TWI721371B - Photosensitive resin composition and photosensitive resin laminate - Google Patents

Photosensitive resin composition and photosensitive resin laminate Download PDF

Info

Publication number
TWI721371B
TWI721371B TW108103816A TW108103816A TWI721371B TW I721371 B TWI721371 B TW I721371B TW 108103816 A TW108103816 A TW 108103816A TW 108103816 A TW108103816 A TW 108103816A TW I721371 B TWI721371 B TW I721371B
Authority
TW
Taiwan
Prior art keywords
photosensitive resin
group
resin composition
mass
phenyl
Prior art date
Application number
TW108103816A
Other languages
Chinese (zh)
Other versions
TW201922805A (en
Inventor
松田隆之
Original Assignee
日商旭化成電子材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商旭化成電子材料股份有限公司 filed Critical 日商旭化成電子材料股份有限公司
Publication of TW201922805A publication Critical patent/TW201922805A/en
Application granted granted Critical
Publication of TWI721371B publication Critical patent/TWI721371B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/15Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/02Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of acids, salts or anhydrides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0502Patterning and lithography
    • H05K2203/0514Photodevelopable thick film, e.g. conductive or insulating paste
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0023Etching of the substrate by chemical or physical means by exposure and development of a photosensitive insulating layer

Abstract

本發明提供一種感光性樹脂組合物,其係含有(A)鹼可溶性高分子、(B)具有乙烯性不飽和雙鍵之化合物、及(C)光聚合起始劑者,且於基板表面上形成包含該感光性樹脂組合物之感光性樹脂層並進行曝光及顯影所獲得的抗蝕劑圖案中,於將焦點位置聚焦於該基板表面並進行該曝光時之圖案解析度a、與將焦點位置聚焦於自該基板表面於該基板之厚度方向上挪移300 μm之位置並進行該曝光時之圖案解析度b之差未達15 μm。The present invention provides a photosensitive resin composition containing (A) an alkali-soluble polymer, (B) a compound having an ethylenically unsaturated double bond, and (C) a photopolymerization initiator, which is on the surface of a substrate In the resist pattern obtained by forming a photosensitive resin layer containing the photosensitive resin composition and performing exposure and development, the pattern resolution a when the focal position is focused on the surface of the substrate and the exposure is performed, and the focal point The position is focused on a position shifted by 300 μm in the thickness direction of the substrate from the surface of the substrate and the difference in the pattern resolution b during the exposure is less than 15 μm.

Description

感光性樹脂組合物及感光性樹脂積層體Photosensitive resin composition and photosensitive resin laminate

本發明係關於一種感光性樹脂組合物等。The present invention relates to a photosensitive resin composition and the like.

於電腦、行動電話等電子機器中,為了安裝零件、半導體等而使用印刷配線板等。作為印刷配線板等之製造用抗蝕劑,先前使用所謂之乾膜光阻(以下有時稱為DF),該乾膜光阻係於支撐膜上積層感光性樹脂層,進而於該感光性樹脂層上視需要積層保護膜而成的感光性樹脂積層體。作為感光性樹脂層,目前通常為使用弱鹼性水溶液作為顯影液之鹼性顯影型者。於使用DF製作印刷配線板等時,例如經由以下步驟。於DF具有保護膜之情形時,首先剝離保護膜。其後,使用層壓機等在銅箔積層板或可撓性基板等永久電路製作用基板上層壓DF,經由配線圖案遮罩膜等進行曝光。其次,視需要剝離支撐膜,藉由顯影液將未硬化部分(例如負型時為未曝光部分)之感光性樹脂層溶解或分散去除,於基板上形成硬化抗蝕劑圖案(以下有時僅稱為抗蝕劑圖案)。 形成抗蝕劑圖案後形成電路之製程大致可分為兩個方法。第一方法係將未由抗蝕劑圖案覆蓋之基板面(例如銅箔積層板之銅面)蝕刻去除後,利用較顯影液更強之鹼性水溶液去除抗蝕劑圖案部分的方法(蝕刻法)。第二方法係於上述基板面上進行銅、焊料、鎳、錫等之鍍敷處理後,以與第一方法相同之方式去除抗蝕劑圖案部分,進而將露出之基板面(例如銅箔積層板之銅面)蝕刻的方法(鍍敷法)。蝕刻時可使用氯化銅、氯化鐵、銅氨錯合物溶液等。近年來,伴隨著電子機器之小型化及輕量化,印刷配線板之微細化及高密度化進步,而需求於如上述之製造步驟中提供高解析性等之高性能DF。作為可實現此種高解析性者,於專利文獻1中揭示有藉由特定之熱塑性樹脂、單體及光聚合性起始劑而使解析性提高之感光性樹脂組合物。 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開2010-249884號公報In electronic devices such as computers and mobile phones, printed wiring boards are used for mounting parts, semiconductors, etc. As a resist for the manufacture of printed wiring boards, etc., a so-called dry film photoresist (hereinafter sometimes referred to as DF) has been used previously. A photosensitive resin laminate formed by laminating a protective film on the resin layer as necessary. As the photosensitive resin layer, at present, it is generally an alkaline developing type that uses a weak alkaline aqueous solution as a developing solution. When using DF to produce a printed wiring board, etc., for example, the following steps are taken. When DF has a protective film, first peel off the protective film. After that, using a laminator or the like, DF is laminated on a substrate for permanent circuit production such as a copper foil laminate or a flexible substrate, and exposed via a wiring pattern mask film or the like. Secondly, if necessary, the support film is peeled off, and the photosensitive resin layer of the uncured part (for example, the unexposed part in the negative type) is dissolved or dispersed by the developer to form a cured resist pattern on the substrate (hereinafter sometimes only Called resist pattern). The process of forming a circuit after forming a resist pattern can be roughly divided into two methods. The first method is to etch away the substrate surface (such as the copper surface of a copper foil laminate) that is not covered by the resist pattern, and then use an alkaline aqueous solution that is stronger than the developer to remove the resist pattern part (etching method) ). The second method is to apply copper, solder, nickel, tin, etc. plating treatment on the above-mentioned substrate surface, remove the resist pattern part in the same way as the first method, and then expose the substrate surface (such as copper foil laminate The copper surface of the board) etching method (plating method). Copper chloride, ferric chloride, copper ammonia complex solution, etc. can be used for etching. In recent years, along with the miniaturization and weight reduction of electronic devices, the miniaturization and high-density of printed wiring boards have progressed, and there is a demand for high-performance DFs that provide high resolution in the above-mentioned manufacturing steps. As one that can realize such high resolution, Patent Document 1 discloses a photosensitive resin composition whose resolution is improved by a specific thermoplastic resin, a monomer, and a photopolymerizable initiator. [Prior Technical Literature] [Patent Literature] [Patent Document 1] Japanese Patent Laid-Open No. 2010-249884

[發明所欲解決之問題] 然而,於近年來較多使用之利用描繪圖案之直接描繪等的曝光方法之情況下,焦點之位置對解析性產生較大影響。例如,若由於基板之翹曲及變形、曝光裝置之設定不良等而使曝光時之焦點之位置自基板表面挪移,則會導致解析性大幅度地劣化。其結果,存在藉由蝕刻法形成電路時產生短路問題,藉由鍍敷法形成電路時產生缺損、斷線、鍍敷不良等問題之情形。就該觀點而言,上述專利文獻1中揭示之技術仍存在改良之餘地。 因此,本發明之課題在於提供一種曝光時之焦點挪移時亦表現出高解析性之感光性樹脂積層體、及用以形成該感光性樹脂積層體之感光性樹脂組合物,並且在於提供一種使用該感光性樹脂積層體之抗蝕劑圖案之形成方法及導體圖案之形成方法。 [解決問題之技術手段] 本發明者為了解決上述課題而進行了潛心研究並反覆實驗。結果發現,藉由以下之技術方法可解決該課題。 即,本發明係如下所述之內容。 [1]一種感光性樹脂組合物,其係含有(A)鹼可溶性高分子、(B)具有乙烯性不飽和雙鍵之化合物、及(C)光聚合起始劑者,且 於基板表面上形成包含該感光性樹脂組合物之感光性樹脂層並進行曝光及顯影所獲得之抗蝕劑圖案中,於將焦點位置聚焦於該基板表面並進行該曝光時之圖案解析度a、與將焦點位置聚焦於自該基板表面於該基板之厚度方向上向基板內側挪移300 μm之位置並進行該曝光時之圖案解析度b之差未達15 μm。 [2]如[1]所記載之感光性樹脂組合物,其中以感光性樹脂組合物之總固形物成分質量基準計,含有 上述(A)鹼可溶性高分子:10質量%~90質量%; 上述(B)具有乙烯性不飽和雙鍵之化合物:5質量%~70質量%;及 上述(C)光聚合起始劑:0.01質量%~20質量%。 [3]如[2]所記載之感光性樹脂組合物,其中以感光性樹脂組合物之總固形物成分質量基準計,進而含有(D)苯酚衍生物:0.001質量%~10質量%。 [4]如[3]所記載之感光性樹脂組合物,其中含有下述通式(I)所表示之化合物作為(D)苯酚衍生物: [化1]

Figure 02_image001
{式中,R1 表示可經取代之直鏈烷基、分支烷基、芳基、環己基、中介二價連結基之直鏈烷基、中介二價連結基之分支烷基、中介二價連結基之環己基或中介二價連結基之芳基,複數個R1 可彼此相同亦可不同,m表示0~4之整數,n表示1以上之整數,並且,n為1時A為一價有機基,n為2以上時A表示二價以上之有機基、單鍵或包含共軛鍵之連結基}。 [5]如[3]或[4]所記載之感光性樹脂組合物,其中含有下述通式(II)所表示之化合物作為(D)苯酚衍生物: [化2]
Figure 02_image003
{式中,R2 表示可經取代之直鏈烷基、分支烷基、芳基、環己基、中介二價連結基之直鏈烷基、中介二價連結基之分支烷基、中介二價連結基之環己基或中介二價連結基之芳基,並且R3 、R4 及R5 各自獨立表示氫或者可經取代之直鏈烷基、分支烷基、芳基、環己基、中介二價連結基之直鏈烷基、中介二價連結基之分支烷基、中介二價連結基之環己基或中介二價連結基之芳基}。 [6]如[3]或[4]所記載之感光性樹脂組合物,其中含有下述通式(III)所表示之化合物作為(D)苯酚衍生物: [化3]
Figure 02_image005
{式中,R6 及R7 各自獨立表示可經取代之直鏈烷基、分支烷基、芳基、環己基、中介二價連結基之直鏈烷基、中介二價連結基之分支烷基、中介二價連結基之環己基或中介二價連結基之芳基,複數個R6 及R7 可彼此相同亦可不同,p及q各自獨立表示0~4之整數,並且B表示單鍵或包含共軛鍵之連結基}。 [7]一種感光性樹脂組合物,其係以感光性樹脂組合物之總固形物成分質量基準計,含有 (A)鹼可溶性高分子:10質量%~90質量%; (B)具有乙烯性不飽和雙鍵之化合物:5質量%~70質量%; (C)光聚合起始劑:0.01質量%~20質量%;及 (D)苯酚衍生物:0.001質量%~10質量%者,且 含有選自由下述通式(II)所表示之化合物及下述通式(III)所表示之化合物所組成之群中的至少一種作為(D)苯酚衍生物: [化4]
Figure 02_image007
{式中,R2 表示可經取代之直鏈烷基、分支烷基、芳基、環己基、中介二價連結基之直鏈烷基、中介二價連結基之分支烷基、中介二價連結基之環己基或中介二價連結基之芳基,並且R3 、R4 及R5 各自獨立表示氫或者可經取代之直鏈烷基、分支烷基、芳基、環己基、中介二價連結基之直鏈烷基、中介二價連結基之分支烷基、中介二價連結基之環己基或中介二價連結基之芳基}, [化5]
Figure 02_image009
{式中,R6 及R7 各自獨立表示可經取代之直鏈烷基、分支烷基、芳基、環己基、中介二價連結基之直鏈烷基、中介二價連結基之分支烷基、中介二價連結基之環己基或中介二價連結基之芳基,複數個R6 及R7 可彼此相同亦可不同,p及q各自獨立表示0~4之整數,並且B表示單鍵或包含共軛鍵之連結基}。 [8]如[6]或[7]所記載之感光性樹脂組合物,其中於上述式(III)中,B為單鍵。 [9]如[6]至[8]中任一項所記載之感光性樹脂組合物,其中於上述式(III)中,p=q=0。 [10]如[3]至[9]中任一項所記載之感光性樹脂組合物,其中含有與過氧自由基(peroxyradical)之反應速率常數為20 Lmol-1 ・sec-1 以上之化合物作為(D)苯酚衍生物。 [11]如[1]至[10]中任一項所記載之感光性樹脂組合物,其中(A)鹼可溶性高分子之單體成分具有芳香族烴基。 [12]如[1]至[11]中任一項所記載之感光性樹脂組合物,其中含有吖啶類作為(C)光聚合起始劑。 [13]一種感光性樹脂積層體,其係於支撐層上積層包含如[1]至[12]中任一項所記載之感光性樹脂組合物之感光性樹脂層而成者。 [14]一種抗蝕劑圖案之形成方法,其包含:將如[13]所記載之感光性樹脂積層體積層於基板上之積層步驟;將該感光性樹脂積層體之感光性樹脂層曝光之曝光步驟;及將該感光性樹脂層之未曝光部進行顯影去除的顯影步驟。 [15]如[14]所記載之抗蝕劑圖案之形成方法,其中藉由利用描繪圖案之直接描繪的曝光方法、或使光罩之圖像經過透鏡而投影的曝光方法進行上述曝光步驟。 [16]如[15]所記載之抗蝕劑圖案之形成方法,其中藉由利用描繪圖案之直接描繪的曝光方法進行上述曝光步驟。 [17]如[1]至[12]中任一項所記載之感光性樹脂組合物,其係用於藉由利用描繪圖案直接描繪的曝光方法進行曝光步驟之抗蝕劑圖案之形成方法中。 [發明之效果] 藉由本發明,可提供一種即便於曝光時之焦點挪移時亦表現出高解析性之感光性樹脂積層體及用以形成該感光性樹脂積層體之感光性樹脂組合物,以及使用該感光性樹脂積層體之抗蝕劑圖案之形成方法及導體圖案之形成方法。其結果,即使因基板之翹曲及變形、曝光裝置之設定不良等而使曝光時之焦點之位置自基板表面挪移時,亦可於藉由蝕刻法形成電路時減少短路問題,於藉由鍍敷法形成電路時減少缺損、斷線、鍍敷不良等問題。[Problems to be Solved by the Invention] However, in the case of exposure methods using direct drawing of drawing patterns that have been frequently used in recent years, the position of the focus has a greater impact on the resolution. For example, if the position of the focus during exposure is shifted from the surface of the substrate due to warpage and deformation of the substrate, poor setting of the exposure device, etc., the resolution will be greatly deteriorated. As a result, there may be a short circuit problem when the circuit is formed by the etching method, and problems such as chipping, disconnection, and poor plating may occur when the circuit is formed by the plating method. From this point of view, the technology disclosed in the above-mentioned Patent Document 1 still has room for improvement. Therefore, the subject of the present invention is to provide a photosensitive resin laminate that exhibits high resolution even when the focus shifts during exposure, and a photosensitive resin composition for forming the photosensitive resin laminate, and to provide a use The method for forming the resist pattern of the photosensitive resin laminate and the method for forming the conductor pattern. [Technical Means to Solve the Problem] In order to solve the above-mentioned problems, the inventors have conducted painstaking research and repeated experiments. As a result, it was found that the problem can be solved by the following technical methods. That is, the present invention is as described below. [1] A photosensitive resin composition containing (A) an alkali-soluble polymer, (B) a compound having an ethylenically unsaturated double bond, and (C) a photopolymerization initiator, and on the surface of a substrate In the resist pattern obtained by forming a photosensitive resin layer containing the photosensitive resin composition and performing exposure and development, the pattern resolution a when the focal position is focused on the surface of the substrate and the exposure is performed, and the focal point The position was focused on a position shifted 300 μm from the surface of the substrate in the thickness direction of the substrate to the inside of the substrate and the difference in the pattern resolution b during the exposure was less than 15 μm. [2] The photosensitive resin composition as described in [1], which contains the above-mentioned (A) alkali-soluble polymer: 10% by mass to 90% by mass based on the mass basis of the total solid content of the photosensitive resin composition; The above (B) compound having an ethylenically unsaturated double bond: 5 mass% to 70 mass%; and the above (C) photopolymerization initiator: 0.01 mass% to 20 mass%. [3] The photosensitive resin composition as described in [2], which further contains (D) a phenol derivative: 0.001% by mass to 10% by mass based on the total solid content of the photosensitive resin composition. [4] The photosensitive resin composition as described in [3], which contains a compound represented by the following general formula (I) as (D) a phenol derivative: [Chemical Formula 1]
Figure 02_image001
{In the formula, R 1 represents a linear alkyl group, a branched alkyl group, an aryl group, a cyclohexyl group that can be substituted, a linear alkyl group with an intermediate divalent linking group, a branched alkyl group with an intermediate divalent linking group, and an intermediate divalent linking group. For the cyclohexyl group of the linking group or the aryl group of the intermediate divalent linking group, a plurality of R 1 may be the same or different from each other, m represents an integer of 0-4, n represents an integer of 1 or more, and when n is 1, A is one For the valence organic group, when n is 2 or more, A represents an organic group having a valence of 2 or more, a single bond, or a linking group containing a conjugated bond}. [5] The photosensitive resin composition as described in [3] or [4], which contains a compound represented by the following general formula (II) as (D) a phenol derivative: [Chemical 2]
Figure 02_image003
{In the formula, R 2 represents a substituted linear alkyl group, a branched alkyl group, an aryl group, a cyclohexyl group, a linear alkyl group with an intermediate divalent linking group, a branched alkyl group with an intermediate divalent linking group, an intermediate divalent The linking group is a cyclohexyl group or an aryl group that is an intermediate divalent linking group, and R 3 , R 4 and R 5 each independently represent hydrogen or a linear alkyl group, branched alkyl group, aryl group, cyclohexyl group, and intermediate two A straight-chain alkyl group of a valent linking group, a branched alkyl group of an intermediate divalent linking group, a cyclohexyl group of an intermediate divalent linking group, or an aryl group of an intermediate divalent linking group}. [6] The photosensitive resin composition as described in [3] or [4], which contains a compound represented by the following general formula (III) as (D) a phenol derivative: [Chemical Formula 3]
Figure 02_image005
{In the formula, R 6 and R 7 each independently represent a linear alkyl group, a branched alkyl group, an aryl group, a cyclohexyl group that may be substituted, a linear alkyl group of an intermediate divalent linking group, and a branched alkyl group of an intermediate divalent linking group R 6 and R 7 may be the same or different from each other, p and q each independently represent an integer from 0 to 4, and B represents a single Bond or linking base containing conjugated bond}. [7] A photosensitive resin composition containing (A) an alkali-soluble polymer: 10% to 90% by mass based on the total solid content of the photosensitive resin composition; (B) having an ethylenic property Unsaturated double bond compound: 5 mass% to 70 mass%; (C) photopolymerization initiator: 0.01 mass% to 20 mass%; and (D) phenol derivative: 0.001 mass% to 10 mass%, and Containing at least one selected from the group consisting of a compound represented by the following general formula (II) and a compound represented by the following general formula (III) as (D) phenol derivative: [formula 4]
Figure 02_image007
{In the formula, R 2 represents a substituted linear alkyl group, a branched alkyl group, an aryl group, a cyclohexyl group, a linear alkyl group with an intermediate divalent linking group, a branched alkyl group with an intermediate divalent linking group, an intermediate divalent The linking group is a cyclohexyl group or an aryl group that is an intermediate divalent linking group, and R 3 , R 4 and R 5 each independently represent hydrogen or a linear alkyl group, branched alkyl group, aryl group, cyclohexyl group, and intermediate two A straight-chain alkyl group of a valent linking group, a branched alkyl group of an intermediate divalent linking group, a cyclohexyl group of an intermediate divalent linking group or an aryl group of an intermediate divalent linking group}, [化5]
Figure 02_image009
{In the formula, R 6 and R 7 each independently represent a linear alkyl group, a branched alkyl group, an aryl group, a cyclohexyl group that may be substituted, a linear alkyl group of an intermediate divalent linking group, and a branched alkyl group of an intermediate divalent linking group R 6 and R 7 may be the same or different from each other, p and q each independently represent an integer from 0 to 4, and B represents a single Bond or linking base containing conjugated bond}. [8] The photosensitive resin composition as described in [6] or [7], wherein in the above formula (III), B is a single bond. [9] The photosensitive resin composition as described in any one of [6] to [8], wherein in the above formula (III), p=q=0. [10] The photosensitive resin composition as described in any one of [3] to [9], which contains a compound with a peroxyradical reaction rate constant of 20 Lmol -1 ·sec -1 or more As (D) phenol derivative. [11] The photosensitive resin composition according to any one of [1] to [10], wherein (A) the monomer component of the alkali-soluble polymer has an aromatic hydrocarbon group. [12] The photosensitive resin composition according to any one of [1] to [11], which contains acridines as the (C) photopolymerization initiator. [13] A photosensitive resin laminate in which a photosensitive resin layer containing the photosensitive resin composition as described in any one of [1] to [12] is laminated on a support layer. [14] A method for forming a resist pattern, comprising: a step of laminating a bulk layer of photosensitive resin as described in [13] on a substrate; exposing the photosensitive resin layer of the photosensitive resin laminate Exposure step; and a development step of developing and removing the unexposed portion of the photosensitive resin layer. [15] The method for forming a resist pattern as described in [14], wherein the exposure step is performed by an exposure method that uses direct drawing of the drawing pattern or an exposure method that projects an image of a mask through a lens. [16] The method for forming a resist pattern as described in [15], wherein the exposure step is performed by an exposure method using direct drawing of the drawing pattern. [17] The photosensitive resin composition as described in any one of [1] to [12], which is used in a method for forming a resist pattern in which an exposure step is performed by an exposure method that directly draws the drawing pattern . [Effects of the Invention] According to the present invention, it is possible to provide a photosensitive resin laminate exhibiting high resolution even when the focus shifts during exposure, and a photosensitive resin composition for forming the photosensitive resin laminate, and The formation method of the resist pattern and the formation method of the conductor pattern using this photosensitive resin laminated body. As a result, even when the position of the focus during exposure is shifted from the surface of the substrate due to the warpage and deformation of the substrate, poor setting of the exposure device, etc., the problem of short circuits can be reduced when the circuit is formed by the etching method, and the plating method Laying method reduces defects, disconnection, poor plating and other problems when forming a circuit.

以下,對用以實施本發明之例示形態(以下簡稱為「實施形態」)進行詳細說明。再者,本發明並不限定於以下之實施形態,可於其主旨之範圍內進行各種變形而實施。 [感光性樹脂組合物] 於實施形態中,感光性樹脂組合物具有如下特徵:於基板表面上形成包含該感光性樹脂組合物之感光性樹脂層並進行曝光及顯影所獲得的抗蝕劑圖案中,於將焦點位置聚焦於該基板表面並進行該曝光時之圖案解析度a、與將焦點位置聚焦於自該基板表面於該基板之厚度方向上向基板內側挪移300 μm之位置並進行該曝光時之圖案解析度b之差未達15 μm。藉此,即使因基板之翹曲及變形、曝光裝置之設定不良等而使曝光時之焦點之位置自基板表面挪移時,亦可於藉由蝕刻法形成電路時減少短路問題,於藉由鍍敷法形成電路時減少缺損、斷線、鍍敷不良等問題。圖案解析度a與圖案解析度b之差較佳為12 μm以下,更佳為10 μm以下。另一方面,就製造容易性、感度之下降較少等觀點而言,圖案解析度a與圖案解析度b之差較佳為0 μm以上,更佳為5 μm以上,進而較佳為7 μm以上。再者,對於本說明書中之各種測定值而言,只要無特別說明,則是依據本發明之[實施例]項中揭示之方法或業者理解為與其相同之方法進行測定。 伴隨著近年來之電子機器之小型化、薄型化,配線之高密度化、可撓性印刷配線板之應用、進而多層化之需求不斷提高。並且隨著多層化之發展,表面之起伏逐漸增大,存在伴隨著曝光時之焦點挪移的解析性之劣化或線寬再現性之劣化之憂慮,其結果,短路不良或缺損、斷線、鍍敷不良之問題及無法形成所期望之銅線之問題日益變得重要。於大型基板中,因曝光時之吸附不良或面內之膜厚不均勻性等而亦可能產生同樣之問題。因此發現,藉由著眼於將焦點位置聚焦於基板表面並進行曝光時之圖案解析度a、與將焦點位置聚焦於自該基板表面於該基板之厚度方向上向基板內側挪移300 μm之位置(作為相對於上述表面之起伏量等焦點位置之挪移量為非常大之挪移量而設定的基準值)並進行該曝光時之圖案解析度b之差而設計感光性樹脂組合物,對於解決上述問題有效。即發現,選擇使用圖案解析度a與圖案解析度b之差包含於一定範圍內之特定之感光性樹脂組合物對於以下方面有效果:即使於近年來之配線高密度化、多層化之狀況下,亦減少短路不良或缺損、斷線、鍍敷不良之問題及無法形成所期望之銅線之問題。 再者,作為將圖案解析度a與圖案解析度b之差設定為上述特定範圍內的方法,並無特別限定,例如可列舉:對於感光性樹脂組合物之組成,關於各成分如下詳述般進行各種調整。 於實施形態中,感光性樹脂組合物含有(A)鹼可溶性高分子、(B)具有乙烯性不飽和雙鍵之化合物、及(C)光聚合起始劑。感光性樹脂組合物較佳為以該感光性樹脂組合物之總固形物成分質量基準計,含有(A)鹼可溶性高分子:10質量%~90質量%;(B)具有乙烯性不飽和雙鍵之化合物:5質量%~70質量%;及(C)光聚合起始劑:0.01質量%~20質量%。以下,依序說明各成分。 <(A)鹼可溶性高分子> 於本發明中,(A)鹼可溶性高分子包含易溶於鹼性物質中之高分子。更具體而言,(A)鹼可溶性高分子中所含之羧基之量以酸當量計而為100~600,較佳為250~450。所謂酸當量,係指其分子中具有1當量之羧基之聚合物之質量(單位:克)。為了對感光性樹脂層賦予對鹼性水溶液之顯影性及剝離性,(A)鹼可溶性高分子中之羧基係必需的。就提高耐顯影性、解析性及密接性之觀點而言,較佳為將酸當量設定為100以上。並且更佳為將酸當量設定為250以上。另一方面,就提高顯影性及剝離性之觀點而言,較佳為將酸當量設定為600以下。並且更佳為將酸當量設定為450以下。於本發明中,酸當量係藉由使用電位差滴定裝置以0.1 mol/L之NaOH水溶液進行滴定之電位差滴定法而測定之值。 (A)鹼可溶性高分子之重量平均分子量較佳為5,000~500,000。就提高解析性及顯影性之觀點而言,較佳為將重量平均分子量設定為500,000以下。更佳為將重量平均分子量設定為300,000以下,進而較佳設定為200,000以下。另一方面,就控制顯影凝聚物之性狀、以及製成感光性樹脂積層體之情形時之邊緣熔合性及切割碎片性等未曝光膜之性狀之觀點而言,較佳為將重量平均分子量設定為5,000以上。更佳為將重量平均分子量設定為10,000以上,進而較佳為設定為20,000以上。所謂邊緣熔合性,係指作為感光性樹脂積層體而捲取成捲筒狀之情形時,感光性樹脂層(即包含感光性樹脂組合物之層)自捲筒之端面溢出之容易度。所謂切割碎片性,係指以切割器將未曝光膜切斷之情形時,碎片飛濺之容易度。若該碎片附著於感光性樹脂積層體之上表面等,則於後續之曝光步驟等中轉印至遮罩上,成為不良品之原因。 (A)鹼可溶性高分子較佳為由下述第一單體之至少一種以上及下述第二單體之至少一種以上所獲得之共聚物。 第一單體係分子中具有一個聚合性不飽和基之羧酸或酸酐。第一單體可分為具有芳香族烴基之第一單體、與不具有芳香族烴基之第一單體。作為具有芳香族烴基之第一單體,例如可列舉肉桂酸等。作為不具有芳香族烴基之第一單體,例如可列舉:(甲基)丙烯酸、反丁烯二酸、丁烯酸、伊康酸、順丁烯二酸酐、順丁烯二酸半酯等。尤其就製造容易性、顯影性之觀點而言,較佳為(甲基)丙烯酸。於本發明中,所謂(甲基)丙烯酸係指丙烯酸及/或甲基丙烯酸。以下相同。 第二單體係非酸性、且分子中具有至少一個聚合性不飽和基之單體。第二單體可分為具有芳香族烴基之第二單體、與不具有芳香族烴基之第二單體。作為具有芳香族烴基之第二單體,例如可列舉:(甲基)丙烯酸苄酯、苯乙烯、苯乙烯衍生物等。作為不具有芳香族烴基之第二單體,例如可列舉:(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸正丙酯、(甲基)丙烯酸異丙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸異丁酯、(甲基)丙烯酸第三丁酯、(甲基)丙烯酸-2-羥乙酯、(甲基)丙烯酸-2-羥丙酯,(甲基)丙烯酸-2-乙基己酯,乙烯醇之酯類、例如乙酸乙烯酯,(甲基)丙烯腈等。其中,較佳為(甲基)丙烯酸甲酯、(甲基)丙烯酸正丁酯、苯乙烯、(甲基)丙烯酸-2-乙基己酯及(甲基)丙烯酸苄酯。就提高抗蝕劑圖案之解析性及密接性之觀點而言,較佳為苯乙烯及(甲基)丙烯酸苄酯。又,就減小將曝光時之焦點位置聚焦於基板表面時、與使曝光時之焦點位置自基板表面挪移時之解析度之差的觀點而言,較佳為苯乙烯及(甲基)丙烯酸苄酯。 (A)鹼可溶性高分子較佳為含有具有芳香族烴基之單體成分者。關於該(A)鹼可溶性高分子中之具有芳香族烴基之單體成分之含有比例,以所有單體成分之合計質量為基準,較佳為10質量%以上,更佳為20質量%以上,進而較佳為30質量%以上,尤佳為50質量%以上。作為上限,並無特別限定,較佳為95質量%以下,更佳為80質量%以下。 於較佳態樣中,(A)鹼可溶性高分子可含有具有源自(甲基)丙烯酸、(甲基)丙烯酸烷基酯及苯乙烯之結構之高分子,及/或具有源自(甲基)丙烯酸、(甲基)丙烯酸苄酯及(甲基)丙烯酸烷基酯之結構之高分子。 關於第一單體及第二單體之共聚合比例,以所有聚合成分質量基準計,較佳為第一單體為10質量%~60質量%且第二單體為40質量%~90質量%,更佳為第一單體為15質量%~35質量%且第二單體為65質量%~85質量%。 (A)鹼可溶性高分子可單獨使用一種,或亦可混合使用兩種以上。於混合使用兩種以上之情形時,較佳為將兩種含有具有芳香族烴基之單體成分之鹼可溶性高分子混合使用,以及將含有具有芳香族烴基之單體成分之鹼可溶性高分子、與不含具有芳香族烴基之單體成分之鹼可溶性高分子混合使用。於後者之情形時,相對於(A)鹼可溶性高分子之全部,含有具有芳香族烴基之單體成分之鹼可溶性高分子之使用比例較佳為50質量%以上,更佳為70質量%以上,進而較佳為80質量%以上,更佳為90質量%以上。 (A)鹼可溶性高分子之合成較佳為藉由以下方式進行:於以丙酮、甲基乙基酮、異丙醇等溶劑將第一單體與第二單體之混合物稀釋之溶液中,添加適量之過氧化苯甲醯、偶氮異丁腈等自由基聚合起始劑,進行加熱攪拌。亦存在一面將混合物之一部分滴加至反應液中一面進行合成之情形。亦存在反應結束後進而添加溶劑,調整為所期望之濃度之情形。作為合成方法,除溶液聚合以外,亦可使用塊狀聚合、懸浮聚合或乳化聚合。 (A)鹼可溶性高分子相對於感光性樹脂組合物之總固形物成分質量之比例較佳為10質量%~90質量%之範圍,更佳為30質量%~70質量%,進而較佳為40質量%~60質量%。就控制顯影時間之觀點而言,較佳為將(A)鹼可溶性高分子相對於感光性樹脂組合物之比例設定為90質量%以下。另一方面,就提高耐邊緣熔合性之觀點而言,較佳為將(A)鹼可溶性高分子相對於感光性樹脂組合物之比例設定為10質量%以上。 <(B)具有乙烯性不飽和雙鍵之化合物> 就硬化性及與(A)鹼可溶性高分子之相容性之觀點而言,較佳為(B)具有乙烯性不飽和雙鍵之化合物含有於分子內具有(甲基)丙烯醯基之化合物。(B)化合物中之(甲基)丙烯醯基之個數為1個以上即可。 作為具有1個(甲基)丙烯醯基之(B)化合物,例如可列舉:於聚環氧烷之單末端加成有(甲基)丙烯酸之化合物;或於聚環氧烷之單末端加成有(甲基)丙烯酸,且將另一末端加以烷基醚化或烯丙基醚化之化合物等。 作為此種化合物,例如可列舉: 苯氧基六乙二醇單(甲基)丙烯酸酯,其為將聚乙二醇加成至苯基上之化合物之(甲基)丙烯酸酯; 4-正壬基苯氧基七乙二醇二丙二醇(甲基)丙烯酸酯,其為將加成有平均2莫耳之環氧丙烷之聚丙二醇、與加成有平均7莫耳之環氧乙烷之聚乙二醇,加成至壬基苯酚上之化合物之(甲基)丙烯酸酯; 4-正壬基苯氧基五乙二醇單丙二醇(甲基)丙烯酸酯,其為將加成有平均1莫耳之環氧丙烷之聚丙二醇、與加成有平均5莫耳之環氧乙烷之聚乙二醇,加成至壬基苯酚上之化合物之(甲基)丙烯酸酯; 4-正壬基苯氧基八乙二醇(甲基)丙烯酸酯(例如東亞合成(股)製造之M-114),其為將加成有平均8莫耳之環氧乙烷之聚乙二醇加成至壬基苯酚上之化合物之丙烯酸酯等。 作為於分子內具有2個(甲基)丙烯醯基之化合物,例如可列舉:於環氧烷鏈之兩末端具有(甲基)丙烯醯基之化合物;或於環氧乙烷鏈與環氧丙烷鏈以無規或嵌段形式鍵結之環氧烷鏈之兩末端具有(甲基)丙烯醯基之化合物等。 作為此種化合物,例如可列舉:四乙二醇二(甲基)丙烯酸酯、五乙二醇二(甲基)丙烯酸酯、六乙二醇二(甲基)丙烯酸酯、七乙二醇二(甲基)丙烯酸酯、八乙二醇二(甲基)丙烯酸酯、九乙二醇二(甲基)丙烯酸酯、十乙二醇二(甲基)丙烯酸酯、於12莫耳之環氧乙烷鏈之兩末端具有(甲基)丙烯醯基之化合物等聚乙二醇(甲基)丙烯酸酯等, 除此之外亦可列舉聚丙二醇二(甲基)丙烯酸酯、聚丁二醇二(甲基)丙烯酸酯等。作為於化合物中含有環氧乙烷基與環氧丙烷基之聚環氧烷二(甲基)丙烯酸酯化合物,例如可列舉:於加成有平均12莫耳之環氧丙烷之聚丙二醇之兩末端分別進而加成有平均3莫耳之環氧乙烷的二醇之二甲基丙烯酸酯,於加成有平均18莫耳之環氧丙烷之聚丙二醇之兩末端分別進而加成有平均15莫耳之環氧乙烷的二醇之二甲基丙烯酸酯等。 作為於分子內具有2個(甲基)丙烯醯基之化合物之其他例,就解析性及密接性之觀點而言,較佳為藉由將雙酚A進行環氧烷改性而於兩末端具有(甲基)丙烯醯基之化合物。環氧烷改性有環氧乙烷改性、環氧丙烷改性、環氧丁烷改性、環氧戊烷改性、環氧己烷改性等。較佳為藉由將雙酚A進行環氧乙烷改性而於兩末端具有(甲基)丙烯醯基之化合物。作為此種化合物,例如可列舉:2,2-雙(4-((甲基)丙烯醯氧基二乙氧基)苯基)丙烷(例如新中村化學工業(股)製造之NK ester BPE-200)、2,2-雙(4-((甲基)丙烯醯氧基三乙氧基)苯基)丙烷、2,2-雙(4-((甲基)丙烯醯氧基四乙氧基)苯基)丙烷、2,2-雙(4-((甲基)丙烯醯氧基五乙氧基)苯基)丙烷(例如新中村化學工業(股)製造之NK ester BPE-500)、2,2-雙(4-((甲基)丙烯醯氧基六乙氧基)苯基)丙烷、2,2-雙(4-((甲基)丙烯醯氧基七乙氧基)苯基)丙烷、2,2-雙(4-((甲基)丙烯醯氧基八乙氧基)苯基)丙烷、2,2-雙(4-((甲基)丙烯醯氧基九乙氧基)苯基)丙烷、2,2-雙(4-((甲基)丙烯醯氧基十乙氧基)苯基)丙烷、2,2-雙(4-((甲基)丙烯醯氧基十一乙氧基)苯基)丙烷、2,2-雙(4-((甲基)丙烯醯氧基十二乙氧基)苯基)丙烷、2,2-雙(4-((甲基)丙烯醯氧基十三乙氧基)苯基)丙烷、2,2-雙(4-((甲基)丙烯醯氧基十四乙氧基)苯基)丙烷、2,2-雙(4-((甲基)丙烯醯氧基十五乙氧基)苯基)丙烷、2,2-雙(4-((甲基)丙烯醯氧基十六乙氧基)苯基)丙烷等2,2-雙(4-((甲基)丙烯醯氧基聚乙氧基)苯基)丙烷等。進而,如於雙酚A之兩端分別加成有平均2莫耳之環氧丙烷與平均6莫耳之環氧乙烷之聚伸烷基二醇之二(甲基)丙烯酸酯、或於雙酚A之兩端分別加成有平均2莫耳之環氧丙烷與平均15莫耳之環氧乙烷之聚伸烷基二醇之二(甲基)丙烯酸酯等般,經環氧乙烷改性及環氧丙烷改性之化合物亦較佳。就進一步提高解析性、密接性及柔軟性之觀點而言,藉由將雙酚A進行環氧烷改性而於兩末端具有(甲基)丙烯醯基之化合物中之環氧乙烷之莫耳數較佳為10莫耳以上、30莫耳以下。 例如,於一分子中具有超過2個(甲基)丙烯醯基之化合物可藉由以下方式獲得:作為中心骨架,於分子內具有3莫耳以上之可加成環氧烷基之基,於其上加成伸乙氧基、伸丙氧基、伸丁氧基等伸烷氧基而獲得醇,將該醇製成(甲基)丙烯酸酯。於該情形時,作為可成為中心骨架之化合物,例如可列舉:甘油、三羥甲基丙烷、季戊四醇、二季戊四醇、異氰尿酸酯環等。 作為此種化合物,例如可列舉:三羥甲基丙烷之環氧乙烷(EO)3莫耳改性三丙烯酸酯、三羥甲基丙烷之EO 6莫耳改性三丙烯酸酯、三羥甲基丙烷之EO 9莫耳改性三丙烯酸酯、三羥甲基丙烷之EO 12莫耳改性三丙烯酸酯等。作為此種化合物,例如可列舉:甘油之EO 3莫耳改性三丙烯酸酯(例如新中村化學工業(股)製造之A-GLY-3E)、甘油之EO 9莫耳改性三丙烯酸酯(例如新中村化學工業(股)製造之A-GLY-9E)、甘油之EO 6莫耳及環氧丙烷(PO)6莫耳改性三丙烯酸酯(A-GLY-0606PE)、甘油之EO 9莫耳PO 9莫耳改性三丙烯酸酯(A-GLY-0909PE)、季戊四醇之4 EO改性四丙烯酸酯(例如日本Sartomer(股)公司製造之SR-494)、季戊四醇之35 EO改性四丙烯酸酯(例如新中村化學工業(股)公司製造之NK ester ATM-35E)等。 除了上述化合物以外,可適宜使用以下列舉之化合物等。例如可列舉:1,6-己二醇二(甲基)丙烯酸酯、1,4-環己二醇二(甲基)丙烯酸酯、2-二(對羥苯基)丙烷二(甲基)丙烯酸酯、2,2-雙[(4-(甲基)丙烯醯氧基聚伸丙氧基)苯基]丙烷、2,2-雙[(4-(甲基)丙烯醯氧基聚伸丁氧基)苯基]丙烷、甘油三(甲基)丙烯酸酯、三羥甲基丙烷三(甲基)丙烯酸酯、聚氧丙基三羥甲基丙烷三(甲基)丙烯酸酯、二季戊四醇五(甲基)丙烯酸酯、三羥甲基丙烷三縮水甘油醚三(甲基)丙烯酸酯、β-羥丙基-β'-(丙烯醯氧基)丙基鄰苯二甲酸酯、壬基苯氧基聚丙二醇(甲基)丙烯酸酯、壬基苯氧基聚丁二醇(甲基)丙烯酸酯、聚丙二醇單(甲基)丙烯酸酯等。進而亦可列舉如以下般之胺基甲酸酯化合物。例如可列舉:六亞甲基二異氰酸酯、甲苯二異氰酸酯或二異氰酸酯化合物(例如2,2,4-三甲基六亞甲基二異氰酸酯),與 於一分子中具有羥基及(甲基)丙烯醯基之化合物,例如丙烯酸-2-羥丙酯、低聚丙二醇單甲基丙烯酸酯的胺基甲酸酯化合物。具體而言,有六亞甲基二異氰酸酯與低聚丙二醇單甲基丙烯酸酯(例如日本油脂(股)製造之Blemmer PP1000)之反應產物。又,亦可列舉:藉由聚丙二醇或聚己內酯進行改性之異三聚氰酸酯之二或三(甲基)丙烯酸酯等。又,例如亦可列舉:使作為二異氰酸酯與多元醇之聚加成物而獲得之胺基甲酸酯化合物之末端、與具有乙烯性不飽和雙鍵及羥基之化合物進行反應而獲得的胺基甲酸酯低聚物等。 (B)具有乙烯性不飽和雙鍵之化合物相對於感光性樹脂組合物之總固形物成分質量之比例較佳為5質量%~70質量%。就感度、解析性及密接性之觀點而言,較佳為將該比例設定為5質量%以上。更佳為將該比例設定為20質量%以上,進而較佳為設定為30質量%以上。另一方面,就抑制邊緣熔合及硬化抗蝕劑之剝離延遲之觀點而言,較佳為將該比例設定為70質量%以下。更佳為將該比例設定為50質量%以下。 <(C)光聚合起始劑> 作為(C)光聚合起始劑,例如可列舉:六芳基聯咪唑化合物、N-芳基-α-胺基酸化合物、醌類、芳香族酮類、苯乙酮類、醯基氧化膦類、安息香或安息香醚類、二烷基縮酮類、9-氧硫

Figure 108103816-A0304-12-01
Figure 108103816-A0304-12-02
類、二烷基胺基苯甲酸酯類、肟酯類、吖啶類、吡唑啉衍生物、N-芳基胺基酸之酯化合物、鹵素化合物等。 作為六芳基聯咪唑化合物,例如可列舉:2-(鄰氯苯基)-4,5-二苯基聯咪唑、2,2',5-三-(鄰氯苯基)-4-(3,4-二甲氧基苯基)-4',5'-二苯基聯咪唑、2,4-雙-(鄰氯苯基)-5-(3,4-二甲氧基苯基)-二苯基聯咪唑、2,4,5-三-(鄰氯苯基)-二苯基聯咪唑、2-(鄰氯苯基)-雙-4,5-(3,4-二甲氧基苯基)-聯咪唑、2,2'-雙-(2-氟苯基)-4,4',5,5'-四-(3-甲氧基苯基)-聯咪唑、2,2'-雙-(2,3-二氟甲基苯基)-4,4',5,5'-四-(3-甲氧基苯基)-聯咪唑、2,2'-雙-(2,4-二氟苯基)-4,4',5,5'-四-(3-甲氧基苯基)-聯咪唑、2,2'-雙-(2,5-二氟苯基)-4,4',5,5'-四-(3-甲氧基苯基)-聯咪唑、2,2'-雙-(2,6-二氟苯基)-4,4',5,5'-四-(3-甲氧基苯基)-聯咪唑、2,2'-雙-(2,3,4-三氟苯基)-4,4',5,5'-四-(3-甲氧基苯基)-聯咪唑、2,2'-雙-(2,3,5-三氟苯基)-4,4',5,5'-四-(3-甲氧基苯基)-聯咪唑、2,2'-雙-(2,3,6-三氟苯基)-4,4',5,5'-四-(3-甲氧基苯基)-聯咪唑、2,2'-雙-(2,4,5-三氟苯基)-4,4',5,5'-四-(3-甲氧基苯基)-聯咪唑、2,2'-雙-(2,4,6-三氟苯基)-4,4',5,5'-四-(3-甲氧基苯基)-聯咪唑、2,2'-雙-(2,3,4,5-四氟苯基)-4,4',5,5'-四-(3-甲氧基苯基)-聯咪唑、2,2'-雙-(2,3,4,6-四氟苯基)-4,4',5,5'-四-(3-甲氧基苯基)-聯咪唑、2,2'-雙-(2,3,4,5,6-五氟苯基)-4,4',5,5'-四-(3-甲氧基苯基)-聯咪唑等。 作為N-芳基-α-胺基酸化合物,例如可列舉:N-苯基甘胺酸、N-甲基-N-苯基甘胺酸、N-乙基-N-苯基甘胺酸等。尤其N-苯基甘胺酸之增感效果較好而較佳。 作為醌類,例如可列舉:2-乙基蒽醌、八乙基蒽醌、1,2-苯并蒽醌、2,3-苯并蒽醌、2-苯基蒽醌、2,3-二苯基蒽醌、1-氯蒽醌、2-氯蒽醌、2-甲基蒽醌、1,4-萘醌、9,10-菲醌、2-甲基-1,4-萘醌、9,10-菲醌、2-甲基-1,4-萘醌、2,3-二甲基蒽醌、3-氯-2-甲基蒽醌等。 作為芳香族酮類,例如可列舉:二苯甲酮、米其勒酮[4,4'-雙(二甲胺基)二苯甲酮]、4,4'-雙(二乙胺基)二苯甲酮、4-甲氧基-4'-二甲胺基二苯甲酮等。 作為苯乙酮類,例如可列舉:2-羥基-2-甲基-1-苯基丙烷-1-酮、1-(4-異丙基苯基)-2-羥基-2-甲基丙烷-1-酮、1-(4-十二烷基苯基)-2-羥基-2-甲基丙烷-1-酮、4-(2-羥基乙氧基)-苯基(2-羥基-2-丙基)酮、1-羥基環己基苯基酮、2-苄基-2-二甲胺基-1-(4-
Figure 108103816-A0304-12-03
啉基苯基)-丁酮-1、2-甲基-1-[4-(甲硫基)苯基]-2-
Figure 108103816-A0304-12-03
啉基-丙酮-1等。作為苯乙酮類之市售品,例如可列舉:Ciba Specialty Chemicals公司製造之Irgacure 907、Irgacure 369及Irgacure 379。 作為醯基氧化膦類,例如可列舉:2,4,6-三甲基苄基二苯基氧化膦、雙(2,4,6-三甲基苯甲醯基)-氧化膦、雙(2,6-二甲氧基苯甲醯基)-2,4,4-三甲基-戊基氧化膦等。作為醯基氧化膦類之市售品,例如可列舉:BASF公司製造之Lucirin TPO及Ciba Specialty Chemicals公司製造之Irgacure 819。 作為安息香或安息香醚類,例如可列舉:安息香、安息香乙醚、安息香苯醚、甲基安息香、乙基安息香等。 作為二烷基縮酮類,例如可列舉苯偶醯二甲基縮酮、苯偶醯二乙基縮酮等。 作為9-氧硫
Figure 108103816-A0304-12-01
Figure 108103816-A0304-12-02
類,例如可列舉:2,4-二乙基-9-氧硫
Figure 108103816-A0304-12-01
Figure 108103816-A0304-12-02
、2,4-二異丙基-9-氧硫
Figure 108103816-A0304-12-01
Figure 108103816-A0304-12-02
、2-氯-9-氧硫
Figure 108103816-A0304-12-01
Figure 108103816-A0304-12-02
等。 作為二烷基胺基苯甲酸酯類,例如可列舉:二甲胺基苯甲酸乙酯、二乙胺基苯甲酸乙酯、對二甲胺基苯甲酸乙酯、4-(二甲胺基)苯甲酸-2-乙基己酯等。 作為肟酯類,例如可列舉:1-苯基-1,2-丙二酮-2-O-苯甲醯基肟、1-苯基-1,2-丙二酮-2-(O-乙氧基羰基)肟等。作為肟酯類之市售品,例如可列舉:Ciba Specialty Chemicals公司製造之CGI-325、Irgacure OXE01及Irgacure OXE02。 作為吖啶類,例如可列舉:1,7-雙(9,9'-吖啶基)庚烷、9-苯基吖啶、9-甲基吖啶、9-乙基吖啶、9-氯乙基吖啶、9-甲氧基吖啶、9-乙氧基吖啶、9-(4-甲基苯基)吖啶、9-(4-乙基苯基)吖啶、9-(4-正丙基苯基)吖啶、9-(4-正丁基苯基)吖啶、9-(4-第三丁基苯基)吖啶、9-(4-甲氧基苯基)吖啶、9-(4-乙氧基苯基)吖啶、9-(4-乙醯基苯基)吖啶、9-(4-二甲胺基苯基)吖啶、9-(4-氯苯基)吖啶、9-(4-溴苯基)吖啶、9-(3-甲基苯基)吖啶、9-(3-第三丁基苯基)吖啶、9-(3-乙醯基苯基)吖啶、9-(3-二甲胺基苯基)吖啶、9-(3-二乙胺基苯基)吖啶、9-(3-氯苯基)吖啶、9-(3-溴苯基)吖啶、9-(2-吡啶基)吖啶、9-(3-吡啶基)吖啶、9-(4-吡啶基)吖啶等。該等之中,就感度、解析性、獲取性等方面而言,較佳為1,7-雙(9,9'-吖啶基)庚烷或9-苯基吖啶。 作為吡唑啉衍生物,例如可列舉:1-(4-第三丁基-苯基)-3-苯乙烯基-5-苯基-吡唑啉、1-苯基-3-(4-第三丁基-苯乙烯基)-5-(4-第三丁基-苯基)-吡唑啉、1,5-雙-(4-第三丁基-苯基)-3-(4-第三丁基-苯乙烯基)-吡唑啉、1-(4-第三辛基-苯基)-3-苯乙烯基-5-苯基-吡唑啉、1-苯基-3-(4-第三丁基-苯乙烯基)-5-(4-乙氧基-苯基)-吡唑啉、1-苯基-3-(4-第三辛基-苯乙烯基)-5-(4-第三辛基-苯基)-吡唑啉、1,5-雙-(4-第三辛基-苯基)-3-(4-第三辛基-苯乙烯基)-吡唑啉、1-(4-十二烷基-苯基)-3-苯乙烯基-5-苯基-吡唑啉、1-苯基-3-(4-十二烷基-苯乙烯基)-5-(4-十二烷基-苯基)-吡唑啉、1-(4-十二烷基-苯基)-3-(4-十二烷基-苯乙烯基)-5-(4-十二烷基-苯基)-吡唑啉、1-(4-第三辛基-苯基)-3-(4-第三丁基-苯乙烯基)-5-(4-第三丁基-苯基)-吡唑啉、1-(4-第三丁基-苯基)-3-(4-第三辛基-苯乙烯基)-5-(4-第三辛基-苯基)-吡唑啉、1-(4-十二烷基-苯基)-3-(4-第三丁基-苯乙烯基)-5-(4-第三丁基-苯基)-吡唑啉、1-(4-第三丁基-苯基)-3-(4-十二烷基-苯乙烯基)-5-(4-十二烷基-苯基)-吡唑啉、1-(4-十二烷基-苯基)-3-(4-第三辛基-苯乙烯基)-5-(4-第三辛基-苯基)-吡唑啉、1-(4-第三辛基-苯基)-3-(4-十二烷基-苯乙烯基)-5-(4-十二烷基-苯基)-吡唑啉、1-(2,4-二丁基-苯基)-3-(4-十二烷基-苯乙烯基)-5-(4-十二烷基-苯基)-吡唑啉等。 作為吡唑啉衍生物,進而可列舉:1-苯基-3-(3,5-二-第三丁基-苯乙烯基)-5-(3,5-二-第三丁基-苯基)-吡唑啉、1-苯基-3-(2,6-二-第三丁基-苯乙烯基)-5-(2,6-二-第三丁基-苯基)-吡唑啉、1-苯基-3-(2,5-二-第三丁基-苯乙烯基)-5-(2,5-二-第三丁基-苯基)-吡唑啉、1-苯基-3-(2,6-二-正丁基-苯乙烯基)-5-(2,6-二-正丁基-苯基)-吡唑啉、1-(3,4-二-第三丁基-苯基)-3-苯乙烯基-5-苯基-吡唑啉、1-(3,5-二-第三丁基-苯基)-3-苯乙烯基-5-苯基-吡唑啉、1-(4-第三丁基-苯基)-3-(3,5-二-第三丁基-苯基)-5-苯基-吡唑啉、1-(3,5-二-第三丁基-苯基)-3-(3,5-二-第三丁基-苯乙烯基)-5-(3,5-二-第三丁基-苯基)-吡唑啉、1-(4-(5-第三丁基-苯并
Figure 108103816-A0304-12-04
唑-2-基)苯基)-3-苯乙烯基-5-苯基-吡唑啉、1-(4-(苯并
Figure 108103816-A0304-12-04
唑-2-基)苯基)-3-(4-第三丁基-苯乙烯基)-5-(4-第三丁基-苯基)-吡唑啉、1-(4-(4-第三丁基-苯并
Figure 108103816-A0304-12-04
唑-2-基)苯基)-3-(4-第三丁基-苯乙烯基)-5-(4-第三丁基-苯基)-吡唑啉、1-(4-(5-第三辛基-苯并
Figure 108103816-A0304-12-04
唑-2-基)苯基)-3-苯乙烯基-5-苯基-吡唑啉、1-(4-(苯并
Figure 108103816-A0304-12-04
唑-2-基)苯基)-3-(4-第三辛基-苯乙烯基)-5-(4-第三辛基-苯基)-吡唑啉、1-(4-(5-第三辛基-苯并
Figure 108103816-A0304-12-04
唑-2-基)苯基)-3-(4-第三辛基-苯乙烯基)-5-(4-第三辛基-苯基)-吡唑啉、1-(4-(5-十二烷基-苯并
Figure 108103816-A0304-12-04
唑-2-基)苯基)-3-苯乙烯基-5-苯基-吡唑啉、1-(4-(苯并
Figure 108103816-A0304-12-04
唑-2-基)苯基)-3-(4-十二烷基-苯乙烯基)-5-(4-十二烷基-苯基)-吡唑啉、1-(4-(5-十二烷基-苯并
Figure 108103816-A0304-12-04
唑-2-基)苯基)-3-(4-十二烷基-苯乙烯基)-5-(4-十二烷基-苯基)-吡唑啉、1-(4-(5-第三辛基-苯并
Figure 108103816-A0304-12-04
唑-2-基)苯基)-3-(4-第三丁基-苯乙烯基)-5-(4-第三丁基-苯基)-吡唑啉等。 作為吡唑啉衍生物,進而可列舉:1-(4-(5-第三丁基-苯并
Figure 108103816-A0304-12-04
唑-2-基)苯基)-3-(4-第三辛基-苯乙烯基)-5-(4-第三辛基-苯基)-吡唑啉、1-(4-(5-十二烷基-苯并
Figure 108103816-A0304-12-04
唑-2-基)苯基)-3-(4-第三丁基-苯乙烯基)-5-(4-第三丁基-苯基)-吡唑啉、1-(4-(5-第三丁基-苯并
Figure 108103816-A0304-12-04
唑-2-基)苯基)-3-(4-十二烷基-苯乙烯基)-5-(4-十二烷基-苯基)-吡唑啉、1-(4-(5-十二烷基-苯并
Figure 108103816-A0304-12-04
唑-2-基)苯基)-3-(4-第三辛基-苯乙烯基)-5-(4-第三辛基-苯基)-吡唑啉、1-(4-(5-第三辛基-苯并
Figure 108103816-A0304-12-04
唑-2-基)苯基)-3-(4-十二烷基-苯乙烯基)-5-(4-十二烷基-苯基)-吡唑啉、1-(4-(4,6-二丁基-苯并
Figure 108103816-A0304-12-04
唑-2-基)苯基)-3-(4-十二烷基-苯乙烯基)-5-(4-十二烷基-苯基)-吡唑啉、1-(4-(苯并
Figure 108103816-A0304-12-04
唑-2-基)苯基)-3-(3,5-二-第三丁基苯乙烯基)-5-(3,5-二-第三丁基-苯基)-吡唑啉、1-(4-(苯并
Figure 108103816-A0304-12-04
唑-2-基)苯基)-3-(2,6-二-第三丁基-苯乙烯基)-5-(2,6-二-第三丁基-苯基)-吡唑啉、1-(4-(苯并
Figure 108103816-A0304-12-04
唑-2-基)苯基)-3-(2,5-二-第三丁基-苯乙烯基)-5-(2,5-二-第三丁基-苯基)-吡唑啉、1-(4-(苯并
Figure 108103816-A0304-12-04
唑-2-基)苯基)-3-(2,6-二-正丁基-苯乙烯基)-5-(2,6-二-正丁基-苯基)-吡唑啉、1-(4-(4,6-二-第三丁基-苯并
Figure 108103816-A0304-12-04
唑-2-基)苯基)-3-苯乙烯基-5-苯基-吡唑啉、1-(4-(5,7-二-第三丁基-苯并
Figure 108103816-A0304-12-04
唑-2-基)苯基)-3-苯乙烯基-5-苯基-吡唑啉、1-(4-(5-第三丁基-苯并
Figure 108103816-A0304-12-04
唑-2-基)苯基)-3-(3,5-二-第三丁基-苯乙烯基)-5-苯基-吡唑啉、1-(4-(4,6-二-第三丁基-苯并
Figure 108103816-A0304-12-04
唑-2-基)苯基)-3-(3,5-二-第三丁基-苯乙烯基)-5-(3,5-二-第三丁基-苯基)-吡唑啉、1-苯基-3-(4-第三丁基-苯乙烯基)-5-(4-胺基-苯基)-吡唑啉、1-苯基-3-(4-第三丁基-苯乙烯基)-5-(4-N-乙基-苯基)-吡唑啉及1-苯基-3-(4-第三丁基-苯乙烯基)-5-(4-N,N-二乙基-苯基)-吡唑啉等。 作為吡唑啉衍生物,進而可列舉:1-苯基-3-(4-聯苯基)-5-(4-正丁基-苯基)-吡唑啉、1-苯基-3-(4-聯苯基)-5-(4-第三丁基-苯基)-吡唑啉、1-苯基-3-(4-聯苯基)-5-(4-異丁基-苯基)-吡唑啉、1-苯基-3-(4-聯苯基)-5-(4-正戊基-苯基)-吡唑啉、1-苯基-3-(4-聯苯基)-5-(4-異戊基-苯基)-吡唑啉、1-苯基-3-(4-聯苯基)-5-(4-新戊基-苯基)-吡唑啉、1-苯基-3-(4-聯苯基)-5-(4-己基-苯基)-吡唑啉、1-苯基-3-(4-聯苯基)-5-(4-庚基-苯基)-吡唑啉、1-苯基-3-(4-聯苯基)-5-(4-正辛基-苯基)-吡唑啉、1-苯基-3-(4-聯苯基)-5-(4-第三辛基-苯基)-吡唑啉、1-苯基-3-(4-聯苯基)-5-(4-壬基-苯基)-吡唑啉、1-苯基-3-(4-聯苯基)-5-(4-癸基-苯基)-吡唑啉、1-苯基-3-(4-聯苯基)-5-(4-十一烷基-苯基)-吡唑啉、1-苯基-3-(4-聯苯基)-5-(4-十二烷基-苯基)-吡唑啉等。 上述列舉之吡唑啉衍生物之中,就密接性及抗蝕劑圖案之矩形性之觀點而言,較佳為使用選自由1-苯基-3-(4-第三丁基-苯乙烯基)-5-(4-第三丁基-苯基)-吡唑啉、1-苯基-3-(4-聯苯基)-5-(4-第三丁基-苯基)-吡唑啉及1-苯基-3-(4-聯苯基)-5-(4-第三辛基-苯基)-吡唑啉所組成之群中之至少一種。 作為N-芳基胺基酸之酯化合物,例如可列舉:N-苯基甘胺酸之甲酯、N-苯基甘胺酸之乙酯、N-苯基甘胺酸之正丙酯、N-苯基甘胺酸之異丙酯、N-苯基甘胺酸之1-丁酯、N-苯基甘胺酸之2-丁酯、N-苯基甘胺酸之第三丁酯、N-苯基甘胺酸之戊酯、N-苯基甘胺酸之己酯、N-苯基甘胺酸之戊酯、N-苯基甘胺酸之辛酯等。 作為鹵素化合物,例如可列舉:溴戊烷、溴異戊烷、溴異丁烯、二溴乙烷、二苯基溴甲烷、苄基溴、二溴甲烷、三溴甲基苯基碸、四溴化碳、磷酸三(2,3-二溴丙基)酯、三氯乙醯胺、碘戊烷、碘異丁烷、1,1,1-三氯-2,2-雙(對氯苯基)乙烷、氯化三
Figure 108103816-A0304-12-05
化合物、二烯丙基錪化合物等,尤佳為三溴甲基苯基碸。 上述列舉之(C)光聚合起始劑可單獨使用亦可併用兩種以上。該等(C)光聚合起始劑之中,就感光性樹脂組合物之感度、解析性等觀點而言,較佳為使用選自由六芳基聯咪唑化合物、N-芳基-α-胺基酸化合物、醌類、吖啶類及吡唑啉衍生物所組成之群中之至少一種,更佳為使用選自由六芳基聯咪唑化合物、N-芳基-α-胺基酸化合物及吖啶類所組成之群中之至少一種。就感光性樹脂組合物之感度、解析性等觀點,抑制曝光時之焦點挪移時之解析度之劣化之觀點,或抑制曝光時之焦點挪移時之鄰接之抗蝕劑線間之間隙部分之狹小化之觀點而言,進而較佳為使用吖啶類。 (C)光聚合起始劑相對於感光性樹脂組合物之總固形物成分質量之比例較佳為0.01質量%~20質量%。就獲得良好之感度之觀點而言,較佳為將該比例設定為0.01質量%以上。該比例更佳為設定為0.1質量%以上,進而較佳為設定為0.5質量%以上。另一方面,就獲得較高之解析性且抑制於顯影液中之凝聚性之觀點而言,較佳為將該比例設定為20質量%以下。該比例更佳為設定為10質量%以下。 於使用六芳基聯咪唑化合物作為(C)光聚合起始劑之情形時,相對於感光性樹脂組合物之總固形物成分質量,該六芳基聯咪唑化合物之含量較佳為0.1質量%~15質量%。就獲得良好之感度之觀點而言,較佳為將該調配量設定為0.1質量%以上。該調配量更佳為設定為1質量%以上,尤佳為設定為3質量%以上。另一方面,就獲得較高之解析性且抑制於顯影液中之凝聚性之觀點而言,較佳為將該調配量設定為15質量%以下。該調配量更佳為設定為10質量%以下,尤佳為設定為6質量%以下。 又,於使用N-芳基-α-胺基酸化合物作為(C)光聚合起始劑之情形時,相對於感光性樹脂組合物之總固形物成分質量,該N-芳基-α-胺基酸化合物之含量較佳為0.001質量%~5質量%。就獲得良好之感度之觀點而言,較佳為將該調配量設定為0.001質量%以上。該調配量更佳為設定為0.01質量%以上,尤佳為設定為0.1質量%以上。另一方面,就獲得較高之解析性且提高色相穩定性之觀點而言,較佳為將該調配量設定為5質量%以下。該調配量更佳為設定為1質量%以下,尤佳為設定為0.5質量%以下。 進而,於使用吖啶類作為(C)光聚合起始劑之情形時,相對於感光性樹脂組合物之總固形物成分質量,吖啶類之含量較佳為0.01質量%~5質量%。就獲得良好之感度之觀點而言,較佳為將該調配量設定為0.01質量%以上。該調配量更佳為設定為0.1質量%以上,尤佳為設定為0.2質量%以上。另一方面,就獲得矩形之抗蝕劑形狀且提高色相穩定性之觀點而言,該調配量較佳為設定為5質量%以下。該調配量更佳為設定為3質量%以下,尤佳為設定為2質量%以下。又,就減小使曝光時之焦點之位置於基板表面上聚焦時、與使曝光時之焦點之位置自基板表面挪移時的解析度之差的觀點而言,設定為上述範圍之調配量亦較佳。 <(D)苯酚衍生物> 於實施形態中,感光性樹脂組合物較佳為進而含有(D)苯酚衍生物。其中,感光性樹脂組合物較佳為含有下述通式(I)所表示之化合物作為(D)苯酚衍生物: [化6]
Figure 02_image011
{式中,R1 表示可經取代之直鏈烷基、分支烷基、芳基、環己基、中介二價連結基之直鏈烷基、中介二價連結基之分支烷基、中介二價連結基之環己基或中介二價連結基之芳基,複數個R1 可彼此相同亦可不同,m表示0~4之整數,n表示1以上之整數,並且,n為1時A為一價有機基,n為2以上時A表示二價以上之有機基、單鍵或包含共軛鍵之連結基}。就抑制感光性樹脂組合物之感度下降之觀點、及不受焦點位置之影響而維持良好之解析度之觀點而言,通式(I)所表示之化合物優異。就相同之觀點而言,n較佳為2以上之整數。 作為通式(I)所表示之化合物,較佳為含有選自由下述通式(II)所表示之化合物: [化7]
Figure 02_image013
{式中,R2 表示可經取代之直鏈烷基、分支烷基、芳基、環己基、中介二價連結基之直鏈烷基、中介二價連結基之分支烷基、中介二價連結基之環己基或中介二價連結基之芳基,並且R3 、R4 及R5 各自獨立表示氫或可經取代之直鏈烷基、分支烷基、芳基、環己基、中介二價連結基之直鏈烷基、中介二價連結基之分支烷基、中介二價連結基之環己基或中介二價連結基之芳基}、及下述通式(III)所表示之化合物: [化8]
Figure 02_image015
{式中,R6 及R7 各自獨立表示可經取代之直鏈烷基、分支烷基、芳基、環己基、中介二價連結基之直鏈烷基、中介二價連結基之分支烷基、中介二價連結基之環己基或中介二價連結基之芳基,複數個R6 及R7 可彼此相同亦可不同,p及q各自獨立表示0~4之整數,並且B表示單鍵或包含共軛鍵之連結基}所組成之群中之至少一種,更佳為含有通式(III)所表示之化合物。再者,作為通式(II)所表示之化合物,將相當於通式(III)所表示之化合物除外。 分別就提高感光性樹脂組合物之解析性之觀點、抑制曝光時之焦點挪移時的解析性之劣化之觀點、抑制曝光時之焦點挪移時的抗蝕劑線與抗蝕劑線之間的間隙部分之狹小化之觀點、及抑制感度下降之觀點而言,通式(II)所表示之化合物及通式(III)所表示之化合物尤其優異。 對於通式(II)所表示之化合物,分別就提高感光性樹脂組合物之解析性之觀點、抑制曝光時之焦點挪移時的解析性之劣化之觀點、抑制曝光時之焦點挪移時的抗蝕劑線與抗蝕劑線之間的間隙部分之狹小化之觀點、及抑制感度下降之觀點而言,較佳為於式(II)中R2 、R3 、R4 及R5 中之至少1個具有芳香環。就相同之觀點而言,通式(II)所表示之化合物較佳為具有2核以上之苯酚核。 就相同之觀點而言,通式(II)所表示之化合物之羥基濃度較佳為0.10 mol/100 g~0.75 mol/100 g。又,就相同之觀點而言,較佳為於上述通式(II)中,R2 中之至少1個為直鏈或分支烷基、苄基、1-或2-苯基乙基、或者可經羥基或烷基取代之苯硫基。並且,作為較佳之烷基,例如可列舉:甲基、乙基、正丙基、異丙基、正丁基、第二丁基、異丁基、第三丁基等。 就相同之觀點而言,通式(II)所表示之化合物之分子量較佳為約130~約1000,更佳為約130~約600,進而較佳為約130~約400,尤佳為約180~約400。就相同之觀點而言,通式(II)所表示之化合物較佳為具有約1.02~約1.12之比重、或約155℃以上(例如約208℃以上)之熔點,或相對於水而為難溶性且相對於甲醇、丙酮、甲苯等有機溶劑而為易溶性,或於使用時為固體(例如粉末、結晶等)或液體。 作為通式(II)所表示之化合物,例如可列舉:4,4'-硫代雙(6-第三丁基-間甲酚)、4,4'-亞丁基雙(3-甲基-6-第三丁基苯酚)、1,1,3-三(2-甲基-4-羥基-5-第三丁基苯基)丁烷、苯乙烯化苯酚(例如川口化學工業(股)製造之Antage SP)、三苄基苯酚(例如川口化學工業(股)製造之TBP、具有1~3個苄基之苯酚)等。 於通式(III)所表示之化合物中,B表示單鍵或包含共軛鍵之連結基。包含共軛鍵之連結基較佳為由C、N、O、S等形成之共軛鍵結性連結基,更佳為伸烯基、伸炔基、伸芳基、二價之芳香族雜環、偶氮及亞胺、以及該等之一個以上與N之組合等基。 對於通式(III)所表示之化合物,就提高感光性樹脂組合物之解析性之觀點、抑制曝光時之焦點挪移時的解析性之劣化之觀點、抑制曝光時之焦點挪移時的抗蝕劑線與抗蝕劑線之間的間隙部分之狹小化之觀點、及抑制感度下降之觀點而言,較佳為式(III)中B為單鍵。 對於通式(III)所表示之化合物,就相同之觀點而言,較佳為於式(III)中p=q=0,尤佳為聯苯酚。 於實施形態中,作為(D)苯酚衍生物,可進而含有通式(II)及通式(III)各自所表示之化合物以外之化合物。作為通式(II)及通式(III)各自所表示之化合物以外之化合物,例如可列舉:2,6-二-第三丁基-4-甲基苯酚、2,5-二-第三戊基對苯二酚、2,5-二-第三丁基對苯二酚、2,2'-亞甲基雙(4-甲基-6-第三丁基苯酚)、雙(2-羥基-3-第三丁基-5-乙基苯基)甲烷、三乙二醇-雙[3-(3-第三丁基-5-甲基-4-羥基苯基)丙酸酯]、1,6-己二醇-雙[3-(3,5-二-第三丁基-4-羥基苯基)丙酸酯]、季戊四醇基-四[3-(3,5-二-第三丁基-4-羥基苯基)丙酸酯]、2,2-硫代-二伸乙基雙[3-(3,5-二-第三丁基-4-羥基苯基)丙酸酯]、十八烷基-3-(3,5-二-第三丁基-4-羥基苯基)丙酸酯、N,N'-六亞甲基雙(3,5-二-第三丁基-4-羥基-苯丙醯胺)、3,5-二-第三丁基-4-羥基苄基膦酸酯-二乙酯、1,3,5-三甲基-2,4,6-三(3,5-二-第三丁基-4-羥基苄基)苯、異氰尿酸三(3,5-二-第三丁基-4-羥基苄基)酯等。 作為實施形態中之(D)苯酚衍生物與過氧自由基之反應速率常數,較佳為20 L・mol-1 ・sec-1 以上(更佳為30 L・mol-1 ・sec-1 以上,進而較佳為40 L・mol-1 ・sec-1 以上)之化合物,且較佳為500 L・mol-1 ・sec-1 以下(更佳為300 L・mol-1 ・sec-1 以下,進而較佳為200 L・mol-1 ・sec-1 以下)之化合物。 此處,關於如上述之(D)苯酚衍生物之選擇是否對圖案解析度a與圖案解析度b之差之值造成影響,進而是否對於近年來之配線高密度化、多層化之狀況下亦減少短路不良或缺損、斷線、鍍敷不良之問題及無法形成所期望之銅線之問題的感光性樹脂組合物之選擇造成影響,其詳細之機制並雖不明確,但可如以下般考慮。 關於苯酚衍生物之抗氧化作用,可認為就與自由基種之反應性之方面、及與自由基種反應後生成之苯氧基自由基之穩定性之方面考慮,存在最適點。例如,相對於苯酚之OH基而為鄰位之取代基越大,苯氧基自由基變得越穩定。另一方面,若該鄰位取代基之位阻(steric hindrance)過大,則與自由基種之反應性變低。又,位阻之程度之最適值根據經氧化之化學種之特性(易被氧化)而有所不同。 此處,實施形態中之感光性樹脂組合物為光自由基聚合性,故而為了捕捉可能導致解析度劣化之過氧自由基,對(D)苯酚衍生物要求與自由基種之高反應性。 於綜合考慮以上各種要素之情形時,作為(D)苯酚衍生物,較佳為通式(I)所表示之化合物,進而較佳為選自由通式(II)所表示之化合物及通式(III)所表示之化合物所組成之群中之至少一種。對於通式(II)所表示之化合物,可認為由於鄰位取代基之位阻經調整為最適,故與過氧自由基之反應性及苯氧基自由基之穩定性兩者優異。又,通式(III)所表示之化合物中,可認為若鄰位取代基之位阻較小,則與過氧自由基之反應性較高,聯苯酚型苯氧基自由基因苯氧基自由基之共振結構多而變穩定。 作為上述作為通式(II)或通式(III)所表示之化合物之具體例而揭示之化合物、且滿足上述反應速率常數之範圍者,例如1,1,3-三(2-甲基-4-羥基-5-第三丁基苯基)丁烷為45.4 L・mol-1 ・sec-1 ,4,4'-亞丁基雙(3-甲基-6-第三丁基苯酚)為48.6 L・mol-1 ・sec-1 。 由感光性樹脂組合物之殘膜率所得之γ值(伽馬值)較佳為0.5以上,更佳為1.0以上,進而較佳為2.0以上,尤佳為5.0以上。由C=C雙鍵之反應率所得之γ值(伽馬值)較佳為0.18以上,更佳為0.19以上,進而較佳為0.20以上,尤佳為0.25以上。 (D)苯酚衍生物相對於感光性樹脂組合物之總固形物成分質量之比例較佳為0.001質量%~10質量%。就提高感光性樹脂組合物之解析性之觀點、抑制曝光時之焦點挪移時的解析性之劣化之觀點、及抑制曝光時之焦點挪移時的抗蝕劑線與抗蝕劑線之間的間隙部分之狹小化之觀點而言,該比例較佳為0.001質量%以上,更佳為0.01質量%以上,進而較佳為0.1質量%以上,尤佳為0.2質量%以上,最佳為0.5質量%以上。另一方面,就感度下降較少之方面及提高解析性之方面而言,該比例較佳為10質量%以下,更佳為5質量%以下,進而較佳為3質量%以下,尤佳為2質量%以下,最佳為1.5質量%以下。 <添加劑> (染料及著色物質) 實施形態中,感光性樹脂組合物可根據期望進而含有選自由染料(例如隱色染料、螢烷染料等)及著色物質所組成之群中之至少一種。 作為著色物質,例如可列舉:品紅、酞菁綠、金黃胺鹼、對品紅、結晶紫、甲基橙、尼祿藍2B、維多利亞藍、孔雀綠(例如保土谷化學(股)製造之Aizen(註冊商標)MALACHITE GREEN)、鹼性藍20、鑽石綠(例如保土谷化學(股)製造之Aizen(註冊商標)DIAMOND GREEN GH)。關於感光性樹脂組合物中之著色物質之含量,於將感光性樹脂組合物之總固形物成分質量設定為100質量%時,較佳為0.001質量%~1質量%。就提高感光性樹脂組合物之處理性之觀點而言,較佳為將該含量設定為0.001質量%以上。另一方面,就維持感光性樹脂組合物之保存穩定性之觀點而言,較佳為將該含量設定為1質量%以下。 感光性樹脂組合物藉由含有染料而使曝光部分顯色,故而於視認性之方面而言較佳,又,於檢查機等讀取用以進行曝光之對位標記之情形時,曝光部與未曝光部之對比度較大之情況下容易識別而有利。就該觀點而言,作為較佳染料,可列舉隱色染料及螢烷染料。 作為隱色染料,可列舉:三(4-二甲胺基苯基)甲烷[隱色結晶紫]、雙(4-二甲胺基苯基)苯基甲烷[隱色孔雀綠]等。尤其就對比度變得良好之觀點而言,作為隱色染料,較佳為使用隱色結晶紫。相對於感光性樹脂組合物之總固形物成分質量,感光性樹脂組合物中之隱色染料之含量較佳為0.1質量%~10質量%。就使曝光部分與未曝光部分之對比度良好之觀點而言,較佳為將該含量設定為0.1質量%以上。該含量更佳為設定為0.2質量%以上,尤佳為設定為0.4質量%以上。另一方面,就維持保存穩定性之觀點而言,較佳為將該含量設定為10質量%以下。該含量更佳為設定為5質量%以下,尤佳為設定為2質量%以下。 又,就使密接性及對比度最適化之觀點而言,較佳為於感光性樹脂組合物中組合使用隱色染料與(C)光聚合起始劑中之上述鹵素化合物。於將隱色染料與該鹵素化合物併用之情形時,就維持感光層之色相之保存穩定性之觀點而言,於將感光性樹脂組合物之總固形物成分質量設定為100質量%時,感光性樹脂組合物中之該鹵化合物之含量較佳為0.01質量%~3質量%。 (其他添加劑) 為了提高熱穩定性及保存穩定性,感光性樹脂組合物可進而含有選自由自由基聚合抑制劑、苯并三唑類及羧基苯并三唑類所組成之群中之至少一種化合物。 作為自由基聚合抑制劑,例如可列舉:對甲氧基苯酚、對苯二酚、鄰苯三酚、萘胺、第三丁基兒茶酚、氯化亞銅、2,6-二-第三丁基-對甲酚、2,2'-亞甲基雙(4-甲基-6-第三丁基苯酚)、2,2'-亞甲基雙(4-乙基-6-第三丁基苯酚)、亞硝基苯基羥基胺鋁鹽、二苯基亞硝基胺等。為了不損及感光性樹脂組合物之感度,較佳為亞硝基苯基羥基胺鋁鹽。 作為苯并三唑類,例如可列舉:1,2,3-苯并三唑、1-氯-1,2,3-苯并三唑、雙(N-2-乙基己基)胺基亞甲基-1,2,3-苯并三唑、雙(N-2-乙基己基)胺基亞甲基-1,2,3-甲苯三唑、雙(N-2-羥基乙基)胺基亞甲基-1,2,3-苯并三唑等。 作為羧基苯并三唑類,例如可列舉:4-羧基-1,2,3-苯并三唑、5-羧基-1,2,3-苯并三唑、N-(N,N-二-2-乙基己基)胺基亞甲基羧基苯并三唑、N-(N,N-二-2-羥基乙基)胺基亞甲基羧基苯并三唑、N-(N,N-二-2-乙基己基)胺基亞甲基羧基苯并三唑等。 關於自由基聚合抑制劑、苯并三唑類及羧基苯并三唑類之總含量,於將感光性樹脂組合物之總固形物成分質量設定為100質量%時,較佳為0.01質量%~3質量%,更佳為0.05質量%~1質量%。就對感光性樹脂組合物賦予保存穩定性之觀點而言,較佳為將該含量設定為0.01質量%以上。另一方面,就維持感度且抑制染料之脫色之觀點而言,較佳為將該含量設定為3質量%以下。 實施形態中,感光性樹脂組合物可進而含有雙酚A之環氧化合物類。作為雙酚A之環氧化合物類,例如可列舉:將雙酚A以聚丙二醇修飾而使末端環氧化之化合物等。 實施形態中,感光性樹脂組合物可進而含有塑化劑。作為塑化劑,例如可列舉:鄰苯二甲酸酯類(例如鄰苯二甲酸二乙酯等)、鄰甲苯磺醯胺、對甲苯磺醯胺、檸檬酸三丁酯、檸檬酸三乙酯、乙醯基檸檬酸三乙酯、乙醯基檸檬酸三正丙酯、乙醯基檸檬酸三正丁酯、聚乙二醇、聚丙二醇、聚乙二醇烷基醚、聚丙二醇烷基醚等。又,亦可列舉:ADEKANOL SDX-1569、ADEKANOL SDX-1570、ADEKANOL SDX-1571、ADEKANOL SDX-479(以上為旭電化(股)製造),Newpol BP-23P、Newpol BP-3P、Newpol BP-5P、Newpol BPE-20T、Newpol BPE-60、Newpol BPE-100、Newpol BPE-180(以上為三洋化成(股)製造),Uniol DB-400、Uniol DAB-800、Uniol DA-350F、Uniol DA-400、Uniol DA-700(以上為日本油脂(股)製造),BA-P4U glycol、BA-P8 glycol(以上為日本乳化劑(股)製造)等具有雙酚骨架之化合物。 相對於感光性樹脂組合物之總固形物成分質量,感光性樹脂組合物中之塑化劑之含量較佳為1質量%~50質量%,更佳為1質量%~30質量%。就抑制顯影時間之延遲且對硬化膜賦予柔軟性之觀點而言,較佳為將該含量設定為1質量%以上。另一方面,就抑制硬化不足及冷流之觀點而言,較佳為將該含量設定為50質量%以下。 [溶劑] 感光性樹脂組合物可溶解於溶劑中而以感光性樹脂組合物調和液之形態用於製造感光性樹脂積層體。作為溶劑,可列舉酮類、醇類等。上述酮類係以甲基乙基酮(MEK)為代表。上述醇類係以甲醇、乙醇及異丙醇為代表。溶劑較佳為於感光性樹脂積層體之製造時,以塗佈於支撐層上之感光性樹脂組合物調和液之25℃下之黏度成為500 mPa・s~4,000 mPa・s的量而添加至感光性樹脂組合物中。 [感光性樹脂積層體] 實施形態中,提供一種將包含如上述之感光性樹脂組合物之感光性樹脂層積層於支撐層(例如支撐膜等)上而成之感光性樹脂積層體。視需要,感光性樹脂積層體亦可於與感光性樹脂層之與支撐層側為相反側之表面上具有保護層。 作為支撐層,較佳為可使自曝光光源放射之光穿透的透明之支撐膜。作為此種支撐膜,例如可列舉:聚對苯二甲酸乙二酯膜、聚乙烯醇膜、聚氯乙烯膜、氯乙烯共聚物膜、聚偏二氯乙烯膜、偏二氯乙烯共聚合膜、聚甲基丙烯酸甲酯共聚物膜、聚苯乙烯膜、聚丙烯腈膜、苯乙烯共聚物膜、聚醯胺膜、纖維素衍生物膜等。該等膜視需要亦可使用經延伸者。支撐膜較佳為霧度為5以下者。膜之厚度越薄,越可提高圖像形成性及經濟性,故而有利,但為了維持感光性樹脂積層體之強度,可較佳地使用10 μm~30 μm者。 感光性樹脂積層體中所使用之保護層之重要特性係與感光性樹脂層之密接力較支撐層而為充分小,可容易地剝離。例如聚乙烯膜或聚丙烯膜可較佳地用作保護層。又,亦可使用日本專利特開昭59-202457號公報中所示之剝離性優異之膜。保護層之膜厚較佳為10 μm~100 μm,更佳為10 μm~50 μm。 於聚乙烯膜表面上,有時存在被稱為魚眼之凝膠。於將具有魚眼之聚乙烯膜用作保護層之情形時,有時該魚眼會轉印至感光性樹脂層上。若魚眼轉印至感光性樹脂層上,則有時於層壓時捲入空氣而成為空隙,導致抗蝕劑圖案之缺損。就防止魚眼之觀點而言,作為保護層之材質,較佳為延伸聚丙烯。作為具體例,可列舉王子製紙(股)製造之ALPHAN E-200A。 感光性樹脂積層體中之感光性樹脂層之厚度根據用途而有所不同,較佳為5 μm~100 μm,更佳為7 μm~60 μm。感光性樹脂層之厚度越薄則解析度越提高,又,越厚則膜強度越提高。 其次,對感光性樹脂積層體之製造方法加以說明。 作為依序積層支撐層及感光性樹脂層、以及視需要之保護層而製作感光性樹脂積層體之方法,可採用已知之方法。例如,將感光性樹脂層中所使用之感光性樹脂組合物與溶解其之溶劑混合而製成均勻之溶液,首先使用棒塗機或輥塗機塗佈於支撐層上,繼而加以乾燥將上述溶劑去除,藉此可於支撐層上積層包含感光性樹脂組合物之感光性樹脂層。繼而視需要,於感光性樹脂層上層壓保護層,藉此可製作感光性樹脂積層體。 <抗蝕劑圖案之形成方法> 其次,對使用本實施形態之感光性樹脂積層體製造抗蝕劑圖案之方法之一例加以說明。該方法可包含如下步驟:將感光性樹脂積層體積層於基板上之積層步驟、將該感光性樹脂積層體之感光性樹脂層曝光之曝光步驟、及將該感光性樹脂層之未曝光部顯影去除之顯影步驟。作為抗蝕劑圖案,例如可列舉:印刷配線板、半導體元件、印刷版、液晶顯示器面板、可撓性基板、導線架基板、COF(Chip On Film,覆晶薄膜)用基板、半導體封裝用基板、液晶用透明電極、液晶用TFT(Thin Film Transistor,薄膜電晶體)用配線、PDP(Plasma Display Panel,電漿顯示器面板)用電極等之圖案。作為一例,如下般說明印刷配線板之製造方法。 印刷配線板係經由以下各步驟而製造。 (1)積層步驟 於本步驟中,一邊剝離感光性樹脂積層體之保護層(有保護層之情形),一邊使用熱輥層壓機使感光性樹脂積層體密接於銅箔積層板、可撓性基板等基板上。 (2)曝光步驟 於本步驟中,藉由以下曝光方法將感光性樹脂層曝光:使具有所期望之配線圖案之遮罩膜密接於支撐層上並使用活性光源進行之曝光方法、利用作為所期望之配線圖案之描繪圖案之直接描繪的曝光方法、或使光罩之圖像經過透鏡而投影之曝光方法。實施形態之感光性樹脂組合物之優點於利用描繪圖案之直接描繪的曝光方法、或使光罩之圖像經過透鏡而投影之曝光方法中更顯著,於利用描繪圖案之直接描繪的曝光方法中尤其顯著。 (3)顯影步驟 於本步驟中,曝光後,將感光性樹脂層上之支撐層剝離,繼而使用鹼性水溶液之顯影液將未曝光部顯影去除,藉此於基板上形成抗蝕劑圖案。 作為鹼性水溶液,使用Na2 CO3 或K2 CO3 之水溶液。鹼性水溶液係根據感光性樹脂層之特性而適宜選擇,較佳為約0.2質量%~約2質量%之濃度且約20℃~約40℃之Na2 CO3 水溶液。 可經由上述(1)~(3)之各步驟而獲得抗蝕劑圖案。該等步驟之後,根據情形,亦可進而進行約100℃~約300℃之加熱步驟。藉由實施該加熱步驟,可進一步提高耐化學品性。加熱時,可使用熱風、紅外線或遠紅外線之方式之加熱爐。 (4)蝕刻步驟或鍍敷步驟 對藉由顯影而露出之基板表面(例如銅箔積層板之銅面)進行蝕刻或鍍敷,製造導體圖案。 (5)剝離步驟 其後,藉由較顯影液具有更強鹼性之水溶液將抗蝕劑圖案自基板上剝離。對剝離用之鹼性水溶液並無特別限制,較佳為約2質量%~約5質量%之濃度且約40~約70℃之溫度之NaOH或KOH之水溶液。亦可於剝離液中添加少量之水溶性溶劑。 本實施形態之感光性樹脂積層體係適於製造印刷配線板、可撓性基板、導線架基板、COF用基板、半導體封裝用基板、液晶用透明電極、液晶用TFT用配線、PDP用電極等導體圖案的感光性樹脂積層體。 再者,關於上述各種參數,只要無特別說明,則係依據下述實施例之測定方法或業者理解為與其相同之方法而測定。 [實施例] 繼而,列舉實施例及比較例進一步具體說明本實施形態。然而,本實施形態只要不挪移其主旨,則不受以下實施例之限定。實施例中之物性係藉由以下方法而測定。 <感度評價> 首先,以噴霧壓力0.2 MPa使用研磨材(日本Carlit(股)製造,Saku random R(註冊商標#220))對積層有35 μm壓延銅箔之0.4 mm厚之銅箔積層板進行噴射刷磨。 其次,一邊剝離感光性樹脂積層體之聚乙烯膜(保護層),一邊於經預熱至60℃之銅箔積層板上,藉由熱輥層壓機(旭化成(股)公司製造,AL-700)以輥溫度105℃層壓感光性樹脂積層體。空氣壓力係設定為0.35 MPa,層壓速度係設定為1.5 m/min。 繼而,藉由直接描繪式曝光裝置(Orbotech(股)製造,Paragon-Ultra 100),以Stauffer製21級階段式曝光表作為遮罩,以各種曝光量進行曝光。此時,將曝光時之焦點之位置聚焦於基板表面。 進而,剝離聚對苯二甲酸乙二酯膜(支撐層)後,使用鹼性顯影機(富士機工製造,乾膜用顯影機),以特定時間噴霧30℃之1質量%Na2 CO3 水溶液,以最小顯影時間之2倍時間將感光性樹脂層之未曝光部分溶解去除。此時,將未曝光部分之感光性樹脂層完全溶解所需之最少時間作為最小顯影時間。 藉由以上操作而獲得硬化抗蝕劑圖案。求出顯影後之殘膜極限級數成為7級之曝光量。 <解析度評價(通常)> 首先,以噴霧壓力0.2 MPa使用研磨材(日本Carlit(股)製造,Saku random R(註冊商標#220))對積層有35 μm壓延銅箔之0.4 mm厚之銅箔積層板進行噴射刷磨。 其次,一邊剝離感光性樹脂積層體之聚乙烯膜(保護層),一邊於經預熱至60℃之銅箔積層板上,藉由熱輥層壓機(旭化成(股)公司製造,AL-700)以輥溫度105℃層壓感光性樹脂積層體。空氣壓力係設定為0.35 MPa,層壓速度係設定為1.5 m/min。 繼而,藉由直接描繪式曝光裝置(Orbotech(股)製造,Paragon-Ultra 100),將未曝光部成為線(間隙)之圖案曝光。此時之曝光係以將上述Stauffer製21級階段式曝光表作為遮罩進行曝光、顯影時之最高殘膜級數成為7級之曝光量進行曝光。此時,將曝光時之焦點之位置聚焦於基板表面。進而,剝離聚對苯二甲酸乙二酯膜(支撐層)後,以最小顯影時間之2倍之顯影時間進行顯影。此時,將正常形成未曝光部之線及間隙的最小線寬之值作為圖案解析度a。 於本發明中,將未曝光部分之感光性樹脂層完全溶解所需之最少時間作為最小顯影時間。再者,對硬化抗蝕劑圖案中,未曝光部分之基板表面上未殘留抗蝕劑而基板表面顯現、亦不存在自硬化抗蝕劑拉絲般之抗蝕劑成分之突起、線之直線性亦良好、硬化抗蝕劑彼此亦未密接而正常形成的最小線寬進行評價。作為解析度之值,使用30 μm以下係以2 μm為單位而獲得、30 μm以上係以5 μm為單位而獲得之描繪圖案進行曝光。 <解析度評價(焦點挪移)> 使曝光時之焦點之位置自基板表面於該基板之厚度方向上向基板內側挪移300 μm。除此以外,以與上述解析度評價(通常)相同之方式進行操作。此時,將正常形成未曝光部之線(間隙)的最小線寬之值作為圖案解析度b。 <解析度之差> 關於將曝光時之焦點之位置聚焦於基板表面時、與使曝光時之焦點之位置自基板表面挪移300 μm時之解析度之差,係藉由自上述<解析度評價(焦點挪移)>之圖案解析度b之值減去<解析度評價(通常)>之圖案解析度a之值而求得。 <間隙寬之差> 首先,以噴霧壓力0.2 MPa使用研磨材(日本Carlit(股)製造,Saku random R(註冊商標#220))對積層有35 μm壓延銅箔之0.4 mm厚之銅箔積層板進行噴射刷磨。 其次,一邊剝離感光性樹脂積層體之聚乙烯膜(保護層),一邊於經預熱至60℃之銅箔積層板上,藉由熱輥層壓機(旭化成(股)公司製造,AL-700)以輥溫度105℃層壓感光性樹脂積層體。空氣壓力係設定為0.35 MPa,層壓速度係設定為1.5 m/min。 其次,藉由直接描繪式曝光裝置(Orbotech(股)製造,Paragon-Ultra 100),將曝光部及未曝光部各自之寬度成為2:1之比率之圖案曝光。此時之曝光係以將上述Stauffer製21級階段式曝光表作為遮罩進行曝光、顯影時之最高殘膜級數成為7級之曝光量進行曝光。進而,剝離聚對苯二甲酸乙二酯膜(支撐層)後,以最小顯影時間之2倍之顯影時間進行顯影。對於所得圖案中之未曝光部之線(間隙)寬為40 μm之部分,藉由顯微鏡實測其間隙寬。對於各積層體之試樣,進行將曝光時之焦點之位置聚焦於基板表面之情形、與使曝光時之焦點之位置自基板表面於該基板之厚度方向上向基板內側挪移300 μm之情形之兩種圖案形成。 關於將曝光時之焦點之位置聚焦於基板表面時、與使曝光時之焦點之位置自基板表面挪移300 μm時的間隙寬之差,係藉由自將曝光時之焦點之位置聚焦於基板表面時之間隙寬減去使曝光時之焦點之位置自基板表面向基板內側挪移300 μm時之間隙寬而求得。 <重量平均分子量> 藉由日本分光(股)製造之凝膠滲透層析儀(GPC)[泵:Gulliver,PU-1580型,管柱:昭和電工(股)製造之Shodex(註冊商標)(KF-807、KF-806M、KF-806M、KF-802.5)4根串聯,移動層溶劑:四氫呋喃,使用由聚苯乙烯標準樣品(昭和電工(股)製造之Shodex STANDARD SM-105)所得之校準曲線],以聚苯乙烯換算值之形式求出重量平均分子量。 <與過氧自由基之反應速率常數> 根據J.Macromol.Sci.Chem., A11(10), p1975(1977)中記載之方法。 <由殘膜率所得之γ值(伽馬值)> 首先,以噴霧壓力0.2 MPa使用研磨材(日本Carlit(股)製造,Saku random R(註冊商標#220))對積層有35 μm壓延銅箔之0.4 mm厚之銅箔積層板進行噴射刷磨。 其次,一邊剝離感光性樹脂積層體之聚乙烯膜(保護層),一邊於經預熱至60℃之銅箔積層板上,藉由熱輥層壓機(旭化成(股)公司製造,AL-700)以輥溫度105℃層壓感光性樹脂積層體。空氣壓力係設定為0.35 MPa,層壓速度係設定為1.5 m/min。 其次,藉由直接描繪式曝光裝置(Orbotech(股)製造,Paragon-Ultra 100),以Stauffer製41級階段式曝光表作為遮罩,以各種曝光量進行曝光。此時,將曝光時之焦點之位置聚焦於基板表面。 進而,剝離聚對苯二甲酸乙二酯膜(支撐層)後,使用鹼性顯影機(富士機工製造,乾膜用顯影機)以特定時間噴霧30℃之1質量%Na2 CO3 水溶液,以最小顯影時間之2倍時間將感光性樹脂層之未曝光部分溶解去除。 藉由表面粗度形狀測定機(東京精密(股)製造,SURFCOM 575A)測定藉由以上操作而獲得之硬化抗蝕劑圖案之膜厚,由該膜厚求得殘膜率。又,根據曝光量與Stauffer製41級階段式曝光表之穿透率算出實質曝光量。根據該殘膜率與實質曝光量求得γ值。再者,γ值之計算方法可藉由「感光性樹脂從頭學起,P.60,池田章彥、水野晶好著,工業調查會」中記載之方法而求得。 <由C=C雙鍵之反應率所得之γ值(伽馬值)> 自感光性樹脂積層體之聚對苯二甲酸乙二酯膜(支撐層)側,藉由直接描繪式曝光裝置(Orbotech(股)製造,Paragon-Ultra 100)以Stauffer製41級階段式曝光表作為遮罩,以各種曝光量進行曝光。此時,將曝光時之焦點之位置聚焦於抗蝕劑底部。 藉由FT-IR(Thermo SCIENTIFIC製造,NICOLET 380)求得藉由以上操作而獲得之硬化抗蝕劑圖案之C=C雙鍵之反應率。再者,C=C雙鍵係測定810 cm-1 之波峰高度。又,根據曝光量與Stauffer製41級階段式曝光表之穿透率算出實質曝光量。根據該C=C雙鍵之反應率與實質曝光量求出γ值。再者,γ值之計算方法係與上述相同。 <感光性樹脂組合物調和液之色相穩定性> 使用紫外-可見光(UV-Vis)測定裝置(日立日立高新技術(股)製造,U-3010形分光光度計)如以下般測定感光性樹脂積層體之600 nm及630 nm之穿透率: (i)剝離感光性樹脂積層體之聚乙烯膜並測定600 nm及630 nm之穿透率。 (ii)使用在40℃下保存3天後之感光性樹脂組合物調和液製作感光性樹脂積層體,剝離該感光性樹脂積層體之聚乙烯膜並測定600 nm及630 nm之穿透率。 藉由(ii)之穿透率-(i)之穿透率之計算而求出色相之變化。 [實施例1~11及比較例1~15] 將表1及2所示之組成(其中,各成分之數字係表示作為固形物成分之調配量(質量份))之感光性樹脂組合物及溶劑(甲基乙基酮及乙醇)充分攪拌、混合,獲得感光性樹脂組合物調和液(感光性樹脂組合物成為55質量%之溶液)。準備16 μm厚之聚對苯二甲酸乙二酯膜(帝人杜邦薄膜(股)製造,GR-16)作為支撐層,使用棒塗機於該膜之表面上均勻塗佈感光性樹脂組合物調和液,於95℃之乾燥器中乾燥4分鐘,形成感光性樹脂層。感光性樹脂層之厚度為35 μm。 繼而,於感光性樹脂層之未積層聚對苯二甲酸乙二酯膜之表面上貼合作為保護層之19 μm厚之聚乙烯膜(Tamapoly(股)製造,GF-18),獲得感光性樹脂積層體。對所得感光性樹脂積層體進行各種評價。結果一併記載於表1中。又,間隙寬之差之結果於實施例1中為-5.9 μm,於實施例3中為-5.2 μm,於實施例4中為-5.6 μm,於實施例5中為-6.0 μm,於比較例1中為-7.5 μm,於比較例2中為-9.5 μm。又,由殘膜率所得之γ值(伽馬值)之結果於實施例4中為1.3,於實施例5中為0.6。由C=C雙鍵之反應率所得之γ值(伽馬值)之結果於實施例3中為0.192,於比較例1中為0.177。 將利用蝕刻之L/S=60/60 μm之電路圖案製作重複8次,嘗試積層,結果最表面之起伏為約30 μm。於此時之最表面之電路圖案中,比較例1之組成之情況下觀察到銅線之短路,實施例3之組成之情況下未觀察到短路,推測可減少不良。 [實施例12] 將表1所示之實施例1之H-1(1質量份)換成1,1,3-三(2-甲基-4-羥基-5-第三丁基苯基)丁烷(與過氧化自由基之反應速率常數=45.4 L・mol-1 ・sec-1 )(1質量份),除此以外設定為與實施例1相同。其結果,感度(必要曝光量)為21 mJ/cm2 ,解析度(通常)為18 μm,解析度(焦點挪移)為30 μm,解析度之差為12 μm。 [比較例16] 將表1所示之實施例1之H-1(1質量份)換成H-4(1質量份),除此以外設定與實施例1相同。其結果,感度(必要曝光量)為80 mJ/cm2 ,解析度(通常)為45 μm。 關於感光性樹脂組合物調和液之色相穩定性之結果,實施例1中600 nm下為1%,630 nm下為5%,實施例3中600 nm下為0%,630 nm下為5%,實施例12中600 nm下為2%,630 nm下為7%,比較例1中600 nm下為0%,630 nm下為5%,比較例2中600 nm下為-21%,630 nm下為3%,比較例8中600 nm下為5%,630 nm下為11%,比較例9中600 nm下為11%,630 nm下為27%,比較例16中600 nm下為-41%,630 nm下為-8%。關於比較例13、14、15,於通常之(i)之穿透率之時點下脫色極大,故而若以(ii)之穿透率-比較例1之(i)之穿透率之計算而求出,則比較例13中600 nm下為12%,630 nm下為30%,比較例14中600 nm下為16%,630 nm下為37%,比較例15中600 nm下為16%,630 nm下為37%。 [表1] 表1.感光性組合物之組成及評價結果(全部四張之第一張)
Figure 108103816-A0304-0001
(表1.待續) [表2] 表1.感光性組合物之組成及評價結果(全部四張之第二張)
Figure 108103816-A0304-0002
(表1.待續) [表3] 表1.感光性組合物之組成及評價結果(全部四張之第三張)
Figure 108103816-A0304-0003
(表1.待續) [表4] 表1.感光性組合物之組成及評價結果(全部四張之第四張)
Figure 108103816-A0304-0004
(表1.結束) [表5] 表2.使用成分一覽(全部三張之第一張)
Figure 108103816-A0304-0005
(表2.待續) [表6] 表2.使用成分一覽(全部三張之第二張)
Figure 108103816-A0304-0006
(表2.待續) [表7] 表2.使用成分一覽(全部三張之第三張)
Figure 108103816-A0304-0007
(表2.結束) 由表1及2之結果可讀取以下內容。 根據實施例與比較例之對比,若使用本實施形態之感光性樹脂組合物,則可表現高解析性,尤其於曝光時之焦點挪移時亦可表現出高解析性。進而亦可維持高感度。藉由使用該感光性樹脂組合物,應用於多層配線之情形時亦可於藉由蝕刻法形成電路時抑制短路問題。 [產業上之可利用性] 本實施形態之感光性樹脂積層體可表現出高感度及高解析性,尤其於曝光時之焦點挪移時亦可表現出高解析性,因此即便於因基板之翹曲及變形、曝光裝置之設定不良等而使曝光時之焦點之位置自基板表面挪移時,亦可於藉由蝕刻法形成電路時防止短路問題,於藉由鍍敷法形成電路時防止缺損、斷線、鍍敷不良等問題。故而,該感光性樹脂積層體可較佳用於製造印刷配線板、可撓性基板、導線架基板、COF(Chip On Film)用基板、半導體封裝用基板、液晶用透明電極、液晶用TFT用配線、PDP(Plasma Display Panel)用電極等導體圖案。Hereinafter, an exemplary embodiment for implementing the present invention (hereinafter referred to as "embodiment") will be described in detail. In addition, the present invention is not limited to the following embodiments, and can be implemented with various modifications within the scope of the gist. [Photosensitive resin composition] In the embodiment, the photosensitive resin composition has the following characteristics: a photosensitive resin layer containing the photosensitive resin composition is formed on the surface of a substrate, and a resist pattern obtained by exposing and developing the photosensitive resin composition In the process, the focus position is focused on the surface of the substrate and the pattern resolution a when the exposure is performed, and the focus position is focused on a position shifted 300 μm from the surface of the substrate in the thickness direction of the substrate to the inner side of the substrate and perform the The difference in pattern resolution b during exposure is less than 15 μm. As a result, even if the position of the focus during exposure is shifted from the surface of the substrate due to the warpage and deformation of the substrate, the poor setting of the exposure device, etc., the short circuit problem can be reduced when the circuit is formed by the etching method. Laying method reduces defects, disconnection, poor plating and other problems when forming a circuit. The difference between the pattern resolution a and the pattern resolution b is preferably 12 μm or less, more preferably 10 μm or less. On the other hand, from the viewpoints of ease of manufacture and less reduction in sensitivity, the difference between the pattern resolution a and the pattern resolution b is preferably 0 μm or more, more preferably 5 μm or more, and even more preferably 7 μm the above. Furthermore, as for the various measured values in this specification, unless otherwise specified, they are measured according to the method disclosed in the [Examples] of the present invention or the same method understood by the industry. With the miniaturization and thinning of electronic equipment in recent years, the demand for high-density wiring, the application of flexible printed wiring boards, and the multi-layering continues to increase. And with the development of multi-layering, the surface fluctuations gradually increase, and there is a concern about the deterioration of the resolution or the deterioration of the line width reproducibility accompanying the shift of the focus during exposure. As a result, the short circuit or the defect, the disconnection, and the plating The problem of poor coating and the inability to form the desired copper wire has become increasingly important. In large substrates, the same problem may also occur due to poor adsorption during exposure or uneven film thickness in the plane. Therefore, it is found that by focusing on the pattern resolution a when the focus position is focused on the substrate surface and exposure is performed, and the focus position is focused on a position shifted 300 μm from the substrate surface to the inside of the substrate in the thickness direction of the substrate ( The photosensitive resin composition is designed as a reference value set as a very large shift amount of the focus position relative to the amount of undulation of the above-mentioned surface, and the difference in the pattern resolution b during the exposure is designed to solve the above-mentioned problem effective. That is, it has been found that the selection and use of a specific photosensitive resin composition in which the difference between the pattern resolution a and the pattern resolution b is within a certain range is effective for the following aspects: even in the recent high-density and multilayered wiring conditions , It also reduces the problems of poor short circuit or defect, disconnection, poor plating, and failure to form the desired copper wire. In addition, the method of setting the difference between the pattern resolution a and the pattern resolution b within the above-mentioned specific range is not particularly limited. For example, for the composition of the photosensitive resin composition, each component is described in detail as follows Make various adjustments. In the embodiment, the photosensitive resin composition contains (A) an alkali-soluble polymer, (B) a compound having an ethylenically unsaturated double bond, and (C) a photopolymerization initiator. The photosensitive resin composition preferably contains (A) an alkali-soluble polymer: 10% by mass to 90% by mass; (B) an ethylenically unsaturated polymer based on the total solid content of the photosensitive resin composition. Bonded compound: 5 mass% to 70 mass%; and (C) photopolymerization initiator: 0.01 mass% to 20 mass%. Hereinafter, each component will be described in order. <(A) Alkali-soluble polymer> In the present invention, (A) the alkali-soluble polymer includes a polymer that is easily soluble in an alkaline substance. More specifically, the amount of carboxyl groups contained in the (A) alkali-soluble polymer is 100 to 600, preferably 250 to 450 in terms of acid equivalent. The so-called acid equivalent refers to the mass (unit: gram) of a polymer having 1 equivalent of carboxyl group in its molecule. In order to impart developability and peelability to the alkaline aqueous solution to the photosensitive resin layer, (A) the carboxyl group in the alkali-soluble polymer is necessary. From the viewpoint of improving development resistance, resolution, and adhesion, it is preferable to set the acid equivalent to 100 or more. And it is more preferable to set the acid equivalent to 250 or more. On the other hand, from the viewpoint of improving developability and peelability, it is preferable to set the acid equivalent to 600 or less. And it is more preferable to set the acid equivalent to 450 or less. In the present invention, the acid equivalent is the value measured by the potentiometric titration method using a potentiometric titration device to titrate with a 0.1 mol/L NaOH aqueous solution. (A) The weight average molecular weight of the alkali-soluble polymer is preferably 5,000 to 500,000. From the viewpoint of improving resolution and developability, it is preferable to set the weight average molecular weight to 500,000 or less. It is more preferable to set the weight average molecular weight to 300,000 or less, and even more preferably to 200,000 or less. On the other hand, from the viewpoint of controlling the properties of the developed agglomerates and the properties of the unexposed film such as edge fusion property and cutting chip property when the photosensitive resin laminate is formed, it is preferable to set the weight average molecular weight Above 5,000. It is more preferable to set the weight average molecular weight to 10,000 or more, and even more preferably to 20,000 or more. The so-called edge fusion property refers to the ease with which the photosensitive resin layer (that is, the layer containing the photosensitive resin composition) overflows from the end surface of the roll when it is wound into a roll as a photosensitive resin laminate. The so-called chipping property refers to the ease with which the chips will splash when the unexposed film is cut by a cutter. If the fragments adhere to the upper surface of the photosensitive resin laminate, etc., they will be transferred to the mask in the subsequent exposure step, etc., and become a cause of defective products. (A) The alkali-soluble polymer is preferably a copolymer obtained from at least one of the following first monomers and at least one of the following second monomers. A carboxylic acid or anhydride having a polymerizable unsaturated group in the first single system molecule. The first monomer can be divided into a first monomer having an aromatic hydrocarbon group and a first monomer having no aromatic hydrocarbon group. Examples of the first monomer having an aromatic hydrocarbon group include cinnamic acid. Examples of the first monomer having no aromatic hydrocarbon group include: (meth)acrylic acid, fumaric acid, crotonic acid, itaconic acid, maleic anhydride, maleic acid half ester, etc. . In particular, from the viewpoint of ease of manufacture and developability, (meth)acrylic acid is preferred. In the present invention, the so-called (meth)acrylic acid refers to acrylic acid and/or methacrylic acid. The following is the same. The second single system is a monomer that is not acidic and has at least one polymerizable unsaturated group in the molecule. The second monomer can be divided into a second monomer having an aromatic hydrocarbon group and a second monomer having no aromatic hydrocarbon group. Examples of the second monomer having an aromatic hydrocarbon group include benzyl (meth)acrylate, styrene, and styrene derivatives. As the second monomer having no aromatic hydrocarbon group, for example, methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, N-Butyl (meth)acrylate, isobutyl (meth)acrylate, tertiary butyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate Esters, 2-ethylhexyl (meth)acrylate, esters of vinyl alcohol, such as vinyl acetate, (meth)acrylonitrile, etc. Among them, preferred are methyl (meth)acrylate, n-butyl (meth)acrylate, styrene, 2-ethylhexyl (meth)acrylate, and benzyl (meth)acrylate. From the viewpoint of improving the resolution and adhesion of the resist pattern, styrene and benzyl (meth)acrylate are preferred. In addition, from the viewpoint of reducing the difference in resolution between when the focal position during exposure is focused on the surface of the substrate and when the focal position during exposure is shifted from the surface of the substrate, styrene and (meth)acrylic acid are preferred Benzyl ester. (A) The alkali-soluble polymer preferably contains a monomer component having an aromatic hydrocarbon group. Regarding the content ratio of the monomer component having an aromatic hydrocarbon group in the (A) alkali-soluble polymer, based on the total mass of all monomer components, it is preferably 10% by mass or more, more preferably 20% by mass or more, It is more preferably 30% by mass or more, and particularly preferably 50% by mass or more. The upper limit is not particularly limited, but it is preferably 95% by mass or less, and more preferably 80% by mass or less. In a preferred aspect, the (A) alkali-soluble polymer may contain a polymer having a structure derived from (meth)acrylic acid, (meth)acrylic acid alkyl ester and styrene, and/or having a structure derived from (form) Macromolecules with the structure of acrylic acid, benzyl (meth)acrylate and alkyl (meth)acrylate. Regarding the copolymerization ratio of the first monomer and the second monomer, based on the mass basis of all polymerization components, it is preferable that the first monomer is 10% to 60% by mass and the second monomer is 40% to 90% by mass. %, more preferably the first monomer is 15% to 35% by mass, and the second monomer is 65% to 85% by mass. (A) Alkali-soluble polymers may be used alone or in combination of two or more. When two or more are used in combination, it is preferable to mix two alkali-soluble polymers containing monomer components with aromatic hydrocarbon groups, and to use alkali-soluble polymers containing monomer components with aromatic hydrocarbon groups, It is used in combination with alkali-soluble polymers that do not contain monomer components with aromatic hydrocarbon groups. In the latter case, the use ratio of the alkali-soluble polymer containing monomer components having aromatic hydrocarbon groups is preferably 50% by mass or more, and more preferably 70% by mass or more, relative to the total amount of (A) alkali-soluble polymers. , More preferably 80% by mass or more, more preferably 90% by mass or more. (A) The synthesis of alkali-soluble polymer is preferably carried out by the following method: in a solution in which the mixture of the first monomer and the second monomer is diluted with a solvent such as acetone, methyl ethyl ketone, isopropanol, etc., Add an appropriate amount of radical polymerization initiators such as benzoyl peroxide and azoisobutyronitrile, and heat and stir. There is also a case where a part of the mixture is added dropwise to the reaction solution while the synthesis is performed. There are also cases where a solvent is added after the reaction is completed to adjust the concentration to a desired concentration. As a synthesis method, in addition to solution polymerization, bulk polymerization, suspension polymerization, or emulsion polymerization may also be used. (A) The ratio of the alkali-soluble polymer to the total solid content of the photosensitive resin composition is preferably in the range of 10% by mass to 90% by mass, more preferably 30% by mass to 70% by mass, and still more preferably 40% by mass to 60% by mass. From the viewpoint of controlling the development time, it is preferable to set the ratio of the (A) alkali-soluble polymer to the photosensitive resin composition to 90% by mass or less. On the other hand, from the viewpoint of improving the edge fusion resistance, it is preferable to set the ratio of the (A) alkali-soluble polymer to the photosensitive resin composition to 10% by mass or more. <(B) Compounds having ethylenically unsaturated double bonds> From the viewpoint of curability and compatibility with (A) alkali-soluble polymers, (B) compounds having ethylenically unsaturated double bonds are preferred Contains a compound having a (meth)acryloyl group in the molecule. (B) The number of (meth)acryloyl groups in the compound may be one or more. Examples of the (B) compound having one (meth)acrylic acid group include: a compound in which (meth)acrylic acid is added to a single end of polyalkylene oxide; or a compound in which (meth)acrylic acid is added to a single end of polyalkylene oxide. Compounds containing (meth)acrylic acid and alkyl etherified or allyl etherified at the other end. Examples of such compounds include: phenoxyhexaethylene glycol mono(meth)acrylate, which is a (meth)acrylate of a compound in which polyethylene glycol is added to a phenyl group; 4-normal Nonylphenoxy heptaethylene glycol dipropylene glycol (meth)acrylate, which is a combination of polypropylene glycol with an average addition of 2 mol of propylene oxide and an average addition of 7 mol with ethylene oxide Polyethylene glycol, the (meth)acrylate of the compound added to nonylphenol; 4-n-nonylphenoxy pentaethylene glycol monopropylene glycol (meth)acrylate, which is the average addition Polypropylene glycol of 1 mol of propylene oxide, and polyethylene glycol with an average of 5 mol of ethylene oxide added to nonylphenol (meth)acrylate; 4-normal Nonylphenoxy octaethylene glycol (meth)acrylate (for example, M-114 manufactured by Toagosei Co., Ltd.), which is polyethylene glycol to which an average of 8 mol of ethylene oxide is added Acrylic esters of compounds on nonylphenol. Examples of compounds having two (meth)acrylic groups in the molecule include: compounds having (meth)acrylic groups at both ends of the alkylene oxide chain; or compounds having two (meth)acrylic acid groups on both ends of the alkylene oxide chain; Compounds with (meth)acrylic acid groups at both ends of the alkylene oxide chain in which the propane chain is randomly or block bonded. Examples of such compounds include tetraethylene glycol di(meth)acrylate, pentaethylene glycol di(meth)acrylate, hexaethylene glycol di(meth)acrylate, and heptaethylene glycol di(meth)acrylate. (Meth)acrylate, octaethylene glycol di(meth)acrylate, nonaethylene glycol di(meth)acrylate, decaethylene glycol di(meth)acrylate, epoxy at 12 mol Polyethylene glycol (meth)acrylates such as compounds having (meth)acrylic acid groups at both ends of the ethane chain, in addition to polypropylene glycol di(meth)acrylate and polybutylene glycol Di(meth)acrylate etc. Examples of the polyalkylene oxide di(meth)acrylate compound containing an ethylene oxide group and a propylene oxide group in the compound include: two polypropylene glycols to which an average of 12 mol of propylene oxide is added The two ends of the diol dimethacrylate with an average of 3 mol of ethylene oxide are added respectively, and the two ends of the polypropylene glycol with an average of 18 mol of propylene oxide are added to each of the two ends with an average of 15 Dimethacrylates of diols of ethylene oxide, etc. of moles. As another example of a compound having two (meth)acryloyl groups in the molecule, from the viewpoints of resolution and adhesion, it is preferable to modify bisphenol A with alkylene oxide to form both ends Compounds with (meth)acrylic groups. The alkylene oxide modification includes ethylene oxide modification, propylene oxide modification, butylene oxide modification, pentane oxide modification, and hexane oxide modification. It is preferably a compound having (meth)acryloyl groups at both ends by modifying bisphenol A with ethylene oxide. As such a compound, for example, 2,2-bis(4-((meth)propenyloxydiethoxy)phenyl)propane (for example, NK ester BPE- manufactured by Shinnakamura Chemical Industry Co., Ltd.) 200), 2,2-bis(4-((meth)propenyloxytriethoxy)phenyl)propane, 2,2-bis(4-((meth)propenyloxytetraethoxy) Phenyl)propane, 2,2-bis(4-((meth)propenyloxypentaethoxy)phenyl)propane (e.g. NK ester BPE-500 manufactured by Shinnakamura Chemical Industry Co., Ltd.) , 2,2-bis(4-((meth)propenyloxyhexaethoxy)phenyl)propane, 2,2-bis(4-((meth)propenyloxyheptethoxy) Phenyl) propane, 2,2-bis(4-((meth)propenyloxy octaethoxy) phenyl)propane, 2,2-bis(4-((meth)propenyloxy) Ethoxy)phenyl)propane, 2,2-bis(4-((meth)propenyloxydecaethoxy)phenyl)propane, 2,2-bis(4-((meth))propane Oxyundecethoxy)phenyl)propane, 2,2-bis(4-((meth)propenoxydodecethoxy)phenyl)propane, 2,2-bis(4- ((Meth)acryloyloxy tridecethoxy)phenyl)propane, 2,2-bis(4-((meth)acryloyloxytetradecethoxy)phenyl)propane, 2, 2-bis(4-((meth)propenyloxypentadecethoxy)phenyl)propane, 2,2-bis(4-((meth)propenyloxyhexadecethoxy)benzene 2,2-bis(4-((meth)acryloyloxypolyethoxy)phenyl)propane and the like. Furthermore, for example, two (meth)acrylates of polyalkylene glycol with an average of 2 mol of propylene oxide and an average of 6 mol of ethylene oxide added to both ends of bisphenol A, or Both ends of bisphenol A are respectively added with an average of 2 mol of propylene oxide and an average of 15 mol of ethylene oxide polyalkylene glycol di(meth)acrylate, etc., after ethylene oxide Alkane-modified and propylene oxide-modified compounds are also preferred. From the viewpoint of further improving resolution, adhesion, and flexibility, bisphenol A is modified with alkylene oxide to form a compound having (meth)acrylic acid groups at both ends of the ethylene oxide moiety. The number of ears is preferably 10 mol or more and 30 mol or less. For example, a compound having more than 2 (meth)acryloyl groups in one molecule can be obtained by the following method: as a central skeleton, there are 3 moles or more of alkylene oxide groups in the molecule that can be added to An alkoxy group such as an ethoxy group, a propoxy group, and a butoxy group is added thereto to obtain an alcohol, and the alcohol is made into a (meth)acrylate. In this case, as a compound which can become a central skeleton, glycerol, trimethylolpropane, pentaerythritol, dipentaerythritol, isocyanurate ring etc. are mentioned, for example. Examples of such compounds include: ethylene oxide (EO) 3 mol modified triacrylate of trimethylol propane, EO 6 mol modified triacrylate of trimethylol propane, trimethylol propane EO 9 mol modified triacrylate of trimethylolpropane, EO 12 mol modified triacrylate of trimethylolpropane, etc. Examples of such compounds include: EO 3 mol modified triacrylate of glycerin (for example, A-GLY-3E manufactured by Shinnakamura Chemical Industry Co., Ltd.), and EO 9 mol modified triacrylate of glycerin ( For example, A-GLY-9E manufactured by Shinnakamura Chemical Industry Co., Ltd., EO 6 mol of glycerin and 6 mol of propylene oxide (PO) modified triacrylate (A-GLY-0606PE), EO 9 of glycerin Mole PO 9 Mole modified triacrylate (A-GLY-0909PE), 4 EO modified tetraacrylate of pentaerythritol (e.g. SR-494 manufactured by Japan Sartomer Co., Ltd.), 35 EO modified tetraacrylate of pentaerythritol Acrylate (such as NK ester ATM-35E manufactured by Shinnakamura Chemical Industry Co., Ltd.), etc. In addition to the above-mentioned compounds, the compounds listed below can be suitably used. Examples include: 1,6-hexanediol di(meth)acrylate, 1,4-cyclohexanediol di(meth)acrylate, 2-bis(p-hydroxyphenyl)propane bis(meth) Acrylate, 2,2-bis[(4-(meth)acryloxypolypropyleneoxy)phenyl]propane, 2,2-bis[(4-(meth)acryloxypolyoxyethylene) Butoxy)phenyl)propane, glycerol tri(meth)acrylate, trimethylolpropane tri(meth)acrylate, polyoxypropyl trimethylolpropane tri(meth)acrylate, dipentaerythritol Penta(meth)acrylate, trimethylolpropane triglycidyl ether tri(meth)acrylate, β-hydroxypropyl-β'-(acryloxy) propyl phthalate, nonyl Polyphenoxy polypropylene glycol (meth)acrylate, nonylphenoxy polybutylene glycol (meth)acrylate, polypropylene glycol mono(meth)acrylate, etc. Furthermore, the following urethane compounds can also be mentioned. Examples include: hexamethylene diisocyanate, toluene diisocyanate, or diisocyanate compounds (such as 2,2,4-trimethylhexamethylene diisocyanate), and having a hydroxyl group and (meth)propylene in one molecule Acetyl-based compounds, such as urethane compounds of 2-hydroxypropyl acrylate and oligopropylene glycol monomethacrylate. Specifically, there is a reaction product of hexamethylene diisocyanate and oligopropylene glycol monomethacrylate (for example, Blemmer PP1000 manufactured by Nippon Oil & Fat Co., Ltd.). In addition, examples include di- or tri-(meth)acrylates of isocyanurates modified with polypropylene glycol or polycaprolactone. In addition, for example, an amine group obtained by reacting a terminal of a urethane compound obtained as a polyadduct of a diisocyanate and a polyol with a compound having an ethylenically unsaturated double bond and a hydroxyl group can also be cited Formate oligomers, etc. (B) The ratio of the compound having an ethylenically unsaturated double bond to the total solid content mass of the photosensitive resin composition is preferably 5 mass% to 70 mass%. From the viewpoint of sensitivity, resolution, and adhesion, it is preferable to set the ratio to 5 mass% or more. It is more preferable to set the ratio to 20% by mass or more, and still more preferably to be 30% by mass or more. On the other hand, from the viewpoint of suppressing edge fusion and delayed peeling of the cured resist, it is preferable to set the ratio to 70% by mass or less. It is more preferable to set the ratio to 50% by mass or less. <(C) Photopolymerization initiator> Examples of the (C) photopolymerization initiator include hexaarylbiimidazole compounds, N-aryl-α-amino acid compounds, quinones, and aromatic ketones , Acetophenones, phosphine oxides, benzoin or benzoin ethers, dialkyl ketals, 9-oxysulfur
Figure 108103816-A0304-12-01
Figure 108103816-A0304-12-02
Types, dialkylaminobenzoates, oxime esters, acridines, pyrazoline derivatives, N-arylamino acid ester compounds, halogen compounds, etc. As the hexaarylbiimidazole compound, for example, 2-(o-chlorophenyl)-4,5-diphenylbiimidazole, 2,2',5-tris-(o-chlorophenyl)-4-( 3,4-Dimethoxyphenyl)-4',5'-diphenylbiimidazole, 2,4-bis-(o-chlorophenyl)-5-(3,4-dimethoxyphenyl) )-Diphenylbiimidazole, 2,4,5-tris-(o-chlorophenyl)-diphenylbiimidazole, 2-(o-chlorophenyl)-bis-4,5-(3,4-di Methoxyphenyl)-biimidazole, 2,2'-bis-(2-fluorophenyl)-4,4',5,5'-tetra-(3-methoxyphenyl)-biimidazole, 2,2'-bis-(2,3-difluoromethylphenyl)-4,4',5,5'-tetra-(3-methoxyphenyl)-biimidazole, 2,2'- Bis-(2,4-difluorophenyl)-4,4',5,5'-tetra-(3-methoxyphenyl)-biimidazole, 2,2'-bis-(2,5- Difluorophenyl)-4,4',5,5'-tetrakis-(3-methoxyphenyl)-biimidazole, 2,2'-bis-(2,6-difluorophenyl)-4 ,4',5,5'-tetra-(3-methoxyphenyl)-biimidazole, 2,2'-bis-(2,3,4-trifluorophenyl)-4,4',5 ,5'-Tetra-(3-methoxyphenyl)-biimidazole, 2,2'-bis-(2,3,5-trifluorophenyl)-4,4',5,5'-tetra -(3-Methoxyphenyl)-biimidazole, 2,2'-bis-(2,3,6-trifluorophenyl)-4,4',5,5'-tetra-(3-methyl Oxyphenyl)-biimidazole, 2,2'-bis-(2,4,5-trifluorophenyl)-4,4',5,5'-tetra-(3-methoxyphenyl) -Biimidazole, 2,2'-bis-(2,4,6-trifluorophenyl)-4,4',5,5'-tetra-(3-methoxyphenyl)-biimidazole, 2 ,2'-bis-(2,3,4,5-tetrafluorophenyl)-4,4',5,5'-tetra-(3-methoxyphenyl)-biimidazole, 2,2'-Bis-(2,3,4,6-tetrafluorophenyl)-4,4',5,5'-tetra-(3-methoxyphenyl)-biimidazole,2,2'-bis-(2,3,4,5,6-Pentafluorophenyl)-4,4',5,5'-tetra-(3-methoxyphenyl)-biimidazole and the like. Examples of N-aryl-α-amino acid compounds include N-phenylglycine, N-methyl-N-phenylglycine, and N-ethyl-N-phenylglycine Wait. In particular, the sensitization effect of N-phenylglycine is better and better. As quinones, for example, 2-ethylanthraquinone, octaethylanthraquinone, 1,2-benzoanthraquinone, 2,3-benzoanthraquinone, 2-phenylanthraquinone, 2,3- Diphenylanthraquinone, 1-chloroanthraquinone, 2-chloroanthraquinone, 2-methylanthraquinone, 1,4-naphthoquinone, 9,10-phenanthrenequinone, 2-methyl-1,4-naphthoquinone , 9,10-phenanthrenequinone, 2-methyl-1,4-naphthoquinone, 2,3-dimethylanthraquinone, 3-chloro-2-methylanthraquinone, etc. As aromatic ketones, for example, benzophenone, Michelone [4,4'-bis(dimethylamino)benzophenone], 4,4'-bis(diethylamino) Benzophenone, 4-methoxy-4'-dimethylaminobenzophenone, etc. Examples of acetophenones include 2-hydroxy-2-methyl-1-phenylpropane-1-one, 1-(4-isopropylphenyl)-2-hydroxy-2-methylpropane -1-one, 1-(4-dodecylphenyl)-2-hydroxy-2-methylpropane-1-one, 4-(2-hydroxyethoxy)-phenyl(2-hydroxy- 2-propyl) ketone, 1-hydroxycyclohexyl phenyl ketone, 2-benzyl-2-dimethylamino-1-(4-
Figure 108103816-A0304-12-03
(Hydroxyphenyl)-butanone-1, 2-methyl-1-[4-(methylthio)phenyl]-2-
Figure 108103816-A0304-12-03
Linyl-acetone-1 and so on. Examples of commercially available products of acetophenones include Irgacure 907, Irgacure 369, and Irgacure 379 manufactured by Ciba Specialty Chemicals. As the phosphine oxides, for example, 2,4,6-trimethylbenzyldiphenylphosphine oxide, bis(2,4,6-trimethylbenzyl)-phosphine oxide, bis( 2,6-Dimethoxybenzyl)-2,4,4-trimethyl-pentylphosphine oxide and the like. Examples of commercially available products of phosphine oxides include Lucirin TPO manufactured by BASF and Irgacure 819 manufactured by Ciba Specialty Chemicals. As benzoin or benzoin ethers, benzoin, benzoin ethyl ether, benzoin phenyl ether, methyl benzoin, ethyl benzoin, etc. are mentioned, for example. Examples of dialkyl ketals include benzil dimethyl ketal, benzil diethyl ketal, and the like. As 9-oxysulfur
Figure 108103816-A0304-12-01
Figure 108103816-A0304-12-02
Class, for example: 2,4-diethyl-9-oxysulfur
Figure 108103816-A0304-12-01
Figure 108103816-A0304-12-02
, 2,4-Diisopropyl-9-oxysulfur
Figure 108103816-A0304-12-01
Figure 108103816-A0304-12-02
, 2-Chloro-9-oxysulfur
Figure 108103816-A0304-12-01
Figure 108103816-A0304-12-02
Wait. Examples of dialkylamino benzoates include ethyl dimethylamino benzoate, ethyl diethylamino benzoate, ethyl p-dimethylamino benzoate, 4-(dimethylamino benzoate ) Benzoic acid-2-ethylhexyl ester, etc. As oxime esters, for example, 1-phenyl-1,2-propanedione-2-O-benzyloxime, 1-phenyl-1,2-propanedione-2-(O- Ethoxycarbonyl) oxime and the like. Examples of commercially available oxime esters include CGI-325, Irgacure OXE01, and Irgacure OXE02 manufactured by Ciba Specialty Chemicals. As acridines, for example, 1,7-bis(9,9'-acridinyl)heptane, 9-phenylacridine, 9-methylacridine, 9-ethylacridine, 9- Chloroethyl acridine, 9-methoxy acridine, 9-ethoxy acridine, 9-(4-methylphenyl) acridine, 9-(4-ethylphenyl) acridine, 9- (4-n-propylphenyl) acridine, 9-(4-n-butylphenyl) acridine, 9-(4-tertiary butylphenyl) acridine, 9-(4-methoxybenzene) Group) acridine, 9-(4-ethoxyphenyl) acridine, 9-(4-ethoxyphenyl) acridine, 9-(4-dimethylaminophenyl) acridine, 9- (4-chlorophenyl)acridine, 9-(4-bromophenyl)acridine, 9-(3-methylphenyl)acridine, 9-(3-tert-butylphenyl)acridine, 9-(3-acetylphenyl)acridine, 9-(3-dimethylaminophenyl)acridine, 9-(3-diethylaminophenyl)acridine, 9-(3-chloro Phenyl)acridine, 9-(3-bromophenyl)acridine, 9-(2-pyridyl)acridine, 9-(3-pyridyl)acridine, 9-(4-pyridyl)acridine Wait. Among them, 1,7-bis(9,9'-acridinyl)heptane or 9-phenylacridine is preferable in terms of sensitivity, resolution, accessibility, and the like. Examples of pyrazoline derivatives include 1-(4-tert-butyl-phenyl)-3-styryl-5-phenyl-pyrazoline, 1-phenyl-3-(4- Tertiary butyl-styryl)-5-(4-tertiary butyl-phenyl)-pyrazoline, 1,5-bis-(4-tertiary butyl-phenyl)-3-(4 -Tert-butyl-styryl)-pyrazoline, 1-(4-tert-octyl-phenyl)-3-styryl-5-phenyl-pyrazoline, 1-phenyl-3 -(4-tertiary butyl-styryl)-5-(4-ethoxy-phenyl)-pyrazoline, 1-phenyl-3-(4-tertiary octyl-styryl) -5-(4-Third Octyl-Phenyl)-Pyrazoline, 1,5-Bis-(4-Third Octyl-Phenyl)-3-(4-Third Octyl-Styryl )-Pyrazoline, 1-(4-dodecyl-phenyl)-3-styryl-5-phenyl-pyrazoline, 1-phenyl-3-(4-dodecyl- Styryl)-5-(4-dodecyl-phenyl)-pyrazoline, 1-(4-dodecyl-phenyl)-3-(4-dodecyl-styryl) )-5-(4-Dodecyl-phenyl)-pyrazoline, 1-(4-tertiary octyl-phenyl)-3-(4-tertiary butyl-styryl)-5 -(4-tertiary butyl-phenyl)-pyrazoline, 1-(4-tertiary butyl-phenyl)-3-(4-tertiary octyl-styryl)-5-(4 -Third octyl-phenyl)-pyrazoline, 1-(4-dodecyl-phenyl)-3-(4-tertiary butyl-styryl)-5-(4-third Butyl-phenyl)-pyrazoline, 1-(4-tert-butyl-phenyl)-3-(4-dodecyl-styryl)-5-(4-dodecyl- Phenyl)-pyrazoline, 1-(4-dodecyl-phenyl)-3-(4-third octyl-styryl)-5-(4-third octyl-phenyl) -Pyrazoline, 1-(4-third octyl-phenyl)-3-(4-dodecyl-styryl)-5-(4-dodecyl-phenyl)-pyrazole Morpholine, 1-(2,4-Dibutyl-phenyl)-3-(4-dodecyl-styryl)-5-(4-dodecyl-phenyl)-pyrazoline, etc. . Examples of the pyrazoline derivative include: 1-phenyl-3-(3,5-di-tert-butyl-styryl)-5-(3,5-di-tert-butyl-benzene Yl)-pyrazoline, 1-phenyl-3-(2,6-di-tert-butyl-styryl)-5-(2,6-di-tert-butyl-phenyl)-pyridine Oxazoline, 1-phenyl-3-(2,5-di-tert-butyl-styryl)-5-(2,5-di-tert-butyl-phenyl)-pyrazoline, 1 -Phenyl-3-(2,6-di-n-butyl-styryl)-5-(2,6-di-n-butyl-phenyl)-pyrazoline, 1-(3,4- Di-tert-butyl-phenyl)-3-styryl-5-phenyl-pyrazoline, 1-(3,5-di-tert-butyl-phenyl)-3-styryl- 5-phenyl-pyrazoline, 1-(4-tert-butyl-phenyl)-3-(3,5-di-tert-butyl-phenyl)-5-phenyl-pyrazoline, 1-(3,5-di-tert-butyl-phenyl)-3-(3,5-di-tert-butyl-styryl)-5-(3,5-di-tert-butyl) -Phenyl)-pyrazoline, 1-(4-(5-tert-butyl-benzo
Figure 108103816-A0304-12-04
(Azol-2-yl)phenyl)-3-styryl-5-phenyl-pyrazoline, 1-(4-(benzo
Figure 108103816-A0304-12-04
(Azol-2-yl)phenyl)-3-(4-tert-butyl-styryl)-5-(4-tert-butyl-phenyl)-pyrazoline, 1-(4-(4 -Tertiary butyl-benzo
Figure 108103816-A0304-12-04
(Azol-2-yl)phenyl)-3-(4-tert-butyl-styryl)-5-(4-tert-butyl-phenyl)-pyrazoline, 1-(4-(5 -Third Octyl-Benzo
Figure 108103816-A0304-12-04
(Azol-2-yl)phenyl)-3-styryl-5-phenyl-pyrazoline, 1-(4-(benzo
Figure 108103816-A0304-12-04
(Azol-2-yl)phenyl)-3-(4-third octyl-styryl)-5-(4-third octyl-phenyl)-pyrazoline, 1-(4-(5 -Third Octyl-Benzo
Figure 108103816-A0304-12-04
(Azol-2-yl)phenyl)-3-(4-third octyl-styryl)-5-(4-third octyl-phenyl)-pyrazoline, 1-(4-(5 -Dodecyl-benzo
Figure 108103816-A0304-12-04
(Azol-2-yl)phenyl)-3-styryl-5-phenyl-pyrazoline, 1-(4-(benzo
Figure 108103816-A0304-12-04
Azol-2-yl)phenyl)-3-(4-dodecyl-styryl)-5-(4-dodecyl-phenyl)-pyrazoline, 1-(4-(5 -Dodecyl-benzo
Figure 108103816-A0304-12-04
Azol-2-yl)phenyl)-3-(4-dodecyl-styryl)-5-(4-dodecyl-phenyl)-pyrazoline, 1-(4-(5 -Third Octyl-Benzo
Figure 108103816-A0304-12-04
(Azol-2-yl)phenyl)-3-(4-tert-butyl-styryl)-5-(4-tert-butyl-phenyl)-pyrazoline and the like. As the pyrazoline derivative, 1-(4-(5-tert-butyl-benzo
Figure 108103816-A0304-12-04
(Azol-2-yl)phenyl)-3-(4-third octyl-styryl)-5-(4-third octyl-phenyl)-pyrazoline, 1-(4-(5 -Dodecyl-benzo
Figure 108103816-A0304-12-04
(Azol-2-yl)phenyl)-3-(4-tert-butyl-styryl)-5-(4-tert-butyl-phenyl)-pyrazoline, 1-(4-(5 -Tertiary butyl-benzo
Figure 108103816-A0304-12-04
Azol-2-yl)phenyl)-3-(4-dodecyl-styryl)-5-(4-dodecyl-phenyl)-pyrazoline, 1-(4-(5 -Dodecyl-benzo
Figure 108103816-A0304-12-04
(Azol-2-yl)phenyl)-3-(4-third octyl-styryl)-5-(4-third octyl-phenyl)-pyrazoline, 1-(4-(5 -Third Octyl-Benzo
Figure 108103816-A0304-12-04
Azol-2-yl)phenyl)-3-(4-dodecyl-styryl)-5-(4-dodecyl-phenyl)-pyrazoline, 1-(4-(4 ,6-Dibutyl-benzo
Figure 108103816-A0304-12-04
Azol-2-yl)phenyl)-3-(4-dodecyl-styryl)-5-(4-dodecyl-phenyl)-pyrazoline, 1-(4-(benzene and
Figure 108103816-A0304-12-04
(Azol-2-yl)phenyl)-3-(3,5-di-tert-butylstyryl)-5-(3,5-di-tert-butyl-phenyl)-pyrazoline, 1-(4-(Benzo
Figure 108103816-A0304-12-04
(Azol-2-yl)phenyl)-3-(2,6-di-tert-butyl-styryl)-5-(2,6-di-tert-butyl-phenyl)-pyrazoline , 1-(4-(Benzo
Figure 108103816-A0304-12-04
(Azol-2-yl)phenyl)-3-(2,5-di-tert-butyl-styryl)-5-(2,5-di-tert-butyl-phenyl)-pyrazoline , 1-(4-(Benzo
Figure 108103816-A0304-12-04
(Azol-2-yl)phenyl)-3-(2,6-di-n-butyl-styryl)-5-(2,6-di-n-butyl-phenyl)-pyrazoline, 1 -(4-(4,6-Di-tert-butyl-benzo
Figure 108103816-A0304-12-04
(Azol-2-yl)phenyl)-3-styryl-5-phenyl-pyrazoline, 1-(4-(5,7-di-tert-butyl-benzo
Figure 108103816-A0304-12-04
(Azol-2-yl)phenyl)-3-styryl-5-phenyl-pyrazoline, 1-(4-(5-tert-butyl-benzo
Figure 108103816-A0304-12-04
(Azol-2-yl)phenyl)-3-(3,5-di-tert-butyl-styryl)-5-phenyl-pyrazoline, 1-(4-(4,6-di- Tertiary butyl-benzo
Figure 108103816-A0304-12-04
(Azol-2-yl)phenyl)-3-(3,5-di-tert-butyl-styryl)-5-(3,5-di-tert-butyl-phenyl)-pyrazoline , 1-Phenyl-3-(4-tertiary butyl-styryl)-5-(4-amino-phenyl)-pyrazoline, 1-phenyl-3-(4-tertiary butyl) Yl-styryl)-5-(4-N-ethyl-phenyl)-pyrazoline and 1-phenyl-3-(4-tert-butyl-styryl)-5-(4- N,N-Diethyl-phenyl)-pyrazoline and the like. Examples of pyrazoline derivatives include 1-phenyl-3-(4-biphenyl)-5-(4-n-butyl-phenyl)-pyrazoline, 1-phenyl-3- (4-Biphenyl)-5-(4-tert-butyl-phenyl)-pyrazoline, 1-phenyl-3-(4-biphenyl)-5-(4-isobutyl- Phenyl)-pyrazoline, 1-phenyl-3-(4-biphenyl)-5-(4-n-pentyl-phenyl)-pyrazoline, 1-phenyl-3-(4- Biphenyl)-5-(4-isopentyl-phenyl)-pyrazoline, 1-phenyl-3-(4-biphenyl)-5-(4-neopentyl-phenyl)- Pyrazoline, 1-phenyl-3-(4-biphenyl)-5-(4-hexyl-phenyl)-pyrazoline, 1-phenyl-3-(4-biphenyl)-5 -(4-Heptyl-phenyl)-pyrazoline, 1-phenyl-3-(4-biphenyl)-5-(4-n-octyl-phenyl)-pyrazoline, 1-benzene 3-(4-biphenyl)-5-(4-third octyl-phenyl)-pyrazoline, 1-phenyl-3-(4-biphenyl)-5-(4- Nonyl-phenyl)-pyrazoline, 1-phenyl-3-(4-biphenyl)-5-(4-decyl-phenyl)-pyrazoline, 1-phenyl-3-( 4-biphenyl)-5-(4-undecyl-phenyl)-pyrazoline, 1-phenyl-3-(4-biphenyl)-5-(4-dodecyl- Phenyl)-pyrazoline and the like. Among the pyrazoline derivatives listed above, from the viewpoint of adhesion and the rectangularity of the resist pattern, it is preferable to use one selected from the group consisting of 1-phenyl-3-(4-tertiarybutyl-styrene). Yl)-5-(4-tert-butyl-phenyl)-pyrazoline, 1-phenyl-3-(4-biphenyl)-5-(4-tert-butyl-phenyl)- At least one of pyrazoline and 1-phenyl-3-(4-biphenyl)-5-(4-third octyl-phenyl)-pyrazoline. As the ester compound of N-arylamino acid, for example, the methyl ester of N-phenylglycine, the ethyl ester of N-phenylglycine, the n-propyl ester of N-phenylglycine, Isopropyl ester of N-phenylglycine, 1-butyl ester of N-phenylglycine, 2-butyl ester of N-phenylglycine, tertiary butyl ester of N-phenylglycine , Amyl ester of N-phenylglycine, hexyl ester of N-phenylglycine, pentyl ester of N-phenylglycine, octyl ester of N-phenylglycine, etc. Examples of halogen compounds include bromopentane, bromoisopentane, bromoisobutylene, dibromoethane, diphenylbromomethane, benzyl bromide, dibromomethane, tribromomethylphenyl sulfide, carbon tetrabromide, Tris(2,3-dibromopropyl) phosphate, trichloroacetamide, iodopentane, iodoisobutane, 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethyl Alkane, trichloride
Figure 108103816-A0304-12-05
The compound, diallyl iodonium compound, etc., is particularly preferably tribromomethyl phenyl sulfide. The (C) photopolymerization initiators listed above may be used alone or in combination of two or more. Among these (C) photopolymerization initiators, it is preferable to use selected from the group consisting of hexaarylbiimidazole compounds and N-aryl-α-amines from the viewpoints of the sensitivity and resolution of the photosensitive resin composition. At least one selected from the group consisting of base acid compounds, quinones, acridines and pyrazoline derivatives, and more preferably selected from the group consisting of hexaarylbiimidazole compounds, N-aryl-α-amino acid compounds and At least one of the group consisting of acridines. From the viewpoint of the sensitivity and resolution of the photosensitive resin composition, the viewpoint of suppressing the deterioration of the resolution when the focus shifts during exposure, or the narrowness of the gap between adjacent resist lines when the focus shifts during exposure From the viewpoint of chemical conversion, it is more preferable to use acridines. (C) The ratio of the photopolymerization initiator to the total solid content mass of the photosensitive resin composition is preferably 0.01% by mass to 20% by mass. From the viewpoint of obtaining good sensitivity, it is preferable to set the ratio to 0.01% by mass or more. The ratio is more preferably set to 0.1% by mass or more, and still more preferably set to be 0.5% by mass or more. On the other hand, from the viewpoint of obtaining high resolution and suppressing cohesion in the developer, it is preferable to set the ratio to 20% by mass or less. The ratio is more preferably set to 10% by mass or less. In the case of using a hexaarylbiimidazole compound as the (C) photopolymerization initiator, the content of the hexaarylbiimidazole compound is preferably 0.1% by mass relative to the total solid component mass of the photosensitive resin composition ~15% by mass. From the viewpoint of obtaining good sensitivity, it is preferable to set the blending amount to 0.1% by mass or more. The blending amount is more preferably set to 1% by mass or more, particularly preferably set to 3% by mass or more. On the other hand, from the viewpoint of obtaining high resolution and suppressing cohesion in the developer, it is preferable to set the blending amount to 15% by mass or less. The blending amount is more preferably set to 10% by mass or less, and particularly preferably set to be 6% by mass or less. In addition, when an N-aryl-α-amino acid compound is used as the (C) photopolymerization initiator, the N-aryl-α- The content of the amino acid compound is preferably 0.001% by mass to 5% by mass. From the viewpoint of obtaining good sensitivity, it is preferable to set the blending amount to 0.001% by mass or more. The blending amount is more preferably set to 0.01% by mass or more, and particularly preferably set to be 0.1% by mass or more. On the other hand, from the viewpoint of obtaining higher resolution and improving hue stability, it is preferable to set the blending amount to 5% by mass or less. The blending amount is more preferably set to 1% by mass or less, and particularly preferably set to be 0.5% by mass or less. Furthermore, when acridines are used as the (C) photopolymerization initiator, the content of acridines is preferably 0.01% by mass to 5% by mass relative to the total solid content mass of the photosensitive resin composition. From the viewpoint of obtaining good sensitivity, it is preferable to set the blending amount to 0.01% by mass or more. The blending amount is more preferably set to 0.1% by mass or more, and particularly preferably set to be 0.2% by mass or more. On the other hand, from the viewpoint of obtaining a rectangular resist shape and improving hue stability, the blending amount is preferably set to 5% by mass or less. The blending amount is more preferably set to 3% by mass or less, particularly preferably set to 2% by mass or less. In addition, from the viewpoint of reducing the difference in resolution between when the position of the focal point during exposure is focused on the substrate surface and when the position of the focal point during exposure is shifted from the surface of the substrate, the blending amount set to the above range is also Better. <(D) Phenol derivative> In the embodiment, the photosensitive resin composition preferably further contains (D) a phenol derivative. Among them, the photosensitive resin composition preferably contains a compound represented by the following general formula (I) as (D) phenol derivative: [Chemical Formula 6]
Figure 02_image011
{In the formula, R 1 represents a linear alkyl group, a branched alkyl group, an aryl group, a cyclohexyl group that can be substituted, a linear alkyl group with an intermediate divalent linking group, a branched alkyl group with an intermediate divalent linking group, and an intermediate divalent linking group. For the cyclohexyl group of the linking group or the aryl group of the intermediate divalent linking group, a plurality of R 1 may be the same or different from each other, m represents an integer of 0-4, n represents an integer of 1 or more, and when n is 1, A is one For the valence organic group, when n is 2 or more, A represents an organic group having a valence of 2 or more, a single bond, or a linking group containing a conjugated bond}. The compound represented by general formula (I) is excellent from the viewpoint of suppressing the decrease in sensitivity of the photosensitive resin composition and the viewpoint of maintaining good resolution without being affected by the focal position. From the same viewpoint, n is preferably an integer of 2 or more. The compound represented by the general formula (I) preferably contains a compound selected from the group consisting of the following general formula (II): [化7]
Figure 02_image013
{In the formula, R 2 represents a substituted linear alkyl group, a branched alkyl group, an aryl group, a cyclohexyl group, a linear alkyl group with an intermediate divalent linking group, a branched alkyl group with an intermediate divalent linking group, an intermediate divalent The linking group is a cyclohexyl group or an aryl group that is an intermediate divalent linking group, and R 3 , R 4 and R 5 each independently represent hydrogen or a linear alkyl group, a branched alkyl group, an aryl group, a cyclohexyl group, and an intermediate two A straight-chain alkyl group of a valent linking group, a branched alkyl group of an intermediate divalent linking group, a cyclohexyl group of an intermediate divalent linking group or an aryl group of an intermediate divalent linking group}, and the compound represented by the following general formula (III) : [化8]
Figure 02_image015
{In the formula, R 6 and R 7 each independently represent a linear alkyl group, a branched alkyl group, an aryl group, a cyclohexyl group that may be substituted, a linear alkyl group of an intermediate divalent linking group, and a branched alkyl group of an intermediate divalent linking group R 6 and R 7 may be the same or different from each other, p and q each independently represent an integer from 0 to 4, and B represents a single A bond or at least one of the group consisting of a linking group} containing a conjugated bond, and more preferably contains a compound represented by the general formula (III). In addition, as the compound represented by the general formula (II), the compound corresponding to the compound represented by the general formula (III) is excluded. The viewpoints of improving the resolution of the photosensitive resin composition, the viewpoint of suppressing the deterioration of the resolution when the focus shifts during exposure, and the viewpoint of suppressing the gap between the resist line and the resist line when the focus shifts during exposure The compound represented by the general formula (II) and the compound represented by the general formula (III) are particularly excellent from the viewpoint of partial narrowing and the viewpoint of suppressing the decrease in sensitivity. Regarding the compound represented by the general formula (II), the viewpoints of improving the resolution of the photosensitive resin composition, the viewpoint of suppressing the deterioration of the resolution when the focus shifts during exposure, and the viewpoint of suppressing the degradation of the focus shift during exposure. From the viewpoint of narrowing the gap between the agent line and the resist line and the viewpoint of suppressing the decrease in sensitivity, it is preferable that at least one of R 2 , R 3 , R 4 and R 5 in formula (II) One has an aromatic ring. From the same viewpoint, the compound represented by the general formula (II) preferably has a phenol nucleus having two or more nuclei. From the same viewpoint, the hydroxyl group concentration of the compound represented by the general formula (II) is preferably 0.10 mol/100 g to 0.75 mol/100 g. Furthermore, from the same viewpoint, it is preferable that in the above general formula (II), at least one of R 2 is a linear or branched alkyl group, a benzyl group, a 1- or 2-phenylethyl group, or A thiophenyl group that can be substituted by a hydroxyl group or an alkyl group. In addition, preferred alkyl groups include, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, second butyl, isobutyl, and tertiary butyl. From the same viewpoint, the molecular weight of the compound represented by the general formula (II) is preferably about 130 to about 1000, more preferably about 130 to about 600, still more preferably about 130 to about 400, and particularly preferably about 180 to about 400. From the same viewpoint, the compound represented by the general formula (II) preferably has a specific gravity of about 1.02 to about 1.12, or a melting point of about 155°C or higher (for example, about 208°C or higher), or is poorly soluble with respect to water And it is easily soluble in organic solvents such as methanol, acetone, and toluene, or is solid (for example, powder, crystal, etc.) or liquid when used. As the compound represented by the general formula (II), for example, 4,4'-thiobis(6-tertiarybutyl-m-cresol), 4,4'-butylene bis(3-methyl- 6-tert-butylphenol), 1,1,3-tris(2-methyl-4-hydroxy-5-tert-butylphenyl)butane, styrenated phenol (e.g. Kawaguchi Chemical Industry Co., Ltd.) Antage SP), tribenzylphenol (such as TBP manufactured by Kawaguchi Chemical Industry Co., Ltd., phenol with 1 to 3 benzyl groups), etc. In the compound represented by the general formula (III), B represents a single bond or a linking group containing a conjugated bond. The linking group containing conjugated bonds is preferably a conjugated bonding linking group formed by C, N, O, S, etc., more preferably alkenylene, alkynylene, aryl, divalent aromatic hetero Ring, azo and imine, and combinations of one or more of these and N, and other groups. Regarding the compound represented by the general formula (III), from the viewpoint of improving the resolution of the photosensitive resin composition, the viewpoint of suppressing the deterioration of the resolution when the focus shifts during exposure, and the resist when the focus shifts during exposure are suppressed From the viewpoint of narrowing the gap between the line and the resist line and the viewpoint of suppressing the decrease in sensitivity, it is preferable that B in the formula (III) is a single bond. For the compound represented by the general formula (III), from the same viewpoint, p=q=0 in the formula (III) is preferred, and biphenol is particularly preferred. In the embodiment, as the (D) phenol derivative, a compound other than the compound represented by each of the general formula (II) and the general formula (III) may be further included. Examples of compounds other than the compounds represented by the general formula (II) and the general formula (III) include: 2,6-di-tert-butyl-4-methylphenol, 2,5-di-tertiary Amyl hydroquinone, 2,5-di-tertiary butyl hydroquinone, 2,2'-methylene bis (4-methyl-6-tertiary butyl phenol), bis (2- Hydroxy-3-tert-butyl-5-ethylphenyl)methane, triethylene glycol-bis[3-(3-tert-butyl-5-methyl-4-hydroxyphenyl)propionate] , 1,6-Hexanediol-bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], pentaerythritol-tetra[3-(3,5-di- Tert-butyl-4-hydroxyphenyl)propionate], 2,2-thio-diethylenebis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propane Acid ester), octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate, N,N'-hexamethylene bis(3,5-di- Tert-butyl-4-hydroxy-phenylpropanamide), 3,5-di-tert-butyl-4-hydroxybenzylphosphonate-diethyl, 1,3,5-trimethyl-2 ,4,6-Tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene, tris(3,5-di-tert-butyl-4-hydroxybenzyl)isocyanurate, etc. . As the reaction rate constant of (D) phenol derivative and peroxy radical in the embodiment, it is preferably 20 L·mol -1 ·sec -1 or more (more preferably 30 L·mol -1 ·sec -1 or more , More preferably 40 L·mol -1 ·sec -1 or more), and preferably 500 L·mol -1 ·sec -1 or less (more preferably 300 L·mol -1 ·sec -1 or less) , More preferably a compound of 200 L·mol -1 ·sec -1 or less). Here, whether the selection of the (D) phenol derivative described above affects the value of the difference between the pattern resolution a and the pattern resolution b, and whether it also affects the recent high-density and multilayered wiring conditions The selection of photosensitive resin composition that reduces short circuit defects or defects, wire breakage, poor plating, and the failure to form the desired copper wire affects the choice of photosensitive resin composition. Although the detailed mechanism is not clear, it can be considered as follows . Regarding the antioxidant effect of phenol derivatives, it can be considered that there are optimum points in terms of the reactivity with free radical species and the stability of phenoxy radicals generated after reaction with free radical species. For example, the larger the substituent at the ortho position relative to the OH group of phenol, the more stable the phenoxy radical becomes. On the other hand, if the steric hindrance of the ortho-substituent is too large, the reactivity with radical species becomes low. In addition, the optimal value of the degree of steric hindrance varies according to the characteristics of the oxidized chemical species (easy to be oxidized). Here, the photosensitive resin composition in the embodiment is photo-radical polymerizable. Therefore, in order to capture peroxy radicals that may cause deterioration in resolution, the (D) phenol derivative is required to have high reactivity with radical species. In consideration of the above various elements, as (D) the phenol derivative is preferably a compound represented by the general formula (I), and more preferably selected from the compound represented by the general formula (II) and the general formula ( III) At least one of the group consisting of the represented compound. For the compound represented by the general formula (II), it can be considered that the steric hindrance of the ortho-substituent is adjusted to be optimal, and therefore the reactivity with the peroxy radical and the stability of the phenoxy radical are both excellent. In addition, in the compound represented by the general formula (III), it is considered that if the ortho-substituent has less steric hindrance, the reactivity with peroxy radicals is higher, and the biphenol-type phenoxy group is free. The resonance structure of the base becomes more stable. As the compound disclosed as a specific example of the compound represented by the general formula (II) or the general formula (III) and satisfying the range of the above-mentioned reaction rate constant, for example, 1,1,3-tris(2-methyl- 4-hydroxy-5-tert-butylphenyl)butane is 45.4 L·mol -1 ·sec -1 , 4,4'-butylene bis(3-methyl-6-tert-butylphenol) is 48.6 L·mol -1 ·sec -1 . The γ value (gamma value) obtained from the residual film rate of the photosensitive resin composition is preferably 0.5 or more, more preferably 1.0 or more, still more preferably 2.0 or more, and particularly preferably 5.0 or more. The γ value (gamma value) obtained from the reaction rate of the C=C double bond is preferably 0.18 or more, more preferably 0.19 or more, still more preferably 0.20 or more, and particularly preferably 0.25 or more. (D) The ratio of the phenol derivative to the total solid content mass of the photosensitive resin composition is preferably 0.001% by mass to 10% by mass. From the viewpoint of improving the resolution of the photosensitive resin composition, the viewpoint of suppressing the deterioration of the resolution when the focus shifts during exposure, and the viewpoint of suppressing the gap between the resist line and the resist line when the focus shifts during exposure From the viewpoint of partial narrowing, the ratio is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, still more preferably 0.1% by mass or more, particularly preferably 0.2% by mass or more, and most preferably 0.5% by mass the above. On the other hand, in terms of less reduction in sensitivity and improvement in resolution, the ratio is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 3% by mass or less, and particularly preferably 2% by mass or less, preferably 1.5% by mass or less. <Additives> (Dyes and coloring substances) In the embodiment, the photosensitive resin composition may further contain at least one selected from the group consisting of dyes (for example, leuco dyes, fluorine dyes, etc.) and coloring substances as desired. Examples of coloring substances include: magenta, phthalocyanine green, aureaine, p-magenta, crystal violet, methyl orange, Nero blue 2B, Victoria blue, and malachite green (for example, manufactured by Hodogaya Chemical Co., Ltd.) Aizen (registered trademark) MALACHITE GREEN), basic blue 20, diamond green (for example, Aizen (registered trademark) DIAMOND GREEN GH manufactured by Hodogaya Chemical Co., Ltd.). Regarding the content of the coloring substance in the photosensitive resin composition, when the total solid component mass of the photosensitive resin composition is set to 100% by mass, it is preferably 0.001% by mass to 1% by mass. From the viewpoint of improving the rationality of the photosensitive resin composition, it is preferable to set the content to 0.001% by mass or more. On the other hand, from the viewpoint of maintaining the storage stability of the photosensitive resin composition, it is preferable to set the content to 1% by mass or less. The photosensitive resin composition contains a dye to make the exposed part develop color, so it is better in terms of visibility. In addition, when an inspection machine or the like reads the alignment mark for exposure, the exposed part and When the contrast of the unexposed part is large, it is easy to recognize and advantageous. From this viewpoint, preferred dyes include leuco dyes and fluorescein dyes. Examples of leuco dyes include tris(4-dimethylaminophenyl)methane [leuco crystal violet], bis(4-dimethylaminophenyl)phenylmethane [leuco malachite green], and the like. In particular, from the viewpoint of better contrast, it is preferable to use leuco crystal violet as the leuco dye. The content of the leuco dye in the photosensitive resin composition is preferably 0.1% by mass to 10% by mass relative to the total solid component mass of the photosensitive resin composition. From the viewpoint of making the contrast between the exposed part and the unexposed part good, it is preferable to set the content to 0.1% by mass or more. The content is more preferably set to 0.2% by mass or more, and particularly preferably set to be 0.4% by mass or more. On the other hand, from the viewpoint of maintaining storage stability, it is preferable to set the content to 10% by mass or less. The content is more preferably set to 5 mass% or less, and particularly preferably set to 2 mass% or less. In addition, from the viewpoint of optimizing adhesion and contrast, it is preferable to use a combination of a leuco dye and the above-mentioned halogen compound in the (C) photopolymerization initiator in the photosensitive resin composition. When the leuco dye is used in combination with the halogen compound, from the viewpoint of maintaining the storage stability of the hue of the photosensitive layer, when the total solid component mass of the photosensitive resin composition is set to 100% by mass, the photosensitive resin The content of the halogen compound in the resin composition is preferably 0.01% by mass to 3% by mass. (Other additives) In order to improve thermal stability and storage stability, the photosensitive resin composition may further contain at least one selected from the group consisting of radical polymerization inhibitors, benzotriazoles, and carboxybenzotriazoles Compound. Examples of radical polymerization inhibitors include p-methoxyphenol, hydroquinone, pyrogallol, naphthylamine, tertiary butylcatechol, cuprous chloride, 2,6-di- Tributyl-p-cresol, 2,2'-methylenebis(4-methyl-6-tertiary butylphenol), 2,2'-methylenebis(4-ethyl-6-th Tributylphenol), nitrosophenylhydroxyamine aluminum salt, diphenylnitrosamine, etc. In order not to impair the sensitivity of the photosensitive resin composition, it is preferably nitrosophenylhydroxylamine aluminum salt. Examples of benzotriazoles include 1,2,3-benzotriazole, 1-chloro-1,2,3-benzotriazole, and bis(N-2-ethylhexyl)amino Methyl-1,2,3-benzotriazole, bis(N-2-ethylhexyl)aminomethylene-1,2,3-toluenetriazole, bis(N-2-hydroxyethyl) Aminomethylene-1,2,3-benzotriazole, etc. Examples of carboxybenzotriazoles include 4-carboxy-1,2,3-benzotriazole, 5-carboxy-1,2,3-benzotriazole, N-(N,N-di -2-Ethylhexyl)aminomethylenecarboxybenzotriazole, N-(N,N-di-2-hydroxyethyl)aminomethylenecarboxybenzotriazole, N-(N,N -Di-2-ethylhexyl)aminomethylenecarboxybenzotriazole and the like. Regarding the total content of the radical polymerization inhibitor, benzotriazoles, and carboxybenzotriazoles, when the total solid content of the photosensitive resin composition is set to 100% by mass, it is preferably 0.01% by mass to 100% by mass. 3% by mass, more preferably 0.05% by mass to 1% by mass. From the viewpoint of imparting storage stability to the photosensitive resin composition, it is preferable to set the content to 0.01% by mass or more. On the other hand, from the viewpoint of maintaining sensitivity and suppressing decolorization of the dye, it is preferable to set the content to 3% by mass or less. In the embodiment, the photosensitive resin composition may further contain epoxy compounds of bisphenol A. Examples of epoxy compounds of bisphenol A include compounds in which bisphenol A is modified with polypropylene glycol to epoxidize the terminal. In the embodiment, the photosensitive resin composition may further contain a plasticizer. Examples of plasticizers include phthalate esters (for example, diethyl phthalate, etc.), o-toluenesulfonamide, p-toluenesulfonamide, tributyl citrate, and triethyl citrate. , Acetyl triethyl citrate, Acetyl tri-n-propyl citrate, Acetyl tri-n-butyl citrate, polyethylene glycol, polypropylene glycol, polyethylene glycol alkyl ether, polypropylene glycol alkyl Ether and so on. In addition, you can also list: ADENOL SDX-1569, ADENOL SDX-1570, ADENOL SDX-1571, ADENOL SDX-479 (the above are manufactured by Asahi Denka Co., Ltd.), Newpol BP-23P, Newpol BP-3P, Newpol BP-5P , Newpol BPE-20T, Newpol BPE-60, Newpol BPE-100, Newpol BPE-180 (the above are manufactured by Sanyo Chemical Co., Ltd.), Uniol DB-400, Uniol DAB-800, Uniol DA-350F, Uniol DA-400 , Uniol DA-700 (manufactured by Nippon Oil & Fat Co., Ltd. above), BA-P4U glycol, BA-P8 glycol (manufactured by Nippon Emulsifier Co., Ltd.) and other compounds with a bisphenol skeleton. The content of the plasticizer in the photosensitive resin composition is preferably 1% by mass to 50% by mass, and more preferably 1% by mass to 30% by mass relative to the total solid component mass of the photosensitive resin composition. From the viewpoint of suppressing the delay of the development time and imparting flexibility to the cured film, it is preferable to set the content to 1% by mass or more. On the other hand, from the viewpoint of suppressing insufficient hardening and cold flow, it is preferable to set the content to 50% by mass or less. [Solvent] The photosensitive resin composition can be dissolved in a solvent and used in the form of a photosensitive resin composition preparation liquid to produce a photosensitive resin laminate. As a solvent, ketones, alcohols, etc. are mentioned. The above-mentioned ketones are represented by methyl ethyl ketone (MEK). The above-mentioned alcohols are represented by methanol, ethanol and isopropanol. The solvent is preferably added in such an amount that the viscosity at 25°C of the photosensitive resin composition blend solution coated on the support layer becomes 500 mPa·s to 4,000 mPa·s during the production of the photosensitive resin laminate In the photosensitive resin composition. [Photosensitive resin laminate] In an embodiment, there is provided a photosensitive resin laminate obtained by laminating a photosensitive resin containing the above-mentioned photosensitive resin composition on a support layer (for example, a support film). If necessary, the photosensitive resin layered body may have a protective layer on the surface on the side opposite to the support layer side of the photosensitive resin layer. As the support layer, a transparent support film that can penetrate light emitted from the exposure light source is preferred. Examples of such supporting films include polyethylene terephthalate films, polyvinyl alcohol films, polyvinyl chloride films, vinyl chloride copolymer films, polyvinylidene chloride films, and vinylidene chloride copolymer films. , Polymethyl methacrylate copolymer film, polystyrene film, polyacrylonitrile film, styrene copolymer film, polyamide film, cellulose derivative film, etc. These films can also be stretched as needed. The supporting film preferably has a haze of 5 or less. The thinner the film thickness is, the more the image forming performance and the economic efficiency can be improved, which is advantageous. However, in order to maintain the strength of the photosensitive resin laminate, a thickness of 10 μm to 30 μm can be preferably used. The important characteristic of the protective layer used in the photosensitive resin laminate is that the adhesive force with the photosensitive resin layer is sufficiently smaller than that of the support layer and can be easily peeled off. For example, a polyethylene film or a polypropylene film can be preferably used as the protective layer. Moreover, the film with excellent peelability shown in Japanese Patent Laid-Open No. 59-202457 can also be used. The thickness of the protective layer is preferably 10 μm to 100 μm, more preferably 10 μm to 50 μm. On the surface of the polyethylene film, sometimes there is a gel called fish eye. When a polyethylene film with fish eyes is used as a protective layer, the fish eyes may be transferred to the photosensitive resin layer. When the fisheye is transferred to the photosensitive resin layer, air may be drawn in during lamination and become voids, which may cause defects in the resist pattern. From the viewpoint of preventing fish eyes, the material of the protective layer is preferably stretched polypropylene. As a specific example, ALPHAN E-200A manufactured by Oji Paper Co., Ltd. can be cited. The thickness of the photosensitive resin layer in the photosensitive resin laminate varies depending on the application, and is preferably 5 μm to 100 μm, more preferably 7 μm to 60 μm. The thinner the thickness of the photosensitive resin layer, the higher the resolution, and the thicker the thickness, the higher the film strength. Next, the manufacturing method of the photosensitive resin laminated body is demonstrated. As a method of manufacturing a photosensitive resin laminate by sequentially laminating a support layer, a photosensitive resin layer, and a protective layer as needed, a known method can be used. For example, the photosensitive resin composition used in the photosensitive resin layer is mixed with a solvent that dissolves it to form a uniform solution, and firstly, it is coated on the support layer using a bar coater or a roll coater, and then dried to obtain the above By removing the solvent, a photosensitive resin layer containing a photosensitive resin composition can be laminated on the support layer. Then, if necessary, a protective layer is laminated on the photosensitive resin layer, whereby a photosensitive resin laminate can be produced. <Method of Forming Resist Pattern> Next, an example of a method of manufacturing a resist pattern using the photosensitive resin laminate of this embodiment will be described. The method may include the following steps: a step of laminating a bulk layer of photosensitive resin on a substrate, an exposing step of exposing the photosensitive resin layer of the photosensitive resin laminate, and developing the unexposed portion of the photosensitive resin layer Remove the development step. Examples of resist patterns include printed wiring boards, semiconductor elements, printing plates, liquid crystal display panels, flexible substrates, lead frame substrates, COF (Chip On Film) substrates, and semiconductor packaging substrates. , Patterns of transparent electrodes for liquid crystals, TFT (Thin Film Transistor) wiring for liquid crystals, and electrodes for PDP (Plasma Display Panel). As an example, the manufacturing method of a printed wiring board is demonstrated as follows. The printed wiring board is manufactured through the following steps. (1) Laminating step In this step, while peeling off the protective layer of the photosensitive resin laminate (if there is a protective layer), use a hot roll laminator to make the photosensitive resin laminate adhere to the copper foil laminated board and be flexible On a substrate such as a sexual substrate. (2) Exposure step In this step, the photosensitive resin layer is exposed by the following exposure method: the mask film with the desired wiring pattern is adhered to the support layer and the exposure method is performed using an active light source. The exposure method of direct drawing of the drawing pattern of the desired wiring pattern, or the exposure method of projecting the image of the mask through the lens. The advantages of the photosensitive resin composition of the embodiment are more prominent in the exposure method of direct drawing using the drawing pattern, or the exposure method of projecting the image of the mask through a lens, and in the exposure method using direct drawing of the drawing pattern Especially remarkable. (3) Development step In this step, after exposure, the support layer on the photosensitive resin layer is peeled off, and then the unexposed part is developed and removed using a developer of an alkaline aqueous solution, thereby forming a resist pattern on the substrate. As the alkaline aqueous solution, an aqueous solution of Na 2 CO 3 or K 2 CO 3 is used. The alkaline aqueous solution is appropriately selected according to the characteristics of the photosensitive resin layer, and is preferably a Na 2 CO 3 aqueous solution with a concentration of about 0.2% by mass to about 2% by mass and a concentration of about 20°C to about 40°C. The resist pattern can be obtained through the steps (1) to (3) above. After these steps, depending on the situation, a heating step of about 100°C to about 300°C may be further performed. By implementing this heating step, chemical resistance can be further improved. When heating, you can use hot air, infrared or far infrared heating furnace. (4) An etching step or a plating step The substrate surface (for example, the copper surface of a copper foil laminated board) exposed by development is etched or plated to produce a conductive pattern. (5) After the peeling step, the resist pattern is peeled from the substrate by an aqueous solution having a stronger alkalinity than the developer. The alkaline aqueous solution used for peeling is not particularly limited, and preferably is an aqueous solution of NaOH or KOH with a concentration of about 2% by mass to about 5% by mass and a temperature of about 40 to about 70°C. A small amount of water-soluble solvent can also be added to the stripping liquid. The photosensitive resin laminate system of this embodiment is suitable for the production of conductors such as printed wiring boards, flexible substrates, lead frame substrates, COF substrates, semiconductor packaging substrates, transparent electrodes for liquid crystals, wiring for TFTs for liquid crystals, electrodes for PDPs, etc. Patterned photosensitive resin laminate. Furthermore, as for the various parameters mentioned above, unless otherwise specified, they are measured in accordance with the measurement method in the following examples or the same method as understood by the industry. [Examples] Next, examples and comparative examples will be given to further specifically describe the present embodiment. However, the present embodiment is not limited to the following embodiments as long as it does not shift its gist. The physical properties in the examples were measured by the following methods. <Sensitivity evaluation> Firstly, use an abrasive material (manufactured by Japanese Carlit Co., Ltd., Saku random R (registered trademark #220)) at a spray pressure of 0.2 MPa on a 0.4 mm thick copper foil laminate with 35 μm rolled copper foil. Jet brush grinding. Next, while peeling off the polyethylene film (protective layer) of the photosensitive resin laminate, apply it to a copper foil laminate board preheated to 60°C by using a hot roll laminator (manufactured by Asahi Kasei Co., Ltd., AL- 700) Laminate the photosensitive resin laminate at a roll temperature of 105°C. The air pressure is set to 0.35 MPa, and the lamination speed is set to 1.5 m/min. Then, with a direct drawing exposure device (manufactured by Orbotech Co., Ltd., Paragon-Ultra 100), with a 21-step exposure meter made by Stauffer as a mask, exposure was performed with various exposure levels. At this time, the focus position during exposure is focused on the surface of the substrate. Furthermore, after peeling off the polyethylene terephthalate film (supporting layer), using an alkaline developing machine (manufactured by Fuji Kiko, a developing machine for dry film), a 30°C 1% by mass Na 2 CO 3 aqueous solution was sprayed for a specific time , Dissolve and remove the unexposed part of the photosensitive resin layer in twice the minimum development time. At this time, the minimum time required for the complete dissolution of the photosensitive resin layer in the unexposed part is regarded as the minimum development time. Through the above operations, a hardened resist pattern is obtained. The limit number of remaining film after development is calculated to be the exposure amount of 7 levels. <Resolution evaluation (normal)> First, use an abrasive material (manufactured by Japanese Carlit Co., Ltd., Saku random R (registered trademark #220)) at a spray pressure of 0.2 MPa to a 0.4 mm thick copper layered with 35 μm rolled copper foil Foil laminated boards are spray-brushed. Next, while peeling off the polyethylene film (protective layer) of the photosensitive resin laminate, apply it to a copper foil laminate board preheated to 60°C by using a hot roll laminator (manufactured by Asahi Kasei Co., Ltd., AL- 700) Laminate the photosensitive resin laminate at a roll temperature of 105°C. The air pressure is set to 0.35 MPa, and the lamination speed is set to 1.5 m/min. Then, a direct drawing type exposure device (manufactured by Orbotech Co., Ltd., Paragon-Ultra 100) was used to expose the unexposed part into a line (gap) pattern. The exposure at this time was performed with the above-mentioned 21-step step-by-step exposure meter manufactured by Stauffer as a mask, and exposure was performed so that the highest residual film step during development became 7 steps. At this time, the focus position during exposure is focused on the surface of the substrate. Furthermore, after peeling off the polyethylene terephthalate film (supporting layer), it develops with the development time twice of the minimum development time. At this time, the value of the minimum line width of the lines and gaps that normally form the unexposed part is taken as the pattern resolution a. In the present invention, the minimum time required for complete dissolution of the photosensitive resin layer in the unexposed part is taken as the minimum development time. Furthermore, in the hardened resist pattern, no resist remains on the surface of the substrate in the unexposed part, and the surface of the substrate appears, and there is no protrusion and linearity of the resist component like a wire drawn from the hardened resist. It is also good, and the minimum line width at which the cured resists are not in close contact with each other and normally formed is evaluated. As the value of the resolution, exposure is performed using a drawing pattern obtained in 2 μm units for 30 μm or less, and 5 μm units for 30 μm or more. <Resolution evaluation (focus shift)> The position of the focus during exposure was shifted from the surface of the substrate in the thickness direction of the substrate to the inside of the substrate by 300 μm. Otherwise, the operation was performed in the same manner as the above-mentioned resolution evaluation (normally). At this time, the value of the minimum line width of the line (gap) that normally forms the unexposed part is taken as the pattern resolution b. <The difference in resolution> The difference in resolution between when the focus position during exposure is focused on the substrate surface and when the focus position during exposure is shifted from the substrate surface by 300 μm is based on the above <resolution evaluation (Focus shift)> the value of the pattern resolution b subtracted from the value of the pattern resolution a of the <resolution evaluation (normal)> to obtain. <Difference in gap width> First, use an abrasive material (manufactured by Carlit Co., Ltd., Saku random R (registered trademark #220)) at a spray pressure of 0.2 MPa to build a copper foil with a thickness of 35 μm and a copper foil with a thickness of 0.4 mm. The board is spray-brushed. Next, while peeling off the polyethylene film (protective layer) of the photosensitive resin laminate, apply it to a copper foil laminate board preheated to 60°C by using a hot roll laminator (manufactured by Asahi Kasei Co., Ltd., AL- 700) Laminate the photosensitive resin laminate at a roll temperature of 105°C. The air pressure is set to 0.35 MPa, and the lamination speed is set to 1.5 m/min. Secondly, with a direct drawing exposure device (manufactured by Orbotech Co., Ltd., Paragon-Ultra 100), a pattern with the width of the exposed part and the unexposed part at a ratio of 2:1 is exposed. The exposure at this time was performed with the above-mentioned 21-step step-by-step exposure meter manufactured by Stauffer as a mask, and exposure was performed so that the highest residual film step during development became 7 steps. Furthermore, after peeling off the polyethylene terephthalate film (supporting layer), it develops with the development time twice of the minimum development time. For the part where the line (gap) width of the unexposed part in the obtained pattern is 40 μm, the gap width is measured by a microscope. For samples of each laminate, the focus position during exposure is focused on the surface of the substrate, and the focus position during exposure is shifted 300 μm from the substrate surface to the inside of the substrate in the thickness direction of the substrate. Two kinds of patterns are formed. The difference between the gap width when the focus position during exposure is focused on the substrate surface and when the focus position during exposure is shifted from the substrate surface by 300 μm is achieved by focusing the focus position during exposure on the substrate surface The gap width is calculated by subtracting the gap width when the focus position during exposure is shifted from the surface of the substrate to the inside of the substrate by 300 μm. <Weight average molecular weight> Using gel permeation chromatography (GPC) manufactured by JASCO Corporation [Pump: Gulliver, PU-1580, column: Shodex (registered trademark) (KF) manufactured by Showa Denko Corporation -807, KF-806M, KF-806M, KF-802.5) 4 in series, mobile layer solvent: tetrahydrofuran, using calibration curve obtained from polystyrene standard sample (Shodex STANDARD SM-105 manufactured by Showa Denko Corporation) ], calculate the weight average molecular weight in terms of polystyrene conversion value. <Reaction rate constant with peroxy radical> According to the method described in J. Macromol. Sci. Chem., A11 (10), p1975 (1977). <The γ value (gamma value) obtained from the residual film rate> Firstly, the abrasive material (manufactured by Carlit, Japan, Saku random R (registered trademark #220)) is used at a spray pressure of 0.2 MPa, and the laminate has 35 μm rolled copper The 0.4 mm thick copper foil laminated board of the foil is spray-brushed. Next, while peeling off the polyethylene film (protective layer) of the photosensitive resin laminate, apply it to a copper foil laminate board preheated to 60°C by using a hot roll laminator (manufactured by Asahi Kasei Co., Ltd., AL- 700) Laminate the photosensitive resin laminate at a roll temperature of 105°C. The air pressure is set to 0.35 MPa, and the lamination speed is set to 1.5 m/min. Secondly, with a direct-drawing exposure device (manufactured by Orbotech Co., Ltd., Paragon-Ultra 100), with a 41-step exposure meter made by Stauffer as a mask, exposure was performed with various exposure levels. At this time, the focus position during exposure is focused on the surface of the substrate. Furthermore, after peeling off the polyethylene terephthalate film (support layer), an alkaline developing machine (manufactured by Fuji Kiko, a developing machine for dry film) was used to spray a 1% by mass Na 2 CO 3 aqueous solution at 30°C for a specific time. Dissolve and remove the unexposed part of the photosensitive resin layer in twice the minimum development time. The film thickness of the cured resist pattern obtained by the above operation was measured with a surface roughness shape measuring machine (manufactured by Tokyo Seiki Co., Ltd., SURFCOM 575A), and the residual film rate was obtained from the film thickness. In addition, the actual exposure level was calculated based on the exposure level and the transmittance of the 41-step exposure meter made by Stauffer. The γ value is obtained from the residual film rate and the actual exposure amount. Furthermore, the calculation method of the γ value can be obtained by the method described in "Photosensitive resin from scratch, p.60, Akahiko Ikeda, Akira Mizuno, Industrial Research Council". <The γ value (gamma value) obtained from the reaction rate of the C=C double bond> From the polyethylene terephthalate film (support layer) side of the photosensitive resin laminate, the direct drawing type exposure device ( Made by Orbotech Co., Ltd., Paragon-Ultra 100) uses Stauffer's 41-step stage exposure meter as a mask to perform exposure at various exposure levels. At this time, the focus position during exposure is focused on the bottom of the resist. The C=C double bond reaction rate of the hardened resist pattern obtained by the above operation was obtained by FT-IR (manufactured by Thermo Scientific, NICOLET 380). Furthermore, the C=C double bond system measures the peak height of 810 cm -1. In addition, the actual exposure level was calculated based on the exposure level and the transmittance of the 41-step exposure meter made by Stauffer. Calculate the γ value based on the reaction rate of the C=C double bond and the actual exposure. Furthermore, the calculation method of the γ value is the same as above. <Hue stability of photosensitive resin composition blending solution> The photosensitive resin laminate was measured using an ultraviolet-visible light (UV-Vis) measuring device (manufactured by Hitachi High-Tech Co., Ltd., U-3010 spectrophotometer) as follows The transmittance at 600 nm and 630 nm of the body: (i) Peel off the polyethylene film of the photosensitive resin laminate and measure the transmittance at 600 nm and 630 nm. (ii) Prepare a photosensitive resin laminate using the photosensitive resin composition solution stored at 40°C for 3 days, peel off the polyethylene film of the photosensitive resin laminate, and measure the transmittance at 600 nm and 630 nm. Find the change in color by calculating the penetration rate of (ii)-the penetration rate of (i). [Examples 1 to 11 and Comparative Examples 1 to 15] A photosensitive resin composition having the composition shown in Tables 1 and 2 (wherein, the number of each component indicates the blending amount (parts by mass) of the solid component), and The solvents (methyl ethyl ketone and ethanol) were sufficiently stirred and mixed to obtain a photosensitive resin composition preparation solution (the photosensitive resin composition becomes a 55% by mass solution). Prepare a 16 μm thick polyethylene terephthalate film (manufactured by Teijin DuPont Films Co., Ltd., GR-16) as a support layer, and use a bar coater to uniformly coat the photosensitive resin composition on the surface of the film. The liquid was dried in a desiccator at 95°C for 4 minutes to form a photosensitive resin layer. The thickness of the photosensitive resin layer is 35 μm. Then, a 19 μm thick polyethylene film (manufactured by Tamapoly (stock), GF-18), which is a protective layer, was pasted on the surface of the unlaminated polyethylene terephthalate film of the photosensitive resin layer to obtain photosensitive Resin laminate. Various evaluations were performed on the obtained photosensitive resin laminate. The results are shown in Table 1 together. In addition, the result of the difference in the gap width is -5.9 μm in Example 1, -5.2 μm in Example 3, -5.6 μm in Example 4, and -6.0 μm in Example 5, in comparison In Example 1, it was -7.5 μm, and in Comparative Example 2, it was -9.5 μm. In addition, the result of the γ value (gamma value) obtained from the residual film rate was 1.3 in Example 4 and 0.6 in Example 5. The result of the γ value (gamma value) obtained from the reaction rate of the C=C double bond was 0.192 in Example 3 and 0.177 in Comparative Example 1. The circuit pattern made by etching L/S=60/60 μm was repeated 8 times, and the layering was tried. As a result, the undulation of the top surface was about 30 μm. In the circuit pattern on the outermost surface at this time, the short circuit of the copper wire was observed in the case of the composition of Comparative Example 1, and no short circuit was observed in the case of the composition of Example 3. It is estimated that defects can be reduced. [Example 12] Replace H-1 (1 part by mass) of Example 1 shown in Table 1 with 1,1,3-tris(2-methyl-4-hydroxy-5-tert-butylphenyl) ) Butane (reaction rate constant with peroxide radical = 45.4 L·mol -1 ·sec -1 ) (1 part by mass), except that it is set to be the same as in Example 1. As a result, the sensitivity (necessary exposure) was 21 mJ/cm 2 , the resolution (normally) was 18 μm, the resolution (focus shift) was 30 μm, and the difference in resolution was 12 μm. [Comparative Example 16] The H-1 (1 part by mass) of Example 1 shown in Table 1 was replaced with H-4 (1 part by mass), and other than that, it was set to be the same as in Example 1. As a result, the sensitivity (necessary exposure) was 80 mJ/cm 2 , and the resolution (usually) was 45 μm. Regarding the results of the hue stability of the photosensitive resin composition blending solution, in Example 1, it was 1% at 600 nm, 5% at 630 nm, and in Example 3, it was 0% at 600 nm and 5% at 630 nm. In Example 12, it was 2% at 600 nm, 7% at 630 nm, in Comparative Example 1, it was 0% at 600 nm, 5% at 630 nm, and in Comparative Example 2, it was -21% at 600 nm, 630 3% at nm, 5% at 600 nm in Comparative Example 8, 11% at 630 nm, 11% at 600 nm in Comparative Example 9, 27% at 630 nm, and Comparative Example 16 at 600 nm -41%, -8% at 630 nm. Regarding Comparative Examples 13, 14, and 15, the discoloration is extremely large at the time point of the normal transmittance of (i), so if the transmittance of (ii)-the transmittance of Comparative Example 1 (i) is calculated, Calculated, Comparative Example 13 is 12% at 600 nm, 30% at 630 nm, Comparative Example 14 is 16% at 600 nm, 37% at 630 nm, and Comparative Example 15 is 16% at 600 nm , 37% at 630 nm. [Table 1] Table 1. Composition and evaluation results of the photosensitive composition (the first of all four sheets)
Figure 108103816-A0304-0001
(Table 1. To be continued) [Table 2] Table 1. Composition and evaluation results of photosensitive composition (the second of all four sheets)
Figure 108103816-A0304-0002
(Table 1. To be continued) [Table 3] Table 1. Composition and evaluation results of the photosensitive composition (the third of all four)
Figure 108103816-A0304-0003
(Table 1. To be continued) [Table 4] Table 1. Composition and evaluation results of photosensitive composition (fourth sheet of all four sheets)
Figure 108103816-A0304-0004
(End of Table 1.) [Table 5] Table 2. List of Ingredients (the first of all three)
Figure 108103816-A0304-0005
(Table 2. To be continued) [Table 6] Table 2. List of ingredients used (the second of all three)
Figure 108103816-A0304-0006
(Table 2. To be continued) [Table 7] Table 2. List of ingredients used (the third of all three)
Figure 108103816-A0304-0007
(End of Table 2.) From the results of Tables 1 and 2, the following contents can be read. According to the comparison between the examples and the comparative examples, if the photosensitive resin composition of this embodiment is used, high resolution can be expressed, especially when the focus shifts during exposure. Furthermore, high sensitivity can be maintained. By using this photosensitive resin composition, when it is applied to the case of multilayer wiring, it is also possible to suppress a short circuit problem when forming a circuit by an etching method. [Industrial Applicability] The photosensitive resin laminate of this embodiment can exhibit high sensitivity and high resolution, especially when the focus shifts during exposure. Therefore, even when the substrate is warped When the position of the focus during exposure is shifted from the surface of the substrate due to warpage, deformation, poor setting of the exposure device, etc., it can also prevent short-circuit problems when the circuit is formed by the etching method, and prevent defects when the circuit is formed by the plating method. Problems such as disconnection and poor plating. Therefore, the photosensitive resin laminate can be preferably used for the manufacture of printed wiring boards, flexible substrates, lead frame substrates, substrates for COF (Chip On Film), substrates for semiconductor packaging, transparent electrodes for liquid crystals, and TFTs for liquid crystals. Conductor patterns such as wiring and electrodes for PDP (Plasma Display Panel).

Claims (18)

一種感光性樹脂組合物,其係含有(A)鹼可溶性高分子、(B)具有乙烯性不飽和雙鍵之化合物、(C)光聚合起始劑、及(D)苯酚衍生物者,上述感光性樹脂組合物係以感光性樹脂組合物之總固形物成分質量基準計,含有上述(A)鹼可溶性高分子:10質量%~90質量%,上述(B)具有乙烯性不飽和雙鍵之化合物:5質量%~70質量%,上述(C)光聚合起始劑:0.01質量%~20質量%,及上述(D)苯酚衍生物:0.001質量%~10質量%;上述(C)光聚合起始劑包含選自由六芳基聯咪唑化合物、N-芳基-α-胺基酸化合物、醌類、芳香族酮類、苯乙酮類、醯基氧化膦類、安息香或安息香醚類、二烷基縮酮類、9-氧硫
Figure 108103816-A0305-02-0056-5
類、二烷基胺基苯甲酸酯類、肟酯類、吖啶類、吡唑啉衍生物、N-芳基胺基酸之酯化合物、及鹵素化合物所構成之群之兩種以上,其中,上述鹵素化合物係選自溴戊烷、溴異戊烷、溴異丁烯、二溴乙烷、二苯基溴甲烷、苄基溴、二溴甲烷、三溴甲基苯基碸、四溴化碳、磷酸三(2,3-二溴丙基)酯、三氯乙醯胺、碘戊烷、碘異丁烷、1,1,1-三氯-2,2-雙(對氯苯基)乙烷、氯化三
Figure 108103816-A0305-02-0056-4
化合物、及二烯丙基錪化合物,上述(C)光聚合起始劑不包含二烷基縮酮類與吖啶類之組合之情形,且 含有與過氧自由基之反應速率常數為20Lmol-1‧sec-1以上之化合物作為上述(D)苯酚衍生物。
A photosensitive resin composition containing (A) an alkali-soluble polymer, (B) a compound having an ethylenically unsaturated double bond, (C) a photopolymerization initiator, and (D) a phenol derivative, the above The photosensitive resin composition is based on the total solid content of the photosensitive resin composition, and contains the above (A) alkali-soluble polymer: 10% to 90% by mass, and the above (B) has an ethylenically unsaturated double bond The compound: 5 mass% to 70 mass%, the above (C) photopolymerization initiator: 0.01 mass% to 20 mass%, and the above (D) phenol derivative: 0.001 mass% to 10 mass%; the above (C) The photopolymerization initiator includes selected from hexaarylbiimidazole compounds, N-aryl-α-amino acid compounds, quinones, aromatic ketones, acetophenones, phosphine oxides, benzoin or benzoin ether Class, dialkyl ketal class, 9-oxysulfur
Figure 108103816-A0305-02-0056-5
Two or more of the group consisting of two kinds, dialkylaminobenzoates, oxime esters, acridines, pyrazoline derivatives, ester compounds of N-arylamino acids, and halogen compounds, of which , The above-mentioned halogen compound is selected from bromopentane, bromoisopentane, bromoisobutylene, dibromoethane, diphenylbromomethane, benzyl bromide, dibromomethane, tribromomethylphenyl sulfide, carbon tetrabromide, phosphoric acid Tris(2,3-dibromopropyl) ester, trichloroacetamide, iodopentane, iodoisobutane, 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane , Trichloride
Figure 108103816-A0305-02-0056-4
Compounds, and diallyl iodonium compound, (C) above photopolymerization initiator composition does not include the case of a dialkyl ketal of the acridine, and containing the reaction rate constants of peroxy radicals as 20Lmol - Compounds of 1 sec -1 or more are referred to as (D) phenol derivatives.
如請求項1之感光性樹脂組合物,其中於基板表面上形成包含上述感光性樹脂組合物之感光性樹脂層並進行曝光及顯影所獲得的抗蝕劑圖案中,於將焦點位置聚焦於該基板表面並進行該曝光時之圖案解析度a、與將焦點位置聚焦於自該基板表面於該基板之厚度方向上向基板內側挪移300μm之位置並進行該曝光時之圖案解析度b之差未達15μm。 The photosensitive resin composition of claim 1, wherein a photosensitive resin layer containing the photosensitive resin composition is formed on the surface of a substrate, and the resist pattern obtained by exposing and developing the photosensitive resin composition is focused on the focal position The difference between the pattern resolution a when the substrate surface is exposed and the pattern resolution b when the focus position is shifted 300 μm from the substrate surface in the thickness direction of the substrate to the inside of the substrate and the exposure is performed Up to 15μm. 如請求項1之感光性樹脂組合物,其中含有下述通式(I)所表示之化合物作為(D)苯酚衍生物:
Figure 108103816-A0305-02-0057-1
{式中,R1表示可經取代之直鏈烷基、分支烷基、芳基、環己基、中介二價連結基之直鏈烷基、中介二價連結基之分支烷基、中介二價連結基之環己基或中介二價連結基之芳基,複數個R1可彼此相同亦可不同,m表示0~4之整數,n表示1以上之整數,並且,n為1時A為一價有機基,n為2以上時A表示二價以上 之有機基、單鍵或包含共軛鍵之連結基}。
The photosensitive resin composition according to claim 1, which contains a compound represented by the following general formula (I) as (D) a phenol derivative:
Figure 108103816-A0305-02-0057-1
{In the formula, R 1 represents a linear alkyl group, a branched alkyl group, an aryl group, a cyclohexyl group that can be substituted, a linear alkyl group that is an intermediate divalent linking group, a branched alkyl group that is an intermediate divalent linking group, and an intermediate divalent linking group. For the cyclohexyl group of the linking group or the aryl group of the intermediate divalent linking group, a plurality of R 1 may be the same or different from each other, m represents an integer of 0-4, n represents an integer of 1 or more, and when n is 1, A is one For the valence organic group, when n is 2 or more, A represents an organic group having a valence of 2 or more, a single bond, or a linking group containing a conjugated bond}.
如請求項3之感光性樹脂組合物,其中上述通式(I)中之n為2以上。 The photosensitive resin composition according to claim 3, wherein n in the general formula (I) is 2 or more. 如請求項1之感光性樹脂組合物,其中含有下述通式(II)所表示之化合物作為(D)苯酚衍生物:
Figure 108103816-A0305-02-0058-2
{式中,R2表示可經取代之直鏈烷基、分支烷基、芳基、環己基、中介二價連結基之直鏈烷基、中介二價連結基之分支烷基、中介二價連結基之環己基或中介二價連結基之芳基,並且R3、R4及R5各自獨立表示氫或可經取代之直鏈烷基、分支烷基、芳基、環己基、中介二價連結基之直鏈烷基、中介二價連結基之分支烷基、中介二價連結基之環己基或中介二價連結基之芳基}。
The photosensitive resin composition of claim 1, which contains a compound represented by the following general formula (II) as (D) a phenol derivative:
Figure 108103816-A0305-02-0058-2
{In the formula, R 2 represents a linear alkyl group, a branched alkyl group, an aryl group, a cyclohexyl group that may be substituted, a linear alkyl group that is an intermediate divalent linking group, a branched alkyl group that is an intermediate divalent linking group, and an intermediate divalent linking group. The linking group is a cyclohexyl group or an aryl group that is an intermediate divalent linking group, and R 3 , R 4 and R 5 each independently represent hydrogen or a linear alkyl group, a branched alkyl group, an aryl group, a cyclohexyl group, and an intermediate two A straight-chain alkyl group for a valent linking group, a branched alkyl group for an intermediate divalent linking group, a cyclohexyl group for an intermediate divalent linking group, or an aryl group for an intermediate divalent linking group}.
如請求項1之感光性樹脂組合物,其中含有下述通式(III)所表示之化合物作為(D)苯酚衍生物:
Figure 108103816-A0305-02-0059-3
{式中,R6及R7各自獨立表示可經取代之直鏈烷基、分支烷基、芳基、環己基、中介二價連結基之直鏈烷基、中介二價連結基之分支烷基、中介二價連結基之環己基或中介二價連結基之芳基,複數個R6及R7可彼此相同亦可不同,p及q各自獨立表示0~4之整數,並且B表示單鍵或包含共軛鍵之連結基}。
The photosensitive resin composition of claim 1, which contains a compound represented by the following general formula (III) as (D) a phenol derivative:
Figure 108103816-A0305-02-0059-3
{In the formula, R 6 and R 7 each independently represent a substituted linear alkyl group, a branched alkyl group, an aryl group, a cyclohexyl group, a linear alkyl group that is an intermediate divalent linking group, and a branched alkyl group that can be an intermediate divalent linking group R 6 and R 7 may be the same or different from each other, p and q each independently represent an integer of 0 to 4, and B represents a single Bond or linking base containing conjugated bond}.
如請求項6之感光性樹脂組合物,其中於上述式(III)中,B為單鍵。 The photosensitive resin composition according to claim 6, wherein in the above formula (III), B is a single bond. 如請求項6之感光性樹脂組合物,其中於上述式(III)中,p=q=0。 The photosensitive resin composition of claim 6, wherein in the above formula (III), p=q=0. 如請求項1之感光性樹脂組合物,其中(A)鹼可溶性高分子之單體成分具有芳香族烴基。 The photosensitive resin composition according to claim 1, wherein (A) the monomer component of the alkali-soluble polymer has an aromatic hydrocarbon group. 如請求項9之感光性樹脂組合物,其中上述(A)鹼可溶性高分子之具有芳香族烴基之單體成分包含苯乙烯。 The photosensitive resin composition according to claim 9, wherein the monomer component having an aromatic hydrocarbon group of the alkali-soluble polymer (A) includes styrene. 如請求項9之感光性樹脂組合物,其中上述(A)鹼可溶性高分子之具有芳香族烴基之單體成分包含(甲基)丙烯酸苄酯。 The photosensitive resin composition according to claim 9, wherein the monomer component having an aromatic hydrocarbon group of the alkali-soluble polymer (A) includes benzyl (meth)acrylate. 如請求項1之感光性樹脂組合物,其中上述(B)具有乙烯性不飽和雙鍵之化合物包含藉由將雙酚A進行環氧烷改性而於兩末端具有(甲基)丙烯醯基之化合物。 The photosensitive resin composition according to claim 1, wherein the compound having an ethylenically unsaturated double bond (B) includes a (meth)acryloyl group at both ends by modifying bisphenol A with alkylene oxide The compound. 如請求項12之感光性樹脂組合物,其中上述(B)具有乙烯性不飽和雙鍵之化合物進而包含藉由以下方式獲得之化合物:作為中心骨架,於分子內具有3莫耳以上之可加成環氧烷基之基,於其上加成伸烷氧基而獲得醇,將該醇製成(甲基)丙烯酸酯。 The photosensitive resin composition according to claim 12, wherein the compound having an ethylenically unsaturated double bond (B) further includes a compound obtained by the following method: as a central skeleton, a compound having 3 mol or more in the molecule can be added An alkylene oxide group is added to it to obtain an alcohol, and the alcohol is made into a (meth)acrylate. 一種感光性樹脂積層體,其係於支撐層上積層包含如請求項1至13中任一項之感光性樹脂組合物之感光性樹脂層而成者。 A photosensitive resin laminate, which is obtained by laminating a photosensitive resin layer containing the photosensitive resin composition according to any one of claims 1 to 13 on a support layer. 一種抗蝕劑圖案之形成方法,其包含:將如請求項14之感光性樹脂積層體積層於基板上之積層步驟、將該感光性樹脂積層體之感光性樹脂層曝光之曝光步驟、及將該感光性樹脂層之未曝光部進行顯影去除的顯影步驟。 A method for forming a resist pattern, comprising: a step of laminating a bulk layer of photosensitive resin as claimed in claim 14 on a substrate, an exposing step of exposing the photosensitive resin layer of the photosensitive resin laminate, and The unexposed part of the photosensitive resin layer is subjected to a development step of development and removal. 如請求項15之抗蝕劑圖案之形成方法,其中藉由利用描繪圖案之直接描繪的曝光方法、或使光罩之圖像經過透鏡而投影之曝光方法 進行上述曝光步驟。 The method for forming a resist pattern according to claim 15, wherein the exposure method by direct drawing using the drawing pattern or the exposure method by projecting the image of the mask through a lens Perform the above exposure steps. 如請求項16之抗蝕劑圖案之形成方法,其中藉由利用描繪圖案之直接描繪的曝光方法進行上述曝光步驟。 The method for forming a resist pattern according to claim 16, wherein the exposure step is performed by an exposure method using direct drawing of the drawing pattern. 如請求項1至13中任一項之感光性樹脂組合物,其係用於藉由利用描繪圖案直接描繪的曝光方法進行曝光步驟之抗蝕劑圖案之形成方法中。 The photosensitive resin composition according to any one of claims 1 to 13, which is used in a method for forming a resist pattern in which an exposure step is performed by an exposure method in which a drawing pattern is directly drawn.
TW108103816A 2013-12-26 2014-12-26 Photosensitive resin composition and photosensitive resin laminate TWI721371B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-270370 2013-12-26
JP2013270370 2013-12-26

Publications (2)

Publication Number Publication Date
TW201922805A TW201922805A (en) 2019-06-16
TWI721371B true TWI721371B (en) 2021-03-11

Family

ID=53478976

Family Applications (4)

Application Number Title Priority Date Filing Date
TW103145839A TWI541596B (en) 2013-12-26 2014-12-26 A photosensitive resin composition and a photosensitive resin laminate
TW105101582A TWI592748B (en) 2013-12-26 2014-12-26 Photosensitive resin composition and photosensitive resin laminated body
TW106116007A TWI674478B (en) 2013-12-26 2014-12-26 Photosensitive resin composition and photosensitive resin laminate
TW108103816A TWI721371B (en) 2013-12-26 2014-12-26 Photosensitive resin composition and photosensitive resin laminate

Family Applications Before (3)

Application Number Title Priority Date Filing Date
TW103145839A TWI541596B (en) 2013-12-26 2014-12-26 A photosensitive resin composition and a photosensitive resin laminate
TW105101582A TWI592748B (en) 2013-12-26 2014-12-26 Photosensitive resin composition and photosensitive resin laminated body
TW106116007A TWI674478B (en) 2013-12-26 2014-12-26 Photosensitive resin composition and photosensitive resin laminate

Country Status (6)

Country Link
JP (2) JP6320425B2 (en)
KR (3) KR102437195B1 (en)
CN (2) CN111596526B (en)
MY (1) MY174577A (en)
TW (4) TWI541596B (en)
WO (1) WO2015099137A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6320425B2 (en) * 2013-12-26 2018-05-09 旭化成株式会社 Photosensitive resin composition and photosensitive resin laminate
JP6716883B2 (en) * 2015-10-13 2020-07-01 日立化成株式会社 Photosensitive resin composition, photosensitive element, cured product, resist pattern forming method, and printed wiring board manufacturing method
JP6755109B2 (en) * 2016-03-29 2020-09-16 旭化成株式会社 Photosensitive resin composition, photosensitive resin laminate, resist pattern forming method and conductor pattern manufacturing method
WO2018105620A1 (en) * 2016-12-07 2018-06-14 旭化成株式会社 Photosensitive resin composition and photosensitive resin laminate
TWI664497B (en) * 2017-01-30 2019-07-01 日商旭化成股份有限公司 Photosensitive resin composition, photosensitive resin laminated body, substrate on which photoresist pattern is formed, and method for manufacturing circuit board
CN111316164B (en) * 2017-11-06 2023-12-29 旭化成株式会社 Photosensitive resin laminate and method for producing resist pattern
CN108663867A (en) * 2018-04-11 2018-10-16 华南师范大学 A kind of laser protective film of dyestuff doping
WO2020032133A1 (en) * 2018-08-09 2020-02-13 旭化成株式会社 Photosensitive resin composition and method for forming resist pattern
WO2021187549A1 (en) * 2020-03-19 2021-09-23 富士フイルム株式会社 Transfer film, photosensitive material, method for forming pattern, method for manufacturing circuit board, and method for manufacturing touch panel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002278059A (en) * 2002-05-30 2002-09-27 Hitachi Chem Co Ltd Photosensitive element
TW201333779A (en) * 2011-12-05 2013-08-16 Hitachi Chemical Co Ltd Method of forming protective film of electrode for touch panel, photosensitive resin composition and photosensitive element, and method of fabricating touch panel

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08190192A (en) * 1995-01-11 1996-07-23 Konica Corp Phtosensitive composition and photosensitive planographic printing plate having layer of this composition
JPH0990625A (en) * 1995-09-27 1997-04-04 Nippon Zeon Co Ltd Positive resist composition
US5869212A (en) * 1996-05-31 1999-02-09 Kabushiki Kaisha Toshiba Integrated circuit photofabrication masks and methods for making same
JP4006815B2 (en) * 1997-06-11 2007-11-14 Jsr株式会社 Radiation sensitive resin composition
JP3515879B2 (en) * 1997-06-18 2004-04-05 東京応化工業株式会社 Positive photoresist composition and multilayer resist material using the same
JPH11237737A (en) * 1997-12-19 1999-08-31 Kansai Shingijutsu Kenkyusho:Kk Photosensitive resin composition and its production
JP4420165B2 (en) * 2000-03-07 2010-02-24 信越化学工業株式会社 Chemically amplified positive resist material
JP3141376B1 (en) * 2000-10-05 2001-03-05 ジェイエスアール株式会社 Negative radiation-sensitive resin composition solution
JP4262402B2 (en) * 2000-10-20 2009-05-13 富士フイルム株式会社 Positive resist composition
JP4288445B2 (en) * 2000-10-23 2009-07-01 信越化学工業株式会社 Novel onium salt, photoacid generator for resist material, resist material and pattern forming method
KR100594223B1 (en) * 2000-11-10 2006-07-03 삼성전자주식회사 pattern formation method using two alternating phase shift mask
TWI245774B (en) * 2001-03-01 2005-12-21 Shinetsu Chemical Co Silicon-containing polymer, resist composition and patterning process
JP2001330949A (en) * 2001-05-17 2001-11-30 Jsr Corp Radiation sensitive resin composition
JP3727895B2 (en) * 2002-03-26 2005-12-21 株式会社東芝 How to monitor
JP4189951B2 (en) * 2002-10-31 2008-12-03 東京応化工業株式会社 Chemically amplified positive resist composition
CN100549829C (en) * 2003-03-14 2009-10-14 东京应化工业株式会社 The chemical amplification type positive photoetching compositions
JP2005099646A (en) * 2003-03-28 2005-04-14 Tokyo Ohka Kogyo Co Ltd Resist composition for liquid immersion lithography process, and resist pattern forming method using it
CN100545753C (en) * 2003-05-22 2009-09-30 东京应化工业株式会社 Chemically amplified positive photo agent composition and formation resist method of patterning
JP2005202066A (en) * 2004-01-14 2005-07-28 Fuji Photo Film Co Ltd Light-sensitive transfer sheet, light-sensitive laminate, image pattern forming method, and wiring pattern forming method
JP4359467B2 (en) * 2003-08-28 2009-11-04 信越化学工業株式会社 Novel sulfonyldiazomethane compound, photoacid generator, and resist material and pattern forming method using the same.
CN1886410A (en) * 2003-10-15 2006-12-27 Jsr株式会社 Silane compound, polysiloxane and radiation-sensitive resin composition
JP4308051B2 (en) * 2004-03-22 2009-08-05 富士フイルム株式会社 Photosensitive composition and pattern forming method using the same
KR20070062965A (en) * 2004-06-15 2007-06-18 후지필름 가부시키가이샤 Photosensitive composition, method for forming pattern, and permanent pattern
JP4715234B2 (en) * 2005-02-28 2011-07-06 日立化成工業株式会社 Photosensitive resin composition, photosensitive element using the same, resist pattern forming method, printed wiring board manufacturing method, and photocured product removing method
JP2007017721A (en) * 2005-07-07 2007-01-25 Fujifilm Holdings Corp Pattern forming method
JP2007078889A (en) * 2005-09-12 2007-03-29 Fujifilm Corp Photosensitive composition, pattern forming material, photosensitive laminate, pattern forming apparatus and pattern forming method
CN101401035A (en) * 2006-01-13 2009-04-01 富士胶片株式会社 Photosensitive resin composition, photosensitive transfer film, and method for pattern formation
JP2007240714A (en) * 2006-03-07 2007-09-20 Toppan Printing Co Ltd Method for manufacturing color filter
JP2007286480A (en) * 2006-04-19 2007-11-01 Fujifilm Corp Pattern forming method
JP2008015364A (en) * 2006-07-07 2008-01-24 Fujifilm Corp Photosensitive composition, photosensitive film, permanent pattern forming method, and printed circuit board
CN101206402A (en) * 2006-12-22 2008-06-25 住友化学株式会社 Photosensitive resin composition
JP4703674B2 (en) * 2008-03-14 2011-06-15 富士フイルム株式会社 Resist composition and pattern forming method using the same
KR101323928B1 (en) * 2008-09-04 2013-10-31 히타치가세이가부시끼가이샤 Photosenstive resin composition for protective film of printed wiring board for semiconductor package
JP5193361B2 (en) * 2009-03-30 2013-05-08 旭化成イーマテリアルズ株式会社 Photosensitive resin composition and laminate thereof
JP2010249884A (en) 2009-04-10 2010-11-04 Dupont Mrc Dryfilm Ltd Photopolymerizable resin composition and photosensitive film using the same
US8446640B2 (en) * 2009-07-15 2013-05-21 Eastman Kodak Company Setting of imaging parameters using a scanner
US8815754B2 (en) * 2009-12-15 2014-08-26 Rohm And Haas Electronics Materials Llc Photoresists and methods for use thereof
JP5775701B2 (en) * 2010-02-26 2015-09-09 富士フイルム株式会社 Pattern forming method and resist composition
US8781075B2 (en) * 2011-01-07 2014-07-15 General Electric Company Wireless communication in a medical imaging or monitoring system
JP6212970B2 (en) * 2011-12-05 2017-10-18 日立化成株式会社 Protective film for touch panel electrode and touch panel
JP6166526B2 (en) * 2011-12-09 2017-07-19 株式会社日本触媒 Curable resin composition and use thereof
JP2013148804A (en) * 2012-01-23 2013-08-01 Sumitomo Chemical Co Ltd Photosensitive resin composition
JP6113967B2 (en) * 2012-06-29 2017-04-12 旭化成株式会社 Photosensitive resin composition and photosensitive resin laminate
JP5997515B2 (en) * 2012-06-29 2016-09-28 旭化成株式会社 Photosensitive resin composition and photosensitive resin laminate
JP6132505B2 (en) * 2012-10-05 2017-05-24 旭化成株式会社 Photosensitive resin composition and photosensitive resin laminate
JP6320425B2 (en) * 2013-12-26 2018-05-09 旭化成株式会社 Photosensitive resin composition and photosensitive resin laminate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002278059A (en) * 2002-05-30 2002-09-27 Hitachi Chem Co Ltd Photosensitive element
TW201333779A (en) * 2011-12-05 2013-08-16 Hitachi Chemical Co Ltd Method of forming protective film of electrode for touch panel, photosensitive resin composition and photosensitive element, and method of fabricating touch panel

Also Published As

Publication number Publication date
TW201922805A (en) 2019-06-16
JP2018120242A (en) 2018-08-02
KR20210049995A (en) 2021-05-06
JP6666944B2 (en) 2020-03-18
TW201533526A (en) 2015-09-01
TWI541596B (en) 2016-07-11
CN105793778A (en) 2016-07-20
KR102248976B1 (en) 2021-05-06
JP6320425B2 (en) 2018-05-09
KR102437195B1 (en) 2022-08-26
TW201616234A (en) 2016-05-01
TW201727369A (en) 2017-08-01
CN111596526B (en) 2023-07-25
MY174577A (en) 2020-04-28
TWI592748B (en) 2017-07-21
TWI674478B (en) 2019-10-11
CN111596526A (en) 2020-08-28
KR20180021226A (en) 2018-02-28
KR20160070801A (en) 2016-06-20
CN105793778B (en) 2021-02-09
JPWO2015099137A1 (en) 2017-03-23
WO2015099137A1 (en) 2015-07-02

Similar Documents

Publication Publication Date Title
TWI721371B (en) Photosensitive resin composition and photosensitive resin laminate
TWI709815B (en) Photosensitive resin composition
JP6207654B2 (en) Photosensitive resin composition
JP6113967B2 (en) Photosensitive resin composition and photosensitive resin laminate
TWI630459B (en) Photosensitive resin element
TWI664498B (en) Photosensitive resin composition and photosensitive resin laminate
TWI412884B (en) Photosensitive resin composition, photosensitive resin laminate, photoresist pattern forming method and manufacturing method of conductor pattern, printed wiring board, lead frame, substrate and semiconductor package
TWI620015B (en) Photosensitive resin composition
JP5948543B2 (en) Photosensitive resin composition
JP5997515B2 (en) Photosensitive resin composition and photosensitive resin laminate
TW201932307A (en) Photosensitive resin laminate
CN109690404B (en) Photosensitive resin composition and photosensitive resin laminate
TW202041971A (en) Photosensitive resin laminate and method for manufacturing same
JP6132505B2 (en) Photosensitive resin composition and photosensitive resin laminate
JP2013057902A (en) Photosensitive resin composition and photosensitive resin laminate