TWI725652B - 有機發光二極體及包含其之有機發光裝置 - Google Patents

有機發光二極體及包含其之有機發光裝置 Download PDF

Info

Publication number
TWI725652B
TWI725652B TW108144657A TW108144657A TWI725652B TW I725652 B TWI725652 B TW I725652B TW 108144657 A TW108144657 A TW 108144657A TW 108144657 A TW108144657 A TW 108144657A TW I725652 B TWI725652 B TW I725652B
Authority
TW
Taiwan
Prior art keywords
material layer
dopant
energy level
excited state
layer
Prior art date
Application number
TW108144657A
Other languages
English (en)
Other versions
TW202021962A (zh
Inventor
徐輔民
白貞恩
尹大偉
柳美相
Original Assignee
南韓商樂金顯示科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商樂金顯示科技股份有限公司 filed Critical 南韓商樂金顯示科技股份有限公司
Publication of TW202021962A publication Critical patent/TW202021962A/zh
Application granted granted Critical
Publication of TWI725652B publication Critical patent/TWI725652B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • H10K50/121OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants for assisting energy transfer, e.g. sensitization
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

發明了一種包括至少一個發光材料層的有機發光二極體,至少一個發光材料層包括主體和摻雜劑以及與所述至少一個發光材料層相鄰設置的至少一個激子能量控制層,以及具有有機發光二極體的有機發光裝置。所述至少一個激子能量控制層包括有機化合物,所述有機化合物具有單重激發態能階和三重激發態能階,其分別低於所述主體的激發單重態能階和的三重激發態能階。有機發光二極體可以通過結合一個或多個激子能量控制層來提高其發光效率和發光壽命。

Description

有機發光二極體及包含其之有機發光裝置
本發明涉及一種有機發光二極體,更具體地,涉及一種具有提高的發光效率和壽命的有機發光二極體和具有該有機發光二極體的有機發光裝置。
在目前廣泛使用的平板顯示裝置中,有機發光二極體(OLED)正在迅速取代液晶顯示裝置(LCD)。在有機發光二極體中,當電荷注入到電子注入電極(即陰極)和電洞注入電極(即陽極)之間的發光層中時,電荷組合成對,然後當組合電荷消失時發光。
有機發光二極體可以形成為厚度小於的薄膜,並且隨著電極配置可以實現單向或雙向圖像。另外,有機發光二極體可以形成在柔性透明基板(例如塑料基板)上,使得有機發光二極體可以容易地實現柔性或可折疊顯示器。再者,有機發光二極體可以在10V或更低的較低電壓下驅動。此外,與電漿顯示面板和無機電致發光裝置相比,有機發光二極體具有相對較低的驅動功耗,並且有機發光二極體的色純度非常高。
由於根據現有技術的普通螢光材料中僅單重態激子可以參與發光過程,因此普通螢光材料的發光效率低。相反地,與普通螢光材料相比,相關技術當中的磷光材料之三重態激子以及單重態激子皆參與發光過程,而顯示出高發光效率。然而,由於作為代表性磷光材料的金屬絡合物(Metal complex)具有短的發光壽命,因此其商業應用受到限制。
因此,本發明涉及一種有機發光二極體和一種包括有機發光二極體的有機發光裝置,其可以減少由於現有技術的限制和缺點導致的一個或多個問題。
本發明的一個目的是提供一種能夠提高其發光效率和發光壽命的有機發光二極體和一種包括有機發光二極體的有機發光裝置。
本發明的附加特徵和優點將在下面的描述中闡述,並且部分地將從描述中顯而易見,或者可以通過本發明的實踐來學習。本發明的目的和其他優點將通過書面描述及其申請專利範圍以及附圖中特別指出的結構來實現和獲得。
根據一個方面,本發明提供了一種有機發光二極體,其包括彼此面對的第一電極和第二電極;以及設置在該第一電極和該第二電極之間,並且包含一發光材料層的至少一光發射單元,其中該發光材料層包括一第一發光材料層,該第一發光材料層包括一第一主體和一第一摻雜劑,以及設置於該第一電極與該第一發光材料層之間或設置於該第一發光材料層與該第二電極之間的一第一激子能量控制層,其中第一激子能量控制層包括一第一有機化合物。第一有機化合物的單重激發態能階(Excited state singlet energy level)和三重激發態能階(Excited state triplet energy level)分別低於第一主體的單重激發態能階和三重激發態能階。換句話說,可以說當第一有機化合物的單重激發態能階低於第一主體的單重激發態能階時且第一有機化合物的三重激發態能階低於第一主體的三重激發態能階時,第一有機化合物的單重激發態能階和三重激發態能階均低於第一主體的單重激發態能階和三重激發態能階。
根據另一方面,本發明提供了一種有機發光裝置,其包括基板和設置在基板上的有機發光二極體,如上所述。
應理解,前面的一般性描述和以下的詳細描述都是示例並且是說明性的,並且旨在提供對要求保護的本發明的進一步說明。
現在將詳細參考本發明的各方面,其示例在附圖中示出。
[有機發光裝置]
本發明的有機發光二極體包括至少鄰近至少一個發光材料層設置的一個激子能量控制層,激子能量控制層包括不摻雜的有機化合物,以提高其發光效率和發光壽命。本發明的有機發光二極體可應用於有機發光裝置,例如有機發光顯示裝置和有機發光照明裝置。將說明包括有機發光二極體的顯示裝置。圖1是本發明的有機發光顯示裝置的示意性剖視圖。根據本發明的所有實施例的有機發光顯示裝置的所有組件可操作地耦合和配置。換句話說,可以說當一個電極最靠近另一個電極的表面的多個電極為基本上彼此平行並且重疊時,兩個電極彼此面對,使得來自多個電極中的一個電極的所述表面的垂直線穿過另一電極的所述表面。
如圖1所示,有機發光顯示裝置100包括基板102、基板102上的薄膜電晶體Tr,以及連接到薄膜電晶體Tr的有機發光二極體200。
基板102可包括但不限於玻璃、薄柔性材料和/或聚合物塑料。例如,柔性材料可以選自聚醯亞胺(polyimide,PI)、聚醚碸(polyethersulfone,PES)、聚萘二甲酸乙二醇酯(polyethylene terephthalate,PEN)、聚對苯二甲酸乙二醇酯(polyethylene terephthalate,PET)、聚碳酸酯(polycarbonate,PC)及其組合的群組,但不限於此。在基板102設置有薄膜電晶體Tr和有機發光二極體200的基板102形成陣列基板。
緩衝層104可以設置在基板102上,並且薄膜電晶體Tr設置在緩衝層104上。緩衝層104可以省略。
半導體層110設置在緩衝層104上方。在一個示例性實施例中,半導體層110可包括但不限於氧化物半導體材料。在這種情況下,可以在半導體層110下方設置遮光圖案,並且遮光圖案可以防止光入射到半導體層110,從而防止半導體層110被光劣化。或者,半導體層110可包括但不限於多晶矽。在這種情況下,半導體層110的相對兩邊緣可以摻雜有雜質。
由絕緣材料形成的閘極絕緣層120設置在半導體層110上。閘極絕緣層120可包括但不限於諸如氧化矽(SiOx)或氮化矽(SiNx)的無機絕緣材料。
由諸如金屬的導電材料製成的閘電極130設置在閘極絕緣層120上方,以對應於半導體層110的中心。雖然在圖1中閘極絕緣層120設置在基板102的整個區域上,但是閘極絕緣層120可以與閘電極130相同地圖案化。
由絕緣材料形成的層間絕緣層140設置在閘電極130上,且覆蓋在基板102的整個表面上。層間絕緣層140可包括但不限於如氧化矽(SiOx)或氮化矽(SiNx)的無機絕緣材料,或如苯並環丁烯(benzocyclobutene)或光丙烯酸(photo-acryl)的有機絕緣材料。
層間絕緣層140具有暴露半導體層110的兩側的第一半導體層接觸孔142和第二半導體層接觸孔144。第一半導體層接觸孔142和第二半導體層接觸孔144設置在閘電極130的相對側上,與閘電極130間隔開。在圖1中,第一半導體層接觸孔142和第二半導體層接觸孔144形成在閘極絕緣層120內。或者,當閘極絕緣層120與閘電極130相同地圖案化時,第一半導體層接觸孔142和第二半導體層接觸孔144僅形成在層間絕緣層140內。
由如金屬的導電材料形成的源電極152和汲電極154設置在層間絕緣層140上。源電極152和汲電極154相對於閘電極130彼此間隔開,並且分別通過第一半導體層接觸孔142和第二半導體層接觸孔144接觸半導體層110的兩側。
半導體層110、閘電極130、源電極152和汲電極154構成薄膜電晶體Tr,其用作驅動元件。圖1中的薄膜電晶體Tr具有共面結構,其中閘電極130、源電極152和汲電極154設置在半導體層110上。或者,薄膜電晶體Tr可以具有反交錯結構,其中閘電極設置在半導體層下面,源電極和汲電極設置在半導體層上。在這種情況下,半導體層可以包括非晶矽。
在圖1中,閘極線和資料線彼此交叉以限定像素區域,且連接到閘極線和資料線的開關元件可以在像素區域中進一步形成。開關元件連接到薄膜電晶體Tr,薄膜電晶體Tr是驅動元件。此外,電源線與閘極線或資料線平行間隔開,並且薄膜電晶體Tr還可以包括存儲電容器,該存儲電容器被配置為恆定地保持用於一幀的閘電極的電壓。
另外,有機發光顯示裝置100可以包括彩色濾光片,用於吸收從有機發光二極體200發射的光的一部分。例如,彩色濾光片可以吸收特定波長的光,例如紅色(R)、綠色(G)或藍色(B)。在這種情況下,有機發光顯示裝置100可以通過彩色濾光片實現全彩。
例如,當有機發光顯示裝置100是底部發光型時,彩色濾光片可以對應於有機發光二極體200設置在層間絕緣層140上。或者,當有機發光顯示裝置100是頂部發光型時,彩色濾光片可以設置在有機發光二極體200(即第二電極220)上。
鈍化層160設置在整個基板102上方的源電極152和汲電極154上。鈍化層160具有平坦的頂表面和暴露薄膜電晶體Tr的汲電極154的汲極接觸孔162。雖然汲極接觸孔162設置在第二半導體層接觸孔154上,但是它可以與第二半導體層接觸孔154間隔開。
有機發光二極體200包括第一電極210,其設置在鈍化層160上並連接到薄膜電晶體Tr的汲電極154。有機發光二極體200還包括作為發光層的光發射單元230和第二電極220依序地設置在第一電極210上。
第一電極210設置在每個像素區域中。第一電極210可以是陽極並且包括具有相對高的功函數值的導電材料。例如,第一電極210可包括但不限於透明導電材料,例如氧化銦錫(indium tin oxide,ITO)、氧化銦鋅(indium zinc oxide,IZO)、氧化銦錫鋅(indium tin zinc oxide,ITZO)、氧化錫(tin oxide,SnO)、氧化鋅(zinc oxide,ZnO)、氧化銦鈰(indium cerium oxide,ICO)、鋁摻雜氧化鋅(aluminum doped zinc oxide,AZO)等。
在一個示例性實施例中,當有機發光顯示裝置100是頂部發射型時,反射電極或反射層可以設置在第一電極210下方。例如,反射電極或反射層可包括但不限於鋁 - 鈀 - 銅(aluminum-palladium-copper,APC)合金。
另外,堤層170設置在鈍化層160上,以覆蓋第一電極210的邊緣。堤層170暴露第一電極210的中心。
光發射單元230設置在第一電極210上。在一個示例性實施例中,光發射單元230可具有發光材料層的單層結構。作為示例,發光材料層可包括具有主體和摻雜劑的至少一個發光材料層,以及與發光材料層相鄰設置的至少一個激子能量控制層。
或者,光發射單元230可具有電洞注入層、電洞傳輸層、電子阻擋層、發光材料層、電洞阻擋層、電子傳輸層和/或電子注入層的多層結構(參見圖2、圖6、圖8、圖11、圖13、圖15、圖17和圖19)。在一個實施例中,有機發光二極體200可具有一個光發射單元230。或者,有機發光二極體200可具有多個光發射單元230以形成串聯結構。
第二電極220設置在基板102上方,且光發射單元230設置在基板102上方。第二電極220可以遍佈在整個顯示區域上,並且可以包括與第一電極210相比具有相對低的功函數值的導電材料。第二電極220可以是陰極。例如,第二電極220可包括但不限於鋁(Al)、鎂(Mg)、鈣(Ca)、銀(Ag),其合金或其組合,例如鋁 - 鎂合金(Al)-Mg)。
另外,封裝膜180可以設置在第二電極220上,以防止外部水分滲透到有機發光二極體200中。封裝膜180可以具有但不限於第一無機絕緣膜182、有機絕緣膜184和第二無機絕緣膜186的層疊結構。
[有機發光二極體]
本發明的有機發光二極體引入包括或由有機化合物組成的至少一個激子能量控制層,激子能量控制層相鄰至少一個發光材料層設置,使得有機發光二極體可以提高其發光效率並最大化它的發光壽命。圖2是示出根據本發明示例性實施例的有機發光二極體的示意性剖視圖。如圖2所示,根據本發明第一實施例的有機發光二極體(OLED)300包括彼此面對的第一電極310和第二電極320以及作為發射層設置在第一電極310和第二電極320之間的的光發射單元330。在一個示例性實施例中,光發射單元330包括電洞注入層(HIL)340、電洞傳輸層(HTL)350、發光材料層(EML)360、電子傳輸層(ETL)370和電子注入層(EIL)380,每個層從第一電極310依序層疊。或者,光發射單元330還可包括第一激子阻擋層(即設置在電洞傳輸層350和發光材料層360之間的電子阻擋層(EBL)355)和/或第二激子阻擋層(即設置在發光材料層360和電子傳輸層370之間的電洞阻擋層(HBL)375)。
第一電極310可以是向發光材料層360提供孔的陽極。第一電極310可包括但不限於具有相對高功函數值的導電材料,例如,透明導電氧化物(TCO)。在示例性實施例中,第一電極310可包括但不限於ITO、IZO、ITZO、SnO、ZnO、ICO、AZO等。
第二電極320可以是將電子提供到發光材料層360中的陰極。第二電極320可包括但不限於具有相對低功函數值的導電材料,即高反射材料,例如Al、Mg、Ca、Ag,及其合金或它們的組合等。作為示例,第一電極310和第二電極320中的每一個可以層疊的厚度為但不限於約30至約300nm。
電洞注入層340設置在第一電極310和電洞傳輸層350之間,並且改善無機第一電極310和有機電洞傳輸層350之間的界面特性。在一個示例性實施例中,電洞注入層340可包括但不限於4,4'4” - 三(3-甲基苯基氨基)三苯胺(4,4’4”-Tris(3-methylphenylamino)triphenylamine,MTDATA)、4,4',4“ - 三(N,N-二苯基 - 氨基)三苯胺(4,4’,4”-Tris(N,N-diphenyl-amino)triphenylamine,NATA)、4,4',4“ - 三(N-(萘-1-基)-N-苯基 - 氨基)三苯胺(4,4’,4”-Tris(N-(naphthalene-1-yl)-N-phenyl-amino)triphenylamine,1T-NATA)、 4,4',4“ - 三(N-(萘-2-基)-N-苯基 - 氨基)三苯胺(4,4’,4”-Tris(N-(naphthalene-2-yl)-N-phenyl-amino)triphenylamine,2T-NATA)、銅酞菁(Copper phthalocyanine,CuPc)、三(4-咔唑基-9-基 - 苯基)胺(Tris(4-carbazoyl-9-yl-phenyl)amine,TCTA)、N,N'-二苯基-N,N'-雙(1-萘基)-1,1'-聯苯-4,4“ - 二胺(N,N’-Diphenyl-N,N’-bis(1-naphthyl)-1,1’-biphenyl-4,4”-diamine,NPB;NPD)、1,4,5,8,9,11-六氮雜三亞苯基六腈(1,4,5,8,9,11-Hexaazatriphenylenehexacarbonitrile)(二吡嗪[2,3-F:2,3-H]喹噁啉-2,3,6,7,10,11-六腈(Dipyrazino[2,3-f:2’3’-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile);HAT-CN)、1,3,5-三[4-(二苯基氨基)苯基]苯(1,3,5-tris[4-(diphenylamino)phenyl]benzene,TDAPB)、聚(3,4-亞乙二氧基噻吩)聚苯乙烯磺酸鹽(poly(3,4-ethylenedioxythiphene)polystyrene sulfonate,PEDOT / PSS)和/或N-(聯苯-4-基)-9,9-二甲基-N-(4-(9-苯基-9H-咔唑-3-基)苯基)-9H-芴-2-胺(N-(biphenyl-4-yl)-9,9-dimethyl-N-(4-(9-phenyl-9H-carbazol-3-yl)phenyl)-9H-fluoren-2-amine)。可以根據有機發光二極體300的結構省略電洞注入層340。在這些化合物中,HAT-CN在電洞注入層340中是優選的。
電洞傳輸層350與第一電極310和發光材料層360之間的發光材料層360相鄰設置。在一個示例性實施例中,電洞傳輸層350可包括但不限於 N,N'-二苯基-N,N'-雙(3-甲基苯基)-1,1'-聯苯-4,4'-二胺(N,N’-Diphenyl-N,N’- bis(3-methylphenyl) -1,1’- biphenyl-4,4’-diamine,TPD)、NPB、4,4'-雙(N-咔唑基)-1,1'-聯苯(4,4’-bis (N-carbazolyl)-1,1’-biphenyl,CBP)、 聚[N,N'-雙(4-丁基苯基)-N,N'-雙(苯基) - 聯苯胺](Poly[N,N’-bis(4-butylphenyl)-N,N’- bis(phenyl)-benzidine],Poly- TPD)、聚[(9,9-二辛基芴基-2,7-二基)-co-(4,4' - (N-(4-仲丁基苯基)二苯胺))](Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co- (4,4’-(N-(4-sec-butylphenyl) diphen ylamine))],TFB)、二 -  [4-(N,N-二 - 對 - 甲苯基 - 氨基) - 苯基]環己烷(Di-[4-(N,N-di-p-tolyl-amino)-phenyl]cyclohexane,TAPC)、3,5-二(9H-咔唑-9-基)-N,N-二苯基苯胺(3,5-di(9H-carbazol-9-yl)-N,N- diphenyl aniline,DCDPA)、N-(聯苯-4-基)-9,9-二甲基-N-(4-(9-苯基-9H-咔唑-3-基)苯基)-9H-芴-2-胺(N-(biphenyl-4-yl)-9,9-dimethyl-N-(4- (9-phenyl-9H- carbazol-3-yl)phenyl)-9H -fluoren-2-amine)和/或N-( 聯苯-4-基)-N-(4-(9-苯基-9H-咔唑-3-基)苯基)聯苯-4-胺(N-(biphenyl-4-yl)-N-(4-(9-phenyl-9H-carbazol-3- yl)phenyl)biphenyl-4- amine )。在這些化合物中,NPB在電洞傳輸層350中是優選的。
在一個示例性實施例中,電洞注入層340和電洞傳輸層350中的每一個可以層疊的厚度為,但不限於,約5至約200nm,並且優選地約5至約100nm。
發光材料層360包括第一發光材料層362和與第一發光材料層362相鄰設置的激子能量控制層(EEL)390。第一發光材料層362包括主體和摻雜劑。激子能量控制層390可以設置在電子阻擋層355和第一發光材料層362之間或第一發光材料層362和電洞阻擋層375之間。激子能量控制層390包括具有預定能階的有機化合物。例如,激子能量控制層390由有機化合物組成。發光材料層360的配置和能階,包括激子能量控制層390,將在下面更詳細地解釋。
電子傳輸層370和電子注入層380依序地層疊在發光材料層360和第二電極320之間。電子傳輸層370可以包括具有高電子遷移率的材料,以通過快速電子傳輸使發光材料層360穩定地提供電子。
在一個示例性實施例中,電子傳輸層370可包括但不限於:惡二唑類化合物(oxadiazole-based compounds)、三唑類化合物(triazole-based compounds)、菲咯啉類化合物(phenanthroline-based compounds)、苯並噁唑類化合物(benzoxa zole-based compounds)、苯並噻唑類化合物(benzothiazole-based compounds)、苯並咪唑類化合物(benzimidazole-based compounds)、三嗪類化合物(triazine-based compounds)等。
作為示例,電子傳輸層370可包括但不限於三 - (8-羥基喹啉鋁)(tris-(8-hydroxyquinoline aluminum,Alq3 )、2-聯苯-4-基-5-(4-叔丁基苯基)-1,3,4-惡二唑(2-biphenyl-4-yl-5-(4-t-butylphenyl)-1,3,4-oxadiazole,PBD)、螺-PBD(spiro-PBD)、喹啉鋰(lithium quinolate,Liq)、1,3,5-三(N-苯基苯並咪唑-2-基)苯(1,3,5-Tris(N-phenylbenzimidazol-2-yl)benzene,TPBi)、雙(2-甲基-8-羥基喹啉-N1,O8) - (1,1'-聯苯-4-醇)鋁(Bis(2-methyl-8-quinolinolato-N1,O8)-(1,1’- biphenyl-4-olato)aluminum,BAlq)、4,7-二苯基-1,10-菲咯啉(4,7-diphenyl- 1,10- phenanthroline,Bphen)、2,9-雙(萘-2-基)-4,7-二苯基-1,10-菲咯啉(2,9- Bis (naphthalene-2-yl)4,7-diphenyl-1,10-phenanthroline,NBphen)、2,9-二甲基-4,7-二苯基-1,10-菲咯啉(2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline,BCP)、3-(4-聯苯基)-4-苯基-5-叔丁基苯基-1,2,4-三唑(3-(4-Biphenyl)-4-phenyl-5-tert- butylphenyl-1,2,4-triazole,TAZ)、4-(萘-1-基)-3,5-二苯基-4H-1,2,4-三唑(4- (Naphthalen-1-yl)-3,5-diphenyl-4H-1,2,4-triazole,NTAZ)、1,3,5-三(對 - 吡啶-3-基 - 苯基)苯(1,3,5-Tri(p-pyrid-3-yl-phenyl)benzene,TpPyPB)、2,4,6-三(3' - (吡啶-3-基)聯苯-3-基)1,3,5-三嗪(2,4,6-Tris(3’-(pyridin-3-yl)biphenyl-3-yl) 1,3,5- triazine,TmPPPyTz)、聚[9,9-雙(3' - (N,N-二甲基)-N-乙基銨) - 丙基)-2,7-芴]  - 鹽-2,7-(9,9-二辛基芴)](Poly[9,9-bis(3’-(N,N-dimethyl)-N-ethylammonium) -propyl)-2,7-fluorene]-alt-2,7-(9,9-dioctylfluorene)],PFNBr)、三(苯基喹喔啉)(tris(phenylquinoxaline),TPQ)、二苯基-4-三苯基甲矽烷基 - 苯基氧化膦(diphenyl-4-triphenylsilyl-phenylphosphine oxide,TSPO1)和/或2- [4-(9,10-二-2-萘基-2-蒽基)苯基] -1-苯基-1H-苯並咪唑(2-[4-(9,10-di-2-naphthalenyl-2-anthr acenyl)phenyl]-1-phenyl-1H-benzimidazole)。在這些化合物中,電子傳輸層370中優選2- [4-(9,10-二-2-萘基-2-蒽基)苯基] -1-苯基-1H-苯並咪唑。
電子注入層380設置在第二電極320和電子傳輸層370之間,並且可以改善第二電極320的物理特性,因此可以增強有機發光二極體300的壽命。在一個示例性實施方案中,電子注入層380可包括但不限於鹼金屬鹵化物,例如LiF、CsF、NaF、BaF2 等,和/或有機金屬化合物,例如苯甲酸鋰(lithium benzoate)、硬脂酸鈉等。
作為示例,電子傳輸層370和電子注入層380中的每一個可以層疊的厚度為,但不限於,約10至約200nm,並且優選地約10至約100nm。
當電洞經由發光材料層360轉移到第二電極320和/或電子經由發光材料層360轉移到第一電極310時,可能會降低有機發光二極體300的發光壽命和發光效率。為了防止這些現象,根據本發明的該實施例的有機發光二極體300具有至少一個與發光材料層360相鄰設置的激子阻擋層。
例如,示例性實施例的有機發光二極體300包括電洞傳輸層350和發光材料層360之間的電子阻擋層355,以便控制和防止電子轉移。在一個示例性實施例中,電子阻擋層355可包括但不限於TCTA、三[4-(二乙基氨基)苯基]胺(Tris[4-(diethylamino)phenyl] amine)、N-(聯苯-4-基)-9,9-二甲基-N-(4-(9-苯基-9H-咔唑-3-基)苯基)-9H-芴-2-胺(N-(biphneyl-4-yl)-9,9-dimethyl-N-(4-(9-phenyl-9H-carbazol-3-yl) phenyl)- 9H-fluorene-2-amine)、TAPC、MTDATA、1,3-雙(咔唑-9-基)苯(1,3-bis(carbazol -9-yl)benzene,mCP)、3,3'-雙(N-咔唑基)-1,1'-聯苯(3,3’-bis(N-carbazolyl)- 1,1’-biphenyl,mCBP)、酞菁銅(CuPc)、N,N'-雙[4-(雙(3-甲基苯基)氨基)苯基] -N,N'-二苯基 -  [1,1'-聯苯] -4,4'-二胺(N,N’-bis[4-(bis(3-methylphenyl) amino)phenyl]-N,N’-diphenyl-[1,1’-biphenyl]-4,4’-diamine,DNTPD)、TDAPB、DCDPA、2,8-雙(9-苯基-9H-咔唑-3-基)二苯並[b,d]噻吩(2,8-bis(9-phenyl-9H- carbazol-3-yl)dibenzo[b,d]thiophene)和/或3,6-雙(N-咔唑基)-N-苯基 - 咔唑(3,6- bis(N-carbazolyl)-N-phenyl-carbazole)。在這些化合物中,TCTA在電子阻擋層355中是優選的。
另外,有機發光二極體300還包括作為第二激子阻擋層的電洞阻擋層375 設置在發光材料層360和電子傳輸層370之間,使得電洞不能從發光材料層360轉移到電子傳輸層370。在一個示例性實施例中,電洞阻擋層375可包括但不限於惡二唑類化合物(oxadiazole-based compounds)、三唑類化合物(triazole-based compounds)、菲咯啉類化合物(phenan throline-based compounds)、苯並噁唑類化合物(benzoxazole-based compounds)、苯並噻唑類化合物(benzothiazole-based compounds)、苯並咪唑類化合物(benzim idazole-based compounds)、和三嗪類化合物(triazine-based compounds)。
例如,電洞阻擋層375可包括與發光材料層360中的發光材料相比具有相對低的HOMO能階的化合物。電洞阻擋層375可包括但不限於BCP、BAlq、Alq3 、PBD、螺-PBD、Liq、雙-4,5-(3,5-二-3-吡啶基苯基)-2-甲基嘧啶(Bis-4,5-(3,5-di-3- pyridylphenyl)-2-methylpyrimidine,B3PYMPM)、DPEPO、9-(6-(9H-咔唑-9-基)吡啶-3-基)-9H-3,9'-咔(9-(6-(9H-carbazol-9-yl)pyridine-3-yl)- 9H-3,9’- bicarba zole)、TSPO1及其組合。
如上面示意性描述的,有機發光二極體300中的發光材料層360包括具有主體和摻雜劑的第一發光材料層362,以及具有有機化合物並且鄰近第一發光材料層362設置的激子能量控制層390。如本文所用,在沒有摻雜的情況下在EEL中使用的有機化合物將被稱為“有機化合物”或“激子摻雜劑(ED)”,以區分與主體一起使用的摻雜劑。
在一個示例性實施例中,第一發光材料層362中的摻雜劑和激子能量控制層390中的有機化合物可以分別是延遲螢光材料。由於發光材料層360包括作為摻雜劑和有機化合物的延遲螢光材料,因此有機發光二極體300可以提高其發光效率,降低其驅動電壓並改善其發光壽命。
當從陽極注入的電洞和從陰極注入的電子結合在發光材料層中形成激子時,有機發光二極體(OLED)發光,然後不穩定的激發態激子返回到穩定的基態。理論上,當電子遇到電洞以形成激子時,通過自旋排列以1:3的比例產生成對自旋的單重態激子和未成對自旋的三重態激子。在螢光材料的情況下,只有激子中的單重態激子可以參與發射過程。因此,在使用普通螢光材料的情況下,有機發光二極體可以表現出最大5%的發光效率。
相反,磷光材料使用不同的發光機制將單重態激子和三重態激子轉換成光。磷光材料可以通過系統間交叉(ISC)將單重態激子轉換為三重態激子。因此,與螢光材料相比,在發光過程中應用使用單重態激子和三重態激子的磷光材料的情況下,可以提高發光效率。然而,相關技術的藍色磷光材料顯示出太低的色純度應用於顯示裝置並且顯示出非常短的發光壽命,因此,它們尚未用於商業顯示裝置中。
最近開發了一種延遲螢光材料,其可以解決伴隨現有技術螢光摻雜劑和磷光摻雜劑的限制。代表性延遲螢光材料是一種熱活化延遲螢光(TA DF)材料。由於延遲螢光材料通常在其分子結構內具有電子供體部分和電子受體部分,因此它可以轉化為分子內電荷轉移(ICT)狀態。在使用延遲螢光材料作為摻雜劑的情況下,可以在發光過程中使用單重態能階S1 的激子和三重態能階T1 的激子。
將參照圖3解釋延遲光光材料的發光機制,圖3是示出根據本發明示例性實施例的發光材料層中的延遲光光材料的發光機制的示意圖。如圖3所示,單重態能階S1 TD 的激子作為螢光發光。三重態能階T1 TD 的激子是CT狀態,其可以轉換為中間能階狀態,即ICT狀態。由於ICT狀態具有單重態和三重態特性,因此ICT狀態下的三重態激子可以通過反向系間交叉(RISC)轉換為單重態激子,然後轉換的單重態激子可以轉移到基態S0 。由於在延遲螢光材料中單重態能階S1 TD 的激子以及三重態能階T1 TD 的激子參與發光過程,因此延遲螢光材料可以提高內部量子效率等發光效率。
因為HOMO和LUMO在相關技術螢光材料內廣泛分佈在整個分子上,所以不可能在單重態能階和其內的三重態能階之間進行相互轉換(選擇定則(selection rule))。相反,由於可以轉換為ICT狀態的延遲螢光材料在HOMO和LUMO之間幾乎沒有軌道重疊,在延遲螢光材料中偶極矩被極化的狀態下,HOMO態分子軌道和LUMO態分子軌道之間幾乎沒有相互作用。結果,電子自旋態的變化對其他電子沒有影響,並且在延遲光光材料中形成不遵循選擇規則的新電荷轉移帶(CT帶)。
換句話說,由於延遲螢光材料具有與分子內的電子供體部分間隔開的電子受體部分,因此它以分子內具有大偶極矩的極化狀態存在。由於HO MO分子軌道和LUMO分子軌道之間的相互作用在偶極矩被極化的狀態下變得很小,因此三重態能階激子和單重態能階激子都可以轉換為ICT狀態。因此,三重態能階T1 的激子以及單重態能階S1 的激子可以參與發射過程。
在驅動包括延遲螢光材料的二極體的情況下,單重態能階S1 TD 的25%激子和三重態能階T1 TD 的75%激子通過熱或電場轉換為ICT狀態,然後轉換的激子通過發光轉移到基態S0 。因此,延遲螢光材料理論上可以具有100%的內部量子效率。
延遲螢光材料必須具有等於或小於約0.3eV的能階帶隙ΔEST TD ,例如,從約0.05到約0.3eV,在單重態能階S1 TD 和三重態能階T1 TD 之間,這樣單重態能階和三重態能階中的激子能量就可以轉移到ICT狀態。在單重態能階S1 TD 和三重態能階T1 TD 之間具有很小能階帶隙的材料可以表現出共同的螢光,以及使用反向系統間交叉(RISC)的延遲螢光,其中單重態能階S1 TD 的激子可以下降到基態S0 ,其中三重態能階T1 TD 的激子可以向上傳遞到單重態能階S1 TD 的激子,並且然後,從三重態能階T1 TD 轉移的單重態能階S1 TD 的激子可以轉移到基態S0
延遲螢光材料可以實現與包括重金屬的相關技術磷光材料相同的量子效率,因為延遲光材料理論上可以獲得高達100%的發光效率。然而,當發光材料層僅包括主體和延遲螢光材料時,可能存在以下缺點。圖4是示出根據現有技術的發光材料中的能階帶隙的發光機制的示意圖。
如圖4所示,主體的單重激發態能階S1 H 處的激子能量和三重激發態能階T1 H 處的激子能量通過Dexter能量轉移機構將被轉移到在相同發光材料層中的延遲光螢光材料的單重激發態能階S1 TD 和三重激發態能階T1 TD ,它們分別通過分子間電子交換和激子擴散來轉移依賴於波函數的激子能量在相鄰分子之間的重疊。通過RISC機制將作為延遲螢光材料的摻雜劑的三重激發態能階T1 TD 處的激子能量轉換為單重激發態能階S1 TD ,並且然後,單重激發態能階S1 TD 處的轉換的激子能量作為延遲螢光轉移到基態。
然而,RISC將三重激發態能階T1 TD 的激子能量轉換為單重激發態能階S1 TD 的速率與從主體的單重激發態能階S1 H 和三重激發態能階T1 H 的激子能量轉換為延遲螢光材料的單重激發態能階S1 TD 和三重激發態能階T1 TD 的速率相比較慢。結果,在主體的單重激發態能階S1 H 和三重激發態能階T1 H 的激子能量的一部分不會轉移到延遲光光材料。在這種情況下,由於主體激子之間的相互作用而發生激子猝滅,其中主體激子在主體處累積而不轉移到延遲光子材料,且通過電氧化和光氧化降低了外圍極化子和有機發光二極體的壽命。
相反,有機發光二極體300引入激子能量控制層(EEL)以提高其發光效率和發光壽命。圖5是示出根據本發明示例性實施例的發光材料中的能階帶隙的發光機制的示意圖。
用於實施延遲螢光的主體應該具有預定的能階,使得摻雜劑處的三重態激子可以參與發光過程而不作為非發射淬滅。於第一發光材料層362中,主體的單重激發態能階S1 H 和三重激發態能階T1 H 應該分別高於作為延遲光光材料的摻雜劑(T摻雜劑)的單重激發態能階S1 TD 和三重激發態能階T1 TD 。作為一個示例,主體的三重激發態能階T1 H 可以比摻雜劑的三重激發態能階T1 TD 高至少約0.2eV。
例如,當主體的單重激發態能階S1 H 和三重激發態能階T1 H 均不足夠高於摻雜劑(可以是延遲螢光材料中的摻雜)的單重激發態能階S1 TD 和三重激發態能階T1 TD 時,摻雜劑的單重激發態能階S1 TD 的激子可以反向轉移到主體的單重激發態能階S1 H ,或者,摻雜劑的三重激發態能階T1 TD 的激子可以反向轉移到主體的三重激發態能階T1 H
當摻雜劑的三重激發態能階T1 TD 的激子可以反向轉移到不能利用三重態激子能量的主體的三重激發態能階T1 H 時,摻雜劑的三重激發態能階T1 TD 的激子可以作為非發射猝滅,並且摻雜劑的三重態激子不能參與發射。作為一個示例,主體可以具有等於或大於約2.9eV的單重激發態能階S1 H 和等於或大於約2.8eV的三重激發態能階T1 H ,但不限於此。
相反,作為延遲光螢光材料的摻雜劑可以具有在約2.4和約2.7eV之間的單重激發態能階S1 TD 和在約1.8eV至約2.2eV之間的三重激發態能階T1 TD ,但是不限於此。具有延遲螢光特性的摻雜劑的單重激發態能階S1 TD 與三重激發態能階T1 TD 之間的能階帶隙ΔEST TD 可以等於或小於約0.3eV,例如,在約0.05和約0.3eV之間(參見圖3)。
此外,必須適當調節主體和摻雜劑的HOMO能階和LUMO能階,摻雜劑可以是螢光材料。例如,優選主體的HOMO能階(HOMOH )與摻雜劑的HOMO能階(HOMOTD )之間的能階帶隙(| HOMOH - HOMOTD |),或者,主體的LUMO能階(LUMOH )與摻雜劑的LUMO能階(LUMOTD )之間的能階帶隙(| LUMOH - LUMOTD |)可以等於或小於約0.5eV,例如,在約0.1eV至約0.5eV之間。在這種情況下,電荷可以有效地從主體傳輸到摻雜劑,從而提高最終的發光效率。
此外,主體的HOMO能階(HOMOH )與LUMO能階(LUMOH )之間的能階帶隙(EgH )可以大於摻雜劑的HOMO能階(HOMOTD )和LUMO能階(LUMOTD )之間的能階帶隙(EgTD )。例如,主體的HOMO能階(HOMOH )比摻雜劑的HOMO能階(HOMOTD )更深或更低,並且主體的LUMO能階(LU MOH )比摻雜劑的LUMO能階(LUMOTD )更淺或更高。
由於通過RISC機制將摻雜劑中的三重態激子轉換為單重態激子的速率與從主體向摻雜劑轉移激子能量的速率相比較慢,如上所述,主體的一部分激子能量可以在主體處累積而不轉移到摻雜劑。然而,根據本發明的第一實施例,包括有機化合物的激子能量控制層390與第一發光材料層362相鄰地設置,以防止激子能量被淬滅。
一部分激子能量累積在主體的單重激發態能階S1 H 和三重激發態能階T1 H 而不轉移到第一發光材料層362中的摻雜劑,並且這部分激子能量可以轉移到通過FRET(福斯特共振能量轉移)機構與第一發光材料層362相鄰設置的激子能量控制層390中的有機化合物的單重激發態能階S1 ED 和三重激發態能階T1 ED 。FRET通過偶極 - 偶極相互作用非徑向地通過電場傳遞能量。當沒有轉移到摻雜劑的作為主體激子能量的一部分被轉移到有機化合物,沒有轉移到摻雜劑的主體的激子能量不會在主體上累積。結果,可以最小化由累積的主體激子和外圍極化子之間的相互作用引起的激子猝滅,並且可以防止由於激子淬火過程中的電氧化和光氧化導致的有機發光二極體300的壽命縮短。
在一個示例性實施方案中,激子能量控制層390中的有機化合物可以是延遲螢光材料,以便從主體接收激子能量。在這種情況下,有機化合物可以利用從主體轉移的三重態激子能量以及單重態激子能量,使得發光材料層360可以提高其發光效率。在一個示例性實施例中,有機化合物的激發態單重態能階S1 ED 和三重激發態能階T1 ED 中的每一個分別低於主體的單重激發態能階S1 H 和三重激發態能階T1 H
當主體的每個單重激發態能階S1 H 和三重激發態能階T1 H 不足以高於可以是延遲螢光材料的有機化合物(第一激子摻雜劑)的單重激發態能階S1 ED 和三重激發態能階T1 ED 時,有機化合物的單重態能階S1 ED 和三重態能階T1 ED 的激子可以反向轉移到主體的單重激發態能階S1 H 和三重激發態能階T1 H
此外,可能需要調整主體和有機化合物的HOMO和LUMO能階,以防止電洞和/或電子被捕獲在第一發光材料層362和激子能量控制層390中。作為一個示例,優選在主體的HOMO能階(HOMOH )與有機化合物的HOMO能階(HOMOED )之間的能階帶隙(| HOMOH - HOMOED |),或者主體的LUMO能階(LUMOH )與有機化合物的LUMO能階(LUMOED )之間的能階帶隙(| LUMOH - LUMOED |)可以等於或小於約0.2eV,例如,約0.01eV至約0.2eV。
第一發光材料層362中的主體的激子能量應該被有效地轉移到與第一發光材料層362相鄰設置的激子能量控制層390中的有機化合物。作為一個示例,激子能量控制層390可以層疊的厚度為但不限於約1 nm至約10nm,優選約1 nm至約5 nm。
在一個示例性實施方案中,有機化合物可以是的可以在不進行摻雜處理的情況下發光有機化合物。作為沒有摻雜的自發光的實例,可以使用可以實現聚集誘導發射(AIE)的材料作為有機化合物。作為一個示例,有機化合物可包括但不限於具有以下化學式1的伸乙烯基- 亞芳基(vinylene-arylene)結構的有機化合物:
化學式1
Figure 02_image001
在化學式1中,R1 至R3 各自獨立地為氕(protium)、氘(deuterium)、氚(tritium),C5 ~C30 芳基或C4 ~C30 雜芳基。C5 ~C30 芳基未被取代或被氰基、硝基、鹵素、 C1 ~C10 烷基、C1 ~C10 烷基鹵化物基團、C5 ~C30 芳基或C4 ~C30 雜芳基取代。C4 ~C30 雜芳基未被取代或被氰基、硝基、鹵素、C1 ~C10 烷基、C1 ~C10 烷基鹵化物基團、C5 ~C30 芳基或C4 ~C30 雜芳基取代。
如本文所用,術語“未取代的”是指氫原子鍵合,並且在這種情況下,氫原子包含氕、氘和氚。
如本文所用,在術語“雜芳環(hetero aromatic ring)”、“雜芳基(hetero aromatic group)”、“雜脂環(hetero alicyclic ring)”、“雜環烷基(hetero cyclic  alkyl group)”、“ 雜芳氧基(hetero aryloxyl group)”、“ 雜芳基氨基(hetero aryl amino  group)”、“雜芳基(hetero arylene group)”、“雜芳烷基(hetero aralkylene group)”、“雜芳基亞乙基(hetero aryloxylene group)”等中描述的“雜”是指形成這種芳族或脂環族環的至少一個碳原子,例如1至5個碳原子被至少一個選自N、O、S及其組合的雜原子取代。
作為一個示例,獨立地構成R1 至R3 或獨立地取代R1 至R4 的C5 ~C30 芳基可以是未稠合或稠合的芳基,例如但不限於是苯基(phenyl)、聯苯(biphenyl)、三聯苯(terphenyl)、萘基(naphthyl)、蒽(anthracenyl)、并環戊二烯基(pentalenyl)、茚基(indenyl)、茚並茚基(indeno-indenyl)、heptaleneyl、伸聯苯基(biphenylenyl)、二環戊二烯并苯基(indacenyl)、萉基(phenalenyl)、菲基(phenanthrenyl)、苯並菲基(benzo-phenanthrenyl)、二苯並菲基(dibenzo-phenanthrenyl)、薁(azulenyl)、芘基(pyreneyl)、丙[二]烯合茀基(fluoranthenyl)、三亞苯基(triphenylenyl)、屈基(chrysenyl)、 四苯基(tetraphenyl)、四苯基(tetracenyl)、七曜基(pleiadenyl)、苉基(picenyl)、 五苯基(pentaphenyl)、稠五苯基(pentacenyl)、茀基(fluorenyl)、茚並芴基(indeno-fluorenyl)或螺芴基(spiro-fluorenyl)。
在另一個實施方案中,獨立地構成R1 至R3 或獨立地取代R1 至R4 的C4 ~C30 雜芳基可以是未稠合或稠合的雜芳基,例如但不限於是吡咯基(pyrrolyl)、吡啶基(pyridinyl)、嘧啶基(pyrimidinyl)、吡嗪(pyrazinyl)、哒嗪基( pyridazinyl)、三嗪(triazinyl)、四嗪(tetrazinyl)、 咪唑基(imidazolyl)、吡唑基(pyrazolyl)、吲哚基(indolyl)、異吲哚基(iso-indolyl)、吲唑基(indazolyl)、吲哚基(indolizinyl)、 吡咯(pyrrolizinyl)、 咔唑(carbazolyl)、苯並咔唑(benzo-carbazolyl)、 二苯並咔唑(dibenzo-carbazolyl)、吲哚並咔唑(indolo-carbazolyl)、茚並咔唑(indeno-carbazolyl)、苯並呋喃-咔唑(benzofuro-carbazolyl)、苯並噻吩-咔唑(benzothieno-carbazolyl)、喹啉基 (quinolinyl)、異喹啉基(iso-quinolinyl)、呔口並基( phthalazinyl)、喹喔啉基(quinoxalinyl)、口辛啉基( cinnolinyl)、喹唑啉基(quinazolinyl)、 quinozolinyl、 喹 口井 基(quinolizinyl)、苯並二氮雜萘基(benzo-quinazolinyl)、 苯並喹喔啉基( benzo-quinoxalinyl)、吖基(acridinyl)、啡啉( phenanthrolinyl)、 口叵啶基(perimidinyl)、啡啶基 (phenanthridinyl)、 喋啶基( pteridinyl)、口奈 啶基 (naphthyridinyl)、 呋喃基(furanyl)、 哌喃基 (pyranyl)、 嗪基( oxazinyl)、 噁唑基( oxazolyl)、噁二唑( oxadiazolyl)、三唑基( triazolyl)、二口基(dioxinyl)、 苯并呋喃基 (benzo-furnanyl)、二苯並呋喃基(dibenzo-furanyl)、噻喃基( thiopyranyl)、呫基(xanthenyl)、苯并哌喃基( chromenyl)、 異苯并哌喃基(iso-chromenyl)、噻嗪基(thiazinyl)、苯硫基( thiophenyl)、 苯並噻吩(benzo-thiophenyl)、二苯並噻吩(dibenzo-thiophenyl)、 difuro-吡嗪(difuro-pyrazinyl)、 苯並呋喃並二苯並呋喃基(benzofuro-dibenzo-furanyl)、苯並噻吩並苯並噻吩基(benzothieno-benzo-thiophenyl)、 苯並噻吩並二苯並呋喃基(benzothieno-dibenzo-furanyl)、苯並噻吩並苯並呋喃基(benzothieno-benzo- furanyl)、苯並噻吩並二苯並呋喃基(benzothieno-dibenzo-furanyl)或 N-取代的螺 - 芴基(N-substituted spiro-fluorenyl)。
在一個示例性實施方案中,獨立地構成R1 至R3 或獨立地取代R1 至R4 的芳基或雜芳基可以由1至3個芳族或雜芳族環組成。如果獨立地構成R1 至R3 或獨立地取代R1 至R4 的芳族或雜芳族環的數目變得太大,則整個有機化合物中的共軛結構太長,結果,有機化合物的能階帶隙會過度降低。作為一個示例,獨立地構成R1 至R3 或獨立地取代R1 至R4 的芳族或雜芳族基團例如但不限於是苯基( phenyl)、聯苯基(biphenyl)、吡咯基、三嗪、 咪唑基、吡唑基、吡啶基、吡嗪、嘧啶基、哒嗪基、 呋喃基、苯并呋喃基 (benzofuranyl)、二苯并呋喃基( dibenzofuranyl)、苯硫基、苯並噻吩基(benzothiophenyl)、 二苯並噻吩(dibenzothiophenyl)和咔唑,且這些基團各自未取代或被氰基、硝基、鹵素、C1 ~C10 烷基、C1 ~C10 烷基鹵化物基團、C5 ~C30 芳基或C4 ~C30 雜芳基取代。
在一個示例性實施方案中,獨立地構成R1 至R3 或獨立地取代R1 至R4 的芳基或雜芳基可以直接鍵合到伸苯基(phenylene)或苯基部分,或通過C5 ~C30 亞芳基或C4 ~C30 雜亞芳基與伸苯基或苯基部分鍵合。如果伸苯基或苯基部分與芳基或雜芳基之間的C5 ~C30 亞芳基或C4 ~C30 亞雜芳基的芳香環或雜芳環的數目變得太大,則整個有機化合物中的共軛結構太長,結果,有機化合物的能階帶隙可能會過度降低。因此,伸苯基或苯基部分與芳基或雜芳基之間的C5 ~C30 亞芳基或C4 ~C30 亞雜芳基的芳族或雜芳族環的數目為1或2,優選為1。
在一個示例性實施方案中,R4 是未取代的或取代的苯基。
在一個示例性實施方案中,R1 至R3 是芳基。
關於電荷注入和傳輸性質,在伸苯基或苯基部分與芳基或雜芳基之間的C5 ~C30 亞芳基或C4 ~C30 亞雜芳基的芳香族或雜芳香環可為5元環至7元環,優選6元環。作為一個示例,在伸苯基或苯基部分與芳基或雜芳基之間的C5 ~C30 亞芳基或C4 ~C30 雜芳基可獨立地但不限於是伸苯基、亞聯苯基(bip henylene)、吡咯亞基(pyrrolylene)、亞咪唑基( imidazolylene)、吡唑基(pyrazolylene)、吡啶基(pyridinylene)、吡嗪基( pyrazinylene)、亞嘧啶基( pyrimidinylene)、噠嗪基( pyridazinylene)、呋喃基(furanylene)或硫代亞苯基(thiophenylene)。
作為一個示例,在激子能量控制層390中與第一發光材料層362相鄰設置的有機化合物可以是延遲螢光材料,以實現有效的發光。例如,有機化合物可具有電子供體部分和電子受體部分。電子供體部分可包括但不限於苯基部分、咔唑部分、吖基部分、吩嗪基(phenazinyl)部分、苯惡嗪基(pheno xazinyl)部分、二苯並呋喃基部分和/或二苯并噻吩(dibenozothiopheny)部分,其中各自未取代或被氰基、硝基、鹵素、C1 ~C10 烷基、C1 ~C10 烷基鹵化物基團、C5 ~C30 芳基或C4 ~C30 雜芳基取代。電子受體部分可包括但不限於吖嗪(azine)部分或吡啶基(pyridyl)部分,其各自未取代或被氰基、硝基、鹵素、C1 ~C10 烷基、C1 ~C10 烷基鹵化物基團、C5 ~C30 芳基或C4 ~C30 雜芳基取代。作為一個示例,具有延遲螢光特性的有機化合物可包括具有以下化學式2結構的有機化合物:
化學式2
Figure 02_image003
在化學式2中,R11 至R14 各自獨立地為氕、氘、氚或選自苯基、吡啶基、咔唑基、吖啶基、吩嗪基(phenazinyl)、苯惡嗪基(phenoxazinyl)、二苯並呋喃基、二苯並噻吩基、二嗪基和三嗪基(triazinyl)的芳基或雜芳基,其各自未取代或被氰基、硝基、鹵素、C1 ~C10 烷基、C1 ~C10 烷基鹵化物基團、C5 ~C30 芳基或C4 ~C30 雜芳基取代。R11 至R14 中的至少兩個是芳基或雜芳基。R11 至R14 中的至少一個是吡啶基、二嗪基或三嗪基,且R11 至R14 中的其他基團為苯基、咔唑、吖基、吩嗪基(phenazinyl)、苯惡嗪基(phenoxazinyl)、二苯並呋喃基或二苯並噻吩基。 R11 至R14 中的每一個皆直接獨立地與伸苯基環連接,或是通過C5 ~C30 亞芳基或C4 ~C30 雜亞芳基獨立地與伸苯基環連接。
在一個示例性實施方案中,R11 至R14 中的每一個可獨立地為以下芳族取代基中的任一個:
Figure 02_image005
Figure 02_image007
特別地,有機化合物可以是具有以下化學式3結構的任何一種。
化學式3
Figure 02_image009
Figure 02_image011
Figure 02_image013
Figure 02_image015
Figure 02_image017
.
只有當主體的單重激發態能階S1 H 和三重激發態能階T1 H 分別高於摻雜劑和有機化合物每一個的單重激發態能階S1 TD 和S1 ED 以及三重激發態能階T1 TD 和T1 ED 時,主體不限於特定材料。更明確來說,主體的單重激發態能階S1 H 高於摻雜劑和有機化合物的單重激發態能階S1 TD 和S1 ED ,並且主體的三重激發態能階T1 H 高於摻雜劑和有機化合物的三重激發態能階T1 TD 和T1 ED
作為一個示例,第一發光材料層362中的主體可以包括但不限於9-(3-(9H-咔唑-9-基)苯基)-9H-咔唑-3-甲腈(9-(3-(9H-carbazol-9-yl)phenyl)- 9H- carbazole- 3-carbonitrile,mCP-CN)、CBP、mCBP、mCP、DPEPO、2,8-二(二苯基磷醯基)二苯並噻吩(2,8-bis(diphenylphosphoryl)dibenzothiophene,PPT)、1,3,5-三[(3-吡啶基) - 苯-3-基]苯(1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene ,TmPyPB)、2,6-二(9H-咔唑-9-基)吡啶(2,6-di(9H-carbazol-9-yl)pyridine ,PYD-2Cz)、2,8-二(9H-咔唑-9-基)二苯並噻吩(2,8-di(9H-carbazol-9-yl) dibenzothiophene,DCzDBT)、3',5'-二(咔唑-9-基) -  [1,1'-聯噻吩] -3,5-二腈(3‘,5‘-Di(carbazol- 9-yl)-[1,1‘-bipheyl]-3,5-dicarbonitrile,DCzTPA)、4' - (9H-咔唑-9-基)聯苯-3,5-二腈(4‘-(9H-carbazol-9-yl)biphenyl-3,5-dicarbonitrile,pCzB- 2CN)、3' - (9H-咔唑-9-基)聯苯-3,5-二腈(3‘-(9H-carbazol-9-yl)biphenyl- 3,5- dicarbonitrile,mCzB- 2CN)、TSPO1、9-(9-苯基-9H-咔唑-6-基)-9H-咔唑(9-(9-phenyl-9H-carbazol-6-yl)- 9H-carbazole,CCP)、 4-(3-(三亞苯-2-基)苯基)二苯並[b,d]噻吩(4-(3- (triphenylen-2-yl)phenyl)dibenzo[b,d]thiophene)、9-(4-(9H-咔唑-9-基)苯基)-9H-3,9'-咔(9-(4-(9H-carbazol-9-yl)phenyl)-9H- 3,9’-bicarbazole)、9-(3-(9H-咔唑-9-基)苯基)-9H-3,9'-二咔唑)(9-(3-(9H-carbazol- 9-yl)phenyl)-9H-3,9’- bicarbazole)和/或9-(6-(9H-咔唑-9-基)吡啶-3-基)-9H-3,9'-二咔唑(9-(6-(9H- carbazol-9-yl)pyridin-3-yl)-9H-3,9’-bicabazole)。
此外,僅當摻雜劑可以從主體接收單重態激子能量和三重態激子能量並且具有延遲的螢光特性時,摻雜劑不限於特定材料。作為一個示例,第一摻雜劑可以與有機化合物相同。在這種情況下,第一發光材料層362和激子能量控制層390都可以發射具有相同發光波長的光。
在另一個示例性實施方案中,摻雜劑可以是與有機化合物不同的延遲螢光材料。在這種情況下,摻雜劑可以發射具有與第一有機化合物基本相同的發光波長的光,或者從有機化合物發射具有不同發光波長的光。作為一個示例,摻雜劑可以是具有電子供體部分和電子受體部分的延遲光子材料。
作為一個示例,可用作第一發光材料層362中的摻雜劑的延遲光螢光材料可包括具有以下化學式4結構的任何一種。
化學式4
Figure 02_image019
Figure 02_image021
Figure 02_image023
Figure 02_image025
Figure 02_image027
Figure 02_image029
Figure 02_image031
Figure 02_image033
Figure 02_image035
Figure 02_image037
Figure 02_image039
Figure 02_image041
Figure 02_image043
Figure 02_image045
Figure 02_image047
Figure 02_image049
Figure 02_image051
在另一個示例性實施方案中,第一發光材料層362中的摻雜劑可包括但不限於10-(4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基)-9,9-二甲基-9,10-二氫吖啶(10-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-9,9-dimethyl-9,10-dihydroacridine ,DMAC-TRZ)、10,10' - (4,4'-磺醯基雙(4,1-亞苯基))雙(9,9-二甲基-9,10-二氫吖啶)(10,10’-(4,4’-sulfonylbis(4,1-phenylene))bis(9,9-dimethyl-9,10- dihyd roacridine),DMAC-DPS)、10-苯基-10H,10'H-螺[吖啶-9,9'-蒽] -10'-酮(10-phenyl-10H,10’H-spiro[acridine-9,9’-anthracen]-10’-one,ACRSA)、 3,6-二苯甲醯基-4,5-二(1-甲基-9-苯基-9H-咔唑基)-2-乙炔基芐腈(3,6-dibenzoyl- 4,5- di(1-methyl-9-phenyl-9H-carbazoyl)-2-ethynylbenzonitrile,Cz-VPN)、9,9',9“ - (5-(4,6-二苯基-1,3,5-三嗪-2-基)苯-1,2,3-三基)三(9H-咔唑)(9,9’,9”-(5-(4,6- diphenyl-1,3,5-triazin-2-yl)benzene-1,2,3-triyl) tris(9H-carbazole),TcZTrz)、9,9' - (5-(4,6-二苯基-1,3,5-三嗪-2-基)-1,3-亞苯基)雙(9H-咔唑)(9,9’-(5-(4,6- diphenyl-1,3,5-triazin-2-yl)-1,3-phenylene)bis(9H-carbazole),DczTrz)、9,9',9“,9”' - ((6-苯基-1,3,5-三嗪-2,4-二基)雙(苯5,3,1三基))四(9H-咔唑)(9,9’, 9”,9”’-((6-phenyl-1,3,5-triazin-2,4-diyl)bis(benzene-5,3,1-triyl))tetrakis(9H-carbazole),DDczTrz)、雙(4-(9H-3,9'-二咔唑-9-基)苯基)甲酮(bis(4-(9H-3,9’- bicarbazol-9-yl)phenyl)methanone,CC2BP)、9' -  [4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基] -3,3-“,6,6”四苯基-9,3':6',9“ -ter-9H-咔唑(9’-[4-(4,6-diphenyl- 1,3,5-triazin-2-yl)phenyl]-3,3”,6,6”-tetraphenyl-9,3’:6’,9”-ter-9H-carbazole,BDP CC-TPTA)、9' -  [4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基] -9,3':,6',9“ -  9 -9-咔唑(9’-[4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl]-9,3’:,6’,9”-ter-9H-carbazole,BCC-TPTA)、9,9' - (4,4'-磺醯基雙(4,1-亞苯基))雙(3,6-二甲氧基-9H-咔唑)(9,9’-(4,4’-sulfonylbis(4,1-phenylene))bis(3,6-dimethoxy-9H-carbazole),DMOC- DPS)、9-(4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基)-3',6'-二苯基-9H-3,9'-二咔唑(9-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-3’,6’-diphenyl-9H-3,9’-bicarbazol e ,DPCC-TPTA)、10-(4,6-二苯基-1,3,5-三嗪-2-基)-10H-吩嗪基(10-(4,6- diphenyl-1,3,5-triazin-2-yl)-10H-phenoxazine,Phen-TRZ)、9-(4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基)-9H-咔唑(9-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-9H- carbazole,Cab-Ph-TRZ)、1,2,3,5-四(3,6-咔唑-9-基)-4,6-二氰基苯(1,2,3,5-Tetrakis (3,6-carbazol-9-yl)-4,6-dicyanobenzene,4CzIPN)、2,3,4,6-四(9H-咔唑-9-基)-5-氟芐腈(2,3,4,6-tetra(9H-carbazol-9-yl)-5-fluorobenzonitrile,4CZFCN)、10-(4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基)-10H-螺[吖啶-9,9'-呫噸](10-(4-(4,6-diphenyl- 1,3,5-triazin-2-yl)phenyl)-10H-spiro[acridine-9,9'-xanthene])和/或10-(4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基)-10H-螺[吖啶-9,9'-芴](10-(4-(4,6-diphenyl-1,3,5 - triazin-2-yl)phenyl)-10H-spiro[acridine-9,9’-fluorene],SpiroAC-TRZ)。
當第一發光材料層362包括主體和摻雜劑時,第一發光材料層362可包括約1wt%至70wt%的摻雜劑,優選約10wt%至約50wt%,優選約20wt%至約50wt%。作為一個示例,第一發光材料層362可以層疊的厚度為但不限於約20nm至約100nm,優選約20nm至約50nm。
在上述第一實施例中,第一發光材料層362僅包括一種具有延遲螢光特性的摻雜劑,並且激子能量控制層390包括有機化合物。與該實施例不同,第一發光材料層可包括具有不同發光特性的多種摻雜劑。圖6是示出根據本發明另一示例性實施例的有機發光二極體的示意性剖視圖。如圖6所示,根據本發明第二實施例的有機發光二極體(OLED)300A包括:彼此面對的第一電極310和第二電極320,以及設置在第一電極310和第二電極320之間的光發射單元330a。
在一個示例性實施例中,作為發射層的光發射單元330a包括電洞注入層340、電洞傳輸層350、發光材料層360a、電子傳輸層370和電子注入層380,每個都依序地層疊在第一電極310上。光發射單元330a還可包括設置在電洞傳輸層350和發光材料層360a之間的電子阻擋層355和/或設置在發光材料層360a和電子傳輸層370之間的電洞阻擋層375。有機發光二極體300A中的光發射單元330a可以具有與第一實施例中的光發射單元330基本相同的結構和相同的材料。
發光材料層360a包括第一發光材料層362a和與第一發光材料層362a相鄰設置的激子能量控制層(EEL)390。第一發光材料層362a包括主體、第一摻雜劑和第二摻雜劑。作為一個示例,延遲螢光材料可用作第一摻雜劑(T摻雜劑),且螢光或磷光材料可用作第二摻雜劑(F摻雜劑)。激子能量控制層390可包括具有化學式1至3中任何一種結構的有機化合物。或者,第一摻雜劑可與有機化合物相同。
當發光材料層僅包含具有延遲螢光性質的摻雜劑時,發光材料層可以實現高內部量子效率作為包括重金屬的相關技術磷光材料,因為理論上摻雜劑可以表現出100%的內部量子效率。然而,由於電子受體和電子供體之間的鍵形成以及延遲光光材料內的空間扭曲,由此引起了延遲螢光材料內的額外電荷轉移躍遷(CT躍遷),並且延遲螢光材料具有各種幾何。結果,延遲螢光材料顯示在發射過程中具有非常寬的FWHM(半峰全寬)的發射光譜,這導致差的色純度。此外,延遲螢光材料利用三重激子能量以及發光過程中的單重態激子能量,在其分子結構內旋轉每個部分,這導致扭曲的內部電荷轉移(twisted internal charge transfer,TICT)。結果,由於延遲光纖材料之間的分子鍵合力的減弱,可以減少僅包括延遲螢光材料的有機發光二極體的發光壽命。
在第二實施例中,第一發光材料層362a還包括第二摻雜劑,在僅使用延遲螢光材料的情況下,為了防止色純度和發光壽命降低,第二摻雜劑可以是螢光或磷光材料。分別可以是延遲光子材料的第一摻雜劑(T摻雜劑)和有機化合物的三重態激子能量通過RISC機制轉換為其自身的單重態激子能量,然後在第一發光材料層362a中通過Dexter能量傳遞機制和FRET能量傳遞機制,第一摻雜劑和有機化合物的每個轉換的單重態激子能量都可以轉移到可以是螢光或磷光材料的第二摻雜劑(F摻雜劑)。
當第一發光材料層362a包括主體時,具有延遲螢光特性的第一摻雜劑(T摻雜劑)和為螢光或磷光材料的第二摻雜劑(F摻雜劑),有必要適當調整包括有機化合物在內的那些發光材料的能階。圖7是示出根據本發明另一示例性實施例的發光材料中的能階帶隙的發光機制的示意圖。第一摻雜劑(T摻雜劑)和有機化合物的單重激發態能階S1 TD 和S1 ED 和三重激發態能階T1 TD 和T1 ED 之間的每個能階帶隙可以等於或小於約0.3 eV以實現延遲螢光。
主體的單重激發態能階S1 H 和三重激發態能階T1 H 均應分別高於第一摻雜劑和有機化合物的每個單重激發態能階S1 TD 和S1 ED 以及三重激發態能階T1 TD 和T1 ED 。作為一個示例,主體的三重激發態能階T1 H 可以比第一摻雜劑和有機化合物的三重激發態能階T1 TD 和T1 ED 中的每一個高至少約0.2eV。另外,第一摻雜劑和有機化合物的三重激發態能階T1 TD 和T1 ED 均高於第二摻雜劑的三重激發態能階T1 FD 。在一個替代實施例中,第一摻雜劑和有機化合物的單重激發態能階S1 TD 和S1 ED 中的每一個  可以高於作為螢光材料的第二摻雜劑的單重激發態能階S1 FD
此外,主體的HOMO能階(HOMOH )與第一摻雜劑的HOMO能階(HOMOTD )之間的能階帶隙(| HOMOH - HOMOTD |),或者主體的LUMO能階(LUMOH )與第一摻雜劑的LUMO能階(LUMOTD )之間的能階帶隙(| LUMOH - LUMOTD |)可以等於或小於約0.5eV。此外,主體的HOMO能階(HOMOH )與有機化合物的HOMO能階(HOMOED )之間的能階帶隙(| HOMOH - HOMOED |),或者主體的LUMO能階(LUMOH )與有機化合物的LUMO能階(LUMOED )之間的能階帶隙(| LUMOH - LUMOED |)可以等於或小於約0.2eV。
激子能量應該從延遲螢光材料的第一摻雜劑和有機化合物轉移到螢光或磷光材料的第二摻雜劑以實現超螢光。關於從延遲光光材料到螢光或磷光材料的能量轉移效率,可以考慮延遲光光材料的發射光譜與螢光或磷光材料的吸收光譜之間的重疊。作為一個示例,在寬的重疊區域具有吸收光譜的一種螢光或磷光材料,相對於作為延遲螢光材料的第一摻雜劑和有機化合物的發射光譜可以用作第二摻雜劑。
激子能量控制層390中的有機化合物可包括但不限於具有如上所述的化學式1至3的結構的任何化合物。第一發光材料層362a中的主體可包括但不限於mCP-CN、CBP、mCBP、mCP、DPEPO、PPT、TmPyPB、PYD-2Cz、DCzDBT、DCzT PA、pCzB-2CN、mCzB-2CN、TSPO1、CCP、4-(3-(三亞苯基-2-基)苯基)二苯並[b,d]噻吩(4-(3-(triphenylen-2-yl)phenyl)dibenzo [b,d]thiophene)、9-(4-(9H-咔唑-9-基)苯基)-9H-3,9'-二咔唑(9-(4-(9H- carbazol-9-yl)phenyl)- 9H- 3,9’-bicarbazole)、9-(3-(9H-咔唑-9-基)苯基)-9H-3,9'-二咔唑)(9-(3-(9H- carbazol-9-yl)phenyl)-9H-3,9’-bicarbazole))和/或9-(6-(9H-咔唑-9-基)吡啶-3-基)-9H-3,9'-二咔唑(9-(6-(9H-carbazol-9-yl)pyridin-3-yl)- 9H-3,9’-bicabazole)。
在一個示例性實施方案中,第一摻雜劑可與有機化合物相同。在另一個示例性實施方案中,第一摻雜劑可包括但不限於具有化學式4結構的任何一種。在又一個示例性實施方案中,第一摻雜劑可包括但不限於DMAC-TRZ、DMAC-DPS、ACRSA、Cz-VPN、TcZTrz、DczTrz、DDczTrz、CC2BP、BD PCC-TPTA、BCC-TPTA、DMOC-DPS、DPCC-TPTA、Phen-TRZ、Cab-Ph- TRZ、4CzIPN、4CZFCN、10-(4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基)-10H-螺[吖啶-9,9'-呫噸](10-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-10H- spiro [acridine-9,9'-xanthene])和/或SpiroAC-TRZ。
在一個示例性實施方案中,作為第二摻雜劑的螢光材料可具有但不限於喹啉 - 吖啶核(喹啉 - 吖啶核)。作為一個示例,具有喹啉 - 吖啶核的第二摻雜劑可包括5,12-二甲基喹啉[2,3-b]吖啶-7,14(5H,12H) - 二酮(5,12- dimethylquinolino[2,3-b]acridine-7,14(5H ,12H )-dione)(S1:2.3eV;T1:2.0eV;LUMO:-3.0eV;HOMO:-5.4eV)、5,12-二乙基喹啉[2,3-b]吖啶-7,14(5H,12H) - 二酮(5,12-diethylquinolino[2,3-b]acridine-7,14(5H ,12H )-dione)(S1:2.3eV;T1:2.2eV;LUMO:-3.0eV;HOMO:-5.4eV)、5,12-二丁基-3,10-二氟喹啉[2,3-b]吖啶-7,14(5H,12H) - 二酮(5,12-dibutyl-3,10-difluoroquinolino [2,3-b]acridine- 7,14(5H ,12H )-dione)(S1:2.2eV;T1:2.0eV;LUMO:-3.1eV;HOMO:-5.5eV)、5,12-二丁基-3,10-雙(三氟甲基)喹啉[2,3-b]吖啶-7,14(5H,12H) - 二酮(5,12-dibutyl-3,10-bis(trifluoromethyl)quinolino[2,3-b]acridine-7,14(5H ,12H )- dione)(S1:2.2eV;T1:2.0eV;LUMO:-3.1eV;HOMO:-5.5eV)、5,12-二丁基-2,3,9,10-四氟喹啉[2,3-b]吖啶-7,14(5H,12H) - 二酮(5,12-dibutyl- 2,3,9,10-tetrafluoroquinolino[2,3-b]acridine-7,14(5H ,12H )-dione)(S1:2.0eV;T1:1.8eV;LUMO:-3.3eV;HOMO:-5.5eV)。
此外,作為第二摻雜劑的螢光材料可包括但不限於1,1,7,7-四甲基-2,3,6,7-四氫-1H,5H-苯並[IJ]喹嗪-9-基)乙烯基] -4H-吡喃-4-亞基}丙二腈(1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H-benzo[ij]quinolizin-9-yl)ethenyl]-4H-pyran-4-ylidene}propanedinitrile,DCJTB;S1:2.3eV;T1:1.9eV;LUMO:-3.1eV;HOMO:-5.3eV)。此外,可以發出紅色、綠色或藍色光的金屬絡合物可用作第二摻雜劑。
在一個示例性實施例中,主體的重量比可以大於第一發光材料層362a中第一摻雜劑和第二摻雜劑的重量比,且第一摻雜劑的重量比可以大於第二摻雜劑的重量比的重量比。在另一個實施例中,主體的重量比大於第一摻雜劑的重量比,且第一摻雜劑的重量比大於第二摻雜劑的重量比。當第一摻雜劑的重量比大於第二摻雜劑的重量比時,通過Dexter能量轉換機制,激發能量可以從第一摻雜劑轉移到第二摻雜劑。作為一個示例,第一發光材料層362a包含約60wt%至約75wt%的主體,第一摻雜劑為約20wt%至約40wt%,且第二摻雜劑為約0.1wt%至約5wt%。
在以上實施例中,有機發光二極體包括與一個發光材料層相鄰設置的激子能量控制層。與那些實施例不同,激子能量控制層可以設置在兩個發光材料層之間。圖8是示出根據本發明另一示例性實施例的有機發光二極體的示意性剖視圖。
如圖8所示,根據本發明第三實施例的有機發光顯示裝置400包括彼此面對的第一電極410和第二電極420以及設置在第一電極410和第二電極420之間的光發射單元430。在一個示例性實施例中,光發射單元430包括電洞注入層440、電洞傳輸層450、發光材料層460、電子傳輸層470和電子注入層480,每個都依序地層疊在第一電極410上。光發射單元430還可包括第一激子阻擋層(即,設置在電洞傳輸層450和發光材料層460之間的電子阻擋層455)和/或第二激子阻擋層(即設置在發光材料層460和電子傳輸層470之間的電洞阻擋層475)。
如上所述,第一電極410可以是陽極,並且可以包括但不限於具有相對大的功函數值的導電材料,例如ITO、IZO、SnO、ZnO、ICO、AZO、 等等。第二電極420可以是陰極,並且可以包括但不限於具有相對小的功函數值的導電材料,例如鋁(Al)、鎂(Mg)、鈣(Ca)、銀(Ag),其合金或其組合。
電洞注入層440設置在第一電極410和電洞傳輸層450之間。電洞注入層440可包括但不限於MTDATA、NATA、1T-NATA、2T-NATA、CuPc、TCTA、NPB(NPD)、HAT-CN、TDAPB、PEDOT / PSS和/或N-(聯苯-4-基)-9,9-二甲基-N-(4-(9-苯基-9H-咔唑-3-基)苯基)-9H-芴-2-胺(N-(biphenyl-4-yl)-9,9- dimethyl-N-(4-(9-phenyl-9H-carbazol-3-yl)phenyl) -9H- fluoren-2-amine)。可以根據有機發光二極體400的結構省略電洞注入層440。
電洞傳輸層450與第一電極410和發光材料層460之間的發光材料層460相鄰地設置。電洞傳輸層450可包括但不限於芳族胺化合物,例如TPD、NPD(NPB)、CBP、聚-TPD、TFB、TAPC、DCDPA、N-(聯苯-4-基)-9,9-二甲基-N-(4-(9-苯基-9H-咔唑-3-基)苯基)-9H-芴-2-胺(N-(biphenyl-4-yl)- 9,9-dimethyl-N- (4-(9- phenyl-9H-carbazol-3-yl)phenyl)-9H-fluoren-2-amine)和/或N-(聯苯-4-基)-N-(4-(9-苯基-9H-咔唑-3-基)苯基)聯苯-4-胺(N-(biphenyl- 4-yl)-N-(4-(9-phenyl-9H- carbazol-3-yl)phenyl)biphenyl-4-amine)。
發光材料層460包括第一發光材料層(EML1)462、激子能量控制層(EEL)490和第二發光材料層(EML2)464。第一發光材料層462與電子阻擋層455相鄰設置,且第一發光材料層462包括第一主體和第一摻雜劑。激子能量控制層490設置在第一發光材料層462和電洞阻擋層475之間,即與第一發光材料層462相鄰設置並包括有機化合物(激子摻雜劑)。第二發光材料層464設置在激子能量控制層490和電洞阻擋層475之間,且第二發光材料層464包括第二主體和第二摻雜劑。在一個示例性實施方案中,在第一摻雜劑、有機化合物和第二摻雜劑中發生顯著的光發射。在另一個實施例中,在第二摻雜劑中發生了大量的光發射。發光材料層460中的配置和能階將在下面更詳細地解釋。
電子傳輸層470設置在發光材料層460和電子注入層480之間。在一個示例性實施例中,電子傳輸層470可包括但不限於惡二唑類化合物(oxadiazole-based compounds)、三唑類化合物(triazole-based compounds)、菲咯啉類化合物(phenanthroline- based compounds)、苯並噁唑類化合物(benzoxazole-based compounds)、苯並噻唑類化合物(benzothiazole-based compounds)、苯並咪唑類化合物(benzimi dazole-based compounds)、三嗪類化合物(triazine-based compounds)等。作為一個示例,電子傳輸層470可包括但不限於Alq3 、PBD、螺-PBD、Liq、TPBi、BAlq、Bphen、NBphen、BCP、TAZ、NTAZ、TpPyPB、TmPPPyTz、PFNBr、TPQ、TSPO1和/或2- [4-(9,10-二-2-萘基-2-蒽基)苯基] -1-苯基-1H-苯並咪唑(2-[4- (9,10-di-2-naphthalenyl-2- anthracenyl)phenyl]-1-phenyl-1H-benzimidazole)。
電子注入層480設置在第二電極420和電子傳輸層470之間。在一個示例性實施例中,電子注入層480可包括但不限於鹼金屬鹵化物,例如LiF、CsF、NaF、BaF2 等,和/或有機金屬化合物,例如苯甲酸鋰(lithium benzoate)、硬脂酸鈉等。
電子阻擋層455可包括但不限於TCTA、三[4-(二乙基氨基)苯基]胺(Tris[4-(diethylamino)phenyl]amine)、N-(聯苯-4-基)-9,9-二甲基-N-(4-(9-苯基-9H-咔唑-3-基)苯基)-9H-芴-2-胺(N-(biphenyl-4-yl)-9,9-dimethyl-N- (4-(9- phenyl-9H-carbazol-3-yl)phenyl)-9H-fluorene-2-amine)、TAPC、MTDATA、mCP、mCBP、CuPc、DNTPD、TDAPB、DCDPA、2,8-雙(9- phneyl-9H-咔唑-3-基)二苯並[b,d]噻吩(2,8-bis(9-phneyl-9H-carbazol-3-yl)dibenzo[b,d]thiophene)和/或3,6-雙(N-咔唑基)-N-苯基 - 咔唑。
電洞阻擋層475可包括但不限於惡二唑類化合物(oxadiazole- based compounds)、三唑類化合物(triazole-based compounds)、菲咯啉類化合物(phenanthroline-based compounds)、苯並噁唑類化合物(benzoxazole-based compounds)、苯並噻唑類化合物(benzothiazole-based compounds)、苯並咪唑類化合物(benzimidazole-based compounds)、三嗪類化合物(triazine-based compounds)等。作為一個示例,與發光材料層460中的發光材料相比,電洞阻擋層475可包括具有相對低的HOMO能階的化合物。電洞阻擋層475可包括但不限於BCP、BAlq、Alq3 、PBD、螺-PBD、Liq、B3PYMPM、DPEPO、TSPO1、9-(6-(9H-咔唑-9-基)吡啶-3-基)-9H-3,9'-咔及其組合。
如上所述,發光材料層460包括具有第一主體和第一摻雜劑的第一發光材料層462、具有第二主體和第二摻雜劑的第二發光材料層464以及設置在第一發光材料層462和第二發光材料層464之間並包括有機化合物的激子能量控制層490。在一個示例性實施例中,第一摻雜劑和第二摻雜劑中的每一個可以是延遲螢光材料。換句話說,第一摻雜劑可以是第一延遲螢光摻雜劑(T摻雜劑1),且第二摻雜劑可以是第二延遲螢光摻雜劑(T摻雜劑2)。為了實現高發光效率和長發光壽命,需要在包括有機化合物(激子摻雜劑)的發光材料中適當地調節能階。
圖9是示出根據本發明另一示例性實施例的發光材料中的能階帶隙的發光機制的示意圖。在本實施例中,第一主體和第二主體的單重激發態能階S1 H1 和S1 H2 以及三重激發態能階T1 H1 和T1 H2 中的每一個應分別高於第一摻雜劑和第二摻雜劑的單重激發態能階S1 TD1 和S1 TD2 以及三重激發態能階T1 TD 1 和T1 TD2 各自具有延遲螢光特性,第一主體和第二主體都分別包含在第一發光材料層462和第二發光材料層464中。更明確來說,第一主體和第二主體的單重激發態能階S1 H1 和S1 H2 皆高於第一摻雜劑和第二摻雜劑的單重激發態能階S1 TD1 和S1 TD2 ,第一主體和第二主體的三重激發態能階T1 H1 和T1 H2 皆高於第一摻雜劑和第二摻雜劑的三重激發態能階T1 TD1 和T1 TD2
此外,第一主體和第二主體的每個單重激發態能階S1 H1 和S1 H2 以及三重激發態能階T1 H1 和T1 H2 應該高於激子能量控制層490中分別具有延遲螢光特性的有機化合物(激子摻雜劑)的單重激發態能階S1 ED 和三重激發態能階T1 ED 。更明確來說,第一主體和第二主體的單重激發態能階S1 H1 和S1 H2 皆高於EEL490中有機化合物的單重激發態能階S1 ED ,第一主體和第二主體的三重激發態能階T1 H1 和T1 H2 皆高於EEL490中有機化合物的三重激發態能階T1 ED 。如果主體、摻雜劑和有機化合物之間的單重態能階和三重態能階不滿足上述要求,第一摻雜劑和第二摻雜劑和有機化合物的單重激發態能階S1 TD1 、S1 TD2 和S1 ED 的激子可以反向轉移到第一主體和第二主體的單重激發態能階S1 H1 和S1 H2 ,或者,第一摻雜劑和第二摻雜劑和有機化合物的三重態能階T1 TD1 、T1 TD2 和T1 ED 的激子可以反向轉移到第一主體和第二主體的三重激發態能階T1 H1 和T1 H2 。結果,第一摻雜劑和第二摻雜劑和有機化合物的三重態激子不能有助於發光。
此外,第一主體和第二主體的HOMO能階(HOMOH1 和HOMOH2 )與第一摻雜劑和第二摻雜劑的HOMO能階(HOMOTD1 和HOMOTD2 )之間的能階帶隙(| HOMOH - HOMOTD |),或第一主體和第二主體的LUMO能階(LUMOH1 和LUMOH2 )與第一摻雜劑和第二摻雜劑的LUMO能階(LUMOTD1 和LUMOTD2 )之間的能階帶隙(| LUMOH - LUMOTD |)可以等於或小於約0.5eV。此外,第一主體和第二主體的HOMO能階(HOMOH1 和HOMOH2 )與有機化合物的HOMO能階(HOMOED )之間的能階帶隙(| HOMOH - HOMOED |),或第一主體和第二主體的LUMO能階(LUMOH1 和LUMOH2 )與有機化合物的LUMO能階(LUMOED )之間的能階帶隙(| LUMOH - LUMOED |)可以等於或小於約0.2eV。
單重激發態能階S1 H1 和S1 H2 處的激子能量和第一主體和第二主體的三重激發態能階T1 H1 和T1 H2 處的激子能量,在相同的第一發光材料層462和第二發光材料層464中被分別轉移到第一摻雜劑和第二摻雜劑的單重激發態能階S1 TD1 和S1 TD2 以及三重激發態能階T1 TD1 和T1 TD2 中,每個激子能量包括在第一發光材料層462和第二發光材料層464中。更明確來說,在第一發光材料層462中,單重激發態能階S1 H1 處和第一主體的三重激發態能階T1 H1 處的激子能量被分別轉移到第一摻雜劑的單重激發態能階S1 TD1 以及三重激發態能階T1 TD1 ,單重激發態能階S1 H1 處和二主體的三重激發態能階T1 H2 處的激子能量被分別轉移到第二摻雜劑的單重激發態能階S1 TD 2 以及三重激發態能階T1 TD 2 。三重激發態能階T1 TD1 和T1 TD2 的每個激子能量通過RISC機制傳遞給它自己的單重激發態能階S1 TD1 和S1 TD2 中的每一個,然後第一摻雜劑和第二摻雜劑的單重激發態能階S1 TD1 和S1 TD2 的每個激子能量隨著發光而下降到基態。
一部分激子能量存在於單重激發態能階S1 H1 和S1 H2 或第一主體和第二主體的三重激發態能階T1 H1 和T1 H2 ,而不被轉移到第一摻雜劑和第二摻雜劑。此部分激子能量可以轉移到激子能量控制層390中的有機化合物的單重激發態能階S1 ED 或三重激發態能階T1 ED 中,其中激子能量控制層390與第一發光材料層462和第二發光材料層464相鄰設置。結果,可以最小化由累積的主體激子和外圍極化子之間的相互作用引起的激子猝滅,並且可以防止由於激子淬火過程中的電氧化和光氧化導致的有機發光二極體的壽命減少。
包含在激子能量控制層490中的有機化合物包括具有化學式1至3中任一結構的任何化合物。作為一個示例,有機化合物可以是延遲螢光材料。作為一個示例,激子能量控制層490可以層疊的厚度為,但不限於約1 nm至10nm,並且優選約1 nm至約5nm。
在第一發光材料層462和第二發光材料層464中的第一主體和第二主體中的每一個可以獨立地包括但不限於pCzB-2CN、mCzB-2CN、TSPO1、CCP、4-(3-(三亞苯基-2-基)苯基)二苯並[b,d]噻吩、9-(4-(9H-咔唑-9-基)苯基)-9H-3,9'-二咔唑、9-(3-(9H-咔唑-9-基)苯基)-9H-3,9'-二咔唑)和/或9-(6-(9H-咔唑-9-基)吡啶-3-基)-9H-3,9'-二咔唑。
在一個示例性實施方案中,第一摻雜劑和第二摻雜劑中的每一個可與有機化合物相同。在另一個示例性實施方案中,第一摻雜劑和第二摻雜劑中的每一個可獨立地包括但不限於具有化學式4結構的任何一種。在又一示例性實施例中,第一摻雜劑和第二摻雜劑中的每一個可獨立地包括但不限於DM AC-TRZ、DMAC-DPS、ACRSA、Cz-VPN、TcZTrz、DczTrz、DDczTrz、CC2 BP、BDPCC-TPTA、BCC-TPTA、DMOC-DPS、DPCC-TPTA、Phen-TRZ、Cab-Ph-TRZ、4CzIPN、4CZFCN、10-(4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基)-10H-螺[吖啶-9,9'-呫噸]和/或SpiroAC-TRZ。
在一個示例性實施方案中,第一發光材料層462和第二發光材料層464中的每一個可包括約1wt%至70wt%的第一摻雜劑和第二摻雜劑中的每一種,優選分別為約10wt%至約50wt%,更優選約20wt%至約50wt%。
在一個實施例中,第一發光材料層462可具有與第二發光材料層464基本相同的厚度。作為一個示例,第一發光材料層462和第二發光材料層464中的每一個可以層疊的厚度為但不限於約5nm至約100nm,優選約10nm至約50nm,更優選約10 nm至約30nm。
在又一示例性實施例中,第一發光材料層462可具有與第二發光材料層464不同的厚度。作為一個示例,第一發光材料層462的厚度可以是第二發光材料層464的約1.5至約2.5倍。在這種情況下,第一發光材料層462可以層疊的厚度為,但不限於,約10nm至約100nm,並且優選約15nm至約50nm,且第二發光材料層464可以層疊的厚度為但不限於約5 nm至約50nm,優選約5 nm至20nm。或者,第二發光材料層464的厚度可以是第一發光材料層462的約1.5至約2.5倍。在這種情況下,第二發光材料層464可以層疊的厚度為,但不限於,約10nm至約100nm,並且優選約15nm至約50nm,且第一發光材料層462可以層疊的厚度為但不限於約5nm至約50nm,優選約5nm至20nm。
在圖9中,第一發光材料層462和第二發光材料層464中的每一個包括第一摻雜劑和第二摻雜劑,其中第一摻雜劑和第二摻雜劑每一個都是延遲螢光材料。雖然延遲螢光材料具有優異的發光效率,但由於其寬的FWHM及其額外的CT特性,其色純度和發光壽命較差。
在另一個示例性實施例中,第一發光材料層462和第二發光材料層464中的一個包括作為延遲光光材料的第一摻雜劑(T摻雜劑),且第一發光材料層462和第二發光材料層464中的另一個包括作為螢光或磷光摻雜劑的第二摻雜劑(F摻雜劑)。在下文中將更詳細地解釋發光材料層發光材料層460,其中第一發光材料層462包括第一主體和作為延遲螢光材料的第一摻雜劑,而第二發光材料層464包括第二主體和作為螢光或磷光材料的第二摻雜劑。
圖10是示出根據本發明另一示例性實施例的發光材料中的能階帶隙的發光機制的示意圖。如上所述,第一發光材料層462包括作為延遲光光材料的第一摻雜劑(T摻雜劑)。作為一個示例,第一摻雜劑可以是與激子能量控制層490中的有機化合物(激子摻雜劑)相同的材料。或者,第一摻雜劑可包括但不限於具有化學式4結構的任何一種。在又一個示例性實施方案中,第一摻雜劑可包括但不限於DMAC-TRZ、DMAC-DPS、ACRSA、Cz-VPN、TcZTrz、DczTrz、DDczTrz、CC2BP、BDPCC-TPTA、BCC-TPTA、DMOC- DPS、DPCC-TPTA、Phen- TRZ、Cab-Ph-TRZ、4CzIPN、4CZFCN、10-(4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基)-10H-螺[吖啶-9,9'-呫噸](10-(4-(4,6-diphenyl- 1,3,5-triazin-2-yl)phenyl) -10H -spiro[acridine-9,9'-xanthene])和/或SpiroAC-TRZ。由於第一摻雜劑的三重激發態能階T1 TD 與單重激發態能階S1 TD 之間的能階帶隙ΔEST TD 非常低,即等於或小於約0.3eV(參見圖3),第一摻雜劑的三重激發態能階T1 TD 的激子能量通過RISC機制轉換為單重激發態能階S1 TD
此外,由於有機化合物的三重激發態能階T1 ED 與單重激發態能階S1 ED 之間的能階帶隙ΔEST ED 非常低,即等於或小於約0.3eV(參見圖3),激子能量控制層490中有機化合物的三重激發態能階T1 ED 的激子能量通過RISC機制轉換為單重激發態能階S1 ED 。雖然作為延遲螢光材料的第一摻雜劑和有機化合物顯示出高量子效率,但由於它們的寬FWHM,它們的色純度差。
相反,第二發光材料層464包括第二主體和作為螢光或磷光材料的第二摻雜劑。雖然作為螢光或磷光材料的第二摻雜劑由於窄FWHM而在色純度方面具有優勢,但是因為它的三重態激子不能參與發光過程,它的量子效率是有限的。
然而,在該示例性實施例中,分別相對於第一發光材料層462中的第一摻雜劑和激子能量控制層490中的有機化合物的單重態激子能量和三重態激子能量可以通過FRET機制轉移到與第一發光材料層462或激子能量控制層490相鄰設置的第二發光材料層464中的第二摻雜劑,並且第二摻雜劑可以是螢光或磷光材料。第一摻雜劑和有機化合物每個都具有延遲螢光特性。因此,最終發射發生在第二發光材料層464內的第二摻雜劑中。
換句話說,第一發光材料層462中的第一摻雜劑和激子能量控制層490中的有機化合物的三重態激子能量T1 TD 和T1 ED 中的每一個都是通過RISC機制向上轉換到它們自己的單重態激子能量S1 TD 和S1 ED 中的每一個。由於第一摻雜劑和有機化合物的每個單重激發態能階S1 TD 和S1 ED 高於第二發光材料層464中第二摻雜劑的單重激發態能階S1 FD ,第一摻雜劑和有機化合物的轉換單重態激子能量S1 TD 和S1 ED 被轉移到第二摻雜劑的單重態能階S1 FD 。第二發光材料層464中的第二摻雜劑可以使用三重態激子能量以及單重態激子能量發光。
當作為在第一發光材料層462中的第一摻雜劑和激子能量控制層490中的有機化合物產生的激子能量轉移到第二發光材料層464中的第二摻雜劑時,可以實現超螢光。在這種情況下,第一摻雜劑和有機化合物僅用作向第二摻雜劑傳遞能量。在第二發光材料層464中發生了大量的光發射,第二發光材料層464包括具有螢光或磷光材料並且具有窄的FWHM的第二摻雜劑。因此,有機發光顯示裝置400可以由於窄的FWHM而提高其量子效率並改善其色純度。
第一發光材料層462和第二發光材料層464分別包括第一主體和第二主體。在第一主體和第二主體產生的激子能量應該預先轉移到作為延遲螢光材料的第一摻雜劑,以便引發光發射。為了進行這樣的發光,第一主體和第二主體的單重激發態能階S1 H1 和S1 H2 以及三重激發態能階T1 H1 和T1 H2 應分別高於第一摻雜劑和有機化合物的單重激發態能階S1 TD 和S1 ED 以及三重激發態能階T1 TD 和T1 ED 。更明確來說,第一主體和第二主體的單重激發態能階S1 H1 和S1 H2 應高於第一摻雜劑和有機化合物的單重激發態能階S1 TD 和S1 ED ,第一主體和第二主體的三重激發態能階T1 H1 和T1 H2 應高於第一摻雜劑和有機化合物的三重激發態能階T1 TD 和T1 ED
例如,當第一主體和第二主體的每個三重激發態能階T1 H1 和T1 H2 不足夠高於第一摻雜劑的三重激發態能階T1 TD 時,第一摻雜劑的三重態激子可以反向轉移到第一主體和第二主體的三重激發態能階T1 H1 和T1 H2 ,第一主體和第二主體不能利用三重激子能量。因此,第一摻雜劑的三重態能階T1 TD 的激子可以作為非發射猝滅,並且第一摻雜劑的三重態激子不能參與發射。作為一個示例,第一主體和第二主體的三重激發態能階T1 H1 和T1 H2 可以比第一摻雜劑和有機化合物的三重激發態能階T1 TD 和T1 ED 高至少約0.2eV。
第二主體的單重激發態能階S1 H2 高於第二摻雜劑的單重激發態能階S1 FD 。在這種情況下,在第二主體產生的單重態激子能量可以轉移到第二摻雜劑的單重激發態能階S1 FD
此外,發光材料層460必須具有高發光效率和色純度,以及有效地從第一摻雜劑和有機化合物轉移激子能量,每個激子能量都通過RISC機制轉換為ICT複合態,在第一發光材料層462和激子能量控制層490中轉換為第二發光材料層464中的螢光或磷光材料的第二摻雜劑。為了實現這樣的有機發光顯示裝置400,第一摻雜劑和有機化合物的三重激發態能階T1 TD 和T1 ED 均高於第二摻雜劑的三重激發態能階T1 FD 。在一個示例性實施例中,第一摻雜劑和有機化合物的單重激發態能階S1 TD 和S1 ED 中的每一個可以高於作為螢光材料的第二摻雜劑的單重激發態能階S1 FD
此外,第一主體的HOMO能階(HOMOH1 )與第一摻雜劑的HOMO能階(HOMOTD )之間的能階帶隙(| HOMOH1 -HOMOTD |),或者,第一主體的LUMO能階(LUMOH1 )與第一摻雜劑的LUMO能階(LUMOTD )之間的能階帶隙(| LUMOH1 - LUMOTD |)可以等於或小於約0.5eV。此外,第一主體和第二主體的HOMO能階(HOMOH1 和HOMOH2 )與有機化合物的HOMO能階(HOMOED )之間的能階帶隙(| HOMOH - HOMOED |)。或者,第一主體和第二主體的LUMO能階(LUMOH1 和LUMOH2 )與有機化合物的LUMO能階(LUMOED )之間的能階帶隙(|LUMOH - LUMOED |)可以等於或小於約 0.2 eV。
當發光材料不滿足如上所述的所需能階時,激子能量在第一摻雜劑和第二摻雜劑處被猝滅,或者激子能量不能有效地從主體轉移到摻雜劑,因此有機發光顯示裝置400的量子效率降低。
激子能量控制層490中的有機化合物可包括但不限於具有如上所述的化學式1至3的結構的任何化合物。有機化合物可具有延遲螢光特性。
第一發光材料層462中的第一主體和第二發光材料層464中的第二主體可以彼此相同或不同。作為一個示例,第一主體和第二主體各自可以獨立地包括但不限於mCP-CN、CBP、mCBP、mCP、DPEPO、PPT、TmPyPB、PYD- 2Cz、DCzDBT、DCzTPA、pCzB-2CN、mCzB-2CN、TSPO1、CCP、4-(3-(三亞苯基-2-基)苯基)二苯並[b,d]噻吩、9-(4-(9H-咔唑-9-基)苯基)-9H-3,9'-二咔唑、9-(3-(9H-咔唑-9-基)苯基)-9H-3,9'-二咔唑)和/或 9-(6-(9H-咔唑-9-基)吡啶-3-基)-9H-3,9'-二咔唑。
在一個示例性實施方案中,第一發光材料層462中的第一摻雜劑可以與有機化合物相同。在另一個示例性實施方案中,第一摻雜劑可包括但不限於具有化學式4結構的任何一種。在又一個示例性實施方案中,第一摻雜劑可包括但不限於DMAC-TRZ、DMAC-DPS、ACRSA、Cz-VPN、TcZTrz、DczTrz、DD czTrz、CC2BP、BDPCC-TPTA、BCC-TPTA、DMOC-DPS、DPCC-TPTA、Phen-TRZ、Cab-Ph-TRZ、4CzIPN、4CZFCN、10-(4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基)-10H-螺[吖啶-9,9'-呫噸](10-(4-(4,6-diphenyl-1,3,5- triazin-2-yl) phenyl) -10H-spiro[acridine-9,9'-xanthene])和/或SpiroAC-TRZ。
第二發光材料層464中的第二摻雜劑可以具有窄的FWHM並且具有與第一摻雜劑和有機化合物的吸收光譜具有大的重疊面積的發光光譜。作為一個示例,第二摻雜劑可包括但不限於具有喹啉 - 吖啶核的有機化合物,喹啉 - 吖啶核例如5,12-二甲基喹啉[2,3-b]吖啶-7,14(5H,12H) - 二酮、5,12-二乙基喹啉[2,3-b]吖啶-7,14(5H,12H) - 二酮、5,12-二丁基-3,10-二氟喹啉[2,3-b]吖啶-7,14(5H,12H) - 二酮、5,12-二丁基-3,10-雙(三氟甲基)喹啉[2,3-b]吖啶-7,14(5H,12H) - 二酮、5,12-二丁基-2,3,9,10-四氟喹啉[2,3-b]吖啶-7,14(5H,12H) - 二酮、DCJTB 以及任何能發出紅色、綠色或藍色光的金屬配合物。
在一個示例性實施例中,第一發光材料層462或第二發光材料層464中的第一主體和第二主體中的每一個可具有重量比分別等於或大於相同的第一發光材料層462和第二發光材料層464中的第一摻雜劑和第二摻雜劑。另外,第一發光材料層462中第一摻雜劑的重量比可以大於第二發光材料層464中第二摻雜劑的重量比。在這種情況下,可以將足夠的能量從第一發光材料層462中的第一摻雜劑轉移到第二發光材料層464中的第二摻雜劑。
第一發光材料層462可包括約1wt%至約70wt%,優選約10wt%至約50wt%,更優選約20wt%至約50wt%的第一摻雜劑。第二主體的重量比可以大於第二發光材料層464中第二摻雜劑的重量比。作為一個示例,第二發光材料層464可包括約90wt%至約99wt%,優選約95wt%至約99wt%的第二主體,且第二摻雜劑為約1wt%至約10wt%,優選約1wt%至約5wt%。
在一個實施例中,第一發光材料層462可具有與第二發光材料層464基本相同的厚度。作為一個示例,第一發光材料層462和第二發光材料層464中的每一個可以層疊的厚度為但不限於約5 nm至約100nm,優選約10至約50nm,更優選約10 nm至約30nm。
在又一示例性實施例中,第一發光材料層462可具有與第二發光材料層464不同的厚度。作為一個示例,第一發光材料層462的厚度可以是第二發光材料層464的約1.5至約2.5倍。在這種情況下,第一發光材料層462可以層疊的厚度為,但不限於,約10nm至約100nm,並且優選約15nm至約50nm,且第二發光材料層464可以層疊的厚度為但不限於約5nm至約50nm,且優選約5nm至20nm。或者,第二發光材料層464的厚度可以是第一發光材料層462的約1.5至約2.5倍。在這種情況下,第二發光材料層464可以層疊的厚度為但不限於約10nm至約100nm,且優選約15nm至約50nm,且第一發光材料層462可以層疊的厚度為但不限於約5nm至約50nm,優選約5nm至20nm。
在一個示例性實施例中,當第二發光材料層464與電洞阻擋層475相鄰設置時,第二主體與第二摻雜劑一起包含在第二發光材料層464中,第二主體可以是與電洞阻擋層475相同的材料。在這種情況下,第二發光材料層464可以具有電洞阻擋功能以及發射功能。換句話說,第二發光材料層464可以用作用於阻擋電洞的緩衝層。在一個實施例中,可以省略電洞阻擋層475,其中第二發光材料層464可以是電洞阻擋層以及發光材料層。
當在另一示例性實施例中第二發光材料層464與電子阻擋層455相鄰設置時,第二主體可以是與電子阻擋層455相同的材料。在這種情況下,第二發光材料層464可以具有電子阻擋功能以及發射功能。換句話說,第二發光材料層464可以用作阻擋電子的緩衝層。在一個實施例中,可以省略電子阻擋層455,其中第二發光材料層464可以是電子阻擋層以及發光材料層。
在上述實施例中,僅一個激子能量控制層與發光材料層相鄰設置。與那些實施例不同,層疊了多個激子能量控制層。圖11是示出根據本發明另一示例性實施例的有機發光二極體的示意性剖視圖,且圖12是根據本發明另一示例性實施例的發光材料中能階帶隙的發光機制的示意圖。
如圖11所示,根據本發明第五實施例的有機發光二極體500包括彼此面對的第一電極510和第二電極520,並且設置在第一電極510和第二電極520之間的光發射單元530。在一個示例性實施例中,光發射單元530包括電洞注入層540、電洞傳輸層550、發光材料層560、電子傳輸層570和電子注入層580,每個都依序地層疊在第一電極510上。光發射單元530還可以包括第一激子阻擋層(即設置在電洞傳輸層550和發光材料層560之間的電子阻擋層555)和/或第二激子阻擋層(即設置在發光材料層560和電子傳輸層570之間的電洞阻擋層575)。
除了發光材料層560之外,在上述實施例中,第一電極510和第二電極520和光發射單元530可以具有與第一電極和第二電極310、410、320和420以及光發射單元330、330a和430相同的結構和相同的材料。
在該示例性實施例中,發光材料層560包括第一發光材料層562、第二發光材料層564、第一激子能量控制層(EEL)592和第二激子能量控制層594。第一發光材料層562包括第一主體和第一摻雜劑,並且第二發光材料層564包括第二主體和第二摻雜劑。第一激子能量控制層592設置在第一發光材料層562和第二發光材料層564之間,並且第一激子能量控制層592包括第一有機化合物。第二激子能量控制層594設置在第二發光材料層564和電洞阻擋層575之間,並且第二激子能量控制層594包括第二有機化合物。或者,發光材料層560還可包括第三發光材料層566,第三發光材料層566設置在第二激子能量控制層594和電洞阻擋層575之間,並且第三發光材料層566包括第三主體和第三摻雜劑。
在一個示例性實施例中,第一摻雜劑至第三摻雜劑中的每一個可以分別是延遲螢光材料。如圖12所示,分別包含在第一發光材料層562、第二發光材料層564和第三發光材料層566中的第一主體至第三主體的單重激發態能階S1 H1 、S1 H2 和S1 H3 以及三重激發態能階T1 H1 、T1 H2 和T1 H3 分別高於第一摻雜劑至第三摻雜劑的單重激發態能階S1 TD1 、S1 TD2 和S1 TD3 (未繪示)以及三重激發態能階T1 TD1 、T1 TD2 和T1 TD3 (未繪示)。更明確來說,第一主體至第三主體的單重激發態能階S1 H1 、S1 H2 和S1 H3 分別高於第一摻雜劑至第三摻雜劑的單重激發態能階S1 TD1 、S1 TD2 和S1 TD3 ,第一主體至第三主體的三重激發態能階T1 H1 、T1 H2 和T1 H3 分別高於第一摻雜劑至第三摻雜劑的三重激發態能階T1 TD1 、T1 TD2 和T1 TD3
此外,第一主體至第三主體的單重激發態能階S1 H1 、S1 H2 和S1 H3 以及三重激發態能階T1 H1 、T1 H2 和T1 H3 均高於第一有機化合物和第二有機化合物各自的單重激發態能階S1 ED1 和S1 ED2 以及三重激發態能階T1 ED1 和T1 ED2 ,每個分別包括在第一激子能量控制層592和第二激子能量控制層594中。更明確來說,第一主體至第三主體的單重激發態能階S1 H1 、S1 H2 和S1 H3 皆高於第一有機化合物和第二有機化合物的單重激發態能階S1 ED1 和S1 ED2 ,第一主體至第三主體的三重激發態能階T1 H1 、T1 H2 和T1 H3 皆高於第一有機化合物和第二有機化合物的三重激發態能階T1 ED1 和T1 ED2 。當在第一主體至第三主體、第一摻雜劑至第三摻雜劑和第一有機化合物至第二有機化合物中的單重態能階和三重態能階不滿足上述要求時,第一摻雜劑至第三摻雜劑以及第一有機化合物和第二有機化合物的單重態能階S1 TD1 、S1 TD2 、S1 TD3 、S1 ED1 和S1 ED2 處的激子可以反向轉移到第一主體至第三主體的單重激發態能階S1 H1 、S1 H2 和S1 H3 ,或者第一摻雜劑至第三摻雜劑以及第一有機化合物和第二有機化合物的三重態能階T1 TD1 、T1 TD2 、T1 TD3 、T1 ED1 和T1 ED2 處的激子可以反向轉移到第一主體至第三主體的三重激發態能階T1 H1 、T1 H2 和T1 H3 。結果,第一摻雜劑至第三摻雜劑和第一有機化合物和第二有機化合物的三重態激子不能有助於發光。
可能與上述實施例一樣,在第一主體至第三主體的HOMO能階(HOMOH 、HOMOH2 和HOMOH3 )和第一摻雜劑至第三摻雜劑的HOMO能階(HOMOTD1 、HOMOTD2 和HOMOTD3 )之間的能階帶隙(| HOMOH - HOMOTD |)或第一主體至第三主體的LUMO能階(LUMOH1 、LUMOH2 和LUMOH3 )與第一摻雜劑至第三摻雜劑的LUMO能階(LUMOTD1 、LUMOTD2 和LUMOTD3 )之間的能階帶隙(| LUMOH - LUMOTD |)可以等於或小於約0.5eV,例如在約0.1和約0.3eV之間。此外,第一主體至第三主體的HOMO能階(HOMOH1 、HOM OH2 和HOMOH3 )與第一有機化合物和第二有機化合物的HOMO能階(HOMOED1 和HOMOED2 )之間的能階帶隙(| HOMOH - HOMOED |)或第一主體至第三主體的LUMO能階(LUMOH1 、LUMOH2 和LUMOH3 )與第一有機化合物和第二有機化合物的LUMO能階(LUMOED1 和LUMOED2 )之間的能階帶隙(| LUMOH - LUMOED |)可以相等至或小於約0.2eV。
第一主體至第三主體的單重激發態能階S1 H1 、S1 H2 和S1 H3 處的激子能量和三重激發態能階T1 H1 、T1 H2 和T1 H3 處的激子能量,在相同的第一發光材料層562、第二發光材料層564和第三發光材料層566中,分別轉移到第一摻雜劑至第三摻雜劑的單重激發態能階S1 TD1 、S1 TD2 和S1 TD3 以及三重激發態能階T1 TD1 、T1 TD2 和T1 TD3 中的每一個,第一主體至第三主體每個都包含在第一發光材料層562、第二發光材料層564和第三發光材料層566中。明確來說,第一主體至第三主體的單重激發態能階S1 H1 、S1 H2 和S1 H3 處的激子能量分別轉移到第一摻雜劑至第三摻雜劑的單重激發態能階S1 TD1 、S1 TD2 和S1 TD3 ,第一主體至第三主體的三重激發態能階T1 H1 、T1 H2 和T1 H3 處的激子能量分別轉移到第一摻雜劑至第三摻雜劑的三重激發態能階T1 TD1 、T1 TD2 和T1 TD3 。在第一摻雜劑至第三摻雜劑的三重激發態能階T1 TD1 、T1 TD2 和T1 TD3 處的激子能量通過RISC機制分別將其自身轉移到單重激發態能階S1 TD1 、S1 TD2 和S1 TD3 ,然後第一摻雜劑至第三摻雜劑的單重激發態能階S1 TD1 、S1 TD2 和S1 TD3 的每個激子能量隨著發光而下降到基態。
一部分的激子能量存在於第一主體至第三主體的單重激發態能階S1 H1 、S1 H2 和S1 H3 或三重激發態能階T1 H1 、T1 H2 和T1 H3 處,而不是轉移到第一摻雜劑至第三摻雜劑。此部分的激子能量可以轉移到第一激子能量控制層592和第二激子能量控制層594中的第一有機化合物和第二有機化合物的單重激發態能階S1 ED1 和S1 ED2 或是三重激發態能階T1 ED1 和T1 ED2 。明確來說,存在於單重激發態能階S1 H1 、S1 H2 和S1 H3 處的激子能量可以轉移到單重激發態能階S1 ED1 或S1 ED2 ,存在於三重激發態能階T1 H1 、T1 H2 和T1 H3 處的激子能量可以轉移到三重激發態能階T1 ED1 或T1 ED2 。第一激子能量控制層592和第二激子能量控制層594每個都與第一發光材料層562、第二發光材料層564和第三發光材料層566相鄰設置。結果,可以最小化由累積的主體激子和外圍極化子之間的相互作用引起的激子猝滅,並且可以防止由於激子淬火過程中的電氧化和光氧化導致的有機發光二極體500的壽命縮短。
各自包括在第一激子能量控制層592和第二激子能量控制層594中的第一有機化合物和第二有機化合物包括具有化學式1至3的結構的任何化合物。作為一個示例,第一激子能量控制層592和第二激子能量控制層594中的每一個可以層疊的厚度為,但不限於,約1nm至10nm,並且優選地約1nm至約5nm。
每個包括在第一發光材料層562、第二發光材料層564和第三發光材料層566中的第一主體至第三主體每一個可以彼此相同或不同。作為一個示例,第一主體至第三主體中的每一個可以獨立地包括但不限於pCzB-2CN、mCzB-2CN、TSPO1、CCP、4-(3-(三亞苯基-2-基)苯基)二苯並[b,d]噻吩、9-(4-(9H-咔唑-9-基)苯基)-9H-3,9'-二咔唑、9-(3-(9H-咔唑-9-基)苯基)-9H-3,9'-二咔唑)和/或9-(6-(9H-咔唑-9-基)吡啶-3-基)-9H-3,9'-二咔唑。
每個包含在第一發光材料層562、第二發光材料層564和第三發光材料層566中的第一摻雜劑至第三摻雜劑可以彼此相同或不同。在一個示例性實施方案中,第一摻雜劑至第三摻雜劑中的每一個可獨立地與第一有機化合物和第二有機化合物中的每一個相同。在另一個示例性實施方案中,第一摻雜劑至第三摻雜劑中的每一個可獨立地包括但不限於具有化學式4結構的任何一種。在又一個示例性實施方案中,第一摻雜劑至第三摻雜劑中的每一個可獨立地包括但不限於DMAC -TRZ、DMAC-DPS、ACRSA、Cz-VPN、TcZTrz、DczTrz、DDczTrz、CC2BP、BDPCC-TPTA、BCC-TPTA、DMOC-DPS、DPCC-TPTA、Phen-TRZ、Cab- Ph-TRZ、4CzIPN、4CZFCN、10-(4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基)-10H-螺[吖啶-9,9'-呫噸]和/或SpiroAC-TRZ。
在一個示例性實施例中,每一個第一發光材料層562、第二發光材料層564和第三發光材料層566中的第一摻雜劑至第三摻雜劑中的每一個可以包括約1wt%至70wt%,優選約10wt%至約50wt%,更優選約20wt%至約50wt%。
在一個實施例中,第一發光材料層562、第二發光材料層564和第三發光材料層566中的每一個可具有基本相同的厚度。作為一個示例,第一發光材料層562、第二發光材料層564和第三發光材料層566中的每一個可以層疊的厚度為,但不限於,約5nm至約100nm,優選約10nm至約50nm,且更優選約10nm至約30nm。
在又一示例性實施例中,第一發光材料層562、第二發光材料層564和第三發光材料層566中的每一個可具有不同的厚度。作為一個示例,第一發光材料層562和第三發光材料層566的厚度都可以是第二發光材料層564厚度的大約1.5倍至大約2.5倍。在這種情況下,第一發光材料層562和第三發光材料層566中的每一個可以層疊的厚度為,但不限於,約10 nm至約100nm,並且優選約15 nm至約50nm,且第二發光材料層564可以層疊的厚度為但不限於約5nm至約50nm,且優選約5nm至20nm。或者,第二發光材料層564的厚度可以是第一發光材料層562和第三發光材料層566的約1.5至約2.5倍。在這種情況下,第二發光材料層564可以層疊的厚度為,但不限於,約10nm至約100nm,並且優選約15nm至約50nm,且第一發光材料層562和第三發光材料層566中的每一個可以層疊的厚度為,但不限於,約5nm至約50nm,並且優選約5nm至20nm。
在圖11和圖12中,第一發光材料層562、第二發光材料層564和第三發光材料層566中的每一個包括作為延遲螢光材料的第一摻雜劑至第三摻雜劑。與那些實施例不同,發光材料層可包括不同類型的摻雜劑。圖13是示出根據本發明另一示例性實施例的有機發光二極體的示意性剖視圖。圖14是示出根據本發明另一示例性實施例的發光材料中的能階帶隙的發光機制的示意圖。
如圖13所示,根據本發明第六實施例的有機發光二極體600包括彼此面對的第一電極610和第二電極620,以及設置在第一電極610和第二電極620之間的光發射單元630。在一個示例性實施例中,光發射單元630包括電洞注入層640、電洞傳輸層650、發光材料層660、電子傳輸層670和電子注入層680,每個都依序地層疊在第一電極610上。光發射單元630還可以包括第一激子阻擋層(即設置在電洞傳輸層650和發光材料層660之間的電子阻擋層655)和/或第二激子阻擋層(即設置在發光材料層660和電子傳輸層670之間的電洞阻擋層675)。
在上述實施例中,不包含發光材料層660,第一電極610和第二電極620,以及光發射單元630可以具有與第一電極310、410、510和第二電極320、420和520以及光發射單元330、330a、430和530相同的結構和相同的材料。
在示例性第六實施例中,發光材料層660包括第一發光材料層662、第二發光材料層664、第一激子能量控制層692和第二激子能量控制層694。第一發光材料層662包括第一主體和第一摻雜劑,並且第二發光材料層664包括第二主體和第二摻雜劑,並且第二發光材料層664設置在電子阻擋層655和第一發光材料層662之間。第一激子能量控制層692包括第一有機化合物並且設置在第一發光材料層662和第二發光材料層664之間。第二激子能量控制層694包括第二有機化合物並且設置在第一發光材料層662和電洞阻擋層675之間。或者,發光材料層660可以進一步包括第三發光材料層666,第三發光材料層666包括第三主體和第三摻雜劑,並且第三發光材料層666設置在第二激子能量控制層694和電洞阻擋層675之間。第一發光材料層662中的第一摻雜劑(T摻雜劑)是延遲螢光材料,並且第二發光材料層664和第三發光材料層666中的第二摻雜劑(F摻雜劑1)和第三摻雜劑(F摻雜劑2)中的每一個分別是螢光的或磷光材料。.
第一發光材料層662包括作為延遲螢光材料的第一摻雜劑。由於第一摻雜劑的三重激發態能階T1TD 與單重激發態能階S1 TD 之間的能階帶隙ΔEST TD 非常低,即等於或小於約0.3eV(參見圖3),第一摻雜劑的三重激發態能階T1TD 的激子能量通過RISC機制向上轉換為單重激發態能階S1 TD
此外,由於第一有機化合物和第二有機化合物的三重激發態能階T1 ED1 和T1 ED2 與單重激發態能階S1 ED1 和S1 ED2 之間的能階帶隙Δ EST ED ,非常低,即等於或小於約0.3eV(參見圖3),第一有機化合物和第二有機化合物每個分別包括在第一激子能量控制層692和第二激子能量控制層694中,第一激子能量控制層692和第二激子能量控制層694中第一有機化合物和第二有機化合物的三重激發態能階T1 ED1 和T1 ED2 的每個激子能量通過RISC機制將其轉換為單重激發態能階S1 ED1 和S1 ED2 中的每一個。雖然作為延遲螢光材料的第一摻雜劑和第一有機化合物和第二有機化合物顯示出高量子效率,但由於它們的寬FWHM,因此它們的色純度差。
相反,第二發光材料層664和第三發光材料層666中的每一個包括作為螢光或磷光材料的第二主體或第三主體和第二摻雜劑或第三摻雜劑。而作為螢光或磷光材料的第二摻雜劑和第三摻雜劑由於窄FWHM而在色純度方面具有優勢,然而因為它們的三重態激子不能參與發光過程,它們的量子效率受到限制。
然而,在該示例性實施例中,相對於包含在第一發光材料層662中並具有延遲螢光特性的第一摻雜劑以及每個都包含在第一激子能量控制層692和第二激子能量控制層694中並具有延遲螢光特性的第一有機化合物和第二有機化合物中的每一個的單重態激子能量和三重態激子能量可以藉由FRET機制轉移到第二摻雜劑和第三摻雜劑,其中第二摻雜劑和第三摻雜劑每一個都包含在第二發光材料層664和第三發光材料層666中並且是螢光或磷光材料。因此,最終發射發生在第二發光材料層664和第三發光材料層666內的第二摻雜劑和第三摻雜劑中。
換句話說,第一發光材料層662中的第一摻雜劑和第二激子能量控制層694以及第一激子能量控制層692中的第一有機化合物和第二有機化合物中每一個的三重激發態能階T1 TD 、T1 ED1 和T1 ED2 通過RISC機制向上轉換到它們自己的單重激發態能階S1 TD 、S1 ED1 和S1 ED2 中的每一個。由於第一摻雜劑、第一有機化合物和第二有機化合物的單重激發態能階S1 TD 、S1 ED1 和S1 ED2 皆高於第二發光材料層664和第三發光材料層666中第二摻雜劑和第三摻雜劑的每個單重激發態能階S1 FD1 和S1 FD2 ,第一摻雜劑、第一有機化合物和第二有機化合物的單重激發態能階S1 TD 、S1 ED1 和S1 ED2 轉移到第二摻雜劑和第三摻雜劑的每個單重激發態能階S1 FD1 和S1 FD2 。第二發光材料層664和第三發光材料層666中的每個第二摻雜劑和第三摻雜劑可以使用三重態激子能量以及單重態激子能量發光。
作為激子能量,其在第一發光材料層662中的第一摻雜劑和在第一激子能量控制層692和第二激子能量控制層694中的第一有機化合物和第二有機化合物中產生,轉移到第二發光材料層664和第三發光材料層666中的第二摻雜劑和第三摻雜劑中的每一個,可以發生超螢光。在這種情況下,第一摻雜劑和第一有機化合物和第二有機化合物僅用作將能量傳遞給第二摻雜劑和第三摻雜劑。在第二發光材料層664和第三發光材料層666中發生了大量的光發射,其中第二發光材料層664和第三發光材料層666每個都包括作為螢光或磷光材料的第二摻雜劑或第三摻雜劑並且具有窄的FWHM。因此,有機發光二極體600可以由於窄的FWHM而提高其量子效率並改善其色純度。
第一發光材料層662、第二發光材料層664和第三發光材料層666中的每一個分別包括第一主體、第二主體和第三主體。在第一主體至第三主體處產生的每個激子能量應當預先轉移到作為延遲螢光材料的第一摻雜劑,以便引起發光。為了進行這樣的發光,第一主體至第三主體的單重激發態能階S1 H1 、S1 H2 和S1 H3 以及三重激發態能階T1 H1 、T1 H2 和T1 H3 應該分別高於作為延遲螢光材料的第一摻雜劑和第一有機化合物和第二有機化合物的單重激發態能階S1 TD 、S1 ED1 和S1 ED2 以及三重激發態能階T1TD 、T1 ED1 和T1 ED2 。明確來說,單重激發態能階S1 H1 、S1 H2 和S1 H3 應分別高於單重激發態能階S1 TD 、S1 ED1 和S1 ED2 ,三重激發態能階T1 H1 、T1 H2 和T1 H3 應分別高於三重激發態能階T1TD 、T1 ED1 和T1 ED2 。作為一個示例,第一主體至第三主體的每個三重激發態能階T1 H1 、T1 H2 和T1 H3 均高於第一摻雜劑和第一有機化合物和第二有機化合物的三重激發態能階T1TD 、T1 ED1 和T1 ED2 各自至少約0.2eV。
此外,第二主體和第三主體的每個單重激發態能階S1 H2 和S1 H3 分別高於第二摻雜劑和第三摻雜劑的每個單重激發態能階S1 FD1 和S1 FD2 。在這種情況下,在第二主體和第三主體處產生的單重態激子能量可以分別轉移到第二摻雜劑和第三摻雜劑的單重激發態能階S1 FD1 和S1 FD2
此外,發光材料層660必須實現高發光效率和色純度以及從第一摻雜劑和第一有機化合物和第二有機化合物在第一發光材料層662、第一激子能量控制層692和第二激子能量控制層694中有效地轉移激子能量至第二摻雜劑和第三摻雜劑中,其中第一摻雜劑、第一有機化合物和第二有機化合物每個都通過RISC機制轉換為ICT複雜狀態,第二摻雜劑和第三摻雜劑每一個都是第二發光材料層664和第三發光材料層666中的螢光或磷光材料。為了實現這樣的有機發光二極體600,第一摻雜劑和第一有機化合物和第二有機化合物的每個三重激發態能階T1 TD 、T1 ED1 和T1 ED2 皆高於第二摻雜劑和第三摻雜劑的三重激發態能階T1 FD1 和T1 FD2 ,其中第一摻雜劑、第一有機化合物和第二有機化合物每個都包含在第一發光材料層662、第一激子能量控制層692和第二激子能量控制層694中。在一個示例性實施例中,第一摻雜劑、第一有機化合物和第二有機化合物的單重激發態能階S1 TD 、S1 ED1 和S1 ED2 中的每一個可以高於各自作為螢光材料的第二摻雜劑和第三摻雜劑的單重激發態能階S1 FD1 和S1 FD2
此外,第一主體的HOMO能階(HOMOH1 )與第一摻雜劑的HOMO能階(HOMOTD )之間的能階帶隙(| HOMOH1 -HOMOTD |),或者,第一主體的LUMO能階(LUMOH1 )與第一摻雜劑的LUMO能階(LUMOTD )之間的能階帶隙(| LUMOH1 - LUMOTD |)可以等於或小於約0.5eV。此外,第一主體至第三主體的HOMO能階(HOMOH1 、HOMOH2 和HOMOH3 )與第一有機化合物和第二有機化合物的HOMO能階(HOMOED1 和HOMOED2 )之間的能階帶隙(| HOMOH - HOMOED |),或第一主體至第三主體的LUMO能階(LUMOH1 、LUMOH2 和LUMOH3 )與第一有機化合物和第二有機化合物的LUMO能階(LUMOED1 和LUMOED2 )之間的能階帶隙(| LUMOH - LUMOED |)可以等於或小於約0.2eV。
每一個包括在第一激子能量控制層692或第二激子能量控制層694中的第一個有機化合物和第二有機化合物中的每一個可以彼此相同或不同。作為一個示例,第一有機化合物和第二有機化合物中的每一個可以獨立地包括但不限於具有如上所述的化學式1至3的結構的任何化合物。第一有機化合物和第二有機化合物均可具有延遲螢光特性。
第一發光材料層662中的第一主體,第二發光材料層664中的第二主體和第三發光材料層666中的第三主體可以彼此相同或不同。作為一個示例,第一主體至第三主體中的每一個可以獨立地包括但不限於mCP-CN、CBP、mCBP、mCP、DPEPO、PPT、TmPyPB、PYD-2Cz、DCzDBT、DCzTPA、pCzB-2CN、mCzB -2CN、TSPO1、CCP、4-(3-(三亞苯基-2-基)苯基)二苯並[b,d]噻吩、9-(4-(9H-咔唑-9-基)苯基)-9H-3,9'-二咔唑、9-(3-(9H-咔唑-9-基)苯基)-9H-3,9'-二咔唑)和/或 9-(6-(9H-咔唑-9-基)吡啶-3-基)-9H-3,9'-二咔唑。
在一個示例性實施例中,第一發光材料層662中的第一摻雜劑可以與第一有機化合物和第二有機化合物相同。在另一個示例性實施方案中,第一摻雜劑可包括但不限於具有化學式4結構的任何一種。在又一個示例性實施方案中,第一摻雜劑可包括但不限於DMAC-TRZ、DMAC-DPS、ACRSA、Cz-VPN、TcZTrz、DczTrz、DDczTrz、CC2BP、BDPCC-TPTA、BCC-TPTA、DMOC- DPS、DPCC-TPTA、Phen-TRZ、Cab-Ph-TRZ、4CzIPN、4CZFCN、10-(4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基)-10H-螺[吖啶-9,9'-呫噸]和/或SpiroAC-TRZ。
第二發光材料層664和第三發光材料層666中的第二摻雜劑和第三摻雜劑中的每一個可以具有窄的FWHM並且具有與第一摻雜劑和第一有機化合物和第二有機化合物的吸收光譜具有大的重疊面積的發光光譜。作為一個示例,第二摻雜劑和第三摻雜劑中的每一個可以獨立地包括但不限於具有喹啉 - 吖啶核的有機化合物,喹啉 - 吖啶核例如5,12-二甲基喹啉[2,3-b]吖啶-7,14(5H,12H) - 二酮、5,12-二乙基喹啉[2,3-b]吖啶-7,14(5H,12H) - 二酮、5,12-二丁基-3,10-二氟喹啉[2,3-b]吖啶-7,14(5H,12H) - 二酮、5,12-二丁基-3,10-雙(三氟甲基)喹啉[2,3-b]吖啶-7,14(5H,12H) - 二酮、5,12-二丁基-2,3,9,10-四氟喹啉[2,3-b]吖啶-7,14(5H,12H) - 二酮、DCJTB 以及任何能發出紅色、綠色或藍色光的金屬配合物。
在一個示例性實施例中,第一發光材料層662、第二發光材料層664或第三發光材料層666中的每一個第一主體至第三主體的重量比可以分別等於或大於在相同的第一發光材料層662、第二發光材料層664和第三發光材料層666中的第一摻雜劑至第三摻雜劑的重量比。另外,第一發光材料層662中第一摻雜劑的重量比可以大於第二發光材料層664和第三發光材料層666中第二摻雜劑和第三摻雜劑的重量比。在這種情況下,可以將足夠的能量從第一發光材料層662中的第一摻雜劑轉移到第二發光材料層664和第三發光材料層666中的第二摻雜劑和第三摻雜劑。
第一發光材料層662可包括約1wt%至約70wt%,優選約10wt%至約50wt%,更優選約20wt%至約50wt%的第一摻雜劑。第二主體和第三主體的每個重量比可以大於第二發光材料層664和第三發光材料層666中的第二摻雜劑和第三摻雜劑的每個重量比。作為一個示例,第二發光材料層664和第三發光材料層666中的每一個可包括約90wt%至約99wt%,優選約95wt%至約99wt%的第二主體或第三主體,且第二摻雜劑或第三摻雜劑為約1wt%至約10wt%,優選約1wt%至約5wt%。
在一個實施例中,第一發光材料層662、第二發光材料層664和第三發光材料層666中的每一個可具有基本相同的厚度。作為一個示例,第一發光材料層662、第二發光材料層664和第三發光材料層666中的每一個可以層疊的厚度為但不限於約5nm至約100nm,優選約10nm至約50nm,更優選約10nm至約30nm。
在又一示例性實施例中,第一發光材料層662、第二發光材料層664和第三發光材料層666中的每一個可具有不同的厚度。作為一個示例,第一發光材料層662和第三發光材料層666的厚度都可以是第二發光材料層664厚度的大約1.5至大約2.5倍。在這種情況下,第一發光材料層662和第三發光材料層666中的每一個可以層疊的厚度為,但不限於,約10nm至約100nm,並且優選約15nm至約50nm,第二發光材料層664可以層疊的厚度為但不限於約5nm至約50nm,優選約5nm至20nm。或者,第二發光材料層664的厚度可以是第一發光材料層662和第三發光材料層666中的每一個的約1.5至約2.5倍。在這種情況下,第二發光材料層664可以層疊的厚度為但不限於約10nm至約100nm,優選約15nm至約50nm,且第一發光材料層662和第三發光材料層666中的每一個可以層疊的厚度為但不限於約5nm至約50nm,優選約5nm至20nm。
當在一個示例性實施例中第二發光材料層664與電子阻擋層655相鄰設置時,與第二摻雜劑一起包括在第二發光材料層664中的第二主體可以是與電子阻擋層655相同的材料。在這種情況下,第二發光材料層664可以具有電子阻擋功能以及發射功能。換句話說,第二發光材料層664可以充當用於阻擋電子的緩衝層。在一個實施例中,可以省略電子阻擋層655,其中第二發光材料層664可以是電子阻擋層以及發光材料層。
當在另一個示例性實施例中第三發光材料層666與電洞阻擋層675相鄰設置時,與第三摻雜劑一起包括在第三發光材料層666中的第三主體可以是與電洞阻擋層675相同的材料。在這種情況下,第三發光材料層666可以具有電洞阻擋功能以及發射功能。換句話說,第三發光材料層666可以充當用於阻擋電洞的緩衝層。在一個實施例中,可以省略電洞阻擋層675,其中第三發光材料層666可以是電洞阻擋層以及發光材料層。
在又一示例性實施例中,第二發光材料層664中的第二主體可以是與電子阻擋層655相同的材料,並且第三發光材料層666中的第三主體可以是與電洞阻擋層675相同的材料。在該實施例中,第二發光材料層664可以具有電子阻擋功能以及發射功能,並且第三發光材料層666可以具有電洞阻擋功能以及發射功能。換句話說,第二發光材料層664和第三發光材料層666中的每一個可以分別用作阻擋電子或電洞的緩衝層。在一個實施例中,可以省略電子阻擋層655和電洞阻擋層675,其中第二發光材料層664可以是電子阻擋層以及發光材料層,並且第三發光材料層666可以是電洞阻擋層以及發光材料層。
在上述實施例中,兩個激子能量控制層與發光材料層相鄰設置。與那些實施例不同,三個激子能量控制層與發光材料層相鄰地層疊。圖15是示出根據本發明另一示例性實施例的有機發光二極體的示意性剖視圖。圖16是示出根據本發明另一示例性實施例的發光材料中的能階帶隙的發光機制的示意圖。
如圖15中所示,根據本發明第七實施例的有機發光二極體700包括彼此面對的第一電極710和第二電極720,以及設置在第一電極710和第二電極720之間的光發射單元730。在一個示例性實施例中,光發射單元730包括電洞注入層740、電洞傳輸層750、發光材料層760、電子傳輸層770和電子注入層780,每個都順序地層疊在第一電極710上。光發射單元730還可以包括第一激子阻擋層(即設置在電洞傳輸層750和發光材料層760之間的電子阻擋層755)和/或第二激子阻擋層(即設置在發光材料層760和電子傳輸層770之間的電洞阻擋層775)。
不包含發光材料層760,第一電極710和第二電極720以及光發射單元730可以具有與上述實施例之第一電極310、410、510、610相同的結構和相同的材料。第二電極720可以具有與上述實施例之第二電極320、420、520和620相同的結構和相同的材料。光發射單元730可以具有與上述實施例之光發射單元330、330a、430、530和630相同的結構和相同的材料。
在該示例性實施例中,發光材料層760包括第一發光材料層762、第二發光材料層764、第三發光材料層766、第一激子能量控制層792、第二激子能量控制層794和第三激子能量控制層796。第一發光材料層762包括第一主體和第一摻雜劑,第二發光材料層764包括第二主體和第二摻雜劑,並且第三發光材料層766包括第三主體和第三摻雜劑。第一激子能量控制層792設置在第一發光材料層762和第二發光材料層764之間,並包括第一有機化合物。第二激子能量控制層794設置在第二發光材料層764和第三發光材料層766之間,並包括第二有機化合物。第三激子能量控制層796設置在第三發光材料層766和電洞阻擋層775之間,並包括第三有機化合物。或者,發光材料層760還可以包括第四發光材料層768,第四發光材料層768設置在第三激子能量控制層796和電洞阻擋層775之間並且包括第四主體和第四摻雜劑。
在一個示例性實施例中,第一摻雜劑至第四摻雜劑中的每一個可以分別是延遲螢光材料。如圖16所示,第一主體至第四主體的單重激發態能階S1 H1 、S1 H2 、S1 H3 和S1 H4 (未繪示)以及三重激發態能階T1 H1 、T1 H2 、T1 H3 和T1 H4 (未繪示)分別高於第一摻雜劑至第四摻雜劑的單重激發態能階S1 TD1 、S1 TD2 、S1 TD3 和S1 TD4 (未繪示)以及三重激發態能階T1 TD1 、T1 TD2 、T1 TD3 和T1 TD4 (未繪示)。明確來說,單重激發態能階S1 H1 、S1 H2 、S1 H3 和S1 H4 分別高於單重激發態能階S1 TD1 、S1 TD2 、S1 TD3 和S1 TD4 ,且三重激發態能階T1 H1 、T1 H2 、T1 H3 和T1 H4 分別高於三重激發態能階T1 TD1 、T1 TD2 、T1 TD3 和T1 TD4 。第一主體至第四主體每個都分別包含在第一發光材料層762、第二發光材料層764、第三發光材料層766和第四發光材料層768中。
此外,第一主體至第四主體的單重激發態能階S1 H1 、S1 H2 、S1 H3 和S1 H4 以及三重激發態能階T1 H1 、T1 H2 、T1 H3 和T1 H4 均分別高於第一有機化合物至第三有機化合物的單重激發態能階S1 ED1 、S1 ED2 和S1 ED3 以及三重激發態能階T1 ED1 、T1 ED2 和T1 ED3 。明確來說,單重激發態能階S1 H1 、S1 H2 、S1 H3 和S1 H4 皆高於單重激發態能階S1 ED1 、S1 ED2 和S1 ED3 ,且三重激發態能階T1 H1 、T1 H2 、T1 H3 和T1 H4 皆高於三重激發態能階T1 ED1 、T1 ED2 和T1 ED3 。第一有機化合物至第三有機化合物每個分別包括在第一激子能量控制層792、第二激子能量控制層794和第三激子能量控制層796中。當在第一主體至第四主體、第一摻雜劑至第四摻雜劑和第一有機化合物至第三有機化合物中之單重態能階和三重態能階不滿足上述要求時,第一摻雜劑至第四摻雜劑和第一有機化合物至第三有機化合物的單重態能階S1 TD1 、S1 TD2 、S1 TD3 、S1 TD4 、S1 ED1 、S1 ED2 和S1 ED3 的激子可以反向轉移到第一主體至第四主體的單重激發態能階S1 H1 、S1 H2 、S1 H3 和S1 H4 ,或第一摻雜劑至第四摻雜劑和第一有機化合物至第三有機化合物的三重態能階T1 TD1 、T1 TD2 、T1 TD3 、T1 TD4 、T1 ED1 、T1 ED2 和T1 ED3 的激子可以反向轉移到第一主體至第四主體的三重激發態能階T1 H1 、T1 H2 、T1 H3 和T1 H4 。結果,第一摻雜劑至第四摻雜劑和第一有機化合物至第三有機化合物的三重態激子不能有助於發光。
可能與上述實施例一樣,在第一主體至第四主體的HOMO能階(HOMOH 、HOMOH2 、HOMOH3 和HOMOH4 )和第一摻雜劑至第四摻雜劑的HOMO能階(HOMOTD1 、HOMOTD2 、HOMOTD3 和HOMOTD4 )之間的能階帶隙(| HOMOH - HOMOTD |),或在第一主體至第四主體的LUMO能階(LUMOH1 、LUMOH2 、LUMOH3 和LUMOH4 )與第一摻雜劑至第四摻雜劑的LUMO能階(LUMOTD1 、LUMOTD2 、LUMOTD3 和LUMOTD4 )之間的能階帶隙(| LUMOH - LUMOTD |)可以等於或小於約0.5eV,例如在約0.1和約0.3eV之間。此外,在第一主體至第四主體的HOMO能階(HOMOH1 、HOMOH2 、HOMOH3 和HO MOH4 )與第一有機化合物至第三有機化合物的HOMO能階(HOMOED1 、HO MOED2 和HOMOED3 )之間的能階帶隙(| HOMOH - HOMOED |),或在第一主體至第四主體的LUMO能階(LUMOH1 、LUMOH2 ,LUMOH3 和LUMOH4 )與第一有機化合物至第三有機化合物的LUMO能階(LUMOED1 、LUMOED2 和LUMOED3 )之間的能階帶隙(| LUMOH - LUMOED |)可以等於或小於大約0.2 eV。
第一主體至第四主體的單重激發態能階S1 H1 、S1 H2 、S1 H3 和S1 H4 處的激子能量和三重激發態能階T1 H1 、T1 H2 、T1 H3 和T1 H4 處的激子能量,被轉移到在相同的第一發光材料層762、第二發光材料層764、第三發光材料層766和第四發光材料層768中的第一摻雜劑至第四摻雜劑的單重激發態能階S1 TD1 、S1 TD2 、S1 TD3 和S1 TD4 以及三重激發態能階T1 TD1 、T1 TD2 、T1 TD3 和T1 TD4 中的每一個中,第一主體至第四主體每個都包含在第一發光材料層762,第二發光材料層764、第三發光材料層766和第四發光材料層768中。在第一摻雜劑至第四摻雜劑的三重激發態能階T1 TD1 、T1 TD2 、T1 TD3 和T1 TD4 處的每個激子能量通過RISC機制將其自身轉移到其自身的每個單重激發態能階S1 TD1 、S1 TD2 、S1 TD3 和S1 TD4 ,然後,第一摻雜劑至第四摻雜劑的單重激發態能階S1 TD1 、S1 TD2 、S1 TD3 和S1 TD4 的每個激子能量隨著發光而下降到基態。
一部分激子能量存在於第一主體至第四主體的單重激發態能階S1 H1 、S1 H2 、S1 H3 和S1 H4 或者未被轉移到第一摻雜劑至第四摻雜劑的三重激發態能階T1 H1 、T1 H2 、T1 H3 和T1 H4 ,其可以轉移到在第一激子能量控制層792、第二激子能量控制層794和第三激子能量控制層796中的第一有機化合物至第三有機化合物的每個單重激發態能階S1 ED1 、S1 ED2 和S1 ED3 或三重激發態能階T1 ED1 、T1 ED2 和T1 ED3 ,其中第一激子能量控制層792、第二激子能量控制層794和第三激子能量控制層796每個都與第一發光材料層762、第二發光材料層764、第三發光材料層766和第四發光材料層768相鄰。結果,可以最小化由累積的主體激子和外圍極化子之間的相互作用引起的激子猝滅,並且可以防止由於激子淬火過程中的電氧化和光氧化導致的有機發光二極體的壽命減少。
每一個第一激子能量控制層792,第二激子能量控制層794和第三激子能量控制層796中的第一有機化合物至第三有機化合物每一個都包括具有化學式1至3結構的任何化合物。作為一個示例,第一激子能量控制層792、第二激子能量控制層794和第三激子能量控制層796中的每一個可以層疊的厚度為,但不限於,約1 nm至10nm,並且優選地約1 nm至約5nm。
每個包括在第一發光材料層762,第二發光材料層764,第三發光材料層766和第四發光材料層768中的第一主體至第四主體的每一個可以彼此相同或不同。作為一個示例,第一主體至第四主體每一個可以獨立地包括但不限於pCzB-2CN、mCzB-2CN、TSPO1、CCP、4-(3-(三亞苯基-2-基)苯基)二苯並[b,d]噻吩、9-(4-(9H-咔唑-9-基)苯基)-9H-3,9'-二咔唑、9-(3-(9H-咔唑-9-基)苯基)-9H-3,9'-二咔唑)和/或9-(6-(9H-咔唑-9-基)吡啶-3-基)-9H-3,9'-二咔唑。
每個第一發光材料層762、第二發光材料層764、第三發光材料層766和第四發光材料層768中包含的第一摻雜劑至第四摻雜劑可以相同或彼此不同。在一個示例性實施方案中,第一摻雜劑至第四摻雜劑中的每一個可獨立地與第一有機化合物至第三有機化合物中的每一個相同。在另一個示例性實施方案中,第一摻雜劑至第四摻雜劑中的每一個可獨立地包括但不限於具有化學式4結構的任何一種。在又一個示例性實施方案中,第一摻雜劑至第四摻雜劑中的每一個可以獨立地包括但不限於DMAC-TRZ、DMAC-DPS、ACRSA、Cz-VPN、TcZTrz、DczTrz、DDczTrz、CC2BP、BDPCC-TPTA、BCC-TPTA、DMOC-DPS、DPCC-TPTA、Phen-TRZ、Cab- Ph-TRZ、4CzIPN、4CZFCN、10-(4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基)-10H-螺[吖啶-9,9'-呫噸]和/或SpiroAC-TRZ。
在一個示例性實施例中,第一發光材料層762、第二發光材料層764、第三發光材料層766和第四發光材料層768中的每一個可以分別包括約1wt%至70wt%,優選約10 wt%至約50wt%,更優選約20 wt%至約50wt%的第一摻雜劑至第四摻雜劑中的每一個。
在一個實施例中,第一發光材料層762、第二發光材料層764、第三發光材料層766和第四發光材料層768中的每一個可具有基本相同的厚度。作為一個示例,第一發光材料層762、第二發光材料層764、第三發光材料層766和第四發光材料層768中的每一個可以層疊的厚度為但不限於約5nm至約100nm,優選約10nm至約50nm,且更優選約10nm至約30nm。
在又一示例性實施例中,第一發光材料層762、第二發光材料層764、第三發光材料層766和第四發光材料層768中的每一個可具有不同的厚度。作為一個示例,第一發光材料層762和第四發光材料層768的厚度皆可以是第二發光材料層764厚度的約1.5倍至約2.5倍或是第三發光材料層766厚度的約1.5至約2.5倍。在這種情況下,第一發光材料層762和第四發光材料層768中的每一個可以層疊的厚度為,但不限於,約10nm至約100nm,並且優選約15nm至約50nm,且第二發光材料層764和第三發光材料層766中的每一個可以層疊的厚度為,但不限於,約5nm至約50nm,並且優選約5nm至20nm。或者,第二發光材料層764和第三發光材料層766各可具有約1.5至約2.5倍的第一發光材料層762和第四發光材料層768每一個的厚度。在這種情況下,第二發光材料層764和第三發光材料層766中的每一個可以層疊的厚度為,但不限於,約10nm至約100nm,並且優選約15nm至約50nm,且第一發光材料層762和第四發光材料層768中的每一個可以層疊的厚度為,但不限於,約5nm至約50nm,並且優選約5nm至20nm。
在圖15和16中,第一發光材料層762、第二發光材料層764、第三發光材料層766和第四發光材料層768中的每一個包括作為延遲螢光材料的第一摻雜劑至第四摻雜劑。與那些實施例不同,EML可包括不同類型的摻雜劑。圖17是示出根據本發明另一示例性實施例的有機發光二極體的示意性剖視圖。圖18是示出根據本發明另一示例性實施例的發光材料中的能階帶隙的發光機制的示意圖。
如圖17所示,根據本發明第八實施例的有機發光顯示裝置800包括彼此面對的第一電極810和第二電極820以及設置在第一電極810和第二電極820之間的光發射單元830。在一個示例性實施例中,光發射單元830包括電洞注入層840、電洞傳輸層850、發光材料層860、電子傳輸層870和電子注入層880,每個都順序地層疊在第一電極810上。光發射單元830還可以包括第一激子阻擋層(即設置在電洞傳輸層850和發光材料層860之間的電子阻擋層855)和/或第二激子阻擋層(即設置在發光材料層860和電子傳輸層870之間的電洞阻擋層875)。
不包含發光材料層860,第一電極810和第二電極820以及光發射單元830可以具有與上述實施例中的第一電極310、410、510、610、710和第二電極320、420、520、620和720以及光發射單元330、330a、430、530、630和730相同的結構和相同的材料。
在示例性第八實施例中,發光材料層860包括第一發光材料層862、第二發光材料層864、第三發光材料層866、第一激子能量控制層892、第二激子能量控制層894和第三激子能量控制層896。或者,發光材料層860還可包括第四發光材料層868。第一發光材料層862包括第一主體和第一摻雜劑。第二發光材料層864包括第二主體和第二摻雜劑並且設置在第一發光材料層862和電洞阻擋層875之間。第三發光材料層866包括第三主體和第三摻雜劑並且設置在第一發光材料層862和電子阻擋層855之間。第四發光材料層868包括第四主體和第四摻雜劑並且設置在第二發光材料層864和電子阻擋層855之間。第一摻雜劑(T摻雜劑1)和第二摻雜劑(T摻雜劑2)中的每一個都是延遲螢光材料,並且第三摻雜劑(F摻雜劑1)和第四摻雜劑(F摻雜劑2)中的每一個是螢光或磷光的材料。
第一激子能量控制層892包括第一有機化合物並且設置在第一發光材料層862和第二發光材料層864之間。第二激子能量控制層894包括第二有機化合物並且設置在第一發光材料層862和第三發光材料層866之間。第三激子能量控制層896包括第三有機化合物並且設置在第二發光材料層864和電洞阻擋層875之間。當發光材料層860包含第四發光材料層868時,第三激子能量控制層896可以設置在第二發光材料層864和第四發光材料層868之間。每一個第一激子能量控制層892、第二激子能量控制層894和第三激子能量控制層896中的第一有機化合物至第三有機化合物每一個分別是延遲的螢光材料。
第一發光材料層862和第二發光材料層864中的每一個分別包括作為延遲光光材料的第一摻雜劑和第二摻雜劑。由於第一摻雜劑和第二摻雜劑的三重激發態能階T1 TD1 和T1 TD2 以及每個單重激發態能階S1 TD1 和S1 TD2 之間的能階帶隙ΔEST TD 非常低,即等於或小於約0.3eV(參見圖3),在第一摻雜劑和第二摻雜劑的三重激發態能階T1 TD1 和T1 TD2 處的每個激子能量通過RISC機制向上轉換到單重激發態能階S1 TD1 和S1 TD2 中的每一個。
此外,由於第一有機化合物至第三有機化合物的三重激發態能階T1 ED1 、T1 ED2 和T1 ED3 與單重激發態能階S1 ED1 、S1 ED2 和S1 ED3 之間的能階水平帶隙ΔEST ED 非常低,即等於或小於約0.3eV(參見圖3),第一有機化合物至第三有機化合物每個都分別包含在第一激子能量控制層892、第二激子能量控制層894和第三激子能量控制層896中,第一激子能量控制層892、第二激子能量控制層894和第三激子能量控制層896中第一有機化合物至第三有機化合物的三重激發態能階T1 ED1 、T1 ED2 和T1 ED3 的每個激子能量通過RISC機制將其轉換為單重激發態能階S1 ED1 、S1 ED2 和S1 ED3 中的每一個。雖然作為延遲螢光材料的第一摻雜劑和第二摻雜劑和第一有機化合物至第三有機化合物具有高量子效率,但由於它們的寬FWHM,它們的色純度差。
相反,第三發光材料層866和第四發光材料層868中的每一個包括第三主體或第四主體和作為螢光或磷光材料的第三摻雜劑或第四摻雜劑。雖然作為螢光或磷光材料的第三摻雜劑和第四摻雜劑由於窄FWHM而在色純度方面具有優勢,但是它們的量子效率受到限制,因為它們的三重態激子不能參與發光過程。
然而,在該示例性實施例中,相對於第一摻雜劑和第二摻雜劑和第一有機化合物至第三有機化合物中的每一個,單重態激子能量和三重態激子能量可以藉由FRET機制轉移到第三摻雜劑和第四摻雜劑,其中第一摻雜劑和第二摻雜劑每個都包含在第一發光材料層862和第二發光材料層864中並具有延遲螢光特性,第一有機化合物至第三有機化合物每個都包含在第一激子能量控制層892、第二激子能量控制層894和第三激子能量控制層896中並具有延遲螢光特性,第三摻雜劑和第四摻雜劑每個都包含在第三發光材料層866和第四發光材料層868中並且是螢光或磷光材料。因此,最終發射發生在第三發光材料層866和第四發光材料層868內的第三摻雜物和第四摻雜物中。
換句話說,第一發光材料層862和第二發光材料層864中的第一摻雜劑和第二摻雜劑和在第一激子能量控制層892、第二激子能量控制層894和第三激子能量控制層896中的第一有機化合物至第三有機化合物的三重激發態能階T1 TD1 、T1 TD2 、T1 ED1 、T1 ED2 和T1 ED3 中的每一個通過RISC機制向上轉換到它們自己的單重激發態能階S1 TD 、S1 TD2 、S1 ED1 、T1 ED2 和S1 ED3 中的每一個。由於第一摻雜劑、第二摻雜劑、第一有機化合物至第三有機化合物的每個單重激發態能階S1 TD 、S1 TD2 、S1 ED1 、S1 ED2 和S1 ED3 高於第三發光材料層866和第四發光材料層868中的第三摻雜物和第四摻雜物的每個單重激發態能階S1 FD1 和S1 FD2 (未繪示),第一摻雜劑、第二摻雜劑、第一有機化合物至第三有機化合物的單重激發態能階S1 TD 、S1 TD2 、S1 ED1 、S1 ED2 和S1 ED3 轉移到第三摻雜物和第四摻雜物的每個單重激發態能階S1 FD1 和S1 FD2 。第三發光材料層866和第四發光材料層868中的每一個第三摻雜物和第四摻雜物都可以使用三重態激子能量以及單重態激子能量發光。
作為激子能量,其在第一發光材料層862和第二發光材料層864中的第一摻雜劑和第二摻雜劑以及在第一激子能量控制層892、第二激子能量控制層894和第三激子能量控制層896中的第一有機化合物至第三有機化合物中產生,轉移到第三發光材料層866和第四發光材料層868中的第三摻雜物和第四摻雜物中的每一個,可以實現超螢光。在這種情況下,第一摻雜劑和第二摻雜劑和第一有機化合物至第三有機化合物僅用作將能量轉移到第三摻雜物和第四摻雜物。在第三發光材料層866和第四發光材料層868中發生了大量的光發射,每個光發射包括作為螢光或磷光材料的第三摻雜劑或第四摻雜劑並具有窄的FWHM。因此,有機發光顯示裝置800可以由於窄的FWHM而提高其量子效率並改善其色純度。
第一發光材料層862、第二發光材料層864、第三發光材料層866和第四發光材料層868中的每一個分別包括第一主體、第二主體、第三主體和第四主體。在第一主體至第四主體處產生的每個激子能量應當預先轉移到第一摻雜劑和第二摻雜劑作為延遲螢光材料,以便引發光發射。為了進行這樣的發光,第一主體至第四主體的單重激發態能階S1 H1 、S1 H2 、S1 H3 和S1 H4 以及三重激發態能階T1 H1 、T1 H2 、T1 H3 和T1 H4 各自應該分別高於作為延遲螢光材料的第一摻雜劑和第二摻雜劑以及第一有機化合物至第三有機化合物的單重激發態能階S1 TD1 、S1 TD2 、S1 ED1 、S1 ED2 和S1 ED3 以及三重激發態能階T1 TD1 、T1 TD2 、T1 ED1 、T1 ED2 和T1 ED3 的每一個。明確來說,單重激發態能階S1 H1 、S1 H2 、S1 H3 和S1 H4 應高於單重激發態能階S1 TD1 、S1 TD2 、S1 ED1 、S1 ED2 和S1 ED3 ,三重激發態能階T1 H1 、T1 H2 、T1 H3 和T1 H4 應高於三重激發態能階T1 TD1 、T1 TD2 、T1 ED1 、T1 ED2 和T1 ED3 。作為一個示例,第一主體至第四主體的三重激發態能階T1 H1 、T1 H2 、T1 H3 和T1 H4 均可高於第一摻雜劑和第二摻雜劑和第一有機化合物至第三有機化合物的三重激發態能階T1 TD1 、T1 TD2 、T1 ED1 、T1 ED2 和T1 ED3 各自至少約0.2eV。
此外,第三主體和第四主體的單重激發態能階S1 H3 和S1 H4 分別高於第三摻雜物和第四摻雜物的單重激發態能階S1 FD1 和S1 FD2 。在這種情況下,在第三主體和第四主體處產生的每個單重態激子能量可以轉移到第三摻雜物和第四摻雜物的每個單重激發態能階S1 FD1 和S1 FD2
此外,發光材料層860必須實現高發光效率和色純度,以及有效地從在第一發光材料層862、第二發光材料層864、第一激子能量控制層892、第二激子能量控制層894和第三激子能量控制層896中的第一摻雜劑和第二摻雜劑和第一有機化合物至第三有機化合物傳遞激子能量到第三摻雜物和第四摻雜物,第一摻雜劑和第二摻雜劑和第一有機化合物至第三有機化合物每個都通過RISC機制轉換為ICT複雜狀態,第三摻雜物和第四摻雜物每個是第三發光材料層866和第四發光材料層868中的螢光或磷光材料。為了實現這樣的有機發光顯示裝置800,第一摻雜劑和第二摻雜劑以及第一有機化合物至第三有機化合物的每個三重激發態能階T1 TD1 、T1 TD2 、T1 ED1 、T1 ED2 和T1 ED3 ,高於第三摻雜物和第四摻雜物的三重激發態能階T1 FD1 和T1 FD2 ,第一摻雜劑和第二摻雜劑以及第一有機化合物至第三有機化合物每個都包含在第一發光材料層862、第二發光材料層864、第一激子能量控制層892、第二激子能量控制層894和第三激子能量控制層896中。在一個示例性實施例中,第一摻雜劑和第二摻雜劑以及第一有機化合物至第三有機化合物的單重激發態能階S1 TD1 、S1 TD2 、S1 ED1 、S1 ED2 和S1 ED3 中的每一個可以高於作為螢光材料的第三摻雜物和第四摻雜物的每個單重激發態能階S1 FD1 和S1 FD2
此外,在第一主體和第二主體的HOMO能階(HOMOH1 和HO MOH2 )與第一摻雜劑和第二摻雜劑的HOMO能階(HOMOTD1 和HOMOTD2 )之間的能階帶隙(| HOMOH1 -HOMOTD |),或在第一主體和第二主體的LUMO能階(LUMOH1 和LUMOH2 )與第一摻雜劑和第二摻雜劑的LUMO能階(LUMOTD1 和LUMOTD2 )之間的能階帶隙(| LUMOH1 - LUMOTD |)可以等於或小於約0.5eV 。此外,在第一主體至第四主體的HOMO能階(HOMOH1 、HOMOH2 、HOMOH3 和HOMOH4 )和第一有機化合物至第三有機化合物的HOMO能階(HOMOED1 、HOMOED2 和HOMOED3 )之間的能階帶隙(| HOMOH - HOMOED |),或在第一主體至第四主體的LUMO能階(LUMOH1 、LUMOH2 、LUMOH3 和LUMOH4 )與第一有機化合物至第三有機化合物的LUMO能階(LUMOED1 、LUMOED2 和LUMOED3 )之間的能階帶隙(| LUMOH - LUMOED |)可以等於或小於大約0.2 eV。
包括在每一個第一激子能量控制層892、第二激子能量控制層894或第三激子能量控制層896中的第一有機化合物至第三有機化合物的每一個可以彼此相同或不同。作為一個示例,第一有機化合物至第三有機化合物中的每一個可獨立地包括但不限於具有如上所述的化學式1至3的結構的任何化合物。第一有機化合物至第三有機化合物中的每一種都可具有延遲螢光性質。
第一發光材料層862中的第一主體,第二發光材料層864中的第二主體,第三發光材料層866中的第三主體和第四發光材料層868中的第四主體中的每一個可以彼此相同或不同。作為一個示例,每一個第一主體至第四主體可以獨立地包括但不限於mCP-CN、CBP、mCBP、mCP、DPEPO、PPT、TmPyPB、PYD-2Cz、DCzDBT、DCz TPA、pCzB-2CN、mCzB-2CN、TSPO1、CCP、4-(3-(三亞苯基-2-基)苯基)二苯並[b,d]噻吩、9-(4-(9H-咔唑-9-基)苯基)-9H-3,9'-二咔唑、9-(3-(9H-咔唑-9-基)苯基)-9H-3,9'-二咔唑)和/或9-(6-(9H-咔唑-9-基)吡啶-3-基)-9H-3,9'-二咔唑。
在一個示例性實施例中,第一發光材料層862和第二發光材料層864中的第一摻雜劑和第二摻雜劑可以與第一有機化合物和第二有機化合物相同。在另一個示例性實施方案中,第一摻雜劑和第二摻雜劑中的每一個可以獨立地包括但不限於具有化學式4結構的任何一種。在又一個示例性實施方案中,第一摻雜劑和第二摻雜劑中的每一種可以獨立地包括但不限於DMAC-TRZ、DMA C-DPS、ACRSA、Cz-VPN、TcZTrz、DczTrz、DDczTrz、CC2BP、BDPCC- TPTA、BCC-TPTA、DMOC-DPS、DPCC-TPTA、Phen-TRZ、Cab-Ph-TRZ、4CzIPN、4CZFCN、10-(4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基)-10H-螺[吖啶-9,9'-呫噸]和/或SpiroAC-TRZ。
第三發光材料層866和第四發光材料層868中的第三摻雜物和第四摻雜物中的每一個可以具有窄FWHM並且具有與第一摻雜劑和第二摻雜劑和第一有機化合物至第三有機化合物的每一個的吸收光譜具有大的重疊面積的發光光譜。作為一個示例,第三摻雜物和第四摻雜物中的每一個可以獨立地包括但不限於具有喹啉 - 吖啶核的有機化合物,喹啉 - 吖啶核例如5,12-二甲基喹啉[2,3-b]吖啶-7,14(5H,12H) - 二酮、5,12-二乙基喹啉[2,3-b]吖啶-7,14(5H,12H) - 二酮、5,12-二丁基-3,10-二氟喹啉[2,3-b]吖啶-7,14(5H,12H) - 二酮、5,12-二丁基-3,10-雙(三氟甲基)喹啉[2,3-b]吖啶-7,14(5H,12H) - 二酮、5,12-二丁基-2,3,9,10-四氟喹啉[2,3-b]吖啶-7,14(5H,12H) - 二酮、DCJTB 以及任何能發出紅色、綠色或藍色光的金屬配合物。
在一個示例性實施例中,第一發光材料層862、第二發光材料層864、第三發光材料層866或第四發光材料層868中的第一主體至第四主體的每一個都可以具有重量比分別等於或大於在相同的發光材料層862、864、66和868中 的第一摻雜劑至第四摻雜劑的重量比。此外,第一發光材料層862和第二發光材料層864中第一摻雜劑和第二摻雜劑的重量比分別可以大於第三發光材料層866和第四發光材料層868中第三摻雜物和第四摻雜物的重量比。在這種情況下,可以從第一發光材料層862和第二發光材料層864中的每個第一摻雜劑和第二摻雜劑中轉移足夠的能量到第三發光材料層866和第四發光材料層868中的第三摻雜物和第四摻雜物。
第一發光材料層862和第二發光材料層864中的每一個可以包括各自為約1至約70wt%的第一摻雜劑和第二摻雜劑,優選約10wt%至約50wt%,更優選約20wt%至約50wt%。第三主體和第四主體的每個重量比可以大於第三發光材料層866和第四發光材料層868中第三摻雜物和第四摻雜物的每個重量比。作為一個示例,第三發光材料層866和第四發光材料層868中的每一個都可以包括包括約90wt%至約99wt%的第三主體或第四主體,優選約95wt%至約99wt%,且包括約1wt%至約10%(重量)的第三摻雜劑或第四摻雜劑,優選約1wt%至約5wt%。
在一個實施例中,第一發光材料層862、第二發光材料層864、第三發光材料層866和第四發光材料層868中的每一個可具有基本相同的厚度。作為一個示例,第一發光材料層862、第二發光材料層864、第三發光材料層866和第四發光材料層868中的每一個可以層疊,厚度為但不限於約5nm至約100nm,優選約10nm至約50nm,更優選約10nm至約30nm。
在又一示例性實施例中,第一發光材料層862、第二發光材料層864、第三發光材料層866和第四發光材料層868中的每一個可具有不同的厚度。作為一個示例,第一發光材料層862和第二發光材料層864的厚度都可以為第三發光材料層866厚度的約1.5至約2.5倍或是第四發光材料層868厚度的約1.5至約2.5倍。在這種情況下,第一發光材料層862和第二發光材料層864中的每一個可以層疊的厚度為,但不限於,約10nm至約100nm,優選約15nm至約50nm,且第三發光材料層866和第四發光材料層868中的每一個可以層疊的厚度為,但不限於,約5nm至約50nm,並且優選約5nm至20nm。或者,第三發光材料層866和第四發光材料層868中的每一個可具有約1.5至約2.5倍的第一發光材料層862和第二發光材料層864中的每一個的厚度。在這種情況下,第三發光材料層866和第四發光材料層868中的每一個可以層疊的厚度為,但不限於,約10nm至約100nm,並且優選約15nm至約50nm,且第一發光材料層862和第二發光材料層864中的每一個可以層疊的厚度為,但不限於,約5nm至約50nm,並且優選約5nm至約20nm。
當在一個示例性實施例中第三發光材料層866與電子阻擋層855相鄰地設置時,與第三摻雜劑一起包含在第三發光材料層866中的第三主體可以是與電子阻擋層855相同的材料。在這種情況下,第三發光材料層866可以具有電子阻擋功能以及發射功能。換句話說,第三發光材料層866可以充當用於阻擋電子的緩衝層。在一個實施例中,可以省略電子阻擋層855,其中第三發光材料層866可以是電子阻擋層以及發光材料層。
當在另一個示例性實施例中第四發光材料層868與電洞阻擋層875相鄰設置時,與第四摻雜劑一起包括在第四發光材料層868中的第四主體可以是與電洞阻擋層875相同的材料。在這種情況下,第四發光材料層868可以具有電洞阻擋功能以及發射功能。換句話說,第四發光材料層868可以充當用於阻擋電洞的緩衝層。在一個實施例中,可以省略電洞阻擋層875,其中第四發光材料層868可以是電洞阻擋層以及發光材料層。
在又一示例性實施例中,第三發光材料層866中的第三主體可以是與電子阻擋層855相同的材料,並且第四發光材料層868中的第四主體可以是與電洞阻擋層875相同的材料。在該實施例中,第三發光材料層866可以具有電子阻擋功能以及發射功能,並且第四發光材料層868可以具有電洞阻擋功能以及發射功能。換句話說,第三發光材料層866和第四發光材料層868中的每一個可以分別用作用於阻擋電子或電洞的緩衝層。在一個實施例中,可以省略電子阻擋層855和電洞阻擋層875,其中第三發光材料層866可以是電子阻擋層以及發光材料層,並且第四發光材料層868可以是電洞阻擋層以及發光材料層。
在以上實施例中,描述了僅具有一個光發射單元的有機發光二極體。與上述實施例不同,有機發光二極體可具有多個光發射單元,以形成串聯結構。圖19是示出根據本發明另一示例性實施例的有機發光二極體的示意性剖視圖。
如圖19所示,根據本發明第九實施例的有機發光二極體 900包括彼此面對的第一電極910和第二電極920 、作為第一發射層設置在第一電極910和第二電極920 之間的第一光發射單元930、作為第二發射層設置在第一光發射單元930和第二電極920之間的第二光發射單元1030,以及設置在第一光發射單元930和第二光發射單元1030之間的電荷產生層1100。
如上所述,第一電極910可以是陽極,並且包括但不限於具有相對大的功函數值的導電材料,例如透明導電材料(TCO)。作為一個示例,第一電極910可包括但不限於ITO、IZO、SnO、ZnO、ICO、AZO等。第二電極920可以是陰極,並且可以包括但不限於具有相對小的功函數值的導電材料,例如Al、Mg、Ca、Ag,其合金或其組合。
第一光發射單元930包括電洞注入層940、第一電洞傳輸層(下部電洞傳輸層)950、下部發光材料層960和第一電子傳輸層(下部電子傳輸層)970。第一光發射單元930還可包括在第一電洞傳輸層950和下部發光材料層960之間設置的第一電子阻擋層(下部電子阻擋層)955和/或設置在下部發光材料層960和第一電子傳輸層970之間的第一電洞阻擋層(下部電洞阻擋層)975。
第二光發射單元1030包括第二電洞傳輸層(上部電洞傳輸層)1050、上部發光材料層1060、第二電子傳輸層(上部電子傳輸層)1070和電子注入層1080。第二光發射單元1030還可以包括設置在第二電洞傳輸層1050和上部發光材料層1060之間的第二電子阻擋層(上部電子阻擋層)1055和/或設置在上部發光材料層1060和第二電子傳輸層1070之間的第二電洞阻擋層(上部電洞阻擋層)1075。
下部發光材料層960和上部發光材料層1060中的至少一個可以包括至少一個激子能量控制層,該激子能量控制層與至少一個包括主體和摻雜劑的發光材料層相鄰地設置。在下文中,將解釋有機發光二極體 900,其中下部發光材料層960包括至少一個激子能量控制層。
電洞注入層940設置在第一電極910和第一電洞傳輸層950之間並且改善無機第一電極910和有機第一電洞傳輸層950之間的界面特性。在一個示例性實施例中,電洞注入層940可包括但不限於MTDATA、NATA、1T-NATA、2T-NATA、CuPc、TCTA、NPB(NPD)、HAT-CN、TDAPB、PEDOT / PSS和/或N-(聯苯-4-基)-9,9-二甲基-N-(4-(9-苯基-9H-咔唑-3-基)苯基)-9H-芴-2-胺。可以根據有機發光二極體 900的結構省略電洞注入層940。
第一電洞傳輸層950和第二電洞傳輸層1050中的每一個可以獨立地包括但不限於,TPD、NPD(NPB)、CBP、聚-TPD、TFB、TAPC、DCDPA、N-(聯苯-4-基)-9,9-二甲基-N-(4-(9-苯基-9H-咔唑-3-基)苯基)-9H-芴-2-胺和/或N-(聯苯-4-基)-N-(4-(9-苯基-9H-咔唑-3-基)苯基)聯苯-4-胺。電洞注入層940以及第一電洞傳輸層950和第二電洞傳輸層1050中的每一個可以層疊的厚度為,但不限於,約5至約200nm,並且優選約5至約100nm。
第一電子傳輸層970和第二電子傳輸層1070中的每一個分別促進第一光發射單元930和第二光發射單元1030中的電子傳輸。第一電子傳輸層970和第二電子傳輸層1070中的每一個可以獨立地包括但不限於,惡二唑類化合物、三唑類化合物、菲咯啉類化合物、苯並噁唑類化合物、苯並噻唑類化合物、苯並咪唑類化合物、三嗪類化合物等。作為一個示例,第一電子傳輸層970和第二電子傳輸層1070中的每一個可以獨立地包括但不限於,Alq3 、 PBD、 spiro-PBD、Liq、TPBi、BAlq、Bphen、NBphen、BCP、TAZ、NTAZ、 TpPyPB、TmPPPyTz、PFNBr、TPQ、TSPO1 和/或2- [4-(9,10-二-2-萘基-2-蒽基)苯基] -1-苯基-1H-苯並咪唑。
電子注入層1080設置在第二電極920和第二電子傳輸層1070之間,並且可以改善第二電極920的物理特性,因此可以增強有機發光二極體 900的壽命。在一個示例性實施方案中,電子注入層1080可包括但不限於鹼金屬鹵化物,例如氟化鋰(LiF)、氟化銫(CsF)、氟化鈉(NaF)、氟化鋇(BaF2 )等,和/或有機金屬化合物,例如苯甲酸鋰,硬脂酸鈉等。
第一電子阻擋層955和第二電子阻擋層1055中的每一個可以獨立地包括但不限於,TCTA、三[4-(二乙基氨基)苯基]胺、N-(聯苯-4-基)-9,9-二甲基-N-(4-(9-苯基-9H-咔唑-3-基)苯基)-9H-芴-2-胺、TAPC、MTDATA、mCP、mCBP、CuPc、DNTPD、TDAPB、DCDPA、2,8-雙(9- phneyl-9H-咔唑-3-基)二苯並[b,d]噻吩和/或3,6-雙(N-咔唑基)-N-苯基 - 咔唑。
第一電洞阻擋層975和第二電洞阻擋層1075中的每一個可以獨立地包括但不限於,惡二唑類化合物、三唑類化合物、菲咯啉類化合物、苯並噁唑類化合物、苯並噻唑類化合物、苯並咪唑類化合物、三嗪類化合物。作為一個示例,第一電洞阻擋層975和第二電洞阻擋層1075中的每一個可以獨立地包括但不限於BCP、BAlq、Alq3 、PBD、螺-PBD、Liq、B3PYMPM、DPEPO、TSPO1、9-(6-(9H-咔唑-9-基)吡啶-3-基)-9H-3,9'-咔及其組合。
在一個示例性實施例中,當上部發光材料層1060發射紅光時,上部發光材料層1060可以是但不限於,磷光材料層包括諸如CBP等的主體和至少一種摻雜劑選自群組PIQIr(acac)(雙(1-苯基異喹啉)乙醯丙酮銥)(PIQIr(acac)(bis(1-phenylisoquinoline)acetylacetonate iridium))、PQIr(acac)(雙(1-苯基喹啉)乙醯丙酮銥)(PQIr(acac)(bis(1- phenylquinoline)acetylacetonate iridium))、PQIr(三(1-苯基喹啉)銥)(PQIr (tris(1-phenylquinoline)iridium))和PtOEP(八乙基卟啉鉑)(PtOEP (octaethylporphyrin platinum))。或者, 上部發光材料層1060可以是包括PBD:Eu(DMB)3(phen),苝和/或它們的衍生物的螢光材料層。在這種情況下,上部發光材料層1060可以發射紅光,該紅光具有但不限於約600nm至約650nm的發射波長範圍。
在另一示例性實施例中,當上部發光材料層1060發射藍光時,上部發光材料層1060可以是但不限於,包括諸如CBP等主體和至少一種銥基摻雜劑的磷光材料層。或者,上部發光材料層1060可以是螢光材料層,螢光材料層包括選自螺-DPVBi、螺-CBP、二苯乙烯(distrylbenzene,DSB)、二萘嵌苯(distrylarylene,DSA)、基於PFO的聚合物和基於PPV的聚合物中的任何一種。上部發光材料層1060可以發出天藍色或深藍色以及藍色的光。在這種情況下,上部發光材料層1060可以發射藍光,其具有但不限於約440nm至約480nm的發射波長範圍。
在一個示例性實施例中,第二光發射單元1030可以具有雙層發光材料層1060,例如,藍色發光材料層和紅色發光材料層,以便提高紅光的發光效率。在這種情況下,上部發光材料層1060可以發射具有但不限於約440nm至約650nm的發射波長範圍的光。
電荷產生層(CGL)1100設置在第一光發射單元930和第二光發射單元1030之間。電荷產生層1100包括與第一光發射單元930相鄰設置的N型電荷產生層1110和與第二光發射單元1030相鄰設置的P型電荷產生層1120。N型電荷產生層1110將電子注入第一光發射單元930,並且P型電荷產生層1120將電洞注入第二光發射單元1030。
作為一個示例,N型電荷產生層1110可以是摻雜有如鋰(Li)、鈉(Na)、鉀(K)和/或銫(Cs)的鹼金屬和/或如鎂(Mg)、鍶(Sr)、鋇(Ba)和/或鐳(Ra)的鹼土金屬的層。例如,在N型電荷產生層1110中使用的主體可以包括但不限於有機化合物,例如Bphen或MTDATA。鹼金屬或鹼土金屬可以摻雜約0.01wt%至約30wt%。
P型電荷產生層1120可包括但不限於選自氧化鎢(tungsten oxide,WOx )、氧化鉬(molybdenum oxide,MoOx )、氧化鈹(beryllium oxide,Be2 O3 )、氧化釩(vanadium oxide,V2 O5 )及其組合的無機材料,和/或選自NPD、HAT-CN 、2,3,5,6-四氟-7,7,8,8-四氰基醌二甲烷(2,3,5,6-Tetrafluoro-7,7,8,8- tetracyanoquino dimethane,F4TCNQ)、TPD、N,N,N’,N’-四萘基 - 聯苯胺(N,N,N’,N’- Tetranaphthalenyl-benzidine,TNB)、TCTA、N,N’-二辛基-3,4,9,10- 苝四甲醯二亞胺(N,N’-dioctyl-3,4,9,10-perylenedicarboximide,PTCDI-C8)及其組合的有機材料。
在一個示例性實施例中,下部發光材料層960包括第一發光材料層962和與第一發光材料層962相鄰設置的激子能量控制層990。第一發光材料層962包括主體和摻雜劑,且激子能量控制層990包括有機化合物。激子能量控制層990可以設置在第一電子阻擋層955和第一發光材料層962之間或第一發光材料層962和第一電洞阻擋層975之間。在一個實施方案中,摻雜劑和有機化合物中的每一種可以分別是延遲光光材料。
第一發光材料層962中主體的單重激發態能階S1 H 和三重激發態能階T1 H 均高於在相同第一發光材料層962中的摻雜劑的單重激發態能階S1 TD 和三重激發態能階T1 TD 中的每一個。明確來說,單重激發態能階S1 H 高於單重激發態能階S1 TD ,且三重激發態能階T1 H 高於三重激發態能階T1 TD 。另外,第一發光材料層962中主體的單重激發態能階S1 H 和三重激發態能階T1 H 均高於激子能量控制層990中的有機化合物的單重激發態能階S1 ED 和三重激發態能階T1 ED 中的每一個(參見圖5)。明確來說,單重激發態能階S1 H 高於單重激發態能階S1 ED ,且三重激發態能階T1 H 高於三重激發態能階T1 ED
優選的,在主體的HOMO能階(HOMOH )與摻雜劑的HOMO能階(HOMOTD )之間的能階帶隙(| HOMOH -HOMOTD |),或在主體的LUMO能階(LUMOH )與摻雜劑的LUMO能階(LUMOTD )之間的能階帶隙(| LUMOH - LUMOTD |),可以等於或小於約0.5eV,例如,在約0.1eV至約0.5eV之間。此外,在主體的HOMO能階(HOMOH )與有機化合物的HOMO能階(HOMOED )之間的能階帶隙(| HOMOH - HOMOED |),或在主體的LUMO能階(LUMOH )和有機化合物的LUMO能階(LUMOED )之間的能階帶隙(| LUMOH - LUMOED |)可以等於或小於約0.2eV。
主體的單重激發態能階S1 H 處的激子能量和三重激發態能階T1 H 處的激子能量通過Dexter能量轉移機構分別轉移到在相同發光材料層中作為延遲螢光材料的第一摻雜劑的單重激發態能階S1 TD 和三重激發態能階T1 TD ,Dexter能量轉移機構分別通過分子間電子交換和激子擴散來轉移依賴於波函數的激子能量在相鄰分子之間的重疊。通過RISC機制將作為延遲螢光材料的摻雜劑的三重激發態能階T1 TD 的激子能量向上轉換為單重激發態能階S1 TD ,然後,單重激發態能階S1 TD 處的轉換激子能量作為延遲螢光轉移到基態。
一部分激子能量累積在主體的單重激發態能階S1 H 和三重激發態能階T1 H 而不轉移到第一發光材料層962中的摻雜劑,而這部分激子能量通過FRET(福斯特共振能量轉移)機構可以轉移到激子能量控制層990中有機化合物的單重激發態能階S1 ED 和三重激發態能階T1 ED ,激子能量控制層990與第一發光材料層962相鄰設置,FRET(福斯特共振能量轉移)機構通過偶極 - 偶極相互作用非徑向地通過電場傳遞能量。未被轉移到摻雜劑的作為主體的激子能量的一部分被轉移到有機化合物,沒有轉移到摻雜劑的主體的激子能量不會累積在主體上。結果,可以最小化由累積的主體激子和外圍極化子之間的相互作用引起的激子猝滅,並且可以防止由於在激子淬火過程中的電氧化和光氧化導致的有機發光二極體 900的壽命減少。
作為一個示例,激子能量控制層990可以層疊的厚度為,但不限於,約1至約10nm,並且優選約1至約5nm。作為一個示例,與第一發光材料層962相鄰設置的激子能量控制層 990中的有機化合物可以是延遲螢光材料,以實現有效的發光。在這種情況下,有機化合物可以提高其發光效率,因為它可以利用從主體發出的三重態激子能量以及單重激子能量來發光。
作為一個示例,主體可包括但不限於 mCP-CN、CBP、mCBP、mCP、DPEPO、PPT、TmPyPB、PYD-2Cz、DCzDBT、DCzTPA、pCzB-2CN、mCzB-2CN、TSPO1、CCP、4-(3-(三亞苯基-2-基)苯基)二苯並[b,d]噻吩、9-(4-(9H-咔唑-9-基)苯基)-9H-3,9'-二咔唑、9-(3-(9H-咔唑-9-基)苯基)-9H-3,9'-二咔唑)和/或9-(6-(9H-咔唑-9-基)吡啶-3-基)-9H-3,9'-二咔唑。
在一個示例性實施方案中,第一發光材料層962中的摻雜劑可與有機化合物相同。在另一個示例性實施方案中,摻雜劑可包括但不限於具有化學式4結構的任何一種。在又一個示例性實施例中,摻雜劑可包括但不限於DMAC-TRZ、DMAC-DPS、ACRSA、Cz-VPN、TcZTrz、DczTrz、DDczTrz、CC2BP、BDPCC-TPTA、BCC-TPTA、DMOC-DPS、DPCC-TPTA、Phen-TRZ、Cab- Ph-TRZ、4CzIPN、4CZFCN、10-(4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基)-10H-螺[吖啶-9,9'-呫噸]和/或SpiroAC-TRZ。
當第一發光材料層962包括主體和摻雜劑時,第一發光材料層962可包括約1wt%-70wt%,優選約10wt%-約50wt%,更優選約20wt%至約50wt%的摻雜劑。
在一個實施方案中,激子能量控制層990可以層疊的厚度為但不限於,約1nm至10nm,優選約1nm至約5nm。第一發光材料層962可以層疊的厚度為但不限於,約10nm至約200nm,優選約20nm至約100nm,更優選約20nm至約50nm。
在替代實施例中,下部發光材料層960可具有如圖5、圖7、圖11、圖13、圖15和圖17中所示發光材料層發光材料層360a、460、560、660、760和860中的任何一種結構。在又一示例性實施例中,本發明的有機發光二極體還可包括設置在第二光發射單元1030和第二電極920之間的第三光發射單元以及設置在第二光發射單元1030和第三光發射單元之間的第二電荷產生層。在這種情況下,第一光發射單元930、第二光發射單元1030和第三光發射單元中的至少一個可以包括至少一個與至少一個發光材料層相鄰設置的激子能量控制層,如上所述。
實施例 1 :有機發光二極體 (OLED) 的製作
在發光材料層中提供激子能量控制層(EEL)製造有機發光二極體。將附接有40nm×40nm×0.5nm的玻璃基板的ITO(包括反射層)用異丙醇、丙酮和蒸餾水超聲清洗5分鐘,然後在100℃的烘箱中乾燥。將清潔過的基板在真空中用O2 電漿處理2分鐘並轉移到沉積室中以在基板上沉積其他層。通過加熱的舟皿在10-7 托下以下列順序藉由蒸發沉積有機層。有機層的沉積速率設定為1 Å / s。
電洞注入層(HIL)(HAT-CN;50);電洞傳輸層(HTL)(NPB,500~1500Å);電子阻擋層(EBL)(TCTA;50Å);第一發光材料層(MADN(主體):化學式3中的化合物1(摻雜劑)= 70:30;60 Å);激子能量控制層(EEL)(化合物1;10至20Å);第二發光材料層(MADN(主體):化學式3中的化合物1(摻雜劑)= 70:30;200 Å);電子傳輸層(ETL)(2- [4-(9,10-二-2-萘基-2-蒽基)苯基] -1-苯基-1H-苯並咪唑(2-[4-(9,10-di-2-naphthalenyl-2-anthracenyl)phenyl]-1-phenyl-1H-benzimidazole);300 Å);電子注入層(EIL)(LiF;10Å);和陰極(Al;800 Å ~1000Å)。
然後,在陰極上沉積覆蓋層(CPL),並裝置通過玻璃封裝。在沉積發射層和陰極之後,將有機發光二極體從沉積室轉移到用於成膜的乾燥箱中,然後使用UV可固化環氧樹脂和吸濕劑進行封裝。製造有機發光二極體的發射面積為9 mm2
實施例 2 ~ 3 有機發光二極體的製作
除了第一發光材料層和第二發光材料層各自層壓的厚度為130 Å(實施例2)或層壓第一發光材料層的厚度為200埃且第二發光材料層的厚度為60 Å(實施例3)之外,使用與實施例1相同的材料製造有機發光二極體。
實施例4 有機發光二極體的製作 的製作
使用與實施例1相同的材料製造有機發光二極體,不同之處在於依序層壓第一發光材料層(MADN(主體):化學式3中的化合物1(摻雜劑)= 70:30;60 Å)、第一激子能量控制層(EEL1)(化合物1;10 Å至20Å)、第二發光材料層(MADN(主體):化學式3中的化合物1(摻雜劑)= 70:30;70Å)、第二激子能量控制層(EEL2(化合物1;10 Å到20 Å)、在電子阻擋層和電子傳輸層之間的第三發光材料層(EML3)(MADN(主體):化學式3中的化合物1(摻雜劑)= 70:30;130 Å)。
實施例 5 有機發光二極體的製作
使用與實施例4相同的材料製造有機發光二極體,不同之處在於第二發光材料層層疊的厚度為140 Å且第三發光材料層層疊的厚度為60 Å。
實施例 6 有機發光二極體的製作
使用與實施例4相同的材料製造有機發光二極體,不同之處在於第二發光材料層層疊的厚度為130 Å且第三發光材料層層疊的厚度為60 Å。
實施例 7 有機發光二極體的製作
使用與實施例1相同的材料製造有機發光二極體,不同之處在於依序層壓第一發光材料層(MADN(主體):化學式3中的化合物1(摻雜劑)= 70:30;60 Å)、第一激子能量控制層(化合物1;10 Å至20Å)、第二發光材料層(MADN(主體):化學式3中的化合物1(摻雜劑)= 70:30;70Å)、第二激子能量控制層(化合物1;10 Å到20 Å)、在電子阻擋層和電子傳輸層之間的第三發光材料層(MADN(主體):化學式3中的化合物1(摻雜劑)= 70:30;70 Å)、第三激子能量控制層(化合物1;10 Å到20Å)、在電子阻擋層和電子傳輸層之間的第四發光材料層(EML4)(MADN(主體):化學式3中的化合物1(摻雜劑)= 70:30;60 Å)。
比較例: 有機發光二極體的製作
使用與實施例1相同的材料製造有機發光二極體,不同之處在於單層發光材料層(MADN(主體):化學式3中的化合物1(摻雜劑)= 70:30;300 Å),沒有任何激子能量控制層(參考例)。
實驗實施例1 :有機發光二極體發光性能的測量
由實施例1至7和比較例製造的每個有機發光二極體連接到外部電源,然後在室溫下使用恆流源(KEITHLEY)和光度計PR650評估所有二極體的發光性能。特別是在發光二極體的電流密度為10 mA / cm2 時測量實施例1至7和比較例的驅動電壓(V)、功率效率(lm / W)、外部量子效率(EQE,%)、CIE色坐標和發光壽命(T95 )。其結果如下表1所示。
1 :有機發光二極體的發光性質
Figure 108144657-A0304-0001
如表1所示,與比較例中沒有形成任何激子能量控制層的有機發光二極體相比,包括至少一個激子能量控制層的有機發光二極體將其功率效率提高到129.6%,其EQE高達106.6%,且其發光壽命高達2.9倍。
實施例 8 ~ 14 有機發光二極體的製作
使用與實施例1至7相同的材料製造有機發光二極體,不同之處在於使用化學式3中的化合物2代替化合物1作為發光材料層中的摻雜劑和激子能量控制層的材料。實施例8至14中的每一個分別對應於實施例1至7中的每一個。
實驗 實施例 2 有機發光二極體發光性能的測量
實施例8-14和比較例中關於有機發光二極體的發光性質以實驗實施例1中的相同方法評估。其結果示於下表2中。
2 有機發光二極體的發光性質
Figure 108144657-A0304-0002
如表2所示,與比較例中沒有形成任何激子能量控制層的有機發光二極體相比,包括至少一個激子能量控制層的有機發光二極體將其功率效率提高到148.1%,其EQE高達118.0%,其發光壽命高達3.2倍。考慮到實驗實施例1和實驗實施例2中的結果,證實了通過引入至少一個與至少一個發光材料層相鄰設置的激子能量控制層,可以提高有機發光二極體的發光效率和發光壽命。因此,通過使用包括至少一個激子能量控制層的有機發光二極體,可以實現諸如有機發光顯示裝置和/或有機發光照明裝置的有機發光裝置,其具有增強的發光效率和發光壽命。
雖然已經參考示例性實施例和實施例描述了本發明,但是這些實施例和實施例並不旨在限製本發明的範圍。相反,對於本領域技術人員顯而易見的是,在不脫離本發明的精神或範圍的情況下,可以在本發明中進行各種修改和變化。因此,本發明旨在覆蓋本發明的修改和變化,只要它們落入所附申請專利範圍及其等同物的範圍內。
可以組合上述各種實施例以提供進一步的實施例。在本說明書中提到的 所有美國公告專利、美國公開專利、美國專利申請案、外國公告專利、外國公開專利和非專利出版物和/或在申請數據表中列出的內容通過引用整體併入本文。如果需要,可以修改實施例的各方面以採用各種公告專利、公開專利和出版物的概念來提供其他實施例。
根據以上詳細描述,可以對實施例進行這些和其他改變。通常,在以下申請專利範圍中,所使用的術語不應被解釋為將申請專利範圍限制於說明書和申請專利範圍中公開的特定實施例,但是應該被解釋為包括所有可能的實施例以及這些申請專利範圍所賦予的等同物的全部範圍。因此,申請專利範圍不受本發明的限制。
如上所述,根據本發明的實施例,由於顯示裝置包括感測驅動像素,該感測驅動像素包括連接到觸摸電極的像素驅動晶片,顯示裝置可以通過使用感測驅動像素顯示圖像,並且可以通過使用觸摸電極來感測觸摸,因此,即使沒有分別的觸摸驅動電路,也可以感測用戶觸摸。
此外,根據本發明的實施例,簡化了顯示驅動系統與顯示面板之間的連接結構,從而提高了顯示裝置的設計美感。
此外,根據本發明的實施例,用於驅動顯示面板的各像素的閘極驅動電路和各數據驅動像素可以實現為安裝在基板上的微晶片,因此,可以省略用於一般顯示面板的每個像素之形成至少一個TFT的過程。
本發明的上述特徵,結構和效果包括在本發明的至少一個實施例中,但不僅限於一個實施例。此外,本領域通常知識者可以通過本發明的至少一個實施例中描述的特徵、結構和效果或通過其他實施例的組合或修改來實現。因此,與組合和修改相關聯的內容應被解釋為在本發明的範圍內。
對於本領域通常知識者顯而易見的是,在不脫離本發明的精神或範圍的情況下,可以在本發明中進行各種修改和變化。因此,本發明旨在覆蓋本發明的修改和變化,只要它們落入所附申請專利範圍及其等同物的範圍內。
100:有機發光顯示裝置 102:基板 104:緩衝層 110:半導體層 120:閘極絕緣層 130:閘電極 140:層間絕緣層 142:第一半導體層接觸孔 144:第二半導體層接觸孔 152:源電極 154:汲電極 160:鈍化層 162:汲極接觸孔 170:堤層 180:封裝膜 182:第一無機絕緣膜 184:有機絕緣膜 186:第二無機絕緣膜 200:有機發光二極體 210:第一電極 220:第二電極 230:光發射單元 300、300A:有機發光二極體(OLED) 310:第一電極 320:第二電極 330、330a:光發射單元 340:電洞注入層 350:電洞傳輸層 355:電子阻擋層(EBL) 360、360a:發光材料層 362、362a:第一發光材料層 370:電子傳輸層 375:電洞阻擋層 380:電子注入層 390:激子能量控制層 400:有機發光二極體 410:第一電極 420:第二電極 430:光發射單元 440:電洞注入層 450:電洞傳輸層 455:電子阻擋層 460:發光材料層 462:第一發光材料層 464:第二發光材料層 470:電子傳輸層 475:電洞阻擋層 480:電子注入層 490:激子能量控制層 500:有機發光二極體 510:第一電極 520:第二電極 530:光發射單元 540:電洞注入層 550:電洞傳輸層 555:電子阻擋層 560:發光材料層 562:第一發光材料層 564:第二發光材料層 566:第三發光材料層 570:電子傳輸層 575:電洞阻擋層 580:電子注入層 592:第一激子能量控制層 594:第二激子能量控制層 600:有機發光二極體 610:第一電極 620:第二電極 630:光發射單元 640:電洞注入層 650:電洞傳輸層 655:電子阻擋層 660:發光材料層 662:第一發光材料層 664:第二發光材料層 666:第三發光材料層 670:電子傳輸層 675:電洞阻擋層 680:電子注入層 692:第一激子能量控制層 694:第二激子能量控制層 700:有機發光二極體 710:第一電極 720:第二電極 730:光發射單元 740:電洞注入層 750:電洞傳輸層 755:電子阻擋層 760:發光材料層 762:第一發光材料層 764:第二發光材料層 766:第三發光材料層 768:第四發光材料層 770:電子傳輸層 775:電洞阻擋層 780:電子注入層 792:第一激子能量控制層 794:第二激子能量控制層 796:第三激子能量控制層 800:有機發光二極體 810:第一電極 820:第二電極 830:光發射單元 840:電洞注入層 850:電洞傳輸層 855:電子阻擋層 860:發光材料層 862:第一發光材料層 864:第二發光材料層 866:第三發光材料層 868:第四發光材料層 870:電子傳輸層 875:電洞阻擋層 880:電子注入層 855:電子阻擋層 892:第一激子能量控制層 894:第二激子能量控制層 896:第三激子能量控制層 900:有機發光二極體 910:第一電極 920:第二電極 930:第一光發射單元 940:電洞注入層 950:第一電洞傳輸層(下部電洞傳輸層) 955:第一電子阻擋層(下部電子阻擋層) 960:下部發光材料層 962:第一發光材料層 970:第一電子傳輸層(下部電子傳輸層) 975:第一電洞阻擋層(下部電洞阻擋層) 990:激子能量控制層(EEL) 1030:第二光發射單元 1050:第二電洞傳輸層(上部電洞傳輸層) 1055:第二電子阻擋層(上部電子阻擋層) 1060:發光材料層 1070:第二電子傳輸層(上部電子傳輸層) 1075:第二電洞阻擋層(上部電洞阻擋層) 1080:電子注入層 1100:電荷產生層 1110:N型電荷產生層 1120:P型電荷產生層
圖1是示出本發明的有機發光顯示裝置的示意性剖視圖。 圖2是示出根據本發明示例性實施例的有機發光二極體的示意性剖視圖。 圖3是示出延遲螢光材料的發光機制的示意圖。 圖4是示出根據現有技術的發光材料中的能階帶隙(energy level bandgap)的發光機制的示意圖。 圖5是示出根據本發明示例性實施例的發光材料中的能階帶隙的發光機制的示意圖。 圖6是示出根據本發明另一示例性實施例的有機發光二極體的示意性剖視圖。 圖7是示出根據本發明另一示例性實施例的發光材料中的能階帶隙的發光機制的示意圖。 圖8是示出根據本發明另一示例性實施例的有機發光二極體的示意性剖視圖。 圖9是示出根據本發明另一示例性實施例的發光材料中的能階帶隙的發光機制的示意圖。 圖10是示出根據本發明另一示例性實施例的發光材料中的能階帶隙的發光機制的示意圖。 圖11是示出根據本發明另一示例性實施例的有機發光二極體的示意性剖視圖。 圖12是示出根據本發明另一示例性實施例的發光材料中的能階帶隙的發光機制的示意圖。 圖13是示出根據本發明另一示例性實施例的有機發光二極體的示意性剖視圖圖。 圖14是示出根據本發明另一示例性實施例的發光材料中的能階帶隙的發光機制的示意圖。 圖15是示出根據本發明另一示例性實施例的有機發光二極體的示意性剖視圖。 圖16是示出根據本發明另一示例性實施例的發光材料中的能階帶隙的發光機制的示意圖。 圖17是示出根據本發明另一示例性實施例的有機發光二極體的示意性剖視圖。 圖18是示出根據本發明另一示例性實施例的發光材料中的能階帶隙的發光機制的示意圖。 圖19是示出根據本發明另一示例性實施例的有機發光二極體的示意性剖視圖。
100:有機發光顯示裝置
102:基板
104:緩衝層
110:半導體層
120:閘極絕緣層
130:閘電極
140:層間絕緣層
142:第一半導體層接觸孔
144:第二半導體層接觸孔
152:源電極
154:汲電極
160:鈍化層
162:汲極接觸孔
170:堤層
180:封裝膜
182:第一無機絕緣膜
184:有機絕緣膜
186:第二無機絕緣膜
200:有機發光二極體
210:第一電極
220:第二電極
230:光發射單元

Claims (36)

  1. 一種有機發光二極體,包含:一第一電極;一第二電極,其中該第一電極與該第二電極相互面對;以及至少一光發射單元,其中,該至少一光發射單元設置在該第一電極和該第二電極之間,並且該至少一光發射單元包含一發光材料層,其中該發光材料層包括一第一發光材料層以及一第一激子能量控制層,該第一發光材料層包括一第一主體和一第一摻雜劑,其中該第一激子能量控制層設置於該第一電極與該第一發光材料層之間或設置於該第一發光材料層與該第二電極之間,其中該第一激子能量控制層包括一第一有機化合物,其中該第一有機化合物的激發單重態能階和激發三重態能階分別低於該第一主體的激發單重態能階和激發三重態能階,並且其中該第一有機化合物包含具有以下化學式2的結構的一有機化合物:
    Figure 108144657-A0305-02-0096-1
    其中R11至R14各自獨立地為氕、氘、氚或選自由苯基、吡啶基、咔唑基、吖啶基、吩嗪基(phenazinyl)、苯惡嗪基(phenoxazinyl)、二苯並呋喃基、二苯並噻吩基、二嗪基和三嗪基組成之群組的芳基或雜芳基,其各自未取代或被氰基、硝基、鹵素、C1~C10烷基、C1~C10烷基鹵化物基團、C5~C30芳基或C4~C30雜芳基取代,其中R11至R14中的至少兩個是芳基或雜芳基,R11至R14中的至少一個是吡啶基、二嗪基或三嗪基,R11至R14中的其他基團是苯基、咔唑基、吖基、吩嗪基(phenazinyl)、苯惡嗪基(phenoxazinyl)、二苯並呋喃基或二苯並噻吩基,R11至R14各自獨立地直接連接於伸苯基環,或是通過C5~C30亞芳基或C4~C30雜亞芳基獨立地連接於伸苯基環。
  2. 如請求項1所述之有機發光二極體,其中該第一摻雜劑包含一延遲螢光材料。
  3. 如請求項1所述之有機發光二極體,其中該第一主體的激發單重態能階和激發三重態能階分別高於該第一摻雜劑的激發單重態能階和激發三重態能階。
  4. 如請求項1所述之有機發光二極體,其中該第一摻雜劑包含該第一有機化合物。
  5. 如請求項1所述之有機發光二極體,其中R11至R14中各自獨立地為以下芳族取代基中的任一個:
    Figure 108144657-A0305-02-0097-2
    Figure 108144657-A0305-02-0098-3
  6. 如請求項1所述之有機發光二極體,其中R11至R14中之一者為三嗪基,R11至R14中的其他基團為咔唑基、二苯並呋喃基或二苯並噻吩基。
  7. 如請求項1所述之有機發光二極體,其中該第一有機化合物具有以下化學式3的結構中的任何一種:
    Figure 108144657-A0305-02-0098-4
    Figure 108144657-A0305-02-0099-6
  8. 如請求項1所述之有機發光二極體,其中該第一摻雜劑和該第一有機化合物各包含一延遲螢光材料。
  9. 如請求項1所述之有機發光二極體,其中該第一發光材料層更包含一第二摻雜劑,其中該第一摻雜劑的激發三重態能階低於該第一主體的激發三重態能階,以及其中該第一摻雜劑的激發單重態能階高於該第二摻雜劑的激發單重態能階。
  10. 如請求項9所述之有機發光二極體,其中該第一有機化合物的激發單重態能階高於該第二摻雜劑的激發單重態能階。
  11. 如請求項1所述之有機發光二極體,其中該發光材料層更包含相對於該第一激子能量控制層與該第一發光材料層相對設置的一第二發光材料層,其中該第二發光材料層包含一第二主體和一第二摻雜劑。
  12. 如請求項11所述之有機發光二極體,其中該第一主體和該第二主體各自的激發單重態能階和激發三重態能階分別高於該第一有機化合物的激發單重態能階和激發三重態能階。
  13. 如請求項11所述之有機發光二極體,其中該第一摻雜劑和該第二摻雜劑各包含一延遲螢光材料。
  14. 如請求項11所述之有機發光二極體,其中該第一主體的該單重激發態能階和三重激發態能階分別高於該第一摻雜劑的單重激發態能階和三重激發態能階,且其中該第二主體的單重激發態能階和三重激發態能階分別高於該第二摻雜劑的單重激發態能階和三重激發態能階。
  15. 如請求項11所述之有機發光二極體,其中該第一摻雜劑的單重激發態能階高於該第二摻雜劑的單重激發態能階。
  16. 如請求項11所述之有機發光二極體,其中該第一有機化合物的單重激發態能階高於該第二摻雜劑的單重激發態能階。
  17. 如請求項11所述之有機發光二極體,其中該第二發光材料層設置在該第一激子能量控制層和該第二電極之間,且其中該發光材料層更包含設置在該第二發光材料層和該第二電極之間的一第二激子能量控制層。
  18. 如請求項17所述之有機發光二極體,其中該第二激子能量控制層包含一第二有機化合物,且其中該第二有機化合物的單重激發態能階和三重激發態能階分別低於該第一主體和該第二主體每一個的的單重激發態能階和三重激發態能階,其中該第二有機化合物包含具有化學式2的結構的該有機化合物。
  19. 如請求項17所述之有機發光二極體,其中該發光材料層更包含設置在該第二激子能量控制層和該第二電極之間的一第三發光材料層,且其中該第三發光材料層包含一第三主體和一第三摻雜劑。
  20. 如請求項19所述之有機發光二極體,其中該第二激子能量控制層包含一第二有機化合物,且該第二有機化合物中的激發單重態能階和三重激發態能階分別低於該第一主體至該第三主體每一個的激發單重態能階和三重激發態能階,其中該第二有機化合物包含具有化學式2的結構的該有機化合物。
  21. 如請求項19所述之有機發光二極體,其中該第一摻雜劑至該第三摻雜劑各自包含一延遲螢光材料。
  22. 如請求項11所述之有機發光二極體,其中該第一發光材料層設置在該第一電極和該第一激子能量控制層之間,且該發光材料層更包含設置在該第二發光材料層和該第二電極之間的一第二激子能量控制層。
  23. 如請求項22所述之有機發光二極體,其中該第二激子能量控制層包含一第二有機化合物,且其中該第二有機化合物的單重激發態能階和三重激發態能階分別低於該第一主體和該第二主體每一個的激發單重態能階和三重激發態能階,其中該第二有機化合物包含具有化學式2的結構的該有機化合物。
  24. 如請求項22所述之有機發光二極體,其中該發光材料層更包含設置在該第二激子能量控制層和該第二電極之間的一第三發光材料層,該第三發光材料層包含一第三主體和一第三摻雜劑。
  25. 如請求項24所述之有機發光二極體,其中該第二激子能量控制層包含一第二有機化合物,且該第二有機化合物的單重激發態能階和三重激發態能階分別低於該第一主體至該第三主體每一個的單重激發態能階和三重激發態能階,其中該第二有機化合物包含具有化學式2的結構的該有機化合物。
  26. 如請求項24所述之有機發光二極體,其中該第一摻雜劑的單重激發態能階高於該第二摻雜劑和該第三摻雜劑每一個的單重激發態能階。
  27. 如請求項25所述之有機發光二極體,其中該第一有機化合物的單重激發態能階和第二有機化合物的單重激發態能階分別高於該第二摻雜劑的單重激發態能階和該第三摻雜劑的單重激發態能階。
  28. 如請求項19所述之有機發光二極體,其中該發光材料層更包含設置在該第三發光材料層和該第二電極之間的一第三激子能量控制層。
  29. 如請求項28所述之有機發光二極體,其中該第三激子能量控制層包含一第三有機化合物,且該第三有機化合物的單重激發態能階和三重激發態能階分別低於該第一主體至該第三主體每一個的單重激發態能階和三重激發態能階,其中該第三有機化合物包含具有化學式2的結構的該有機化合物。
  30. 如請求項28所述之有機發光二極體,其中該發光材料更包含設置在該第三激子能量控制層和該第二電極之間的一第四發光材料層,且該第四發光材料層包含一第四主體和一第四摻雜劑。
  31. 如請求項30所述之有機發光二極體,其中該第三激子能量控制層包含一第三有機化合物,且該第三有機化合物的單重激發態能階和三重激發態能階分別低於該第一主體至該第四主體中每一個的單重激發態能階和三重激發態能階,其中該第三有機化合物包含具有化學式2的結構的該有機化合物。
  32. 如請求項31所述之有機發光二極體,其中該第一摻雜劑至該第四摻雜劑各自包含一延遲螢光材料。
  33. 如請求項11所述之有機發光二極體,其中該第二發光材料層設置在該第一激子能量控制層和該第二電極之間,且該發光材料層更包含設置在該第一電極和該第一發光材料層之間的一第二激子能量控制層、設置在該第一電極和該第二激子能量控制層之間的一第三發光材料層以及設置在該第二發光材料層和該第二電極之間的一第三激子能量控制層,且該第三發光材料層包含一第三主體和一第三摻雜劑。
  34. 如請求項1所述之有機發光二極體,其中該至少一光發射單元包含設置在該第一電極和該第二電極之間的一第一光發射單元和設置在該第一光發射單元和該第二電極之間的一第二光發射單元,其中該第一光發射單元包含一下部發光材料層,該第二光發射單元具有一上部發光材料層,以及其中該下部發光材料層和該上部發光材料層至少其中之一包含該第一發光材料層和該第一激子能量控制層,且更包含設置在該第一光發射單元和該第二光發射單元之間的一電荷產生層。
  35. 一種有機發光裝置,包含:一基板;以及如請求項1所述之有機發光二極體,設置在該基板上。
  36. 如請求項35所述之有機發光裝置,其中該有機發光裝置為一有機發光顯示裝置或一有機發光照明裝置。
TW108144657A 2018-12-13 2019-12-06 有機發光二極體及包含其之有機發光裝置 TWI725652B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0161122 2018-12-13
KR1020180161122A KR102622078B1 (ko) 2018-12-13 2018-12-13 유기발광다이오드 및 이를 포함하는 유기발광장치

Publications (2)

Publication Number Publication Date
TW202021962A TW202021962A (zh) 2020-06-16
TWI725652B true TWI725652B (zh) 2021-04-21

Family

ID=69186937

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108144657A TWI725652B (zh) 2018-12-13 2019-12-06 有機發光二極體及包含其之有機發光裝置

Country Status (6)

Country Link
US (1) US11456427B2 (zh)
KR (1) KR102622078B1 (zh)
CN (1) CN111326666B (zh)
DE (1) DE102019132806B4 (zh)
GB (1) GB2584511B (zh)
TW (1) TWI725652B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200068503A (ko) * 2018-12-05 2020-06-15 엘지디스플레이 주식회사 유기발광다이오드 및 이를 포함하는 유기발광장치
CN111799386B (zh) * 2020-07-22 2023-07-14 京东方科技集团股份有限公司 一种发光器件、显示装置
KR20220092168A (ko) * 2020-12-24 2022-07-01 엘지디스플레이 주식회사 발광 소자 및 이를 포함한 발광 표시 장치
KR20240001315A (ko) * 2021-04-26 2024-01-03 가부시키가이샤 큐럭스 유기 발광 소자 및 그 제조 방법
CN115636821B (zh) * 2021-07-19 2024-05-17 上海和辉光电股份有限公司 一种电子传输材料及其制备方法和应用
TWI794978B (zh) * 2021-09-15 2023-03-01 崑山科技大學 量子點發光二極體及其製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070102021A (ko) * 2006-04-13 2007-10-18 네오뷰코오롱 주식회사 청색 유기 발광 화합물 및 이를 포함하는 유기 발광다이오드
CN102858911A (zh) * 2010-03-01 2013-01-02 香港科技大学 四苯乙烯发光衍生物、其制备方法以及使用该衍生物的发光器件
TW201434802A (zh) * 2012-12-31 2014-09-16 Dow Global Technologies Llc 以四伸苯乙烯爲主之化合物及包含該化合物之oled裝置
CN104725297A (zh) * 2013-12-24 2015-06-24 海洋王照明科技股份有限公司 四苯乙烯基蓝光磷光主体材料及其制备方法和应用
TW201537801A (zh) * 2013-12-20 2015-10-01 Basf Se 具極短衰變時間之高效率有機發光裝置(oled)

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10333232A1 (de) * 2003-07-21 2007-10-11 Merck Patent Gmbh Organisches Elektrolumineszenzelement
JP4110160B2 (ja) * 2004-09-29 2008-07-02 キヤノン株式会社 有機エレクトロルミネッセント素子、及びディスプレイ装置
US9070884B2 (en) * 2005-04-13 2015-06-30 Universal Display Corporation Hybrid OLED having phosphorescent and fluorescent emitters
US7474048B2 (en) * 2005-06-01 2009-01-06 The Trustees Of Princeton University Fluorescent filtered electrophosphorescence
TWI471058B (zh) * 2005-06-01 2015-01-21 Univ Princeton 螢光之經過濾電磷光作用
US20080284318A1 (en) * 2007-05-17 2008-11-20 Deaton Joseph C Hybrid fluorescent/phosphorescent oleds
US20080286610A1 (en) * 2007-05-17 2008-11-20 Deaton Joseph C Hybrid oled with fluorescent and phosphorescent layers
JP2010226059A (ja) * 2009-03-25 2010-10-07 Toshiba Corp 有機電界発光素子
US8673458B2 (en) * 2010-06-11 2014-03-18 Universal Display Corporation Delayed fluorescence OLED
JP5703080B2 (ja) * 2011-03-23 2015-04-15 株式会社東芝 有機電界発光素子、表示装置および照明装置
KR101429537B1 (ko) * 2011-07-11 2014-08-12 엘지디스플레이 주식회사 유기발광소자
CN103887436B (zh) * 2012-12-21 2016-12-28 厦门天马微电子有限公司 一种有机发光二极管
JP6553022B2 (ja) * 2013-04-08 2019-07-31 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセント素子
US20160181545A1 (en) * 2013-06-06 2016-06-23 Merck Patent Gmbh Organic electroluminescent device
US9666822B2 (en) * 2013-12-17 2017-05-30 The Regents Of The University Of Michigan Extended OLED operational lifetime through phosphorescent dopant profile management
JP6367340B2 (ja) 2014-08-22 2018-08-01 シャープ株式会社 有機エレクトロルミネッセンス素子およびその製造方法並びに発光方法
JP6494079B2 (ja) * 2014-10-31 2019-04-03 国立大学法人九州大学 有機発光素子
CN105810846B (zh) * 2014-12-31 2020-07-07 北京维信诺科技有限公司 一种有机电致发光器件
US10593892B2 (en) * 2015-10-01 2020-03-17 Universal Display Corporation Organic electroluminescent materials and devices
US10290816B2 (en) * 2015-11-16 2019-05-14 The Regents Of The University Of Michigan Organic electroluminescent materials and devices
JP6714364B2 (ja) * 2016-01-14 2020-06-24 国立大学法人九州大学 有機エレクトロルミネッセンス素子、素子群、有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子の発光波長制御方法
KR20180034783A (ko) * 2016-09-27 2018-04-05 삼성디스플레이 주식회사 유기 전계 발광 표시 장치
KR102641614B1 (ko) 2016-09-29 2024-02-27 엘지디스플레이 주식회사 유기발광다이오드 및 이를 포함하는 유기발광 표시장치
CN108011047B (zh) * 2016-10-27 2020-03-10 昆山工研院新型平板显示技术中心有限公司 一种红光有机电致发光器件
US11183670B2 (en) * 2016-12-16 2021-11-23 Arizona Board Of Regents On Behalf Of Arizona State University Organic light emitting diode with split emissive layer
US10163580B2 (en) * 2017-05-08 2018-12-25 Wuhan China Star Optoelectronics Technology Co., Ltd. OLED device and method for manufacturing the same
KR102386850B1 (ko) * 2017-08-25 2022-04-15 삼성디스플레이 주식회사 유기 전계 발광 소자
EP3470412B1 (en) * 2017-10-13 2020-07-22 Novaled GmbH Organic electronic device comprising an organic semiconductor layer
JP7044547B2 (ja) * 2017-12-28 2022-03-30 出光興産株式会社 新規化合物及び有機エレクトロルミネッセンス素子
CN108864068B (zh) 2018-07-27 2021-12-28 武汉天马微电子有限公司 一种化合物以及有机发光显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070102021A (ko) * 2006-04-13 2007-10-18 네오뷰코오롱 주식회사 청색 유기 발광 화합물 및 이를 포함하는 유기 발광다이오드
CN102858911A (zh) * 2010-03-01 2013-01-02 香港科技大学 四苯乙烯发光衍生物、其制备方法以及使用该衍生物的发光器件
TW201434802A (zh) * 2012-12-31 2014-09-16 Dow Global Technologies Llc 以四伸苯乙烯爲主之化合物及包含該化合物之oled裝置
TW201537801A (zh) * 2013-12-20 2015-10-01 Basf Se 具極短衰變時間之高效率有機發光裝置(oled)
CN104725297A (zh) * 2013-12-24 2015-06-24 海洋王照明科技股份有限公司 四苯乙烯基蓝光磷光主体材料及其制备方法和应用

Also Published As

Publication number Publication date
TW202021962A (zh) 2020-06-16
CN111326666B (zh) 2023-04-18
KR20200072962A (ko) 2020-06-23
DE102019132806A1 (de) 2020-06-18
GB2584511A (en) 2020-12-09
GB2584511B (en) 2021-12-22
KR102622078B1 (ko) 2024-01-05
US11456427B2 (en) 2022-09-27
DE102019132806B4 (de) 2023-09-07
GB201918309D0 (en) 2020-01-29
CN111326666A (zh) 2020-06-23
US20200194689A1 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
US11800732B2 (en) Organic light emitting diode and organic light emitting device having the same
TWI725652B (zh) 有機發光二極體及包含其之有機發光裝置
CN111276620B (zh) 有机发光二极管和具有其的有机发光装置
KR102647025B1 (ko) 발광 특성이 우수한 유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광장치
KR20200068352A (ko) 유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광장치
CN110818612A (zh) 有机化合物、包含其的有机发光二极管和有机发光装置
KR102326304B1 (ko) 우수한 발광 특성을 가지는 유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광장치
CN112447921B (zh) 有机发光二极管和具有该二极管的有机发光装置
CN112239472A (zh) 有机化合物、包括有机化合物的有机发光二极管和有机发光装置
CN114464747B (zh) 有机发光二极管和包括其的有机发光装置
TWI743559B (zh) 有機化合物、含有該有機化合物的有機發光二極體和有機發光裝置
CN111349079B (zh) 有机化合物、具有该化合物的oled和有机发光装置
CN112457200A (zh) 有机化合物、包含有机化合物的有机发光二极管和有机发光装置
CN114464746B (zh) 有机发光二极管和包括其的有机发光装置
TWI784187B (zh) 有機化合物、有機發光二極體和含有該有機化合物的有機發光裝置
CN112442015B (zh) 具有改善的发光特性的有机化合物、含该有机化合物的有机发光二极管和有机发光装置
KR20220067131A (ko) 유기발광다이오드 및 유기발광장치
KR20210069560A (ko) 유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광장치
JP2023551086A (ja) 有機発光ダイオードおよびそれを含む有機発光装置
CN116137795A (zh) 有机发光二极管和包括该有机发光二极管的有机发光器件