JP2007017721A - Pattern forming method - Google Patents

Pattern forming method Download PDF

Info

Publication number
JP2007017721A
JP2007017721A JP2005199452A JP2005199452A JP2007017721A JP 2007017721 A JP2007017721 A JP 2007017721A JP 2005199452 A JP2005199452 A JP 2005199452A JP 2005199452 A JP2005199452 A JP 2005199452A JP 2007017721 A JP2007017721 A JP 2007017721A
Authority
JP
Japan
Prior art keywords
light
photosensitive layer
pattern forming
pattern
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005199452A
Other languages
Japanese (ja)
Inventor
Masanobu Takashima
正伸 高島
Yoji Okazaki
洋二 岡崎
Hiromi Ishikawa
弘美 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fujifilm Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Holdings Corp filed Critical Fujifilm Holdings Corp
Priority to JP2005199452A priority Critical patent/JP2007017721A/en
Priority to PCT/JP2006/312115 priority patent/WO2007007513A1/en
Priority to CNA2006800248299A priority patent/CN101218546A/en
Priority to KR1020077029716A priority patent/KR20080026548A/en
Priority to TW095124573A priority patent/TW200712789A/en
Publication of JP2007017721A publication Critical patent/JP2007017721A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70783Handling stress or warp of chucks, masks or workpieces, e.g. to compensate for imaging errors or considerations related to warpage of masks or workpieces due to their own weight
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pattern forming method by which a permanent pattern such as a wiring pattern can be efficiently formed with high definition by enhancing exposure performance without incurring cost increase of apparatus or lowering of exposure speed. <P>SOLUTION: Exposure is performed in such a way that light modulated by a light modulating means forms an image only in a nearly rectangular region of an imaging means including a central part, and that the nearly rectangular exposure region where the image is formed on a surface of a photosensitive layer to be exposed is inclined so that the angle between a minor side direction of the region and a waving direction of the photosensitive layer is made smaller than the angle between a major side direction of the region and the waving direction of the photosensitive layer, accordingly light selectively illuminated onto the region with good optical performance forms an image and the focal position is adjusted to a proper position. As a result, exposure of the photosensitive layer is performed with high definition, and by developing the exposed photosensitive layer, a high-definition pattern is formed. The imaging means comprises a projector lens produced such that a peripheral region is distorted and the distortion of a region including a central part is made less. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、空間光変調素子等の光変調手段により変調された光を、結像光学系を通して感光層の被露光面上に結像させて、該感光層を露光するパターン形成方法に関する。   The present invention relates to a pattern forming method in which light modulated by light modulation means such as a spatial light modulation element is imaged on an exposed surface of a photosensitive layer through an imaging optical system to expose the photosensitive layer.

従来より、入射された光をパターン情報(画像信号)に基づいて変調し、2次元パターンを形成する空間光変調手段等の光変調手段を備え、形成された2次元パターンを感光材料上に投影して露光する露光装置が知られている。
前記空間光変調手段としては、傾斜角度が変更可能なマイクロミラーを2次元状に多数配列(例えば、1024×756画素)したデジタル・マイクロミラー・デバイス(以下、「DMD」と表記する)が知られている(例えば、特許文献1参照)。
Conventionally, incident light is modulated on the basis of pattern information (image signal), and light modulation means such as a spatial light modulation means for forming a two-dimensional pattern is provided, and the formed two-dimensional pattern is projected onto a photosensitive material. An exposure apparatus that performs exposure is known.
As the spatial light modulation means, there is known a digital micromirror device (hereinafter referred to as “DMD”) in which a plurality of micromirrors whose tilt angles can be changed are arranged two-dimensionally (for example, 1024 × 756 pixels). (For example, refer to Patent Document 1).

光変調手段としてDMDを備えた露光装置は、2次元パターンの光を結像させるための投影レンズを有する結像手段を備え、該投影レンズは、DMDの各マイクロミラーのうち、所定角度に傾斜したマイクロミラーによって反射された光のみを感光材料上に結像するように構成されている。すなわち、この露光装置を用いた露光は、感光材料上に投影される2次元パターンを形成する各画素が、各マイクロミラーに対応するようにして行われるものである。   An exposure apparatus provided with a DMD as a light modulation means includes an image forming means having a projection lens for forming an image of a two-dimensional pattern, and the projection lens is inclined at a predetermined angle among the micromirrors of the DMD. Only the light reflected by the micromirror is imaged on the photosensitive material. That is, exposure using this exposure apparatus is performed such that each pixel forming a two-dimensional pattern projected onto the photosensitive material corresponds to each micromirror.

従来の露光装置では、前記結像手段を構成する投影レンズのほぼ全面領域を用い、感光材料上に2次元パターンを結像させていた。この場合、前記投影レンズの全面領域において、像面湾曲、非点隔差、及び歪曲等を抑制し、テレセントリック性を向上させ、高いレンズ光学性能を持たせる必要があった。
しかしながら、ほぼ全面領域において高いレンズ光学性能を持つ投影レンズの製造には、部品精度の向上、より良い部品の選別等の必要があり、また、全面領域において高いレンズ光学性能を持つ大口径の投影レンズの製造は困難であることから、大面積の露光ができず、露光速度の低下に繋がる。
よって、ほぼ全面領域において高いレンズ光学性能を持つ投影レンズを備えた露光装置を用いてパターン形成を行う場合、パターン形成の効率が低下し、さらに、コスト増につながるという問題があった。
In a conventional exposure apparatus, a two-dimensional pattern is imaged on a photosensitive material using almost the entire area of the projection lens constituting the imaging means. In this case, it is necessary to suppress curvature of field, astigmatism, distortion, etc. in the entire area of the projection lens, improve telecentricity, and provide high lens optical performance.
However, the manufacture of projection lenses with high lens optical performance over almost the entire surface area requires improvements in component accuracy, better component selection, etc., and large-diameter projections with high lens optical performance over the entire surface region. Since it is difficult to manufacture a lens, a large area cannot be exposed, leading to a reduction in exposure speed.
Therefore, when pattern formation is performed using an exposure apparatus having a projection lens having high lens optical performance in almost the entire surface area, there is a problem that the efficiency of pattern formation is reduced and the cost is increased.

一方、投影レンズのレンズ光学性能が悪いと、ビーム位置精度が悪化するため、例えば、多重露光の回数を増やす等の方法により、位置精度の悪化の影響を均す必要があるため、光学性能の劣る投影レンズを備えた露光装置を用いてパターン形成を行う場合には、露光速度の低下によるパターン形成効率の低下や、解像度の低下等の問題があった。   On the other hand, if the lens optical performance of the projection lens is poor, the beam position accuracy deteriorates.For example, it is necessary to equalize the influence of the deterioration of the position accuracy by a method such as increasing the number of multiple exposures. When pattern formation is performed using an exposure apparatus having an inferior projection lens, there are problems such as a decrease in pattern formation efficiency due to a decrease in exposure speed and a decrease in resolution.

よって、装置のコストアップや、露光速度の低下を招くことなく、露光性能を向上させることにより、配線パターン等の永久パターンを高精細に、かつ、効率よく形成可能なパターン形成方法は未だ提供されておらず、更なる改良開発が望まれているのが現状である。   Therefore, there is still provided a pattern forming method capable of forming a permanent pattern such as a wiring pattern with high definition and efficiency by improving the exposure performance without increasing the cost of the apparatus or reducing the exposure speed. However, the present situation is that further improvement and development is desired.

特開2001−305663号公報JP 2001-305663 A

本発明は、かかる現状に鑑みてなされたものであり、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、装置のコストアップや、露光速度の低下を招くことなく、露光性能を向上させることにより、配線パターン等の永久パターンを高精細に、かつ、効率よく形成可能なパターン形成方法を提供することを目的とする。   This invention is made | formed in view of this present condition, and makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, the present invention provides a pattern forming method capable of forming a permanent pattern such as a wiring pattern with high definition and efficiency by improving exposure performance without increasing the cost of the apparatus and reducing the exposure speed. The purpose is to provide.

前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 支持体上に感光層を有するパターン形成材料における該感光層を、被処理基体上に積層した後、該感光層に対し、
光照射手段からの光を受光してパターン情報に基づいて変調する光変調手段により、前記光照射手段からの光を変調させ、前記光変調手段により変調された光を、結像手段と、焦点調節手段とを介して前記感光層の被露光面上に結像させて露光を行うことを少なくとも含み、
前記露光が、前記結像手段の中央部を含む略矩形状の領域のみにおいて、前記光変調手段により変調された光が結像され、
前記感光層の被露光面上に結像される略矩形状の露光領域が、その短辺方向と前記感光層のうねり方向とがなす角が、その長辺方向と前記感光層のうねり方向とがなす角よりも小さくなるように向けられて行われることを特徴とするパターン形成方法である。該<1>に記載のパターン形成方法においては、前記光変調手段により変調された光が、結像手段と、焦点調節手段とを介して前記感光層の被露光面上に結像されることにより露光が行われる。該露光が、前記結像手段の中央部を含む略矩形状の領域のみにおいて、前記光変調手段により変調された光が結像され、前記感光層の被露光面上に結像される略矩形状の露光領域が、その短辺方向と前記感光層のうねり方向とがなす角が、その長辺方向と前記感光層のうねり方向とがなす角よりも小さくなるように向けられて行われるため、光学性能の良い領域に選択的に照射された光が結像され、焦点位置が適切な位置に調整される。この結果、前記感光層への露光が高精細に行われる。例えば、その後、前記感光層を現像することにより、高精細なパターンが形成される。
<2> 結像手段が、周辺領域に歪みを持たせ、中央部を含む領域の歪みを少なくして製造された投影レンズから構成される前記<1>に記載のパターン形成方法である。該<2>に記載のパターン形成方法においては、前記結像手段が、周辺領域に歪みを持たせ、中央部を含む領域の歪みを少なくして製造された投影レンズから構成されるため、前記投影レンズの光学性能の良い領域に光を選択的に照射することにより、投影レンズの全面領域を使用する場合に比べて焦点調節手段の光学系を小型化することができ、また、変調された光の焦点位置を安定に保ちながら高精度の焦点位置調整が可能になる。この結果、装置コストが低減されるとともに、前記感光層への露光が極めて高精細に行われる。
<3> 結像手段が、長辺の長さが短辺の長さの2倍以上の略矩形状の領域において、光変調手段により変調された光を結像する前記<1>から<2>に記載のパターン形成方法である。
Means for solving the problems are as follows. That is,
<1> After laminating the photosensitive layer in the pattern forming material having the photosensitive layer on the support on the substrate to be processed,
The light from the light irradiating means is received and modulated based on the pattern information. The light modulating means modulates the light from the light irradiating means, and the light modulated by the light modulating means And performing exposure by forming an image on an exposed surface of the photosensitive layer through an adjusting means,
In the exposure, light modulated by the light modulation means is imaged only in a substantially rectangular region including the center of the imaging means,
The substantially rectangular exposure region imaged on the exposed surface of the photosensitive layer has an angle formed by the short side direction and the waviness direction of the photosensitive layer, the long side direction and the waviness direction of the photosensitive layer. The pattern forming method is characterized in that it is performed so as to be smaller than an angle formed by. In the pattern forming method according to <1>, the light modulated by the light modulation unit is imaged on the exposed surface of the photosensitive layer via an imaging unit and a focus adjustment unit. The exposure is performed by. In the exposure, the light modulated by the light modulation means is imaged only in a substantially rectangular area including the central portion of the imaging means, and is formed on the exposed surface of the photosensitive layer. Since the exposure area of the shape is oriented so that the angle formed by the short side direction and the waviness direction of the photosensitive layer is smaller than the angle formed by the long side direction and the waviness direction of the photosensitive layer. The light selectively irradiated on the region with good optical performance is imaged, and the focal position is adjusted to an appropriate position. As a result, the photosensitive layer is exposed with high definition. For example, a high-definition pattern is formed by developing the photosensitive layer thereafter.
<2> The pattern forming method according to <1>, wherein the imaging unit includes a projection lens manufactured by giving distortion to a peripheral region and reducing distortion in a region including a central portion. In the pattern forming method according to <2>, since the imaging unit includes a projection lens manufactured by giving distortion to a peripheral region and reducing distortion of a region including a central portion, By selectively irradiating light onto a region with good optical performance of the projection lens, the optical system of the focus adjustment means can be reduced in size compared with the case where the entire region of the projection lens is used, and modulated. It is possible to adjust the focal position with high accuracy while keeping the focal position of light stable. As a result, the apparatus cost is reduced, and the exposure of the photosensitive layer is performed with extremely high definition.
<3> From <1> to <2 above, wherein the imaging means forms an image of light modulated by the light modulation means in a substantially rectangular region having a long side length of twice or more of the short side length. > The pattern forming method described in the above.

<4> 焦点調節手段が、光変調手段により変調された光の光軸方向の厚さが変化するように形成されたくさび型プリズムペアを有し、
前記くさび型プリズムペアを構成する各くさび型プリズムを移動することによって、前記光変調手段により変調された光を感光層の被露光面上に結像する際の焦点を調節する前記<1>から<3>のいずれかに記載のパターン形成方法である。
<5> 焦点調節手段が、結像光学系を構成する光学部材と、ピエゾ素子とを有し、
前記光学部材を前記ピエゾ素子により移動させることによって、前記光変調手段により変調された光を感光層の被露光面上に結像する際の焦点を調節する前記<1>から<3>のいずれかに記載のパターン形成方法である。該<5>に記載のパターン形成方法においては、前記光学部材を前記ピエゾ素子により移動させることによって、前記光変調手段により変調された光を感光層の被露光面上に結像する際の焦点が調節されるため、焦点方向に対して垂直な方向への微小変位を抑制でき、高ビーム位置精度を保ちながら、極めて高精度に焦点位置が調整される。
<4> The focus adjusting unit has a wedge-shaped prism pair formed so that the thickness of the light modulated by the light modulating unit in the optical axis direction changes.
From <1>, the focus is adjusted when the light modulated by the light modulation means is imaged on the exposed surface of the photosensitive layer by moving each wedge-shaped prism constituting the wedge-shaped prism pair. <3> The pattern forming method according to any one of the above.
<5> The focus adjusting means includes an optical member constituting the imaging optical system and a piezo element,
Any one of <1> to <3>, wherein the optical member is moved by the piezo element to adjust a focal point when the light modulated by the light modulation unit is imaged on the exposed surface of the photosensitive layer. The pattern forming method according to claim 1. In the pattern forming method according to <5>, the focal point when the light modulated by the light modulation unit is imaged on the exposed surface of the photosensitive layer by moving the optical member by the piezo element. Therefore, a minute displacement in a direction perpendicular to the focal direction can be suppressed, and the focal position can be adjusted with extremely high accuracy while maintaining high beam positional accuracy.

<6> 結像手段が、光変調手段により変調された光の光軸に対し、前記光軸を中心に回転可能なレンズ、及び前記光軸に対して垂直方向に移動可能レンズのいずれかにより構成されてなる前記<1>から<5>のいずれかに記載のパターン形成方法である。   <6> The imaging means is either a lens that can rotate around the optical axis with respect to the optical axis of the light modulated by the light modulating means, or a lens that can move in a direction perpendicular to the optical axis. The pattern forming method according to any one of <1> to <5>, which is configured.

<7> 光変調手段が、n個(ただし、nは1以上の自然数)の2次元状に配列された描素部を有する前記<1>から<6>のいずれかに記載のパターン形成方法である。
<8> 光変調手段が、空間光変調素子である前記<1>から<7>のいずれかに記載のパターン形成方法である。
<7> The pattern forming method according to any one of <1> to <6>, wherein the light modulation means includes n (where n is a natural number of 1 or more) two-dimensionally arranged pixel parts. It is.
<8> The pattern forming method according to any one of <1> to <7>, wherein the light modulation unit is a spatial light modulation element.

<9> 光照射手段が、半導体レーザ素子から発せられたレーザ光を出射する前記<1>から<8>のいずれかに記載のパターン形成方法である。
<10> 光照射手段が、半導体レーザ素子から発せられたレーザ光を一端から入射し、入射したレーザ光を他端から出射する光ファイバを複数本束ねたバンドル状のファイバ光源である前記<9>に記載のパターン形成方法である。該<10>に記載のパターン形成方法においては、ファイババンドル状の光源として面積あたりの光量の大きい高輝度な光源を用いることで、光パワーを向上させつつ、エタンデュー(Etendue)を小さくすることができるため、前記光変調手段側の開口数を小さくでき、更に、前記結像光学系の焦点深度を大きくすることができる。この結果、前記感光層の被露光面上に結像される画像のピントずれが抑制される。
<11> 光照射手段が、2以上の光を合成して照射可能である前記<8>から<10>のいずれかに記載のパターン形成方法である。該<11>に記載のパターン形成材料においては、前記光照射手段が2以上の光を合成して照射可能であることにより、露光が焦点深度の深い露光光で行われる。この結果、前記感光層への露光が極めて高精細に行われる。例えば、その後、前記感光層を現像することにより、極めて高精細なパターンが形成される。
<12> 光照射手段が、複数のレーザと、マルチモード光ファイバと、該複数のレーザからそれぞれ照射されたレーザビームを平行光化して集光し、前記マルチモード光ファイバの入射端面に収束させる光源集光光学系とを有する前記<8>から<11>のいずれかに記載のパターン形成方法である。該<12>に記載のパターン形成方法においては、前記光照射手段により、前記複数のレーザからそれぞれ照射されたレーザビームが前記光源集合光学系により集光され、前記マルチモード光ファーバーに結合可能とすることにより、露光が焦点深度の深い露光光で行われる。この結果、前記感光層への露光が極めて高精細に行われる。例えば、その後、前記感光層を現像することにより、極めて高精細なパターンが形成される。
<9> The pattern forming method according to any one of <1> to <8>, wherein the light irradiation unit emits laser light emitted from the semiconductor laser element.
<10> The above-mentioned <9>, wherein the light irradiation means is a bundle-shaped fiber light source in which a plurality of optical fibers that enter laser light emitted from a semiconductor laser element from one end and emit incident laser light from the other end are bundled > The pattern forming method according to <1>. In the pattern forming method according to <10>, by using a high-brightness light source having a large light amount per area as a fiber bundle-shaped light source, the etendue can be reduced while improving the optical power. Therefore, the numerical aperture on the light modulation means side can be reduced, and the depth of focus of the imaging optical system can be increased. As a result, the focus shift of the image formed on the exposed surface of the photosensitive layer is suppressed.
<11> The pattern forming method according to any one of <8> to <10>, wherein the light irradiation unit can synthesize and irradiate two or more lights. In the pattern forming material according to <11>, since the light irradiation unit can synthesize and irradiate two or more lights, exposure is performed with exposure light having a deep focal depth. As a result, the exposure of the photosensitive layer is performed with extremely high definition. For example, after that, the photosensitive layer is developed to form an extremely fine pattern.
<12> The light irradiation means collimates and condenses the laser beams emitted from the plurality of lasers, the multimode optical fiber, and the plurality of lasers, and converges them on the incident end face of the multimode optical fiber. It is a pattern formation method in any one of said <8> to <11> which has a light source condensing optical system. In the pattern forming method according to <12>, the light irradiation unit can condense the laser beams emitted from the plurality of lasers by the light source collective optical system and be coupled to the multimode optical fiber. By doing so, exposure is performed with exposure light having a deep focal depth. As a result, the exposure of the photosensitive layer is performed with extremely high definition. For example, after that, the photosensitive layer is developed to form an extremely fine pattern.

<13> 露光が行われた後、感光層の現像を行う前記<1>から<12>のいずれかに記載のパターン形成方法である。
<14> 現像が行われた後、永久パターンの形成を行う前記<1>から<13>のいずれかに記載のパターン形成方法である。
<15> 永久パターンが配線パターンであり、該永久パターンの形成がエッチング処理及びメッキ処理の少なくともいずれかにより行われる前記<14>に記載のパターン形成方法である。
<13> The pattern forming method according to any one of <1> to <12>, wherein the photosensitive layer is developed after the exposure.
<14> The pattern forming method according to any one of <1> to <13>, wherein a permanent pattern is formed after development.
<15> The pattern forming method according to <14>, wherein the permanent pattern is a wiring pattern, and the formation of the permanent pattern is performed by at least one of an etching process and a plating process.

<16> 感光層が、バインダーと、重合性化合物と、光重合開始剤とを含む前記<1>から<15>のいずれかに記載のパターン形成方法である。
<17> バインダーが、酸性基を有する前記<16>に記載のパターン形成方法である。
<18> バインダーが、ビニル共重合体である前記<16>から<17>のいずれかに記載のパターン形成方法である。
<19> バインダーの酸価が、70〜250mgKOH/gである前記<16>から<18>のいずれかに記載のパターン形成方法である。
<20> 重合性化合物が、ウレタン基及びアリール基の少なくともいずれかを有するモノマーを含む前記<16>から<19>のいずれかに記載のパターン形成方法である。
<21> 光重合開始剤が、ハロゲン化炭化水素誘導体、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩及びメタロセン類から選択される少なくとも1種を含む前記<16>から<20>のいずれかに記載のパターン形成方法である。
<22> 感光層が、バインダーを10〜90質量%含有し、重合性化合物を5〜90質量%含有する前記<1>から<21>のいずれかに記載のパターン形成方法である。
<23> 感光層の厚みが、1〜100μmである前記<1>から<22>のいずれかに記載のパターン形成方法である。
<16> The pattern forming method according to any one of <1> to <15>, wherein the photosensitive layer includes a binder, a polymerizable compound, and a photopolymerization initiator.
<17> The pattern forming method according to <16>, wherein the binder has an acidic group.
<18> The pattern forming method according to any one of <16> to <17>, wherein the binder is a vinyl copolymer.
<19> The pattern forming method according to any one of <16> to <18>, wherein the binder has an acid value of 70 to 250 mgKOH / g.
<20> The pattern forming method according to any one of <16> to <19>, wherein the polymerizable compound includes a monomer having at least one of a urethane group and an aryl group.
<21> The photopolymerization initiator includes at least one selected from halogenated hydrocarbon derivatives, hexaarylbiimidazoles, oxime derivatives, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, and metallocenes. The pattern forming method according to any one of <16> to <20>.
<22> The pattern forming method according to any one of <1> to <21>, wherein the photosensitive layer contains 10 to 90% by mass of a binder and 5 to 90% by mass of a polymerizable compound.
<23> The pattern forming method according to any one of <1> to <22>, wherein the photosensitive layer has a thickness of 1 to 100 μm.

<24> 支持体が、合成樹脂を含み、かつ透明である前記<1>から<23>のいずれかに記載のパターン形成方法である。
<25> 支持体が、長尺状である前記<1>から<24>のいずれかに記載のパターン形成方法である。
<26> パターン形成材料が、長尺状であり、ロール状に巻かれてなる前記<1>から<25>のいずれかに記載のパターン形成方法である。
<27> パターン形成材料における感光層上に保護フィルムを形成する前記<1>から<26>のいずれかに記載のパターン形成方法である。
<24> The pattern forming method according to any one of <1> to <23>, wherein the support includes a synthetic resin and is transparent.
<25> The pattern forming method according to any one of <1> to <24>, wherein the support has a long shape.
<26> The pattern forming method according to any one of <1> to <25>, wherein the pattern forming material is long and wound in a roll shape.
<27> The pattern forming method according to any one of <1> to <26>, wherein a protective film is formed on the photosensitive layer in the pattern forming material.

本発明によると、従来における問題を解決することができ、装置のコストアップや、露光速度の低下を招くことなく、露光性能を向上させることにより、配線パターン等の永久パターンを高精細に、かつ、効率よく形成可能なパターン形成方法を提供することができる。   According to the present invention, conventional problems can be solved, and the permanent pattern such as a wiring pattern can be defined with high definition by improving the exposure performance without increasing the cost of the apparatus or reducing the exposure speed. It is possible to provide a pattern forming method that can be efficiently formed.

(パターン形成方法)
本発明のパターン形成方法は、パターン形成材料における感光層を、被処理基体上に積層した後、該感光層に対し、露光を行う露光工程を少なくとも含み、適宜選択したその他の工程を含む。
(Pattern formation method)
The pattern forming method of the present invention includes at least an exposure step of exposing the photosensitive layer after laminating the photosensitive layer in the pattern forming material on the substrate to be processed, and includes other steps appropriately selected.

[露光工程]
前記露光工程は、前記光照射手段からの光を受光してパターン情報に基づいて変調する前記光変調手段により、前記光照射手段からの光を変調させ、前記光変調手段により変調された光を、結像手段と、焦点調節手段とを介して前記感光層の被露光面上に結像させて露光を行うことを少なくとも含む工程であり、
前記露光が、前記結像手段の中央部を含む略矩形状の領域のみにおいて、前記光変調手段により変調された光が結像され、
前記感光層の被露光面上に結像される略矩形状の露光領域が、その短辺方向と前記感光層のうねり方向とがなす角が、その長辺方向と前記感光層のうねり方向とがなす角よりも小さくなるように向けられて行われる。
[Exposure process]
In the exposure step, the light from the light irradiation unit is modulated by the light modulation unit that receives light from the light irradiation unit and modulates the light based on the pattern information, and the light modulated by the light modulation unit , And at least including performing exposure by forming an image on an exposed surface of the photosensitive layer via an imaging unit and a focus adjusting unit,
In the exposure, light modulated by the light modulation means is imaged only in a substantially rectangular region including the center of the imaging means,
The substantially rectangular exposure region imaged on the exposed surface of the photosensitive layer has an angle formed by the short side direction and the waviness direction of the photosensitive layer, the long side direction and the waviness direction of the photosensitive layer. It is directed to be smaller than the angle formed by.

本発明のパターン形成方法の露光工程に係る露光装置の一例について、以下、図面を参照しながら説明する。前記露光工程における露光方法は、前記露光装置の説明を通じて明らかにする。   Hereinafter, an example of an exposure apparatus related to the exposure process of the pattern forming method of the present invention will be described with reference to the drawings. The exposure method in the exposure step will be clarified through the description of the exposure apparatus.

<露光装置の構成>
<<露光装置の外観>>
図1には、本発明のパターン形成方法の露光工程に係る露光装置10の概略外観図が示されている。露光装置10は、前記パターン形成材料における前記感光層を、被処理基体上に積層してなるシート状の積層体(以下、「感光材料12」と表す)を、表面に吸着して保持する平板状の移動ステージ14を備えている。4本の脚部16に支持された厚い板状の設置台18の上面には、ステージ移動方向に沿って延びた2本のガイド20が設置されている。ステージ14は、その長手方向がステージ移動方向を向くように配置されると共に、ガイド20によって往復移動可能に支持されている。更に露光装置10は、ステージ14をガイド20に沿って駆動するステージ駆動装置(不図示)を備えている。
<Configuration of exposure apparatus>
<< Appearance of exposure apparatus >>
FIG. 1 shows a schematic external view of an exposure apparatus 10 relating to the exposure process of the pattern forming method of the present invention. The exposure apparatus 10 is a flat plate for adsorbing and holding a sheet-like laminate (hereinafter referred to as “photosensitive material 12”) formed by laminating the photosensitive layer of the pattern forming material on a substrate to be processed. The moving stage 14 is provided. Two guides 20 extending along the stage moving direction are installed on the upper surface of the thick plate-shaped installation table 18 supported by the four legs 16. The stage 14 is arranged so that the longitudinal direction thereof faces the stage moving direction, and is supported by the guide 20 so as to be reciprocally movable. Further, the exposure apparatus 10 includes a stage driving device (not shown) that drives the stage 14 along the guide 20.

そして、設置台18の中央部には、ステージ14の移動経路を跨ぐようにコの字状のゲート22が設置されている。コの字状のゲート22の端部の各々は、設置台18の両側面に固定されている。ゲート22を挟んで一方側にはスキャナ24が設置され、他方側には感光材料12の先端及び後端を検知する複数のセンサ26が設置されている。スキャナ24及びセンサ26はゲート22に各々固定され、ステージ14の移動経路の上方に設置されている。尚、スキャナ24及びセンサ26はコントローラ(不図示)に電気的に接続されており、コントローラによって動作制御がなされる。   A U-shaped gate 22 is installed at the center of the installation table 18 so as to straddle the movement path of the stage 14. Each end of the U-shaped gate 22 is fixed to both side surfaces of the installation base 18. A scanner 24 is installed on one side of the gate 22 and a plurality of sensors 26 for detecting the front and rear ends of the photosensitive material 12 are installed on the other side. The scanner 24 and the sensor 26 are respectively fixed to the gate 22 and installed above the moving path of the stage 14. The scanner 24 and the sensor 26 are electrically connected to a controller (not shown), and operation control is performed by the controller.

ステージ14にはスキャナ24による露光開始の際にスキャナ24から感光材料12の被露光面に照射されるレーザ光の光量を検出するための露光面計測センサ28が設置されている。露光面計測センサ28は、ステージ14における感光材料12の設置面の露光開始側の端部にステージ移動方向に直交する方向に延設されている。   The stage 14 is provided with an exposure surface measurement sensor 28 for detecting the amount of laser light emitted from the scanner 24 to the exposed surface of the photosensitive material 12 when the exposure by the scanner 24 is started. The exposure surface measurement sensor 28 is extended in the direction orthogonal to the stage moving direction at the end of the exposure surface side of the installation surface of the photosensitive material 12 in the stage 14.

図2はスキャナ24の概略外観図である。
図2に示すように、スキャナ24は、例えば、2行5列の略マトリクス状に配列された10個の露光ヘッド30を備えている。
各露光ヘッド30は、前記光変調手段として空間変調素子であるDMDを備え、該DMDによって形成された2次元パターンを感光材料12上に投影する。
露光エリア32は各露光ヘッドから射出された2次元パターンが感光材料12上に投影された時の投影エリアを示す。また、ステージ14の移動に伴って感光材料12には露光ヘッド30による帯状の露光済み領域34が形成される。
FIG. 2 is a schematic external view of the scanner 24.
As shown in FIG. 2, the scanner 24 includes, for example, ten exposure heads 30 arranged in a substantially matrix of 2 rows and 5 columns.
Each exposure head 30 includes a DMD that is a spatial modulation element as the light modulation unit, and projects a two-dimensional pattern formed by the DMD onto the photosensitive material 12.
An exposure area 32 indicates a projection area when a two-dimensional pattern emitted from each exposure head is projected onto the photosensitive material 12. As the stage 14 moves, a strip-shaped exposed region 34 by the exposure head 30 is formed on the photosensitive material 12.

<<露光ヘッド>>
図3は露光ヘッド30の概略構成を説明するための概念図であり、図7は露光ヘッド30中を伝播するレーザ光の光路に沿って露光ヘッド30を構成する光学要素を説明するための図である。
露光ヘッド30は、前記光照射手段として光源ユニット60と、DMD照射光学系70と、DMD80と、前記結像手段として結像光学系50と、前記焦点調節手段としてくさび型プリズムペア54とを備えて構成されている。
<< Exposure head >>
3 is a conceptual diagram for explaining a schematic configuration of the exposure head 30, and FIG. 7 is a diagram for explaining optical elements constituting the exposure head 30 along the optical path of laser light propagating through the exposure head 30. As shown in FIG. It is.
The exposure head 30 includes a light source unit 60, a DMD irradiation optical system 70, a DMD 80, an imaging optical system 50 as the imaging means, and a wedge-shaped prism pair 54 as the focusing means. Configured.

光源ユニット60は、図4に示すように、複数(例えば、14個)のLDモジュール40を備えており、各LDモジュール40には、第1マルチモード光ファイバ41の一端が結合されている。第1マルチモード光ファイバ41の他端には、第1マルチモード光ファイバより小さいクラッド径を有する第2マルチモード光ファイバ68が結合されている。   As shown in FIG. 4, the light source unit 60 includes a plurality of (for example, 14) LD modules 40, and one end of a first multimode optical fiber 41 is coupled to each LD module 40. A second multimode optical fiber 68 having a smaller cladding diameter than that of the first multimode optical fiber is coupled to the other end of the first multimode optical fiber 41.

図5に詳しく示すように、第2マルチモード光ファイバ68の第1マルチモード光ファイバ41と反対側の端部は走査方向と直交する方向に沿って7個並べられ、それが2列に配列されてレーザ出射部66が構成されている。   As shown in detail in FIG. 5, seven ends of the second multimode optical fiber 68 opposite to the first multimode optical fiber 41 are arranged along the direction orthogonal to the scanning direction, and they are arranged in two rows. Thus, the laser emitting unit 66 is configured.

第2マルチモード光ファイバ64の端部で構成されるレーザ出射部66は、図5に示すように、表面が平坦な2枚の支持板65に挟み込まれて固定されている。また、第2マルチモード光ファイバ64の光出射端面には、その保護のために、ガラス等の透明な保護板が配置されるのが望ましい。第2マルチモード光ファイバ68の光出射端面は、光密度が高いために集塵しやすく劣化しやすいが、上述のような保護板を配置することにより、端面への塵埃の付着を防止し、また劣化を遅らせることができる。   As shown in FIG. 5, the laser emitting portion 66 constituted by the end portion of the second multimode optical fiber 64 is sandwiched and fixed between two support plates 65 having a flat surface. Moreover, it is desirable that a transparent protective plate such as glass is disposed on the light emitting end face of the second multimode optical fiber 64 for protection. The light exit end face of the second multimode optical fiber 68 is likely to collect dust and easily deteriorate due to its high light density, but by arranging the protective plate as described above, it prevents dust from adhering to the end face, Moreover, deterioration can be delayed.

LDモジュール40は、図6に示す合波レーザ光源によって構成されている。この合波レーザ光源は、ヒートブロック400上に配列固定された複数の(例えば7個)の半導体レーザ素子であるLDチップLD1、LD2、LD3、LD4、LD5、LD6及びLD7と、LDチップLD1〜LD7の各々に対応して設けられたコリメータレンズ401、402、403、404、405、406及び407と、1つの集光レンズ90と、1本の第1マルチモード光ファイバ41とから構成されている。尚、半導体レーザ素子の個数は7個に限定されるものではなく、その他の個数が採用されてもよい。また、上述のような7個のコリメータレンズ401〜407に代えて、それらのレンズが一体化されているコリメータレンズアレイを用いてもよい。   The LD module 40 is composed of a combined laser light source shown in FIG. The combined laser light source includes a plurality of (for example, seven) semiconductor laser elements LD chips LD1, LD2, LD3, LD4, LD5, LD6, and LD7 arranged and fixed on the heat block 400, and LD chips LD1 to LD1. The collimator lenses 401, 402, 403, 404, 405, 406 and 407 provided corresponding to each of the LDs 7, one condensing lens 90, and one first multimode optical fiber 41 are configured. Yes. The number of semiconductor laser elements is not limited to seven, and other numbers may be adopted. Further, instead of the seven collimator lenses 401 to 407 as described above, a collimator lens array in which these lenses are integrated may be used.

LDチップLD1〜LD7は、チップ状の横マルチモード又はシングルモードのGaN系半導体レーザ素子であり、発振波長が全て共通(例えば、405[nm]程度)であり、最大出力も全て共通(例えば、マルチモードレーザでは100[mW]、シングルモードレーザでは30[mW])である。尚、350[nm]〜450[nm]の波長範囲であれば、上記405[nm]以外の発振波長を備える半導体レーザ素子をLDチップLD1〜LD7として用いてもよい。   The LD chips LD1 to LD7 are chip-like lateral multimode or single mode GaN-based semiconductor laser elements, all oscillation wavelengths are common (for example, about 405 [nm]), and maximum outputs are all common (for example, 100 [mW] for a multimode laser and 30 [mW] for a single mode laser. If the wavelength range is 350 [nm] to 450 [nm], semiconductor laser elements having oscillation wavelengths other than the above 405 [nm] may be used as the LD chips LD1 to LD7.

このように、複数のLDチップLD1〜LD7から発せられた各レーザ光を1本の第1マルチモード光ファイバ41に入射させて合波し、さらにファイババンドル状の光源として面積あたりの光量の大きい高輝度な光源を用いることで、光パワーを向上させつつ、エタンデュー(Etendue)を小さくすることができる。
従って、前記結像手段の中央部を含む領域のみにおいて空間光変調手段で空間光変調することで被照明体(光変調手段)側に対する照明領域が小さくなっても、照明NA値を抑えることができる。これにより、結像光学系が被照明体の下流側に配置された場合でもその結像光学系の焦点深度を大きくすることができ、結像される露光画像のピントずれを抑制することができるという効果が得られる。
尚、エタンデューと焦点深度の詳しい関係については特開2005−018013号公報に掲載されている。
In this way, each laser beam emitted from the plurality of LD chips LD1 to LD7 is incident on one first multi-mode optical fiber 41 and multiplexed, and further, the amount of light per area is large as a fiber bundle-shaped light source. By using a high brightness light source, the Etendue can be reduced while improving the optical power.
Accordingly, the spatial light modulation by the spatial light modulator only in the region including the central portion of the imaging means can suppress the illumination NA value even if the illumination area for the illuminated object (light modulator) is reduced. it can. Thereby, even when the imaging optical system is disposed on the downstream side of the illumination object, the depth of focus of the imaging optical system can be increased, and the focus deviation of the formed exposure image can be suppressed. The effect is obtained.
The detailed relationship between etendue and depth of focus is described in Japanese Patent Laid-Open No. 2005-018013.

以上において、複数のLDチップLD1〜LD7を合波することによって光照射手段から出射される光を構成する場合について説明したが、合波せずに、半導体レーザ素子と光ファイバの一端とを1対1で結合し、光ファイバ他端に該光ファイバよりクラッド径の小さい光ファイバを結合してもよい。この場合は、半導体レーザ素子としてマルチモードの高出力レーザを用いることが好ましく、このような高出力レーザを用いることで高輝度な光源を実現できる。   In the above description, the case where the light emitted from the light irradiation unit is configured by combining the plurality of LD chips LD1 to LD7 has been described. However, the semiconductor laser element and one end of the optical fiber are connected to each other without combining. The optical fiber having a smaller cladding diameter than that of the optical fiber may be coupled to the other end of the optical fiber. In this case, it is preferable to use a multimode high-power laser as the semiconductor laser element, and a high-intensity light source can be realized by using such a high-power laser.

DMD照射光学系70は、図7に示すように、コリメータレンズ71と、マイクロフライアイレンズ72及び73と、フィールドレンズ74と、ミラー75と、プリズム76とを備えて構成されている。
コリメータレンズ71は、レーザ光出射部61から出射された複数のレーザ光を概略平行光化するためのレンズである。
マイクロフライアイレンズ72及び73は、微小レンズセルが縦横に多数配置されてなるものであり、DMD80に照射するレーザ光の光量分布を均一化するためのレンズである。マイクロフライアイレンズ72及び73を透過したレーザ光は、フィールドレンズ74を透過してミラー75によって反射され、プリズム76に入射する。
プリズム76は、TIRプリズム(全反射プリズム)であり、ミラー75によって反射されたレーザ光をDMD80に向けて全反射する。DMD80の詳細については、後述する。
尚、DMD照射光学系70は、光量分布の均一化の手段として、ロッドインテグレータを備えることとしてもよい。
As shown in FIG. 7, the DMD irradiation optical system 70 includes a collimator lens 71, micro fly's eye lenses 72 and 73, a field lens 74, a mirror 75, and a prism 76.
The collimator lens 71 is a lens for making the plurality of laser beams emitted from the laser beam emitting unit 61 into a substantially parallel beam.
The micro fly's eye lenses 72 and 73 are formed by arranging a large number of microlens cells vertically and horizontally, and are lenses for uniformizing the light quantity distribution of the laser light applied to the DMD 80. The laser light that has passed through the micro fly's eye lenses 72 and 73 passes through the field lens 74, is reflected by the mirror 75, and enters the prism 76.
The prism 76 is a TIR prism (total reflection prism) and totally reflects the laser light reflected by the mirror 75 toward the DMD 80. Details of the DMD 80 will be described later.
The DMD irradiation optical system 70 may include a rod integrator as a means for uniformizing the light amount distribution.

−結像手段−
−−結像光学系−−
結像光学系50は、前記光照射手段からのレーザ光をDMD80で変調されることによって形成された2次元パターンを、感光材料12上に結像させて投影させるための結像手段である。図7に示すように、結像光学系50は、第1投影レンズ51と、第2投影レンズ52と、マイクロレンズアレイ55と、アパーチャアレイ59とを備えて構成されている。
DMD80を構成する各マイクロミラーによって反射されて形成された2次元パターンは、第1投影レンズ51を透過し、所定倍(例えば、3倍)に拡大されて結像される。ここで、第1投影レンズ51を透過した光束Laは、第1投影レンズ51による結像位置の近傍に配設されたマイクロレンズアレイ55の各マイクロレンズ55aによって個別に集光される。この個別に集光された光束がアパーチャ59aを通過して結像される。マイクロレンズアレイ55及びアパーチャアレイ59を通過して結像された2次元パターンは、第2投影レンズ52を透過して更に所定倍(例えば、1.67倍)に拡大され、くさび型プリズムペア54を透過して感光材料12上に結像される。最終的には、DMD80によって形成された2次元パターンが、第1投影レンズ51と第2投影レンズ52の拡大倍率をそれぞれ乗算した倍率(例えば、3倍×1.67倍=5倍)で拡大されて、感光材料12上に投影される。
なお、結像光学系50は、必ずしも第2投影レンズ52を備えた構成としなくてもよい。
-Imaging means-
-Imaging optics-
The image forming optical system 50 is an image forming means for forming an image on the photosensitive material 12 and projecting a two-dimensional pattern formed by modulating the laser light from the light irradiation means by the DMD 80. As shown in FIG. 7, the imaging optical system 50 includes a first projection lens 51, a second projection lens 52, a microlens array 55, and an aperture array 59.
The two-dimensional pattern formed by being reflected by each micromirror that constitutes the DMD 80 is transmitted through the first projection lens 51 and enlarged and imaged by a predetermined magnification (for example, three times). Here, the light beam La transmitted through the first projection lens 51 is individually condensed by each microlens 55 a of the microlens array 55 disposed in the vicinity of the image forming position by the first projection lens 51. The individually condensed light beams pass through the aperture 59a to form an image. The two-dimensional pattern imaged through the microlens array 55 and the aperture array 59 is transmitted through the second projection lens 52 and further magnified to a predetermined magnification (for example, 1.67 times), and the wedge-shaped prism pair 54. And is imaged on the photosensitive material 12. Finally, the two-dimensional pattern formed by the DMD 80 is magnified at a magnification (for example, 3 × 1.67 × = 5 times) obtained by multiplying the magnifications of the first projection lens 51 and the second projection lens 52, respectively. And projected onto the photosensitive material 12.
Note that the imaging optical system 50 is not necessarily provided with the second projection lens 52.

図8A及び図8Bは、第1投影レンズ51、第2投影レンズ52を構成する投影レンズ300を示した平面図である。
前記露光装置の露光性能を上げるためには、高いレンズ光学性能(像面湾曲、非点隔差、歪曲等を抑制、高いテレセントリック性)を持つ投影レンズが必要となる。しかしながら、投影レンズの全面領域においてレンズ光学性能を向上させようとすると、レンズのコストアップに繋がり、大口径レンズの製造が困難になるという問題がある。一方、投影レンズの任意の領域のレンズ光学性能を高めるために、故意に所定の領域に歪みを持たせて投影レンズを製造することが可能であることが近年の研究で明らかになった。
8A and 8B are plan views showing a projection lens 300 that constitutes the first projection lens 51 and the second projection lens 52. FIG.
In order to improve the exposure performance of the exposure apparatus, a projection lens having high lens optical performance (suppression of field curvature, astigmatism, distortion, etc., high telecentricity) is required. However, an attempt to improve lens optical performance over the entire area of the projection lens leads to an increase in the cost of the lens, which makes it difficult to manufacture a large-diameter lens. On the other hand, in recent years, it has been clarified that it is possible to manufacture a projection lens by intentionally distorting a predetermined region in order to improve lens optical performance in an arbitrary region of the projection lens.

そこで、例えば、投影レンズの周辺部分に歪みを持たせ、中央部の歪みを少なくして製造することによって、投影レンズの中央部を含む領域のレンズ光学性能を高め、更に中央部を含む領域にてDMD80によって形成された2次元パターンを透過させて結像することができる。具体的には、図8Aに示すように、投影レンズ300の周辺領域である領域320に像面湾曲、領域330に歪曲が大きいという特性を持たせ、その分投影レンズ300の中央部を含む領域の歪みを少なくさせて、レンズ光学性能が高くなるようにして製造することができる。   Therefore, for example, by giving distortion to the peripheral portion of the projection lens and reducing the distortion of the central portion, the lens optical performance in the region including the central portion of the projection lens is improved, and further, in the region including the central portion. The two-dimensional pattern formed by the DMD 80 can be transmitted and imaged. Specifically, as shown in FIG. 8A, a region 320 that is a peripheral region of the projection lens 300 is given a characteristic that the field curvature is large, and the region 330 has a large distortion, and the region including the central portion of the projection lens 300 correspondingly. The lens optical performance can be improved by reducing the distortion of the lens.

しかし、例えば図8Aに示すように、DMD80によって形成された2次元パターンが投影レンズ300の領域310に照射されて透過される場合には、2次元パターンの一部が像面湾曲や歪曲が大きい特性を含む領域を透過することになるため、2次元パターンは、投影レンズ300におけるレンズ光学性能の良い領域340に照射される必要がある。
そこで、投影レンズ300のレンズ光学性能の良い領域340を選択して2次元パターンを照射するために、例えば、2次元パターンの光の光軸を中心として、図8Bに示す矢印Aの方向に投影レンズ300を回転させることが好ましい。この回転により、レンズ光学性能の良い領域340と2次元パターンが照射される領域310を一致させ、レンズ光学性能の良い領域340において2次元パターンを透過させることができる。
このように、レンズ光学性能の良い領域において2次元パターンを透過させて結像させることによって、2次元パターンが感光材料12上に投影される際の画質を向上させることができる。
However, as shown in FIG. 8A, for example, when the two-dimensional pattern formed by the DMD 80 is irradiated and transmitted through the region 310 of the projection lens 300, a part of the two-dimensional pattern has a large curvature of field and distortion. Since the region including the characteristic is transmitted, the two-dimensional pattern needs to be irradiated to the region 340 having good lens optical performance in the projection lens 300.
Therefore, in order to select a region 340 with good lens optical performance of the projection lens 300 and irradiate a two-dimensional pattern, for example, projection is performed in the direction of arrow A shown in FIG. 8B around the optical axis of the light of the two-dimensional pattern. It is preferable to rotate the lens 300. By this rotation, the region 340 with good lens optical performance can coincide with the region 310 irradiated with the two-dimensional pattern, and the two-dimensional pattern can be transmitted through the region 340 with good lens optical performance.
In this way, by forming an image by transmitting a two-dimensional pattern in a region having good lens optical performance, the image quality when the two-dimensional pattern is projected onto the photosensitive material 12 can be improved.

また、大口径の投影レンズを用いる場合、投影レンズの全面領域において十分なレンズ光学性能を得ようとすると製造が困難であるが、前記大口径の投影レンズの周辺領域等の任意の領域にレンズ歪みを持たせて、中央部を含む領域のレンズ歪みを少なくすることによって、高いレンズ光学性能を持たせることができる。このような大口径の投影レンズを用いることによって、露光面積が拡大し、露光速度を速くすることができる。   In addition, when a large-diameter projection lens is used, it is difficult to manufacture if an attempt is made to obtain sufficient lens optical performance in the entire area of the projection lens, but the lens can be placed in an arbitrary area such as a peripheral area of the large-diameter projection lens. By imparting distortion and reducing lens distortion in the region including the central portion, high lens optical performance can be obtained. By using such a large-diameter projection lens, the exposure area can be expanded and the exposure speed can be increased.

尚、DMD80から反射された光を、投影レンズの中央部を含む一部の領域において結像させるために、DMD80によって形成される2次元パターンは、図8A及び図8Bに示す領域310のように、長辺の長さが短辺の長さより2倍以上長い略矩形状のパターンであることが望ましい。これについては後述のDMDに関する説明において詳述する。   In order to form an image of the light reflected from the DMD 80 in a partial region including the central portion of the projection lens, a two-dimensional pattern formed by the DMD 80 is like a region 310 shown in FIGS. 8A and 8B. It is desirable that the pattern has a substantially rectangular pattern in which the length of the long side is twice or more than the length of the short side. This will be described in detail in the description of DMD described later.

投影レンズ300のレンズ光学性能の良い領域340に2次元パターンを選択的に照射させるために、結像光学系50は2次元パターンの光の光軸を中心として回転可能な構成であることが好ましい。
図9の上図は、結像光学系50を備える鏡筒400の概略側面断面図であり、図9の下図は、上図における矢印Bの方向から見た鏡筒400の概略平面図である。
鏡筒400は側面につば状のフランジ410を備えている。フランジ410にはネジ貫通孔412がα[°]毎に形成されている。ブラケット420にはネジ貫通孔412に対応させて雌ネジ孔(不図示)が同じくα[°]毎に形成され、ネジ(不図示)をフランジ410のネジ貫通孔412に挿通して、ブラケット420の対応する雌ネジ孔に螺合させることにより、フランジ410とブラケット420が固定される。この構造により、鏡筒400は第1投影レンズ51及び第2投影レンズ52の光軸を中心としてα[°]ずつ回転させて任意の角度位置で固定させることができる。またネジによってフランジ410とブラケット420を固定させる際は、ネジ貫通孔412のうち、全てのネジ貫通孔412にネジを挿通してブラケット420の対応する雌ネジ孔に螺合させてもよいし、例えば対角線上に位置する2箇所のネジ貫通孔412にネジを挿通してブラケット420の対応する雌ネジ孔に螺合させてもよい。
In order to selectively irradiate the two-dimensional pattern on the region 340 with good lens optical performance of the projection lens 300, the imaging optical system 50 is preferably configured to be rotatable about the optical axis of the light of the two-dimensional pattern. .
9 is a schematic side sectional view of a lens barrel 400 including the imaging optical system 50, and a lower diagram in FIG. 9 is a schematic plan view of the lens barrel 400 viewed from the direction of arrow B in the upper diagram. .
The lens barrel 400 has a flange-like flange 410 on the side surface. A screw through-hole 412 is formed in the flange 410 for each α [°]. A female screw hole (not shown) is also formed in the bracket 420 corresponding to the screw through hole 412 for each α [°], and a screw (not shown) is inserted into the screw through hole 412 of the flange 410 so that the bracket 420 The flange 410 and the bracket 420 are fixed by screwing into the corresponding female screw holes. With this structure, the lens barrel 400 can be fixed at an arbitrary angular position by rotating by α [°] around the optical axes of the first projection lens 51 and the second projection lens 52. Further, when fixing the flange 410 and the bracket 420 with screws, the screws may be inserted into all the screw through holes 412 of the screw through holes 412 and screwed into the corresponding female screw holes of the bracket 420, For example, a screw may be inserted into two screw through holes 412 located on the diagonal line and screwed into corresponding female screw holes of the bracket 420.

鏡筒400が回転されると、第1投影レンズ51及び第2投影レンズ52が共に回転する。そして、感光材料12上に投影された2次元パターンの焦点、画質(解像度)等の露光性能を計測しながら、最も良い露光性能を示す回転位置でフランジ410とブラケット420を固定する。   When the lens barrel 400 is rotated, both the first projection lens 51 and the second projection lens 52 are rotated. Then, the flange 410 and the bracket 420 are fixed at the rotational position showing the best exposure performance while measuring the exposure performance such as the focus and image quality (resolution) of the two-dimensional pattern projected on the photosensitive material 12.

このように、鏡筒400を2次元パターンの光の光軸を中心に回転させることによって第1投影レンズ51及び第2投影レンズ52を回転させ、第1投影レンズ51及び第2投影レンズ52を構成する投影レンズにおいてレンズ光学性能の良い領域と、光変調手段により形成された2次元パターンの照射領域を一致させることができる。   In this way, the first projection lens 51 and the second projection lens 52 are rotated by rotating the lens barrel 400 around the optical axis of the light of the two-dimensional pattern, and the first projection lens 51 and the second projection lens 52 are rotated. In the constituting projection lens, the region with good lens optical performance can be matched with the irradiation region of the two-dimensional pattern formed by the light modulation means.

なお、第1投影レンズ51及び第2投影レンズ52を構成する投影レンズは、各投影レンズ毎に独立して回転可能なように構成してもよい。
また、鏡筒400は2次元パターンの光軸に垂直方向に移動可能なように構成してもよく、2次元パターンの光軸の垂直方向に、第1投影レンズ51及び第2投影レンズ52を構成する各投影レンズが独立して移動可能なように構成してもよい。
In addition, you may comprise the projection lens which comprises the 1st projection lens 51 and the 2nd projection lens 52 so that it can rotate independently for every projection lens.
The lens barrel 400 may be configured to be movable in the direction perpendicular to the optical axis of the two-dimensional pattern, and the first projection lens 51 and the second projection lens 52 may be arranged in the direction perpendicular to the optical axis of the two-dimensional pattern. You may comprise so that each projection lens to comprise can be moved independently.

−光変調手段−
前記光変調手段としては、パターン情報(画像信号)に基づいて2次元パターンの光を形成可能である限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、n個(ただし、nは1以上の自然数)の2次元状に配列された描素部を有するものが挙げられ、これらの中でも空間光変調素子が好ましく、具体的には、DMDが好ましい。
以下、前記光変調手段として、DMDを用いた場合について説明する。
-Light modulation means-
The light modulation means is not particularly limited as long as it can form two-dimensional pattern light based on pattern information (image signal), and can be appropriately selected according to the purpose. , N is a natural number greater than or equal to 1), and those having a picture element portion arranged in a two-dimensional shape. Among these, a spatial light modulator is preferable, and specifically, DMD is preferable.
Hereinafter, the case where DMD is used as the light modulation means will be described.

DMD80の概略斜視図を図10に示す。DMD80は、DMD照射光学系70から入射された光を、パターン情報(画像信号)に基づいて空間光変調し、2次元パターンを形成する空間光変調手段である。
DMD80は、n個(例えば、1024×757個)の2次元状に多数配置された描素部(画素)としてのマイクロミラー81を有している。更にDMD80は、データ処理部とミラー駆動制御部を備えたコントローラ(不図示)に接続されている。
データ処理部は、パターン情報(画像信号)に基づいてDMD80に配されている各マイクロミラー81の駆動を制御するための制御信号を生成する。
ミラー駆動制御部は、データ処理部によって生成された制御信号に基づいて、DMD80の各マイクロミラー81の反射面の角度を制御する。
前記データ処理部及び前記ミラー駆動制御部によって、マイクロミラー81の反射面が所定の角度に傾斜され、DMD81に照射された光のうち、所定の角度に傾斜されたマイクロミラー81によって反射された光が2次元パターンとなって結像光学系50に入射される。
A schematic perspective view of the DMD 80 is shown in FIG. The DMD 80 is a spatial light modulation unit that spatially modulates light incident from the DMD irradiation optical system 70 based on pattern information (image signal) to form a two-dimensional pattern.
The DMD 80 has micromirrors 81 as pixel parts (pixels) arranged in a number of n (for example, 1024 × 757) two-dimensionally. Further, the DMD 80 is connected to a controller (not shown) having a data processing unit and a mirror drive control unit.
The data processing unit generates a control signal for controlling the driving of each micromirror 81 arranged in the DMD 80 based on the pattern information (image signal).
The mirror drive control unit controls the angle of the reflection surface of each micromirror 81 of the DMD 80 based on the control signal generated by the data processing unit.
The light reflected by the micromirror 81 inclined at a predetermined angle out of the light irradiated on the DMD 81 by the data processing unit and the mirror drive control unit being inclined at a predetermined angle by the reflection surface of the micromirror 81. Becomes a two-dimensional pattern and enters the imaging optical system 50.

ところで、上述のとおり、第1投影レンズ51及び第2投影レンズ52は、第1投影レンズ51及び第2投影レンズ52を構成する投影レンズの周辺部分に歪みを持たせ、中央部の歪みを少なくして製造することによって、上記投影レンズの中央部を含む領域のレンズ光学性能を高め、その中央部を含む領域にて2次元パターンを透過させて結像するものである。このように2次元パターンを投影レンズの中央部を含む一部の領域において結像させるために、DMD80によって形成される2次元パターンは、図8Bに示す領域310のように、長辺の長さが短辺の長さより2倍以上長い略矩形状のパターンであることが好ましい。そのような略矩形状の2次元パターンを形成するために、DMD80の一部のマイクロミラー81を駆動制御して、辺の長さが短辺の長さより2倍以上長い略矩形状2次元パターンを形成することが好ましい。   By the way, as described above, the first projection lens 51 and the second projection lens 52 give distortion to the peripheral portions of the projection lenses constituting the first projection lens 51 and the second projection lens 52, and reduce distortion at the center. Thus, the lens optical performance of the region including the central portion of the projection lens is improved, and the two-dimensional pattern is transmitted through the region including the central portion to form an image. In order to image the two-dimensional pattern in a part of the region including the central portion of the projection lens in this way, the two-dimensional pattern formed by the DMD 80 has a long side length like a region 310 shown in FIG. 8B. Is a substantially rectangular pattern that is at least twice as long as the length of the short side. In order to form such a substantially rectangular two-dimensional pattern, a part of the micromirrors 81 of the DMD 80 is driven and controlled so that the length of the side is two times longer than the length of the short side. Is preferably formed.

略矩形状の2次元パターンについて、図11A及び図11Bを用いて詳しく説明する。
DMD80には、例えば、露光する際の主走査方向、即ち行方向に1024画素、更に露光する際の副走査方向、即ち列方向に756画素のマイクロミラー81が2次元状に配置されているが、列方向に756画素並ぶマイクロミラー81のうち、一部のマイクロミラー81(例えば、240画素)を使用して、1024×240画素の2次元パターンを形成させる。
ここで、列方向に並ぶマイクロミラー81のうち、使用するマイクロミラー81の数は、行方向に並ぶマイクロミラー81の数の1/2〜1/5程度の数であることが望ましい。
The substantially rectangular two-dimensional pattern will be described in detail with reference to FIGS. 11A and 11B.
In the DMD 80, for example, a micromirror 81 having 1024 pixels in the main scanning direction at the time of exposure, that is, the row direction, and 756 pixels in the sub-scanning direction at the time of exposure, that is, the column direction, is two-dimensionally arranged. A 1024 × 240 pixel two-dimensional pattern is formed by using some of the micromirrors 81 (for example, 240 pixels) among the 756 pixels arranged in the column direction.
Here, among the micromirrors 81 arranged in the column direction, the number of micromirrors 81 to be used is desirably about 1/2 to 1/5 of the number of micromirrors 81 arranged in the row direction.

また、DMD80を構成する全てのマイクロミラーに対して、図11Aに示す領域80Cのように、DMD80の中央部を占めるマイクロミラーを使用してもよく、図11Bに示す領域80Tのように、DMD80の端部付近を占めるマイクロミラーを使用してもよい。
さらに、使用しているマイクロミラーに欠陥が生じた場合は、欠陥が発生していないマイクロミラーの領域を使用するなどして、状況に応じて使用するマイクロミラーの領域を適宜変更してもよい。
Further, for all the micromirrors constituting the DMD 80, a micromirror that occupies the center of the DMD 80 may be used as in the region 80C shown in FIG. 11A, and the DMD 80 may be used as in the region 80T shown in FIG. 11B. You may use the micromirror which occupies the edge part vicinity of.
Furthermore, when a defect occurs in the micromirror being used, the micromirror region to be used may be appropriately changed depending on the situation, for example, by using a micromirror region in which no defect has occurred. .

このように、DMD80を構成するマイクロミラー81において、列方向に並ぶマイクロミラー81のうち一部のマイクロミラー81を使用することによって、長辺の長さが短辺の長さより長い略矩形状の2次元パターンを形成することができ、第1投影レンズ51及び第2投影レンズ52を構成する投影レンズの高いレンズ光学性能を持つ領域のみに2次元パターンを照射させることが容易となる。
また、DMD80のデータ処理速度は、制御するマイクロミラー81の数(画素数)に比例するため、列方向に並ぶマイクロミラー81のうち一部のマイクロミラー81を使用することによって、データ処理速度を速くすることができ、露光速度を速くすることができる。
さらに、DMD80によって形成される2次元パターンを小さくすることによって、マイクロミラー81にそれぞれ対応するマイクロレンズがアレイ状に配されてなるマイクロレンズアレイ55を小型化することができる。前記マイクロレンズアレイは高価な光学部材であるため、露光装置のコストを削減することができる。
In this way, in the micromirror 81 constituting the DMD 80, by using a part of the micromirrors 81 arranged in the column direction, the length of the long side is substantially rectangular, which is longer than the length of the short side. A two-dimensional pattern can be formed, and it becomes easy to irradiate only the region having high lens optical performance of the projection lens constituting the first projection lens 51 and the second projection lens 52.
In addition, since the data processing speed of the DMD 80 is proportional to the number of micromirrors 81 to be controlled (number of pixels), the data processing speed can be reduced by using some of the micromirrors 81 arranged in the column direction. The exposure speed can be increased.
Further, by reducing the two-dimensional pattern formed by the DMD 80, the microlens array 55 in which the microlenses corresponding to the micromirrors 81 are arranged in an array can be reduced in size. Since the microlens array is an expensive optical member, the cost of the exposure apparatus can be reduced.

なお、長辺の長さが短辺の長さより長い略矩形状の2次元パターンを形成するために、DMD80において列方向に並ぶマイクロミラー81のうち、一部のマイクロミラー81を用いることとして説明したが、予め長辺方向のマイクロミラーの数が短辺方向のマイクロミラーの数より2倍以上多いDMDを用いてもよい。   Note that, in order to form a substantially rectangular two-dimensional pattern in which the length of the long side is longer than the length of the short side, a part of the micromirrors 81 arranged in the column direction in the DMD 80 is used. However, a DMD in which the number of micromirrors in the long side direction is twice or more than the number of micromirrors in the short side direction may be used in advance.

−焦点調節手段−
−−くさび型プリズムペア−−
図12は、くさび型プリズムペア54の構成を示す側面図であり、図13はくさび型プリズムペア54を示す概略斜視図である。
くさび型プリズムペア54は、2次元パターンの光の光路長を変更して、2次元パターンを結像させる際の焦点を調節するための焦点調節手段である。
くさび型プリズムペア54は、くさび型プリズム540A及び540Bと、くさび型プリズム540A及び540Bをそれぞれ固定するベースプリズムホルダ541A及び541Bと、ベースプリズムホルダ541Aの両端に配設されたスライドベース542A及びスライドベース542A上を移動するスライダ542Bを含むスライド部545と、スライド部545を移動させる駆動部546とを備えて構成されている。くさび型プリズムペア54については、図13に示すように、例えばガラスやアクリル等の透明材料からなる平行平板を、この平行平板の平行平面H11及びH22に対して斜めに傾く平面Hkに沿って切断することによって得られる一対のくさび型プリズムA及びBを上記くさび型プリズム540A及び540Bとして使用することができる。
-Focus adjustment means-
--Wedge type prism pair--
FIG. 12 is a side view showing the configuration of the wedge-shaped prism pair 54, and FIG. 13 is a schematic perspective view showing the wedge-shaped prism pair 54.
The wedge-shaped prism pair 54 is a focus adjusting means for adjusting the focal point when the two-dimensional pattern is imaged by changing the optical path length of the light of the two-dimensional pattern.
The wedge prism pair 54 includes wedge prisms 540A and 540B, base prism holders 541A and 541B for fixing the wedge prisms 540A and 540B, and a slide base 542A and a slide base disposed at both ends of the base prism holder 541A. The slide unit 545 includes a slider 542 </ b> B that moves on 542 </ b> A, and a drive unit 546 that moves the slide unit 545. For the wedge-shaped prism pair 54, as shown in FIG. 13, a parallel flat plate made of a transparent material such as glass or acrylic is cut along a plane Hk that is inclined with respect to the parallel planes H11 and H22 of the parallel plate. A pair of wedge prisms A and B obtained by doing so can be used as the wedge prisms 540A and 540B.

図12に示したくさび型プリズム540A及び540Bは、幅t(例えば、10[um])の空気層550を介してベースプリズムホルダ541A及び541Bに固定されている。また、スライドベース542A及びスライダ542Bとの組み合わせによってリニアスライドが可能であり、駆動部546がくさび型プリズム540A及び540Bの互いの位置を空気層550の幅tが変化しないようにスライド部545を1方向(図中矢印uの方向)に相対的に移動させる。このスライド部545の移動により、くさび型プリズムペア54の2次元パターンの光軸方向の厚さ(平行平面板の厚さから空気層550の幅tを除いた厚さ)が変更される。つまり、くさび型プリズムペア54によって2次元パターンを形成する光の光路長が変更されることになる。   The wedge-shaped prisms 540A and 540B shown in FIG. 12 are fixed to the base prism holders 541A and 541B via an air layer 550 having a width t (for example, 10 [um]). In addition, linear sliding is possible by a combination of the slide base 542A and the slider 542B, and the drive unit 546 moves the positions of the wedge prisms 540A and 540B to each other so that the width t of the air layer 550 does not change. Move relatively in the direction (direction of arrow u in the figure). By the movement of the slide portion 545, the thickness of the wedge-shaped prism pair 54 in the optical axis direction (the thickness obtained by removing the width t of the air layer 550 from the thickness of the plane parallel plate) is changed. That is, the optical path length of the light forming the two-dimensional pattern is changed by the wedge-shaped prism pair 54.

このように、第2投影レンズ52と感光材料12の間にくさび型プリズムペア54を配設することによって、2次元パターンの光の光路長を簡単に調節することができる。
したがって、従来に比べ、第2投影レンズ52によって結像された2次元パターンを感光材料12上に結像する際の焦点調整を、簡単に、かつ短時間で行うことができる。
As described above, by arranging the wedge-shaped prism pair 54 between the second projection lens 52 and the photosensitive material 12, the optical path length of the light of the two-dimensional pattern can be easily adjusted.
Therefore, as compared with the prior art, the focus adjustment when the two-dimensional pattern imaged by the second projection lens 52 is imaged on the photosensitive material 12 can be performed easily and in a short time.

なお、図14に示すように、くさび型プリズムペア54を、マイクロレンズアレイ55と第2投影レンズ52との間に配置することにより、2次元パターンの光の光路長を変更して、2次元パターンの焦点を調節してもよい。   As shown in FIG. 14, the wedge-shaped prism pair 54 is disposed between the microlens array 55 and the second projection lens 52, thereby changing the optical path length of the light of the two-dimensional pattern. The focus of the pattern may be adjusted.

前記焦点調節手段として、くさび型プリズムペア54を用いた場合を説明したが、前記焦点調節手段はこれに限定されるものではなく、結像光学系50を構成する投影レンズの位置を変化させずに焦点調節を行う高ビーム位置精度の焦点調節手段であればよい。   Although the case where the wedge-shaped prism pair 54 is used as the focus adjusting means has been described, the focus adjusting means is not limited to this, and the position of the projection lens constituting the imaging optical system 50 is not changed. Any focus adjustment means with high beam position accuracy for performing focus adjustment may be used.

−−結像光学系を構成する光学部材及びピエゾ素子による焦点調節手段−−
前記焦点調節手段としては、例えば、図15A、図15B、図16A、及び図16Bに示すように、結像光学系を構成する光学部材であるマイクロレンズアレイ55を、ピエゾ素子600を用いて焦点方向(図中矢印Xの方向)に移動させることにより焦点調整を行ってもよい。
ピエゾ素子600を用いることによって、マイクロレンズアレイ55の焦点方向と垂直な方向への変位を抑えつつ、焦点方向への微小移動を行うことができるため、安定したビーム位置精度を保ちながら焦点調整を行うことができる。
--Focus adjustment means using optical member and piezo element constituting imaging optical system--
As the focus adjusting means, for example, as shown in FIGS. 15A, 15B, 16A, and 16B, a microlens array 55 that is an optical member constituting an imaging optical system is focused using a piezo element 600. Focus adjustment may be performed by moving in the direction (the direction of arrow X in the figure).
By using the piezo element 600, it is possible to perform minute movement in the focus direction while suppressing displacement in the direction perpendicular to the focus direction of the microlens array 55, so that focus adjustment is performed while maintaining stable beam position accuracy. It can be carried out.

<露光方法>
上述した露光装置10による露光方法について説明する。
図17Aは感光材料12とDMD80の位置関係を概略的に示した斜視図である。なお、図2に示すように、露光装置10はDMD80を有する露光ヘッド30を10個備えることとして説明したが、図17A及び図17Bでは簡略化して1個のDMD80にのみ着目して図示及び説明する。
<Exposure method>
An exposure method using the above-described exposure apparatus 10 will be described.
FIG. 17A is a perspective view schematically showing the positional relationship between the photosensitive material 12 and the DMD 80. As shown in FIG. 2, the exposure apparatus 10 has been described as including ten exposure heads 30 having DMDs 80. However, in FIGS. 17A and 17B, the exposure apparatus 10 is simplified and shown and described with a focus on only one DMD 80. To do.

図17Aに示すように、DMD80の全てのマイクロミラー81に対して領域80Tを占めるマイクロミラー81を使用する場合、領域80Tの短辺方向を感光材料12のうねり方向に向けて感光材料12をそのうねり方向に移動させながら(領域80Tの短辺方向を感光材料12の移動方向に向ける)感光材料12に対して露光を行うことが好ましい。すなわち、領域80Tにより形成され、前記感光材料の被露光面上に結像される略矩形状の露光領域が、その短辺方向と前記感光層のうねり方向とが略平行となるように露光を行うことが好ましい。
図17Aにおいて、露光エリア81はDMD80の全てのマイクロミラー81を使用して2次元パターンを形成したときの露光エリアであり、露光エリア81TはDMD81において領域80Tを占めるマイクロミラー81を使用して2次元パターンを形成したときの露光エリアである。
As shown in FIG. 17A, when the micromirror 81 occupying the region 80T is used for all the micromirrors 81 of the DMD 80, the photosensitive material 12 is placed with the short side direction of the region 80T facing the waviness direction of the photosensitive material 12. It is preferable to expose the photosensitive material 12 while moving it in the waviness direction (with the short side direction of the region 80T directed to the moving direction of the photosensitive material 12). That is, the exposure is performed so that the substantially rectangular exposure region formed by the region 80T and imaged on the exposed surface of the photosensitive material is substantially parallel to the short side direction and the waviness direction of the photosensitive layer. Preferably it is done.
In FIG. 17A, an exposure area 81 is an exposure area when a two-dimensional pattern is formed using all the micromirrors 81 of the DMD 80, and the exposure area 81T is 2 using the micromirror 81 that occupies the region 80T in the DMD81. This is an exposure area when a dimensional pattern is formed.

図17Bは、図17Aにおいて破線の枠Pで囲んだ部分を拡大して示した側面図である。図17Bに示すように、DMD80の全てのマイクロミラー81を使用して2次元パターンを形成した場合、露光エリア81の感光材料12に対する最大深度差(露光エリア81内における、感光材料12表面の最大高低差)はd2となる。
一方、DMD80において領域80Tを占めるマイクロミラー81を使用した場合、露光エリア81Tの感光材料12に対する最大深度差はd1となる。
図17Bに示すように、d1<d2であり、深度差が小さいほうが深度差が大きい場合より2次元パターン内における感光材料12のうねりの度合いが小さい。従って、2次元パターンの焦点位置をより適切な位置に合わせることができる。
FIG. 17B is an enlarged side view showing a portion surrounded by a broken-line frame P in FIG. 17A. As shown in FIG. 17B, when a two-dimensional pattern is formed using all the micromirrors 81 of the DMD 80, the maximum depth difference with respect to the photosensitive material 12 in the exposure area 81 (the maximum of the surface of the photosensitive material 12 in the exposure area 81). The difference in height is d2.
On the other hand, when the micromirror 81 occupying the region 80T is used in the DMD 80, the maximum depth difference with respect to the photosensitive material 12 in the exposure area 81T is d1.
As shown in FIG. 17B, d1 <d2, and the smaller the depth difference, the smaller the degree of undulation of the photosensitive material 12 in the two-dimensional pattern than when the depth difference is large. Therefore, the focal position of the two-dimensional pattern can be adjusted to a more appropriate position.

また、1フレームの露光が終了し、ステージ14が走査方向に移動することによって感光材料12が移動すると、露光エリア81Tの位置が変化し、露光エリア81T内における感光材料12のうねりの度合いが変化するため、焦点位置も変化するが、くさび型プリズムペア54によって焦点調節がなされることにより、焦点位置は即座に調節される。従って、感光材料12のうねりに対応した長焦点深度を有する露光を行うことができる。   Further, when the exposure of one frame is completed and the photosensitive material 12 is moved by moving the stage 14 in the scanning direction, the position of the exposure area 81T is changed, and the degree of undulation of the photosensitive material 12 in the exposure area 81T is changed. Therefore, although the focal position also changes, the focal position is adjusted immediately by the focus adjustment by the wedge prism pair 54. Therefore, exposure having a long focal depth corresponding to the undulation of the photosensitive material 12 can be performed.

このように、DMD80を構成するマイクロミラー81において、列方向に並ぶマイクロミラー81のうち一部のマイクロミラー81を使用して、略矩形状の2次元パターンを形成させたとき、2次元パターンの短辺方向を感光材料12のうねり方向に向けて露光を行うことにより、露光エリア81T内における感光材料12のうねりの度合いを少なくすることができる。
このため、2次元パターンの焦点位置を適切な位置に合わせることができ、露光装置10の焦点深度を従来の露光装置より見かけ上大きくすることができ、この結果、露光画質を向上させることができ、高精細なパターン露光が行われる。
Thus, in the micromirrors 81 constituting the DMD 80, when a part of the micromirrors 81 arranged in the column direction is used to form a substantially rectangular two-dimensional pattern, the two-dimensional pattern By performing exposure with the short side direction facing the waviness direction of the photosensitive material 12, the degree of waviness of the photosensitive material 12 in the exposure area 81T can be reduced.
For this reason, the focal position of the two-dimensional pattern can be adjusted to an appropriate position, and the focal depth of the exposure apparatus 10 can be apparently increased as compared with the conventional exposure apparatus, and as a result, the exposure image quality can be improved. High-definition pattern exposure is performed.

なお、図2に示すように、実際には露光ヘッド30はDMD80の画素列方向が走査方向と所定の設定傾斜角度をなすようにスキャナ24に取り付けられている。従って、各露光ヘッド30による露光エリア32(図17における露光エリア81Tに相当)は走査方向に対して傾斜した矩形状のエリアとなる。
露光エリア81T内の感光材料12のうねりによる影響の度合いを最小限に抑えるためには、露光エリア81Tの短辺方向と感光材料12のうねり方向を完全に一致させることが理想であるが、露光エリア81Tが上記所定の設定傾斜角度をなしていても、露光エリア81Tの短辺方向が長辺方向より感光材料12のうねり方向に向いていれば、すなわち、前記感光材料の被露光面上に結像される略矩形状の露光領域が、その短辺方向と前記感光層のうねり方向とがなす角が、その長辺方向と前記感光層のうねり方向とがなす角よりも小さくなるように向いていればよい。
As shown in FIG. 2, the exposure head 30 is actually attached to the scanner 24 so that the pixel row direction of the DMD 80 forms a predetermined set inclination angle with the scanning direction. Therefore, the exposure area 32 (corresponding to the exposure area 81T in FIG. 17) by each exposure head 30 is a rectangular area inclined with respect to the scanning direction.
In order to minimize the degree of influence due to the waviness of the photosensitive material 12 in the exposure area 81T, it is ideal that the short side direction of the exposure area 81T and the waviness direction of the photosensitive material 12 are perfectly matched. Even if the area 81T has the predetermined set inclination angle, if the short side direction of the exposure area 81T is oriented in the waviness direction of the photosensitive material 12 from the long side direction, that is, on the exposed surface of the photosensitive material. The angle formed by the short side direction and the waviness direction of the photosensitive layer in the substantially rectangular exposure region to be imaged is smaller than the angle formed by the long side direction and the waviness direction of the photosensitive layer. It only has to be suitable.

以上説明したとおり、本発明のパターン形成方法における露光は、結像手段を構成する投影レンズの周辺領域に歪みを持たせ、その分中央部を含む領域の歪みを少なくして、該中央部を含む領域の光学性能を高めた結像手段を備えた露光装置を用いることにより、光学性能の良い領域において空間光変調された光を結像することによって、該空間光変調された光が、感光材料上に投影される際の画質を向上させることができる。   As described above, the exposure in the pattern forming method of the present invention imparts distortion to the peripheral area of the projection lens constituting the imaging means, and reduces the distortion of the area including the central part, thereby reducing the central part. By using an exposure apparatus equipped with an imaging means that improves the optical performance of the included area, the spatially light-modulated light is imaged by imaging the spatially light-modulated light in the area with good optical performance. The image quality when projected on the material can be improved.

また、投影レンズの周辺領域等の任意の領域にレンズ歪みを持たせて、中央部を含む領域のレンズ歪みを少なくすることによって、大口径の投影レンズでも高いレンズ光学性能を持たせることができ、これにより、露光面積が拡大し、露光速度が速くなる。   Also, by giving lens distortion to any area such as the peripheral area of the projection lens and reducing the lens distortion in the area including the central part, even a large aperture projection lens can have high lens optical performance. This increases the exposure area and increases the exposure speed.

そして、前記露光装置における結像手段が、空間光変調された露光光の光軸を中心に回転可能、又は光軸に対して垂直方向に移動可能であることにより、結像手段を構成する投影レンズの光学性能の良い領域に空間光変調された光が選択的に照射される。   The image forming means in the exposure apparatus can rotate around the optical axis of the spatial light modulated exposure light, or can move in the direction perpendicular to the optical axis, thereby forming a projection constituting the image forming means. The region with good optical performance of the lens is selectively irradiated with light subjected to spatial light modulation.

また、投影レンズの周辺領域等にレンズ歪みを持たせて中央部を含むレンズ性能のよい領域のみを使用することにより、前記投影レンズの全面領域を使用する場合に比べて焦点調節手段の光学系を小型化することができ、その結果、高精度な安定保持及び移動機構を実現した露光装置により高精細な露光が行われる。更に、空間変調された露光光の光位置を安定に保ちながら高精度に焦点位置が調整される。   Further, by using only a region having a good lens performance including the central portion by giving lens distortion to the peripheral region or the like of the projection lens, the optical system of the focus adjusting means can be used compared to the case where the entire region of the projection lens is used. As a result, high-definition exposure is performed by an exposure apparatus that realizes a highly accurate stable holding and moving mechanism. Further, the focal position is adjusted with high accuracy while keeping the optical position of the spatially modulated exposure light stable.

また、空間光変調された光をマイクロレンズアレイを通して小さなスポットに集光する場合において、高価なマイクロレンズアレイを小型化できるので、よりピッチ精度が高く低コストなマイクロレンズアレイを採用することができる。更に、焦点調整手段としてピエゾ素子を用いることによって、焦点方向に対して垂直な方向への微小変位を抑制でき、高ビーム位置精度を保ちながら、高精度に焦点位置を調整することができる。   In addition, when concentrating spatially light-modulated light on a small spot through the microlens array, the expensive microlens array can be reduced in size, so that a microlens array with higher pitch accuracy and lower cost can be employed. . Furthermore, by using a piezo element as the focus adjustment means, it is possible to suppress a minute displacement in a direction perpendicular to the focus direction, and to adjust the focus position with high accuracy while maintaining high beam position accuracy.

また、複数の半導体レーザ素子から発せられた各レーザ光を1本の光ファイバに入射させて合波し、さらにファイババンドル状の光源として面積あたりの光量の大きい高輝度な光照射手段を用いることにより、光パワーを向上させつつ、エタンデュー(Etendue)を小さくすることができ、DMD側の開口数(NA)を小さくすることができる。これにより、前記結像手段の中央部を含む略矩計状の領域のみにおいて空間光変調手段で空間光変調する場合であっても、DMD側の開口数を小さくでき、更に、結像光学系が被照明体の下流側に配置された場合においても、その結像光学系の焦点深度を大きくすることができ、結像される露光画像のピントずれが抑制される。   Also, each laser beam emitted from a plurality of semiconductor laser elements is incident on one optical fiber and combined, and a high-intensity light irradiation means with a large light amount per area is used as a fiber bundle light source. Thus, the Etendue can be reduced while improving the optical power, and the numerical aperture (NA) on the DMD side can be reduced. Thus, the numerical aperture on the DMD side can be reduced even when spatial light modulation is performed by the spatial light modulation means only in a substantially rectangular area including the central portion of the imaging means, and the imaging optical system Even when is disposed downstream of the illumination object, the depth of focus of the imaging optical system can be increased, and the focus deviation of the imaged exposure image is suppressed.

更に、前記結像手段が長辺の長さが短辺の長さの2倍以上の略矩形状の領域において空間光変調された露光光を結像し感光材料上に投影させる際に、前記感光材料の被露光面上に結像される略矩形状の露光領域が、その短辺方向と前記感光層のうねり方向とがなす角が、その長辺方向と前記感光層のうねり方向とがなす角よりも小さくなるように露光を行うことにより、投影された空間光変調された露光光の投影エリア内における感光材料のうねりの度合いを少なくすることができ、空間光変調された光の焦点位置を調整することができる。これにより、焦点深度を従来の露光装置より見かけ上大きくすることができ、解像度(露光画質)を向上させることができる。   Further, when the imaging means forms an image of the exposure light that has been spatially light-modulated in a substantially rectangular region whose long side is twice or more the length of the short side and projects it onto the photosensitive material, The angle between the short side direction and the waviness direction of the photosensitive layer of the substantially rectangular exposure region imaged on the exposed surface of the photosensitive material is the long side direction and the waviness direction of the photosensitive layer. By performing exposure so that the angle is smaller than the angle formed, the degree of swell of the photosensitive material in the projection area of the projected spatial light modulated exposure light can be reduced, and the focus of the spatial light modulated light is reduced. The position can be adjusted. Thereby, the depth of focus can be apparently increased as compared with the conventional exposure apparatus, and the resolution (exposure image quality) can be improved.

<積層体>
前記露光の対象としては、支持体上に感光層を有するパターン形成材料における該感光層を、被処理基体上に積層してなる積層体における感光層である限り、特に制限はなく、目的に応じて適宜選択することができる。前記積層体としては、例えば、前記パターン形成材料における感光層以外の他の層が積層されてなるものであってもよい。
<Laminated body>
The subject of the exposure is not particularly limited as long as it is a photosensitive layer in a laminate formed by laminating the photosensitive layer in a pattern forming material having a photosensitive layer on a support on a substrate to be processed. Can be selected as appropriate. As the laminate, for example, a layer other than the photosensitive layer in the pattern forming material may be laminated.

<パターン形成材料>
前記パターン形成材料としては、支持体上に感光層を有する限り、特に制限はなく、目的に応じて適宜選択することができる。
<Pattern forming material>
The pattern forming material is not particularly limited as long as it has a photosensitive layer on a support, and can be appropriately selected according to the purpose.

前記感光層としては、特に制限はなく、公知のパターン形成材料の中から適宜選択することができるが、例えば、バインダーと、重合性化合物と、光重合開始剤とを含み、適宜選択したその他の成分を含むものが好ましい。
また、感光層の積層数としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、1層であってもよく、2層以上であってもよい。
The photosensitive layer is not particularly limited and can be appropriately selected from known pattern forming materials. For example, the photosensitive layer includes a binder, a polymerizable compound, and a photopolymerization initiator, and other selected appropriately. Those containing components are preferred.
Moreover, there is no restriction | limiting in particular as the number of lamination | stacking of a photosensitive layer, According to the objective, it can select suitably, For example, one layer may be sufficient and two or more layers may be sufficient.

<<バインダー>>
前記バインダーとしては、例えば、アルカリ性水溶液に対して膨潤性であることが好ましく、アルカリ性水溶液に対して可溶性であることがより好ましい。
アルカリ性水溶液に対して膨潤性又は溶解性を示すバインダーとしては、例えば、酸性基を有するものが好適に挙げられる。
<< Binder >>
For example, the binder is preferably swellable in an alkaline aqueous solution, and more preferably soluble in an alkaline aqueous solution.
As the binder exhibiting swellability or solubility with respect to the alkaline aqueous solution, for example, those having an acidic group are preferably exemplified.

前記酸性基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、カルボキシル基、スルホン酸基、リン酸基などが挙げられ、これらの中でもカルボキシル基が好ましい。
カルボキシル基を有するバインダーとしては、例えば、カルボキシル基を有するビニル共重合体、ポリウレタン樹脂、ポリアミド酸樹脂、変性エポキシ樹脂などが挙げられ、これらの中でも、塗布溶媒への溶解性、アルカリ現像液への溶解性、合成適性、膜物性の調整の容易さ等の観点からカルボキシル基を有するビニル共重合体が好ましい。また、現像性の観点から、スチレン及びスチレン誘導体の少なくともいずれかの共重合体も好ましい。
There is no restriction | limiting in particular as said acidic group, According to the objective, it can select suitably, For example, a carboxyl group, a sulfonic acid group, a phosphoric acid group etc. are mentioned, Among these, a carboxyl group is preferable.
Examples of the binder having a carboxyl group include a vinyl copolymer having a carboxyl group, a polyurethane resin, a polyamic acid resin, and a modified epoxy resin. Among these, the solubility in a coating solvent, the solubility in an alkali developer, and the like. A vinyl copolymer having a carboxyl group is preferable from the viewpoint of solubility, suitability for synthesis, ease of adjustment of film properties, and the like. From the viewpoint of developability, a copolymer of at least one of styrene and a styrene derivative is also preferable.

前記カルボキシル基を有するビニル共重合体は、少なくとも(1)カルボキシル基を有するビニルモノマー、及び(2)これらと共重合可能なモノマーとの共重合により得ることができる。   The vinyl copolymer having a carboxyl group can be obtained by copolymerization of at least (1) a vinyl monomer having a carboxyl group, and (2) a monomer copolymerizable therewith.

前記カルボキシル基を有するビニルモノマーとしては、例えば、(メタ)アクリル酸、ビニル安息香酸、マレイン酸、マレイン酸モノアルキルエステル、フマル酸、イタコン酸、クロトン酸、桂皮酸、アクリル酸ダイマー、水酸基を有する単量体(例えば、2−ヒドロキシエチル(メタ)アクリレート等)と環状無水物(例えば、無水マレイン酸や無水フタル酸、シクロヘキサンジカルボン酸無水物)との付加反応物、ω−カルボキシ−ポリカプロラクトンモノ(メタ)アクリレートなどが挙げられる。これらの中でも、共重合性やコスト、溶解性などの観点から(メタ)アクリル酸が特に好ましい。
また、カルボキシル基の前駆体として無水マレイン酸、無水イタコン酸、無水シトラコン酸等の無水物を有するモノマーを用いてもよい。
Examples of the vinyl monomer having a carboxyl group include (meth) acrylic acid, vinyl benzoic acid, maleic acid, maleic acid monoalkyl ester, fumaric acid, itaconic acid, crotonic acid, cinnamic acid, acrylic acid dimer, and hydroxyl group. An addition reaction product of a monomer (for example, 2-hydroxyethyl (meth) acrylate) and a cyclic anhydride (for example, maleic anhydride, phthalic anhydride, cyclohexanedicarboxylic anhydride), ω-carboxy-polycaprolactone mono Examples include (meth) acrylate. Among these, (meth) acrylic acid is particularly preferable from the viewpoints of copolymerizability, cost, solubility, and the like.
Moreover, you may use the monomer which has anhydrides, such as maleic anhydride, itaconic anhydride, and citraconic anhydride, as a precursor of a carboxyl group.

前記その他の共重合可能なモノマーとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、(メタ)アクリル酸エステル類、クロトン酸エステル類、ビニルエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、イタコン酸ジエステル類、(メタ)アクリルアミド類、ビニルエーテル類、ビニルアルコールのエステル類、スチレン類(例えば、スチレン、スチレン誘導体等)、(メタ)アクリロニトリル、ビニル基が置換した複素環式基(例えば、ビニルピリジン、ビニルピロリドン、ビニルカルバゾール等)、N−ビニルホルムアミド、N−ビニルアセトアミド、N−ビニルイミダゾール、ビニルカプロラクトン、2−アクリルアミド−2−メチルプロパンスルホン酸、リン酸モノ(2―アクリロイルオキシエチルエステル)、リン酸モノ(1−メチル−2―アクリロイルオキシエチルエステル)、官能基(例えば、ウレタン基、ウレア基、スルホンアミド基、フェノール基、イミド基)を有するビニルモノマーなどが挙げられ、これらの中でも配線パターンなどの永久パターンを高精細に形成することができる点、及び前記パターンのテント性を向上させることができる点で、前記スチレン類(スチレン及びスチレン誘導体)が好ましい。   The other copolymerizable monomer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include (meth) acrylic acid esters, crotonic acid esters, vinyl esters, and maleic acid diesters. , Fumaric acid diesters, itaconic acid diesters, (meth) acrylamides, vinyl ethers, esters of vinyl alcohol, styrenes (eg styrene, styrene derivatives, etc.), (meth) acrylonitrile, complex substituted with vinyl groups Cyclic groups (for example, vinylpyridine, vinylpyrrolidone, vinylcarbazole, etc.), N-vinylformamide, N-vinylacetamide, N-vinylimidazole, vinylcaprolactone, 2-acrylamido-2-methylpropanesulfonic acid, monophosphate ( 2-Acryllo Ciethyl ester), phosphoric acid mono (1-methyl-2-acryloyloxyethyl ester), vinyl monomers having a functional group (for example, urethane group, urea group, sulfonamide group, phenol group, imide group) and the like. Among these, the styrenes (styrene and styrene derivatives) are preferable in that a permanent pattern such as a wiring pattern can be formed with high definition and the tent property of the pattern can be improved.

前記(メタ)アクリル酸エステル類としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、t−ブチルシクロヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、t−オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、アセトキシエチル(メタ)アクリレート、フェニル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−(2−メトキシエトキシ)エチル(メタ)アクリレート、3−フェノキシ−2−ヒドロキシプロピル(メタ)アクリレート、ベンジル(メタ)アクリレート、ジエチレングリコールモノメチルエーテル(メタ)アクリレート、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジエチレングリコールモノフェニルエーテル(メタ)アクリレート、トリエチレングリコールモノメチルエーテル(メタ)アクリレート、トリエチレングリコールモノエチルエーテル(メタ)アクリレート、ポリエチレングリコールモノメチルエーテル(メタ)アクリレート、ポリエチレングリコールモノエチルエーテル(メタ)アクリレート、β−フェノキシエトキシエチルアクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、トリフロロエチル(メタ)アクリレート、オクタフロロペンチル(メタ)アクリレート、パーフロロオクチルエチル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、トリブロモフェニルオキシエチル(メタ)アクリレートなどが挙げられる。   Examples of the (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) ) Acrylate, t-butyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, t-octyl (meth) acrylate, Dodecyl (meth) acrylate, octadecyl (meth) acrylate, acetoxyethyl (meth) acrylate, phenyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate 2-ethoxyethyl (meth) acrylate, 2- (2-methoxyethoxy) ethyl (meth) acrylate, 3-phenoxy-2-hydroxypropyl (meth) acrylate, benzyl (meth) acrylate, diethylene glycol monomethyl ether (meta ) Acrylate, diethylene glycol monoethyl ether (meth) acrylate, diethylene glycol monophenyl ether (meth) acrylate, triethylene glycol monomethyl ether (meth) acrylate, triethylene glycol monoethyl ether (meth) acrylate, polyethylene glycol monomethyl ether (meth) acrylate , Polyethylene glycol monoethyl ether (meth) acrylate, β-phenoxyethoxyethyl acrylate, Nylphenoxypolyethylene glycol (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, trifluoroethyl (meth) acrylate, octafluoropentyl (meth) Examples thereof include acrylate, perfluorooctylethyl (meth) acrylate, tribromophenyl (meth) acrylate, and tribromophenyloxyethyl (meth) acrylate.

前記クロトン酸エステル類としては、例えば、クロトン酸ブチル、クロトン酸ヘキシルなどが挙げられる。   Examples of the crotonic acid esters include butyl crotonate and hexyl crotonate.

前記ビニルエステル類としては、例えば、ビニルアセテート、ビニルプロピオネート、ビニルブチレート、ビニルメトキシアセテート、安息香酸ビニルなどが挙げられる。   Examples of the vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl methoxyacetate, vinyl benzoate, and the like.

前記マレイン酸ジエステル類としては、例えば、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジブチルなどが挙げられる。   Examples of the maleic acid diesters include dimethyl maleate, diethyl maleate, and dibutyl maleate.

前記フマル酸ジエステル類としては、例えば、フマル酸ジメチル、フマル酸ジエチル、フマル酸ジブチルなどが挙げられる。   Examples of the fumaric acid diesters include dimethyl fumarate, diethyl fumarate, dibutyl fumarate and the like.

前記イタコン酸ジエステル類としては、例えば、イタコン酸ジメチル、イタコン酸ジエチル、イタコン酸ジブチルなどが挙げられる。   Examples of the itaconic acid diesters include dimethyl itaconate, diethyl itaconate, and dibutyl itaconate.

前記(メタ)アクリルアミド類としては、例えば、(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−プロピル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N−n−ブチルアクリル(メタ)アミド、N−t−ブチル(メタ)アクリルアミド、N−シクロヘキシル(メタ)アクリルアミド、N−(2−メトキシエチル)(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、N−フェニル(メタ)アクリルアミド、N−ベンジル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ジアセトンアクリルアミドなどが挙げられる。   Examples of the (meth) acrylamides include (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N- n-butylacryl (meth) amide, Nt-butyl (meth) acrylamide, N-cyclohexyl (meth) acrylamide, N- (2-methoxyethyl) (meth) acrylamide, N, N-dimethyl (meth) acrylamide, Examples thereof include N, N-diethyl (meth) acrylamide, N-phenyl (meth) acrylamide, N-benzyl (meth) acrylamide, (meth) acryloylmorpholine, diacetone acrylamide and the like.

前記スチレン類としては、例えば、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、ヒドロキシスチレン、メトキシスチレン、ブトキシスチレン、アセトキシスチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、クロロメチルスチレン、酸性物質により脱保護可能な基(例えば、t−Boc等)で保護されたヒドロキシスチレン、ビニル安息香酸メチル、α−メチルスチレンなどが挙げられる。   Examples of the styrenes include styrene, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, isopropyl styrene, butyl styrene, hydroxy styrene, methoxy styrene, butoxy styrene, acetoxy styrene, chlorostyrene, dichlorostyrene, bromostyrene, chloro Examples include methylstyrene, hydroxystyrene protected with a group that can be deprotected by an acidic substance (for example, t-Boc and the like), methyl vinylbenzoate, α-methylstyrene, and the like.

前記ビニルエーテル類としては、例えば、メチルビニルエーテル、ブチルビニルエーテル、ヘキシルビニルエーテル、メトキシエチルビニルエーテルなどが挙げられる。   Examples of the vinyl ethers include methyl vinyl ether, butyl vinyl ether, hexyl vinyl ether, and methoxyethyl vinyl ether.

前記官能基を有するビニルモノマーの合成方法としては、例えば、イソシアナート基と水酸基又はアミノ基の付加反応が挙げられ、具体的には、イソシアナート基を有するモノマーと、水酸基を1個含有する化合物又は1級若しくは2級アミノ基を1個有する化合物との付加反応、水酸基を有するモノマー又は1級若しくは2級アミノ基を有するモノマーと、モノイソシアネートとの付加反応が挙げられる。   Examples of the method for synthesizing the vinyl monomer having a functional group include an addition reaction of an isocyanate group and a hydroxyl group or an amino group, specifically, a monomer having an isocyanate group and a compound containing one hydroxyl group. Alternatively, an addition reaction with a compound having one primary or secondary amino group, an addition reaction between a monomer having a hydroxyl group or a monomer having a primary or secondary amino group, and a monoisocyanate can be given.

前記イソシアナート基を有するモノマーとしては、例えば、下記構造式(1)〜(3)で表される化合物が挙げられる。   Examples of the monomer having an isocyanate group include compounds represented by the following structural formulas (1) to (3).

但し、前記構造式(1)〜(3)中、Rは水素原子又はメチル基を表す。 However, in the above structural formula (1) ~ (3), R 1 represents a hydrogen atom or a methyl group.

前記モノイソシアネートとしては、例えば、シクロヘキシルイソシアネート、n−ブチルイソシアネート、トルイルイソシアネート、ベンジルイソシアネート、フェニルイソシアネート等が挙げられる。   Examples of the monoisocyanate include cyclohexyl isocyanate, n-butyl isocyanate, toluyl isocyanate, benzyl isocyanate, and phenyl isocyanate.

前記水酸基を有するモノマーとしては、例えば、下記構造式(4)〜(12)で表される化合物が挙げられる。   Examples of the monomer having a hydroxyl group include compounds represented by the following structural formulas (4) to (12).

但し、前記構造式(4)〜(12)中、Rは水素原子又はメチル基を表し、nは1以上の整数を表す。 However, in the structural formulas (4) to (12), R 1 represents a hydrogen atom or a methyl group, and n represents an integer of 1 or more.

前記水酸基を1個含有する化合物としては、例えば、アルコール類(例えば、メタノール、エタノール、n−プロパノール、i―プロパノール、n−ブタノール、sec−ブタノール、t−ブタノール、n−ヘキサノール、2−エチルヘキサノール、n−デカノール、n−ドデカノール、n−オクタデカノール、シクロペンタノール、シクロへキサノール、ベンジルアルコール、フェニルエチルアルコール等)、フェノール類(例えば、フェノール、クレゾール、ナフトール等)、更に置換基を含むものとして、フロロエタノール、トリフロロエタノール、メトキシエタノール、フェノキシエタノール、クロロフェノール、ジクロロフェノール、メトキシフェノール、アセトキシフェノール等が挙げられる。   Examples of the compound containing one hydroxyl group include alcohols (for example, methanol, ethanol, n-propanol, i-propanol, n-butanol, sec-butanol, t-butanol, n-hexanol, 2-ethylhexanol). , N-decanol, n-dodecanol, n-octadecanol, cyclopentanol, cyclohexanol, benzyl alcohol, phenylethyl alcohol, etc.), phenols (eg, phenol, cresol, naphthol, etc.), and further containing substituents Examples thereof include fluoroethanol, trifluoroethanol, methoxyethanol, phenoxyethanol, chlorophenol, dichlorophenol, methoxyphenol, acetoxyphenol, and the like.

前記1級又は2級アミノ基を有するモノマーとしては、例えば、ビニルベンジルアミンなどが挙げられる。   Examples of the monomer having a primary or secondary amino group include vinylbenzylamine.

前記1級又は2級アミノ基を1個含有する化合物としては、例えば、アルキルアミン(メチルアミン、エチルアミン、n−プロピルアミン、i―プロピルアミン、n−ブチルアミン、sec−ブチルアミン、t−ブチルアミン、ヘキシルアミン、2−エチルヘキシルアミン、デシルアミン、ドデシルアミン、オクタデシルアミン、ジメチルアミン、ジエチルアミン、ジブチルアミン、ジオクチルアミン)、環状アルキルアミン(シクロペンチルアミン、シクロへキシルアミン等)、アラルキルアミン(ベンジルアミン、フェネチルアミン等)、アリールアミン(アニリン、トルイルアミン、キシリルアミン、ナフチルアミン等)、更にこれらの組合せ(N−メチル−N−ベンジルアミン等)、更に置換基を含むアミン(トリフロロエチルアミン、ヘキサフロロイソプロピルアミン、メトキシアニリン、メトキシプロピルアミン等)などが挙げられる。   Examples of the compound containing one primary or secondary amino group include alkylamines (methylamine, ethylamine, n-propylamine, i-propylamine, n-butylamine, sec-butylamine, t-butylamine, hexyl). Amine, 2-ethylhexylamine, decylamine, dodecylamine, octadecylamine, dimethylamine, diethylamine, dibutylamine, dioctylamine), cyclic alkylamine (cyclopentylamine, cyclohexylamine, etc.), aralkylamine (benzylamine, phenethylamine, etc.), Arylamines (aniline, toluylamine, xylylamine, naphthylamine, etc.), combinations thereof (N-methyl-N-benzylamine, etc.), and amines containing further substituents (trifluoroethylamino) , Hexafluoro isopropyl amine, methoxyaniline, methoxypropylamine and the like) and the like.

また、上記以外の前記その他の共重合可能なモノマーとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2−エチルヘキシル、スチレン、クロルスチレン、ブロモスチレン、ヒドロキシスチレンなどが好適に挙げられる。   Examples of the other copolymerizable monomers other than those described above include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, benzyl (meth) acrylate, and (meth) acrylic. Preferable examples include 2-ethylhexyl acid, styrene, chlorostyrene, bromostyrene, and hydroxystyrene.

前記その他の共重合可能なモノマーは、1種単独で使用してもよく、2種以上を併用してもよい。   The said other copolymerizable monomer may be used individually by 1 type, and may use 2 or more types together.

前記ビニル共重合体は、それぞれ相当するモノマーを公知の方法により常法に従って共重合させることで調製することができる。例えば、前記モノマーを適当な溶媒中に溶解し、ここにラジカル重合開始剤を添加して溶液中で重合させる方法(溶液重合法)を利用することにより調製することができる。また、水性媒体中に前記モノマーを分散させた状態でいわゆる乳化重合等で重合を利用することにより調製することができる。   The vinyl copolymer can be prepared by copolymerizing the corresponding monomers by a known method according to a conventional method. For example, it can be prepared by using a method (solution polymerization method) in which the monomer is dissolved in a suitable solvent and a radical polymerization initiator is added thereto to polymerize in a solution. Moreover, it can prepare by utilizing superposition | polymerization by what is called emulsion polymerization etc. in the state which disperse | distributed the said monomer in the aqueous medium.

前記溶液重合法で用いられる適当な溶媒としては、特に制限はなく、使用するモノマー、及び生成する共重合体の溶解性等に応じて適宜選択することができ、例えば、メタノール、エタノール、プロパノール、イソプロパノール、1−メトキシ−2−プロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、メトキシプロピルアセテート、乳酸エチル、酢酸エチル、アセトニトリル、テトラヒドロフラン、ジメチルホルムアミド、クロロホルム、トルエンなどが挙げられる。これらの溶媒は、1種単独で使用してもよく、2種以上を併用してもよい。   The suitable solvent used in the solution polymerization method is not particularly limited and may be appropriately selected depending on the monomer used and the solubility of the copolymer to be produced. For example, methanol, ethanol, propanol, Examples include isopropanol, 1-methoxy-2-propanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, methoxypropyl acetate, ethyl lactate, ethyl acetate, acetonitrile, tetrahydrofuran, dimethylformamide, chloroform, toluene and the like. These solvents may be used alone or in combination of two or more.

前記ラジカル重合開始剤としては、特に制限はなく、例えば、2,2′−アゾビス(イソブチロニトリル)(AIBN)、2,2′−アゾビス−(2,4′−ジメチルバレロニトリル)等のアゾ化合物、ベンゾイルパーオキシド等の過酸化物、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩などが挙げられる。   The radical polymerization initiator is not particularly limited, and examples thereof include 2,2′-azobis (isobutyronitrile) (AIBN) and 2,2′-azobis- (2,4′-dimethylvaleronitrile). Examples thereof include peroxides such as azo compounds and benzoyl peroxide, and persulfates such as potassium persulfate and ammonium persulfate.

前記ビニル共重合体におけるカルボキシル基を有する重合性化合物の含有率としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、5〜50モル%が好ましく、10〜40モル%がより好ましく、15〜35モル%が特に好ましい。
前記含有率が、5モル%未満であると、アルカリ水への現像性が不足することがあり、50モル%を超えると、硬化部(画像部)の現像液耐性が不足することがある。
There is no restriction | limiting in particular as content rate of the polymeric compound which has a carboxyl group in the said vinyl copolymer, Although it can select suitably according to the objective, For example, 5-50 mol% is preferable, 10-40 mol % Is more preferable, and 15 to 35 mol% is particularly preferable.
If the content is less than 5 mol%, the developability to alkaline water may be insufficient, and if it exceeds 50 mol%, the developer resistance of the cured portion (image portion) may be insufficient.

前記カルボキシル基を有するバインダーの分子量としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、質量平均分子量として、2,000〜300,000が好ましく、4,000〜150,000がより好ましい。
前記質量平均分子量が、2,000未満であると、膜の強度が不足しやすく、また安定な製造が困難になることがあり、300,000を超えると、現像性が低下することがある。
There is no restriction | limiting in particular as molecular weight of the binder which has the said carboxyl group, Although it can select suitably according to the objective, For example, 2,000-300,000 are preferable as a mass mean molecular weight, 4,000-150 1,000 is more preferable.
When the mass average molecular weight is less than 2,000, the strength of the film tends to be insufficient and stable production may be difficult, and when it exceeds 300,000, developability may be deteriorated.

前記カルボキシル基を有するバインダーは、1種単独で使用してもよく、2種以上を併用してもよい。前記バインダーを2種以上併用する場合としては、例えば、異なる共重合成分からなる2種以上のバインダー、異なる質量平均分子量の2種以上のバインダー、及び異なる分散度の2種以上のバインダーなどの組合せが挙げられる。   The binder which has the said carboxyl group may be used individually by 1 type, and may use 2 or more types together. When two or more binders are used in combination, for example, a combination of two or more binders composed of different copolymer components, two or more binders having different mass average molecular weights, and two or more binders having different dispersities Is mentioned.

前記カルボキシル基を有するバインダーは、そのカルボキシル基の一部又は全部が塩基性物質で中和されていてもよい。また、前記バインダーは、さらにポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、エポキシ樹脂、ポリビニルアルコール、ゼラチン等の構造の異なる樹脂を併用してもよい。   The binder having a carboxyl group may be partially or entirely neutralized with a basic substance. The binder may be used in combination with resins having different structures such as polyester resin, polyamide resin, polyurethane resin, epoxy resin, polyvinyl alcohol, and gelatin.

また、前記バインダーとしては、特許2873889号等に記載のアルカリ水溶液に可溶な樹脂などを用いることができる。   Moreover, as the binder, a resin soluble in an alkaline aqueous solution described in Japanese Patent No. 2873889 and the like can be used.

前記感光層における前記バインダーの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、10〜90質量%が好ましく、20〜80質量%がより好ましく、40〜80質量%が特に好ましい。
前記含有量が10質量%未満であると、アルカリ現像性やプリント配線板形成用基板(例えば、銅張積層板)との密着性が低下することがあり、90質量%を超えると、現像時間に対する安定性や、硬化膜(テント膜)の強度が低下することがある。なお、前記含有量は、前記バインダーと必要に応じて併用される高分子結合剤との合計の含有量であってもよい。
There is no restriction | limiting in particular as content of the said binder in the said photosensitive layer, Although it can select suitably according to the objective, For example, 10-90 mass% is preferable, 20-80 mass% is more preferable, 40- 80% by mass is particularly preferred.
When the content is less than 10% by mass, alkali developability and adhesion to a printed wiring board forming substrate (for example, a copper-clad laminate) may be deteriorated. Stability and strength of the cured film (tent film) may be reduced. The content may be the total content of the binder and the polymer binder used in combination as necessary.

前記バインダーがガラス転移温度(Tg)を有する物質である場合、該ガラス転移温度としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記パターン形成材料のタック及びエッジフュージョンの抑制、並びに前記支持体の剥離性向上の、少なくともいずれかの観点から、80℃以上が好ましく、100℃以上がより好ましく、120℃以上が特に好ましい。
前記ガラス転移温度が、80℃未満であると、前記パターン形成材料のタックやエッジフュージョンが増加したり、前記支持体の剥離性が悪化したりすることがある。
When the binder is a substance having a glass transition temperature (Tg), the glass transition temperature is not particularly limited and may be appropriately selected depending on the intended purpose. For example, tack and edge of the pattern forming material 80 degreeC or more is preferable, 100 degreeC or more is more preferable, and 120 degreeC or more is especially preferable from the viewpoint of at least any one of suppression of fusion and the peelability improvement of the said support body.
When the glass transition temperature is less than 80 ° C., tack and edge fusion of the pattern forming material may increase, or the peelability of the support may deteriorate.

前記バインダーの酸価としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、70〜250(mgKOH/g)が好ましく、90〜200(mgKOH/g)がより好ましく、100〜180(mgKOH/g)が特に好ましい。
前記酸価が、70(mgKOH/g)未満であると、現像性が不足したり、解像性が劣り、配線パターン等の永久パターンを高精細に得ることができないことがあり、250(mgKOH/g)を超えると、パターンの耐現像液性及び密着性の少なくともいずれかが悪化し、配線パターン等の永久パターンを高精細に得ることができないことがある。
The acid value of the binder is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 70 to 250 (mgKOH / g), more preferably 90 to 200 (mgKOH / g), 100 to 180 (mg KOH / g) is particularly preferable.
When the acid value is less than 70 (mgKOH / g), developability may be insufficient, resolution may be inferior, and permanent patterns such as wiring patterns may not be obtained with high definition. / G), at least one of the developer resistance and adhesion of the pattern deteriorates, and a permanent pattern such as a wiring pattern may not be obtained with high definition.

<<重合性化合物>>
前記重合性化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、ウレタン基及びアリール基の少なくともいずれかを有するモノマー又はオリゴマーが好適に挙げられる。また、これらは、重合性基を2種以上有することが好ましい。
<< polymerizable compound >>
There is no restriction | limiting in particular as said polymeric compound, Although it can select suitably according to the objective, For example, the monomer or oligomer which has at least any one of a urethane group and an aryl group is mentioned suitably. Moreover, it is preferable that these have 2 or more types of polymeric groups.

前記重合性基としては、例えば、エチレン性不飽和結合(例えば、(メタ)アクリロイル基、(メタ)アクリルアミド基、スチリル基、ビニルエステルやビニルエーテル等のビニル基、アリルエーテルやアリルエステル等のアリル基など)、重合可能な環状エーテル基(例えば、エポキシ基、オキセタン基等)などが挙げられ、これらの中でもエチレン性不飽和結合が好ましい。   Examples of the polymerizable group include an ethylenically unsaturated bond (for example, (meth) acryloyl group, (meth) acrylamide group, styryl group, vinyl group such as vinyl ester and vinyl ether, allyl group such as allyl ether and allyl ester). Etc.) and a polymerizable cyclic ether group (for example, epoxy group, oxetane group, etc.) and the like. Among these, an ethylenically unsaturated bond is preferable.

−ウレタン基を有するモノマー−
前記ウレタン基を有するモノマーとしては、ウレタン基を有する限り、特に制限は無く、目的に応じて適宜選択することができるが、例えば、特公昭48−41708、特開昭51−37193、特公平5−50737、特公平7−7208、特開2001−154346、特開2001−356476号公報等に記載されている化合物などが挙げられ、例えば、分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物と分子中に水酸基を有するビニルモノマーとの付加物などが挙げられる。
-Monomer having a urethane group-
The monomer having a urethane group is not particularly limited as long as it has a urethane group, and can be appropriately selected depending on the purpose. For example, JP-B-48-41708, JP-A-51-37193, JP-B-5 -50737, Japanese Patent Publication No. 7-7208, Japanese Patent Application Laid-Open No. 2001-154346, Japanese Patent Application Laid-Open No. 2001-356476, and the like. For example, a polyisocyanate compound having two or more isocyanate groups in the molecule And an adduct of a vinyl monomer having a hydroxyl group in the molecule.

前記分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシレンジイソシアネート、トルエンジイソシアネート、フェニレンジイソシアネート、ノルボルネンジイソシアネート、ジフェニルジイソシアネート、ジフェニルメタンジイソシアネート、3,3′ジメチル−4,4′−ジフェニルジイソシアネート等のジイソシアネート;該ジイソシアネートを更に2官能アルコールとの重付加物(この場合も両末端はイソシアネート基);該ジイソシアネートのビュレット体やイソシアヌレート等の3量体;該ジイソシアネート若しくはジイソシアネート類と、トリメチロールプロパン、ペンタエリトリトール、グリセリン等の多官能アルコール、又はこれらのエチレンオキシド付加物等の得られる他官能アルコールとの付加体などが挙げられる。   Examples of the polyisocyanate compound having two or more isocyanate groups in the molecule include hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, isophorone diisocyanate, xylene diisocyanate, toluene diisocyanate, phenylene diisocyanate, norbornene diisocyanate, diphenyl diisocyanate, diphenylmethane diisocyanate, Diisocyanates such as 3,3′dimethyl-4,4′-diphenyl diisocyanate; polyadducts of the diisocyanate with bifunctional alcohols (in this case, both ends are isocyanate groups); burettes and isocyanurates of the diisocyanate; Trimer; the diisocyanate or diisocyanates and trimethylolpropane, pe Taeritoritoru, polyfunctional alcohols such as glycerin, or the like adducts of other functional alcohol obtained of such these ethylene oxide adducts and the like.

前記分子中に水酸基を有するビニルモノマーとしては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、オクタエチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレート、トリプロピレングリコールモノ(メタ)アクリレート、テトラプロピレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ジブチレングリコールモノ(メタ)アクリレート、トリブチレングリコールモノ(メタ)アクリレート、テトラブチレングリコールモノ(メタ)アクリレート、オクタブチレングリコールモノ(メタ)アクリレート、ポリブチレングリコールモノ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリトリトールトリ(メタ)アクリレートなどが挙げられる。また、エチレンオキシドとプロピレンオキシドの共重合体(ランダム、ブロック等)などの異なるアルキレンオキシド部を有するジオール体の片末端(メタ)アクリレート体などが挙げられる。   Examples of the vinyl monomer having a hydroxyl group in the molecule include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, diethylene glycol mono (meth) acrylate, and triethylene. Glycol mono (meth) acrylate, tetraethylene glycol mono (meth) acrylate, octaethylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, dipropylene glycol mono (meth) acrylate, tripropylene glycol mono (meth) acrylate , Tetrapropylene glycol mono (meth) acrylate, octapropylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) Chryrate, dibutylene glycol mono (meth) acrylate, tributylene glycol mono (meth) acrylate, tetrabutylene glycol mono (meth) acrylate, octabutylene glycol mono (meth) acrylate, polybutylene glycol mono (meth) acrylate, trimethylolpropane Examples include di (meth) acrylate and pentaerythritol tri (meth) acrylate. Moreover, the one terminal (meth) acrylate body of the diol body which has different alkylene oxide parts, such as a copolymer (random, a block, etc.) of ethylene oxide and propylene oxide, etc. are mentioned.

また、前記ウレタン基を有するモノマーとしては、トリ((メタ)アクリロイルオキシエチル)イソシアヌレート、ジ(メタ)アクリル化イソシアヌレート、エチレンオキシド変性イソシアヌル酸のトリ(メタ)アクリレート等のイソシアヌレート環を有する化合物が挙げられる。これらの中でも、下記構造式式(13)、又は構造式(14)で表される化合物が好ましく、テント性の観点から、前記構造式(14)で示される化合物を少なくとも含むことが特に好ましい。また、これらの化合物は、1種単独で使用してもよく、2種以上を併用してもよい。   In addition, examples of the monomer having a urethane group include compounds having an isocyanurate ring such as tri ((meth) acryloyloxyethyl) isocyanurate, di (meth) acrylated isocyanurate, and tri (meth) acrylate of ethylene oxide-modified isocyanuric acid. Is mentioned. Among these, the compound represented by the following structural formula (13) or the structural formula (14) is preferable, and it is particularly preferable that at least the compound represented by the structural formula (14) is included from the viewpoint of tent properties. Moreover, these compounds may be used individually by 1 type, and may use 2 or more types together.

前記構造式(13)及び(14)中、R〜Rは、それぞれ水素原子又はメチル基を表す。X〜Xは、アルキレンオキサイドを表し、1種単独でもよく、2種以上を併用してもよい。 In the structural formulas (13) and (14), R 1 to R 3 each represent a hydrogen atom or a methyl group. X 1 to X 3 represents an alkylene oxide, may be alone or in combination of two or more thereof.

前記アルキレンオキサイド基としては、例えば、エチレンオキサイド基、プロピレンオキサイド基、ブチレンオキサイド基、ペンチレンオキサイド基、ヘキシレンオキサイド基、これらを組み合わせた基(ランダム、ブロックのいずれに組み合わされてもよい)などが好適に挙げられ、これらの中でも、エチレンオキサイド基、プロピレンオキサイド基、ブチレンオキサイド基、又はこれらの組み合わせた基が好ましく、エチレンオキサイド基、プロピレンオキサイド基がより好ましい。   Examples of the alkylene oxide group include an ethylene oxide group, a propylene oxide group, a butylene oxide group, a pentylene oxide group, a hexylene oxide group, and a group in which these are combined (may be combined in any of random or block). Among these, an ethylene oxide group, a propylene oxide group, a butylene oxide group, or a combination thereof is preferable, and an ethylene oxide group and a propylene oxide group are more preferable.

前記構造式(13)及び(14)中、m1〜m3は、1〜60の整数を表し、2〜30が好ましく、4〜15がより好ましい。   In the structural formulas (13) and (14), m1 to m3 represent an integer of 1 to 60, preferably 2 to 30, and more preferably 4 to 15.

前記構造式(13)及び(14)中、Y及びYは、炭素原子数2〜30の2価の有機基を表し、例えば、アルキレン基、アリーレン基、アルケニレン基、アルキニレン基、カルボニル基(−CO−)、酸素原子(−O−)、硫黄原子(−S−)、イミノ基(−NH−)、イミノ基の水素原子が1価の炭化水素基で置換された置換イミノ基、スルホニル基(−SO−)又はこれらを組み合わせた基などが好適に挙げられ、これらの中でも、アルキレン基、アリーレン基、又はこれらを組み合わせた基が好ましい。 In the structural formulas (13) and (14), Y 1 and Y 2 represent a divalent organic group having 2 to 30 carbon atoms, for example, an alkylene group, an arylene group, an alkenylene group, an alkynylene group, a carbonyl group. (—CO—), an oxygen atom (—O—), a sulfur atom (—S—), an imino group (—NH—), a substituted imino group in which the hydrogen atom of the imino group is substituted with a monovalent hydrocarbon group, Preferred examples include a sulfonyl group (—SO 2 —) or a combination thereof, and among these, an alkylene group, an arylene group, or a combination thereof is preferable.

前記アルキレン基は、分岐構造又は環状構造を有していてもよく、例えば、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、ペンチレン基、ネオペンチレン基、ヘキシレン基、トリメチルヘキシレン基、シクロへキシレン基、ヘプチレン基、オクチレン基、2−エチルヘキシレン基、ノニレン基、デシレン基、ドデシレン基、オクタデシレン基、又は下記に示すいずれかの基などが好適に挙げられる。   The alkylene group may have a branched structure or a cyclic structure, for example, methylene group, ethylene group, propylene group, isopropylene group, butylene group, isobutylene group, pentylene group, neopentylene group, hexylene group, trimethyl hexene. Preferable examples include a xylene group, a cyclohexylene group, a heptylene group, an octylene group, a 2-ethylhexylene group, a nonylene group, a decylene group, a dodecylene group, an octadecylene group, or any of the groups shown below.

前記アリーレン基としては、炭化水素基で置換されていてもよく、例えば、フェニレン基、トリレン基、ジフェニレン基、ナフチレン基、又は下記に示す基などが好適に挙げられる。   The arylene group may be substituted with a hydrocarbon group, and examples thereof include a phenylene group, a tolylene group, a diphenylene group, a naphthylene group, and the groups shown below.

前記これらを組み合わせた基としては、例えば、キシリレン基などが挙げられる。   Examples of the group in which these are combined include a xylylene group.

前記アルキレン基、アリーレン基、又はこれらを組み合わせた基としては、更に置換基を有していてもよく、該置換基としては、例えば、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アリール基、アルコキシ基(例えば、メトキシ基、エトキシ基、2−エトキシエトキシ基)、アリールオキシ基(例えば、フェノキシ基)、アシル基(例えば、アセチル基、プロピオニル基)、アシルオキシ基(例えば、アセトキシ基、ブチリルオキシ基)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基)などが挙げられる。   The alkylene group, arylene group, or a combination thereof may further have a substituent. Examples of the substituent include a halogen atom (for example, fluorine atom, chlorine atom, bromine atom, iodine). Atom), aryl group, alkoxy group (for example, methoxy group, ethoxy group, 2-ethoxyethoxy group), aryloxy group (for example, phenoxy group), acyl group (for example, acetyl group, propionyl group), acyloxy group (for example, , Acetoxy group, butyryloxy group), alkoxycarbonyl group (for example, methoxycarbonyl group, ethoxycarbonyl group), aryloxycarbonyl group (for example, phenoxycarbonyl group) and the like.

前記構造式(13)及び(14)中、nは3〜6の整数を表し、重合性モノマーを合成するための原料供給性などの観点から、3、4又は6が好ましい。   In the structural formulas (13) and (14), n represents an integer of 3 to 6, and 3, 4 or 6 is preferable from the viewpoint of feedability of raw materials for synthesizing a polymerizable monomer.

前記構造式(13)及び(14)中、Zはn価(3価〜6価)の連結基を表し、例えば、下記に示すいずれかの基などが挙げられる。   In the structural formulas (13) and (14), Z represents an n-valent (trivalent to hexavalent) linking group, and examples thereof include any of the groups shown below.

但し、Xはアルキレンオキサイドを表す。m4は、1〜20の整数を表す。nは、3〜6の整数を表す。Aは、n価(3価〜6価)の有機基を表す。 However, X 4 represents an alkylene oxide. m4 represents an integer of 1 to 20. n represents an integer of 3 to 6. A represents an n-valent (trivalent to hexavalent) organic group.

前記Aとしては、例えば、n価の脂肪族基、n価の芳香族基、又はこれらとアルキレン基、アリーレン基、アルケニレン基、アルキニレン基、カルボニル基、酸素原子、硫黄原子、イミノ基、イミノ基の水素原子が1価の炭化水素基で置換された置換イミノ基、又はスルホニル基とを組み合わせた基が好ましく、n価の脂肪族基、n価の芳香族基、又はこれらとアルキレン基、アリーレン基、酸素原子とを組み合わせた基がより好ましく、n価の脂肪族基、n価の脂肪族基とアルキレン基、酸素原子とを組み合わせた基が特に好ましい。   Examples of A include an n-valent aliphatic group, an n-valent aromatic group, and an alkylene group, an arylene group, an alkenylene group, an alkynylene group, a carbonyl group, an oxygen atom, a sulfur atom, an imino group, and an imino group. Are preferably a combination of a substituted imino group in which the hydrogen atom is substituted with a monovalent hydrocarbon group or a sulfonyl group, an n-valent aliphatic group, an n-valent aromatic group, or an alkylene group or arylene A group in which a group and an oxygen atom are combined is more preferable, and an n-valent aliphatic group, and a group in which an n-valent aliphatic group is combined with an alkylene group and an oxygen atom are particularly preferable.

前記Aの炭素原子数としては、例えば、1〜100の整数が好ましく、1〜50の整数がより好ましく、3〜30の整数が特に好ましい。   As the number of carbon atoms of A, for example, an integer of 1 to 100 is preferable, an integer of 1 to 50 is more preferable, and an integer of 3 to 30 is particularly preferable.

前記n価の脂肪族基としては、分岐構造又は環状構造を有していてもよい。
前記脂肪族基の炭素原子数としては、例えば、1〜30の整数が好ましく、1〜20の整数がより好ましく、3〜10の整数が特に好ましい。
前記芳香族基の炭素原子数としては、6〜100の整数が好ましく、6〜50の整数がより好ましく、6〜30の整数が特に好ましい。
The n-valent aliphatic group may have a branched structure or a cyclic structure.
As a carbon atom number of the said aliphatic group, the integer of 1-30 is preferable, for example, the integer of 1-20 is more preferable, and the integer of 3-10 is especially preferable.
The number of carbon atoms of the aromatic group is preferably an integer of 6 to 100, more preferably an integer of 6 to 50, and particularly preferably an integer of 6 to 30.

前記n価の脂肪族基、又は芳香族基は、更に置換基を有していてもよく、該置換基としては、例えば、ヒドロキシル基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アリール基、アルコキシ基(例えば、メトキシ基、エトキシ基、2−エトキシエトキシ基)、アリールオキシ基(例えば、フェノキシ基)、アシル基(例えば、アセチル基、プロピオニル基)、アシルオキシ基(例えば、アセトキシ基、ブチリルオキシ基)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基)などが挙げられる。   The n-valent aliphatic group or aromatic group may further have a substituent. Examples of the substituent include a hydroxyl group, a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, Iodine atom), aryl group, alkoxy group (for example, methoxy group, ethoxy group, 2-ethoxyethoxy group), aryloxy group (for example, phenoxy group), acyl group (for example, acetyl group, propionyl group), acyloxy group ( Examples thereof include an acetoxy group, a butyryloxy group), an alkoxycarbonyl group (for example, a methoxycarbonyl group, an ethoxycarbonyl group), an aryloxycarbonyl group (for example, a phenoxycarbonyl group), and the like.

前記アルキレン基は、分岐構造又は環状構造を有していてもよい。
前記アルキレン基の炭素原子数としては、例えば、1〜18の整数が好ましく、1〜10の整数がより好ましい。
The alkylene group may have a branched structure or a cyclic structure.
As a carbon atom number of the said alkylene group, the integer of 1-18 is preferable, for example, and the integer of 1-10 is more preferable.

前記アリーレン基は、炭化水素基で更に置換されていてもよい。
前記アリーレン基の炭素原子数としては、6〜18の整数が好ましく、6〜10の整数がより好ましい。
The arylene group may be further substituted with a hydrocarbon group.
As the number of carbon atoms of the arylene group, an integer of 6 to 18 is preferable, and an integer of 6 to 10 is more preferable.

前記置換イミノ基の1価の炭化水素基の炭素原子数としては、1〜18の整数が好ましく、1〜10の整数がより好ましい。   As a carbon atom number of the monovalent hydrocarbon group of the said substituted imino group, the integer of 1-18 is preferable and the integer of 1-10 is more preferable.

前記Aの好ましい例は以下の通りである。   Preferred examples of A are as follows.

前記構造式(13)及び(14)で表される化合物としては、例えば下記構造式(15)〜(34)で表される化合物などが挙げられる。   Examples of the compounds represented by the structural formulas (13) and (14) include compounds represented by the following structural formulas (15) to (34).

但し、前記構造式(15)〜(34)中、n、n1、n2及びmは、1〜60を意味し、lは、1〜20を意味し、Rは、水素原子又はメチル基を表す。   However, in said structural formula (15)-(34), n, n1, n2 and m mean 1-60, l means 1-20, R represents a hydrogen atom or a methyl group. .

−−アリール基を有するモノマー−−
前記アリール基を有するモノマーとしては、アリール基を有する限り、特に制限はなく、目的に応じて適宜選択することができるが、例えば、アリール基を有する多価アルコール化合物、多価アミン化合物及び多価アミノアルコール化合物の少なくともいずれかと不飽和カルボン酸とのエステル又はアミドなどが挙げられる。
--Monomer having an aryl group--
The monomer having an aryl group is not particularly limited as long as it has an aryl group, and can be appropriately selected depending on the purpose. For example, a polyhydric alcohol compound having a aryl group, a polyvalent amine compound, and a polyvalent Examples thereof include esters or amides of at least one of amino alcohol compounds and unsaturated carboxylic acid.

前記アリール基を有する多価アルコール化合物、多価アミン化合物又は多価アミノアルコール化合物としては、例えば、ポリスチレンオキサイド、キシリレンジオール、ジ−(β−ヒドロキシエトキシ)ベンゼン、1,5−ジヒドロキシ−1,2,3,4−テトラヒドロナフタレン、2、2−ジフェニル−1,3−プロパンジオール、ヒドロキシベンジルアルコール、ヒドロキシエチルレゾルシノール、1−フェニル−1,2−エタンジオール、2,3,5,6−テトラメチル−p−キシレン−α,α′−ジオール、1,1,4,4−テトラフェニル−1,4−ブタンジオール、1,1,4,4−テトラフェニル−2−ブチン−1,4−ジオール、1,1′−ビ−2−ナフトール、ジヒドロキシナフタレン、1,1′−メチレン−ジ−2−ナフトール、1,2,4−ベンゼントリオール、ビフェノール、2,2′−ビス(4−ヒドロキシフェニル)ブタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、ビス(ヒドロキシフェニル)メタン、カテコール、4−クロルレゾルシノール、ハイドロキノン、ヒドロキシベンジルアルコール、メチルハイドロキノン、メチレン−2,4,6−トリヒドロキシベンゾエート、フロログリシノール、ピロガロール、レゾルシノール、α−(1−アミノエチル)−p−ヒドロキシベンジルアルコール、α−(1−アミノエチル)−p−ヒドロキシベンジルアルコール、3−アミノ−4−ヒドロキシフェニルスルホンなどが挙げられる。また、この他、キシリレンビス(メタ)アクリルアミド、ノボラック型エポキシ樹脂やビスフェノールAジグリシジルエーテル等のグリシジル化合物にα、β−不飽和カルボン酸を付加して得られる化合物、フタル酸やトリメリット酸などと分子中に水酸基を含有するビニルモノマーから得られるエステル化物、フタル酸ジアリル、トリメリット酸トリアリル、ベンゼンジスルホン酸ジアリル、重合性モノマーとしてカチオン重合性のジビニルエーテル類(例えば、ビスフェノールAジビニルエーテル)、エポキシ化合物(例えば、ノボラック型エポキシ樹脂、ビスフェノールAジグリシジルエーテル等)、ビニルエステル類(例えば、ジビニルフタレート、ジビニルテレフタレート、ジビニルベンゼン−1,3−ジスルホネート等)、スチレン化合物(例えば、ジビニルベンゼン、p−アリルスチレン、p−イソプロペンスチレン等)が挙げられる。これらの中でも下記構造式(35)で表される化合物が好ましい。   Examples of the polyhydric alcohol compound, polyamine compound or polyhydric amino alcohol compound having an aryl group include polystyrene oxide, xylylene diol, di- (β-hydroxyethoxy) benzene, 1,5-dihydroxy-1, 2,3,4-tetrahydronaphthalene, 2,2-diphenyl-1,3-propanediol, hydroxybenzyl alcohol, hydroxyethyl resorcinol, 1-phenyl-1,2-ethanediol, 2,3,5,6-tetra Methyl-p-xylene-α, α'-diol, 1,1,4,4-tetraphenyl-1,4-butanediol, 1,1,4,4-tetraphenyl-2-butyne-1,4- Diol, 1,1'-bi-2-naphthol, dihydroxynaphthalene, 1,1'-methylene-di-2-naphth 1,2,4-benzenetriol, biphenol, 2,2'-bis (4-hydroxyphenyl) butane, 1,1-bis (4-hydroxyphenyl) cyclohexane, bis (hydroxyphenyl) methane, catechol, 4-chlororesorcinol, hydroquinone, hydroxybenzyl alcohol, methyl hydroquinone, methylene-2,4,6-trihydroxybenzoate, phloroglicinol, pyrogallol, resorcinol, α- (1-aminoethyl) -p-hydroxybenzyl alcohol, α -(1-aminoethyl) -p-hydroxybenzyl alcohol, 3-amino-4-hydroxyphenylsulfone and the like can be mentioned. In addition, compounds obtained by adding α, β-unsaturated carboxylic acid to glycidyl compounds such as xylylene bis (meth) acrylamide, novolac epoxy resin and bisphenol A diglycidyl ether, phthalic acid, trimellitic acid, etc. Esterified products obtained from vinyl monomers containing hydroxyl groups in the molecule, diallyl phthalate, triallyl trimellitic acid, diallyl benzenedisulfonate, cationically polymerizable divinyl ethers (for example, bisphenol A divinyl ether), epoxy as a polymerizable monomer Compound (for example, novolac type epoxy resin, bisphenol A diglycidyl ether, etc.), vinyl ester (for example, divinyl phthalate, divinyl terephthalate, divinylbenzene-1,3-disulfonate, etc.), styrene Compounds such as divinylbenzene, p-allylstyrene, p-isopropenestyrene, and the like. Among these, a compound represented by the following structural formula (35) is preferable.

前記構造式(35)中、R4、Rは、水素原子又はアルキル基を表す。 In the structural formula (35), R 4 and R 5 represent a hydrogen atom or an alkyl group.

前記構造式(35)中、X及びXは、アルキレンオキサイド基を表し、1種単独でもよく、2種以上を併用してもよい。該アルキレンオキサイド基としては、例えば、エチレンオキサイド基、プロピレンオキサイド基、ブチレンオキサイド基、ペンチレンオキサイド基、ヘキシレンオキサイド基、これらを組み合わせた基(ランダム、ブロックのいずれに組み合わされてもよい)、などが好適に挙げられ、これらの中でも、エチレンオキサイド基、プロピレンオキサイド基、ブチレンオキサイド基、又はこれらを組み合わせた基が好ましく、エチレンオキサイド基、プロピレンオキサイド基がより好ましい。 In the structural formula (35), X 5 and X 6 represent an alkylene oxide group, which may be used alone or in combination of two or more. Examples of the alkylene oxide group include an ethylene oxide group, a propylene oxide group, a butylene oxide group, a pentylene oxide group, a hexylene oxide group, a group in which these are combined (which may be combined in any of random and block), Among these, an ethylene oxide group, a propylene oxide group, a butylene oxide group, or a group combining these is preferable, and an ethylene oxide group and a propylene oxide group are more preferable.

前記構造式(35)中、m5、m6は、1〜60の整数が好ましく、2〜30の整数がより好ましく、4〜15の整数が特に好ましい。   In the structural formula (35), m5 and m6 are preferably an integer of 1 to 60, more preferably an integer of 2 to 30, and particularly preferably an integer of 4 to 15.

前記構造式(35)中、Tは、2価の連結基を表し、例えば、メチレン、エチレン、MeCMe、CFCCF、CO、SOなどが挙げられる。 In the structural formula (35), T represents a divalent linking group, and examples thereof include methylene, ethylene, MeCMe, CF 3 CCF 3 , CO, and SO 2 .

前記構造式(35)中、Ar、Arは、置換基を有していてもよいアリール基を表し、例えば、フェニレン、ナフチレンなどが挙げられる。前記置換基としては、例えば、アルキル基、アリール基、アラルキル基、ハロゲン基、アルコキシ基、又はこれらの組合せなどが挙げられる。 In the structural formula (35), Ar 1 and Ar 2 represent an aryl group which may have a substituent, and examples thereof include phenylene and naphthylene. Examples of the substituent include an alkyl group, an aryl group, an aralkyl group, a halogen group, an alkoxy group, or a combination thereof.

前記アリール基を有するモノマーの具体例としては、2,2−ビス〔4−(3−(メタ)アクリルオキシ−2−ヒドロキシプロポキシ)フェニル〕プロパン、2,2−ビス〔4−((メタ)アクリルオキシエトキシ)フェニル〕プロパン、フェノール性のOH基1個に置換したエトキシ基の数が2から20である2,2−ビス(4−((メタ)アクリロイルオキシポリエトキシ)フェニル)プロパン(例えば、2,2−ビス(4−((メタ)アクリロイルオキシジエトキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシテトラエトキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシペンタエトキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシデカエトキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシペンタデカエトキシ)フェニル)プロパン等)、2,2−ビス〔4−((メタ)アクリルオキシプロポキシ)フェニル〕プロパン、フェノール性のOH基1個に置換させたエトキシ基の数が2から20である2,2−ビス(4−((メタ)アクリロイルオキシポリプロポキシ)フェニル)プロパン(例えば、2,2−ビス(4−((メタ)アクリロイルオキシジプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシテトラプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシペンタプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシデカプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシペンタデカプロポキシ)フェニル)プロパン等)、又はこれらの化合物のポリエーテル部位として同一分子中にポリエチレンオキシド骨格とポリプロピレンオキシド骨格の両方を含む化合物(例えば、WO01/98832号公報に記載の化合物等、又は、市販品として、新中村化学工業社製、BPE−200、BPE−500、BPE−1000)、ビスフェノール骨格とウレタン基とを有する重合性化合物などが挙げられる。なお、これらは、ビスフェノールA骨格に由来する部分をビスフェノールF又はビスフェノールS等に変更した化合物であってもよい。   Specific examples of the monomer having an aryl group include 2,2-bis [4- (3- (meth) acryloxy-2-hydroxypropoxy) phenyl] propane, 2,2-bis [4-((meth)). (Acryloxyethoxy) phenyl] propane, 2,2-bis (4-((meth) acryloyloxypolyethoxy) phenyl) propane (for example, 2 to 20 ethoxy groups substituted with one phenolic OH group) 2,2-bis (4-((meth) acryloyloxydiethoxy) phenyl) propane, 2,2-bis (4-((meth) acryloyloxytetraethoxy) phenyl) propane, 2,2-bis (4 -((Meth) acryloyloxypentaethoxy) phenyl) propane, 2,2-bis (4-((meth) acryloyloxydecaetoxy) ) Phenyl) propane, 2,2-bis (4-((meth) acryloyloxypentadecaethoxy) phenyl) propane), 2,2-bis [4-((meth) acryloxypropoxy) phenyl] propane, phenol 2,2-bis (4-((meth) acryloyloxypolypropoxy) phenyl) propane (for example, 2,2-bis (4 -((Meth) acryloyloxydipropoxy) phenyl) propane, 2,2-bis (4-((meth) acryloyloxytetrapropoxy) phenyl) propane, 2,2-bis (4-((meth) acryloyloxypenta) Propoxy) phenyl) propane, 2,2-bis (4-((meth) acryloyloxydecapropoxy) phenyl) Lopan, 2,2-bis (4-((meth) acryloyloxypentadecapropoxy) phenyl) propane, or the like, or a polyether moiety of these compounds contains both a polyethylene oxide skeleton and a polypropylene oxide skeleton in the same molecule Compound having a bisphenol skeleton and a urethane group (for example, a compound described in WO01 / 98832 or a commercially available product, Shin-Nakamura Chemical Co., Ltd., BPE-200, BPE-500, BPE-1000) Compound. These compounds may be compounds obtained by changing the part derived from the bisphenol A skeleton to bisphenol F or bisphenol S.

前記ビスフェノール骨格とウレタン基とを有する重合性化合物としては、例えば、ビスフェノールとエチレンオキシド又はプロピレンオキシド等の付加物、重付加物として得られる末端に水酸基を有する化合物にイソシアネート基と重合性基とを有する化合物(例えば、2−イソシアネートエチル(メタ)アクリレート、α、α−ジメチル−ビニルベンジルイソシアネート等)などが挙げられる。   Examples of the polymerizable compound having a bisphenol skeleton and a urethane group include an isocyanate group and a polymerizable group in a compound having a hydroxyl group at the terminal obtained as an adduct such as bisphenol and ethylene oxide or propylene oxide, or a polyaddition product. Examples thereof include compounds (for example, 2-isocyanatoethyl (meth) acrylate, α, α-dimethyl-vinylbenzyl isocyanate, etc.).

−その他の重合性モノマー−
本発明のパターン形成方法には、前記パターン形成材料としての特性を悪化させない範囲で、前記ウレタン基を含有するモノマー、アリール基を有するモノマー以外の重合性モノマーを併用してもよい。
-Other polymerizable monomers-
In the pattern forming method of the present invention, a polymerizable monomer other than the monomer containing the urethane group and the monomer having an aryl group may be used in combination as long as the characteristics as the pattern forming material are not deteriorated.

前記ウレタン基を含有するモノマー、芳香環を含有するモノマー以外の重合性モノマーとしては、例えば、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等)と脂肪族多価アルコール化合物とのエステル、不飽和カルボン酸と多価アミン化合物とのアミドなどが挙げられる。   Examples of the polymerizable monomer other than the monomer containing a urethane group and the monomer containing an aromatic ring include unsaturated carboxylic acids (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.) And an ester of an aliphatic polyhydric alcohol compound and an amide of an unsaturated carboxylic acid and a polyvalent amine compound.

前記不飽和カルボン酸と脂肪族多価アルコール化合物とのエステルのモノマーとしては、例えば、(メタ)アクリル酸エステルとして、エチレングリコールジ(メタ)アクリレート、エチレン基の数が2〜18であるポリエチレングリコールジ(メタ)アクリレート(例えば、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ノナエチレングリコールジ(メタ)アクリレート、ドデカエチレングリコールジ(メタ)アクリレート、テトラデカエチレングリコールジ(メタ)アクリレート等)、プロピレングリコールジ(メタ)アクリレート、プロピレン基の数が2から18であるポリプロピレングリコールジ(メタ)アクリレート(例えば、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ドデカプロピレングリコールジ(メタ)アクリレート等)、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド変性ネオペンチルグリコールジ(メタ)アクリレート、プロピレンオキシド変性ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ((メタ)アクリロイルオキシプロピル)エーテル、トリメチロールエタントリ(メタ)アクリレート、1,3−プロパンジオールジ(メタ)アクリレート、1,3−ブタンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、1,4−シクロヘキサンジオールジ(メタ)アクリレート、1,2,4−ブタントリオールトリ(メタ)アクリレート、1,5−ベンタンジオール(メタ)アクリレート、ペンタエリトリトールジ(メタ)アクリレート、ペンタエリトリトールトリ(メタ)アクリレート、ペンタエリトリトールテトラ(メタ)アクリレート、ジペンタエリトリトールペンタ(メタ)アクリレート、ジペンタエリトリトールヘキサ(メタ)アクリレート、ソルビトールトリ(メタ)アクリレート、ソルビトールテトラ(メタ)アクリレート、ソルビトールペンタ(メタ)アクリレート、ソルビトールヘキサ(メタ)アクリレート、ジメチロールジシクロペンタンジ(メタ)アクリレート、トリシクロデカンジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、エチレングリコール鎖/プロピレングリコール鎖を少なくとも各々一つずつ有するアルキレングリコール鎖のジ(メタ)アクリレート(例えば、WO01/98832号公報に記載の化合物等)、エチレンオキサイド及びプロピレンオキサイドの少なくともいずれかを付加したトリメチロールプロパンのトリ(メタ)アクリル酸エステル、ポリブチレングリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、キシレノールジ(メタ)アクリレートなどが挙げられる。   Examples of the monomer of the ester of the unsaturated carboxylic acid and the aliphatic polyhydric alcohol compound include (meth) acrylic acid ester, ethylene glycol di (meth) acrylate, and polyethylene glycol having 2 to 18 ethylene groups. Di (meth) acrylate (for example, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, nonaethylene glycol di (meth) acrylate, dodecaethylene glycol di (meth) acrylate , Tetradecaethylene glycol di (meth) acrylate, etc.), propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate having 2 to 18 propylene groups (for example, , Dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetrapropylene glycol di (meth) acrylate, dodecapropylene glycol di (meth) acrylate, etc.), neopentyl glycol di (meth) acrylate, ethylene oxide modified Neopentyl glycol di (meth) acrylate, propylene oxide modified neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane di (meth) acrylate, trimethylolpropane tri ((meth) acryloyloxypropyl) ) Ether, trimethylolethane tri (meth) acrylate, 1,3-propanediol di (meth) acrylate, 1,3-butanediol (Meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, tetramethylene glycol di (meth) acrylate, 1,4-cyclohexanediol di (meth) acrylate, 1,2,4-butanetriol tri (meth) acrylate, 1,5-bentanediol (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, di Pentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, sorbitol tri (meth) acrylate, sorbitol tetra (meth) acrylate, sorbitol penta (meth) acrylate Rate, sorbitol hexa (meth) acrylate, dimethylol dicyclopentane di (meth) acrylate, tricyclodecane di (meth) acrylate, neopentyl glycol di (meth) acrylate, neopentyl glycol modified trimethylolpropane di (meth) acrylate A di (meth) acrylate of an alkylene glycol chain having at least one ethylene glycol chain / propylene glycol chain (for example, a compound described in WO01 / 98832), at least one of ethylene oxide and propylene oxide Trimethylolpropane tri (meth) acrylate, polybutylene glycol di (meth) acrylate, glycerol di (meth) acrylate, glycerol tri (meth) acrylate Examples include relate and xylenol di (meth) acrylate.

前記(メタ)アクリル酸エステル類の中でも、その入手の容易さ等の観点から、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エチレングリコール鎖/プロピレングリコール鎖を少なくとも各々一つずつ有するアルキレングリコール鎖のジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリトリトールテトラ(メタ)アクリレート、ペンタエリトリトールトリアクリレート、ペンタエリトリトールジ(メタ)アクリレート、ジペンタエリトリトールペンタ(メタ)アクリレート、ジペンタエリトリトールヘキサ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ジグリセリンジ(メタ)アクリレート、1,3−プロパンジオールジ(メタ)アクリレート、1,2,4−ブタントリオールトリ(メタ)アクリレート、1,4−シクロヘキサンジオールジ(メタ)アクリレート、1,5−ペンタンジオール(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイド付加したトリメチロールプロパンのトリ(メタ)アクリル酸エステルなどが好ましい。   Among the (meth) acrylic acid esters, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meta) from the viewpoint of easy availability. ) Acrylate, di (meth) acrylate of alkylene glycol chain each having at least one ethylene glycol chain / propylene glycol chain, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol triacrylate, penta Erythritol di (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, glycerin tri (Meth) acrylate, diglycerin di (meth) acrylate, 1,3-propanediol di (meth) acrylate, 1,2,4-butanetriol tri (meth) acrylate, 1,4-cyclohexanediol di (meth) acrylate, 1, Preference is given to 5-pentanediol (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate added with ethylene oxide, and the like.

前記イタコン酸と前記脂肪族多価アルコール化合物とのエステル(イタコン酸エステル)としては、例えば、エチレングリコールジイタコネート、プロピレングリコールジイタコネート、1,3−ブタンジオールジイタコネート、1,4ーブタンジオールジイタコネート、テトラメチレングリコールジイタコネート、ペンタエリトリトールジイタコネート、及びソルビトールテトライタコネートなどが挙げられる。   Examples of the ester (itaconic acid ester) of the itaconic acid and the aliphatic polyhydric alcohol compound include ethylene glycol diitaconate, propylene glycol diitaconate, 1,3-butanediol diitaconate, 1,4- Examples include butanediol diitaconate, tetramethylene glycol diitaconate, pentaerythritol diitaconate, and sorbitol tetritaconate.

前記クロトン酸と前記脂肪族多価アルコール化合物とのエステル(クロトン酸エステル)としては、例えば、エチレングリコールジクロトネート、テトラメチレングリコールジクロトネート、ペンタエリトリトールジクロトネート、ソルビトールテトラジクロトネートなどが挙げられる。   Examples of the ester (crotonate ester) of the crotonic acid and the aliphatic polyhydric alcohol compound include ethylene glycol dicrotonate, tetramethylene glycol dicrotonate, pentaerythritol dicrotonate, and sorbitol tetradicrotonate. Can be mentioned.

前記イソクロトン酸と前記脂肪族多価アルコール化合物とのエステル(イソクロトン酸エステル)としては、例えば、エチレングリコールジイソクロトネート、ペンタエリトリトールジイソクロトネート、ソルビトールテトライソクロトネートなどが挙げられる。   Examples of the ester of the isocrotonic acid and the aliphatic polyhydric alcohol compound (isocrotonate ester) include ethylene glycol diisocrotonate, pentaerythritol diisocrotonate, sorbitol tetraisocrotonate, and the like.

前記マレイン酸と前記脂肪族多価アルコール化合物とのエステル(マレイン酸エステル)としては、例えば、エチレングリコールジマレート、トリエチレングリコールジマレート、ペンタエリトリトールジマレート、ソルビトールテトラマレートなどが挙げられる。   Examples of the ester of maleic acid and the aliphatic polyhydric alcohol compound (maleic acid ester) include ethylene glycol dimaleate, triethylene glycol dimaleate, pentaerythritol dimaleate, and sorbitol tetramaleate.

前記多価アミン化合物と前記不飽和カルボン酸類から誘導されるアミドとしては、例えば、メチレンビス(メタ)アクリルアミド、エチレンビス(メタ)アクリルアミド、1,6−ヘキサメチレンビス(メタ)アクリルアミド、オクタメチレンビス(メタ)アクリルアミド、ジエチレントリアミントリス(メタ)アクリルアミド、ジエチレントリアミンビス(メタ)アクリルアミド、などが挙げられる。   Examples of the amide derived from the polyvalent amine compound and the unsaturated carboxylic acid include methylene bis (meth) acrylamide, ethylene bis (meth) acrylamide, 1,6-hexamethylene bis (meth) acrylamide, and octamethylene bis ( And (meth) acrylamide, diethylenetriamine tris (meth) acrylamide, and diethylenetriamine bis (meth) acrylamide.

また、上記以外にも、前記重合性モノマーとして、例えば、ブタンジオール−1,4−ジグリシジルエーテル、シクロヘキサンジメタノールグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ジプロピレングリコールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリトリトールテトラグリシジルエーテル、グリセリントリグリシジルエーテル等のグリシジル基含有化合物にα,β−不飽和カルボン酸を付加して得られる化合物、特開昭48−64183号、特公昭49−43191号、特公昭52−30490号各公報に記載されているようなポリエステルアクリレートやポリエステル(メタ)アクリレートオリゴマー類、エポキシ化合物(例えば、ブタンジオール−1,4−ジグリシジルエーテル、シクロヘキサンジメタノールグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ジプロピレングリコールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリトリトールテトラグリシジルエーテル、グリセリントリグリシジルエーテルなど)と(メタ)アクリル酸を反応させたエポキシアクリレート類等の多官能のアクリレートやメタクリレート、日本接着協会誌vol.20、No.7、300〜308ページ(1984年)に記載の光硬化性モノマー及びオリゴマー、アリルエステル(例えば、フタル酸ジアリル、アジピン酸ジアリル、マロン酸ジアリル、ジアリルアミド(例えば、ジアリルアセトアミド等)、カチオン重合性のジビニルエーテル類(例えば、ブタンジオール−1,4−ジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、ジプロピレングリコールジビニルエーテル、ヘキサンジオールジビニルエーテル、トリメチロールプロパントリビニルエーテル、ペンタエリトリトールテトラビニルエーテル、グリセリントリビニルエーテル等)、エポキシ化合物(例えば、ブタンジオール−1,4−ジグリシジルエーテル、シクロヘキサンジメタノールグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ジプロピレングリコールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリトリトールテトラグリシジルエーテル、グリセリントリグリシジルエーテル等)、オキセタン類(例えば、1,4−ビス〔(3−エチル−3−オキセタニルメトキシ)メチル〕ベンゼン等)、エポキシ化合物、オキセタン類(例えば、WO01/22165号公報に記載の化合物)、N−β−ヒドロキシエチル−β−(メタクリルアミド)エチルアクリレート、N,N−ビス(β−メタクリロキシエチル)アクリルアミド、アリルメタクリレート等の異なったエチレン性不飽和二重結合を2個以上有する化合物などが挙げられる。   In addition to the above, as the polymerizable monomer, for example, butanediol-1,4-diglycidyl ether, cyclohexanedimethanol glycidyl ether, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, dipropylene glycol diglycidyl ether, Compound obtained by adding α, β-unsaturated carboxylic acid to glycidyl group-containing compound such as hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether, glycerin triglycidyl ether, Polyester acrylate and polyester (meth) acrylate as described in JP-B-6183, JP-B-49-43191 and JP-B-52-30490. Rate oligomers, epoxy compounds (eg, butanediol-1,4-diglycidyl ether, cyclohexanedimethanol glycidyl ether, diethylene glycol diglycidyl ether, dipropylene glycol diglycidyl ether, hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether , Pentaerythritol tetraglycidyl ether, glycerin triglycidyl ether, etc.) and (meth) acrylic acid and other polyfunctional acrylates and methacrylates such as epoxy acrylates, Journal of Japan Adhesion Association Vol. 20, No. 7, 300-308 Photocurable monomers and oligomers and allyl esters described in page (1984) (eg diallyl phthalate, diallyl adipate, malonic acid) Allyl, diallylamide (eg, diallylacetamide), cationically polymerizable divinyl ethers (eg, butanediol-1,4-divinyl ether, cyclohexanedimethanol divinyl ether, ethylene glycol divinyl ether, diethylene glycol divinyl ether, dipropylene glycol) Divinyl ether, hexanediol divinyl ether, trimethylolpropane trivinyl ether, pentaerythritol tetravinyl ether, glycerin trivinyl ether, etc.), epoxy compounds (eg, butanediol-1,4-diglycidyl ether, cyclohexanedimethanol glycidyl ether, ethylene glycol di) Glycidyl ether, diethylene glycol diglycidyl ether, dipropylene group Recall diglycidyl ether, hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether, glycerin triglycidyl ether, etc.), oxetanes (for example, 1,4-bis [(3-ethyl-3-oxetanyl) Methoxy) methyl] benzene, etc.), epoxy compounds, oxetanes (for example, compounds described in WO01 / 22165), N-β-hydroxyethyl-β- (methacrylamide) ethyl acrylate, N, N-bis (β -Methacryloxyethyl) A compound having two or more different ethylenically unsaturated double bonds such as acrylamide and allyl methacrylate.

前記ビニルエステル類としては、例えば、ジビニルサクシネート、ジビニルアジペートなどが挙げられる。   Examples of the vinyl esters include divinyl succinate and divinyl adipate.

これらの多官能モノマー又はオリゴマーは、1種単独で使用してもよく、2種以上を併用してもよい。   These polyfunctional monomers or oligomers may be used alone or in combination of two or more.

前記重合性モノマーは、必要に応じて、分子内に重合性基を1個含有する重合性化合物(単官能モノマー)を併用してもよい。
前記単官能モノマーとしては、例えば、前記バインダーの原料として例示した化合物、特開平6−236031号公報に記載されている2塩基のモノ((メタ)アクリロイルオキシアルキルエステル)モノ(ハロヒドロキシアルキルエステル)等の単官能モノマー(例えば、γ−クロロ−β−ヒドロキシプロピル−β′−メタクリロイルオキシエチル−o−フタレート等)、特許2744643号公報、WO00/52529号公報、特許2548016号公報等に記載の化合物が挙げられる。
If necessary, the polymerizable monomer may be used in combination with a polymerizable compound (monofunctional monomer) containing one polymerizable group in the molecule.
Examples of the monofunctional monomer include the compounds exemplified as the raw material of the binder, and the dibasic mono ((meth) acryloyloxyalkyl ester) mono (halohydroxyalkyl ester) described in JP-A-6-236031. Monofunctional monomers such as γ-chloro-β-hydroxypropyl-β′-methacryloyloxyethyl-o-phthalate, etc., compounds described in Japanese Patent No. 2744443, WO00 / 52529, Japanese Patent No. 2548016, etc. Is mentioned.

前記感光層における重合性化合物の含有量としては、例えば、5〜90質量%が好ましく、15〜60質量%がより好ましく、20〜50質量%が特に好ましい。
前記含有量が、5質量%となると、テント膜の強度が低下することがあり、90質量%を超えると、保存時のエッジフュージョン(ロール端部からのしみだし故障)が悪化することがある。
また、重合性化合物中に前記重合性基を2個以上有する多官能モノマーの含有量としては、5〜100質量%が好ましく、20〜100質量%がより好ましく、40〜100質量%が特に好ましい。
As content of the polymeric compound in the said photosensitive layer, 5-90 mass% is preferable, for example, 15-60 mass% is more preferable, and 20-50 mass% is especially preferable.
If the content is 5% by mass, the strength of the tent film may be reduced, and if it exceeds 90% by mass, edge fusion during storage (exudation failure from the end of the roll) may be deteriorated. .
Moreover, as content of the polyfunctional monomer which has 2 or more of the said polymeric groups in a polymeric compound, 5-100 mass% is preferable, 20-100 mass% is more preferable, 40-100 mass% is especially preferable. .

<<光重合開始剤>>
前記光重合開始剤としては、前記重合性化合物の重合を開始する能力を有する限り、特に制限はなく、公知の光重合開始剤の中から適宜選択することができるが、例えば、紫外線領域から可視の光線に対して感光性を有するものが好ましく、光励起された増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよく、モノマーの種類に応じてカチオン重合を開始させるような開始剤であってもよい。
また、前記光重合開始剤は、約300〜800nm(より好ましくは330〜500nm)の範囲内に少なくとも約50の分子吸光係数を有する成分を少なくとも1種含有していることが好ましい。
<< photopolymerization initiator >>
The photopolymerization initiator is not particularly limited as long as it has the ability to initiate polymerization of the polymerizable compound, and can be appropriately selected from known photopolymerization initiators. For example, it is visible from the ultraviolet region. It is preferable to have photosensitivity to the light, and it may be an activator that produces some kind of action with a photoexcited sensitizer and generates active radicals, and initiates cationic polymerization depending on the type of monomer. Initiator may be used.
The photopolymerization initiator preferably contains at least one component having a molecular extinction coefficient of at least about 50 within a range of about 300 to 800 nm (more preferably 330 to 500 nm).

前記光重合開始剤としては、例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有するもの、オキサジアゾール骨格を有するもの等)、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、メタロセン類などが挙げられる。これらの中でも、感光層の感度、保存性、及び感光層とプリント配線板形成用基板との密着性等の観点から、トリアジン骨格を有するハロゲン化炭化水素、オキシム誘導体、ケトン化合物、ヘキサアリールビイミダゾール系化合物が好ましい。   Examples of the photopolymerization initiator include halogenated hydrocarbon derivatives (for example, those having a triazine skeleton, those having an oxadiazole skeleton), hexaarylbiimidazoles, oxime derivatives, organic peroxides, thio compounds, Examples include ketone compounds, aromatic onium salts, and metallocenes. Among these, halogenated hydrocarbons having a triazine skeleton, oxime derivatives, ketone compounds, hexaarylbiimidazoles from the viewpoints of sensitivity and storage stability of the photosensitive layer, and adhesion between the photosensitive layer and the printed wiring board forming substrate. System compounds are preferred.

前記ヘキサアリールビイミダゾールとしては、例えば、2,2′−ビス(2−クロロフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(o−フロロフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(2−ブロモフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(2,4−ジクロロフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(2−クロロフェニル)−4,4′,5,5′−テトラ(3−メトキシフェニル)ビイミダゾール、2,2′−ビス(2−クロロフェニル)−4,4′,5,5′−テトラ(4−メトキシフェニル)ビイミダゾール、2,2′−ビス(4−メトキシフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(2,4−ジクロロフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(2−ニトロフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(2−メチルフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(2−トリフルオロメチルフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、WO00/52529号公報に記載の化合物などが挙げられる。   Examples of the hexaarylbiimidazole include 2,2′-bis (2-chlorophenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis (o-fluorophenyl)- 4,4 ', 5,5'-tetraphenylbiimidazole, 2,2'-bis (2-bromophenyl) -4,4', 5,5'-tetraphenylbiimidazole, 2,2'-bis ( 2,4-dichlorophenyl) -4,4 ', 5,5'-tetraphenylbiimidazole, 2,2'-bis (2-chlorophenyl) -4,4', 5,5'-tetra (3-methoxyphenyl) ) Biimidazole, 2,2'-bis (2-chlorophenyl) -4,4 ', 5,5'-tetra (4-methoxyphenyl) biimidazole, 2,2'-bis (4-methoxyphenyl) -4 , 4 ', , 5'-tetraphenylbiimidazole, 2,2'-bis (2,4-dichlorophenyl) -4,4 ', 5,5'-tetraphenylbiimidazole, 2,2'-bis (2-nitrophenyl) -4,4 ', 5,5'-tetraphenylbiimidazole, 2,2'-bis (2-methylphenyl) -4,4', 5,5'-tetraphenylbiimidazole, 2,2'-bis (2-Trifluoromethylphenyl) -4,4 ', 5,5'-tetraphenylbiimidazole, compounds described in WO00 / 52529, and the like.

前記ビイミダゾール類は、例えば、Bull.Chem.Soc.Japan,33,565(1960)、及びJ.Org.Chem,36(16)2262(1971)に開示されている方法により容易に合成することができる。   The biimidazoles are described in, for example, Bull. Chem. Soc. Japan, 33, 565 (1960); Org. It can be easily synthesized by the method disclosed in Chem, 36 (16) 2262 (1971).

トリアジン骨格を有するハロゲン化炭化水素化合物としては、例えば、若林ら著、Bull.Chem.Soc.Japan,42、2924(1969)記載の化合物、英国特許1388492号明細書記載の化合物、特開昭53−133428号公報記載の化合物、独国特許3337024号明細書記載の化合物、F.C.Schaefer等によるJ.Org.Chem.;29、1527(1964)記載の化合物、特開昭62−58241号公報記載の化合物、特開平5−281728号公報記載の化合物、特開平5−34920号公報記載化合物、米国特許第4212976号明細書に記載されている化合物が挙げられる。   Examples of the halogenated hydrocarbon compound having a triazine skeleton include those described in Wakabayashi et al., Bull. Chem. Soc. Japan, 42, 2924 (1969), a compound described in British Patent 1388492, a compound described in JP-A-53-133428, a compound described in German Patent 3337024, F.I. C. J. Schaefer et al. Org. Chem. 29, 1527 (1964), compounds described in JP-A-62-258241, compounds described in JP-A-5-281728, compounds described in JP-A-5-34920, US Pat. No. 4,221,976 And compounds described in the book.

前記若林ら著、Bull.Chem.Soc.Japan,42、2924(1969)記載の化合物としては、例えば、2−フェニル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−クロルフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−トリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(2,4−ジクロルフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2,4,6−トリス(トリクロルメチル)−1,3,5−トリアジン、2−メチル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−n−ノニル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、及び2−(α,α,β−トリクロルエチル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジンなどが挙げられる。   Wakabayashi et al., Bull. Chem. Soc. As a compound described in Japan, 42, 2924 (1969), for example, 2-phenyl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-chlorophenyl) -4,6 -Bis (trichloromethyl) -1,3,5-triazine, 2- (4-tolyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methoxyphenyl)- 4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (2,4-dichlorophenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2, 4,6-tris (trichloromethyl) -1,3,5-triazine, 2-methyl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2-n-nonyl-4,6- Bis (trichloromethyl) 1,3,5-triazine, and 2-(alpha, alpha, beta-trichloroethyl) -4,6-bis (trichloromethyl) -1,3,5-triazine.

前記英国特許1388492号明細書記載の化合物としては、例えば、2−スチリル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メチルスチリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシスチリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシスチリル)−4−アミノ−6−トリクロルメチル−1,3,5−トリアジンなどが挙げられる。   Examples of the compound described in the British Patent 1388492 include 2-styryl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methylstyryl) -4,6- Bis (trichloromethyl) -1,3,5-triazine, 2- (4-methoxystyryl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methoxystyryl)- 4-amino-6-trichloromethyl-1,3,5-triazine and the like can be mentioned.

前記特開昭53−133428号公報記載の化合物としては、例えば、2−(4−メトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−エトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−〔4−(2−エトキシエチル)−ナフト−1−イル〕−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4,7−ジメトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、及び2−(アセナフト−5−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジンなどが挙げられる。   Examples of the compounds described in JP-A-53-133428 include 2- (4-methoxy-naphth-1-yl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2 -(4-Ethoxy-naphth-1-yl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [4- (2-ethoxyethyl) -naphth-1-yl]- 4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4,7-dimethoxy-naphth-1-yl) -4,6-bis (trichloromethyl) -1,3,5- Examples include triazine and 2- (acenaphtho-5-yl) -4,6-bis (trichloromethyl) -1,3,5-triazine.

前記独国特許3337024号明細書記載の化合物としては、例えば、2−(4−スチリルフェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−メトキシスチリル)フェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(1−ナフチルビニレンフェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−クロロスチリルフェニル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−チオフェン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−チオフェン−3−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−フラン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、及び2−(4−ベンゾフラン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。   Examples of the compound described in the specification of German Patent 3333724 include 2- (4-styrylphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4- (4 -Methoxystyryl) phenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (1-naphthylvinylenephenyl) -4,6-bis (trichloromethyl) -1,3,5 -Triazine, 2-chlorostyrylphenyl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-thiophen-2-vinylenephenyl) -4,6-bis (trichloromethyl)- 1,3,5-triazine, 2- (4-thiophene-3-vinylenephenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-furan-2 Vinylenephenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, and 2- (4-benzofuran-2-vinylenephenyl) -4,6-bis (trichloromethyl) -1,3 5-triazine etc. are mentioned.

前記F.C.Schaefer等によるJ.Org.Chem.;29、1527(1964)記載の化合物としては、例えば、2−メチル−4,6−ビス(トリブロモメチル)−1,3,5−トリアジン、2,4,6−トリス(トリブロモメチル)−1,3,5−トリアジン、2,4,6−トリス(ジブロモメチル)−1,3,5−トリアジン、2−アミノ−4−メチル−6−トリ(ブロモメチル)−1,3,5−トリアジン、及び2−メトキシ−4−メチル−6−トリクロロメチル−1,3,5−トリアジンなどが挙げられる。   F. above. C. J. Schaefer et al. Org. Chem. 29, 1527 (1964) include, for example, 2-methyl-4,6-bis (tribromomethyl) -1,3,5-triazine, 2,4,6-tris (tribromomethyl); -1,3,5-triazine, 2,4,6-tris (dibromomethyl) -1,3,5-triazine, 2-amino-4-methyl-6-tri (bromomethyl) -1,3,5- Examples include triazine and 2-methoxy-4-methyl-6-trichloromethyl-1,3,5-triazine.

前記特開昭62−58241号公報記載の化合物としては、例えば、2−(4−フェニルエチニルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−ナフチル−1−エチニルフェニル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−トリルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−メトキシフェニル)エチニルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−イソプロピルフェニルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−エチルフェニルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。   Examples of the compounds described in JP-A-62-258241 include 2- (4-phenylethynylphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4- Naphthyl-1-ethynylphenyl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4- (4-tolylethynyl) phenyl) -4,6-bis (trichloromethyl) -1 , 3,5-triazine, 2- (4- (4-methoxyphenyl) ethynylphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4- (4-isopropylphenyl) Ethynyl) phenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4- (4-ethylphenylethynyl) phenyl) -4,6-bis (trichloromethyl) Le) -1,3,5-triazine.

前記特開平5−281728号公報記載の化合物としては、例えば、2−(4−トリフルオロメチルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジフルオロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジクロロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジブロモフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。   Examples of the compound described in JP-A-5-281728 include 2- (4-trifluoromethylphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (2, 6-difluorophenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (2,6-dichlorophenyl) -4,6-bis (trichloromethyl) -1,3,5- Examples include triazine, 2- (2,6-dibromophenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine.

前記特開平5−34920号公報記載化合物としては、例えば、2,4−ビス(トリクロロメチル)−6−[4−(N,N−ジエトキシカルボニルメチルアミノ)−3−ブロモフェニル]−1,3,5−トリアジン、米国特許第4239850号明細書に記載されているトリハロメチル−s−トリアジン化合物、更に2,4,6−トリス(トリクロロメチル)−s−トリアジン、2−(4−クロロフェニル)−4,6−ビス(トリブロモメチル)−s−トリアジンなどが挙げられる。   Examples of the compound described in JP-A-5-34920 include 2,4-bis (trichloromethyl) -6- [4- (N, N-diethoxycarbonylmethylamino) -3-bromophenyl] -1, 3,5-triazine, trihalomethyl-s-triazine compounds described in US Pat. No. 4,239,850, 2,4,6-tris (trichloromethyl) -s-triazine, 2- (4-chlorophenyl) Examples include -4,6-bis (tribromomethyl) -s-triazine.

前記米国特許第4212976号明細書に記載されている化合物としては、例えば、オキサジアゾール骨格を有する化合物(例えば、2−トリクロロメチル−5−フェニル−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−クロロフェニル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(1−ナフチル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(2−ナフチル)−1,3,4−オキサジアゾール、2−トリブロモメチル−5−フェニル−1,3,4−オキサジアゾール、2−トリブロモメチル−5−(2−ナフチル)−1,3,4−オキサジアゾール;2−トリクロロメチル−5−スチリル−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−クロルスチリル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−メトキシスチリル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(1−ナフチル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−n−ブトキシスチリル)−1,3,4−オキサジアゾール、2−トリブロモメチル−5−スチリル−1,3,4−オキサジアゾール等)などが挙げられる。   Examples of the compound described in US Pat. No. 4,221,976 include compounds having an oxadiazole skeleton (for example, 2-trichloromethyl-5-phenyl-1,3,4-oxadiazole, 2- Trichloromethyl-5- (4-chlorophenyl) -1,3,4-oxadiazole, 2-trichloromethyl-5- (1-naphthyl) -1,3,4-oxadiazole, 2-trichloromethyl-5 -(2-naphthyl) -1,3,4-oxadiazole, 2-tribromomethyl-5-phenyl-1,3,4-oxadiazole, 2-tribromomethyl-5- (2-naphthyl) -1,3,4-oxadiazole; 2-trichloromethyl-5-styryl-1,3,4-oxadiazole, 2-trichloromethyl-5- (4-chlorostyryl) -1,3,4-oxadiazole, 2-trichloromethyl-5- (4-methoxystyryl) -1,3,4-oxadiazole, 2-trichloromethyl-5- (1-naphthyl) -1, 3,4-oxadiazole, 2-trichloromethyl-5- (4-n-butoxystyryl) -1,3,4-oxadiazole, 2-tribromomethyl-5-styryl-1,3,4 Oxadiazole and the like).

本発明で好適に用いられるオキシム誘導体としては、例えば、下記構造式(36)〜(69)で表される化合物が挙げられる。   Examples of the oxime derivative suitably used in the present invention include compounds represented by the following structural formulas (36) to (69).

前記ケトン化合物としては、例えば、ベンゾフェノン、2−メチルベンゾフェノン、3−メチルベンゾフェノン、4−メチルベンゾフェノン、4−メトキシベンゾフェノン、2−クロロベンゾフェノン、4−クロロベンゾフェノン、4−ブロモベンゾフェノン、2−カルボキシベンゾフェノン、2−エトキシカルボニルベンゾルフェノン、ベンゾフェノンテトラカルボン酸又はそのテトラメチルエステル、4,4′−ビス(ジアルキルアミノ)ベンゾフェノン類(例えば、4,4′−ビス(ジメチルアミノ)ベンゾフェノン、4,4′−ビスジシクロヘキシルアミノ)ベンゾフェノン、4,4′−ビス(ジエチルアミノ)ベンゾフェノン、4,4′−ビス(ジヒドロキシエチルアミノ)ベンゾフェノン、4−メトキシ−4′−ジメチルアミノベンゾフェノン、4,4′−ジメトキシベンゾフェノン、4−ジメチルアミノベンゾフェノン、4−ジメチルアミノアセトフェノン、ベンジル、アントラキノン、2−t−ブチルアントラキノン、2−メチルアントラキノン、フェナントラキノン、キサントン、チオキサントン、2−クロル−チオキサントン、2,4−ジエチルチオキサントン、フルオレノン、2−ベンジル−ジメチルアミノ−1−(4−モルホリノフェニル)−1−ブタノン、2−メチル−1−〔4−(メチルチオ)フェニル〕−2−モルホリノ−1−プロパノン、2−ヒドロキシー2−メチル−〔4−(1−メチルビニル)フェニル〕プロパノールオリゴマー、ベンゾイン、ベンゾインエーテル類(例えば、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインフェニルエーテル、ベンジルジメチルケタール)、アクリドン、クロロアクリドン、N−メチルアクリドン、N−ブチルアクリドン、N−ブチル−クロロアクリドンなどが挙げられる。   Examples of the ketone compound include benzophenone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 4-methoxybenzophenone, 2-chlorobenzophenone, 4-chlorobenzophenone, 4-bromobenzophenone, 2-carboxybenzophenone, 2-ethoxycarbonylbenzolphenone, benzophenonetetracarboxylic acid or tetramethyl ester thereof, 4,4′-bis (dialkylamino) benzophenone (for example, 4,4′-bis (dimethylamino) benzophenone, 4,4′- Bisdicyclohexylamino) benzophenone, 4,4'-bis (diethylamino) benzophenone, 4,4'-bis (dihydroxyethylamino) benzophenone, 4-methoxy-4'-dimethylamino Nzophenone, 4,4'-dimethoxybenzophenone, 4-dimethylaminobenzophenone, 4-dimethylaminoacetophenone, benzyl, anthraquinone, 2-t-butylanthraquinone, 2-methylanthraquinone, phenanthraquinone, xanthone, thioxanthone, 2-chloro -Thioxanthone, 2,4-diethylthioxanthone, fluorenone, 2-benzyl-dimethylamino-1- (4-morpholinophenyl) -1-butanone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino -1-propanone, 2-hydroxy-2-methyl- [4- (1-methylvinyl) phenyl] propanol oligomer, benzoin, benzoin ethers (for example, benzoin methyl ether, benzoin ethyl ether, In propyl ether, benzoin isopropyl ether, benzoin phenyl ether, benzyl dimethyl ketal), acridone, chloro acridone, N- methyl acridone, N- butyl acridone, N- butyl - such as chloro acrylic pyrrolidone.

前記メタロセン類としては、例えば、ビス(η5−2,4−シクロペンタジエン−1−イル)−ビス(2,6−ジフロロ−3−(1H−ピロール−1−イル)−フェニル)チタニウム、η5−シクロペンタジエニル−η6−クメニル−アイアン(1+)−ヘキサフロロホスフェート(1−)、特開昭53−133428号公報、特公昭57−1819号公報、同57−6096号公報、及び米国特許第3615455号明細書に記載された化合物などが挙げられる。   Examples of the metallocenes include bis (η5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium, η5- Cyclopentadienyl-η6-cumenyl-iron (1 +)-hexafluorophosphate (1-), JP-A-53-133428, JP-B-57-1819, JP-A-57-6096, and US Pat. Examples thereof include compounds described in the specification of 3615455.

また、上記以外の光重合開始剤として、アクリジン誘導体(例えば、9−フェニルアクリジン、1,7−ビス(9、9′−アクリジニル)ヘプタン等)、N−フェニルグリシン等、ポリハロゲン化合物(例えば、四臭化炭素、フェニルトリブロモメチルスルホン、フェニルトリクロロメチルケトン等)、クマリン類(例えば、3−(2−ベンゾフロイル)−7−ジエチルアミノクマリン、3−(2−ベンゾフロイル)−7−(1−ピロリジニル)クマリン、3−ベンゾイル−7−ジエチルアミノクマリン、3−(2−メトキシベンゾイル)−7−ジエチルアミノクマリン、3−(4−ジメチルアミノベンゾイル)−7−ジエチルアミノクマリン、3,3′−カルボニルビス(5,7−ジ−n−プロポキシクマリン)、3,3′−カルボニルビス(7−ジエチルアミノクマリン)、3−ベンゾイル−7−メトキシクマリン、3−(2−フロイル)−7−ジエチルアミノクマリン、3−(4−ジエチルアミノシンナモイル)−7−ジエチルアミノクマリン、7−メトキシ−3−(3−ピリジルカルボニル)クマリン、3−ベンゾイル−5,7−ジプロポキシクマリン、7−ベンゾトリアゾール−2−イルクマリン、また、特開平5-19475号、特開平7-271028号、特開2002-363206号、特開2002-363207号、特開2002-363208号、特開2002-363209号公報等に記載のクマリン化合物など)、アミン類(例えば、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸n−ブチル、4−ジメチルアミノ安息香酸フェネチル、4−ジメチルアミノ安息香酸2−フタルイミドエチル、4−ジメチルアミノ安息香酸2−メタクリロイルオキシエチル、ペンタメチレンビス(4−ジメチルアミノベンゾエート)、3−ジメチルアミノ安息香酸のフェネチル、ペンタメチレンエステル、4−ジメチルアミノベンズアルデヒド、2−クロル−4−ジメチルアミノベンズアルデヒド、4−ジメチルアミノベンジルアルコール、エチル(4−ジメチルアミノベンゾイル)アセテート、4−ピペリジノアセトフェノン、4−ジメチルアミノベンゾイン、N,N−ジメチル−4−トルイジン、N,N−ジエチル−3−フェネチジン、トリベンジルアミン、ジベンジルフェニルアミン、N−メチル−N−フェニルベンジルアミン、4−ブロム−N,N−ジメチルアニリン、トリドデシルアミン、アミノフルオラン類(ODB,ODBII等)、クリスタルバイオレットラクトン、ロイコクリスタルバイオレット等)、アシルホスフィンオキシド類(例えば、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキシド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフェニルホスフィンオキシド、LucirinTPOなど)などが挙げられる。   Further, as photopolymerization initiators other than the above, acridine derivatives (for example, 9-phenylacridine, 1,7-bis (9,9′-acridinyl) heptane, etc.), N-phenylglycine, Carbon tetrabromide, phenyltribromomethylsulfone, phenyltrichloromethylketone, etc.), coumarins (eg, 3- (2-benzofuroyl) -7-diethylaminocoumarin, 3- (2-benzofuroyl) -7- (1-pyrrolidinyl) ) Coumarin, 3-benzoyl-7-diethylaminocoumarin, 3- (2-methoxybenzoyl) -7-diethylaminocoumarin, 3- (4-dimethylaminobenzoyl) -7-diethylaminocoumarin, 3,3'-carbonylbis (5 , 7-di-n-propoxycoumarin), 3,3'-carbonylbis (7-diethylaminocoumarin), 3-benzoyl-7-methoxycoumarin, 3- (2-furoyl) -7-diethylaminocoumarin, 3- (4-diethylaminocinnamoyl) -7-diethylaminocoumarin, 7-methoxy-3- (3-pyridylcarbonyl) coumarin, 3-benzoyl-5,7-dipropoxycoumarin, 7-benzotriazol-2-ylcoumarin, JP-A-5-19475, JP-A-7-271028, JP-A-2002-363206 No., JP-A-2002-363207, JP-A-2002-363208, JP-A-2002-363209, etc.), amines (for example, ethyl 4-dimethylaminobenzoate, 4-dimethylaminobenzoate) N-butyl acid, 4-dimethylaminobenzoic acid phenethyl, 4-dimethyl 2-phthalimidoethyl tilaminobenzoate, 2-methacryloyloxyethyl 4-dimethylaminobenzoate, pentamethylenebis (4-dimethylaminobenzoate), phenethyl of 3-dimethylaminobenzoic acid, pentamethylene ester, 4-dimethylaminobenzaldehyde, 2-chloro-4-dimethylaminobenzaldehyde, 4-dimethylaminobenzyl alcohol, ethyl (4-dimethylaminobenzoyl) acetate, 4-piperidinoacetophenone, 4-dimethylaminobenzoin, N, N-dimethyl-4-toluidine, N, N-diethyl-3-phenetidine, tribenzylamine, dibenzylphenylamine, N-methyl-N-phenylbenzylamine, 4-bromo-N, N-dimethylaniline, tridodecylamine, amino Nofluoranes (ODB, ODBII, etc.), crystal violet lactone, leuco crystal violet, etc., acylphosphine oxides (for example, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) ) -2,4,4-trimethyl-pentylphenylphosphine oxide, Lucirin TPO, etc.).

更に、米国特許第2367660号明細書に記載されているビシナルポリケタルドニル化合物、米国特許第2448828号明細書に記載されているアシロインエーテル化合物、米国特許第2722512号明細書に記載されているα−炭化水素で置換された芳香族アシロイン化合物、米国特許第3046127号明細書及び同第2951758号明細書に記載の多核キノン化合物、特開2002−229194号公報に記載の有機ホウ素化合物、ラジカル発生剤、トリアリールスルホニウム塩(例えば、ヘキサフロロアンチモンやヘキサフロロホスフェートとの塩)、ホスホニウム塩化合物(例えば、(フェニルチオフェニル)ジフェニルスルホニウム塩等)(カチオン重合開始剤として有効)、WO01/71428号公報記載のオニウム塩化合物などが挙げられる。   Further, vicinal polyketaldonyl compounds described in US Pat. No. 2,367,660, acyloin ether compounds described in US Pat. No. 2,448,828, and US Pat. No. 2,722,512 are described. An aromatic acyloin compound substituted with α-hydrocarbon, a polynuclear quinone compound described in US Pat. Nos. 3,046,127 and 2,951,758, an organoboron compound described in JP-A-2002-229194, and a radical Generator, triarylsulfonium salt (for example, salt with hexafluoroantimony or hexafluorophosphate), phosphonium salt compound (for example, (phenylthiophenyl) diphenylsulfonium salt, etc.) (effective as a cationic polymerization initiator), WO01 / 71428 Onium Such compounds.

前記光重合開始剤は、1種単独で使用してもよく、2種以上を併用してもよい。2種以上の組合せとしては、例えば、米国特許第3549367号明細書に記載のヘキサアリールビイミダゾールと4−アミノケトン類との組合せ、特公昭51−48516号公報に記載のベンゾチアゾール化合物とトリハロメチル−s−トリアジン化合物の組合せ、また、芳香族ケトン化合物(例えば、チオキサントン等)と水素供与体(例えば、ジアルキルアミノ含有化合物、フェノール化合物等)の組合せ、ヘキサアリールビイミダゾールとチタノセンとの組合せ、クマリン類とチタノセンとフェニルグリシン類との組合せなどが挙げられる。   The said photoinitiator may be used individually by 1 type, and may use 2 or more types together. Examples of the combination of two or more include, for example, a combination of hexaarylbiimidazole and 4-aminoketone described in US Pat. No. 3,549,367, a benzothiazole compound described in Japanese Patent Publication No. 51-48516, and trihalomethyl- Combinations of s-triazine compounds, combinations of aromatic ketone compounds (such as thioxanthone) and hydrogen donors (such as dialkylamino-containing compounds and phenol compounds), combinations of hexaarylbiimidazole and titanocene, and coumarins And combinations of titanocene and phenylglycines.

前記感光層における光重合開始剤の含有量としては、0.1〜30質量%が好ましく、0.5〜20質量%がより好ましく、0.5〜15質量%が特に好ましい。   As content of the photoinitiator in the said photosensitive layer, 0.1-30 mass% is preferable, 0.5-20 mass% is more preferable, 0.5-15 mass% is especially preferable.

<<その他の成分>>
前記その他の成分としては、例えば、増感剤、熱重合禁止剤、可塑剤、発色剤、着色剤などが挙げられ、更に基体表面への密着促進剤及びその他の助剤類(例えば、顔料、導電性粒子、充填剤、消泡剤、難燃剤、レベリング剤、剥離促進剤、酸化防止剤、香料、熱架橋剤、表面張力調整剤、連鎖移動剤等)を併用してもよい。これらの成分を適宜含有させることにより、目的とするパターン形成材料の安定性、写真性、焼きだし性、膜物性等の性質を調整することができる。
<< Other ingredients >>
Examples of the other components include sensitizers, thermal polymerization inhibitors, plasticizers, color formers, colorants, and the like, and further adhesion promoters to the substrate surface and other auxiliary agents (for example, pigments, Conductive particles, fillers, antifoaming agents, flame retardants, leveling agents, peeling accelerators, antioxidants, fragrances, thermal crosslinking agents, surface tension adjusting agents, chain transfer agents, etc.) may be used in combination. By appropriately containing these components, it is possible to adjust properties such as stability, photographic properties, print-out properties, and film properties of the target pattern forming material.

−増感剤−
前記増感剤は、後述する光照射手段として可視光線や紫外光・可視光レーザなどにより適宜選択することができる。
前記増感剤は、活性エネルギー線により励起状態となり、他の物質(例えば、ラジカル発生剤、酸発生剤等)と相互作用(例えば、エネルギー移動、電子移動等)することにより、ラジカルや酸等の有用基を発生することが可能である。
-Sensitizer-
The sensitizer can be appropriately selected by visible light, ultraviolet light, visible light laser, or the like as a light irradiation means to be described later.
The sensitizer is excited by active energy rays and interacts with other substances (for example, radical generator, acid generator, etc.) (for example, energy transfer, electron transfer, etc.), thereby generating radicals, acids, etc. It is possible to generate a useful group of

前記増感剤としては、特に制限はなく、公知の増感剤の中から適宜選択することができるが、例えば、公知の多核芳香族類(例えば、ピレン、ペリレン、トリフェニレン)、キサンテン類(例えば、フルオレセイン、エオシン、エリスロシン、ローダミンB、ローズベンガル)、シアニン類(例えば、インドカルボシアニン、チアカルボシアニン、オキサカルボシアニン)、メロシアニン類(例えば、メロシアニン、カルボメロシアニン)、チアジン類(例えば、チオニン、メチレンブルー、トルイジンブルー)、アクリジン類(例えば、アクリジンオレンジ、クロロフラビン、アクリフラビン)、アントラキノン類(例えば、アントラキノン)、スクアリウム類(例えば、スクアリウム)、アクリドン類(例えば、アクリドン、クロロアクリドン、N−メチルアクリドン、N−ブチルアクリドン、N−ブチル−クロロアクリドン等)、クマリン類(例えば、3−(2−ベンゾフロイル)−7−ジエチルアミノクマリン、3−(2−ベンゾフロイル)−7−(1−ピロリジニル)クマリン、3−ベンゾイル−7−ジエチルアミノクマリン、3−(2−メトキシベンゾイル)−7−ジエチルアミノクマリン、3−(4−ジメチルアミノベンゾイル)−7−ジエチルアミノクマリン、3,3′−カルボニルビス(5,7−ジ−n−プロポキシクマリン)、3,3′−カルボニルビス(7−ジエチルアミノクマリン)、3−ベンゾイル−7−メトキシクマリン、3−(2−フロイル)−7−ジエチルアミノクマリン、3−(4−ジエチルアミノシンナモイル)−7−ジエチルアミノクマリン、7−メトキシ−3−(3−ピリジルカルボニル)クマリン、3−ベンゾイル−5,7−ジプロポキシクマリン等があげられ、他に特開平5−19475号、特開平7−271028号、特開2002−363206号、特開2002−363207号、特開2002−363208号、特開2002−363209号等の各公報に記載のクマリン化合物など)が挙げられる。   The sensitizer is not particularly limited and may be appropriately selected from known sensitizers. For example, known polynuclear aromatics (for example, pyrene, perylene, triphenylene), xanthenes (for example, , Fluorescein, eosin, erythrosine, rhodamine B, rose bengal), cyanines (eg, indocarbocyanine, thiacarbocyanine, oxacarbocyanine), merocyanines (eg, merocyanine, carbomerocyanine), thiazines (eg, thionine, Methylene blue, toluidine blue), acridines (eg, acridine orange, chloroflavin, acriflavine), anthraquinones (eg, anthraquinone), squariums (eg, squalium), acridones (eg, acridone, chloroacrine) Don, N-methylacridone, N-butylacridone, N-butyl-chloroacridone, etc.), coumarins (for example, 3- (2-benzofuroyl) -7-diethylaminocoumarin, 3- (2-benzofuroyl)- 7- (1-pyrrolidinyl) coumarin, 3-benzoyl-7-diethylaminocoumarin, 3- (2-methoxybenzoyl) -7-diethylaminocoumarin, 3- (4-dimethylaminobenzoyl) -7-diethylaminocoumarin, 3,3 '-Carbonylbis (5,7-di-n-propoxycoumarin), 3,3'-carbonylbis (7-diethylaminocoumarin), 3-benzoyl-7-methoxycoumarin, 3- (2-furoyl) -7- Diethylaminocoumarin, 3- (4-diethylaminocinnamoyl) -7-diethylaminocoumarin Examples thereof include 7-methoxy-3- (3-pyridylcarbonyl) coumarin, 3-benzoyl-5,7-dipropoxycoumarin, and others, and JP-A-5-19475, JP-A-7-271028, and JP2002-2002. No. 363206, JP-A No. 2002-363207, JP-A No. 2002-363208, JP-A No. 2002-363209, and the like.

前記光重合開始剤と前記増感剤との組合せとしては、例えば、特開2001−305734号公報に記載の電子移動型開始系[(1)電子供与型開始剤及び増感色素、(2)電子受容型開始剤及び増感色素、(3)電子供与型開始剤、増感色素及び電子受容型開始剤(三元開始系)]などの組合せが挙げられる。   Examples of the combination of the photopolymerization initiator and the sensitizer include, for example, an electron transfer start system described in JP-A-2001-305734 [(1) an electron donating initiator and a sensitizing dye, (2) A combination of an electron-accepting initiator and a sensitizing dye, (3) an electron-donating initiator, a sensitizing dye and an electron-accepting initiator (ternary initiation system)], and the like.

前記増感剤の含有量としては、感光性樹脂組成物の全成分に対し、0.05〜30質量%が好ましく、0.1〜20質量%がより好ましく、0.2〜10質量%が特に好ましい。
前記含有量が、0.05質量%未満となると、活性エネルギー線への感度が低下し、露光プロセスに時間がかかり、生産性が低下することがあり、30質量%を超えると、前記感光層から保存時に析出することがある。
As content of the said sensitizer, 0.05-30 mass% is preferable with respect to all the components of the photosensitive resin composition, 0.1-20 mass% is more preferable, 0.2-10 mass% is Particularly preferred.
When the content is less than 0.05% by mass, the sensitivity to active energy rays decreases, the exposure process takes time, and the productivity may decrease. When the content exceeds 30% by mass, the photosensitive layer May precipitate during storage.

−熱重合禁止剤−
前記熱重合禁止剤は、前記感光層における前記重合性化合物の熱的な重合又は経時的な重合を防止するために添加してもよい。
前記熱重合禁止剤としては、例えば、4−メトキシフェノール、ハイドロキノン、アルキルまたはアリール置換ハイドロキノン、t−ブチルカテコール、ピロガロール、2−ヒドロキシベンゾフェノン、4−メトキシ−2−ヒドロキシベンゾフェノン、塩化第一銅、フェノチアジン、クロラニル、ナフチルアミン、β−ナフトール、2,6−ジ−t−ブチル−4−クレゾール、2,2′−メチレンビス(4−メチル−6−t−ブチルフェノール)、ピリジン、ニトロベンゼン、ジニトロベンゼン、ピクリン酸、4−トルイジン、メチレンブルー、銅と有機キレート剤反応物、サリチル酸メチル、及びフェノチアジン、ニトロソ化合物、ニトロソ化合物とAlとのキレート等が挙げられる。
-Thermal polymerization inhibitor-
The thermal polymerization inhibitor may be added to prevent thermal polymerization or temporal polymerization of the polymerizable compound in the photosensitive layer.
Examples of the thermal polymerization inhibitor include 4-methoxyphenol, hydroquinone, alkyl or aryl-substituted hydroquinone, t-butylcatechol, pyrogallol, 2-hydroxybenzophenone, 4-methoxy-2-hydroxybenzophenone, cuprous chloride, phenothiazine. , Chloranil, naphthylamine, β-naphthol, 2,6-di-tert-butyl-4-cresol, 2,2′-methylenebis (4-methyl-6-tert-butylphenol), pyridine, nitrobenzene, dinitrobenzene, picric acid 4-toluidine, methylene blue, copper and organic chelating agent reactant, methyl salicylate, phenothiazine, nitroso compound, chelate of nitroso compound and Al, and the like.

前記熱重合禁止剤の含有量としては、前記感光層の前記重合性化合物に対して0.001〜5質量%が好ましく、0.005〜2質量%がより好ましく、0.01〜1質量%が特に好ましい。
前記含有量が、0.001質量%未満であると、保存時の安定性が低下することがあり、5質量%を超えると、活性エネルギー線に対する感度が低下することがある。
As content of the said thermal-polymerization inhibitor, 0.001-5 mass% is preferable with respect to the said polymeric compound of the said photosensitive layer, 0.005-2 mass% is more preferable, 0.01-1 mass% Is particularly preferred.
When the content is less than 0.001% by mass, stability during storage may be reduced, and when it exceeds 5% by mass, sensitivity to active energy rays may be reduced.

−可塑剤−
前記可塑剤は、前記感光層の膜物性(可撓性)をコントロールするために添加してもよい。
前記可塑剤としては、例えば、ジメチルフタレート、ジブチルフタレート、ジイソブチルフタレート、ジヘプチルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジトリデシルフタレート、ブチルベンジルフタレート、ジイソデシルフタレート、ジフェニルフタレート、ジアリルフタレート、オクチルカプリールフタレート等のフタル酸エステル類;トリエチレングリコールジアセテート、テトラエチレングリコールジアセテート、ジメチルグリコースフタレート、エチルフタリールエチルグリコレート、メチルフタリールエチルグリコレート、ブチルフタリールブチルグリコレート、トリエチレングリコールジカブリル酸エステル等のグリコールエステル類;トリクレジルホスフェート、トリフェニルホスフェート等のリン酸エステル類;4−トルエンスルホンアミド、ベンゼンスルホンアミド、N−n−ブチルベンゼンスルホンアミド、N−n−ブチルアセトアミド等のアミド類;ジイソブチルアジペート、ジオクチルアジペート、ジメチルセバケート、ジブチルセパケート、ジオクチルセパケート、ジオクチルアゼレート、ジブチルマレート等の脂肪族二塩基酸エステル類;クエン酸トリエチル、クエン酸トリブチル、グリセリントリアセチルエステル、ラウリン酸ブチル、4,5−ジエポキシシクロヘキサン−1,2−ジカルボン酸ジオクチル等、ポリエチレングリコール、ポリプロピレングリコール等のグリコール類が挙げられる。
-Plasticizer-
The plasticizer may be added to control film physical properties (flexibility) of the photosensitive layer.
Examples of the plasticizer include dimethyl phthalate, dibutyl phthalate, diisobutyl phthalate, diheptyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, ditridecyl phthalate, butyl benzyl phthalate, diisodecyl phthalate, diphenyl phthalate, diallyl phthalate, octyl capryl phthalate, and the like. Phthalic acid esters: Triethylene glycol diacetate, tetraethylene glycol diacetate, dimethylglycol phthalate, ethyl phthalyl ethyl glycolate, methyl phthalyl ethyl glycolate, butyl phthalyl butyl glycolate, triethylene glycol dicabrylate, etc. Glycol esters of tricresyl phosphate, triphenyl phosphate, etc. Acid esters; Amides such as 4-toluenesulfonamide, benzenesulfonamide, Nn-butylbenzenesulfonamide, Nn-butylacetamide; diisobutyl adipate, dioctyl adipate, dimethyl sebacate, dibutyl sepacate, dioctyl Aliphatic dibasic acid esters such as sepacate, dioctyl azelate, dibutyl malate; triethyl citrate, tributyl citrate, glycerin triacetyl ester, butyl laurate, 4,5-diepoxycyclohexane-1,2-dicarboxylic acid Examples include glycols such as dioctyl acid, polyethylene glycol, and polypropylene glycol.

前記可塑剤の含有量としては、前記感光層の全成分に対して0.1〜50質量%が好ましく、0.5〜40質量%がより好ましく、1〜30質量%が特に好ましい。   As content of the said plasticizer, 0.1-50 mass% is preferable with respect to all the components of the said photosensitive layer, 0.5-40 mass% is more preferable, 1-30 mass% is especially preferable.

−発色剤−
前記発色剤は、露光後の前記感光層に可視像を与える(焼きだし機能)ために添加してもよい。
前記発色剤としては、例えば、トリス(4−ジメチルアミノフェニル)メタン(ロイコクリスタルバイオレット)、トリス(4−ジエチルアミノフェニル)メタン、トリス(4−ジメチルアミノ−2−メチルフェニル)メタン、トリス(4−ジエチルアミノ−2−メチルフェニル)メタン、ビス(4−ジブチルアミノフェニル)−〔4−(2−シアノエチル)メチルアミノフェニル〕メタン、ビス(4−ジメチルアミノフェニル)−2−キノリルメタン、トリス(4−ジプロピルアミノフェニル)メタン等のアミノトリアリールメタン類;3,6−ビス(ジメチルアミノ)−9−フェニルキサンチン、3−アミノ−6−ジメチルアミノ−2−メチル−9−(2−クロロフェニル)キサンチン等のアミノキサンチン類;3,6−ビス(ジエチルアミノ)−9−(2−エトキシカルボニルフェニル)チオキサンテン、3,6−ビス(ジメチルアミノ)チオキサンテン等のアミノチオキサンテン類;3,6−ビス(ジエチルアミノ)−9,10−ジヒドロ−9−フェニルアクリジン、3,6−ビス(ベンジルアミノ)−9,10−ジビドロ−9−メチルアクリジン等のアミノ−9,10−ジヒドロアクリジン類;3,7−ビス(ジエチルアミノ)フェノキサジン等のアミノフェノキサジン類;3,7−ビス(エチルアミノ)フェノチアゾン等のアミノフェノチアジン類;3,7−ビス(ジエチルアミノ)−5−ヘキシル−5,10−ジヒドロフェナジン等のアミノジヒドロフェナジン類;ビス(4−ジメチルアミノフェニル)アニリノメタン等のアミノフェニルメタン類;4−アミノ−4′−ジメチルアミノジフェニルアミン、4−アミノ−α、β−ジシアノヒドロケイ皮酸メチルエステル等のアミノヒドロケイ皮酸類;1−(2−ナフチル)−2−フェニルヒドラジン等のヒドラジン類;1,4−ビス(エチルアミノ)−2,3−ジヒドロアントラキノン類のアミノ−2,3−ジヒドロアントラキノン類;N,N−ジエチル−4−フェネチルアニリン等のフェネチルアニリン類;10−アセチル−3,7−ビス(ジメチルアミノ)フェノチアジン等の塩基性NHを含むロイコ色素のアシル誘導体;トリス(4−ジエチルアミノ−2−トリル)エトキシカルボニルメンタン等の酸化しうる水素を有していないが、発色化合物に酸化しうるロイコ様化合物;ロイコインジゴイド色素;米国特許3,042,515号及び同第3,042,517号に記載されているような発色形に酸化しうるような有機アミン類(例、4,4′−エチレンジアミン、ジフェニルアミン、N,N−ジメチルアニリン、4,4′−メチレンジアミントリフェニルアミン、N−ビニルカルバゾール)が挙げられ、これらの中でも、ロイコクリスタルバイオレット等のトリアリールメタン系化合物が好ましい。
-Color former-
The color former may be added to give a visible image (printing function) to the photosensitive layer after exposure.
Examples of the color former include tris (4-dimethylaminophenyl) methane (leuco crystal violet), tris (4-diethylaminophenyl) methane, tris (4-dimethylamino-2-methylphenyl) methane, tris (4- Diethylamino-2-methylphenyl) methane, bis (4-dibutylaminophenyl)-[4- (2-cyanoethyl) methylaminophenyl] methane, bis (4-dimethylaminophenyl) -2-quinolylmethane, tris (4-di Aminotriarylmethanes such as propylaminophenyl) methane; 3,6-bis (dimethylamino) -9-phenylxanthine, 3-amino-6-dimethylamino-2-methyl-9- (2-chlorophenyl) xanthine, etc. Aminoxanthines; 3,6-bis (diethyl Aminothioxanthenes such as mino) -9- (2-ethoxycarbonylphenyl) thioxanthene and 3,6-bis (dimethylamino) thioxanthene; 3,6-bis (diethylamino) -9,10-dihydro-9- Amino-9,10-dihydroacridine such as phenylacridine, 3,6-bis (benzylamino) -9,10-dividro-9-methylacridine; aminophenoxazine such as 3,7-bis (diethylamino) phenoxazine Aminophenothiazines such as 3,7-bis (ethylamino) phenothiazone; aminodihydrophenazines such as 3,7-bis (diethylamino) -5-hexyl-5,10-dihydrophenazine; bis (4-dimethylamino) Aminophenylmethanes such as phenyl) anilinomethane; 4-amino-4 Aminohydrocinnamic acids such as dimethylaminodiphenylamine, 4-amino-α, β-dicyanohydrocinnamic acid methyl ester; hydrazines such as 1- (2-naphthyl) -2-phenylhydrazine; 1,4-bis (Ethylamino) -2,3-dihydroanthraquinones amino-2,3-dihydroanthraquinones; N, N-diethyl-4-phenethylaniline and other phenethylanilines; 10-acetyl-3,7-bis (dimethyl Acyl derivatives of leuco dyes containing basic NH such as amino) phenothiazine; leuco-like that does not have oxidizable hydrogen such as tris (4-diethylamino-2-tolyl) ethoxycarbonylmentane but can oxidize to chromogenic compounds Compound; leucoin digoid pigment; U.S. Pat. Nos. 3,042,515 and 3,043 Organic amines that can be oxidized to a colored form as described in US Pat. No. 5,517 (eg, 4,4′-ethylenediamine, diphenylamine, N, N-dimethylaniline, 4,4′-methylenediamine triphenylamine) N-vinylcarbazole), and among these, triarylmethane compounds such as leucocrystal violet are preferable.

更に、前記発色剤は、前記ロイコ体を発色させるためなどの目的で、ハロゲン化合物と組み合わせることが一般に知られている。
前記ハロゲン化合物としては、例えば、ハロゲン化炭化水素(例えば、四臭化炭素、ヨードホルム、臭化エチレン、臭化メチレン、臭化アミル、臭化イソアミル、ヨウ化アミル、臭化イソブチレン、ヨウ化ブチル、臭化ジフェニルメチル、ヘキサクロロエタン、1,2−ジブロモエタン、1,1,2,2−テトラブロモエタン、1,2−ジブロモ−1,1,2−トリクロロエタン、1,2,3−トリブロモプロパン、1−ブロモ−4−クロロブタン、1,2,3,4−テトラブロモブタン、テトラクロロシクロプロペン、ヘキサクロロシクロペンタジエン、ジブロモシキロヘキサン、1,1,1−トリクロロ−2,2−ビス(4−クロロフェニル)エタンなど);ハロゲン化アルコール化合物(例えば、2,2,2−トリクロロエタノール、トリブロモエタノール、1,3−ジクロロ−2−プロパノール、1,1,1−トリクロロ−2−プロパノール、ジ(ヨードヘキサメチレン)アミノイソプロパノール、トリブロモ−t−ブチルアルコール、2,2,3−トリクロロブタン−1,4−ジオールなど);ハロゲン化カルボニル化合物(例えば1,1−ジクロロアセトン、1,3−ジクロロアセトン、ヘキサクロロアセトン、ヘキサブロモアセトン、1,1,3,3−テトラクロロアセトン、1,1,1−トリクロロアセトン、3,4−ジブロモ−2−ブタノン、1,4−ジクロロ−2−ブタノン−ジブロモシクロヘキサノン等);ハロゲン化エーテル化合物(例えば2−ブロモエチルメチルエーテル、2−ブロモエチルエチルエーテル、ジ(2−ブロモエチル)エーテル、1,2−ジクロロエチルエチルエーテル等);ハロゲン化エステル化合物(例えば、酢酸ブロモエチル、トリクロロ酢酸エチル、トリクロロ酢酸トリクロロエチル、2,3−ジブロモプロピルアクリレートのホモポリマー及び共重合体、ジブロモプロピオン酸トリクロロエチル、α,β−ジグロロアクリル酸エチル等);ハロゲン化アミド化合物(例えば、クロロアセトアミド、ブロモアセトアミド、ジクロロアセトアミド、トリクロロアセトアミド、トリブロモアセトアミド、トリクロロエチルトリクロロアセトアミド、2−ブロモイソプロピオンアミド、2,2,2−トリクロロプロピオンアミド、N−クロロスクシンイミド、N−ブロモスクシンイミドなど);硫黄やリンを有する化合物(例えば、トリブロモメチルフェニルスルホン、4−ニトロフェニルトリブロモメチルスルホン、4−クロルフェニルトリブロモメチルスルホン、トリス(2,3−ジブロモプロピル)ホスフェート等)、2,4−ビス(トリクロロメチル)6−フェニルトリアゾールなどが挙げられる。有機ハロゲン化合物では、同一炭素原子に結合した2個以上のハロゲン原子を持つハロゲン化合物が好ましく、1個の炭素原子に3個のハロゲン原子を持つハロゲン化合物がより好ましい。前記有機ハロゲン化合物は、1種単独で使用してもよく、2種以上を併用してもよい。これらの中でも、トリブロモメチルフェニルスルホン、2,4−ビス(トリクロロメチル)−6−フェニルトリアゾールが好ましい。
Furthermore, it is generally known that the color former is combined with a halogen compound for the purpose of coloring the leuco body.
Examples of the halogen compound include halogenated hydrocarbons (for example, carbon tetrabromide, iodoform, ethylene bromide, methylene bromide, amyl bromide, isoamyl bromide, amyl iodide, isobutylene bromide, butyl iodide, Diphenylmethyl bromide, hexachloroethane, 1,2-dibromoethane, 1,1,2,2-tetrabromoethane, 1,2-dibromo-1,1,2-trichloroethane, 1,2,3-tribromopropane 1-bromo-4-chlorobutane, 1,2,3,4-tetrabromobutane, tetrachlorocyclopropene, hexachlorocyclopentadiene, dibromocyclohexane, 1,1,1-trichloro-2,2-bis (4 -Chlorophenyl) ethane and the like; halogenated alcohol compounds (for example, 2,2,2-trichloroethanol, Libromoethanol, 1,3-dichloro-2-propanol, 1,1,1-trichloro-2-propanol, di (iodohexamethylene) aminoisopropanol, tribromo-t-butyl alcohol, 2,2,3-trichlorobutane -1,4-diol and the like; halogenated carbonyl compounds (for example, 1,1-dichloroacetone, 1,3-dichloroacetone, hexachloroacetone, hexabromoacetone, 1,1,3,3-tetrachloroacetone, 1, 1,1-trichloroacetone, 3,4-dibromo-2-butanone, 1,4-dichloro-2-butanone-dibromocyclohexanone, etc .; halogenated ether compounds (for example, 2-bromoethyl methyl ether, 2-bromoethyl ethyl) Ether, di (2-bromoethyl) ether, 1,2 Halogenated ester compounds (eg, bromoethyl acetate, ethyl trichloroacetate, trichloroethyl trichloroacetate, homopolymers and copolymers of 2,3-dibromopropyl acrylate, trichloroethyl dibromopropionate, α, β) Halogenated amide compounds (for example, chloroacetamide, bromoacetamide, dichloroacetamide, trichloroacetamide, tribromoacetamide, trichloroethyltrichloroacetamide, 2-bromoisopropionamide, 2,2,2- Trichloropropionamide, N-chlorosuccinimide, N-bromosuccinimide, etc.); compounds having sulfur or phosphorus (for example, tribromomethylphenylsulfone, 4-ni B phenyl tribromomethyl sulfone, 4-chlorophenyl tribromomethyl sulfone, tris (2,3-dibromopropyl) phosphate, etc.), e.g., 2,4-bis (trichloromethyl) 6- phenyltriazole and the like. As the organic halogen compound, a halogen compound having two or more halogen atoms bonded to the same carbon atom is preferable, and a halogen compound having three halogen atoms per carbon atom is more preferable. The said organic halogen compound may be used individually by 1 type, and may use 2 or more types together. Among these, tribromomethylphenyl sulfone and 2,4-bis (trichloromethyl) -6-phenyltriazole are preferable.

前記発色剤の含有量としては、前記感光層の全成分に対して0.01〜20質量%が好ましく、0.05〜10質量%がより好ましく、0.1〜5質量%が特に好ましい。また、前記ハロゲン化合物の含有量としては、前記感光層の全成分に対し0.001〜5質量%が好ましく、0.005〜1質量%がより好ましい。   The content of the color former is preferably 0.01 to 20% by mass, more preferably 0.05 to 10% by mass, and particularly preferably 0.1 to 5% by mass with respect to all components of the photosensitive layer. Moreover, as content of the said halogen compound, 0.001-5 mass% is preferable with respect to all the components of the said photosensitive layer, and 0.005-1 mass% is more preferable.

−染料−
前記感光層には、取り扱い性の向上のために感光性樹脂組成物を着色し、又は保存安定性を付与する目的に、染料を用いることができる。
前記染料としては、ブリリアントグリーン(例えば、その硫酸塩)、エオシン、エチルバイオレット、エリスロシンB、メチルグリーン、クリスタルバイオレット、ベイシックフクシン、フェノールフタレイン、1,3−ジフェニルトリアジン、アリザリンレッドS、チモールフタレイン、メチルバイオレット2B、キナルジンレッド、ローズベンガル、メタニル−イエロー、チモールスルホフタレイン、キシレノールブルー、メチルオレンジ、オレンジIV、ジフェニルチロカルバゾン、2,7−ジクロロフルオレセイン、パラメチルレッド、コンゴーレッド、ベンゾプルプリン4B、α−ナフチル−レッド、ナイルブルーA、フェナセタリン、メチルバイオレット、マラカイトグリーン、パラフクシン、オイルブルー#603(オリエント化学工業社製)、ローダミンB、ローダミン6G、ビクトリアピュアブルーBOHなどを挙げることができ、これらの中でもカチオン染料(例えば、マラカイトグリーンシュウ酸塩、マラカイトグリーン硫酸塩等)が好ましい。該カチオン染料の対アニオンとしては、有機酸又は無機酸の残基であればよく、例えば、臭素酸、ヨウ素酸、硫酸、リン酸、シュウ酸、メタンスルホン酸、トルエンスルホン酸等の残基(アニオン)などが挙げられる。
-Dye-
In the photosensitive layer, a dye can be used for the purpose of coloring the photosensitive resin composition for improving handleability or imparting storage stability.
Examples of the dye include brilliant green (for example, sulfate thereof), eosin, ethyl violet, erythrosine B, methyl green, crystal violet, basic fuchsin, phenolphthalein, 1,3-diphenyltriazine, alizarin red S, thymolphthalein. , Methyl violet 2B, quinaldine red, rose bengal, metanil-yellow, thymol sulfophthalein, xylenol blue, methyl orange, orange IV, diphenyltylocarbazone, 2,7-dichlorofluorescein, paramethyl red, Congo red, benzo Purpurin 4B, α-naphthyl-red, Nile blue A, phenacetalin, methyl violet, malachite green, parafuxin, oil blue # 603 (Orien Chemical Co., Ltd.), Rhodamine B, Rhodamine 6G, etc. Victoria Pure Blue BOH can be cited, among these cationic dyes (e.g., Malachite Green oxalate, malachite green sulfates) are preferable. The counter anion of the cationic dye may be a residue of an organic acid or an inorganic acid, for example, a residue such as bromic acid, iodic acid, sulfuric acid, phosphoric acid, oxalic acid, methanesulfonic acid, toluenesulfonic acid ( Anion) and the like.

前記染料の含有量としては、前記感光層の全成分に対して0.001〜10質量%が好ましく、0.01〜5質量%がより好ましく、0.1〜2質量%が特に好ましい。   As content of the said dye, 0.001-10 mass% is preferable with respect to all the components of the said photosensitive layer, 0.01-5 mass% is more preferable, 0.1-2 mass% is especially preferable.

−密着促進剤−
各層間の密着性、又はパターン形成材料と基体との密着性を向上させるために、各層に公知のいわゆる密着促進剤を用いることができる。
-Adhesion promoter-
In order to improve the adhesion between the layers or the adhesion between the pattern forming material and the substrate, a known so-called adhesion promoter can be used for each layer.

前記密着促進剤としては、例えば、特開平5−11439号公報、特開平5−341532号公報、及び特開平6−43638号公報等に記載の密着促進剤が好適挙げられる。具体的には、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、2−メルカプトベンズイミダゾール、2−メルカプトベンズオキサゾール、2−メルカプトベンズチアゾール、3−モルホリノメチル−1−フェニル−トリアゾール−2−チオン、3−モルホリノメチル−5−フェニル−オキサジアゾール−2−チオン、5−アミノ−3−モルホリノメチル−チアジアゾール−2−チオン、及び2−メルカプト−5−メチルチオ−チアジアゾール、トリアゾール、テトラゾール、ベンゾトリアゾール、カルボキシベンゾトリアゾール、アミノ基含有ベンゾトリアゾール、シランカップリング剤などが挙げられる。   Preferable examples of the adhesion promoter include adhesion promoters described in JP-A Nos. 5-11439, 5-341532, and 6-43638. Specifically, benzimidazole, benzoxazole, benzthiazole, 2-mercaptobenzimidazole, 2-mercaptobenzoxazole, 2-mercaptobenzthiazole, 3-morpholinomethyl-1-phenyl-triazole-2-thione, 3-morpholino Methyl-5-phenyl-oxadiazole-2-thione, 5-amino-3-morpholinomethyl-thiadiazole-2-thione, and 2-mercapto-5-methylthio-thiadiazole, triazole, tetrazole, benzotriazole, carboxybenzotriazole Amino group-containing benzotriazole, silane coupling agents, and the like.

前記密着促進剤の含有量としては、前記感光層の全成分に対して0.001質量%〜20質量%が好ましく、0.01〜10質量%がより好ましく、0.1質量%〜5質量%が特に好ましい。   As content of the said adhesion promoter, 0.001 mass%-20 mass% are preferable with respect to all the components of the said photosensitive layer, 0.01-10 mass% is more preferable, 0.1 mass%-5 mass% % Is particularly preferred.

前記感光層は、例えば、J.コーサー著「ライトセンシテイブシステムズ」第5章に記載されているような有機硫黄化合物、過酸化物、レドックス系化合物、アゾ又はジアゾ化合物、光還元性色素、有機ハロゲン化合物などを含んでいてもよい。   The photosensitive layer is, for example, J.I. It may contain organic sulfur compounds, peroxides, redox compounds, azo or diazo compounds, photoreducible dyes, organic halogen compounds, etc. as described in Chapter 5 of “Light Sensitive Systems” Good.

前記有機硫黄化合物としては、例えば、ジ−n−ブチルジサルファイド、ジベンジルジサルファイド、2−メルカプトベンズチアゾール、2−メルカプトベンズオキサゾール、チオフェノール、エチルトリクロロメタンスルフェネート、2−メルカプトベンズイミダゾールなどが挙げられる。   Examples of the organic sulfur compound include di-n-butyl disulfide, dibenzyl disulfide, 2-mercaptobenzthiazole, 2-mercaptobenzoxazole, thiophenol, ethyltrichloromethane sulfenate, and 2-mercaptobenzimidazole. Is mentioned.

前記過酸化物としては、例えば、ジ−t−ブチルパーオキサイド、過酸化ベンゾイル、メチルエチルケトンパーオキサイドを挙げることができる。   Examples of the peroxide include di-t-butyl peroxide, benzoyl peroxide, and methyl ethyl ketone peroxide.

前記レドックス化合物は、過酸化物と還元剤の組合せからなるものであり、第一鉄イオンと過硫酸イオン、第二鉄イオンと過酸化物などを挙げることができる。   The redox compound is a combination of a peroxide and a reducing agent, and examples thereof include ferrous ions and persulfate ions, ferric ions and peroxides.

前記アゾ及びジアゾ化合物としては、例えば、α,α′−アゾビスイリブチロニトリル、2−アゾビス−2−メチルブチロニトリル、4−アミノジフェニルアミンのジアゾニウム類が挙げられる。   Examples of the azo and diazo compounds include α, α′-azobisiributyronitrile, 2-azobis-2-methylbutyronitrile, and diazonium such as 4-aminodiphenylamine.

前記光還元性色素としては、例えば、ローズベンガル、エリスロシン、エオシン、アクリフラビン、リポフラビン、チオニンが挙げられる。   Examples of the photoreducible dye include rose bengal, erythrosine, eosin, acriflavine, lipoflavin, and thionine.

−界面活性剤−
本発明の前記パターン形成材料を製造する際に発生する面状ムラを改善させるために、公知の界面活性剤を添加することができる。
前記界面活性剤としては、例えば、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤、フッ素含有界面活性剤などから適宜選択できる。
-Surfactant-
In order to improve the surface unevenness generated when the pattern forming material of the present invention is produced, a known surfactant can be added.
The surfactant can be appropriately selected from, for example, an anionic surfactant, a cationic surfactant, a nonionic surfactant, an amphoteric surfactant, and a fluorine-containing surfactant.

前記界面活性剤の含有量としては、感光性樹脂組成物の固形分に対し、0.001〜10質量%が好ましい。
前記含有量が、0.001質量%未満になると、面状改良の効果が得られなくことがあり、10質量%を超えると、密着性が低下することがある。
As content of the said surfactant, 0.001-10 mass% is preferable with respect to solid content of the photosensitive resin composition.
When the content is less than 0.001% by mass, the effect of improving the surface shape may not be obtained, and when it exceeds 10% by mass, the adhesion may be deteriorated.

前記界面活性剤としては、上述の界面活性剤の他、フッ素系の界面活性剤として、炭素鎖3〜20でフッ素原子を40質量%以上含み、かつ、非結合末端から数えて少なくとも3個の炭素原子に結合した水素原子がフッ素置換されているフルオロ脂肪族基を有するアクリレート又はメタクリレートを共重合成分として有する高分子界面活性剤も好適に挙げられる。   As the surfactant, in addition to the above-mentioned surfactant, as a fluorine-based surfactant, it contains 40% by mass or more of fluorine atoms in a carbon chain of 3 to 20, and at least 3 counted from the non-bonding terminal A polymer surfactant having, as a copolymerization component, an acrylate or methacrylate having a fluoroaliphatic group in which a hydrogen atom bonded to a carbon atom is fluorine-substituted is also preferred.

前記感光層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、1〜100μmが好ましく、2〜50μmがより好ましく、4〜30μmが特に好ましい。   There is no restriction | limiting in particular as thickness of the said photosensitive layer, Although it can select suitably according to the objective, For example, 1-100 micrometers is preferable, 2-50 micrometers is more preferable, and 4-30 micrometers is especially preferable.

[パターン形成材料の製造]
前記パターン形成材料は、例えば、次のようにして製造することができる。
まず、上述の各種材料を、水又は溶剤に溶解、乳化又は分散させて感光性樹脂組成物溶液を調製する。
[Manufacture of pattern forming materials]
The pattern forming material can be manufactured, for example, as follows.
First, the above-mentioned various materials are dissolved, emulsified or dispersed in water or a solvent to prepare a photosensitive resin composition solution.

前記感光性樹脂組成物溶液の溶剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、sec−ブタノール、n−ヘキサノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジイソブチルケトンなどのケトン類;酢酸エチル、酢酸ブチル、酢酸−n−アミル、硫酸メチル、プロピオン酸エチル、フタル酸ジメチル、安息香酸エチル、及びメトキシプロピルアセテートなどのエステル類;トルエン、キシレン、ベンゼン、エチルベンゼンなどの芳香族炭化水素類;四塩化炭素、トリクロロエチレン、クロロホルム、1,1,1−トリクロロエタン、塩化メチレン、モノクロロベンゼンなどのハロゲン化炭化水素類;テトラヒドロフラン、ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、1−メトキシ−2−プロパノールなどのエーテル類;ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホオキサイド、スルホランなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。また、公知の界面活性剤を添加してもよい。   There is no restriction | limiting in particular as a solvent of the said photosensitive resin composition solution, According to the objective, it can select suitably, For example, methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, n- Alcohols such as hexanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diisobutyl ketone; ethyl acetate, butyl acetate, n-amyl acetate, methyl sulfate, ethyl propionate, dimethyl phthalate, ethyl benzoate, And esters such as methoxypropyl acetate; aromatic hydrocarbons such as toluene, xylene, benzene, ethylbenzene; carbon tetrachloride, trichloroethylene, chloroform, 1,1,1-trichloroethane, methylene chloride, monochlorobenze Halogenated hydrocarbons such as tetrahydrofuran, diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, 1-methoxy-2-propanol and the like; dimethylformamide, dimethylacetamide, dimethylsulfoxide, sulfolane and the like It is done. These may be used alone or in combination of two or more. Moreover, you may add a well-known surfactant.

次に、前記感光性樹脂組成物溶液を支持体上に塗布し、乾燥させることにより感光層を形成し、パターン形成材料を製造することができる。
前記感光性樹脂組成物溶液の塗布方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、スプレー法、ロールコート法、回転塗布法、スリットコート法、エクストルージョンコート法、カーテンコート法、ダイコート法、グラビアコート法、ワイヤーバーコート法、ナイフコート法等の各種の塗布方法が挙げられる。
前記乾燥の条件としては、各成分、溶媒の種類、使用割合等によっても異なるが、通常60〜110℃の温度で30秒間〜15分間程度である。
Next, the said photosensitive resin composition solution is apply | coated on a support body, a photosensitive layer is formed by making it dry, and a pattern formation material can be manufactured.
The method for applying the photosensitive resin composition solution is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a spray method, a roll coating method, a spin coating method, a slit coating method, and an extrusion coating. Various coating methods such as a coating method, a curtain coating method, a die coating method, a gravure coating method, a wire bar coating method, and a knife coating method may be mentioned.
The drying conditions vary depending on each component, the type of solvent, the use ratio, and the like, but are usually about 60 to 110 ° C. for about 30 seconds to 15 minutes.

<<支持体>>
前記支持体としては、特に制限はなく、目的に応じて適宜選択することができるが、前記感光層を剥離可能であり、かつ光の透過性が良好であるものが好ましく、更に表面の平滑性が良好であることがより好ましい。
<< Support >>
The support is not particularly limited and may be appropriately selected depending on the intended purpose. However, it is preferable that the photosensitive layer is peelable and has good light transmittance, and further has a smooth surface. Is more preferable.

前記支持体は、合成樹脂製で、かつ透明であるものが好ましく、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリエチレン、三酢酸セルロース、二酢酸セルロース、ポリ(メタ)アクリル酸アルキルエステル、ポリ(メタ)アクリル酸エステル共重合体、ポリ塩化ビニル、ポリビニルアルコール、ポリカーボネート、ポリスチレン、セロファン、ポリ塩化ビニリデン共重合体、ポリアミド、ポリイミド、塩化ビニル・酢酸ビニル共重合体、ポリテトラフロロエチレン、ポリトリフロロエチレン、セルロース系フィルム、ナイロンフィルム等の各種のプラスチックフィルムが挙げられ、これらの中でも、ポリエチレンテレフタレートが特に好ましい。これらは、1種単独で使用してもよく、2種以上を併用してもよい。   The support is preferably made of synthetic resin and transparent, for example, polyethylene terephthalate, polyethylene naphthalate, polypropylene, polyethylene, cellulose triacetate, cellulose diacetate, poly (meth) acrylic acid alkyl ester, poly ( (Meth) acrylic acid ester copolymer, polyvinyl chloride, polyvinyl alcohol, polycarbonate, polystyrene, cellophane, polyvinylidene chloride copolymer, polyamide, polyimide, vinyl chloride / vinyl acetate copolymer, polytetrafluoroethylene, polytrifluoro Various plastic films, such as ethylene, a cellulose film, and a nylon film, are mentioned, Among these, polyethylene terephthalate is particularly preferable. These may be used alone or in combination of two or more.

前記支持体の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、2〜150μmが好ましく、5〜100μmがより好ましく、8〜50μmが特に好ましい。   There is no restriction | limiting in particular as thickness of the said support body, Although it can select suitably according to the objective, For example, 2-150 micrometers is preferable, 5-100 micrometers is more preferable, and 8-50 micrometers is especially preferable.

前記支持体の形状としては、特に制限はなく、目的に応じて適宜選択することができるが、長尺状が好ましい。前記長尺状の支持体の長さとしては、特に制限はなく、例えば、10m〜20000mの長さのものが挙げられる。   There is no restriction | limiting in particular as a shape of the said support body, Although it can select suitably according to the objective, A long shape is preferable. There is no restriction | limiting in particular as the length of the said elongate support body, For example, the thing of length 10m-20000m is mentioned.

<<保護フィルム>>
前記パターン形成材料は、前記感光層上に保護フィルムを形成してもよい。
前記保護フィルムとしては、例えば、前記支持体に使用されるもの、紙、ポリエチレン、ポリプロピレンがラミネートされた紙、などが挙げられ、これらの中でも、ポリエチレンフィルム、ポリプロピレンフィルムが好ましい。
前記保護フィルムの厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、5〜100μmが好ましく、8〜50μmがより好ましく、10〜30μmが特に好ましい。
前記保護フィルムを用いる場合、前記感光層及び前記支持体の接着力Aと、前記感光層及び保護フィルムの接着力Bとが、接着力A>接着力Bの関係であることが好ましい。
<< Protective film >>
The pattern forming material may form a protective film on the photosensitive layer.
Examples of the protective film include those used for the support, paper, paper laminated with polyethylene, polypropylene, and the like. Among these, polyethylene film and polypropylene film are preferable.
There is no restriction | limiting in particular as thickness of the said protective film, Although it can select suitably according to the objective, For example, 5-100 micrometers is preferable, 8-50 micrometers is more preferable, 10-30 micrometers is especially preferable.
When the protective film is used, it is preferable that the adhesive force A between the photosensitive layer and the support and the adhesive force B between the photosensitive layer and the protective film satisfy the relationship of adhesive force A> adhesive force B.

前記支持体と保護フィルムとの組合せ(支持体/保護フィルム)としては、例えば、ポリエチレンテレフタレート/ポリプロピレン、ポリエチレンテレフタレート/ポリエチレン、ポリ塩化ビニル/セロフアン、ポリイミド/ポリプロピレン、ポリエチレンテレフタレート/ポリエチレンテレフタレートなどが挙げられる。また、支持体及び保護フィルムの少なくともいずれかを表面処理することにより、上述のような接着力の関係を満たすことができる。前記支持体の表面処理は、前記感光層との接着力を高めるために施されてもよく、例えば、下塗層の塗設、コロナ放電処理、火炎処理、紫外線照射処理、高周波照射処理、グロー放電照射処理、活性プラズマ照射処理、レーザ光線照射処理などを挙げることができる。   Examples of the combination of the support and the protective film (support / protective film) include polyethylene terephthalate / polypropylene, polyethylene terephthalate / polyethylene, polyvinyl chloride / cellophane, polyimide / polypropylene, polyethylene terephthalate / polyethylene terephthalate, and the like. . Moreover, the relationship of the above adhesive forces can be satisfy | filled by surface-treating at least any one of a support body and a protective film. The surface treatment of the support may be performed in order to increase the adhesive force with the photosensitive layer. For example, coating of a primer layer, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency irradiation treatment, glow treatment Examples thereof include a discharge irradiation process, an active plasma irradiation process, and a laser beam irradiation process.

また、前記支持体と前記保護フィルムとの静摩擦係数としては、0.3〜1.4が好ましく、0.5〜1.2がより好ましい。
前記静摩擦係数が、0.3未満であると、滑り過ぎるため、ロール状にした場合に巻ズレが発生することがあり、1.4を超えると、良好なロール状に巻くことが困難となることがある。
Moreover, as a static friction coefficient of the said support body and the said protective film, 0.3-1.4 are preferable and 0.5-1.2 are more preferable.
When the coefficient of static friction is less than 0.3, slipping is excessive, so that winding deviation may occur when the roll is formed. Sometimes.

前記パターン形成材料は、例えば、円筒状の巻芯に巻き取って、長尺状でロール状に巻かれて保管されることが好ましい。前記長尺状のパターン形成材料の長さとしては、特に制限はなく、例えば、10m〜20,000mの範囲から適宜選択することができる。また、ユーザーが使いやすいようにスリット加工し、100m〜1,000mの範囲の長尺体をロール状にしてもよい。なお、この場合には、前記支持体が一番外側になるように巻き取られることが好ましい。また、前記ロール状のパターン形成材料をシート状にスリットしてもよい。保管の際、端面の保護、エッジフュージョンを防止する観点から、端面にはセパレーター(特に防湿性のもの、乾燥剤入りのもの)を設置することが好ましく、また梱包も透湿性の低い素材を用いる事が好ましい。   It is preferable that the pattern forming material is wound around a cylindrical core, wound into a long roll, and stored. There is no restriction | limiting in particular as length of the said elongate pattern formation material, For example, it can select suitably from the range of 10m-20,000m. Further, slitting may be performed so that the user can easily use, and a long body in the range of 100 m to 1,000 m may be formed into a roll. In this case, it is preferable that the support is wound up so as to be the outermost side. The roll-shaped pattern forming material may be slit into a sheet shape. From the viewpoint of protecting the end face and preventing edge fusion during storage, it is preferable to install a separator (especially moisture-proof and desiccant-containing) on the end face, and use a low moisture-permeable material for packaging. Things are preferable.

前記保護フィルムは、前記保護フィルムと前記感光層との接着性を調整するために表面処理してもよい。前記表面処理は、例えば、前記保護フィルムの表面に、ポリオルガノシロキサン、弗素化ポリオレフィン、ポリフルオロエチレン、ポリビニルアルコール等のポリマーからなる下塗層を形成させる。該下塗層の形成は、前記ポリマーの塗布液を前記保護フィルムの表面に塗布した後、30〜150℃(特に50〜120℃)で1〜30分間乾燥させることにより形成させることができる。また、前記感光層、前記支持体、前記保護フィルムの他に、剥離層、接着層、光吸収層、表面保護層などの層を有してもよい。   The protective film may be surface-treated in order to adjust the adhesion between the protective film and the photosensitive layer. In the surface treatment, for example, an undercoat layer made of a polymer such as polyorganosiloxane, fluorinated polyolefin, polyfluoroethylene, or polyvinyl alcohol is formed on the surface of the protective film. The undercoat layer can be formed by applying the polymer coating solution to the surface of the protective film and then drying at 30 to 150 ° C. (especially 50 to 120 ° C.) for 1 to 30 minutes. Moreover, you may have layers, such as a peeling layer, an adhesive layer, a light absorption layer, a surface protective layer, in addition to the said photosensitive layer, the said support body, and the said protective film.

<被処理基体>
前記被処理基体(以下、「基体」ということがある)としては、特に制限はなく、公知の材料の中から表面平滑性の高いものから凸凹のある表面を有するものまで適宜選択することができるが、板状の基体(基板)が好ましく、具体的には、公知のプリント配線板形成用基板(例えば、銅張積層板)、ガラス板(例えば、ソーダガラス板等)、合成樹脂性のフィルム、紙、金属板などが挙げられる。
<Substrate to be treated>
There is no restriction | limiting in particular as said to-be-processed base | substrate (henceforth a "base | substrate"), From the well-known material, what has high surface smoothness and what has an uneven surface can be selected suitably. However, a plate-like substrate (substrate) is preferable. Specifically, a known printed wiring board forming substrate (for example, a copper-clad laminate), a glass plate (for example, a soda glass plate), or a synthetic resin film , Paper, metal plate and the like.

前記基体は、該基体上に前記パターン形成材料における感光層が重なるようにして積層してなる積層体を形成して用いることができる。即ち、前記積層体におけるパターン形成材料の前記感光層に対して露光することにより、露光した領域を硬化させ、後述する現像工程によりパターンを形成することができる。   The substrate can be used by forming a laminate on which the photosensitive layer of the pattern forming material is laminated on the substrate. That is, by exposing the photosensitive layer of the pattern forming material in the laminate, the exposed region can be cured, and a pattern can be formed by a development process described later.

前記パターン形成材料は、プリント配線板、カラーフィルタや柱材、リブ材、スペーサー、隔壁などのディスプレイ用部材、ホログラム、マイクロマシン、プルーフなどのパターン形成用として広く用いることができ、特に本発明のパターン形成方法に好適に用いることができる。   The pattern forming material can be widely used for pattern formation of printed wiring boards, color filters, column materials, rib materials, spacers, partition members and other display members, holograms, micromachines, proofs, and the like. It can be suitably used for the forming method.

[その他工程]
前記その他の工程としては、特に制限はなく、公知のパターン形成における工程の中から適宜選択することが挙げられるが、例えば、現像工程、エッチング工程、メッキ工程などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
前記現像工程は、前記露光工程により前記感光層を露光し、該感光層の露光した領域を硬化させた後、未硬化領域を除去することにより現像し、パターンを形成する工程である。
[Other processes]
There is no restriction | limiting in particular as said other process, Although selecting suitably from the process in well-known pattern formation is mentioned, For example, a image development process, an etching process, a plating process, etc. are mentioned. These may be used alone or in combination of two or more.
The developing step is a step of forming a pattern by exposing the photosensitive layer by the exposing step, curing the exposed region of the photosensitive layer, and then developing the uncured region by removing the uncured region.

前記未硬化領域の除去方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、現像液を用いて除去する方法などが挙げられる。   There is no restriction | limiting in particular as the removal method of the said unhardened area | region, According to the objective, it can select suitably, For example, the method etc. which remove using a developing solution are mentioned.

前記現像液としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、アルカリ性水溶液、水系現像液、有機溶剤などが挙げられ、これらの中でも、弱アルカリ性の水溶液が好ましい。該弱アルカリ水溶液の塩基成分としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、リン酸ナトリウム、リン酸カリウム、ピロリン酸ナトリウム、ピロリン酸カリウム、硼砂などが挙げられる。   There is no restriction | limiting in particular as said developing solution, Although it can select suitably according to the objective, For example, alkaline aqueous solution, an aqueous developing solution, an organic solvent etc. are mentioned, Among these, weakly alkaline aqueous solution is preferable. Examples of the basic component of the weak alkaline aqueous solution include lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium phosphate, phosphorus Examples include potassium acid, sodium pyrophosphate, potassium pyrophosphate, and borax.

前記弱アルカリ性の水溶液のpHとしては、例えば、約8〜12が好ましく、約9〜11がより好ましい。前記弱アルカリ性の水溶液としては、例えば、0.1〜5質量%の炭酸ナトリウム水溶液又は炭酸カリウム水溶液などが挙げられる。
前記現像液の温度としては、前記感光層の現像性に合わせて適宜選択することができるが、例えば、約25℃〜40℃が好ましい。
The pH of the weak alkaline aqueous solution is, for example, preferably about 8 to 12, and more preferably about 9 to 11. Examples of the weak alkaline aqueous solution include a 0.1 to 5% by mass aqueous sodium carbonate solution or an aqueous potassium carbonate solution.
The temperature of the developer can be appropriately selected according to the developability of the photosensitive layer, and is preferably about 25 ° C. to 40 ° C., for example.

前記現像液は、界面活性剤、消泡剤、有機塩基(例えば、エチレンジアミン、エタノールアミン、テトラメチルアンモニウムハイドロキサイド、ジエチレントリアミン、トリエチレンペンタミン、モルホリン、トリエタノールアミン等)や、現像を促進させるため有機溶剤(例えば、アルコール類、ケトン類、エステル類、エーテル類、アミド類、ラクトン類等)などと併用してもよい。また、前記現像液は、水又はアルカリ水溶液と有機溶剤を混合した水系現像液であってもよく、有機溶剤単独であってもよい。   The developer includes a surfactant, an antifoaming agent, an organic base (for example, ethylenediamine, ethanolamine, tetramethylammonium hydroxide, diethylenetriamine, triethylenepentamine, morpholine, triethanolamine, etc.) and development. Therefore, it may be used in combination with an organic solvent (for example, alcohols, ketones, esters, ethers, amides, lactones, etc.). The developer may be an aqueous developer obtained by mixing water or an aqueous alkali solution and an organic solvent, or may be an organic solvent alone.

前記エッチング工程としては、公知のエッチング処理方法の中から適宜選択した方法により行うことができる。
前記エッチング処理に用いられるエッチング液としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記金属層が銅で形成されている場合には、塩化第二銅溶液、塩化第二鉄溶液、アルカリエッチング溶液、過酸化水素系エッチング液などが挙げられ、これらの中でも、エッチングファクターの点から塩化第二鉄溶液が好ましい。
前記エッチング工程によりエッチング処理した後に前記パターンを除去することにより、前記基体の表面に永久パターンを形成することができる。
前記永久パターンとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、配線パターンなどが好適に挙げられる。
The etching step can be performed by a method appropriately selected from known etching methods.
There is no restriction | limiting in particular as an etching liquid used for the said etching process, Although it can select suitably according to the objective, For example, when the said metal layer is formed with copper, a cupric chloride solution, Examples thereof include a ferric chloride solution, an alkali etching solution, and a hydrogen peroxide-based etching solution. Among these, a ferric chloride solution is preferable from the viewpoint of an etching factor.
A permanent pattern can be formed on the surface of the substrate by removing the pattern after performing the etching process in the etching step.
There is no restriction | limiting in particular as said permanent pattern, According to the objective, it can select suitably, For example, a wiring pattern etc. are mentioned suitably.

前記メッキ工程としては、公知のメッキ処理の中から適宜選択した適宜選択した方法により行うことができる。
前記メッキ処理としては、例えば、硫酸銅メッキ、ピロリン酸銅メッキ等の銅メッキ、ハイフローはんだメッキ等のはんだメッキ、ワット浴(硫酸ニッケル−塩化ニッケル)メッキ、スルファミン酸ニッケル等のニッケルメッキ、ハード金メッキ、ソフト金メッキ等の金メッキなど処理が挙げられる。
前記メッキ工程によりメッキ処理した後に前記パターンを除去することにより、また更に必要に応じて不要部をエッチング処理等で除去することにより、前記基体の表面に永久パターンを形成することができる。
The plating step can be performed by an appropriately selected method selected from known plating processes.
Examples of the plating treatment include copper plating such as copper sulfate plating and copper pyrophosphate plating, solder plating such as high flow solder plating, watt bath (nickel sulfate-nickel chloride) plating, nickel plating such as nickel sulfamate, and hard gold plating. And gold plating such as soft gold plating.
A permanent pattern can be formed on the surface of the substrate by removing the pattern after the plating process in the plating process, and further removing unnecessary portions by an etching process or the like as necessary.

本発明のパターン形成方法は、前記パターン形成材料の被露光面上に形成される前記パターンの解像度のばらつきや濃度のむらを軽減し、結像させる像の歪みを抑制することにより、パターンを高精細に、かつ、効率よく形成可能であるため、高精細な露光が必要とされる各種パターンの形成などに好適に使用することができ、特に高精細な配線パターンの形成に好適に使用することができる。   The pattern forming method of the present invention reduces the variation in resolution and density of the pattern formed on the exposed surface of the pattern forming material, and suppresses distortion of the image to be formed, thereby suppressing the pattern to be formed in high definition. In addition, since it can be formed efficiently, it can be suitably used for forming various patterns that require high-definition exposure, and particularly suitable for forming high-definition wiring patterns. it can.

〔プリント配線板の製造方法〕
本発明のパターン形成方法は、プリント配線板の製造、特にスルーホール又はビアホールなどのホール部を有するプリント配線板の製造に好適に用いることができる。以下、本発明のパターン形成方法を利用したプリント配線板の製造方法について説明する。
[Method of manufacturing printed wiring board]
The pattern forming method of the present invention can be suitably used for the production of a printed wiring board, particularly for the production of a printed wiring board having a hole portion such as a through hole or a via hole. Hereinafter, the manufacturing method of the printed wiring board using the pattern formation method of this invention is demonstrated.

特に、スルーホール又はビアホールなどのホール部を有するプリント配線板の製造方法としては、(1)前記基体としてホール部を有するプリント配線板形成用基板上に、前記パターン形成材料を、その感光層が前記基体側となる位置関係にて積層して積層体形成し、(2)前記積層体の前記基体とは反対の側から、配線パターン形成領域及びホール部形成領域に光照射行い感光層を硬化させ、(3)前記積層体から前記パターン形成材料における支持体を除去し、(4)前記積層体における感光層を現像して、該積層体中の未硬化部分を除去することによりパターンを形成することができる。   In particular, as a method of manufacturing a printed wiring board having a hole portion such as a through hole or a via hole, (1) the pattern forming material is placed on the printed wiring board forming substrate having the hole portion as the base, and the photosensitive layer is (2) The photosensitive layer is cured by irradiating the wiring pattern formation region and the hole portion formation region with light from the opposite side of the laminate to the substrate. (3) The support in the pattern forming material is removed from the laminate, and (4) the photosensitive layer in the laminate is developed to form a pattern by removing uncured portions in the laminate. can do.

なお、前記(3)における前記支持体の除去は、前記(2)と前記(4)との間で行う代わりに、前記(1)と前記(2)との間で行ってもよい。   The removal of the support in (3) may be performed between (1) and (2) instead of between (2) and (4).

その後、プリント配線板を得るには、前記形成したパターンを用いて、前記プリント配線板形成用基板をエッチング処理又はメッキ処理する方法(例えば、公知のサブトラクティブ法又はアディティブ法(例えば、セミアディティブ法、フルアディティブ法))により処理すればよい。これらの中でも、工業的に有利なテンティングでプリント配線板を形成するためには、前記サブトラクティブ法が好ましい。前記処理後プリント配線板形成用基板に残存する硬化樹脂は剥離させ、また、前記セミアディティブ法の場合は、剥離後さらに銅薄膜部をエッチングすることにより、所望のプリント配線板を製造することができる。また、多層プリント配線板も、前記プリント配線板の製造法と同様に製造が可能である。   Thereafter, in order to obtain a printed wiring board, a method of etching or plating the printed wiring board forming substrate using the formed pattern (for example, a known subtractive method or additive method (for example, a semi-additive method) And the full additive method)). Among these, in order to form a printed wiring board by industrially advantageous tenting, the subtractive method is preferable. After the treatment, the cured resin remaining on the printed wiring board forming substrate is peeled off. In the case of the semi-additive method, a desired printed wiring board can be manufactured by further etching the copper thin film portion after peeling. it can. A multilayer printed wiring board can also be manufactured in the same manner as the printed wiring board manufacturing method.

次に、前記パターン形成材料を用いたスルーホールを有するプリント配線板の製造方法について、更に説明する。   Next, the manufacturing method of the printed wiring board which has a through hole using the said pattern formation material is further demonstrated.

まずスルーホールを有し、表面が金属メッキ層で覆われたプリント配線板形成用基板を用意する。前記プリント配線板形成用基板としては、例えば、銅張積層基板及びガラス−エポキシなどの絶縁基材に銅メッキ層を形成した基板、又はこれらの基板に層間絶縁膜を積層し、銅メッキ層を形成した基板(積層基板)を用いることができる。   First, a printed wiring board forming substrate having through holes and having a surface covered with a metal plating layer is prepared. As the printed wiring board forming substrate, for example, a copper-clad laminate substrate and a substrate in which a copper plating layer is formed on an insulating base material such as glass-epoxy, or an interlayer insulating film is laminated on these substrates, and a copper plating layer is formed. A formed substrate (laminated substrate) can be used.

次に、前記パターン形成材料上に保護フィルムを有する場合には、該保護フィルムを剥離して、前記パターン形成材料における感光層が前記プリント配線板形成用基板の表面に接するようにして加圧ローラを用いて圧着する(積層工程)。これにより、前記プリント配線板形成用基板と前記積層体とをこの順に有する積層体が得られる。
前記パターン形成材料の積層温度としては、特に制限はなく、例えば、室温(15〜30℃)、又は加熱下(30〜180℃)が挙げられ、これらの中でも、加温下(60〜140℃)が好ましい。
前記圧着ロールのロール圧としては、特に制限はなく、例えば、0.1〜1MPaが好ましい。
前記圧着の速度としては、特に制限はなく、1〜3m/分が好ましい。
また、前記プリント配線板形成用基板を予備加熱しておいてもよく、また、減圧下で積層してもよい。
Next, when a protective film is provided on the pattern forming material, the protective film is peeled off so that the photosensitive layer in the pattern forming material is in contact with the surface of the printed wiring board forming substrate. Is used for pressure bonding (lamination process). Thereby, the laminated body which has the said board | substrate for printed wiring board formation and the said laminated body in this order is obtained.
There is no restriction | limiting in particular as lamination | stacking temperature of the said pattern formation material, For example, room temperature (15-30 degreeC) or under heating (30-180 degreeC) is mentioned, Among these, under heating (60-140 degreeC) ) Is preferred.
There is no restriction | limiting in particular as roll pressure of the said crimping | compression-bonding roll, For example, 0.1-1 Mpa is preferable.
There is no restriction | limiting in particular as the speed | rate of the said crimping | compression-bonding, and 1-3 m / min is preferable.
The printed wiring board forming substrate may be preheated or laminated under reduced pressure.

前記積層体の形成は、前記プリント配線板形成用基板上に前記パターン形成材料における前記感光層を積層して形成する方法以外に、前記パターン形成材料の感光層を製造するための感光性樹脂組成物溶液を、前記プリント配線板形成用基板の表面に直接塗布し、乾燥させることにより形成する方法であってもよい。   In addition to the method of forming the laminate by laminating the photosensitive layer in the pattern forming material on the printed wiring board forming substrate, a photosensitive resin composition for producing the photosensitive layer of the pattern forming material is used. A method may be used in which a physical solution is directly applied to the surface of the printed wiring board forming substrate and dried.

次に、前記積層体の基体とは反対側の面から、光を照射して感光層を硬化させる。なおこの際、必要に応じて(例えば、支持体の光透過性が不十分な場合など)支持体を剥離してから露光を行ってもよい。   Next, the photosensitive layer is cured by irradiating light from the surface of the laminate opposite to the substrate. At this time, exposure may be performed after peeling the support as necessary (for example, when the light transmittance of the support is insufficient).

この時点で、前記支持体を未だ剥離していない場合には、前記積層体から該支持体を剥がす(支持体剥離工程)。   At this point, if the support has not yet been peeled off, the support is peeled off from the laminate (support peeling step).

次に、前記プリント配線板形成用基板上の感光層の未硬化領域を、適当な現像液にて溶解除去して、配線パターン形成用の硬化層とスルーホールの金属層保護用硬化層のパターンを形成し、前記プリント配線板形成用基板の表面に金属層を露出させる(現像工程)。   Next, the uncured region of the photosensitive layer on the printed wiring board forming substrate is dissolved and removed with an appropriate developer to form a pattern of the cured layer for forming the wiring pattern and the cured layer for protecting the metal layer of the through hole. And a metal layer is exposed on the surface of the printed wiring board forming substrate (developing step).

また、現像後に必要に応じて後加熱処理や後露光処理によって、硬化部の硬化反応を更に促進させる処理をおこなってもよい。現像は上記のようなウエット現像法であってもよく、ドライ現像法であってもよい。   Moreover, you may perform the process which further accelerates | stimulates the hardening reaction of a hardening part by post-heat processing or post-exposure processing as needed after image development. The development may be a wet development method as described above or a dry development method.

次いで、前記プリント配線板形成用基板の表面に露出した金属層をエッチング液で溶解除去する(エッチング工程)。スルーホールの開口部は、硬化樹脂組成物(テント膜)で覆われているので、エッチング液がスルーホール内に入り込んでスルーホール内の金属メッキを腐食することなく、スルーホールの金属メッキは所定の形状で残ることになる。これより、前記プリント配線板形成用基板に配線パターンが形成される。   Next, the metal layer exposed on the surface of the printed wiring board forming substrate is dissolved and removed with an etching solution (etching step). Since the opening of the through hole is covered with a cured resin composition (tent film), the metal plating of the through hole is predetermined without etching liquid entering the through hole and corroding the metal plating in the through hole. It will remain in the shape. Thus, a wiring pattern is formed on the printed wiring board forming substrate.

前記エッチング液としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記金属層が銅で形成されている場合には、塩化第二銅溶液、塩化第二鉄溶液、アルカリエッチング溶液、過酸化水素系エッチング液などが挙げられ、これらの中でも、エッチングファクターの点から塩化第二鉄溶液が好ましい。   There is no restriction | limiting in particular as said etching liquid, Although it can select suitably according to the objective, For example, when the said metal layer is formed with copper, a cupric chloride solution, a ferric chloride solution , Alkaline etching solutions, hydrogen peroxide-based etching solutions, and the like. Among these, ferric chloride solutions are preferable from the viewpoint of etching factors.

次に、強アルカリ水溶液などにて前記硬化層を剥離片として、前記プリント配線板形成用基板から除去する(硬化物除去工程)。
前記強アルカリ水溶液における塩基成分としては、特に制限はなく、例えば、水酸化ナトリウム、水酸化カリウムなどが挙げられる。
前記強アルカリ水溶液のpHとしては、例えば、約12〜14が好ましく、約13〜14がより好ましい。
前記強アルカリ水溶液としては、特に制限はなく、例えば、1〜10質量%の水酸化ナトリウム水溶液又は水酸化カリウム水溶液などが挙げられる。
Next, it removes from the said board | substrate for printed wiring board formation by making the said hardened layer into a peeling piece with strong alkaline aqueous solution etc. (hardened | cured material removal process).
There is no restriction | limiting in particular as a base component in the said strong alkali aqueous solution, For example, sodium hydroxide, potassium hydroxide, etc. are mentioned.
As pH of the said strong alkali aqueous solution, about 12-14 are preferable, for example, and about 13-14 are more preferable.
There is no restriction | limiting in particular as said strong alkali aqueous solution, For example, 1-10 mass% sodium hydroxide aqueous solution or potassium hydroxide aqueous solution etc. are mentioned.

また、プリント配線板は、多層構成のプリント配線板であってもよい。
なお、前記パターン形成材料は上記のエッチングプロセスのみでなく、メッキプロセスに使用してもよい。前記メッキ法としては、例えば、硫酸銅メッキ、ピロリン酸銅メッキ等の銅メッキ、ハイフローはんだメッキ等のはんだメッキ、ワット浴(硫酸ニッケル−塩化ニッケル)メッキ、スルファミン酸ニッケル等のニッケルメッキ、ハード金メッキ、ソフト金メッキ等の金メッキなどが挙げられる。
The printed wiring board may be a multilayer printed wiring board.
The pattern forming material may be used not only for the above etching process but also for a plating process. Examples of the plating method include copper plating such as copper sulfate plating and copper pyrophosphate plating, solder plating such as high flow solder plating, watt bath (nickel sulfate-nickel chloride) plating, nickel plating such as nickel sulfamate, and hard gold plating. And gold plating such as soft gold plating.

以下、実施例により本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.

(実施例1)
−パターン形成材料の製造−
前記支持体として20μm厚のポリエチレンテレフタレートフィルムに、下記の組成からなる感光性樹脂組成物溶液を塗布し乾燥させて、15μm厚の感光層を形成し、前記パターン形成材料を製造した。
Example 1
-Production of pattern forming material-
A photosensitive resin composition solution having the following composition was applied to a polyethylene terephthalate film having a thickness of 20 μm as the support and dried to form a photosensitive layer having a thickness of 15 μm, thereby producing the pattern forming material.

[感光性樹脂組成物溶液の組成]
・メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合体組成(質量比):
29/19/52、質量平均分子量:60,000、酸価189) 11.8質量部
・下記構造式(70)で表される重合性モノマー 5.6質量部
・ヘキサメチレンジイソシアネートとペンタエチレンオキシドモノメタアクリレートの
1/2モル比付加物 5.0質量部
・ドデカプロピレングリコールジアクリレート 0.56質量部
・N−メチルアクリドン 0.11質量部
・2,2−ビス(o−クロロフェニル)−4,4′,5,5′−テトラフェニルビイミ
ダゾール 2.17質量部
・2−メルカプトベンズイミダゾール 0.23質量部
・マラカイトグリーンシュウ酸塩 0.02質量部
・ロイコクリスタルバイオレット 0.26質量部
・メチルエチルケトン 40質量部
・1−メトキシ−2−プロパノール 20質量部
[Composition of photosensitive resin composition solution]
Methacrylic acid / methyl methacrylate / styrene copolymer (copolymer composition (mass ratio):
29/19/52, mass average molecular weight: 60,000, acid value 189) 11.8 parts by mass • 5.6 parts by mass of polymerizable monomer represented by the following structural formula (70) • hexamethylene diisocyanate and pentaethylene oxide mono 1/2 mole ratio adduct of methacrylate 5.0 parts by mass, dodecapropylene glycol diacrylate 0.56 parts by mass, N-methylacridone 0.11 parts by mass, 2,2-bis (o-chlorophenyl) -4 , 4 ', 5,5'-tetraphenylbiimidazole 2.17 parts by mass, 0.23 parts by mass of 2-mercaptobenzimidazole, 0.02 parts by mass of malachite green oxalate, 0.26 parts by mass of leuco crystal violet 40 parts by mass of methyl ethyl ketone
・ 20 parts by mass of 1-methoxy-2-propanol

但し、構造式(70)中、m+nは、10を表す。なお、構造式(70)は、前記構造式(35)で表される化合物の一例である。 However, m + n represents 10 in Structural Formula (70). Structural formula (70) is an example of a compound represented by the structural formula (35).

前記パターン形成材料の感光層の上に、前記保護フィルムとして20μm厚のポリエチレンフィルムを積層した。
次に、前記基体として、表面を研磨、水洗、乾燥した銅張積層板(スルーホールなし、銅厚み12μm)の表面に、前記パターン形成材料の保護フィルムを剥がしながら、該パターン形成材料の感光層が前記銅張積層板に接するようにしてラミネーター(MODEL8B−720−PH、大成ラミネーター(株)製)を用いて圧着させ、前記銅張積層板と、前記感光層と、前記ポリエチレンテレフタレートフィルム(支持体)とがこの順に積層された積層体を調製した。
圧着条件は、圧着ロール温度 105℃、圧着ロール圧力 0.3MPa、ラミネート速度 1m/分とした。
A 20 μm thick polyethylene film was laminated as the protective film on the photosensitive layer of the pattern forming material.
Next, a photosensitive layer of the pattern forming material is peeled off from the surface of a copper-clad laminate (no through-hole, copper thickness 12 μm) whose surface is polished, washed and dried as the substrate. In contact with the copper-clad laminate using a laminator (MODEL8B-720-PH, manufactured by Taisei Laminator Co., Ltd.), the copper-clad laminate, the photosensitive layer, and the polyethylene terephthalate film (support) Body) was laminated in this order.
The pressure bonding conditions were a pressure roll temperature of 105 ° C., a pressure roll pressure of 0.3 MPa, and a laminating speed of 1 m / min.

前記調製した積層体におけるパターン形成材料の感光層に対して下記の露光装置を用いて露光を行い、解像度、及びエッチング性を以下の方法により評価した。結果を表1に示す。
なお、露光は、前記感光層の被露光面上に結像される略矩形状の露光領域が、その短辺方向と前記感光層のうねり方向とがなす角が、その長辺方向と前記感光層のうねり方向とがなす角よりも小さくなるようにして行った。
The photosensitive layer of the pattern forming material in the prepared laminate was exposed using the following exposure apparatus, and the resolution and etching property were evaluated by the following methods. The results are shown in Table 1.
In the exposure, the angle formed between the short side direction and the waviness direction of the photosensitive layer of the substantially rectangular exposure region imaged on the exposed surface of the photosensitive layer is the long side direction and the photosensitive layer. The angle was made smaller than the angle formed by the waviness direction of the layer.

<解像度>
(1)最短現像時間の測定方法
前記積層体から前記支持体を剥がし取り、銅張積層板上の前記感光層の全面に30℃の1質量%炭酸ナトリウム水溶液を0.15MPaの圧力にてスプレーし、炭酸ナトリウム水溶液のスプレー開始から銅張積層板上の感光層が溶解除去されるまでに要した時間を測定し、これを最短現像時間とした。
この結果、前記最短現像時間は、10秒であった。
<Resolution>
(1) Measuring method of shortest development time The support is peeled off from the laminate, and a 1 mass% sodium carbonate aqueous solution at 30 ° C. is sprayed on the entire surface of the photosensitive layer on the copper clad laminate at a pressure of 0.15 MPa. The time required from the start of spraying of the aqueous sodium carbonate solution until the photosensitive layer on the copper clad laminate was dissolved and removed was measured, and this was taken as the shortest development time.
As a result, the shortest development time was 10 seconds.

(2)感度の測定
前記調製した積層体におけるパターン形成材料の感光層に対し、前記支持体側から、以下に説明する露光装置を用いて、0.1mJ/cmから21/2倍間隔で100mJ/cmまでの光エネルギー量の異なる光を照射し、前記感光層の一部の領域を硬化させた。室温にて10分間静置した後、前記積層体から前記支持体を剥がし取り、銅張積層板上の感光層の全面に、30℃の1質量%炭酸ナトリウム水溶液をスプレー圧0.15MPaにて前記(1)で求めた最短現像時間の2倍の時間スプレーし、未硬化の領域を溶解除去して、残った硬化領域の厚みを測定した。次いで、光の照射量と、硬化層の厚さとの関係をプロットして感度曲線を得た。該感度曲線から、硬化領域の厚みが露光前の感光層と同じ15μmとなった時の光エネルギー量を、感光層を硬化させるために必要な光エネルギー量とした。
この結果、前記感光層を硬化させるために必要な光エネルギー量は、3.5mJ/cmであった。
(2) Measurement of sensitivity With respect to the photosensitive layer of the pattern forming material in the prepared laminate, from the support side, an exposure apparatus described below is used at intervals of 0.1 mJ / cm 2 to 2 1/2 times. Light with different light energy amounts up to 100 mJ / cm 2 was irradiated to cure a part of the photosensitive layer. After standing at room temperature for 10 minutes, the support was peeled off from the laminate, and a 1% by mass aqueous sodium carbonate solution at 30 ° C. was applied to the entire surface of the photosensitive layer on the copper clad laminate at a spray pressure of 0.15 MPa. Spraying was performed twice as long as the shortest development time determined in (1) above, the uncured area was dissolved and removed, and the thickness of the remaining cured area was measured. Subsequently, the relationship between the light irradiation amount and the thickness of the cured layer was plotted to obtain a sensitivity curve. From the sensitivity curve, the amount of light energy when the thickness of the cured region was 15 μm, which was the same as that of the photosensitive layer before exposure, was determined as the amount of light energy necessary for curing the photosensitive layer.
As a result, the amount of light energy necessary for curing the photosensitive layer was 3.5 mJ / cm 2 .

<<露光装置>>
図1に外観の概略を示した露光装置10を用いた。該露光装置の露光ヘッドの構成は図7に示されるとおりであり、具体的には、前記光照射手段として図4〜6に示した合波レーザ光源と、前記光変調手段として図10に概略図を示したDMDであって、図11に示すように主走査方向にマイクロミラーが1024個配列されたマイクロミラー列が、副走査方向に756組配列された内、1024個×240列のみを駆動するように制御したDMDと、図8A及びBに示した投影レンズ及び図9に示した鏡筒から構成される結像光学系と、図12〜13に示したくさび型プリズムペアとを有する露光ヘッドを備えた露光装置である。
<< Exposure equipment >>
An exposure apparatus 10 whose outline of the appearance is shown in FIG. 1 was used. The configuration of the exposure head of the exposure apparatus is as shown in FIG. 7. Specifically, the combined laser light source shown in FIGS. 4 to 6 as the light irradiation means and the light modulation means as shown in FIG. In the DMD shown in the figure, as shown in FIG. 11, only 1024 × 240 columns of 756 micromirror rows in which 1024 micromirrors are arranged in the main scanning direction are arranged in the sub-scanning direction. It has a DMD controlled to be driven, an imaging optical system composed of the projection lens shown in FIGS. 8A and 8B and the lens barrel shown in FIG. 9, and a wedge-shaped prism pair shown in FIGS. An exposure apparatus provided with an exposure head.

図9に示した鏡筒400を回転させ、感光層の被露光面上に投影された2次元パターンの焦点、画質等の露光性能を計測しながら、最も良い露光性能を示す回転位置で、前記鏡筒のフランジ410とブラケット420とを固定し、投影レンズの向きを固定した。
さらに、1フレームの露光が終了し、ステージが走査方向に移動することによって感光層(積層体)が移動すると、露光エリア内における感光層のうねりの度合いが変化するため、くさび型プリズムペア54によって焦点調節を行った。
The lens barrel 400 shown in FIG. 9 is rotated to measure the exposure performance such as the focus and image quality of the two-dimensional pattern projected on the exposed surface of the photosensitive layer, and at the rotational position showing the best exposure performance. The lens barrel flange 410 and the bracket 420 were fixed, and the direction of the projection lens was fixed.
Furthermore, when the exposure of one frame is completed and the photosensitive layer (laminated body) moves by moving the stage in the scanning direction, the degree of waviness of the photosensitive layer in the exposure area changes. Focus adjustment was performed.

(3)解像度の測定
前記(1)の最短現像時間の評価方法と同じ方法及び条件で前記積層体を作製し、室温(23℃、55%RH)にて10分間静置した。得られた積層体のポリエチレンテレフタレートフィルム(支持体)上から、前記露光装置を用いて、ライン/スペース=1/1でライン幅10μm〜50μmまで1μm刻みで各線幅の露光を行う。この際の露光量は、前記(2)で測定した前記パターン形成材料の感光層を硬化させるために必要な光エネルギー量である。室温にて10分間静置した後、前記積層体からポリエチレンテレフタレートフィルム(支持体)を剥がし取る。銅張積層板上の感光層の全面に30℃の1質量%炭酸ナトリウム水溶液をスプレー圧0.15MPaにて前記(1)で求めた最短現像時間の2倍の時間スプレーし、未硬化領域を溶解除去する。この様にして得られた硬化樹脂パターン付き銅張積層板の表面を光学顕微鏡で観察し、硬化樹脂パターンのラインにツマリ、ヨレ等の異常が無く、かつスペース形成可能な最小のライン幅を測定し、これを解像度とした。該解像度は数値が小さいほど良好である。
(3) Measurement of resolution The laminate was prepared by the same method and conditions as the evaluation method for the shortest development time in (1), and allowed to stand at room temperature (23 ° C., 55% RH) for 10 minutes. From the obtained polyethylene terephthalate film (support) of the laminate, the exposure apparatus is used to expose each line width in increments of 1 μm from 10 μm to 50 μm in line width / space = 1/1. The exposure amount at this time is the amount of light energy necessary for curing the photosensitive layer of the pattern forming material measured in (2). After standing at room temperature for 10 minutes, the polyethylene terephthalate film (support) is peeled off from the laminate. A 1 mass% sodium carbonate aqueous solution at 30 ° C. is sprayed over the entire surface of the photosensitive layer on the copper clad laminate at a spray pressure of 0.15 MPa for twice the shortest development time determined in (1) above, and the uncured area is Dissolve and remove. The surface of the copper-clad laminate with a cured resin pattern obtained in this way is observed with an optical microscope, and the cured resin pattern line is free of irregularities such as lumps and twists, and the minimum line width that allows space formation is measured. This is the resolution. The smaller the numerical value, the better the resolution.

<エッチング性>
前記解像度の測定において形成したパターンを有する前記積層体を用いて、該積層体における露出した銅張積層板の表面に、塩化鉄エッチャント(塩化第二鉄含有エッチング溶液、40°ボーメ、液温40℃)を0.25MPaで、36秒スプレーして、硬化層で覆われていない露出した領域の銅層を溶解除去することによりエッチング処理を行った。次いで、2質量%の水酸化ナトリウム水溶液をスプレーすることにより前記形成したパターンを除去して、表面に前記永久パターンとして銅層の配線パターンを備えたプリント配線板を作製した。該プリント配線基板上の配線パターンを光学顕微鏡で観察し、該配線パターンの最小のライン幅を測定した。この最小ライン幅が小さいほど高精細な配線パターンが得られ、エッチング性に優れていることを意味する。結果を表1に示す。
<Etching property>
Using the laminated body having the pattern formed in the measurement of the resolution, an iron chloride etchant (ferric chloride-containing etching solution, 40 ° Baume, liquid temperature 40) is formed on the exposed copper-clad laminate in the laminated body. C.) was sprayed at 0.25 MPa for 36 seconds to dissolve and remove the exposed copper layer not covered with the hardened layer. Next, the formed pattern was removed by spraying a 2% by mass sodium hydroxide aqueous solution, and a printed wiring board having a copper layer wiring pattern as the permanent pattern on the surface was produced. The wiring pattern on the printed wiring board was observed with an optical microscope, and the minimum line width of the wiring pattern was measured. A smaller minimum line width means that a finer wiring pattern can be obtained and the etching property is better. The results are shown in Table 1.

(実施例2)
実施例1において、露光装置を、下記に説明するものに代えた以外は、実施例1と同様にしてパターンを形成し、解像度、及びエッチング性を評価した。結果を表1に示す。
(Example 2)
In Example 1, except that the exposure apparatus was changed to that described below, a pattern was formed in the same manner as in Example 1, and the resolution and etching property were evaluated. The results are shown in Table 1.

<<露光装置>>
実施例1で用いた露光装置において、くさび型プリズムペアに代えて、図15〜16に示すピエゾ素子及びマイクロレンズアレイとの組合せからなる焦点調節手段を備える露光装置を用いた。前記ピエゾ素子により、マイクロレンズアレイの焦点方向と垂直な方向への変位を抑えつつ、焦点方向への微小移動を行うことにより、焦点の調節を行った。
<< Exposure equipment >>
In the exposure apparatus used in Example 1, instead of the wedge-shaped prism pair, an exposure apparatus provided with a focus adjusting unit composed of a combination of a piezo element and a microlens array shown in FIGS. The focus was adjusted by performing a minute movement in the focus direction while suppressing displacement of the microlens array in the direction perpendicular to the focus direction by the piezo element.

(実施例3)
実施例1において、感光性樹脂組成物溶液のヘキサメチレンジイソシアネートとペンタエチレンオキシドモノメタアクリレートの1/2モル比付加物を、下記構造式(71)で表される化合物に代えた以外は実施例1と同様にしてパターン形成材料、及び積層体を調製し、パターンを形成し、解像度、及びエッチング性を評価した。結果を表1に示す。
なお、最短現像時間は10秒であり、前記感光層を硬化させるために必要な光エネルギー量は3.5mJ/cmであった。また、前記構造式(71)で表される化合物は、前記構造式(24)で表される化合物の一例である。
(Example 3)
In Example 1, except that the ½ molar ratio adduct of hexamethylene diisocyanate and pentaethylene oxide monomethacrylate in the photosensitive resin composition solution was replaced with a compound represented by the following structural formula (71), Example 1 In the same manner as above, a pattern forming material and a laminate were prepared, a pattern was formed, and resolution and etching property were evaluated. The results are shown in Table 1.
The shortest development time was 10 seconds, and the amount of light energy necessary for curing the photosensitive layer was 3.5 mJ / cm 2 . In addition, the compound represented by the structural formula (71) is an example of the compound represented by the structural formula (24).

(実施例4)
実施例1おいて、感光性樹脂組成物溶液のヘキサメチレンジイソシアネートとペンタエチレンオキシドモノメタアクリレートの1/2モル比付加物を、下記構造式(72)に示す化合物に代えた以外は実施例1と同様にしてパターン形成材料、及び積層体を調製し、パターンを形成し、解像度、及びエッチング性を評価した。結果を表1に示す。
なお、最短現像時間は10秒であり、前記感光層を硬化させるために必要な光エネルギー量は3.5mJ/cmであった。また、前記構造式(72)で表される化合物は、前記構造式(22)で表される化合物の一例である。
Example 4
In Example 1, Example 1 except that the 1/2 mole ratio adduct of hexamethylene diisocyanate and pentaethylene oxide monomethacrylate in the photosensitive resin composition solution was replaced with the compound represented by the following structural formula (72). Similarly, a pattern forming material and a laminate were prepared, a pattern was formed, and resolution and etching property were evaluated. The results are shown in Table 1.
The shortest development time was 10 seconds, and the amount of light energy necessary for curing the photosensitive layer was 3.5 mJ / cm 2 . Further, the compound represented by the structural formula (72) is an example of the compound represented by the structural formula (22).

(実施例5)
実施例1において、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合体組成(質量比):29/19/52、質量平均分子量:60,000、酸価189)を、メチルメタクリレート/スチレン/ベンジルメタクリレート/メタクリル酸共重合体(共重合体組成(質量比):8/30/37/25、質量平均分子量:60,000、酸価163)に代えたこと以外は実施例1と同様にしてパターン形成材料、及び積層体を調製し、パターンを形成し、解像度、及びエッチング性を評価した。結果を表1に示す。
なお、最短現像時間は10秒であり、感光層を硬化させるために必要な光エネルギー量は4mJ/cmであった。
(Example 5)
In Example 1, methacrylic acid / methyl methacrylate / styrene copolymer (copolymer composition (mass ratio): 29/19/52, mass average molecular weight: 60,000, acid value 189) was converted to methyl methacrylate / styrene / Except having replaced with the benzyl methacrylate / methacrylic acid copolymer (Copolymer composition (mass ratio): 8/30/37/25, mass average molecular weight: 60,000, acid value 163), it carried out similarly to Example 1, and. Then, a pattern forming material and a laminate were prepared, a pattern was formed, and resolution and etching property were evaluated. The results are shown in Table 1.
The shortest development time was 10 seconds, and the amount of light energy required to cure the photosensitive layer was 4 mJ / cm 2 .

(比較例1)
実施例1において、焦点調節手段としてのくさび型プリズムペアを備えない構成の(又は稼動させないようにした)の露光ヘッドを用いた以外は、実施例1と同様にしてパターン形成材料、及び積層体を調製し、パターンを形成し、解像度、及びエッチング性を評価した。結果を表1に示す。
なお、感光層を硬化させるために必要な光エネルギー量は3.5mJ/cmであった。
(Comparative Example 1)
In Example 1, a pattern forming material and a laminate are used in the same manner as in Example 1 except that an exposure head having a configuration not including (or not operating) a wedge-shaped prism pair as a focus adjusting unit is used. Were prepared, patterns were formed, and resolution and etching properties were evaluated. The results are shown in Table 1.
The amount of light energy required for curing the photosensitive layer was 3.5 mJ / cm 2 .

(比較例2)
実施例1の露光装置において、投影レンズによる結像を、前記投影レンズの全面で行った以外は、実施例1と同様にしてパターン形成材料、及び積層体を調製し、パターンを形成し、解像度、及びエッチング性を評価した。結果を表1に示す。
なお、感光層を硬化させるために必要な光エネルギー量は3.5mJ/cmであった。
(Comparative Example 2)
In the exposure apparatus of Example 1, a pattern forming material and a laminate are prepared in the same manner as in Example 1 except that image formation by the projection lens is performed on the entire surface of the projection lens, and a pattern is formed. The etching property was evaluated. The results are shown in Table 1.
The amount of light energy required for curing the photosensitive layer was 3.5 mJ / cm 2 .

(比較例3)
実施例1において、前記感光層の被露光面上に結像される略矩形状の露光領域の向きを調整せずに露光を行った以外は、実施例1と同様にしてパターン形成材料、及び積層体を調製し、パターンを形成し、解像度、及びエッチング性を評価した。結果を表1に示す。
なお、感光層を硬化させるために必要な光エネルギー量は3.5mJ/cmであった。
(Comparative Example 3)
In Example 1, except that the exposure was performed without adjusting the direction of the substantially rectangular exposure region imaged on the exposed surface of the photosensitive layer, the pattern forming material, and A laminated body was prepared, a pattern was formed, and resolution and etching property were evaluated. The results are shown in Table 1.
The amount of light energy required for curing the photosensitive layer was 3.5 mJ / cm 2 .

表1の結果から、比較例1〜3の配線パターンと比較して、実施例1〜5の配線パターンは高精細であり、エッチング性に優れることがわかった。また、周辺領域にレンズ歪みを持たせて、中央部を含む領域のレンズ歪みを少なくした投影レンズを用い、該投影レンズを回転可能とした鏡筒を備えた露光ヘッドを使用することにより、低コストで高精細な露光を実現することができ、また、くさび型プリズムペアを備えることにより、簡単かつ短時間で焦点距離を調整することができるため、効率の良い露光ができることがわかった。   From the results in Table 1, it was found that the wiring patterns of Examples 1 to 5 were high-definition and excellent in etching properties as compared with the wiring patterns of Comparative Examples 1 to 3. In addition, by using a projection lens with a lens distortion in the peripheral area and reducing the lens distortion in the area including the center, and using an exposure head equipped with a lens barrel that can rotate the projection lens, It has been found that high-definition exposure can be realized at low cost, and that the focal length can be adjusted easily and in a short time by providing a wedge-shaped prism pair, so that efficient exposure can be achieved.

本発明のパターン形成方法は、装置のコストアップや、露光速度の低下を招くことなく、露光性能を向上させることにより、配線パターン等の永久パターンを高精細に、かつ、効率よく形成可能であるため、高精細な露光が必要とされる各種パターンの形成などに好適に使用することができ、特に高精細な配線パターンの形成に好適に使用することができる。   The pattern forming method of the present invention can form a permanent pattern such as a wiring pattern with high definition and efficiency by improving exposure performance without increasing the cost of the apparatus or reducing the exposure speed. Therefore, it can be suitably used for forming various patterns that require high-definition exposure, and can be particularly suitably used for forming high-definition wiring patterns.

図1は、露光装置の概略外観図である。FIG. 1 is a schematic external view of the exposure apparatus. 図2は、スキャナの概略外観図である。FIG. 2 is a schematic external view of the scanner. 図3は、露光ヘッドの内部構成を示した図である。FIG. 3 is a diagram showing the internal configuration of the exposure head. 図4は、光照射手段としての光源ユニットの構成を示した図である。FIG. 4 is a diagram illustrating a configuration of a light source unit as a light irradiation unit. 図5は、光照射手段におけるレーザ出射部の構成を示した図である。FIG. 5 is a diagram showing the configuration of the laser emitting portion in the light irradiation means. 図6は、光照射手段におけるLDモジュールの構成を示した図である。FIG. 6 is a diagram showing the configuration of the LD module in the light irradiation means. 図7は、露光ヘッドを構成する光学要素の説明図である。FIG. 7 is an explanatory diagram of optical elements constituting the exposure head. 図8Aは、投影レンズを示した平面図である。FIG. 8A is a plan view showing a projection lens. 図8Bは、投影レンズを示した平面図である。FIG. 8B is a plan view showing the projection lens. 図9は、結像光学系を備える鏡筒の概略側面断面図と鏡筒の概略平面図である。FIG. 9 is a schematic side sectional view of a lens barrel including an imaging optical system and a schematic plan view of the lens barrel. 図10は、光変調手段であるDMDの概略斜視図である。FIG. 10 is a schematic perspective view of a DMD which is a light modulation means. 図11Aは、DMDを構成するマイクロミラーの使用領域の説明図である。FIG. 11A is an explanatory diagram of a use region of a micromirror that constitutes a DMD. 図11Bは、DMDを構成するマイクロミラーの使用領域の説明図である。FIG. 11B is an explanatory diagram of a use region of a micromirror that constitutes a DMD. 図12は、焦点調節手段であるくさび型プリズムペアの構成を示す側面図である。FIG. 12 is a side view showing the configuration of a wedge-shaped prism pair that is a focus adjusting means. 図13は、焦点調節手段であるくさび型プリズムペアの概略斜視図である。FIG. 13 is a schematic perspective view of a wedge-shaped prism pair which is a focus adjusting means. 図14は、露光ヘッドを構成する光学要素の説明図である。FIG. 14 is an explanatory diagram of optical elements constituting the exposure head. 図15Aは、焦点調節手段の他の一例であるピエゾ素子を備えたマイクロレンズアレイの構成を示す図である。FIG. 15A is a diagram illustrating a configuration of a microlens array including a piezo element, which is another example of the focus adjusting unit. 図15Bは、焦点調節手段の他の一例であるピエゾ素子を備えたマイクロレンズアレイの構成を示す図である。FIG. 15B is a diagram illustrating a configuration of a microlens array including a piezo element, which is another example of the focus adjusting unit. 図16Aは、焦点調節手段の他の一例であるピエゾ素子を備えたマイクロレンズアレイの構成を示す図である。FIG. 16A is a diagram illustrating a configuration of a microlens array including a piezo element, which is another example of the focus adjusting unit. 図16Bは、焦点調節手段の他の一例であるピエゾ素子を備えたマイクロレンズアレイの構成を示す図である。FIG. 16B is a diagram illustrating a configuration of a microlens array including a piezo element, which is another example of the focus adjusting unit. 図17Aは、感光材料とDMDの位置関係を概略的に示した斜視図である。FIG. 17A is a perspective view schematically showing the positional relationship between the photosensitive material and the DMD. 図17Bは、感光材料とDMDの位置関係を概略的に示した側面図である。FIG. 17B is a side view schematically showing the positional relationship between the photosensitive material and the DMD.

符号の説明Explanation of symbols

10 露光装置
30 露光ヘッド
80 DMD
50 結像光学系
51 第1投影レンズ
52 第2投影レンズ
54 くさび型プリズムペア
12 感光材料
10 Exposure Device 30 Exposure Head 80 DMD
50 imaging optical system 51 first projection lens 52 second projection lens 54 wedge-shaped prism pair 12 photosensitive material

Claims (25)

支持体上に感光層を有するパターン形成材料における該感光層を、被処理基体上に積層した後、該感光層に対し、
光照射手段からの光を受光してパターン情報に基づいて変調する光変調手段により、前記光照射手段からの光を変調させ、前記光変調手段により変調された光を、結像手段と、焦点調節手段とを介して前記感光層の被露光面上に結像させて露光を行うことを少なくとも含み、
前記露光が、前記結像手段の中央部を含む略矩形状の領域のみにおいて、前記光変調手段により変調された光が結像され、
前記感光層の被露光面上に結像される略矩形状の露光領域が、その短辺方向と前記感光層のうねり方向とがなす角が、その長辺方向と前記感光層のうねり方向とがなす角よりも小さくなるように向けられて行われることを特徴とするパターン形成方法。
After laminating the photosensitive layer in the pattern forming material having the photosensitive layer on the support on the substrate to be processed,
The light from the light irradiating means is received and modulated based on the pattern information. The light modulating means modulates the light from the light irradiating means, and the light modulated by the light modulating means And performing exposure by forming an image on an exposed surface of the photosensitive layer through an adjusting means,
In the exposure, light modulated by the light modulation means is imaged only in a substantially rectangular region including the center of the imaging means,
The substantially rectangular exposure region imaged on the exposed surface of the photosensitive layer has an angle formed by the short side direction and the waviness direction of the photosensitive layer, the long side direction and the waviness direction of the photosensitive layer. A pattern forming method characterized in that the pattern forming method is performed so as to be smaller than an angle formed by.
結像手段が、長辺の長さが短辺の長さの2倍以上の略矩形状の領域において、光変調手段により変調された光を結像する請求項1に記載のパターン形成方法。   The pattern forming method according to claim 1, wherein the image forming unit forms an image of light modulated by the light modulation unit in a substantially rectangular region whose long side is twice or more the length of the short side. 焦点調節手段が、光変調手段により変調された光の光軸方向の厚さが変化するように形成されたくさび型プリズムペアを有し、
前記くさび型プリズムペアを構成する各くさび型プリズムを移動することによって、前記光変調手段により変調された光を感光層の被露光面上に結像する際の焦点を調節する請求項1から2のいずれかに記載のパターン形成方法。
The focus adjustment means has a wedge-shaped prism pair formed so that the thickness in the optical axis direction of the light modulated by the light modulation means changes,
3. The focal point when the light modulated by the light modulating means is imaged on the exposed surface of a photosensitive layer is adjusted by moving each wedge-shaped prism constituting the wedge-shaped prism pair. The pattern formation method in any one of.
焦点調節手段が、結像光学系を構成する光学部材と、ピエゾ素子とを有し、
前記光学部材を前記ピエゾ素子により移動させることによって、前記光変調手段により変調された光を感光層の被露光面上に結像する際の焦点を調節する請求項1から2のいずれかに記載のパターン形成方法。
The focus adjusting means has an optical member constituting the imaging optical system and a piezo element,
3. The focal point when the light modulated by the light modulating unit is imaged on the exposed surface of the photosensitive layer is adjusted by moving the optical member by the piezo element. Pattern forming method.
結像手段が、光変調手段により変調された光の光軸に対し、前記光軸を中心に回転可能なレンズ、及び前記光軸に対して垂直方向に移動可能レンズのいずれかにより構成されてなる請求項1から4のいずれかに記載のパターン形成方法。   The imaging means is composed of either a lens that can rotate around the optical axis with respect to the optical axis of the light modulated by the light modulating means, or a lens that can move in a direction perpendicular to the optical axis. The pattern forming method according to any one of claims 1 to 4. 光変調手段が、空間光変調素子である請求項1から5のいずれかに記載のパターン形成方法。   6. The pattern forming method according to claim 1, wherein the light modulation means is a spatial light modulation element. 光照射手段が、半導体レーザ素子から発せられたレーザ光を出射する請求項1から6のいずれかに記載のパターン形成方法。   7. The pattern forming method according to claim 1, wherein the light irradiation means emits laser light emitted from the semiconductor laser element. 光照射手段が、半導体レーザ素子から発せられたレーザ光を一端から入射し、入射したレーザ光を他端から出射する光ファイバを複数本束ねたバンドル状のファイバ光源である請求項7に記載のパターン形成方法。   8. The bundle-shaped fiber light source according to claim 7, wherein the light irradiating means is a bundled fiber light source in which a plurality of optical fibers that enter the laser light emitted from the semiconductor laser element from one end and emit the incident laser light from the other end are bundled. Pattern forming method. 光照射手段が、2以上の光を合成して照射可能である請求項7から8のいずれかに記載のパターン形成方法。   The pattern forming method according to claim 7, wherein the light irradiation means can synthesize and irradiate two or more lights. 光照射手段が、複数のレーザと、マルチモード光ファイバと、該複数のレーザからそれぞれ照射されたレーザビームを平行光化して集光し、前記マルチモード光ファイバの入射端面に収束させる光源集光光学系とを有する請求項7から9のいずれかに記載のパターン形成方法。   The light irradiation means condenses the laser beams emitted from the plurality of lasers, the multimode optical fiber, and the lasers by collimating them, and converges them on the incident end face of the multimode optical fiber. The pattern forming method according to claim 7, further comprising an optical system. 露光が行われた後、感光層の現像を行う請求項1から10のいずれかに記載のパターン形成方法。   The pattern forming method according to claim 1, wherein the photosensitive layer is developed after the exposure. 現像が行われた後、永久パターンの形成を行う請求項1から11のいずれかに記載のパターン形成方法。   The pattern forming method according to claim 1, wherein a permanent pattern is formed after the development. 永久パターンが配線パターンであり、該永久パターンの形成がエッチング処理及びメッキ処理の少なくともいずれかにより行われる請求項12に記載のパターン形成方法。   The pattern formation method according to claim 12, wherein the permanent pattern is a wiring pattern, and the formation of the permanent pattern is performed by at least one of an etching process and a plating process. 感光層が、バインダーと、重合性化合物と、光重合開始剤とを含む請求項1から13のいずれかに記載のパターン形成方法。   The pattern formation method in any one of Claim 1 to 13 in which a photosensitive layer contains a binder, a polymeric compound, and a photoinitiator. バインダーが、酸性基を有する請求項14に記載のパターン形成方法。   The pattern forming method according to claim 14, wherein the binder has an acidic group. バインダーが、ビニル共重合体である請求項14から15のいずれかに記載のパターン形成方法。   The pattern forming method according to claim 14, wherein the binder is a vinyl copolymer. バインダーの酸価が、70〜250mgKOH/gである請求項14から16のいずれかに記載のパターン形成方法。   The pattern formation method according to any one of claims 14 to 16, wherein an acid value of the binder is 70 to 250 mgKOH / g. 重合性化合物が、ウレタン基及びアリール基の少なくともいずれかを有するモノマーを含む請求項14から17のいずれかに記載のパターン形成方法。   The pattern forming method according to claim 14, wherein the polymerizable compound contains a monomer having at least one of a urethane group and an aryl group. 光重合開始剤が、ハロゲン化炭化水素誘導体、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩及びメタロセン類から選択される少なくとも1種を含む請求項14から19のいずれかに記載のパターン形成方法。   The photopolymerization initiator includes at least one selected from halogenated hydrocarbon derivatives, hexaarylbiimidazoles, oxime derivatives, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, and metallocenes. 20. The pattern forming method according to any one of items 19 to 19. 感光層が、バインダーを10〜90質量%含有し、重合性化合物を5〜90質量%含有する請求項1から19のいずれかに記載のパターン形成方法。   The pattern formation method according to any one of claims 1 to 19, wherein the photosensitive layer contains 10 to 90% by mass of a binder and 5 to 90% by mass of a polymerizable compound. 感光層の厚みが、1〜100μmである請求項1から20のいずれかに記載のパターン形成方法。   The pattern forming method according to claim 1, wherein the photosensitive layer has a thickness of 1 to 100 μm. 支持体が、合成樹脂を含み、かつ透明である請求項1から21のいずれかに記載のパターン形成方法。   The pattern forming method according to claim 1, wherein the support includes a synthetic resin and is transparent. 支持体が、長尺状である請求項1から22のいずれかに記載のパターン形成方法。   The pattern forming method according to claim 1, wherein the support has an elongated shape. パターン形成材料が、長尺状であり、ロール状に巻かれてなる請求項1から23のいずれかに記載のパターン形成方法。   The pattern forming method according to any one of claims 1 to 23, wherein the pattern forming material is elongated and wound into a roll. パターン形成材料における感光層上に保護フィルムを形成する請求項1から24のいずれかに記載のパターン形成方法。
The pattern forming method according to claim 1, wherein a protective film is formed on the photosensitive layer in the pattern forming material.
JP2005199452A 2005-07-07 2005-07-07 Pattern forming method Pending JP2007017721A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005199452A JP2007017721A (en) 2005-07-07 2005-07-07 Pattern forming method
PCT/JP2006/312115 WO2007007513A1 (en) 2005-07-07 2006-06-16 Pattern forming method
CNA2006800248299A CN101218546A (en) 2005-07-07 2006-06-16 Pattern forming method
KR1020077029716A KR20080026548A (en) 2005-07-07 2006-06-16 Pattern forming method
TW095124573A TW200712789A (en) 2005-07-07 2006-07-06 Process for forming pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005199452A JP2007017721A (en) 2005-07-07 2005-07-07 Pattern forming method

Publications (1)

Publication Number Publication Date
JP2007017721A true JP2007017721A (en) 2007-01-25

Family

ID=37636911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005199452A Pending JP2007017721A (en) 2005-07-07 2005-07-07 Pattern forming method

Country Status (5)

Country Link
JP (1) JP2007017721A (en)
KR (1) KR20080026548A (en)
CN (1) CN101218546A (en)
TW (1) TW200712789A (en)
WO (1) WO2007007513A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022220211A1 (en) * 2021-04-14 2022-10-20 株式会社Screenホールディングス Drawing device and drawing method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101923179B (en) * 2009-11-06 2013-04-24 中国科学院空间科学与应用研究中心 All-sky atmosphere gravitational wave imager
CN101706588B (en) * 2009-11-10 2013-04-24 中国科学院空间科学与应用研究中心 All-sky atmospheric gravity wave imaging instrument adopting fish eye lens and telecentric beam path
TWI592748B (en) * 2013-12-26 2017-07-21 Asahi Kasei E-Materials Corp Photosensitive resin composition and photosensitive resin laminated body
CN106527057B (en) * 2016-12-30 2018-09-28 江苏九迪激光装备科技有限公司 A kind of laser direct writing method suitable for curved surface mobile phone glass

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036088A (en) * 1999-07-15 2001-02-09 Seiko Epson Corp Method for manufacturing thin-film transistor and electrooptical device
JP2004335692A (en) * 2003-05-07 2004-11-25 Fuji Photo Film Co Ltd Projection aligner
JP2004342633A (en) * 2003-05-13 2004-12-02 Nikon Corp Aligner, lighting device, and aligning method
JP2005032909A (en) * 2003-07-10 2005-02-03 Fuji Photo Film Co Ltd Lighting optical system and aligner using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036088A (en) * 1999-07-15 2001-02-09 Seiko Epson Corp Method for manufacturing thin-film transistor and electrooptical device
JP2004335692A (en) * 2003-05-07 2004-11-25 Fuji Photo Film Co Ltd Projection aligner
JP2004342633A (en) * 2003-05-13 2004-12-02 Nikon Corp Aligner, lighting device, and aligning method
JP2005032909A (en) * 2003-07-10 2005-02-03 Fuji Photo Film Co Ltd Lighting optical system and aligner using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022220211A1 (en) * 2021-04-14 2022-10-20 株式会社Screenホールディングス Drawing device and drawing method

Also Published As

Publication number Publication date
KR20080026548A (en) 2008-03-25
WO2007007513A1 (en) 2007-01-18
CN101218546A (en) 2008-07-09
TW200712789A (en) 2007-04-01

Similar Documents

Publication Publication Date Title
JP2006011371A (en) Pattern forming method
JP2007078892A (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2006220863A (en) Pattern formation material, pattern formation apparatus and pattern formation method
JP2007025394A (en) Pattern forming method
JP2006243546A (en) Pattern forming material, pattern forming apparatus, and pattern forming method
JP2005258431A (en) Pattern forming process
JP2007017721A (en) Pattern forming method
JP2006184840A (en) Pattern forming material, and apparatus and method for forming pattern
JP2006251562A (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2006154622A (en) Pattern forming material and pattern forming method
JP2006284842A (en) Pattern forming method
JP4500657B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2005249970A (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP4485239B2 (en) Pattern formation method
JP4422562B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2007025398A (en) Pattern forming method
JP4520879B2 (en) Pattern forming material, pattern forming apparatus, and pattern forming method
JP5476341B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2006208734A (en) Pattern forming method
JP4549891B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2007003661A (en) Pattern forming method
JP2006171019A (en) Method for producing pattern forming material, and pattern forming material
JP2007171610A (en) Pattern forming method
JP2007079474A (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2007017722A (en) Pattern forming method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100518