, Sac I). Here, the Kpn I recognition site indicates the sequence GGTACC from the first g to the sixth c in the nucleotide sequence of SEQ ID NO: 36, and the Xba I recognition site is from the seventh t in the nucleotide sequence of SEQ ID NO: 36. The sequence TCTAGA up to the 12th a, the Bam HI recognition site represents the sequence GGATCC from the 1,015th g to the 1,020th c in the nucleotide sequence of SEQ ID NO: 36, and the Sac I recognition site is The sequence GAGCTC from the 1,021st g to the 1,026th c in the nucleotide sequence of SEQ ID NO: 36 is shown.
 合成されたDNA配列を配列番号36に示す。また、このうち上記のL-乳酸脱水素酵素の活性を有するポリペプチドをコードする13番目のaから1,011番目のaまでのヌクレオチド配列に対応するアミノ酸配列はウシ由来そのものであり、配列番号35として記載した(DDBJ/EMBL/GenBank Accession number:AAI46211.1)。なお、配列番号36の1,009から1,011番目のTGAと、それに引き続く1,012から1,014番目のTGAは共に翻訳の終了コドンである。このDNA断片を有するプラスミドをpCU669(別名:GA07033)と名付けた。 The synthesized DNA sequence is shown in SEQ ID NO: 36. Of these, the amino acid sequence corresponding to the nucleotide sequence from the 13th a to the 1,011st a encoding the above-mentioned polypeptide having the activity of L-lactate dehydrogenase is derived from bovine itself. (DDBJ / EMBL / GenBank Accession number: AAI46211.1). Note that the 1,009 to 1,011st TGAs of SEQ ID NO: 36 and the subsequent 1,012 to 1,014th TGAs are translation end codons. The plasmid having this DNA fragment was named pCU669 (also known as GA07033).
 この配列番号36のうち、13番目のaから1,011番目のa(2つの翻訳終了コドンのうち、上流域のTGA)までのヌクレオチド配列(コドン最適化配列)と配列番号38で表されるヌクレオチド配列(ウシ由来の野生型配列)のアライメントを図1に示す。両者の配列は999塩基中751塩基が等しく、相同性は75%であった。図1において、上側の配列は、配列番号36のうち、13番目のaから1,011番目のa(2つの翻訳終了コドンのうち、上流域のTGA)までのヌクレオチド配列である。図1の下側の配列は配列番号38で表されるBos taurus由来のL-LDH-A遺伝子の塩基配列(DDBJ/EMBL/GenBank Accession number:BC146210.1より抜粋)である(翻訳産物は配列番号35となる)。 Of this SEQ ID NO: 36, the nucleotide sequence (codon optimized sequence) from the 13th a to the 1,011st a (upstream TGA of the two translation termination codons) is represented by SEQ ID NO: 38 The alignment of the nucleotide sequence (wild-type sequence derived from bovine) is shown in FIG. Both sequences had the same 751 bases out of 999 bases, and the homology was 75%. In FIG. 1, the upper sequence is a nucleotide sequence from the 13th a to the 1011st a (upstream TGA of two translation termination codons) in SEQ ID NO: 36. The lower sequence of FIG. 1 is the base sequence of L-LDH-A gene derived from Bos taurus represented by SEQ ID NO: 38 (extracted from DDBJ / EMBL / GenBank Accession number: BC146210.1). No. 35).
3-2.L-LDH遺伝子発現用プラスミドの作製
 L-LDH遺伝子発現用プラスミドの構築を、特記しない限りは、KOD―Plus-を用いて以下のようにして実施した。
3-2. Construction of manufacturing L-LDH gene expression plasmid for L-LDH gene expression plasmid, unless otherwise stated, was performed as follows using the KOD-Plus-.
 IM-345(配列番号39)とIM-346(配列番号40)でPCRを行い、CuPDC1遺伝子の下流領域を増幅した(伸長反応1分)。この増幅断片をBssHIIで消化した後、BssHIIで完全に消化したpBluescriptIISK(+)(TOYOBO社)と連結した。得られたプラスミドをpCU670(別名:pPt)と名付けた。 PCR was performed with IM-345 (SEQ ID NO: 39) and IM-346 (SEQ ID NO: 40) to amplify the downstream region of the CuPDC1 gene (extension reaction 1 minute). After digesting the amplified fragment with Bss HII, and ligated with pBluescriptIISK it was completely digested with Bss HII (+) (TOYOBO Co.). The resulting plasmid was named pCU670 (alias: pPt).
 遺伝子破壊用のDNA断片を調製するためのプラスミドpCU563がもつPGK遺伝子プロモーターを長くしたプラスミドpCU621は、次の手順で構築した。Shimadaら(Appl.Environ.Microbiol.64,2676-2680)に記載されたPGK遺伝子プロモーターとハイグロマイシン耐性遺伝子HPT遺伝子を有するプラスミドpGKHPT1を鋳型にして、IM-283(配列番号41)とIM-57(配列番号17)のプライマーセットでPCR(伸長反応2分)を行うことにより、順にloxP、PGK遺伝子プロモーター、HPT遺伝子からなるDNA断片を増幅した。
また、pGAPPT10(Kondoら、Nat.Biotechnol.15,453-457)を鋳型として、IM-54(配列番号19)とIM-55(配列番号20)のプライマーセットでPCR(伸長反応30秒)を行うことにより、GAP遺伝子ターミネーターとloxPからなるDNA断片を増幅した。これらを混合してIM-1(配列番号21)とIM-2(配列番号22)でPCRを行うことによって(伸長反応2.5分、酵素としてはタカラバイオ社製LA Taqを使用した)、順にloxP、PGK遺伝子プロモーター、HPT遺伝子、GAP遺伝子ターミネーター、loxPからなるDNA断片を増幅した。得られたDNA断片を、pCR2.1ベクターにクローン化した。こうして得られたプラスミドをpCU621(別名:pNNLHL)と名づけた。
A plasmid pCU621 in which the PGK gene promoter of the plasmid pCU563 for preparing a DNA fragment for gene disruption was elongated was constructed by the following procedure. Using the plasmid pGKHPT1 having the PGK gene promoter and hygromycin resistance gene HPT gene described in Shimada et al. (Appl. Environ. Microbiol. 64, 2676-2680) as a template, By performing PCR (extension reaction 2 minutes) with the primer set of (SEQ ID NO: 17), DNA fragments consisting of loxP, PGK gene promoter, and HPT gene were sequentially amplified.
In addition, PCR (extension reaction 30 seconds) was carried out using the primer set of IM-54 (SEQ ID NO: 19) and IM-55 (SEQ ID NO: 20) using pGAPPT10 (Kondo et al., Nat. Biotechnol. 15, 453-457) as a template. By performing, a DNA fragment consisting of the GAP gene terminator and loxP was amplified. By mixing these and performing PCR with IM-1 (SEQ ID NO: 21) and IM-2 (SEQ ID NO: 22) (elongation reaction 2.5 minutes, LA Taq manufactured by Takara Bio Inc. was used as the enzyme), A DNA fragment consisting of loxP, PGK gene promoter, HPT gene, GAP gene terminator, and loxP was amplified in this order. The resulting DNA fragment was cloned into the pCR2.1 vector. The plasmid thus obtained was named pCU621 (alias: pNNLHL).
 まず、次の3種類のPCRを行った:(1)pCU621を鋳型とし、IM-349(配列番号42)とIM-350(配列番号43)をプライマーとしてPCRを行った(伸長反応2.5分);(2)pPGKPT2(特開2003-144185号公報)を鋳型とし、IM-347(配列番号44)とIM-348(配列番号45)をプライマーとしてPCR行い(伸長反応30秒)、PGK遺伝子のターミネーター領域を、BglII認識配列がなくなるように一塩基変異を入れて増幅した;(3)鋳型として(1)および(2)で増幅したDNA断片を用い、プライマーとしてIM-347(配列番号44)とIM-350(配列番号43)を用いてPCRを行った(伸長反応3分)。(3)で得られたDNA断片を、SmaIで消化したpBluescriptIISK(+)に連結した。得られたプラスミドをpCU672(別名:pPGtH)と名付けた。 First, the following three types of PCR were performed: (1) PCR was performed using pCU621 as a template and IM-349 (SEQ ID NO: 42) and IM-350 (SEQ ID NO: 43) as primers (extension reaction 2.5). Min); (2) PCR was carried out using pPGKPT2 (Japanese Patent Laid-Open No. 2003-144185) as a template and IM-347 (SEQ ID NO: 44) and IM-348 (SEQ ID NO: 45) as primers (extension reaction 30 seconds), PGK The terminator region of the gene was amplified with a single base mutation so that the Bgl II recognition sequence was eliminated; (3) using the DNA fragment amplified in (1) and (2) as a template and IM-347 (sequence) as a primer No. 44) and IM-350 (SEQ ID NO: 43) were used for PCR (extension reaction: 3 minutes). (3) The resulting DNA fragment with and ligated into pBluescriptIISK (+) digested with Sma I. The resulting plasmid was named pCU672 (alias: pPGtH).
 pCU672(別名:pPGtH)をBamHIとClaIで消化して得られたPGK遺伝子ターミネーター、loxP、PGK遺伝子プロモーター、HPT遺伝子、GAP遺伝子ターミネーター、loxPからなる約3kbpのDNA断片を、BamHIとClaIで消化したpCU670に連結させて、新たなプラスミドpCU675(別名:pPGtHPt)を構築した。 PCU672 (aka: pPGtH) PGK gene terminator was obtained by digesting with Bam HI and Cla I, loxP, PGK gene promoter, HPT gene, GAP gene terminator, a DNA fragment of about 3kbp consisting loxP, Bam HI and Cla A new plasmid pCU675 (also known as pPGtHPt) was constructed by ligation to pCU670 digested with I.
 まず、次の3種類のPCRを行った:(1)pCU530を鋳型とし、IM-341(配列番号46)とIM-342(配列番号47)をプライマーとしてPCRを行い(伸長反応2分)、CuPDC1遺伝子プロモーター領域を増幅した;(2)pCU669(別名:GA07033)を鋳型とし、IM-343(配列番号48)とIM-379(配列番号49)をプライマーとしてPCRを行い(伸長反応1分)、L-LDH構造遺伝子を増幅した;(3)鋳型として(1)および(2)で増幅したDNA断片を用い、プライマーとしてIM-341(配列番号46)とIM-379(配列番号49)を用いてPCRを行った(伸長反応3分)。(3)で増幅したDNA断片をNotIとBglIIで消化し、得られたDNA断片を、NotIとBamHIで切断したpCU675(別名:pPGtHPt)に連結した。得られたプラスミドpCU681(別名:pPLPGtHPt)(図10)は、pBluescriptIISK(+)のBssHII部位に、順にCuPDC1遺伝子プロモーター領域、L-LDH構造遺伝子、PGK遺伝子ターミネーター、loxP、PGK遺伝子プロモーター、HPT遺伝子、GAP遺伝子ターミネーター、loxP、CuPDC1遺伝子の下流領域からなるDNA断片が挿入されている。2つのBssHII認識配列の挿入DNA断片側には、当該認識配列の直後にBglII認識配列が備わっていることから、pCU681(別名:pPLPGtHPt)をBglIIで消化することにより、上述のCuPDC1遺伝子プロモーターからCuPDC1遺伝子の下流領域からなるDNA断片を取得することが可能である。なお、形質転換体は600μg/mLのハイグロマイシンBを含むYPD培地で選択する。 First, the following three types of PCR were performed: (1) PCR was performed using pCU530 as a template and IM-341 (SEQ ID NO: 46) and IM-342 (SEQ ID NO: 47) as primers (extension reaction 2 minutes), CuPDC1 gene promoter region was amplified; (2) PCR was performed using pCU669 (also known as GA07033) as a template and IM-343 (SEQ ID NO: 48) and IM-379 (SEQ ID NO: 49) as primers (extension reaction 1 min) L-LDH structural gene was amplified; (3) The DNA fragment amplified in (1) and (2) was used as a template, and IM-341 (SEQ ID NO: 46) and IM-379 (SEQ ID NO: 49) were used as primers. PCR was performed using (extension reaction 3 minutes). The DNA fragment amplified in (3) was digested with Not I and Bgl II, and the obtained DNA fragment was ligated to pCU675 (also called pPGtHPt) cleaved with Not I and BamH I. The resulting plasmid PCU681 (aka: pPLPGtHPt) (FIG. 10) is the Bss HII site of pBluescriptIISK (+), in order CuPDC1 gene promoter region, L-LDH structural gene, PGK gene terminator, loxP, PGK gene promoter, HPT gene A DNA fragment consisting of the GAP gene terminator, loxP, and the downstream region of the CuPDC1 gene has been inserted. The inserted DNA fragment side two Bss HII recognition sequence, since it is equipped with Bgl II recognition sequence immediately following the recognition sequence, PCU681 (aka: pPLPGtHPt) a by digestion with Bgl II, above CuPDC1 gene It is possible to obtain a DNA fragment consisting of the downstream region of the CuPDC1 gene from the promoter. Transformants are selected on a YPD medium containing 600 μg / mL hygromycin B.
3-3.キャンディダ・ユティリス野生株NBRC0988株へのL-LDH遺伝子の導入
 BglIIで消化したpCU681(pPLPGtHPt)3μgでNBRC0988株の形質転換を行った。得られた形質転換体から抽出したDNAを鋳型とし、IM-362(配列番号50)とIM-174(配列番号51)をプライマーセットとしてPCRを行った(伸長反応4分)。その内、NBRC0988株では増幅されない3.6kbのDNA断片が増幅される形質転換体Pj0202株を取得した。また、IM-163(配列番号52)とIM-164(配列番号53)をプライマーセットとしたPCRを行ったところ(伸長反応30秒)、約500bpのDNA断片が増幅された。このことからPj0202株は、破壊されていないCuPDC1遺伝子を少なくとも1コピー以上有していることが示された。
3-3. Was transformed NBRC0988 shares at Candida utilis pCU681 was digested with the introduction Bgl II of the L-LDH gene into the wild strain NBRC0988 Ltd. (pPLPGtHPt) 3μg. PCR was performed using the DNA extracted from the obtained transformant as a template and IM-362 (SEQ ID NO: 50) and IM-174 (SEQ ID NO: 51) as a primer set (extension reaction 4 minutes). Among them, a transformant Pj0202 strain in which a 3.6 kb DNA fragment that is not amplified in the NBRC0988 strain was amplified was obtained. Further, when PCR was carried out using IM-163 (SEQ ID NO: 52) and IM-164 (SEQ ID NO: 53) as a primer set (elongation reaction 30 seconds), a DNA fragment of about 500 bp was amplified. This indicates that the Pj0202 strain has at least one copy of the undisrupted CuPDC1 gene.
3-4.NBRC0988株およびCuPDC1遺伝子完全破壊株Cu8402g株へのL-LDH遺伝子の導入
 BglIIで消化したpCU681(pPLPGtHPt)3μgでCu8402g株の形質転換を行った。得られたHygBrの形質転換体から抽出したDNAを鋳型とし、IM-362(配列番号50)とIM-174(配列番号51)をプライマーセットとして、PCRを行った(伸長反応4分)。その内、Cu8402g株では増幅されない3.6kbのDNA断片が増幅される形質転換体Pj0404株を取得した。この株はL-LDH遺伝子がCuPDC1遺伝子座に組込まれた株であり、L-LDH遺伝子の発現は本来のCuPDC1遺伝子プロモーターによって制御される。
3-4. In NBRC0988 strain and CuPDC1 genes total destruction was digested with L-LDH gene introduction Bgl II to strain Cu8402g strain pCU681 (pPLPGtHPt) 3μg was transformed Cu8402g strain. PCR was carried out using the DNA extracted from the obtained HygBr transformant as a template and IM-362 (SEQ ID NO: 50) and IM-174 (SEQ ID NO: 51) as a primer set (extension reaction: 4 minutes). Among them, a transformant Pj0404 strain was obtained in which a 3.6 kb DNA fragment that was not amplified in the Cu8402g strain was amplified. This strain is a strain of L-LDH gene is integrated into CuPDC1 locus, the expression of the L-LDH gene is controlled by the native CuPDC1 gene promoter.
 Pj0404株は少なくとも1コピー以上のL-LDH遺伝子が導入された株である。
特に、本検討で発現させたHPT遺伝子は1コピーのみの導入によってHygBrの表現型を示す形質転換体を選択できることから、Pj0404株は、1コピーのL-LDH遺伝子が組込まれた株であると考えられる。IM-281(配列番号31)とIM-282(配列番号32)をプライマーセットとしてPCRを行った結果(伸長反応4分)、2.4kbと1.9kbの少なくとも2種類のDNA断片が増幅された。この結果、L-LDH遺伝子が組込まれずに、破壊された状態のCuPDC1遺伝子座がPj0404株に存在していることが明らかになった。
The Pj0404 strain is a strain into which at least one copy of the L-LDH gene has been introduced.
In particular, since the HPT gene expressed in this study can select a transformant exhibiting the HygBr phenotype by introducing only one copy, the Pj0404 strain is a strain into which one copy of the L-LDH gene is incorporated. Conceivable. As a result of PCR using IM-281 (SEQ ID NO: 31) and IM-282 (SEQ ID NO: 32) as a primer set (extension reaction 4 minutes), at least two kinds of DNA fragments of 2.4 kb and 1.9 kb were amplified. It was. As a result, it was revealed that the CuPDC1 locus in a disrupted state exists in the Pj0404 strain without incorporating the L-LDH gene.
 Cre組換え酵素の発現プラスミドpCU595でPj0404株の形質転換を行い、HygBsかつG418rのクローンを取得した。当該クローンをYPD液体培地で1晩培養後、その一部をYPD培地に塗布した。2日後にシングルコロニーを分離し、YPD培地とG418培地に塗布した。そして、YPD培地では生育するが、G418培地では生育しないクローンを分離した。このクローンPj0707a株から抽出したDNAを鋳型として、IM-362(配列番号50)とIM-174(配列番号51)をプライマーセットとしてPCRを行った結果(伸長反応4分)、1.2kbのDNAが増幅された。
Pj0707a株はHygBsかつG418sの表現型をもち、CuPDC1遺伝子が全て破壊され、かつCuPDC1遺伝子座に組込まれたCuPDC1遺伝子プロモーター誘導性のL-LDH遺伝子が導入された株である。
The Pj0404 strain was transformed with the Cre recombinase expression plasmid pCU595 to obtain a HygBs and G418r clone. The clone was cultured overnight in a YPD liquid medium, and a part thereof was applied to the YPD medium. Two days later, single colonies were isolated and spread on YPD medium and G418 medium. Then, clones that grew on the YPD medium but did not grow on the G418 medium were isolated. As a result of PCR using DNA extracted from this clone Pj0707a strain as a template and IM-362 (SEQ ID NO: 50) and IM-174 (SEQ ID NO: 51) as a primer set (extension reaction 4 minutes), a DNA of 1.2 kb Was amplified.
Pj0707a strain has a HygBs and G418s phenotype, destroyed all CuPDC1 gene and a strain CuPDC1 gene promoter inducible L-LDH gene integrated was introduced into CuPDC1 locus.
 BglIIで消化したpCU681(pPLPGtHPt)3μgでPj0707a株の形質転換を行った。得られたHygBrの形質転換体から抽出したDNAを鋳型とし、IM-362(配列番号50)とIM-174(配列番号51)をプライマーセットとして、PCRを行った(伸長反応4分)。その結果、3.6kbと1.2kbの2種類のDNA断片が増幅される形質転換体Pj0957株を取得した。この株はL-LDH遺伝子が、Pj0457株でL-LDH遺伝子が組込まれたCuPDC1遺伝子座とは異なるアレルのCuPDC1遺伝子座に組込まれた株である。この形質転換によって導入されたL-LDH遺伝子の発現も、本来のCuPDC1遺伝子プロモーターによって制御される。 The Pj0707a strain was transformed with 3 μg of pCU681 (pPLPGtHPt) digested with Bgl II. PCR was carried out using the DNA extracted from the obtained HygBr transformant as a template and IM-362 (SEQ ID NO: 50) and IM-174 (SEQ ID NO: 51) as a primer set (extension reaction: 4 minutes). As a result, a transformant Pj0957 strain was obtained in which two types of DNA fragments of 3.6 kb and 1.2 kb were amplified. This strain L-LDH gene is a strain incorporated in CuPDC1 locus different alleles and CuPDC1 locus L-LDH gene is integrated at Pj0457 strain. Expression of the L-LDH gene introduced by this transformation is also controlled by the original CuPDC1 gene promoter.
 Pj0957株は少なくとも2コピー以上のL-LDH遺伝子が導入された株である。
特に、本検討で発現させたHPT遺伝子は1コピーのみの導入によってHygBrの表現型を示す形質転換体を選択できることから、Pj0957株は、2コピーのL-LDH遺伝子が組込まれた株であると考えられる。
The Pj0957 strain is a strain into which at least two copies of the L-LDH gene have been introduced.
In particular, since the HPT gene expressed in this study can select a transformant exhibiting a HygBr phenotype by introducing only one copy, the Pj0957 strain is a strain into which two copies of the L-LDH gene are incorporated. Conceivable.
 キャンディダ・ユティリスにおけるCre-loxPシステムは、遺伝子の破壊だけでなく、任意の遺伝子の導入にも利用できることが確認された。 It was confirmed that the Cre-loxP system in Candida utilis can be used not only for gene destruction but also for introduction of arbitrary genes.
実施例4:フラスコでの発酵試験
 以下に示すとおり、NBRC0988株および新たに構築した組換え酵母菌株の乳酸製造能の評価を実施した。培地中のエタノール濃度はGCあるいはHPLCを用いて、培地中のグルコース濃度およびL-乳酸濃度はワイエスアイジャパン社製バイオケミストリーアナライザー(BA)を用いて測定した。光学異性体の判別には、J.K.インターナショナル社製のF-キットD-乳酸/L-乳酸を用い、方法は添付のプロトコールに従った。その他の各種有機酸製造量はHPLCを用いて行った。分析に供した試料には、培養液を0.22μmのフィルターで事前に濾過したものを用いた。各種データは、少なくとも3回、独立に試行した結果の平均値である。
Example 4 Fermentation Test in Flask As shown below, NBRC0988 strain and the newly constructed recombinant yeast strain were evaluated for lactic acid production ability. The ethanol concentration in the medium was measured using GC or HPLC, and the glucose concentration and L-lactic acid concentration in the medium were measured using Biochemistry Analyzer (BA) manufactured by Wyeth Japan. For the discrimination of optical isomers, J. et al. K. Using F-kit D-lactic acid / L-lactic acid manufactured by International Co., Ltd., the method followed the attached protocol. Other various organic acid production amounts were performed using HPLC. As a sample subjected to analysis, a culture solution previously filtered through a 0.22 μm filter was used. Each type of data is an average of the results of independent trials at least three times.
 YPD寒天培地で2~3日間30℃で培養した酵母菌体から白金耳で1回かきとったペレット状の菌株を、15mLのチューブに入れた3mLのYPD液体培地に接種し、TAITEC社製卓上培養装置により振幅35mm、130rpm、30℃で20~30時間、前々培養を行った。これをOD600が約0.1になるように、坂口フラスコに入った100mLのYPD培地に接種し、TAITEC社製卓上培養装置により振幅35mm、130rpm、30℃で通常15~22時間、前培養を行った。そして4℃、3,000rpm、5分間の条件で遠心分離によって集菌し、さらに上清を除した後、発酵に用いる培地(中和剤は含まない)で洗浄した。こうして得られた菌体を、バッフル付きの100mL三角フラスコに入った100~115g/Lのグルコースを含む液量15mLの培地に接種し、TAITEC社製卓上培養装置により振幅35mm、80rpmで発酵させた。前培養により得た菌体を発酵のために接種する量は、特に記述がない場合、OD600が10となるように植えた。特記しない限り、中和剤として4.5%(w/v)の濃度になるように炭酸カルシウムを培地に加えた。発酵時の温度は25℃、30℃、あるいは35℃とした。培地には上記濃度(100~115g/L)のグルコースの他に10g/Lの酵母エキスと20g/Lのペプトンを加えており、この組成の培地を以降はYPD10培地と記載する。 Inoculate a 3 mL YPD liquid medium in a 15 mL tube from a yeast cell cultured on a YPD agar medium for 2 to 3 days at 30 ° C. with a platinum loop. Pre-culture was performed for 20 to 30 hours at an amplitude of 35 mm, 130 rpm, and 30 ° C. using a culture apparatus. This is inoculated into 100 mL of YPD medium in a Sakaguchi flask so that the OD600 is about 0.1, and precultured at a 35 mm amplitude, 130 rpm, 30 ° C. for 15 to 22 hours with a table culture apparatus manufactured by TAITEC. went. Then, the cells were collected by centrifugation under conditions of 4 ° C., 3,000 rpm, and 5 minutes, and the supernatant was removed, followed by washing with a medium used for fermentation (without a neutralizing agent). The bacterial cells thus obtained were inoculated into a 15 mL medium containing 100 to 115 g / L glucose in a baffled 100 mL Erlenmeyer flask and fermented by a table culture apparatus manufactured by TAITEC at an amplitude of 35 mm and 80 rpm. . The amount of cells to be inoculated for fermentation by the preculture was planted so that OD600 would be 10 unless otherwise specified. Unless otherwise specified, calcium carbonate was added to the medium to a concentration of 4.5% (w / v) as a neutralizing agent. The temperature at the time of fermentation was 25 degreeC, 30 degreeC, or 35 degreeC. In addition to glucose at the above concentration (100 to 115 g / L), 10 g / L yeast extract and 20 g / L peptone are added to the medium, and the medium having this composition is hereinafter referred to as YPD10 medium.
 全糖換算率(%)とは、培地中のL-乳酸重量を培地中の初期グルコース重量で除し、さらに100を乗じた値である。L-乳酸の光学純度(%)は、L-乳酸濃度の値を、L-乳酸濃度にD-乳酸濃度を加えた値で除し、さらに100を乗じた値である。 The total sugar conversion rate (%) is a value obtained by dividing the weight of L-lactic acid in the medium by the initial glucose weight in the medium and multiplying by 100. The optical purity (%) of L-lactic acid is a value obtained by dividing the value of L-lactic acid concentration by the value obtained by adding D-lactic acid concentration to L-lactic acid concentration and multiplying by 100.
 NBRC0988株、Cu8402g株、およびPj0202株について、発酵開始24時間後の培地中のグルコース濃度、エタノール濃度、L-乳酸濃度、D-乳酸濃度、他の有機酸濃度を調べた。発酵温度を30℃とした場合の結果を表2に記載する。 NBRC0988 strain, Cu8402g strain, and Pj0202 strain were examined for glucose concentration, ethanol concentration, L-lactic acid concentration, D-lactic acid concentration, and other organic acid concentrations in the medium 24 hours after the start of fermentation. Table 2 shows the results when the fermentation temperature was 30 ° C.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上の結果より、NBRC0988株に比べ、CuPDC1遺伝子が完全に破壊されているCu8402g株は、L-乳酸およびエタノールをほとんど全く製造せず、ピルビン酸およびD-乳酸を多量に蓄積することがわかった。 From the above results, it was found that the Cu8402g strain in which the CuPDC1 gene was completely disrupted produced almost no L-lactic acid and ethanol, and accumulated a large amount of pyruvic acid and D-lactic acid, as compared with the NBRC0988 strain. .
 表2の結果から、まず、野生株であるNBRC0988株はグルコースをほとんど全て消費し、エタノールを製造した。また、NBRC0988株ではL-乳酸の濃度は低下していた。Pj0202株は、破壊されていないCuPDC1遺伝子とL-LDH遺伝子の両方を有している株であり、当該菌株はエタノールとL-乳酸を両方製造した。グルコースからのL-乳酸の製造効率を向上させるためには、エタノールの製造量を低下させる、例えばCuPDC1遺伝子を全て欠損させるなどの手段が有効であると考えられた。 From the results shown in Table 2, first, the wild strain NBRC0988 strain consumed almost all glucose and produced ethanol. In the NBRC0988 strain, the concentration of L-lactic acid was decreased. The Pj0202 strain is a strain having both the undisrupted CuPDC1 gene and the L-LDH gene, and the strain produced both ethanol and L-lactic acid. In order to improve the production efficiency of L-lactic acid from glucose, it was considered effective to reduce the production amount of ethanol, for example, to delete all of the CuPDC1 gene.
 Pj0404株とPj0957株について、発酵開始4時間後から13時間後までの培地中のL-乳酸濃度を1時間ごとに測定した。発酵温度については、Pj0404株は30℃の1条件、Pj0957株では30℃と35℃の2条件とした。各データについて1次の近似式も求めた。この結果を図11に記載した。 For the Pj0404 strain and the Pj0957 strain, the L-lactic acid concentration in the medium from 4 hours to 13 hours after the start of fermentation was measured every hour. Regarding the fermentation temperature, the Pj0404 strain was set to one condition of 30 ° C, and the Pj0957 strain was set to two conditions of 30 ° C and 35 ° C. A first-order approximation formula was also obtained for each data. The results are shown in FIG.
 単位時間あたりのL-乳酸製造速度については、Pj0404株(30℃)で3.41g/L/時間(r2乗値=0.998)、Pj0957株(30℃)で4.13g/L/時間(r2乗値=0.997)、Pj0957株(35℃)で4.80g/L/時間(r2乗値=0.998)であった。このことから、L-LDH遺伝子のコピー数がPj0404株よりも高いPj0957株の方が、速く乳酸を製造する能力を有していることがわかった。また、Pj0957株の発酵速度を高めるためには、30℃よりも35℃の方を選択することがよいと考えられた。 Regarding the production rate of L-lactic acid per unit time, 3.41 g / L / hour (r2 value = 0.998) for Pj0404 strain (30 ° C.) and 4.13 g / L / hour for Pj0957 strain (30 ° C.). It was 4.80 g / L / hour (r-square value = 0.998) for the Pj0957 strain (35 ° C.). From this, it was found that the Pj0957 strain having a higher L-LDH gene copy number than the Pj0404 strain has the ability to produce lactic acid faster. In addition, in order to increase the fermentation rate of the Pj0957 strain, it was considered that 35 ° C. was better selected than 30 ° C.
 Pj0404株とPj0957株について、発酵開始24時間後の培地中のグルコース濃度、エタノール濃度、L-乳酸濃度、D-乳酸濃度、他種有機酸濃度を調べた。発酵温度については、Pj0404株は30℃の1条件、Pj0957株では30℃と35℃の2条件とした。この結果を表3に記載する。 For the Pj0404 and Pj0957 strains, the glucose concentration, ethanol concentration, L-lactic acid concentration, D-lactic acid concentration, and other organic acid concentrations in the medium 24 hours after the start of fermentation were examined. Regarding the fermentation temperature, the Pj0404 strain was set to one condition of 30 ° C, and the Pj0957 strain was set to two conditions of 30 ° C and 35 ° C. The results are listed in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 発酵開始24時間後においては全ての試料で、中和剤として加えた4.5%(w/v)の炭酸カルシウムが粉末状態で残っていた。また、Pj0404株はPj0957株よりも乳酸製造量が低かった。このことからL-LDH遺伝子のコピー数が高いほど、乳酸製造が速いことがわかった。 In 24 hours after the start of fermentation, 4.5% (w / v) calcium carbonate added as a neutralizing agent remained in a powder state in all samples. In addition, the amount of lactic acid produced by the Pj0404 strain was lower than that of the Pj0957 strain. This indicates that the higher the L-LDH gene copy number, the faster the lactic acid production.
 発酵開始24時間後においては、Pj0957株を35℃で培養した方が、Pj0957株を30℃で培養するよりも乳酸製造量が高かった。このことから発酵温度は30℃よりも35℃の方がL-乳酸の製造に好ましいと考えられた。 24 hours after the start of fermentation, the amount of lactic acid produced was higher when the Pj0957 strain was cultured at 35 ° C than when the Pj0957 strain was cultured at 30 ° C. From this, it was considered that the fermentation temperature is preferably 35 ° C rather than 30 ° C for the production of L-lactic acid.
 Pj0957株について、中和剤を加えた条件および加えない条件でそれぞれ発酵を行った。発酵温度は35℃とした。表4に33時間後の培地中のグルコース濃度、エタノール濃度、L-乳酸濃度、D-乳酸濃度、他種有機酸濃度を調べた結果を記載する。 The Pj0957 strain was fermented under the conditions with and without the neutralizer. The fermentation temperature was 35 ° C. Table 4 shows the results of examining the glucose concentration, ethanol concentration, L-lactic acid concentration, D-lactic acid concentration, and other organic acid concentrations in the medium after 33 hours.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 中和剤を加えない場合には、中和剤を加えた場合に比べ、乳酸製造量が少なかった。これは培地の酸度が高いことが原因であると考えられる。このことから中和剤を添加することは、効率的な乳酸製造に有効であると考えられた。 When the neutralizer was not added, the amount of lactic acid produced was smaller than when the neutralizer was added. This is considered to be caused by the high acidity of the medium. From this, it was thought that adding a neutralizing agent was effective for efficient lactic acid production.
 CuPDC1遺伝子を完全に破壊し、さらにL-LDH遺伝子を導入したPj0957株は、108.7g/Lのグルコースを含む培地から、全糖換算率95.10%という高効率でL-乳酸を短時間のうちに製造した。 The Pj0957 strain in which the CuPDC1 gene has been completely disrupted and the L-LDH gene has been introduced is capable of rapidly removing L-lactic acid from a medium containing 108.7 g / L glucose at a high efficiency of 95.10% in terms of total sugar. Manufactured out of.
 Pj0957株について、初期ODを10とし、発酵温度を25℃として、4.5%(w/v)炭酸カルシウムを添加したYPD10培地(100g/Lグルコースを含有)中のL-乳酸濃度を、発酵開始4時間後から12時間後まで2時間ごとに測定した。その1次の近似式を求め、単位時間あたりのL-乳酸製造速度を算出したところ、3.0g/L/hであった。さらに、発酵開始33時間後のL-乳酸濃度を調べたところ、培地中のL-乳酸濃度は95g/Lであった。25℃の条件では、30℃および35℃の条件に比べてL-乳酸製造速度が劣るものの、相当量のL-乳酸が製造された。よって、Pj0957株は、25℃から35℃という幅広い温度でL-乳酸を高効率で生産できることが明らかとなった。 For the Pj0957 strain, the initial OD was 10, the fermentation temperature was 25 ° C., and the concentration of L-lactic acid in YPD10 medium (containing 100 g / L glucose) supplemented with 4.5% (w / v) calcium carbonate was determined. Measurements were made every 2 hours from 4 hours to 12 hours after the start. The first-order approximate expression was obtained, and the L-lactic acid production rate per unit time was calculated to be 3.0 g / L / h. Further, when the L-lactic acid concentration at 33 hours after the start of fermentation was examined, the L-lactic acid concentration in the medium was 95 g / L. Although the L-lactic acid production rate was inferior to the conditions of 25 ° C. and 30 ° C. and 35 ° C., a considerable amount of L-lactic acid was produced. Therefore, it has been clarified that the Pj0957 strain can produce L-lactic acid with high efficiency at a wide temperature range of 25 ° C to 35 ° C.
 発酵に供する菌体量の検討を行った。発酵開始時のOD600を2、5、あるいは10としてPj0404株とPj0957株を接種し、発酵開始42.5時間後の培地中のグルコース濃度、L-乳酸濃度を調べた。糖濃度が100g/Lとした培地を使用した。液量は15mLとした。 The amount of cells used for fermentation was examined. The Pj0404 strain and the Pj0957 strain were inoculated at an OD600 of 2, 5, or 10 at the start of fermentation, and the glucose concentration and L-lactic acid concentration in the medium 42.5 hours after the start of fermentation were examined. A medium with a sugar concentration of 100 g / L was used. The liquid volume was 15 mL.
 Pj0404株についてOD2の条件では88.2g/L、OD5の条件では92.0g/L、OD10の条件では93.0g/L、Pj0957株についてOD2の条件では93.8g/L、OD5の条件では92.2g/L、OD10の条件では92.8g/Lとなった。このことから、初期ODが10よりも低い場合でも、発酵時間を長くすることにより、OD10の条件とほぼ同程度の効率でL-乳酸を製造させることが可能となることが示された。 For the Pj0404 strain, the OD2 condition is 88.2 g / L, the OD5 condition is 92.0 g / L, the OD10 condition is 93.0 g / L, the Pj0957 strain is the OD2 condition, 93.8 g / L, and the OD5 condition is It became 92.8 g / L on condition of 92.2 g / L and OD10. This indicates that even when the initial OD is lower than 10, L-lactic acid can be produced with the efficiency almost the same as the OD10 condition by increasing the fermentation time.
実施例5:ジャーファーメンターを利用した発酵試験
 以下に示すとおり、Pj0957株の乳酸製造能の評価を実施した。培地中のエタノール濃度はGCあるいはHPLCを用いて、培地中のグルコース濃度およびL-乳酸濃度はワイエスアイジャパン社製バイオケミストリーアナライザー(BA)を用いて測定した。
光学異性体の判別には、J.K.インターナショナル社製のF-キットD-乳酸/L-乳酸を用い、方法は添付のプロトコールに従った。その他の各種有機酸製造量はHPLCを用いて行った。分析に供した試料には、培養液を0.22μmのフィルターで事前に濾過したものを用いた。
Example 5: Fermentation test using a jar fermenter As shown below, the lactic acid-producing ability of the Pj0957 strain was evaluated. The ethanol concentration in the medium was measured using GC or HPLC, and the glucose concentration and L-lactic acid concentration in the medium were measured using Biochemistry Analyzer (BA) manufactured by Wyeth Japan.
For the discrimination of optical isomers, J. et al. K. Using F-kit D-lactic acid / L-lactic acid manufactured by International Co., Ltd., the method followed the attached protocol. Other various organic acid production amounts were performed using HPLC. As a sample subjected to analysis, a culture solution previously filtered through a 0.22 μm filter was used.
 YPD寒天培地で2~3日間30℃で培養した酵母菌体から白金耳で1回かきとったペレット状の菌株を、15mLのチューブに入れた3mLのYPD液体培地に接種し、TAITEC社製卓上培養装置により振幅35mm、130rpm、30℃で6~15時間、前前々培養を行った。次に、前前培養として、培地として50mLのYPD液体培地を用い、前前々培養の菌体を、OD600が約0.1になるよう新たな培地に接種したうえで130rpm、30℃で通常12~18時間培養し、OD600が10~25を示す対数増殖期または定常期まで培養した。なお、この培養では坂口フラスコを用いた。発酵に供するための菌体を調製する前培養での条件としては、5L容量のジャーファーメンター(卓上型培養装置 Bioneer-C 5L(S)、丸菱バイオエンジ社製)にてYPD培地2.5Lに前々培養の菌体を全量接種し、400rpm、30℃、1vvmにて21~27時間培養した。この際、OD600は通常10~25を示した。そして、4℃、3,000rpm、5分間の条件で遠心分離によって集菌し、さらに上清を除した後、発酵に用いる培地(中和剤は含まない)で洗浄した。こうして得られた菌体を、100~120g/Lのグルコースを含む液量2Lの培地に接種し、5L容量のジャーファーメンター(卓上型培養装置 Bioneer-C 5L(S)、丸菱バイオエンジ社製)にて発酵させた。なお、前培養により得た菌体を発酵のために接種する量は、OD600が10となるように植えた。本発酵試験にはPj0957株を使用した。撹拌速度は250rpm、温度は35℃、通気量は1vvmとした。中和条件としては、発酵開始時に5%(w/v)の濃度になるように炭酸カルシウムを培地に加えた場合と、2.5Nの水酸化ナトリウムで発酵中のpHが5.5となるようにフィードバック制御するようにプログラムを組んだ場合を検討した。炭酸カルシウムを用いた際の結果は1回のみの試行から得た値であり、水酸化ナトリウムを用いた際の結果は独立に2回の試行から得た値の平均である。また、水酸化ナトリウムを使用した場合、発酵液の容量が大きく変化することから、添加された水酸化ナトリウムの量から培地量を測定した。本検討においては、HPLCやBAなどの分析で得られる値は濃度であることから、その値に培地量を乗じた値、すなわち物質の総重量を求めた。 Inoculate a 3 mL YPD liquid medium in a 15 mL tube from a yeast cell cultured on a YPD agar medium for 2 to 3 days at 30 ° C. with a platinum loop. Pre-culture was performed for 6 to 15 hours at an amplitude of 35 mm, 130 rpm, and 30 ° C. using a culture apparatus. Next, as a pre-culture, 50 mL of YPD liquid medium is used as a medium, and the cells of the pre-pre-culture are inoculated into a new medium so that the OD600 is about 0.1, and usually at 130 rpm and 30 ° C. The cells were cultured for 12 to 18 hours and cultured until the logarithmic growth phase or the stationary phase where OD600 was 10 to 25. In this culture, a Sakaguchi flask was used. The pre-culture conditions for preparing the cells to be used for fermentation were as follows: YPD medium 2 in a 5 L jar fermenter (desktop culture device, Bioneer-C 5 L (S), manufactured by Maruhishi Bioengineering). 5 L was inoculated with the entire amount of the cells previously cultured and cultured at 400 rpm, 30 ° C., 1 vvm for 21 to 27 hours. At this time, the OD600 was usually 10-25. Then, the cells were collected by centrifugation under conditions of 4 ° C. and 3,000 rpm for 5 minutes, and after removing the supernatant, the cells were washed with a medium used for fermentation (not including a neutralizing agent). The bacterial cells thus obtained were inoculated into a 2 L medium containing 100 to 120 g / L glucose, and a 5 L capacity jar fermenter (desktop culture device, Bioneer-C 5 L (S), Maruhishi Bioengineering Co., Ltd. Made). In addition, it planted so that the quantity which inoculates the microbial cell obtained by preculture for fermentation may be set to OD600.10. Pj0957 strain was used for this fermentation test. The stirring speed was 250 rpm, the temperature was 35 ° C., and the air flow rate was 1 vvm. As neutralization conditions, when calcium carbonate is added to the medium so that the concentration becomes 5% (w / v) at the start of fermentation, the pH during fermentation becomes 5.5 with 2.5N sodium hydroxide. The case where the program was built to control feedback was examined. The results when using calcium carbonate are the values obtained from only one trial, and the results when using sodium hydroxide are the average of the values obtained from two independent trials. In addition, when sodium hydroxide was used, the volume of the fermentation broth changed greatly, so the amount of medium was measured from the amount of sodium hydroxide added. In this study, since the value obtained by analysis such as HPLC or BA is the concentration, a value obtained by multiplying the value by the amount of medium, that is, the total weight of the substance was obtained.
 全糖換算率(%)とは、培地中のL-乳酸重量を培地中の初期グルコース重量で除し、さらに100を乗じた値である。L-乳酸の光学純度(%)は、L-乳酸濃度の値を、L-乳酸濃度にD-乳酸濃度を加えた値で除し、さらに100を乗じた値である。 The total sugar conversion rate (%) is a value obtained by dividing the weight of L-lactic acid in the medium by the initial glucose weight in the medium and multiplying by 100. The optical purity (%) of L-lactic acid is a value obtained by dividing the value of L-lactic acid concentration by the value obtained by adding D-lactic acid concentration to L-lactic acid concentration and multiplying by 100.
 中和剤として炭酸カルシウムを用いた試行において、発酵開始後24時間までに複数回のサンプリングを実施した。培地中のグルコース量とL-乳酸量の経時変化を示す図を図12に示した。 In a trial using calcium carbonate as a neutralizing agent, sampling was performed a plurality of times by 24 hours after the start of fermentation. FIG. 12 shows the change over time in the amount of glucose and the amount of L-lactic acid in the medium.
 中和剤として水酸化ナトリウムを用いた試行において、発酵開始後24時間までに複数回のサンプリングを実施した。培地中のグルコース量とL-乳酸量の経時変化を示す図を図13Aに示した(n=2)。 In a trial using sodium hydroxide as a neutralizing agent, sampling was performed a plurality of times by 24 hours after the start of fermentation. FIG. 13A shows the change over time in the amount of glucose and the amount of L-lactic acid in the medium (n = 2).
 発酵開始後24時間目の培地中のグルコース量、エタノール量、L-乳酸量、D-乳酸量、他の有機酸量、pHを調べた。その結果を表5に記載する(n=2)。なお、24時間後には、添加した炭酸カルシウムの粉末(固形物)は全く見られなかった。 The amount of glucose, the amount of ethanol, the amount of L-lactic acid, the amount of D-lactic acid, the amount of other organic acids, and the pH in the medium 24 hours after the start of fermentation were examined. The results are listed in Table 5 (n = 2). After 24 hours, the added calcium carbonate powder (solid matter) was not observed at all.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 炭酸カルシウムを用いた条件と水酸化ナトリウムを用いた条件では、24時間後のL-乳酸の生成量には大きな違いはなかった。 There was no significant difference in the amount of L-lactic acid produced after 24 hours between the conditions using calcium carbonate and the conditions using sodium hydroxide.
 炭酸カルシウムを5%(w/v)で加えた条件では、乳酸の濃度が約80~100g/Lまで高まると、30℃や35℃では乳酸カルシウムが析出し、さらには培地がゲル化した。菌体と乳酸塩が混合された状態でゲル化することから、当該事象によって、L-乳酸を精製する工程が煩雑になることが予想される。しかし、水酸化ナトリウムを使用する場合は、本現象を回避できると考えられることから、L-乳酸の精製方法によっては、水酸化ナトリウムを利用できることは、L-乳酸の製造工程において好ましい性質となりうる。 Under the condition where calcium carbonate was added at 5% (w / v), when the concentration of lactic acid increased to about 80 to 100 g / L, calcium lactate precipitated at 30 ° C. or 35 ° C., and the medium gelled. Since the gelation occurs in a state where the bacterial cells and lactate are mixed, it is expected that the process of purifying L-lactic acid will be complicated due to this event. However, when sodium hydroxide is used, it is considered that this phenomenon can be avoided. Therefore, depending on the purification method of L-lactic acid, the availability of sodium hydroxide can be a favorable property in the production process of L-lactic acid. .
 発酵開始後24時間目においては、炭酸カルシウムよりも水酸化ナトリウムを用いた方が、L-乳酸の光学純度が高かった。 At 24 hours after the start of fermentation, the optical purity of L-lactic acid was higher with sodium hydroxide than with calcium carbonate.
 発酵開始後24時間目においては、炭酸カルシウムよりも水酸化ナトリウムを用いた方が、副産物である酢酸量が低かった。 At 24 hours after the start of fermentation, the amount of acetic acid as a by-product was lower when sodium hydroxide was used than when calcium carbonate was used.
 さらに、2回の独立した実験の結果を示す図13Aに加え、3回の独立した実験の結果を図13Bに示す。図13Bに示される実験データによれば、培養24時間後の全糖換算率は90.4±8.1%である。 Furthermore, in addition to FIG. 13A showing the results of two independent experiments, the results of three independent experiments are shown in FIG. 13B. According to the experimental data shown in FIG. 13B, the total sugar conversion rate after 24 hours of culture is 90.4 ± 8.1%.
実施例6:スクロースを単一糖源とした培地におけるPj0957株のL-乳酸製造能の評価
 以下に示すとおり、Pj0957株の乳酸製造能の評価を実施した。培地中のL-乳酸濃度はワイエスアイジャパン社製バイオケミストリーアナライザー(BA)を用いて測定した。光学異性体の判別には、J.K.インターナショナル社製のF-キットD-乳酸/L-乳酸を用い、方法は添付のプロトコールに従った。その他の各種有機酸製造量はHPLCを用いて行った。分析に供した試料には、培養液を0.22μmのフィルターで事前に濾過したものを用いた。各種データは、少なくとも3回、独立に試行した結果の平均値である。
Example 6: Evaluation of L-lactic acid-producing ability of Pj0957 strain in a medium using sucrose as a single sugar source The lactic acid-producing ability of Pj0957 strain was evaluated as described below. The L-lactic acid concentration in the medium was measured using a biochemistry analyzer (BA) manufactured by Wyeth Japan. For the discrimination of optical isomers, J. et al. K. Using F-kit D-lactic acid / L-lactic acid manufactured by International Co., Ltd., the method followed the attached protocol. Other various organic acid production amounts were performed using HPLC. As a sample subjected to analysis, a culture solution previously filtered through a 0.22 μm filter was used. Each type of data is an average of the results of independent trials at least three times.
 YPD寒天培地で2~3日間30℃で培養した酵母菌体から白金耳で1回かきとったペレット状の菌株を、15mLのチューブに入れた3mLのYPD液体培地に接種し、TAITEC社製卓上培養装置により振幅35mm、130rpm、30℃で20~30時間、前々培養を行った。これをOD600が約0.1になるように、坂口フラスコに入った100mLのYPD培地に接種し、TAITEC社製卓上培養装置により振幅35mm、130rpm、30℃で通常15~22時間、前培養を行った。そして4℃、3,000rpm、5分間の条件で遠心分離によって集菌し、さらに上清を除した後、発酵に用いる培地(中和剤は含まない)で洗浄した。 Inoculate a 3 mL YPD liquid medium in a 15 mL tube from a yeast cell cultured on a YPD agar medium for 2 to 3 days at 30 ° C. with a platinum loop. Pre-culture was performed for 20 to 30 hours at an amplitude of 35 mm, 130 rpm, and 30 ° C. using a culture apparatus. This is inoculated into 100 mL of YPD medium in a Sakaguchi flask so that the OD600 is about 0.1, and precultured at a 35 mm amplitude, 130 rpm, 30 ° C. for 15 to 22 hours with a table culture apparatus manufactured by TAITEC. went. Then, the cells were collected by centrifugation under conditions of 4 ° C., 3,000 rpm, and 5 minutes, and the supernatant was removed, followed by washing with a medium used for fermentation (without a neutralizing agent).
 こうして得られた菌体を、バッフル付きの100mL三角フラスコに入った100g/Lのスクロースを含む液量15mLの培地に接種し、TAITEC社製卓上培養装置により振幅35mm、80rpm、35℃で発酵させた。前培養により得た菌体を発酵のために接種する量は、特に記述がない場合、OD600が10となるように植えた。特記しない限り、中和剤として4.5%(w/v)の濃度になるように炭酸カルシウムを培地に加えた。発酵時の温度は30℃、あるいは35℃とした。培地には上記濃度のスクロースの他に10g/Lの酵母エキスと20g/Lのペプトンを加えており、この組成の培地を以降はYPSuc10培地と記載する。 The bacterial cells thus obtained were inoculated into a 15 mL medium containing 100 g / L sucrose in a 100 mL Erlenmeyer flask with baffles, and fermented at 35 mm, 80 rpm, and 35 ° C. using a table-top culture apparatus manufactured by TAITEC. It was. The amount of cells to be inoculated for fermentation by the preculture was planted so that OD600 would be 10 unless otherwise specified. Unless otherwise specified, calcium carbonate was added to the medium to a concentration of 4.5% (w / v) as a neutralizing agent. The temperature during fermentation was 30 ° C. or 35 ° C. In addition to sucrose at the above concentration, 10 g / L yeast extract and 20 g / L peptone are added to the medium, and the medium having this composition is hereinafter referred to as YPsuc10 medium.
 全糖換算率(%)を、培地中のL-乳酸重量を培地中の初期スクロース重量で除し、さらに(342/360)と100を乗じた値である。L-乳酸の光学純度(%)は、L-乳酸濃度の値を、L-乳酸濃度にD-乳酸濃度を加えた値で除し、さらに100を乗じた値である。 The total sugar conversion rate (%) is a value obtained by dividing the L-lactic acid weight in the medium by the initial sucrose weight in the medium, and further multiplying by (342/360) and 100. The optical purity (%) of L-lactic acid is a value obtained by dividing the value of L-lactic acid concentration by the value obtained by adding D-lactic acid concentration to L-lactic acid concentration and multiplying by 100.
 その結果、33時間後のL-乳酸製造量について、その全糖換算率は94.8±3.5%であり、L-乳酸の光学純度は99.9%を超えていた。HPLCでエタノール濃度の定量を行ったところ、エタノール濃度は検出限界未満(0.01g/L未満)であった。 As a result, regarding the amount of L-lactic acid produced after 33 hours, the total sugar conversion rate was 94.8 ± 3.5%, and the optical purity of L-lactic acid exceeded 99.9%. When the ethanol concentration was quantified by HPLC, the ethanol concentration was less than the detection limit (less than 0.01 g / L).

Claims (10)

  1.  乳酸脱水素酵素の活性を有するポリペプチドをコードしている遺伝子の発現を可能にするプロモーター配列が機能的に結合した該遺伝子の少なくとも1コピーにより形質転換されてなる、キャンディダ・ユティリスの酵母菌株。 Candida utilis yeast strain transformed with at least one copy of the gene operably linked to a promoter sequence enabling expression of a gene encoding a polypeptide having lactate dehydrogenase activity .
  2.  ピルビン酸脱炭酸酵素の活性を有するポリペプチドをコードしている内因性遺伝子が破壊されている、請求項1に記載の酵母菌株。 The yeast strain according to claim 1, wherein an endogenous gene encoding a polypeptide having pyruvate decarboxylase activity is disrupted.
  3.  ピルビン酸脱炭酸酵素の活性を有するポリペプチドをコードしている内因性遺伝子が、選択マーカー配列の挿入による該遺伝子の欠失によって破壊されている、請求項1に記載の酵母菌株。 The yeast strain according to claim 1, wherein an endogenous gene encoding a polypeptide having pyruvate decarboxylase activity is destroyed by deletion of the gene by insertion of a selection marker sequence.
  4.  プロモーター配列および該プロモーター配列の制御下にある乳酸脱水素酵素の活性を有するポリペプチドをコードしているDNA配列を含有する発現ベクターによって形質転換されてなる、請求項1~3のいずれか一項に記載の酵母菌株。 The transformant according to any one of claims 1 to 3, which is transformed with an expression vector comprising a promoter sequence and a DNA sequence encoding a polypeptide having lactate dehydrogenase activity under the control of the promoter sequence. A yeast strain according to 1.
  5.  乳酸脱水素酵素の活性を有するポリペプチドが、
    (a)配列番号37で表されるアミノ酸配列を含むポリペプチド、または
    (b)配列番号37で表されるアミノ酸配列において、1もしくは数個のアミノ酸が欠失、置換、付加もしくは挿入されたアミノ酸配列を含み、かつ乳酸脱水素酵素の活性を有するポリペプチド
    である、請求項1~4のいずれか一項に記載の酵母菌株。
    A polypeptide having lactate dehydrogenase activity is
    (A) a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 37, or (b) an amino acid in which one or several amino acids are deleted, substituted, added or inserted in the amino acid sequence represented by SEQ ID NO: 37 The yeast strain according to any one of claims 1 to 4, which is a polypeptide comprising a sequence and having a lactate dehydrogenase activity.
  6.  乳酸脱水素酵素の活性を有するポリペプチドをコードしている遺伝子が、
    (a)配列番号36のうち、13番目のaから1,011番目のaまでのヌクレオチド配列、または
    (b)配列番号36のうち、13番目のaから1,011番目のaまでのヌクレオチド配列と85%以上の相同性があり、かつ乳酸脱水素酵素の活性を有するポリペプチドをコードするヌクレオチド配列、または
    (c)配列番号36のうち、13番目のaから1,011番目のaまでのヌクレオチド配列もしくはその相補配列とストリンジェントな条件下でハイブリダイズし、かつ乳酸脱水素酵素の活性を有するポリペプチドをコードするヌクレオチド配列
    を含むものである、請求項1~4のいずれか一項に記載の酵母菌株。
    A gene encoding a polypeptide having lactate dehydrogenase activity is
    (A) Nucleotide sequence from 13th a to 1,011st a in SEQ ID NO: 36, or (b) Nucleotide sequence from 13th a to 1,011st a in SEQ ID NO: 36 A nucleotide sequence encoding a polypeptide having a homology of 85% or more and having lactate dehydrogenase activity, or (c) from SEQ ID NO: 36 from the 13th a to the 1,011st a The nucleotide sequence according to any one of claims 1 to 4, which comprises a nucleotide sequence that hybridizes with a nucleotide sequence or a complementary sequence thereof under stringent conditions and encodes a polypeptide having lactate dehydrogenase activity. Yeast strain.
  7.  ピルビン酸脱炭酸酵素の活性を有するポリペプチドをコードしている内因性遺伝子が、配列番号64で表されるアミノ酸配列をコードするヌクレオチド配列、または配列番号63で表されるヌクレオチド配列を含むものである、請求項2~4のいずれか一項に記載の酵母菌株。 An endogenous gene encoding a polypeptide having pyruvate decarboxylase activity comprises a nucleotide sequence encoding an amino acid sequence represented by SEQ ID NO: 64 or a nucleotide sequence represented by SEQ ID NO: 63; The yeast strain according to any one of claims 2 to 4.
  8.  プロモーター配列が、ピルビン酸脱炭酸酵素をコードする内因性遺伝子のプロモーター部分であるか、または配列番号3で表されるヌクレオチド配列を含むものである、請求項1~4のいずれか一項に記載の酵母菌株。 The yeast according to any one of claims 1 to 4, wherein the promoter sequence is a promoter portion of an endogenous gene encoding pyruvate decarboxylase or comprises a nucleotide sequence represented by SEQ ID NO: 3. Strain.
  9.  請求項1~8のいずれか一項に記載の酵母菌株を培養することを含んでなる、乳酸を製造する方法。 A method for producing lactic acid, comprising culturing the yeast strain according to any one of claims 1 to 8.
  10.  酵母菌株の培養において、発酵培養初期の菌体のOD600が1~30である、請求項9に記載の方法。 10. The method according to claim 9, wherein the OD600 of the microbial cell at the initial stage of fermentation culture is 1 to 30 in culturing a yeast strain.
PCT/JP2010/052753 2008-08-25 2010-02-23 High-efficiency lactic acid manufacturing method using candida utilis WO2010095751A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/202,820 US20120058529A1 (en) 2008-08-25 2010-02-23 Method for highly efficient production of lactic acid using candida utilis
AU2010216617A AU2010216617A1 (en) 2009-02-23 2010-02-23 High-efficiency lactic acid manufacturing method using Candida utilis
CA2761724A CA2761724A1 (en) 2009-02-23 2010-02-23 Method for highly efficient production of lactic acid using candida utilis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009039820A JP2010075171A (en) 2008-08-25 2009-02-23 High-efficiency method for producing lactic acid by candida utilis
JP2009-039820 2009-02-23

Publications (1)

Publication Number Publication Date
WO2010095751A1 true WO2010095751A1 (en) 2010-08-26

Family

ID=42634780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052753 WO2010095751A1 (en) 2008-08-25 2010-02-23 High-efficiency lactic acid manufacturing method using candida utilis

Country Status (3)

Country Link
KR (1) KR20110117725A (en)
CA (1) CA2761724A1 (en)
WO (1) WO2010095751A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183837A (en) * 2013-02-25 2014-10-02 Kyoto Univ Method for producing pyruvic acid from alginic acid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102144997B1 (en) * 2014-02-14 2020-08-14 삼성전자주식회사 Lactate dehydrogenase mutant, polynucleotide coding the mutant, yeast cell having the polynucleotide, method of the mutant, and method of producing the lactate using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005518197A (en) * 2001-11-23 2005-06-23 カーギル ダウ エルエルシー Methods and materials for the production of organic products in cells of Candida spp.
JP2007111054A (en) * 2000-11-22 2007-05-10 Cargill Dow Llc Methods and materials for production of organic products
JP2009268407A (en) * 2008-05-07 2009-11-19 Kirin Holdings Co Ltd Highly efficient method for producing lactic acid by candida boidinii

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007111054A (en) * 2000-11-22 2007-05-10 Cargill Dow Llc Methods and materials for production of organic products
JP2005518197A (en) * 2001-11-23 2005-06-23 カーギル ダウ エルエルシー Methods and materials for the production of organic products in cells of Candida spp.
JP2009268407A (en) * 2008-05-07 2009-11-19 Kirin Holdings Co Ltd Highly efficient method for producing lactic acid by candida boidinii

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Dai 60 Kai Abstracts of the Annual Meeting of the Society for Biotechnology, Japan, 2008", vol. 60TH, article FUMI OSAWA ET AL.: "Nyusan Koseisansei Candida boidinii no Bunsi Ikushu", pages: 97 *
"Dai 61 Kai Abstracts of the Annual Meeting of the Society for Biotechnology, Japan, 25 August 2009 (25.08.2009)", vol. 61TH, article SHIGEHITO IKUSHIMA ET AL.: "L-Nyusan Koseisansei Torula Kobo Candida utilis no Bunshi Ikushu", pages: 79 *
IKUSHIMA S. ET AL.: "Genetic engineering of Candida utilis yeastfor efficient production of L-lactic acid", BIOSCI. BIOTECHNOL. BIOCHEM., vol. 73, 7 August 2009 (2009-08-07), pages 1818 - 24, XP008151373, DOI: doi:10.1271/bbb.90186 *
OSAWA F. ET AL.: "Efficient production of L-lactic acid byCrabtree-negative yeast Candida boidinii", YEAST, vol. 26, September 2009 (2009-09-01), pages 485 - 96 *
SHIGEHITO IKUSHIMA ET AL.: "Nyusan Koseisansei Torula Kobo Candida utilis no Bunshi Ikushu", JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY 2009 NEN TAIKAI KOEN YOSHISHU, March 2009 (2009-03-01), pages 99 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183837A (en) * 2013-02-25 2014-10-02 Kyoto Univ Method for producing pyruvic acid from alginic acid

Also Published As

Publication number Publication date
KR20110117725A (en) 2011-10-27
CA2761724A1 (en) 2010-08-26

Similar Documents

Publication Publication Date Title
EP1012298B1 (en) Yeast strains for the production of lactic acid
US10443078B2 (en) Pichia kudriavzevii NG7 microorganism and uses thereof
JP4963488B2 (en) Mutant yeast and substance production method using the same
JP2022025108A (en) Fungal production of fdca
US20070031950A1 (en) Production of D-lactic acid with yeast
CN107406821B (en) Mutant host cells for the production of 3-hydroxypropionic acid
CA2631036A1 (en) Lactic acid-producing yeast cells having nonfunctional l-or d-lactate: ferricytochrome c oxidoreductase gene
JP2010075171A (en) High-efficiency method for producing lactic acid by candida utilis
KR101616171B1 (en) Use of monascus in organic acid production
WO2010140602A1 (en) Polypeptide having d-lactate dehydrogenase activity, polynucleotide encoding the polypeptide, and process for production of d-lactic acid
CN112204146A (en) Acid-tolerant yeast having inhibited ethanol production pathway and method for producing lactic acid using the same
KR20190130134A (en) FDCA-decarboxylated monooxygenase-deficient host cells for FDCA preparation
JPWO2005085415A1 (en) Novel transformant and method for producing polyester using the same
WO2010095750A1 (en) Manufacturing method for substances from candida utilis that can use xylose as carbon source
WO2010095751A1 (en) High-efficiency lactic acid manufacturing method using candida utilis
JP4806904B2 (en) Lactic acid production method
JP2009268407A (en) Highly efficient method for producing lactic acid by candida boidinii
JP2006230329A (en) Acetic acid bacterium having reinforced acetic acid fermentation ability, and method for producing vinegar using the acetic acid bacterium
JP2012235714A (en) Method for producing useful substance by using candida utilis
KR20200009010A (en) Organic compound manufacturing method
AU2010216617A1 (en) High-efficiency lactic acid manufacturing method using Candida utilis
JP2011120508A (en) Method for producing succinic acid
Young cerevisiae for Enhanced triterpene Biosynthesis
MXPA00002436A (en) Yeast strains for the production of lactic acid
CN101370932A (en) Lactic acid-producing yeast cells having nonfunctional L-or D-lactate: ferricytochrome C oxidoreductase gene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117022106

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010216617

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2010216617

Country of ref document: AU

Date of ref document: 20100223

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13202820

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2761724

Country of ref document: CA

122 Ep: pct application non-entry in european phase

Ref document number: 10743874

Country of ref document: EP

Kind code of ref document: A1