JP4520879B2 - Pattern forming material, pattern forming apparatus, and pattern forming method - Google Patents

Pattern forming material, pattern forming apparatus, and pattern forming method Download PDF

Info

Publication number
JP4520879B2
JP4520879B2 JP2005039858A JP2005039858A JP4520879B2 JP 4520879 B2 JP4520879 B2 JP 4520879B2 JP 2005039858 A JP2005039858 A JP 2005039858A JP 2005039858 A JP2005039858 A JP 2005039858A JP 4520879 B2 JP4520879 B2 JP 4520879B2
Authority
JP
Japan
Prior art keywords
pattern forming
group
light
meth
forming material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005039858A
Other languages
Japanese (ja)
Other versions
JP2006227221A (en
Inventor
耕作 吉村
守正 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2005039858A priority Critical patent/JP4520879B2/en
Publication of JP2006227221A publication Critical patent/JP2006227221A/en
Application granted granted Critical
Publication of JP4520879B2 publication Critical patent/JP4520879B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Photolithography (AREA)
  • Polymerisation Methods In General (AREA)

Description

本発明は、ドライ・フィルム・レジスト(DFR)等に好適なパターン形成材料、並びに該パターン形成材料を備えたパターン形成装置及び前記パターン形成材料を用いたパターン形成方法に関する。   The present invention relates to a pattern forming material suitable for dry film resist (DFR) or the like, a pattern forming apparatus provided with the pattern forming material, and a pattern forming method using the pattern forming material.

配線パターンなどの永久パターンを形成するに際して、支持体上にパターン形成用樹脂組成物を塗布、乾燥することにより感光層を形成させたパターン形成材料が用いられている。前記永久パターンの製造方法としては、例えば、前記永久パターンが形成される銅張積層板等の基体上に、前記パターン形成材料を積層させて積層体を形成し、該積層体における前記感光層に対して露光を行い、該露光後、前記感光層を現像してパターンを形成させ、その後エッチング処理等を行うことにより前記永久パターンが形成される。   When forming a permanent pattern such as a wiring pattern, a pattern forming material is used in which a photosensitive layer is formed by applying and drying a resin composition for pattern formation on a support. As the method for producing the permanent pattern, for example, a laminate is formed by laminating the pattern forming material on a substrate such as a copper clad laminate on which the permanent pattern is formed, and the photosensitive layer in the laminate is formed on the photosensitive layer. The permanent pattern is formed by exposing to light, developing the photosensitive layer after the exposure to form a pattern, and then performing an etching process or the like.

一方、アルカリ性のフォトレジスト組成物に関する技術において、基板との接着性を強化し、現像残渣がなく、かつ現像後に剥離性が良好なバインダー、光重合開始剤、少なくとも2個のエチレン性不飽和二重結合を含む光反応性単量体またはオリゴマー、及び下記式で表され、Xにカルボキシル基を有するフォトレジスト組成物が提案されている(特許文献1参照)。
On the other hand, in the technology relating to an alkaline photoresist composition, a binder, a photopolymerization initiator, and at least two ethylenically unsaturated dicarboxylic acids that enhance adhesion to a substrate, have no development residue, and have good peelability after development. A photoreactive monomer or oligomer containing a heavy bond and a photoresist composition represented by the following formula and having a carboxyl group at X have been proposed (see Patent Document 1).

しかし、該フォトレジスト組成物においても、感度や解像性を向上させることに関しては何ら考慮されていない。したがって、上述の永久パターンのように、高精細な配線パターン等の形成が要求される材料にも使用されるパターン形成材料としては、適用し難いものであった。   However, even in the photoresist composition, no consideration is given to improving sensitivity and resolution. Therefore, it is difficult to apply as a pattern forming material used for a material that requires formation of a high-definition wiring pattern or the like like the permanent pattern described above.

よって、プリント配線形成用基板等の基体との密着性に優れ、支持体からの剥離性が良好であるのみならず、感度及び解像度が良好で、高精細なパターンを形成可能なパターン形成材料、並びに該パターン形成材料を備えたパターン形成装置及び前記パターン形成材料を用いたパターン形成方法は未だ提供されておらず、更なる改良開発が望まれているのが現状である。   Therefore, it is excellent in adhesion with a substrate such as a printed wiring board and the like, not only has good peelability from the support, but also has good sensitivity and resolution, and can form a high-definition pattern, In addition, a pattern forming apparatus provided with the pattern forming material and a pattern forming method using the pattern forming material have not been provided yet, and further improvement and development are desired at present.

特開平3−134669号公報JP-A-3-134669

本発明は、かかる現状に鑑みてなされたものであり、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、プリント配線形成用基板等の基体との密着性に優れ、支持体からの剥離性が良好であるのみならず、感度及び解像度が良好で、高精細なパターンを形成可能なパターン形成材料、並びに該パターン形成材料を備えたパターン形成装置及び前記パターン形成材料を用いたパターン形成方法を提供することを目的とする。   This invention is made | formed in view of this present condition, and makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, the present invention is excellent not only in adhesion to a substrate such as a printed wiring board, but also has good releasability from the support, and can form a high-definition pattern with good sensitivity and resolution. It is an object of the present invention to provide a pattern forming material, a pattern forming apparatus including the pattern forming material, and a pattern forming method using the pattern forming material.

前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 支持体上に感光層を少なくとも有し、該感光層が、分子内に連鎖移動可能な官能基と親水性官能基とを有する化合物、バインダー、重合性化合物、及び、光重合開始剤を含み、かつ、該感光層を露光し現像する場合において、該感光層の露光する部分の厚みを該現像の前後において変化させない前記露光に用いる光の最小エネルギーが、0.1〜15mJ/cmであることを特徴とするパターン形成材料である。
該<1>に記載のパターン形成材料においては、前記感光層は、分子内に連鎖移動可能な官能基と親水性官能基とを有する化合物、バインダー、重合性化合物、及び、光重合開始剤を含むため、前記感光層を露光し現像する場合において、該感光層の露光する部分の厚みを該現像の前後において変化させない前記光の最小エネルギーが、所定の範囲となる。この結果、例えば、その後、前記感光層を現像することにより、高精細なパターンが形成される。
<2> 親水性官能基が、酸性基である前記<1>に記載のパターン形成材料である。
<3> 親水性官能基が、カルボキシル基である前記<1>から<2>のいずれかに記載のパターン形成材料である。
<4> 連鎖移動可能な官能基が、メルカプト基である前記<1>から<3>のいずれかに記載のパターン形成材料である。
<5> 連鎖移動可能な官能基が、2個以上である前記<1>から<4>のいずれかに記載のパターン形成材料である。
<6> 光重合開始剤が、ビイミダゾール化合物である前記<1>から<5>のいずれかに記載のパターン形成材料である。
<7> 光重合開始剤が、2,2−ビス(o−クロロフェニル)−4,4’、5,5’−テトラフェニルビイミダゾールを含む前記<1>から<6>のいずれかに記載のパターン形成材料である。
<8> 感光層が、380〜420nmの波長域に分光感度の最大値を有する前記<1>から<7>のいずれかに記載のパターン形成材料である。
<9> 感光層が、光照射手段からの光を受光し出射する描素部をn個有する光変調手段により、前記光照射手段からの光を変調させた後、前記描素部における出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズを配列したマイクロレンズアレイを通した光で、露光される前記<1>から<8>のいずれかに記載のパターン形成材料である。
<10> 感光層が、増感剤を含む前記<1>から<9>のいずれかに記載のパターン形成材料である。
<11> 増感剤の極大吸収波長が、380〜450nmである前記<10>に記載のパターン形成材料である。
<12> 増感剤が、縮環系化合物である前記<10>から<11>のいずれかに記載のパターン形成材料である。
<13> 増感剤が、アクリドン類、アクリジン類、及びクマリン類から選択される少なくとも1種である前記<10>から<12>のいずれかに記載のパターン形成材料である。
<14> バインダーが、酸性基を有する前記<1>から<13>のいずれかに記載のパターン形成材料である。
<15> バインダーがビニル共重合体を含む前記<1>から<14>のいずれかに記載のパターン形成材料である。
<16> バインダーが、スチレン及びスチレン誘導体の少なくともいずれかの共重合体を含む前記<1>から<15>のいずれかに記載のパターン形成材料である。
<17> バインダーの酸価が、70〜250mgKOH/gである前記<1>から<16>のいずれかに記載のパターン形成材料である。
<18> 重合性化合物が、ウレタン基及びアリール基の少なくともいずれかを有するモノマーを含む前記<1>から<17>のいずれかに記載のパターン形成材料である。
<19> 重合性化合物が、ビスフェノール骨格を有する前記<1>から<18>のいずれかに記載のパターン形成材料である。
Means for solving the problems are as follows. That is,
<1> A compound having at least a photosensitive layer on a support, the photosensitive layer having a functional group capable of chain transfer and a hydrophilic functional group in the molecule, a binder, a polymerizable compound, and a photopolymerization initiator And the minimum energy of light used for the exposure in which the thickness of the exposed portion of the photosensitive layer is not changed before and after the development is 0.1 to 15 mJ / cm. 2 is a pattern forming material.
In the pattern forming material according to <1>, the photosensitive layer includes a compound having a functional group capable of chain transfer and a hydrophilic functional group in a molecule, a binder, a polymerizable compound, and a photopolymerization initiator. Therefore, when the photosensitive layer is exposed and developed, the minimum energy of the light that does not change the thickness of the exposed portion of the photosensitive layer before and after the development is within a predetermined range. As a result, for example, by developing the photosensitive layer thereafter, a high-definition pattern is formed.
<2> The pattern forming material according to <1>, wherein the hydrophilic functional group is an acidic group.
<3> The pattern forming material according to any one of <1> to <2>, wherein the hydrophilic functional group is a carboxyl group.
<4> The pattern forming material according to any one of <1> to <3>, wherein the functional group capable of chain transfer is a mercapto group.
<5> The pattern forming material according to any one of <1> to <4>, wherein the number of functional groups capable of chain transfer is two or more.
<6> The pattern forming material according to any one of <1> to <5>, wherein the photopolymerization initiator is a biimidazole compound.
<7> The photopolymerization initiator according to any one of <1> to <6>, wherein the photopolymerization initiator includes 2,2-bis (o-chlorophenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole. It is a pattern forming material.
<8> The pattern forming material according to any one of <1> to <7>, wherein the photosensitive layer has a maximum spectral sensitivity in a wavelength range of 380 to 420 nm.
<9> After the photosensitive layer modulates the light from the light irradiating means by the light modulating means having n picture elements for receiving and emitting the light from the light irradiating means, the emission surface in the picture element portion The pattern forming material according to any one of <1> to <8>, wherein the pattern forming material is exposed to light that has passed through a microlens array in which microlenses having aspherical surfaces capable of correcting aberrations due to distortion are arranged.
<10> The pattern forming material according to any one of <1> to <9>, wherein the photosensitive layer contains a sensitizer.
<11> The pattern forming material according to <10>, wherein the maximum absorption wavelength of the sensitizer is 380 to 450 nm.
<12> The pattern forming material according to any one of <10> to <11>, wherein the sensitizer is a condensed ring compound.
<13> The pattern forming material according to any one of <10> to <12>, wherein the sensitizer is at least one selected from acridones, acridines, and coumarins.
<14> The pattern forming material according to any one of <1> to <13>, wherein the binder has an acidic group.
<15> The pattern forming material according to any one of <1> to <14>, wherein the binder includes a vinyl copolymer.
<16> The pattern forming material according to any one of <1> to <15>, wherein the binder includes a copolymer of at least one of styrene and a styrene derivative.
<17> The pattern forming material according to any one of <1> to <16>, wherein the binder has an acid value of 70 to 250 mgKOH / g.
<18> The pattern forming material according to any one of <1> to <17>, wherein the polymerizable compound includes a monomer having at least one of a urethane group and an aryl group.
<19> The pattern forming material according to any one of <1> to <18>, wherein the polymerizable compound has a bisphenol skeleton.

<20> 感光層の厚みが1〜100μmである前記<1>から<19>のいずれかに記載のパターン形成材料である。
<21> 感光層が、少なくとも、バインダーを10〜90質量%含有し、重合性化合物を5〜90質量%含有する前記<1>から<20>のいずれかに記載のパターン形成材料である。
<20> The pattern forming material according to any one of <1> to <19>, wherein the photosensitive layer has a thickness of 1 to 100 μm.
<21> The pattern forming material according to any one of <1> to <20>, wherein the photosensitive layer contains at least 10 to 90% by mass of a binder and 5 to 90% by mass of a polymerizable compound.

<22> 支持体が、合成樹脂を含み、かつ透明である前記<1>から<21>のいずれかに記載のパターン形成材料である。
<23> 支持体が、長尺状である前記<1>から<22>のいずれかに記載のパターン形成材料である。
<24> パターン形成材料が、長尺状であり、ロール状に巻かれてなる前記<1>から<23>のいずれかに記載のパターン形成材料である。
<25> パターン形成材料における感光層上に保護フィルムを有する前記<1>から<24>のいずれかに記載のパターン形成材料である。
<22> The pattern forming material according to any one of <1> to <21>, wherein the support includes a synthetic resin and is transparent.
<23> The pattern forming material according to any one of <1> to <22>, wherein the support has a long shape.
<24> The pattern forming material according to any one of <1> to <23>, wherein the pattern forming material has a long shape and is wound in a roll shape.
<25> The pattern forming material according to any one of <1> to <24>, wherein the pattern forming material has a protective film on the photosensitive layer.

<26> 前記<1>から<25>のいずれかに記載のパターン形成材料を備えており、
光を照射可能な光照射手段と、該光照射手段からの光を変調し、前記パターン形成材料における感光層に対して露光を行う光変調手段とを少なくとも有することを特徴とするパターン形成装置である。
該<26>に記載のパターン形成装置においては、前記光照射手段が、前記光変調手段に向けて光を照射する。前記光変調手段が、前記光照射手段から受けた光を変調する。前記光変調手段により変調した光が前記感光層に対して露光させる。例えば、その後、前記感光層を現像すると、高精細なパターンが形成される。
<27> 光変調手段が、形成するパターン情報に基づいて制御信号を生成するパターン信号生成手段を更に有してなり、光照射手段から照射される光を該パターン信号生成手段が生成した制御信号に応じて変調させる前記<26>に記載のパターン形成装置である。
該<27>に記載のパターン形成装置においては、前記光変調手段が前記パターン信号生成手段を有することにより、前記光照射手段から照射される光が該パターン信号生成手段により生成した制御信号に応じて変調される。
<26> The pattern forming material according to any one of <1> to <25>,
A pattern forming apparatus comprising at least light irradiating means capable of irradiating light and light modulating means for modulating light from the light irradiating means and exposing the photosensitive layer in the pattern forming material. is there.
In the pattern forming apparatus according to <26>, the light irradiation unit irradiates light toward the light modulation unit. The light modulation unit modulates light received from the light irradiation unit. The light modulated by the light modulator is exposed to the photosensitive layer. For example, when the photosensitive layer is subsequently developed, a high-definition pattern is formed.
<27> The light modulation means further includes pattern signal generation means for generating a control signal based on the pattern information to be formed, and the control signal generated by the pattern signal generation means is emitted from the light irradiation means. It is a pattern formation apparatus as described in said <26> modulated according to.
In the pattern forming apparatus according to <27>, since the light modulation unit includes the pattern signal generation unit, the light emitted from the light irradiation unit corresponds to the control signal generated by the pattern signal generation unit. Modulated.

<28> 光変調手段が、n個の描素部を有してなり、該n個の描素部の中から連続的に配置された任意のn個未満の前記描素部を、形成するパターン情報に応じて制御可能である前記<26>から<27>のいずれかに記載のパターン形成装置である。
該<28>に記載のパターン形成装置においては、前記光変調手段におけるn個の描素部の中から連続的に配置された任意のn個未満の描素部をパターン情報に応じて制御することにより、前記光照射手段からの光が高速で変調される。
<29> 光変調手段が、空間光変調素子である前記<26>から<28>のいずれかに記載のパターン形成装置である。
<30> 空間光変調素子が、デジタル・マイクロミラー・デバイス(DMD)である前記<29>に記載のパターン形成装置である。
<31> 描素部が、マイクロミラーである前記<28>から<30>のいずれかに記載のパターン形成装置である。
<32> 光照射手段が、2以上の光を合成して照射可能である前記<26>から<31>のいずれかに記載のパターン形成装置である。
該<32>に記載のパターン形成装置においては、前記光照射手段が2以上の光を合成して照射可能であることにより、露光が焦点深度の深い露光光によって行われる。この結果、前記パターン形成材料への露光が極めて高精細に行われる。例えば、その後、前記感光層を現像すると、極めて高精細なパターンが形成される。
<33> 光照射手段が、複数のレーザと、マルチモード光ファイバと、該複数のレーザからそれぞれ照射されたレーザ光を集光して前記マルチモード光ファイバに結合させる集合光学系とを有する前記<26>から<32>のいずれかに記載のパターン形成装置である。
該<33>に記載のパターン形成装置においては、前記光照射手段が、前記複数のレーザからそれぞれ照射されたレーザ光が前記集合光学系により集光され、前記マルチモード光ファーバに結合可能であることにより、露光が焦点深度の深い露光光で行われる。この結果、前記パターン形成材料への露光が極めて高精細に行われる。例えば、その後、前記感光層を現像すると、極めて高精細なパターンが形成される。
<28> The light modulation means has n pixel parts, and forms any less than n pixel parts arranged continuously from the n pixel parts. The pattern forming apparatus according to any one of <26> to <27>, which can be controlled according to pattern information.
In the pattern forming apparatus according to <28>, an arbitrary less than n pixel portions arranged in succession among n pixel portions in the light modulation unit are controlled according to pattern information. Thereby, the light from the light irradiation means is modulated at high speed.
<29> The pattern forming apparatus according to any one of <26> to <28>, wherein the light modulation unit is a spatial light modulation element.
<30> The pattern forming apparatus according to <29>, wherein the spatial light modulation element is a digital micromirror device (DMD).
<31> The pattern forming apparatus according to any one of <28> to <30>, wherein the picture element portion is a micromirror.
<32> The pattern forming apparatus according to any one of <26> to <31>, wherein the light irradiation unit can synthesize and irradiate two or more lights.
In the pattern forming apparatus according to <32>, since the light irradiation unit can synthesize and irradiate two or more lights, exposure is performed with exposure light having a deep focal depth. As a result, the pattern forming material is exposed with extremely high definition. For example, when the photosensitive layer is subsequently developed, an extremely fine pattern is formed.
<33> The light irradiation means includes a plurality of lasers, a multimode optical fiber, and a collective optical system that condenses the laser light emitted from each of the plurality of lasers and couples the laser light to the multimode optical fiber. The pattern forming apparatus according to any one of <26> to <32>.
In the pattern forming apparatus according to <33>, the light irradiation unit can condense the laser beams irradiated from the plurality of lasers by the collective optical system and couple the laser beams to the multimode optical fiber. Thus, exposure is performed with exposure light having a deep focal depth. As a result, the pattern forming material is exposed with extremely high definition. For example, when the photosensitive layer is subsequently developed, an extremely fine pattern is formed.

<34> 前記<1>から<25>のいずれかに記載のパターン形成材料における該感光層に対し、露光を行うことを少なくとも含むことを特徴とするパターン形成方法である。
該<34>に記載のパターン形成方法においては、露光が前記パターン形成材料に対して行われる。例えば、その後、前記感光層を現像すると、高精細なパターンが形成される。
<35> 基体上にパターン形成材料を加熱及び加圧の少なくともいずれかを行いながら積層し、露光する前記<34>に記載のパターン形成方法である。
<36> 露光が、形成するパターン情報に基づいて像様に行われる前記<34>から<35>のいずれかに記載のパターン形成方法である。
<37> 露光が、形成するパターン情報に基づいて制御信号を生成し、該制御信号に応じて変調させた光を用いて行われる前記<34>から<36>のいずれかに記載のパターン形成方法である。
該<37>に記載のパターン形成方法においては、形成するパターン形成情報に基づいて制御信号が生成され、該制御信号に応じて光が変調される。
<38> 露光が、光を照射する光照射手段と、形成するパターン情報に基づいて前記光照射手段から照射される光を変調させる光変調手段とを用いて行われる前記<36>から<37>のいずれかに記載のパターン形成方法である。
<39> 露光が、光変調手段により光を変調させた後、前記光変調手段における描素部の出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズを配列したマイクロレンズアレイを通して行われる前記<38>に記載のパターン形成方法である。
該<39>に記載のパターン形成方法においては、前記光変調手段により変調した光が、前記マイクロレンズアレイにおける前記非球面を通ることにより、前記描素部における出射面の歪みによる収差が補正される。この結果、パターン形成材料上に結像させる像の歪みが抑制され、該パターン形成材料への露光が極めて高精細に行われる。例えば、その後、前記感光層を現像すると、極めて高精細なパターンが形成される。
<34> A pattern forming method comprising at least exposing the photosensitive layer in the pattern forming material according to any one of <1> to <25>.
In the pattern forming method according to <34>, exposure is performed on the pattern forming material. For example, when the photosensitive layer is subsequently developed, a high-definition pattern is formed.
<35> The pattern forming method according to <34>, wherein the pattern forming material is laminated on the substrate while being heated and pressurized and exposed.
<36> The pattern forming method according to any one of <34> to <35>, wherein the exposure is performed imagewise based on pattern information to be formed.
<37> The pattern formation according to any one of <34> to <36>, wherein the exposure is performed using a light generated by generating a control signal based on pattern information to be formed and modulated in accordance with the control signal Is the method.
In the pattern formation method according to <37>, a control signal is generated based on pattern formation information to be formed, and light is modulated in accordance with the control signal.
<38> From <36> to <37, wherein the exposure is performed using light irradiation means for irradiating light and light modulation means for modulating light emitted from the light irradiation means based on pattern information to be formed. > The pattern forming method according to any one of the above.
<39> Exposure is performed through a microlens array in which microlenses having aspherical surfaces capable of correcting aberrations due to distortion of the exit surface of the picture element portion in the light modulation means after the light is modulated by the light modulation means. The pattern forming method according to <38>.
In the pattern forming method according to <39>, the light modulated by the light modulation unit passes through the aspherical surface in the microlens array, so that the aberration due to the distortion of the emission surface in the pixel portion is corrected. The As a result, distortion of an image formed on the pattern forming material is suppressed, and exposure to the pattern forming material is performed with extremely high definition. For example, when the photosensitive layer is subsequently developed, an extremely fine pattern is formed.

<40> 非球面が、トーリック面である前記<39>に記載のパターン形成方法である。
該<40>に記載のパターン形成方法においては、前記非球面がトーリック面であることにより、前記描素部における放射面の歪みによる収差が効率よく補正され、パターン形成材料上に結像させる像の歪みが効率よく抑制される。この結果、前記パターン形成材料への露光が極めて高精細に行われる。例えば、その後、前記感光層を現像すると、極めて高精細なパターンが形成される。
<41> 露光が、アパーチャアレイを通して行われる前記<36>から<40>のいずれかに記載のパターン形成方法である。
該<41>に記載のパターン形成方法においては、露光が前記アパーチャアレイを通して行われることにより、消光比が向上する。この結果、露光が極めて高精細に行われる。例えば、その後、前記感光層を現像すると、極めて高精細なパターンが形成される。
<42> 露光が、露光光と感光層とを相対的に移動させながら行われる前記<36>から<41>のいずれかに記載のパターン形成方法である。
該<42>に記載のパターン形成方法においては、前記変調させた光と前記感光層とを相対的に移動させながら露光することにより、露光が高速に行われる。例えば、その後、前記感光層を現像すると、高精細なパターンが形成される。
<43> 露光が、感光層の一部の領域に対して行われる前記<36>から<42>のいずれかに記載のパターン形成方法である。
<40> The pattern forming method according to <39>, wherein the aspherical surface is a toric surface.
In the pattern forming method according to <40>, since the aspherical surface is a toric surface, aberration due to distortion of the radiation surface in the pixel portion is efficiently corrected, and an image formed on the pattern forming material is formed. Is efficiently suppressed. As a result, the pattern forming material is exposed with extremely high definition. For example, when the photosensitive layer is subsequently developed, an extremely fine pattern is formed.
<41> The pattern forming method according to any one of <36> to <40>, wherein the exposure is performed through an aperture array.
In the pattern forming method according to <41>, the extinction ratio is improved by performing exposure through the aperture array. As a result, the exposure is performed with extremely high definition. For example, when the photosensitive layer is subsequently developed, an extremely fine pattern is formed.
<42> The pattern forming method according to any one of <36> to <41>, wherein the exposure is performed while relatively moving the exposure light and the photosensitive layer.
In the pattern forming method according to <42>, the exposure is performed at a high speed by performing exposure while relatively moving the modulated light and the photosensitive layer. For example, when the photosensitive layer is subsequently developed, a high-definition pattern is formed.
<43> The pattern forming method according to any one of <36> to <42>, wherein the exposure is performed on a partial region of the photosensitive layer.

<44> 露光が行われた後、感光層の現像を行う前記<36>から<43>のいずれかに記載のパターン形成方法である。
該<44>に記載のパターン形成方法においては、前記露光が行われた後、前記感光層を現像することにより、高精細なパターンが形成される。
<45> 露光が行われた後、感光層の現像を行う前記<36>から<44>のいずれかに記載の永久パターン形成方法である。
該<45>に記載のパターン形成方法においては、前記露光が行われた後、前記感光層を現像することにより、高精細なパターンが形成される。
<46> 現像が行われた後、永久パターンの形成を行う前記<36>から<45>のいずれかに記載のパターン形成方法である。
<47> 永久パターンが、配線パターンであり、該永久パターンの形成がエッチング処理及びメッキ処理の少なくともいずれかにより行われる前記<46>に記載のパターン形成方法である。
<44> The pattern forming method according to any one of <36> to <43>, wherein the photosensitive layer is developed after the exposure.
In the pattern forming method according to <44>, a high-definition pattern is formed by developing the photosensitive layer after the exposure.
<45> The method for forming a permanent pattern according to any one of <36> to <44>, wherein the photosensitive layer is developed after the exposure.
In the pattern forming method according to <45>, a high-definition pattern is formed by developing the photosensitive layer after the exposure.
<46> The pattern forming method according to any one of <36> to <45>, wherein a permanent pattern is formed after development.
<47> The pattern forming method according to <46>, wherein the permanent pattern is a wiring pattern, and the formation of the permanent pattern is performed by at least one of an etching process and a plating process.

本発明によると、プリント配線形成用基板等の基体との密着性に優れ、支持体からの剥離性が良好であるのみならず、感度及び解像度が良好で、高精細なパターンを形成可能なパターン形成材料、並びに該パターン形成材料を備えたパターン形成装置及び前記パターン形成材料を用いたパターン形成方法を提供することができる。
本発明に言う高精細なパターンとは、意図した場所に意図した幅で断面矩形のパターンが得られることを示す。
According to the present invention, a pattern capable of forming a high-definition pattern not only with excellent adhesion to a substrate such as a printed wiring board, but also with good releasability from a support, as well as good sensitivity and resolution. There can be provided a forming material, a pattern forming apparatus provided with the pattern forming material, and a pattern forming method using the pattern forming material.
The high-definition pattern referred to in the present invention indicates that a pattern having a rectangular cross section can be obtained at an intended place and at an intended width.

(パターン形成材料)
本発明のパターン形成材料は、支持体上に感光層を少なくとも有し、必要に応じて適宜選択したその他の層を有していてもよい。
前記感光層は、分子内に連鎖移動可能な官能基と親水性官能基とを有する化合物、バインダー、重合性化合物、及び、光重合開始剤を含み、必要に応じて適宜選択した増感剤やその他の成分を含んでいてもよい。
(Pattern forming material)
The pattern forming material of the present invention has at least a photosensitive layer on a support, and may have other layers appropriately selected as necessary.
The photosensitive layer includes a compound having a functional group capable of chain transfer in the molecule and a hydrophilic functional group, a binder, a polymerizable compound, and a photopolymerization initiator, and a sensitizer appropriately selected as necessary. Other components may be included.

<感光層>
前記感光層を露光し現像する場合において、該感光層の露光する部分の厚みを該現像の前後において変化させない光の最小エネルギーとしては、0.1〜15mJ/cmであり、0.5〜10mJ/cmが好ましく、0.5〜8mJ/cmがより好ましく、1〜7mJ/cmが最も好ましい。
前記最小エネルギーが、0.1未満であると、処理工程にてカブリが発生することがあり、15を超えると、露光に必要な時間が長くなり、処理スピードが遅くなることがある。
<Photosensitive layer>
When the photosensitive layer is exposed and developed, the minimum energy of light that does not change the thickness of the exposed portion of the photosensitive layer before and after the development is 0.1 to 15 mJ / cm 2 , 0.5 to preferably 10 mJ / cm 2, more preferably 0.5~8mJ / cm 2, 1~7mJ / cm 2 being most preferred.
If the minimum energy is less than 0.1, fog may occur in the processing step, and if it exceeds 15, the time required for exposure may become long and the processing speed may be slow.

−分子内に連鎖移動可能な官能基と親水性官能基とを有する化合物−
前記分子内連鎖移動可能な官能基と親水性官能基とを有する化合物は、これらの官能基の他に、必要に応じてその他の官能基を含んでいてもよい。
-A compound having a functional group capable of chain transfer in the molecule and a hydrophilic functional group-
The compound having a functional group capable of intramolecular chain transfer and a hydrophilic functional group may contain other functional groups as necessary in addition to these functional groups.

−−連鎖移動可能な官能基−−
前記連鎖移動可能な官能基としては、特に制限はなく、目的に応じて適宜選択することができる。
前記連鎖移動可能な官能基とは、連鎖移動反応を容易に起こすことが可能な官能基を指す。ここで、連鎖移動反応とは、連鎖反応による重合で、成長種との反応で活性点が系に存在する物質に移り、そこから再び重合が開始される反応のことである。前記連鎖移動可能な官能基としては、上述のような作用を有する官能基であれば、特に制限はなく、例えば、アリル基やベンジル基等のアラルキル基、メルカプト基、活性メチレン基、メチン基、ジスルフィド基、スルフィド基などが挙げられる。
--Functional group capable of chain transfer--
The chain transferable functional group is not particularly limited and may be appropriately selected depending on the purpose.
The chain transferable functional group refers to a functional group that can easily cause a chain transfer reaction. Here, the chain transfer reaction is a polymerization by a chain reaction, and a reaction in which an active site is transferred to a substance existing in the system by a reaction with a growing species, and the polymerization is started again therefrom. The functional group capable of chain transfer is not particularly limited as long as it has a function as described above. For example, an aralkyl group such as an allyl group or a benzyl group, a mercapto group, an active methylene group, a methine group, Examples thereof include a disulfide group and a sulfide group.

前記連鎖移動可能な官能基の中でも、メルカプト基は反応性が高く好ましい。メルカプト基を連鎖移動可能な官能基として有することによって、より感度の高いパターン形成材料を得ることができる。   Among the functional groups capable of chain transfer, mercapto groups are preferred because of their high reactivity. By having a mercapto group as a functional group capable of chain transfer, a more sensitive pattern forming material can be obtained.

また、前記連鎖移動可能な官能基の数としては、特に制限はないが、2以上であることが好ましい。前記官能基が、2以上であることによって、さらに感度の高いパターン形成材料を得ることができる。   The number of functional groups capable of chain transfer is not particularly limited, but is preferably 2 or more. When the functional group is 2 or more, a pattern forming material with higher sensitivity can be obtained.

−−親水性官能基−−
前記親水性官能基としては、親水性を有する官能基であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、有機概念図(甲田善生著(三共出版 1984年))におけるI値が70以上の官能基が好ましく、100以上の官能基がより好ましく、120以上の官能基が最も好ましい。このI値は、値が大きいほど無機性が高いことを表す。I値の代表例として−NHCO−基では200、−NHCO−基では240、−COO−基では60となる。
--Hydrophilic functional group--
The hydrophilic functional group is not particularly limited as long as it is a functional group having hydrophilicity, and can be appropriately selected according to the purpose. For example, in the organic conceptual diagram (Yoshio Koda (Sankyo Publishing, 1984)) A functional group having an I value of 70 or more is preferred, a functional group of 100 or more is more preferred, and a functional group of 120 or more is most preferred. This I value represents that the larger the value, the higher the inorganic property. Representative examples of the I value are 200 for the —NHCO— group, 240 for the —NHCO 2 — group, and 60 for the —COO— group.

I値が70以上の親水性官能基としては、例えば、アミン、アンモニウム塩、−A、−AH、−SOH、−NH−SO―NH−、CO−NH−CO−NH−CO−、−S−OH、−CO−NH−CO−NH−、−SO−NH−、−CS−NH−、−CO−NH−CO−、X=N−OH、−NH−CO−NH−、X=N=NH−、−CO−NH−NH、−CO−NH−NH、−CONH−、>N−O、−COOH、ラクトン環、−CO−O−CO−、−OH、−NH−NH−、−O−CO−O−、−CSSH、−SCN、−COSH、−NCS、−NOなどが挙げられる。これらの中でも酸性基のものが好ましく、特に、−COOHは、剥離性の点で好ましい。 Examples of the hydrophilic functional group having an I value of 70 or more include amines, ammonium salts, -A S O 3 H 2 , -A S O 2 H, -SO 3 H, -NH-SO 2 -NH-, CO -NH-CO-NH-CO - , - S-OH, -CO-NH-CO-NH -, - SO 2 -NH -, - CS-NH -, - CO-NH-CO-, X = N- OH, -NH-CO-NH-, X = N = NH -, - CO-NH-NH 2, -CO-NH-NH 2, -CONH -,> N-O, -COOH, lactone ring, -CO —O—CO—, —OH, —NH—NH—, —O—CO—O—, —CSSH, —SCN, —COSH, —NCS, —NO 2 and the like can be mentioned. Among these, those having an acidic group are preferable, and in particular, —COOH is preferable in terms of peelability.

−−その他の官能基−−
前記その他の官能基としては、例えば、−C(=O)−、−COOR、−C(=NH)−、−O−O−、−N=N−、−O−、−CN、−NO、−NC、−Br、−CL、−Fなどが挙げられる。
-Other functional groups-
Examples of the other functional groups include -C (= O)-, -COOR, -C (= NH)-, -O-O-, -N = N-, -O-, -CN, and -NO. , -NC, -Br, -CL, -F and the like.

−製造方法−
前記分子内に連鎖移動可能な官能基と親水性官能基とを有する化合物としては、特に制限はなく、連鎖移動可能な官能基を有する化合物と、親水性官能基を有する化合物とを、適宜反応させて製造することができる。
例えば、前記連鎖移動可能な官能基を2個以上有する化合物と、親水性官能基とビニル基とを有する化合物とを、エタノールに溶解し、両者を窒素雰囲気下で70℃に加熱した後、2,2−アゾビス(2,4−ジメチルバレロニル)0.20質量部を加え、窒素雰囲気下、70℃で3時間反応させることにより製造することができる。
-Manufacturing method-
The compound having a functional group capable of chain transfer and a hydrophilic functional group in the molecule is not particularly limited, and a compound having a functional group capable of chain transfer and a compound having a hydrophilic functional group are appropriately reacted. Can be manufactured.
For example, a compound having two or more functional groups capable of chain transfer and a compound having a hydrophilic functional group and a vinyl group are dissolved in ethanol and heated to 70 ° C. in a nitrogen atmosphere. , 2-azobis (2,4-dimethylvaleronyl) 0.20 part by mass, and the reaction can be carried out at 70 ° C. for 3 hours in a nitrogen atmosphere.

連鎖移動可能な官能基を有する化合物としては、メルカプト基を有する化合物(例えば、下記一般式(1)又は一般式(2)で表される脂肪族メルカプタン、芳香族メルカプタン、メルカプト基を有する複素環から選ばれる1種以上の置換基を複数有する化合物等)が挙げられる。   As the compound having a chain transferable functional group, a compound having a mercapto group (for example, an aliphatic mercaptan represented by the following general formula (1) or general formula (2), an aromatic mercaptan, a heterocyclic ring having a mercapto group And a compound having a plurality of one or more substituents selected from:

ただし、一般式(1)中、Rは2価以上の有機連結基を表し、nは2以上の整数を表す。 However, in General Formula (1), R 1 represents a divalent or higher organic linking group, and n represents an integer of 2 or higher.

ただし、一般式(2)中、Rは2価以上の有機連結基を表し、Rは脂肪族基、芳香族基、複素環のいずれかを表し、nは2以上の整数を表す。 However, in General Formula (2), R 1 represents a divalent or higher valent organic linking group, R 2 represents any of an aliphatic group, an aromatic group, and a heterocyclic ring, and n represents an integer of 2 or greater.

前記メルカプト基を複数有する化合物は、前記一般式(1)及び前記一般式(2)において、R1又はR2の部分構造として、エステル結合又は脂肪族基を有していることが好ましい。   The compound having a plurality of mercapto groups preferably has an ester bond or an aliphatic group as a partial structure of R1 or R2 in the general formula (1) and the general formula (2).

前記メルカプト基を有する連鎖移動可能な化合物としては、特に制限はなく、種々の連鎖移動可能な化合物が使用でき、例えば、1分子中に2個のメルカプト基を有する連鎖移動化合物、1分子中に3個のメルカプト基を有する連鎖移動可能な化合物、1分子中に4個以上のメルカプト基を有する連鎖移動可能な化合物等が挙げられる。
前記1分子中に2個のメルカプト基を有する化合物としては、例えば、1,2−エタンジチオール、1,3−プロパンジチオール、1,4−ブタンジチオール、2,3−ブタンジチオール、1,5−ペンタンジチオール、1,6−ヘキサンジチオール、1,8−オクタンジチオール、1,9−ノナンジチオール、2,3−ジメルカプト−1−プロパノール、ジチオエリスリトール、2,3−ジメルカプトサクシン酸、1,2−ベンゼンジチオール、1,2−ベンゼンジメタンチオール、1,3−ベンゼンジチオール、1,3−ベンゼンジメタンチオール、1,4−ベンゼンジメタンチオール、3,4−ジメルカプトトルエン、4−クロロ−1,3−ベンゼンジチオール、2,4,6−トリメチル−1,3−ベンゼンジメタンチオール、4,4’−チオジフェノール、2−ヘキシルアミノ−4,6−ジメルカプト−1,3,5−トリアジン、2−ジエチルアミノ−4,6−ジメルカプト−1,3,5−トリアジン、2−シクロヘキシルアミノ−4,6−ジメルカプト−1,3,5−トリアジン、2−ジ−n−ブチルアミノ−4,6−ジメルカプト−1,3,5−トリアジン、エチレングリコールビス(3−メルカプトプロピオネート)、ブタンジオールビスメルカプトアセテート、エチレングリコールビスメルカプトアセテート、2,5−ジメルカプト−1,3,4−チアジアゾール、2,2’−(エチレンジチオ)ジエタンチオール、2,2−ビス(2−ヒドロキシ−3−メルカプトプロポキシフェニルプロパン)、下記構造式(1)〜(4)で表される化合物、などが挙げられる。
前記1分子中に3個のメルカプト基を有する化合物としては、例えば、1,2,6−ヘキサントリオールトリチオグリコレート、1,3,5−トリチオシアヌル酸、2,4,6−トリメルカプト−1,3,5−トリアジン、トリメチロールプロパントリス(3−メルカプトプロピオネート)、トリメチロールプロパントリスメルカプトアセテート、などが挙げられる。
前記1分子中に4個のメルカプト基を有する化合物としては、例えば、ペンタエリトリトールテトラキス(3−メルカプトプロピオネート)、ペンタエリトリトールテトラキスメルカプトアセテート、ジペンタエリトリトールヘキサキス(3−メルカプトプロピオネート)、ジペンタエリトリトールヘキサキスメルカプトアセテート、などが挙げられる。
The chain transferable compound having a mercapto group is not particularly limited, and various chain transferable compounds can be used. For example, a chain transfer compound having two mercapto groups in one molecule can be used in one molecule. Examples include compounds capable of chain transfer having three mercapto groups, compounds capable of chain transfer having four or more mercapto groups in one molecule, and the like.
Examples of the compound having two mercapto groups in one molecule include 1,2-ethanedithiol, 1,3-propanedithiol, 1,4-butanedithiol, 2,3-butanedithiol, 1,5- Pentanedithiol, 1,6-hexanedithiol, 1,8-octanedithiol, 1,9-nonanedithiol, 2,3-dimercapto-1-propanol, dithioerythritol, 2,3-dimercaptosuccinic acid, 1,2- Benzenedithiol, 1,2-benzenedimethanethiol, 1,3-benzenedithiol, 1,3-benzenedimethanethiol, 1,4-benzenedimethanethiol, 3,4-dimercaptotoluene, 4-chloro-1 , 3-benzenedithiol, 2,4,6-trimethyl-1,3-benzenedimethanethiol, 4,4 ′ -Thiodiphenol, 2-hexylamino-4,6-dimercapto-1,3,5-triazine, 2-diethylamino-4,6-dimercapto-1,3,5-triazine, 2-cyclohexylamino-4,6 Dimercapto-1,3,5-triazine, 2-di-n-butylamino-4,6-dimercapto-1,3,5-triazine, ethylene glycol bis (3-mercaptopropionate), butanediol bismercapto Acetate, ethylene glycol bismercaptoacetate, 2,5-dimercapto-1,3,4-thiadiazole, 2,2 '-(ethylenedithio) diethanethiol, 2,2-bis (2-hydroxy-3-mercaptopropoxyphenyl) Propane), compounds represented by the following structural formulas (1) to (4), and the like.
Examples of the compound having three mercapto groups in one molecule include 1,2,6-hexanetriol trithioglycolate, 1,3,5-trithiocyanuric acid, 2,4,6-trimercapto-1 , 3,5-triazine, trimethylolpropane tris (3-mercaptopropionate), trimethylolpropane trismercaptoacetate, and the like.
Examples of the compound having four mercapto groups in one molecule include pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakismercaptoacetate, dipentaerythritol hexakis (3-mercaptopropionate), And dipentaerythritol hexakis mercaptoacetate.

また、前記有機連結基はポリマー構造を有していてもよく、例えば、下記構造式(5)で表される化合物などが挙げられる。   Moreover, the said organic coupling group may have a polymer structure, for example, the compound etc. which are represented by following Structural formula (5) are mentioned.

ただし、l,m,nは整数であり、Zは任意の残基を示す。 However, l, m, and n are integers, and Z represents an arbitrary residue.

前記メルカプト基を有する化合物の中でも、多価アルコールとメルカプト基を有するカルボン酸とのエステルが好ましい。前記多価アルコールとメルカプト基を有するカルボン酸とのエステルとしては、特に制限はないが、例えば、ブタンジオールビスメルカプトアセテート、エチレングリコールビスメルカプトアセテート、トリメチロールプロパントリス(3−メルカプトプロピオネート)、トリメチロールプロパントリスメルカプトアセテート、ペンタエリトリトールテトラキス(3−メルカプトプロピオネート)、ペンタエリトリトールテトラキスメルカプトアセテート、ジペンタエリトリトールヘキサキス(3−メルカプトプロピオネート)、ジペンタエリトリトールヘキサキスメルカプトアセテート、などが挙げられる。   Among the compounds having a mercapto group, an ester of a polyhydric alcohol and a carboxylic acid having a mercapto group is preferable. The ester of the polyhydric alcohol and the carboxylic acid having a mercapto group is not particularly limited. For example, butanediol bismercaptoacetate, ethylene glycol bismercaptoacetate, trimethylolpropane tris (3-mercaptopropionate), Trimethylolpropane trismercaptoacetate, pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakismercaptoacetate, dipentaerythritol hexakis (3-mercaptopropionate), dipentaerythritol hexakismercaptoacetate, etc. It is done.

また、前記多価アルコールとしては、グルコース、フルクトース等の糖類、ポリビニルアルコール、ポリビニルブチラール等の水酸基を有するポリマー、などを用いることができる。   Examples of the polyhydric alcohol include sugars such as glucose and fructose, and polymers having a hydroxyl group such as polyvinyl alcohol and polyvinyl butyral.

なお、前記列挙したメルカプト基を有する化合物は、いずれも該メルカプト基を2個以上有するため、連鎖移動可能な官能基を2個以上有している。   In addition, since all the compounds having the mercapto group listed above have two or more mercapto groups, they have two or more functional groups capable of chain transfer.

前記親水性官能基とビニル基を有する化合物としては、例えば、カルボキシル基とビニル基とを有する化合物、スルホン酸とビニル基とを有する化合物、アミド基とビニル基とを有する化合物、などが挙げられる。
前記カルボキシル基とビニル基とを有する化合物としては、例えば、マレイン酸、イタコン酸、メタクリル酸、などが挙げられる。
前記スルホン酸とビニル基とを有する化合物としては、例えば、スチレンスルホン酸ナトリウム、などが挙げられる。
前記アミド基とビニル基とを有する化合物としては、例えば、アクリルアミド、などが挙げられる。
Examples of the compound having a hydrophilic functional group and a vinyl group include a compound having a carboxyl group and a vinyl group, a compound having a sulfonic acid and a vinyl group, and a compound having an amide group and a vinyl group. .
Examples of the compound having a carboxyl group and a vinyl group include maleic acid, itaconic acid, methacrylic acid, and the like.
Examples of the compound having a sulfonic acid and a vinyl group include sodium styrenesulfonate.
Examples of the compound having an amide group and a vinyl group include acrylamide.

また、前記親水性官能基を有する化合物は、リン酸化合物であってもよく、例えば、下記構造式で表される化合物などが挙げられる。
Further, the compound having a hydrophilic functional group may be a phosphate compound, and examples thereof include compounds represented by the following structural formulas.

−−化合物例−−
前記分子内に連鎖移動可能な官能基と親水性官能基とを有する化合物としては、特に制限は無く、適宜選択することができ、具体的な化合物例としては、例えば、下記の各構造式で表される化合物などが挙げられる。
--Example compounds--
The compound having a functional group capable of chain transfer in the molecule and a hydrophilic functional group is not particularly limited and may be appropriately selected. Specific examples of the compound include, for example, the following structural formulas: And the like.

前記分子内に連鎖移動可能な官能基と親水性官能基とを有する化合物の含有量としては、パターン形成材料の固形分を100質量%とすると、0.05〜5質量%が好ましく、0.1〜2質量%がさらに好ましい。
前記分子内に連鎖移動可能な官能基と親水性官能基とを有する化合物の含有量が、0.05質量%未満であると、剥離性の改良効果が得られないことがあり、5質量%を超えると、現像残渣が生じてエッチング不良を引き起こしたり、レジスト形状の悪化を引き起こすことがある。
The content of the compound having a functional group capable of chain transfer and a hydrophilic functional group in the molecule is preferably 0.05 to 5% by mass, assuming that the solid content of the pattern forming material is 100% by mass. 1-2 mass% is still more preferable.
If the content of the compound having a functional group capable of chain transfer in the molecule and a hydrophilic functional group is less than 0.05% by mass, the effect of improving the peelability may not be obtained, and 5% by mass. If it exceeds 1, development residue may occur, which may cause etching failure or deterioration of the resist shape.

−バインダー−
前記バインダーとしては、例えば、アルカリ性液に対して膨潤性であることが好ましく、アルカリ性液に対して可溶性であることがより好ましい。
アルカリ性液に対して膨潤性又は溶解性を示すバインダーとしては、例えば、酸性基を有するものが好適に挙げられる。
-Binder-
The binder is preferably, for example, swellable with an alkaline liquid, and more preferably soluble in an alkaline liquid.
As the binder exhibiting swellability or solubility with respect to the alkaline liquid, for example, those having an acidic group are preferably mentioned.

前記酸性基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、カルボキシル基、スルホン酸基、リン酸基などが挙げられ、これらの中でもカルボキシル基が好ましい。
前記カルボキシル基を有するバインダーとしては、例えば、カルボキシル基を有するビニル共重合体、ポリウレタン樹脂、ポリアミド酸樹脂、変性エポキシ樹脂などが挙げられ、これらの中でも、塗布溶媒への溶解性、アルカリ現像液への溶解性、合成適性、膜物性の調整の容易さ等の観点からカルボキシル基を有するビニル共重合体が好ましい。また、現像性の観点から、スチレン及びスチレン誘導体の少なくともいずれかの共重合体も好ましい。
There is no restriction | limiting in particular as said acidic group, According to the objective, it can select suitably, For example, a carboxyl group, a sulfonic acid group, a phosphoric acid group etc. are mentioned, Among these, a carboxyl group is preferable.
Examples of the binder having a carboxyl group include a vinyl copolymer having a carboxyl group, a polyurethane resin, a polyamic acid resin, a modified epoxy resin, and the like. Among these, solubility in a coating solvent, alkaline developer A vinyl copolymer having a carboxyl group is preferred from the standpoints of solubility, synthesis suitability, ease of adjustment of film properties, and the like. From the viewpoint of developability, a copolymer of at least one of styrene and a styrene derivative is also preferable.

前記カルボキシル基を有するビニル共重合体は、少なくとも(1)カルボキシル基を有するビニルモノマー、及び(2)これらと共重合可能なモノマーとの共重合により得ることができる。   The vinyl copolymer having a carboxyl group can be obtained by copolymerization of at least (1) a vinyl monomer having a carboxyl group, and (2) a monomer copolymerizable therewith.

前記カルボキシル基を有するビニルモノマーとしては、例えば、(メタ)アクリル酸、ビニル安息香酸、マレイン酸、マレイン酸モノアルキルエステル、フマル酸、イタコン酸、クロトン酸、桂皮酸、アクリル酸ダイマー、水酸基を有する単量体(例えば、2−ヒドロキシエチル(メタ)アクリレート等)と環状無水物(例えば、無水マレイン酸や無水フタル酸、シクロヘキサンジカルボン酸無水物)との付加反応物、ω−カルボキシ−ポリカプロラクトンモノ(メタ)アクリレートなどが挙げられる。これらの中でも、共重合性やコスト、溶解性などの観点から(メタ)アクリル酸が特に好ましい。
また、カルボキシル基の前駆体として無水マレイン酸、無水イタコン酸、無水シトラコン酸等の無水物を有するモノマーを用いてもよい。
Examples of the vinyl monomer having a carboxyl group include (meth) acrylic acid, vinyl benzoic acid, maleic acid, maleic acid monoalkyl ester, fumaric acid, itaconic acid, crotonic acid, cinnamic acid, acrylic acid dimer, and hydroxyl group. An addition reaction product of a monomer (for example, 2-hydroxyethyl (meth) acrylate) and a cyclic anhydride (for example, maleic anhydride, phthalic anhydride, cyclohexanedicarboxylic anhydride), ω-carboxy-polycaprolactone mono Examples include (meth) acrylate. Among these, (meth) acrylic acid is particularly preferable from the viewpoints of copolymerizability, cost, solubility, and the like.
Moreover, you may use the monomer which has anhydrides, such as maleic anhydride, itaconic anhydride, and citraconic anhydride, as a precursor of a carboxyl group.

前記その他の共重合可能なモノマーとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、(メタ)アクリル酸エステル類、クロトン酸エステル類、ビニルエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、イタコン酸ジエステル類、(メタ)アクリルアミド類、ビニルエーテル類、ビニルアルコールのエステル類、スチレン類(例えば、スチレン、スチレン誘導体等)、(メタ)アクリロニトリル、ビニル基が置換した複素環式基(例えば、ビニルピリジン、ビニルピロリドン、ビニルカルバゾール等)、N−ビニルホルムアミド、N−ビニルアセトアミド、N−ビニルイミダゾール、ビニルカプロラクトン、2−アクリルアミド−2−メチルプロパンスルホン酸、リン酸モノ(2―アクリロイルオキシエチルエステル)、リン酸モノ(1−メチル−2―アクリロイルオキシエチルエステル)、官能基(例えば、ウレタン基、ウレア基、スルホンアミド基、フェノール基、イミド基)を有するビニルモノマーなどが挙げられ、これらの中でもスチレン類が好ましい。   The other copolymerizable monomer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include (meth) acrylic acid esters, crotonic acid esters, vinyl esters, and maleic acid diesters. , Fumaric acid diesters, itaconic acid diesters, (meth) acrylamides, vinyl ethers, esters of vinyl alcohol, styrenes (eg styrene, styrene derivatives, etc.), (meth) acrylonitrile, complex substituted with vinyl groups Cyclic groups (for example, vinylpyridine, vinylpyrrolidone, vinylcarbazole, etc.), N-vinylformamide, N-vinylacetamide, N-vinylimidazole, vinylcaprolactone, 2-acrylamido-2-methylpropanesulfonic acid, monophosphate ( 2-Acryllo Ciethyl ester), phosphoric acid mono (1-methyl-2-acryloyloxyethyl ester), vinyl monomers having a functional group (for example, urethane group, urea group, sulfonamide group, phenol group, imide group) and the like. Of these, styrenes are preferred.

前記(メタ)アクリル酸エステル類としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert−ブチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、tert−ブチルシクロヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、tert−オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、アセトキシエチル(メタ)アクリレート、フェニル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−(2−メトキシエトキシ)エチル(メタ)アクリレート、3−フェノキシ−2−ヒドロキシプロピル(メタ)アクリレート、ベンジル(メタ)アクリレート、ジエチレングリコールモノメチルエーテル(メタ)アクリレート、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジエチレングリコールモノフェニルエーテル(メタ)アクリレート、トリエチレングリコールモノメチルエーテル(メタ)アクリレート、トリエチレングリコールモノエチルエーテル(メタ)アクリレート、ポリエチレングリコールモノメチルエーテル(メタ)アクリレート、ポリエチレングリコールモノエチルエーテル(メタ)アクリレート、β−フェノキシエトキシエチルアクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、トリフロロエチル(メタ)アクリレート、オクタフロロペンチル(メタ)アクリレート、パーフロロクチルエチル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、トリブロモフェニルオキシエチル(メタ)アクリレートなどが挙げられる。   Examples of the (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) ) Acrylate, tert-butyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, tert-butylcyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, tert-octyl (meth) acrylate, Dodecyl (meth) acrylate, octadecyl (meth) acrylate, acetoxyethyl (meth) acrylate, phenyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-methoxy ester (Meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2- (2-methoxyethoxy) ethyl (meth) acrylate, 3-phenoxy-2-hydroxypropyl (meth) acrylate, benzyl (meth) acrylate, diethylene glycol monomethyl Ether (meth) acrylate, diethylene glycol monoethyl ether (meth) acrylate, diethylene glycol monophenyl ether (meth) acrylate, triethylene glycol monomethyl ether (meth) acrylate, triethylene glycol monoethyl ether (meth) acrylate, polyethylene glycol monomethyl ether ( (Meth) acrylate, polyethylene glycol monoethyl ether (meth) acrylate, β-phenoxyethoxyethyl Acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, trifluoroethyl (meth) acrylate, octafluoropentyl (Meth) acrylate, perfluorooctylethyl (meth) acrylate, tribromophenyl (meth) acrylate, tribromophenyloxyethyl (meth) acrylate and the like can be mentioned.

前記クロトン酸エステル類としては、例えば、クロトン酸ブチル、クロトン酸ヘキシルなどが挙げられる。   Examples of the crotonic acid esters include butyl crotonic acid and hexyl crotonic acid.

前記ビニルエステル類としては、例えば、ビニルアセテート、ビニルプロピオネート、ビニルブチレート、ビニルメトキシアセテート、安息香酸ビニルなどが挙げられる。   Examples of the vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl methoxyacetate, vinyl benzoate, and the like.

前記マレイン酸ジエステル類としては、例えば、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジブチルなどが挙げられる。   Examples of the maleic acid diesters include dimethyl maleate, diethyl maleate, and dibutyl maleate.

前記フマル酸ジエステル類としては、例えば、フマル酸ジメチル、フマル酸ジエチル、フマル酸ジブチルなどが挙げられる。   Examples of the fumaric acid diesters include dimethyl fumarate, diethyl fumarate, dibutyl fumarate and the like.

前記イタコン酸ジエステル類としては、例えば、イタコン酸ジメチル、イタコン酸ジエチル、イタコン酸ジブチルなどが挙げられる。   Examples of the itaconic acid diesters include dimethyl itaconate, diethyl itaconate, and dibutyl itaconate.

前記(メタ)アクリルアミド類としては、例えば、(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−プロピル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N−n−ブチルアクリル(メタ)アクリルアミド、N−tert−ブチル(メタ)アクリルアミド、N−シクロヘキシル(メタ)アクリルアミド、N−(2−メトキシエチル)(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、N−フェニル(メタ)アクリルアミド、N−ベンジル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ジアセトンアクリルアミドなどが挙げられる。   Examples of the (meth) acrylamides include (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N- n-butylacryl (meth) acrylamide, N-tert-butyl (meth) acrylamide, N-cyclohexyl (meth) acrylamide, N- (2-methoxyethyl) (meth) acrylamide, N, N-dimethyl (meth) acrylamide, Examples thereof include N, N-diethyl (meth) acrylamide, N-phenyl (meth) acrylamide, N-benzyl (meth) acrylamide, (meth) acryloylmorpholine, diacetone acrylamide and the like.

前記スチレン類としては、例えば、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、ヒドロキシスチレン、メトキシスチレン、ブトキシスチレン、アセトキシスチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、クロロメチルスチレン、酸性物質により脱保護可能な基(例えば、tert−ブチルオキシカルボニル基等)で保護されたヒドロキシスチレン、ビニル安息香酸メチル、α−メチルスチレンなどが挙げられる。   Examples of the styrenes include styrene, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, isopropyl styrene, butyl styrene, hydroxy styrene, methoxy styrene, butoxy styrene, acetoxy styrene, chlorostyrene, dichlorostyrene, bromostyrene, chloro Examples include methylstyrene, hydroxystyrene protected with a group that can be deprotected by an acidic substance (for example, tert-butyloxycarbonyl group), methyl vinylbenzoate, α-methylstyrene, and the like.

前記ビニルエーテル類としては、例えば、メチルビニルエーテル、ブチルビニルエーテル、ヘキシルビニルエーテル、メトキシエチルビニルエーテルなどが挙げられる。   Examples of the vinyl ethers include methyl vinyl ether, butyl vinyl ether, hexyl vinyl ether, and methoxyethyl vinyl ether.

前記官能基を有するビニルモノマーの合成方法としては、例えば、イソシアナート基と水酸基又はアミノ基の付加反応が挙げられ、具体的には、イソシアナート基を有するモノマーと、水酸基を1個含有する化合物又は1級若しくは2級アミノ基を1個有する化合物との付加反応、水酸基を有するモノマー又は1級若しくは2級アミノ基を有するモノマーと、モノイソシアネートとの付加反応が挙げられる。   Examples of the method for synthesizing the vinyl monomer having a functional group include an addition reaction of an isocyanate group and a hydroxyl group or an amino group, specifically, a monomer having an isocyanate group and a compound containing one hydroxyl group. Alternatively, an addition reaction with a compound having one primary or secondary amino group, an addition reaction between a monomer having a hydroxyl group or a monomer having a primary or secondary amino group, and a monoisocyanate can be given.

前記イソシアナート基を有するモノマーとしては、例えば、下記構造式(6)〜(8)で表される化合物が挙げられる。   Examples of the monomer having an isocyanate group include compounds represented by the following structural formulas (6) to (8).

但し、前記構造式(6)〜(8)中、Rは水素原子又はメチル基を表す。 However, in the structural formulas (6) to (8), R 1 represents a hydrogen atom or a methyl group.

前記モノイソシアネートとしては、例えば、シクロヘキシルイソシアネート、n−ブチルイソシアネート、トレイルイソシアネート、ベンジルイソシアネート、フェニルイソシアネート等が挙げられる。   Examples of the monoisocyanate include cyclohexyl isocyanate, n-butyl isocyanate, trail isocyanate, benzyl isocyanate, and phenyl isocyanate.

前記水酸基を有するモノマーとしては、例えば、下記構造式(9)〜(17)で表される化合物が挙げられる。   Examples of the monomer having a hydroxyl group include compounds represented by the following structural formulas (9) to (17).

但し、前記構造式(9)〜(17)中、Rは水素原子又はメチル基を表し、nは1以上の整数を表す。 However, in the structural formulas (9) to (17), R 1 represents a hydrogen atom or a methyl group, and n represents an integer of 1 or more.

前記水酸基を1個含有する化合物としては、例えば、アルコール類(例えば、メタノール、エタノール、n−プロパノール、i―プロパノール、n−ブタノール、sec−ブタノール、tert−ブタノール、n−ヘキサノール、2−エチルヘキサノール、n−デカノール、n−ドデカノール、n−オクタデカノール、シクロペンタノール、シクロへキサノール、ベンジルアルコール、フェニルエチルアルコール等)、フェノール類(例えば、フェノール、クレゾール、ナフトール等)、更に置換基を含むものとして、フロロエタノール、トリフロロエタノール、メトキシエタノール、フェノキシエタノール、クロロフェノール、ジクロロフェノール、メトキシフェノール、アセトキシフェノール等が挙げられる。   Examples of the compound containing one hydroxyl group include alcohols (for example, methanol, ethanol, n-propanol, i-propanol, n-butanol, sec-butanol, tert-butanol, n-hexanol, 2-ethylhexanol). , N-decanol, n-dodecanol, n-octadecanol, cyclopentanol, cyclohexanol, benzyl alcohol, phenylethyl alcohol, etc.), phenols (eg, phenol, cresol, naphthol, etc.), and further containing substituents Examples thereof include fluoroethanol, trifluoroethanol, methoxyethanol, phenoxyethanol, chlorophenol, dichlorophenol, methoxyphenol, acetoxyphenol, and the like.

前記1級又は2級アミノ基を有するモノマーとしては、例えば、ビニルベンジルアミンなどが挙げられる。   Examples of the monomer having a primary or secondary amino group include vinylbenzylamine.

前記1級又は2級アミノ基を1個含有する化合物としては、例えば、アルキルアミン(メチルアミン、エチルアミン、n−プロピルアミン、i―プロピルアミン、n−ブチルアミン、sec−ブチルアミン、tert−ブチルアミン、ヘキシルアミン、2−エチルヘキシルアミン、デシルアミン、ドデシルアミン、オクタデシルアミン、ジメチルアミン、ジエチルアミン、ジブチルアミン、ジオクチルアミン)、環状アルキルアミン(シクロペンチルアミン、シクロへキシルアミン等)、アラルキルアミン(ベンジルアミン、フェネチルアミン等)、アリールアミン(アニリン、トルイルアミン、キシリルアミン、ナフチルアミン等)、更にこれらの組合せ(N−メチル−N−ベンジルアミン等)、更に置換基を含むアミン(トリフロロエチルアミン、ヘキサフロロイソプロピルアミン、メトキシアニリン、メトキシプロピルアミン等)などが挙げられる。   Examples of the compound containing one primary or secondary amino group include alkylamines (methylamine, ethylamine, n-propylamine, i-propylamine, n-butylamine, sec-butylamine, tert-butylamine, hexyl). Amine, 2-ethylhexylamine, decylamine, dodecylamine, octadecylamine, dimethylamine, diethylamine, dibutylamine, dioctylamine), cyclic alkylamine (cyclopentylamine, cyclohexylamine, etc.), aralkylamine (benzylamine, phenethylamine, etc.), Arylamines (aniline, toluylamine, xylylamine, naphthylamine, etc.), combinations thereof (N-methyl-N-benzylamine, etc.), and further amines containing substituents (trifluoroethyl) Amine, hexafluoro isopropyl amine, methoxyaniline, methoxypropylamine and the like) and the like.

また、上記以外の前記その他の共重合可能なモノマーとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2−エチルヘキシル、スチレン、クロロスチレン、ブロモスチレン、ヒドロキシスチレンなどが好適に挙げられる。   Examples of the other copolymerizable monomers other than those described above include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, benzyl (meth) acrylate, and (meth) acrylic. Preferable examples include 2-ethylhexyl acid, styrene, chlorostyrene, bromostyrene, and hydroxystyrene.

前記その他の共重合可能なモノマーは、1種単独で使用してもよく、2種以上を併用してもよい。   The said other copolymerizable monomer may be used individually by 1 type, and may use 2 or more types together.

前記ビニル共重合体は、それぞれ相当するモノマーを公知の方法により常法に従って共重合させることで調製することができる。例えば、前記モノマーを適当な溶媒中に溶解し、ここにラジカル重合開始剤を添加して溶液中で重合させる方法(溶液重合法)を利用することにより調製することができる。また、水性媒体中に前記モノマーを分散させた状態でいわゆる乳化重合等で重合を利用することにより調製することができる。   The vinyl copolymer can be prepared by copolymerizing corresponding monomers according to a conventional method according to a conventional method. For example, it can be prepared by using a method (solution polymerization method) in which the monomer is dissolved in a suitable solvent and a radical polymerization initiator is added thereto to polymerize in a solution. Moreover, it can prepare by utilizing superposition | polymerization by what is called emulsion polymerization etc. in the state which disperse | distributed the said monomer in the aqueous medium.

前記溶液重合法で用いられる適当な溶媒としては、特に制限はなく、使用するモノマー、及び生成する共重合体の溶解性等に応じて適宜選択することができ、例えば、メタノール、エタノール、プロパノール、イソプロパノール、1−メトキシ−2−プロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、メトキシプロピルアセテート、乳酸エチル、酢酸エチル、アセトニトリル、テトラヒドロフラン、ジメチルホルムアミド、クロロホルム、トルエン、などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。   The suitable solvent used in the solution polymerization method is not particularly limited and may be appropriately selected depending on the monomer used and the solubility of the copolymer to be produced. For example, methanol, ethanol, propanol, Examples include isopropanol, 1-methoxy-2-propanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, methoxypropyl acetate, ethyl lactate, ethyl acetate, acetonitrile, tetrahydrofuran, dimethylformamide, chloroform, toluene, and the like. These may be used alone or in combination of two or more.

前記ラジカル重合開始剤としては、特に制限はなく、例えば、2,2’−アゾビス(イソブチロニトリル)(AIBN)、2,2’−アゾビス−(2,4’−ジメチルバレロニトリル)等のアゾ化合物、ベンゾイルパーオキシド等の過酸化物、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩などが挙げられる。   The radical polymerization initiator is not particularly limited, and examples thereof include 2,2′-azobis (isobutyronitrile) (AIBN) and 2,2′-azobis- (2,4′-dimethylvaleronitrile). Examples thereof include peroxides such as azo compounds and benzoyl peroxide, and persulfates such as potassium persulfate and ammonium persulfate.

前記ビニル共重合体におけるカルボキシル基を有する重合性化合物の含有率としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、5〜50モル%が好ましく、10〜40モル%がより好ましく、15〜35モル%が特に好ましい。
前記含有率が、5モル%未満であると、アルカリ水への現像性が不足することがあり、50モル%を超えると、硬化部(画像部)の現像液耐性が不足することがある。
There is no restriction | limiting in particular as content rate of the polymeric compound which has a carboxyl group in the said vinyl copolymer, Although it can select suitably according to the objective, For example, 5-50 mol% is preferable, 10-40 mol % Is more preferable, and 15 to 35 mol% is particularly preferable.
If the content is less than 5 mol%, the developability to alkaline water may be insufficient, and if it exceeds 50 mol%, the developer resistance of the cured portion (image portion) may be insufficient.

前記カルボキシル基を有するバインダーの分子量としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、質量平均分子量として、2,000〜300,000が好ましく、4,000〜150,000がより好ましい。
前記質量平均分子量が、2,000未満であると、膜の強度が不足しやすく、また安定な製造が困難になることがあり、300,000を超えると、現像性が低下することがある。
There is no restriction | limiting in particular as molecular weight of the binder which has the said carboxyl group, Although it can select suitably according to the objective, For example, 2,000-300,000 are preferable as a mass mean molecular weight, 4,000-150 1,000 is more preferable.
When the mass average molecular weight is less than 2,000, the strength of the film tends to be insufficient and stable production may be difficult, and when it exceeds 300,000, developability may be deteriorated.

前記カルボキシル基を有するバインダーは、1種単独で使用してもよく、2種以上を併用してもよい。前記バインダーを2種以上併用する場合としては、例えば、異なる共重合成分からなる2種以上のバインダー、異なる質量平均分子量の2種以上のバインダー、異なる分散度の2種以上のバインダー、などの組合せが挙げられる。   The binder which has the said carboxyl group may be used individually by 1 type, and may use 2 or more types together. Examples of the case where two or more binders are used in combination include, for example, a combination of two or more binders composed of different copolymer components, two or more binders having different mass average molecular weights, and two or more binders having different dispersities. Is mentioned.

前記カルボキシル基を有するバインダーは、そのカルボキシル基の一部又は全部が塩基性物質で中和されていてもよい。また、前記バインダーは、さらにポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、エポキシ樹脂、ポリビニルアルコール、ゼラチン等の構造の異なる樹脂を併用してもよい。   The binder having a carboxyl group may be partially or entirely neutralized with a basic substance. The binder may be used in combination with resins having different structures such as polyester resin, polyamide resin, polyurethane resin, epoxy resin, polyvinyl alcohol, and gelatin.

また、前記バインダーとしては、特許2873889号等に記載のアルカリ性液に可溶な樹脂などを用いることができる。   In addition, as the binder, a resin soluble in an alkaline liquid described in Japanese Patent No. 2873890 can be used.

前記感光層における前記バインダーの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、10〜90質量%が好ましく、20〜80質量%がより好ましく、40〜80質量%が特に好ましい。
前記含有量が10質量%未満であると、アルカリ現像性やプリント配線板形成用基板(例えば、銅張積層板)との密着性が低下することがあり、90質量%を超えると、現像時間に対する安定性や、硬化膜(テント膜)の強度が低下することがある。なお、前記含有量は、前記バインダーと必要に応じて併用される高分子結合剤との合計の含有量であってもよい。
There is no restriction | limiting in particular as content of the said binder in the said photosensitive layer, Although it can select suitably according to the objective, For example, 10-90 mass% is preferable, 20-80 mass% is more preferable, 40- 80% by mass is particularly preferred.
When the content is less than 10% by mass, alkali developability and adhesion to a printed wiring board forming substrate (for example, a copper-clad laminate) may be deteriorated. Stability and strength of the cured film (tent film) may be reduced. The content may be the total content of the binder and the polymer binder used in combination as necessary.

前記バインダーの酸価としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、70〜250mgKOH/gが好ましく、90〜200mgKOH/gがより好ましく、100〜180mgKOH/gが特に好ましい。
前記酸価が、70mgKOH/g未満であると、現像性が不足したり、解像性が劣り、配線パターン等の永久パターンなどを高精細に得ることができないことがあり、250mgKOH/gを超えると、パターンの耐現像液性及び密着性の少なくともいずれかが悪化し、配線パターン等の永久パターンなどを高精細に得ることができないことがある。
The acid value of the binder is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 70 to 250 mgKOH / g, more preferably 90 to 200 mgKOH / g, and 100 to 180 mgKOH / g. Particularly preferred.
If the acid value is less than 70 mgKOH / g, developability may be insufficient, resolution may be inferior, and permanent patterns such as wiring patterns may not be obtained with high definition, exceeding 250 mgKOH / g. Then, at least one of the developer resistance and adhesion of the pattern may deteriorate, and a permanent pattern such as a wiring pattern may not be obtained with high definition.

−重合性化合物−
前記重合性化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、ウレタン基及びアリール基の少なくともいずれかを有するモノマー又はオリゴマーが好適に挙げられる。また、これらは、重合性基を2種以上有することが好ましい。
-Polymerizable compound-
There is no restriction | limiting in particular as said polymeric compound, Although it can select suitably according to the objective, For example, the monomer or oligomer which has at least any one of a urethane group and an aryl group is mentioned suitably. Moreover, it is preferable that these have 2 or more types of polymeric groups.

前記重合性基としては、例えば、エチレン性不飽和結合(例えば、(メタ)アクリロイル基、(メタ)アクリルアミド基、スチリル基、ビニルエステルやビニルエーテル等のビニル基、アリルエーテルやアリルエステル等のアリル基など)、重合可能な環状エーテル基(例えば、エポキシ基、オキセタン基等)などが挙げられ、これらの中でもエチレン性不飽和結合が好ましい。   Examples of the polymerizable group include an ethylenically unsaturated bond (for example, (meth) acryloyl group, (meth) acrylamide group, styryl group, vinyl group such as vinyl ester and vinyl ether, allyl group such as allyl ether and allyl ester). Etc.) and a polymerizable cyclic ether group (for example, epoxy group, oxetane group, etc.) and the like. Among these, an ethylenically unsaturated bond is preferable.

−−ウレタン基を有するモノマー−−
前記ウレタン基を有するモノマーとしては、ウレタン基を有する限り、特に制限は無く、目的に応じて適宜選択することができるが、例えば、特公昭48−41708、特開昭51−37193、特公平5−50737、特公平7−7208、特開2001−154346、特開2001−356476号公報等に記載されている化合物などが挙げられ、例えば、分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物と分子中に水酸基を有するビニルモノマーとの付加物などが挙げられる。
--Monomer having urethane group--
The monomer having a urethane group is not particularly limited as long as it has a urethane group, and can be appropriately selected depending on the purpose. For example, JP-B-48-41708, JP-A-51-37193, JP-B-5 -50737, Japanese Patent Publication No. 7-7208, Japanese Patent Application Laid-Open No. 2001-154346, Japanese Patent Application Laid-Open No. 2001-356476, and the like. For example, a polyisocyanate compound having two or more isocyanate groups in the molecule And an adduct of a vinyl monomer having a hydroxyl group in the molecule.

前記分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物としては、例えば、ジイソシアネート(例えば、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシレンジイソシアネート、トルエンジイソシアネート、フェニレンジイソシアネート、ノルボルネンジイソシアネート、ジフェニルジイソシアネート、ジフェニルメタンジイソシアネート、3,3’−ジメチル−4,4’−ジフェニルジイソシアネート等)、該ジイソシアネートを更に2官能アルコールとの重付加物(この場合も両末端はイソシアネート基)、該ジイソシアネートのビュレット体やイソシアヌレート等の3量体、該ジイソシアネート若しくはジイソシアネート類と、多官能アルコール(例えば、トリメチロールプロパン、ペンタエリトリトール、グリセリン等)、又はこれらのエチレンオキシド付加物等の得られる他官能アルコールとの付加体などが挙げられる。   Examples of the polyisocyanate compound having two or more isocyanate groups in the molecule include diisocyanates (for example, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, isophorone diisocyanate, xylene diisocyanate, toluene diisocyanate, phenylene diisocyanate, norbornene diisocyanate, diphenyl diisocyanate. , Diphenylmethane diisocyanate, 3,3′-dimethyl-4,4′-diphenyl diisocyanate), polyaddition product of the diisocyanate with a bifunctional alcohol (in this case, both ends are isocyanate groups), a burette of the diisocyanate, Trimers such as isocyanurate, the diisocyanate or diisocyanates, and polyfunctional alcohol (E.g., trimethylol propane, pentaerythritol, glycerin, etc.), or the like adducts of other functional alcohol obtained of such these ethylene oxide adducts.

前記分子中に水酸基を有するビニルモノマーとしては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、オクタエチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレート、トリプロピレングリコールモノ(メタ)アクリレート、テトラプロピレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ジブチレングリコールモノ(メタ)アクリレート、トリブチレングリコールモノ(メタ)アクリレート、テトラブチレングリコールモノ(メタ)アクリレート、オクタブチレングリコールモノ(メタ)アクリレート、ポリブチレングリコールモノ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリトリトールトリ(メタ)アクリレートなどが挙げられる。また、エチレンオキシドとプロピレンオキシドの共重合体(ランダム、ブロック等)などの異なるアルキレンオキシド部を有するジオール体の片末端(メタ)アクリレート体などが挙げられる。   Examples of the vinyl monomer having a hydroxyl group in the molecule include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, diethylene glycol mono (meth) acrylate, and triethylene. Glycol mono (meth) acrylate, tetraethylene glycol mono (meth) acrylate, octaethylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, dipropylene glycol mono (meth) acrylate, tripropylene glycol mono (meth) acrylate , Tetrapropylene glycol mono (meth) acrylate, octapropylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) Chryrate, dibutylene glycol mono (meth) acrylate, tributylene glycol mono (meth) acrylate, tetrabutylene glycol mono (meth) acrylate, octabutylene glycol mono (meth) acrylate, polybutylene glycol mono (meth) acrylate, trimethylolpropane Examples include di (meth) acrylate and pentaerythritol tri (meth) acrylate. Moreover, the one terminal (meth) acrylate body of the diol body which has different alkylene oxide parts, such as a copolymer (random, a block, etc.) of ethylene oxide and propylene oxide, etc. are mentioned.

また、前記ウレタン基を有するモノマーとしては、トリ((メタ)アクリロイルオキシエチル)イソシアヌレート、ジ(メタ)アクリル化イソシアヌレート、エチレンオキシド変性イソシアヌル酸のトリ(メタ)アクリレート等のイソシアヌレート環を有する化合物が挙げられる。これらの中でも、下記構造式(18)、又は構造式(19)で表される化合物が好ましく、テント性の観点から、前記構造式(19)で示される化合物を少なくとも含むことが特に好ましい。また、これらの化合物は、1種単独で使用してもよく、2種以上を併用してもよい。   In addition, examples of the monomer having a urethane group include compounds having an isocyanurate ring such as tri ((meth) acryloyloxyethyl) isocyanurate, di (meth) acrylated isocyanurate, and tri (meth) acrylate of ethylene oxide-modified isocyanuric acid. Is mentioned. Among these, the compound represented by the following structural formula (18) or the structural formula (19) is preferable, and it is particularly preferable that at least the compound represented by the structural formula (19) is included from the viewpoint of tent properties. Moreover, these compounds may be used individually by 1 type, and may use 2 or more types together.

前記構造式(18)及び(19)中、R〜Rは、それぞれ水素原子又はメチル基を表す。X〜Xは、アルキレンオキサイドを表し、1種単独でもよく、2種以上を併用してもよい。 In the structural formulas (18) and (19), R 1 to R 3 each represent a hydrogen atom or a methyl group. X 1 to X 3 represents an alkylene oxide, may be alone or in combination of two or more thereof.

前記アルキレンオキサイド基としては、例えば、エチレンオキサイド基、プロピレンオキサイド基、ブチレンオキサイド基、ペンチレンオキサイド基、ヘキシレンオキサイド基、これらを組み合わせた基(ランダム、ブロックのいずれに組み合わされてもよい)などが好適に挙げられ、これらの中でも、エチレンオキサイド基、プロピレンオキサイド基、ブチレンオキサイド基、又はこれらの組み合わせた基が好ましく、エチレンオキサイド基、プロピレンオキサイド基がより好ましい。   Examples of the alkylene oxide group include an ethylene oxide group, a propylene oxide group, a butylene oxide group, a pentylene oxide group, a hexylene oxide group, and a group in which these are combined (may be combined in any of random or block). Among these, an ethylene oxide group, a propylene oxide group, a butylene oxide group, or a combination thereof is preferable, and an ethylene oxide group and a propylene oxide group are more preferable.

前記構造式(18)及び(19)中、m1〜m3は、1〜60の整数を表し、2〜30が好ましく、4〜15がより好ましい。   In the structural formulas (18) and (19), m1 to m3 represent an integer of 1 to 60, preferably 2 to 30, and more preferably 4 to 15.

前記構造式(18)及び(19)中、Y及びYは、炭素原子数2〜30の2価の有機基を表し、例えば、アルキレン基、アリーレン基、アルケニレン基、アルキニレン基、カルボニル基(−CO−)、酸素原子(−O−)、硫黄原子(−S−)、イミノ基(−NH−)、イミノ基の水素原子が1価の炭化水素基で置換された置換イミノ基、スルホニル基(−SO−)又はこれらを組み合わせた基などが好適に挙げられ、これらの中でも、アルキレン基、アリーレン基、又はこれらを組み合わせた基が好ましい。 In the structural formulas (18) and (19), Y 1 and Y 2 represent a divalent organic group having 2 to 30 carbon atoms, for example, an alkylene group, an arylene group, an alkenylene group, an alkynylene group, a carbonyl group. (—CO—), an oxygen atom (—O—), a sulfur atom (—S—), an imino group (—NH—), a substituted imino group in which the hydrogen atom of the imino group is substituted with a monovalent hydrocarbon group, Preferred examples include a sulfonyl group (—SO 2 —) or a combination thereof, and among these, an alkylene group, an arylene group, or a combination thereof is preferable.

前記アルキレン基は、分岐構造又は環状構造を有していてもよく、例えば、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、ペンチレン基、ネオペンチレン基、ヘキシレン基、トリメチルヘキシレン基、シクロへキシレン基、ヘプチレン基、オクチレン基、2−エチルヘキシレン基、ノニレン基、デシレン基、ドデシレン基、オクタデシレン基、又は下記に示すいずれかの基などが好適に挙げられる。   The alkylene group may have a branched structure or a cyclic structure, for example, methylene group, ethylene group, propylene group, isopropylene group, butylene group, isobutylene group, pentylene group, neopentylene group, hexylene group, trimethyl hexene. Preferable examples include a xylene group, a cyclohexylene group, a heptylene group, an octylene group, a 2-ethylhexylene group, a nonylene group, a decylene group, a dodecylene group, an octadecylene group, or any of the groups shown below.

前記アリーレン基としては、炭化水素基で置換されていてもよく、例えば、フェニレン基、トリレン基、ジフェニレン基、ナフチレン基、又は下記に示す基などが好適に挙げられる。   The arylene group may be substituted with a hydrocarbon group, and examples thereof include a phenylene group, a tolylene group, a diphenylene group, a naphthylene group, and the groups shown below.

前記これらを組み合わせた基としては、例えば、キシリレン基などが挙げられる。   Examples of the group in which these are combined include a xylylene group.

前記アルキレン基、アリーレン基、又はこれらを組み合わせた基としては、更に置換基を有していてもよく、該置換基としては、例えば、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アリール基、アルコキシ基(例えば、メトキシ基、エトキシ基、2−エトキシエトキシ基)、アリールオキシ基(例えば、フェノキシ基)、アシル基(例えば、アセチル基、プロピオニル基)、アシルオキシ基(例えば、アセトキシ基、ブチリルオキシ基)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基)などが挙げられる。   The alkylene group, arylene group, or a combination thereof may further have a substituent. Examples of the substituent include a halogen atom (for example, fluorine atom, chlorine atom, bromine atom, iodine). Atom), aryl group, alkoxy group (for example, methoxy group, ethoxy group, 2-ethoxyethoxy group), aryloxy group (for example, phenoxy group), acyl group (for example, acetyl group, propionyl group), acyloxy group (for example, , Acetoxy group, butyryloxy group), alkoxycarbonyl group (for example, methoxycarbonyl group, ethoxycarbonyl group), aryloxycarbonyl group (for example, phenoxycarbonyl group) and the like.

前記構造式(18)及び(19)中、nは3〜6の整数を表し、重合性モノマーを合成するための原料供給性などの観点から、3、4又は6が好ましい。   In the structural formulas (18) and (19), n represents an integer of 3 to 6, and 3, 4 or 6 is preferable from the viewpoint of raw material supply for synthesizing a polymerizable monomer.

前記構造式(18)及び(19)中、Zはn価(3価〜6価)の連結基を表し、例えば、下記に示すいずれかの基などが挙げられる。   In the structural formulas (18) and (19), Z represents an n-valent (trivalent to hexavalent) linking group, and examples thereof include any of the groups shown below.

但し、Xはアルキレンオキサイドを表す。m4は、1〜20の整数を表す。nは、3〜6の整数を表す。Aは、n価(3価〜6価)の有機基を表す。 However, X 4 represents an alkylene oxide. m4 represents an integer of 1 to 20. n represents an integer of 3 to 6. A represents an n-valent (trivalent to hexavalent) organic group.

前記Aとしては、例えば、n価の脂肪族基、n価の芳香族基、又はこれらとアルキレン基、アリーレン基、アルケニレン基、アルキニレン基、カルボニル基、酸素原子、硫黄原子、イミノ基、イミノ基の水素原子が1価の炭化水素基で置換された置換イミノ基、又はスルホニル基とを組み合わせた基が好ましく、n価の脂肪族基、n価の芳香族基、又はこれらとアルキレン基、アリーレン基、酸素原子とを組み合わせた基がより好ましく、n価の脂肪族基、n価の脂肪族基とアルキレン基、酸素原子とを組み合わせた基が特に好ましい。   Examples of A include an n-valent aliphatic group, an n-valent aromatic group, and an alkylene group, an arylene group, an alkenylene group, an alkynylene group, a carbonyl group, an oxygen atom, a sulfur atom, an imino group, and an imino group. Are preferably a combination of a substituted imino group in which the hydrogen atom is substituted with a monovalent hydrocarbon group or a sulfonyl group, an n-valent aliphatic group, an n-valent aromatic group, or an alkylene group or arylene A group in which a group and an oxygen atom are combined is more preferable, and an n-valent aliphatic group, and a group in which an n-valent aliphatic group is combined with an alkylene group and an oxygen atom are particularly preferable.

前記Aの炭素原子数としては、例えば、1〜100の整数が好ましく、1〜50の整数がより好ましく、3〜30の整数が特に好ましい。   As the number of carbon atoms of A, for example, an integer of 1 to 100 is preferable, an integer of 1 to 50 is more preferable, and an integer of 3 to 30 is particularly preferable.

前記n価の脂肪族基としては、分岐構造又は環状構造を有していてもよい。
前記脂肪族基の炭素原子数としては、例えば、1〜30の整数が好ましく、1〜20の整数がより好ましく、3〜10の整数が特に好ましい。
前記芳香族基の炭素原子数としては、6〜100の整数が好ましく、6〜50の整数がより好ましく、6〜30の整数が特に好ましい。
The n-valent aliphatic group may have a branched structure or a cyclic structure.
As a carbon atom number of the said aliphatic group, the integer of 1-30 is preferable, for example, the integer of 1-20 is more preferable, and the integer of 3-10 is especially preferable.
The number of carbon atoms of the aromatic group is preferably an integer of 6 to 100, more preferably an integer of 6 to 50, and particularly preferably an integer of 6 to 30.

前記n価の脂肪族基、又は芳香族基は、更に置換基を有していてもよく、該置換基としては、例えば、ヒドロキシル基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アリール基、アルコキシ基(例えば、メトキシ基、エトキシ基、2−エトキシエトキシ基)、アリールオキシ基(例えば、フェノキシ基)、アシル基(例えば、アセチル基、プロピオニル基)、アシルオキシ基(例えば、アセトキシ基、ブチリルオキシ基)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基)などが挙げられる。   The n-valent aliphatic group or aromatic group may further have a substituent. Examples of the substituent include a hydroxyl group, a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, Iodine atom), aryl group, alkoxy group (for example, methoxy group, ethoxy group, 2-ethoxyethoxy group), aryloxy group (for example, phenoxy group), acyl group (for example, acetyl group, propionyl group), acyloxy group ( Examples thereof include an acetoxy group, a butyryloxy group), an alkoxycarbonyl group (for example, a methoxycarbonyl group, an ethoxycarbonyl group), an aryloxycarbonyl group (for example, a phenoxycarbonyl group), and the like.

前記アルキレン基は、分岐構造又は環状構造を有していてもよい。
前記アルキレン基の炭素原子数としては、例えば、1〜18の整数が好ましく、1〜10の整数がより好ましい。
The alkylene group may have a branched structure or a cyclic structure.
As a carbon atom number of the said alkylene group, the integer of 1-18 is preferable, for example, and the integer of 1-10 is more preferable.

前記アリーレン基は、炭化水素基で更に置換されていてもよい。
前記アリーレン基の炭素原子数としては、6〜18の整数が好ましく、6〜10の整数がより好ましい。
The arylene group may be further substituted with a hydrocarbon group.
As the number of carbon atoms of the arylene group, an integer of 6 to 18 is preferable, and an integer of 6 to 10 is more preferable.

前記置換イミノ基の1価の炭化水素基の炭素原子数としては、1〜18の整数が好ましく、1〜10の整数がより好ましい。   As a carbon atom number of the monovalent hydrocarbon group of the said substituted imino group, the integer of 1-18 is preferable and the integer of 1-10 is more preferable.

以下に、前記Aの好ましい例は以下の通りである。   Below, the preferable example of said A is as follows.

前記構造式(18)及び(19)で表される化合物としては、例えば下記構造式(20)〜(42)で表される化合物などが挙げられる。   Examples of the compounds represented by the structural formulas (18) and (19) include compounds represented by the following structural formulas (20) to (42).

但し、前記構造式(20)〜(42)中、n、n1、n2及びmは、1〜60を意味し、lは、1〜20を意味し、Rは、水素原子又はメチル基を表す。   However, in said structural formula (20)-(42), n, n1, n2 and m mean 1-60, l means 1-20, R represents a hydrogen atom or a methyl group. .

−−アリール基を有するモノマー−−
前記アリール基を有するモノマーとしては、アリール基を有する限り、特に制限はなく、目的に応じて適宜選択することができるが、例えば、アリール基を有する多価アルコール化合物、多価アミン化合物及び多価アミノアルコール化合物の少なくともいずれかと不飽和カルボン酸とのエステル又はアミドなどが挙げられる。
--Monomer having an aryl group--
The monomer having an aryl group is not particularly limited as long as it has an aryl group, and can be appropriately selected depending on the purpose. For example, a polyhydric alcohol compound having a aryl group, a polyvalent amine compound, and a polyvalent Examples thereof include esters or amides of at least one of amino alcohol compounds and unsaturated carboxylic acid.

前記アリール基を有する多価アルコール化合物、多価アミン化合物又は多価アミノアルコール化合物としては、例えば、ポリスチレンオキサイド、キシリレンジオール、ジ−(β−ヒドロキシエトキシ)ベンゼン、1,5−ジヒドロキシ−1,2,3,4−テトラヒドロナフタレン、2、2−ジフェニル−1,3−プロパンジオール、ヒドロキシベンジルアルコール、ヒドロキシエチルレゾルシノール、1−フェニル−1,2−エタンジオール、2,3,5,6−テトラメチル−p−キシレン−α,α’−ジオール、1,1,4,4−テトラフェニル−1,4−ブタンジオール、1,1,4,4−テトラフェニル−2−ブチン−1,4−ジオール、1,1’−ビ−2−ナフトール、ジヒドロキシナフタレン、1,1’−メチレン−ジ−2−ナフトール、1,2,4−ベンゼントリオール、ビフェノール、2,2’−ビス(4−ヒドロキシフェニル)ブタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、ビス(ヒドロキシフェニル)メタン、カテコール、4−クロロレゾルシノール、ハイドロキノン、ヒドロキシベンジルアルコール、メチルハイドロキノン、メチレン−2,4,6−トリヒドロキシベンゾエート、フロログリシノール、ピロガロール、レゾルシノール、α−(1−アミノエチル)−p−ヒドロキシベンジルアルコール、α−(1−アミノエチル)−p−ヒドロキシベンジルアルコール、3−アミノ−4−ヒドロキシフェニルスルホンなどが挙げられる。また、この他、キシリレンビス(メタ)アクリルアミド、ノボラック型エポキシ樹脂やビスフェノールAジグリシジルエーテル等のグリシジル化合物にα,β−不飽和カルボン酸を付加して得られる化合物、フタル酸やトリメリット酸などと分子中に水酸基を含有するビニルモノマーから得られるエステル化物、フタル酸ジアリル、トリメリット酸トリアリル、ベンゼンジスルホン酸ジアリル、重合性モノマーとしてカチオン重合性のジビニルエーテル類(例えば、ビスフェノールAジビニルエーテル)、エポキシ化合物(例えば、ノボラック型エポキシ樹脂、ビスフェノールAジグリシジルエーテル等)、ビニルエステル類(例えば、ジビニルフタレート、ジビニルテレフタレート、ジビニルベンゼン−1,3−ジスルホネート等)、スチレン化合物(例えば、ジビニルベンゼン、p−アリルスチレン、p−イソプロペンスチレン等)が挙げられる。これらの中でも下記構造式(43)で表される化合物が好ましい。   Examples of the polyhydric alcohol compound, polyamine compound or polyhydric amino alcohol compound having an aryl group include polystyrene oxide, xylylene diol, di- (β-hydroxyethoxy) benzene, 1,5-dihydroxy-1, 2,3,4-tetrahydronaphthalene, 2,2-diphenyl-1,3-propanediol, hydroxybenzyl alcohol, hydroxyethyl resorcinol, 1-phenyl-1,2-ethanediol, 2,3,5,6-tetra Methyl-p-xylene-α, α′-diol, 1,1,4,4-tetraphenyl-1,4-butanediol, 1,1,4,4-tetraphenyl-2-butyne-1,4- Diol, 1,1′-bi-2-naphthol, dihydroxynaphthalene, 1,1′-methylene-di-2-naphth 1,2,4-benzenetriol, biphenol, 2,2′-bis (4-hydroxyphenyl) butane, 1,1-bis (4-hydroxyphenyl) cyclohexane, bis (hydroxyphenyl) methane, catechol, 4-chlororesorcinol, hydroquinone, hydroxybenzyl alcohol, methyl hydroquinone, methylene-2,4,6-trihydroxybenzoate, phloroglicinol, pyrogallol, resorcinol, α- (1-aminoethyl) -p-hydroxybenzyl alcohol, α -(1-aminoethyl) -p-hydroxybenzyl alcohol, 3-amino-4-hydroxyphenylsulfone and the like can be mentioned. In addition, compounds obtained by adding α, β-unsaturated carboxylic acid to glycidyl compounds such as xylylene bis (meth) acrylamide, novolac epoxy resin and bisphenol A diglycidyl ether, phthalic acid, trimellitic acid, etc. Esterified products obtained from vinyl monomers containing hydroxyl groups in the molecule, diallyl phthalate, triallyl trimellitic acid, diallyl benzenedisulfonate, cationically polymerizable divinyl ethers (for example, bisphenol A divinyl ether), epoxy as a polymerizable monomer Compound (for example, novolac type epoxy resin, bisphenol A diglycidyl ether, etc.), vinyl ester (for example, divinyl phthalate, divinyl terephthalate, divinylbenzene-1,3-disulfonate, etc.), styrene Compounds such as divinylbenzene, p-allylstyrene, p-isopropenestyrene, and the like. Among these, the compound represented by the following structural formula (43) is preferable.

前記構造式(43)中、R4、Rは、水素原子又はアルキル基を表す。 In the structural formula (43), R 4 and R 5 represent a hydrogen atom or an alkyl group.

前記構造式(43)中、X及びXは、アルキレンオキサイド基を表し、1種単独でもよく、2種以上を併用してもよい。該アルキレンオキサイド基としては、例えば、エチレンオキサイド基、プロピレンオキサイド基、ブチレンオキサイド基、ペンチレンオキサイド基、ヘキシレンオキサイド基、これらを組み合わせた基(ランダム、ブロックのいずれに組み合わされてもよい)、などが好適に挙げられ、これらの中でも、エチレンオキサイド基、プロピレンオキサイド基、ブチレンオキサイド基、又はこれらを組み合わせた基が好ましく、エチレンオキサイド基、プロピレンオキサイド基がより好ましい。 In the structural formula (43), X 5 and X 6 represent an alkylene oxide group, which may be used alone or in combination of two or more. Examples of the alkylene oxide group include an ethylene oxide group, a propylene oxide group, a butylene oxide group, a pentylene oxide group, a hexylene oxide group, a group in which these are combined (which may be combined in any of random and block), Among these, an ethylene oxide group, a propylene oxide group, a butylene oxide group, or a group combining these is preferable, and an ethylene oxide group and a propylene oxide group are more preferable.

前記構造式(43)中、m5、m6は、1〜60の整数が好ましく、2〜30の整数がより好ましく、4〜15の整数が特に好ましい。   In the structural formula (43), m5 and m6 are preferably an integer of 1 to 60, more preferably an integer of 2 to 30, and particularly preferably an integer of 4 to 15.

前記構造式(43)中、Tは、2価の連結基を表し、例えば、メチレン、エチレン、MeCMe、CFCCF、CO、SOなどが挙げられる。 In the structural formula (43), T represents a divalent linking group, and examples thereof include methylene, ethylene, MeCMe, CF 3 CCF 3 , CO, and SO 2 .

前記構造式(43)中、Ar、Arは、置換基を有していてもよいアリール基を表し、例えば、フェニレン、ナフチレンなどが挙げられる。前記置換基としては、例えば、アルキル基、アリール基、アラルキル基、ハロゲン基、アルコキシ基、又はこれらの組合せなどが挙げられる。 In the structural formula (43), Ar 1 and Ar 2 represent an aryl group which may have a substituent, and examples thereof include phenylene and naphthylene. Examples of the substituent include an alkyl group, an aryl group, an aralkyl group, a halogen group, an alkoxy group, or a combination thereof.

前記アリール基を有するモノマーの具体例としては、2,2−ビス〔4−(3−(メタ)アクリルオキシ−2−ヒドロキシプロポキシ)フェニル〕プロパン、2,2−ビス〔4−((メタ)アクリルオキシエトキシ)フェニル〕プロパン、フェノール性のOH基1個に置換しさせたエトキシ基の数が2から20である2,2−ビス(4−((メタ)アクリロイルオキシポリエトキシ)フェニル)プロパン(例えば、2,2−ビス(4−((メタ)アクリロイルオキシジエトキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシテトラエトキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシペンタエトキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシデカエトキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシペンタデカエトキシ)フェニル)プロパン等)、2,2−ビス〔4−((メタ)アクリルオキシプロポキシ)フェニル〕プロパン、フェノール性のOH基1個に置換させたエトキシ基の数が2から20である2,2−ビス(4−((メタ)アクリロイルオキシポリプロポキシ)フェニル)プロパン(例えば、2,2−ビス(4−((メタ)アクリロイルオキシジプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシテトラプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシペンタプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシデカプロポキシ)フェニル)プロパン、2,2−ビス(4−((メタ)アクリロイルオキシペンタデカプロポキシ)フェニル)プロパン等)、又はこれらの化合物のポリエーテル部位として同一分子中にポリエチレンオキシド骨格とポリプロピレンオキシド骨格の両方を含む化合物(例えば、WO01/98832号公報に記載の化合物等、又は、市販品として、新中村化学工業社製、BPE−200、BPE−500、BPE−1000)、ビスフェノール骨格とウレタン基とを有する重合性化合物などが挙げられる。なお、これらは、ビスフェノールA骨格に由来する部分をビスフェノールF又はビスフェノールS等に変更した化合物であってもよい。   Specific examples of the monomer having an aryl group include 2,2-bis [4- (3- (meth) acryloxy-2-hydroxypropoxy) phenyl] propane, 2,2-bis [4-((meth)). (Acryloxyethoxy) phenyl] propane, 2,2-bis (4-((meth) acryloyloxypolyethoxy) phenyl) propane having 2 to 20 ethoxy groups substituted with one phenolic OH group (For example, 2,2-bis (4-((meth) acryloyloxydiethoxy) phenyl) propane, 2,2-bis (4-((meth) acryloyloxytetraethoxy) phenyl) propane, 2,2-bis (4-((Meth) acryloyloxypentaethoxy) phenyl) propane, 2,2-bis (4-((meth) acryloyloxydecae) Xyl) phenyl) propane, 2,2-bis (4-((meth) acryloyloxypentadecaethoxy) phenyl) propane), 2,2-bis [4-((meth) acryloxypropoxy) phenyl] propane, 2,2-bis (4-((meth) acryloyloxypolypropoxy) phenyl) propane (e.g. 2,2-bis (2) having 2 to 20 ethoxy groups substituted with one phenolic OH group 4-((meth) acryloyloxydipropoxy) phenyl) propane, 2,2-bis (4-((meth) acryloyloxytetrapropoxy) phenyl) propane, 2,2-bis (4-((meth) acryloyloxy) Pentapropoxy) phenyl) propane, 2,2-bis (4-((meth) acryloyloxydecapropoxy) pheny ) Propane, 2,2-bis (4-((meth) acryloyloxypentadecapropoxy) phenyl) propane, or the like, or both the polyethylene oxide skeleton and the polypropylene oxide skeleton in the same molecule as the polyether moiety Compounds (for example, compounds described in WO01 / 98832 etc., or commercially available, Shin-Nakamura Chemical Co., Ltd., BPE-200, BPE-500, BPE-1000), bisphenol skeleton and urethane group Examples thereof include a polymerizable compound. These compounds may be compounds obtained by changing the part derived from the bisphenol A skeleton to bisphenol F or bisphenol S.

前記ビスフェノール骨格とウレタン基とを有する重合性化合物としては、例えば、ビスフェノールとエチレンオキシド又はプロピレンオキシド等の付加物、重付加物として得られる末端に水酸基を有する化合物にイソシアネート基と重合性基とを有する化合物(例えば、2−イソシアネートエチル(メタ)アクリレート、α、α−ジメチル−ビニルベンジルイソシアネート等)などが挙げられる。   Examples of the polymerizable compound having a bisphenol skeleton and a urethane group include an isocyanate group and a polymerizable group in a compound having a hydroxyl group at the terminal obtained as an adduct such as bisphenol and ethylene oxide or propylene oxide, or a polyaddition product. Examples thereof include compounds (for example, 2-isocyanatoethyl (meth) acrylate, α, α-dimethyl-vinylbenzyl isocyanate, etc.).

−−その他の重合性モノマー−−
本発明のパターン形成材料には、前記パターン形成材料としての特性を悪化させない範囲で、前記ウレタン基を含有するモノマー、アリール基を有するモノマー以外の重合性モノマーを併用してもよい。
-Other polymerizable monomers-
In the pattern forming material of the present invention, a polymerizable monomer other than the monomer containing the urethane group and the monomer having an aryl group may be used in combination as long as the characteristics as the pattern forming material are not deteriorated.

前記ウレタン基を含有するモノマー、芳香環を含有するモノマー以外の重合性モノマーとしては、例えば、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等)と脂肪族多価アルコール化合物とのエステル、不飽和カルボン酸と多価アミン化合物とのアミドなどが挙げられる。   Examples of the polymerizable monomer other than the monomer containing a urethane group and the monomer containing an aromatic ring include unsaturated carboxylic acids (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.) And an ester of an aliphatic polyhydric alcohol compound and an amide of an unsaturated carboxylic acid and a polyvalent amine compound.

前記不飽和カルボン酸と脂肪族多価アルコール化合物とのエステルのモノマーとしては、例えば、(メタ)アクリル酸エステルとして、エチレングリコールジ(メタ)アクリレート、エチレン基の数が2〜18であるポリエチレングリコールジ(メタ)アクリレート(例えば、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ノナエチレングリコールジ(メタ)アクリレート、ドデカエチレングリコールジ(メタ)アクリレート、テトラデカエチレングリコールジ(メタ)アクリレート等)、プロピレングリコールジ(メタ)アクリレート、プロピレン基の数が2から18であるポリプロピレングリコールジ(メタ)アクリレート(例えば、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ドデカプロピレングリコールジ(メタ)アクリレート等)、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド変性ネオペンチルグリコールジ(メタ)アクリレート、プロピレンオキシド変性ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ((メタ)アクリロイルオキシプロピル)エーテル、トリメチロールエタントリ(メタ)アクリレート、1,3−プロパンジオールジ(メタ)アクリレート、1,3−ブタンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、1,4−シクロヘキサンジオールジ(メタ)アクリレート、1,2,4−ブタントリオールトリ(メタ)アクリレート、1,5−ベンタンジオール(メタ)アクリレート、ペンタエリトリトールジ(メタ)アクリレート、ペンタエリトリトールトリ(メタ)アクリレート、ペンタエリトリトールテトラ(メタ)アクリレート、ジペンタエリトリトールペンタ(メタ)アクリレート、ジペンタエリトリトールヘキサ(メタ)アクリレート、ソルビトールトリ(メタ)アクリレート、ソルビトールテトラ(メタ)アクリレート、ソルビトールペンタ(メタ)アクリレート、ソルビトールヘキサ(メタ)アクリレート、ジメチロールジシクロペンタンジ(メタ)アクリレート、トリシクロデカンジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、エチレングリコール鎖/プロピレングリコール鎖を少なくとも各々一つずつ有するアルキレングリコール鎖のジ(メタ)アクリレート(例えば、WO01/98832号公報に記載の化合物等)、エチレンオキサイド及びプロピレンオキサイドの少なくともいずれかを付加したトリメチロールプロパンのトリ(メタ)アクリル酸エステル、ポリブチレングリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、キシレノールジ(メタ)アクリレートなどが挙げられる。   Examples of the monomer of the ester of the unsaturated carboxylic acid and the aliphatic polyhydric alcohol compound include (meth) acrylic acid ester, ethylene glycol di (meth) acrylate, and polyethylene glycol having 2 to 18 ethylene groups. Di (meth) acrylate (for example, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, nonaethylene glycol di (meth) acrylate, dodecaethylene glycol di (meth) acrylate , Tetradecaethylene glycol di (meth) acrylate, etc.), propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate having 2 to 18 propylene groups (for example, , Dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetrapropylene glycol di (meth) acrylate, dodecapropylene glycol di (meth) acrylate, etc.), neopentyl glycol di (meth) acrylate, ethylene oxide modified Neopentyl glycol di (meth) acrylate, propylene oxide modified neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane di (meth) acrylate, trimethylolpropane tri ((meth) acryloyloxypropyl) ) Ether, trimethylolethane tri (meth) acrylate, 1,3-propanediol di (meth) acrylate, 1,3-butanediol (Meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, tetramethylene glycol di (meth) acrylate, 1,4-cyclohexanediol di (meth) acrylate, 1,2,4-butanetriol tri (meth) acrylate, 1,5-bentanediol (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, di Pentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, sorbitol tri (meth) acrylate, sorbitol tetra (meth) acrylate, sorbitol penta (meth) acrylate Rate, sorbitol hexa (meth) acrylate, dimethylol dicyclopentane di (meth) acrylate, tricyclodecane di (meth) acrylate, neopentyl glycol di (meth) acrylate, neopentyl glycol modified trimethylolpropane di (meth) acrylate A di (meth) acrylate of an alkylene glycol chain having at least one ethylene glycol chain / propylene glycol chain (for example, a compound described in WO01 / 98832), at least one of ethylene oxide and propylene oxide Trimethylolpropane tri (meth) acrylate, polybutylene glycol di (meth) acrylate, glycerol di (meth) acrylate, glycerol tri (meth) acrylate Examples include relate and xylenol di (meth) acrylate.

前記(メタ)アクリル酸エステル類の中でも、その入手の容易さ等の観点から、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エチレングリコール鎖/プロピレングリコール鎖を少なくとも各々一つずつ有するアルキレングリコール鎖のジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリトリトールテトラ(メタ)アクリレート、ペンタエリトリトールトリアクリレート、ペンタエリトリトールジ(メタ)アクリレート、ジペンタエリトリトールペンタ(メタ)アクリレート、ジペンタエリトリトールヘキサ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ジグリセリンジ(メタ)アクリレート、1,3−プロパンジオールジ(メタ)アクリレート、1,2,4−ブタントリオールトリ(メタ)アクリレート、1,4−シクロヘキサンジオールジ(メタ)アクリレート、1,5−ペンタンジオール(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイド付加したトリメチロールプロパンのトリ(メタ)アクリル酸エステルなどが好ましい。   Among the (meth) acrylic acid esters, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meta) from the viewpoint of easy availability. ) Acrylate, di (meth) acrylate of alkylene glycol chain each having at least one ethylene glycol chain / propylene glycol chain, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol triacrylate, penta Erythritol di (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, glycerin tri (Meth) acrylate, diglycerin di (meth) acrylate, 1,3-propanediol di (meth) acrylate, 1,2,4-butanetriol tri (meth) acrylate, 1,4-cyclohexanediol di (meth) acrylate, 1, Preference is given to 5-pentanediol (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate added with ethylene oxide, and the like.

前記イタコン酸と前記脂肪族多価アルコール化合物とのエステル(イタコン酸エステル)としては、例えば、エチレングリコールジイタコネート、プロピレングリコールジイタコネート、1,3−ブタンジオールジイタコネート、1,4ーブタンジオールジイタコネート、テトラメチレングリコールジイタコネート、ペンタエリトリトールジイタコネート、及びソルビトールテトライタコネートなどが挙げられる。   Examples of the ester (itaconic acid ester) of the itaconic acid and the aliphatic polyhydric alcohol compound include ethylene glycol diitaconate, propylene glycol diitaconate, 1,3-butanediol diitaconate, 1,4- Examples include butanediol diitaconate, tetramethylene glycol diitaconate, pentaerythritol diitaconate, and sorbitol tetritaconate.

前記クロトン酸と前記脂肪族多価アルコール化合物とのエステル(クロトン酸エステル)としては、例えば、エチレングリコールジクロトネート、テトラメチレングリコールジクロトネート、ペンタエリトリトールジクロトネート、ソルビトールテトラジクロトネートなどが挙げられる。   Examples of the ester (crotonate ester) of the crotonic acid and the aliphatic polyhydric alcohol compound include ethylene glycol dicrotonate, tetramethylene glycol dicrotonate, pentaerythritol dicrotonate, and sorbitol tetradicrotonate. Can be mentioned.

前記イソクロトン酸と前記脂肪族多価アルコール化合物とのエステル(イソクロトン酸エステル)としては、例えば、エチレングリコールジイソクロトネート、ペンタエリトリトールジイソクロトネート、ソルビトールテトライソクロトネートなどが挙げられる。   Examples of the ester of the isocrotonic acid and the aliphatic polyhydric alcohol compound (isocrotonate ester) include ethylene glycol diisocrotonate, pentaerythritol diisocrotonate, sorbitol tetraisocrotonate, and the like.

前記マレイン酸と前記脂肪族多価アルコール化合物とのエステル(マレイン酸エステル)としては、例えば、エチレングリコールジマレート、トリエチレングリコールジマレート、ペンタエリトリトールジマレート、ソルビトールテトラマレートなどが挙げられる。   Examples of the ester of maleic acid and the aliphatic polyhydric alcohol compound (maleic acid ester) include ethylene glycol dimaleate, triethylene glycol dimaleate, pentaerythritol dimaleate, and sorbitol tetramaleate.

前記多価アミン化合物と前記不飽和カルボン酸類から誘導されるアミドとしては、例えば、メチレンビス(メタ)アクリルアミド、エチレンビス(メタ)アクリルアミド、1,6−ヘキサメチレンビス(メタ)アクリルアミド、オクタメチレンビス(メタ)アクリルアミド、ジエチレントリアミントリス(メタ)アクリルアミド、ジエチレントリアミンビス(メタ)アクリルアミド、などが挙げられる。   Examples of the amide derived from the polyvalent amine compound and the unsaturated carboxylic acid include methylene bis (meth) acrylamide, ethylene bis (meth) acrylamide, 1,6-hexamethylene bis (meth) acrylamide, and octamethylene bis ( And (meth) acrylamide, diethylenetriamine tris (meth) acrylamide, and diethylenetriamine bis (meth) acrylamide.

また、上記以外にも、前記重合性モノマーとして、例えば、ブタンジオール−1,4−ジグリシジルエーテル、シクロヘキサンジメタノールグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ジプロピレングリコールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリトリトールテトラグリシジルエーテル、グリセリントリグリシジルエーテル等のグリシジル基含有化合物にα,β−不飽和カルボン酸を付加して得られる化合物、特開昭48−64183号、特公昭49−43191号、特公昭52−30490号各公報に記載されているようなポリエステルアクリレートやポリエステル(メタ)アクリレートオリゴマー類、エポキシ化合物(例えば、ブタンジオール−1,4−ジグリシジルエーテル、シクロヘキサンジメタノールグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ジプロピレングリコールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリトリトールテトラグリシジルエーテル、グリセリントリグリシジルエーテルなど)と(メタ)アクリル酸を反応させたエポキシアクリレート類等の多官能のアクリレートやメタクリレート、日本接着協会誌vol.20、No.7、300〜308ページ(1984年)に記載の光硬化性モノマー及びオリゴマー、アリルエステル(例えば、フタル酸ジアリル、アジピン酸ジアリル、マロン酸ジアリル、ジアリルアミド(例えば、ジアリルアセトアミド等)、カチオン重合性のジビニルエーテル類(例えば、ブタンジオール−1,4−ジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、ジプロピレングリコールジビニルエーテル、ヘキサンジオールジビニルエーテル、トリメチロールプロパントリビニルエーテル、ペンタエリトリトールテトラビニルエーテル、グリセリントリビニルエーテル等)、エポキシ化合物(例えば、ブタンジオール−1,4−ジグリシジルエーテル、シクロヘキサンジメタノールグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ジプロピレングリコールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリトリトールテトラグリシジルエーテル、グリセリントリグリシジルエーテル等)、オキセタン類(例えば、1,4−ビス〔(3−エチルー3−オキセタニルメトキシ)メチル〕ベンゼン等)、エポキシ化合物、オキセタン類(例えば、WO01/22165号公報に記載の化合物)、N−β−ヒドロキシエチル−β−(メタクリルアミド)エチルアクリレート、N,N−ビス(β−メタクリロキシエチル)アクリルアミド、アリルメタクリレート等の異なったエチレン性不飽和二重結合を2個以上有する化合物などが挙げられる。   In addition to the above, as the polymerizable monomer, for example, butanediol-1,4-diglycidyl ether, cyclohexanedimethanol glycidyl ether, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, dipropylene glycol diglycidyl ether, Compound obtained by adding α, β-unsaturated carboxylic acid to glycidyl group-containing compound such as hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether, glycerin triglycidyl ether, Polyester acrylate and polyester (meth) acrylate as described in JP-B-6183, JP-B-49-43191 and JP-B-52-30490. Rate oligomers, epoxy compounds (eg, butanediol-1,4-diglycidyl ether, cyclohexanedimethanol glycidyl ether, diethylene glycol diglycidyl ether, dipropylene glycol diglycidyl ether, hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether , Pentaerythritol tetraglycidyl ether, glycerin triglycidyl ether, etc.) and (meth) acrylic acid and other polyfunctional acrylates and methacrylates such as epoxy acrylates, Journal of Japan Adhesion Association Vol. 20, No. 7, 300-308 Photocurable monomers and oligomers and allyl esters described in page (1984) (eg diallyl phthalate, diallyl adipate, malonic acid) Allyl, diallylamide (eg, diallylacetamide), cationically polymerizable divinyl ethers (eg, butanediol-1,4-divinyl ether, cyclohexanedimethanol divinyl ether, ethylene glycol divinyl ether, diethylene glycol divinyl ether, dipropylene glycol) Divinyl ether, hexanediol divinyl ether, trimethylolpropane trivinyl ether, pentaerythritol tetravinyl ether, glycerin trivinyl ether, etc.), epoxy compounds (eg, butanediol-1,4-diglycidyl ether, cyclohexanedimethanol glycidyl ether, ethylene glycol di) Glycidyl ether, diethylene glycol diglycidyl ether, dipropylene group Recall diglycidyl ether, hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether, glycerin triglycidyl ether, etc.), oxetanes (for example, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) ) Methyl] benzene, etc.), epoxy compounds, oxetanes (for example, compounds described in WO01 / 22165), N-β-hydroxyethyl-β- (methacrylamide) ethyl acrylate, N, N-bis (β- And compounds having two or more different ethylenically unsaturated double bonds, such as methacryloxyethyl) acrylamide and allyl methacrylate.

前記ビニルエステル類としては、例えば、ジビニルサクシネート、ジビニルアジペートなどが挙げられる。   Examples of the vinyl esters include divinyl succinate and divinyl adipate.

これらの多官能モノマー又はオリゴマーは、1種単独で使用してもよく、2種以上を併用してもよい。   These polyfunctional monomers or oligomers may be used alone or in combination of two or more.

前記重合性モノマーは、必要に応じて、分子内に重合性基を1個含有する重合性化合物(単官能モノマー)を併用してもよい。
前記単官能モノマーとしては、例えば、前記バインダーの原料として例示した化合物、特開平6−236031号公報に記載されている2塩基のモノ((メタ)アクリロイルオキシアルキルエステル)モノ(ハロヒドロキシアルキルエステル)等の単官能モノマー(例えば、γ−クロロ−β−ヒドロキシプロピル−β′−メタクリロイルオキシエチル−o−フタレート等)、特許2744643号公報、WO00/52529号パンフレット、特許2548016号公報等に記載の化合物が挙げられる。
If necessary, the polymerizable monomer may be used in combination with a polymerizable compound (monofunctional monomer) containing one polymerizable group in the molecule.
Examples of the monofunctional monomer include the compounds exemplified as the raw material of the binder, and the dibasic mono ((meth) acryloyloxyalkyl ester) mono (halohydroxyalkyl ester) described in JP-A-6-236031. Monofunctional monomers such as γ-chloro-β-hydroxypropyl-β′-methacryloyloxyethyl-o-phthalate, etc., compounds described in Japanese Patent No. 2744443, WO00 / 52529 pamphlet, Japanese Patent No. 2548016, etc. Is mentioned.

前記感光層における重合性化合物の含有量としては、例えば、5〜90質量%が好ましく、15〜60質量%がより好ましく、20〜50質量%が特に好ましい。
前記含有量が、5質量%となると、テント膜の強度が低下することがあり、90質量%を超えると、保存時のエッジフュージョン(ロール端部からのしみだし故障)が悪化することがある。
また、重合性化合物中に前記重合性基を2個以上有する多官能モノマーの含有量としては、5〜100質量%が好ましく、20〜100質量%がより好ましく、40〜100質量%が特に好ましい。
As content of the polymeric compound in the said photosensitive layer, 5-90 mass% is preferable, for example, 15-60 mass% is more preferable, and 20-50 mass% is especially preferable.
If the content is 5% by mass, the strength of the tent film may be reduced, and if it exceeds 90% by mass, edge fusion during storage (exudation failure from the end of the roll) may be deteriorated. .
Moreover, as content of the polyfunctional monomer which has 2 or more of the said polymeric groups in a polymeric compound, 5-100 mass% is preferable, 20-100 mass% is more preferable, 40-100 mass% is especially preferable. .

−光重合開始剤−
前記光重合開始剤としては、前記重合性化合物の重合を開始する能力を有する限り、特に制限はなく、公知の光重合開始剤の中から適宜選択することができるが、例えば、紫外線領域から可視の光線に対して感光性を有するものが好ましく、光励起された増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよく、モノマーの種類に応じてカチオン重合を開始させるような開始剤であってもよい。
また、前記光重合開始剤は、約300〜800nm(より好ましくは330〜500nm)の範囲内に少なくとも約50の分子吸光係数を有する成分を少なくとも1種含有していることが好ましい。
-Photopolymerization initiator-
The photopolymerization initiator is not particularly limited as long as it has the ability to initiate polymerization of the polymerizable compound, and can be appropriately selected from known photopolymerization initiators. For example, it is visible from the ultraviolet region. It is preferable to have photosensitivity to the light of the photocatalyst, and may be an activator that generates an active radical by generating some action with a photoexcited sensitizer, and initiates cationic polymerization depending on the type of monomer. Initiator may be used.
The photopolymerization initiator preferably contains at least one component having a molecular extinction coefficient of at least about 50 within a range of about 300 to 800 nm (more preferably 330 to 500 nm).

前記光重合開始剤としては、例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有するもの、オキサジアゾール骨格を有するもの等)、ビイミダゾール化合物であるヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、メタロセン類などが挙げられる。これらの中でも、感光層の感度、保存性、及び感光層とプリント配線板形成用基板との密着性等の観点から、トリアジン骨格を有するハロゲン化炭化水素、オキシム誘導体、ケトン化合物、ヘキサアリールビイミダゾールが好ましい。   Examples of the photopolymerization initiator include halogenated hydrocarbon derivatives (for example, those having a triazine skeleton, those having an oxadiazole skeleton), hexaarylbiimidazoles that are biimidazole compounds, oxime derivatives, organic peroxidation. Products, thio compounds, ketone compounds, aromatic onium salts, metallocenes and the like. Among these, halogenated hydrocarbons having a triazine skeleton, oxime derivatives, ketone compounds, hexaarylbiimidazoles from the viewpoints of the sensitivity and storage stability of the photosensitive layer and the adhesion between the photosensitive layer and the printed wiring board forming substrate. Is preferred.

前記ヘキサアリールビイミダゾールとしては、例えば、2,2′−ビス(2−クロロフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(o−フロロフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(2−ブロモフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(2,4−ジクロロフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(2−クロロフェニル)−4,4′,5,5′−テトラ(3−メトキシフェニル)ビイミダゾール、2,2′−ビス(2−クロロフェニル)−4,4′,5,5′−テトラ(4−メトキシフェニル)ビイミダゾール、2,2′−ビス(4−メトキシフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(2,4−ジクロロフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(2−ニトロフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(2−メチルフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、2,2′−ビス(2−トリフルオロメチルフェニル)−4,4′,5,5′−テトラフェニルビイミダゾール、WO00/52529号公報に記載の化合物などが挙げられる。   Examples of the hexaarylbiimidazole include 2,2′-bis (2-chlorophenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis (o-fluorophenyl)- 4,4 ', 5,5'-tetraphenylbiimidazole, 2,2'-bis (2-bromophenyl) -4,4', 5,5'-tetraphenylbiimidazole, 2,2'-bis ( 2,4-dichlorophenyl) -4,4 ', 5,5'-tetraphenylbiimidazole, 2,2'-bis (2-chlorophenyl) -4,4', 5,5'-tetra (3-methoxyphenyl) ) Biimidazole, 2,2'-bis (2-chlorophenyl) -4,4 ', 5,5'-tetra (4-methoxyphenyl) biimidazole, 2,2'-bis (4-methoxyphenyl) -4 , 4 ', , 5'-tetraphenylbiimidazole, 2,2'-bis (2,4-dichlorophenyl) -4,4 ', 5,5'-tetraphenylbiimidazole, 2,2'-bis (2-nitrophenyl) -4,4 ', 5,5'-tetraphenylbiimidazole, 2,2'-bis (2-methylphenyl) -4,4', 5,5'-tetraphenylbiimidazole, 2,2'-bis (2-Trifluoromethylphenyl) -4,4 ', 5,5'-tetraphenylbiimidazole, compounds described in WO00 / 52529, and the like.

前記ビイミダゾール類は、例えば、Bull.Chem.Soc.Japan,33,565(1960)、及びJ.Org.Chem,36(16)2262(1971)に開示されている方法により容易に合成することができる。   The biimidazoles are described in, for example, Bull. Chem. Soc. Japan, 33, 565 (1960); Org. It can be easily synthesized by the method disclosed in Chem, 36 (16) 2262 (1971).

トリアジン骨格を有するハロゲン化炭化水素化合物としては、例えば、若林ら著、Bull.Chem.Soc.Japan,42、2924(1969)記載の化合物、英国特許1388492号明細書記載の化合物、特開昭53−133428号公報記載の化合物、独国特許3337024号明細書記載の化合物、F.C.Schaefer等によるJ.Org.Chem.;29、1527(1964)記載の化合物、特開昭62−58241号公報記載の化合物、特開平5−281728号公報記載の化合物、特開平5−34920号公報記載化合物、米国特許第4212976号明細書に記載されている化合物等が挙げられる。   Examples of the halogenated hydrocarbon compound having a triazine skeleton include those described in Wakabayashi et al., Bull. Chem. Soc. Japan, 42, 2924 (1969), a compound described in British Patent 1388492, a compound described in JP-A-53-133428, a compound described in German Patent 3337024, F.I. C. J. Schaefer et al. Org. Chem. 29, 1527 (1964), compounds described in JP-A-62-258241, compounds described in JP-A-5-281728, compounds described in JP-A-5-34920, US Pat. No. 4,221,976 And the compounds described in the book.

前記若林ら著、Bull.Chem.Soc.Japan,42、2924(1969)記載の化合物としては、例えば、2−フェニル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−クロロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−トリル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−メトキシフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,4−ジクロロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2,4,6−トリス(トリクロロメチル)−1,3,5−トリアジン、2−メチル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−n−ノニル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、及び2−(α,α,β−トリクロロエチル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。   Wakabayashi et al., Bull. Chem. Soc. As a compound described in Japan, 42, 2924 (1969), for example, 2-phenyl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-chlorophenyl) -4,6- Bis (trichloromethyl) -1,3,5-triazine, 2- (4-tolyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methoxyphenyl) -4 , 6-Bis (trichloromethyl) -1,3,5-triazine, 2- (2,4-dichlorophenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2,4,6 -Tris (trichloromethyl) -1,3,5-triazine, 2-methyl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2-n-nonyl-4,6-bis (trichloro Methyl) 1,3,5-triazine, and 2-(alpha, alpha, beta-trichloroethyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, and the like.

前記英国特許1388492号明細書記載の化合物としては、例えば、2−スチリル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−メチルスチリル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−メトキシスチリル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−メトキシスチリル)−4−アミノ−6−トリクロロメチル−1,3,5−トリアジンなどが挙げられる。   Examples of the compounds described in the British Patent 1388492 include, for example, 2-styryl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methylstyryl) -4,6- Bis (trichloromethyl) -1,3,5-triazine, 2- (4-methoxystyryl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methoxystyryl)- 4-amino-6-trichloromethyl-1,3,5-triazine and the like can be mentioned.

前記特開昭53−133428号公報記載の化合物としては、例えば、2−(4−メトキシ−ナフト−1−イル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−エトキシ−ナフト−1−イル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−〔4−(2−エトキシエチル)−ナフト−1−イル〕−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4,7−ジメトキシ−ナフト−1−イル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、及び2−(アセナフト−5−イル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。   Examples of the compounds described in JP-A-53-133428 include 2- (4-methoxy-naphth-1-yl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2 -(4-Ethoxy-naphth-1-yl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [4- (2-ethoxyethyl) -naphth-1-yl]- 4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4,7-dimethoxy-naphth-1-yl) -4,6-bis (trichloromethyl) -1,3,5- Examples include triazine and 2- (acenaphtho-5-yl) -4,6-bis (trichloromethyl) -1,3,5-triazine.

前記独国特許3337024号明細書記載の化合物としては、例えば、2−(4−スチリルフェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−メトキシスチリル)フェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(1−ナフチルビニレンフェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−クロロスチリルフェニル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−チオフェン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−チオフェン−3−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−フラン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、及び2−(4−ベンゾフラン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。   Examples of the compound described in the specification of German Patent 3333724 include 2- (4-styrylphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4- (4 -Methoxystyryl) phenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (1-naphthylvinylenephenyl) -4,6-bis (trichloromethyl) -1,3,5 -Triazine, 2-chlorostyrylphenyl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-thiophen-2-vinylenephenyl) -4,6-bis (trichloromethyl)- 1,3,5-triazine, 2- (4-thiophene-3-vinylenephenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-furan-2 Vinylenephenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, and 2- (4-benzofuran-2-vinylenephenyl) -4,6-bis (trichloromethyl) -1,3 5-triazine etc. are mentioned.

前記F.C.Schaefer等によるJ.Org.Chem.;29、1527(1964)記載の化合物としては、例えば、2−メチル−4,6−ビス(トリブロモメチル)−1,3,5−トリアジン、2,4,6−トリス(トリブロモメチル)−1,3,5−トリアジン、2,4,6−トリス(ジブロモメチル)−1,3,5−トリアジン、2−アミノ−4−メチル−6−トリ(ブロモメチル)−1,3,5−トリアジン、及び2−メトキシ−4−メチル−6−トリクロロメチル−1,3,5−トリアジンなどが挙げられる。   F. above. C. J. Schaefer et al. Org. Chem. 29, 1527 (1964) include, for example, 2-methyl-4,6-bis (tribromomethyl) -1,3,5-triazine, 2,4,6-tris (tribromomethyl); -1,3,5-triazine, 2,4,6-tris (dibromomethyl) -1,3,5-triazine, 2-amino-4-methyl-6-tri (bromomethyl) -1,3,5- Examples include triazine and 2-methoxy-4-methyl-6-trichloromethyl-1,3,5-triazine.

前記特開昭62−58241号公報記載の化合物としては、例えば、2−(4−フェニルエチニルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−ナフチル−1−エチニルフェニル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−トリルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−メトキシフェニル)エチニルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−イソプロピルフェニルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−エチルフェニルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。   Examples of the compounds described in JP-A-62-258241 include 2- (4-phenylethynylphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4- Naphthyl-1-ethynylphenyl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4- (4-tolylethynyl) phenyl) -4,6-bis (trichloromethyl) -1 , 3,5-triazine, 2- (4- (4-methoxyphenyl) ethynylphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4- (4-isopropylphenyl) Ethynyl) phenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4- (4-ethylphenylethynyl) phenyl) -4,6-bis (trichloromethyl) Le) -1,3,5-triazine.

前記特開平5−281728号公報記載の化合物としては、例えば、2−(4−トリフルオロメチルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジフルオロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジクロロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジブロモフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。   Examples of the compound described in JP-A-5-281728 include 2- (4-trifluoromethylphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (2, 6-difluorophenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (2,6-dichlorophenyl) -4,6-bis (trichloromethyl) -1,3,5- Examples include triazine, 2- (2,6-dibromophenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine.

前記特開平5−34920号公報記載化合物としては、例えば、2,4−ビス(トリクロロメチル)−6−[4−(N,N−ジエトキシカルボニルメチルアミノ)−3−ブロモフェニル]−1,3,5−トリアジン、米国特許第4239850号明細書に記載されているトリハロメチル−s−トリアジン化合物、更に2,4,6−トリス(トリクロロメチル)−s−トリアジン、2−(4−クロロフェニル)−4,6−ビス(トリブロモメチル)−s−トリアジンなどが挙げられる。   Examples of the compound described in JP-A-5-34920 include 2,4-bis (trichloromethyl) -6- [4- (N, N-diethoxycarbonylmethylamino) -3-bromophenyl] -1, 3,5-triazine, trihalomethyl-s-triazine compounds described in US Pat. No. 4,239,850, 2,4,6-tris (trichloromethyl) -s-triazine, 2- (4-chlorophenyl) Examples include -4,6-bis (tribromomethyl) -s-triazine.

前記米国特許第4212976号明細書に記載されている化合物としては、例えば、オキサジアゾール骨格を有する化合物(例えば、2−トリクロロメチル−5−フェニル−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−クロロフェニル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(1−ナフチル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(2−ナフチル)−1,3,4−オキサジアゾール、2−トリブロモメチル−5−フェニル−1,3,4−オキサジアゾール、2−トリブロモメチル−5−(2−ナフチル)−1,3,4−オキサジアゾール;2−トリクロロメチル−5−スチリル−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−クロロスチリル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−メトキシスチリル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(1−ナフチル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−n−ブトキシスチリル)−1,3,4−オキサジアゾール、2−トリプロメメチル−5−スチリル−1,3,4−オキサジアゾール等)などが挙げられる。   Examples of the compound described in US Pat. No. 4,221,976 include compounds having an oxadiazole skeleton (for example, 2-trichloromethyl-5-phenyl-1,3,4-oxadiazole, 2- Trichloromethyl-5- (4-chlorophenyl) -1,3,4-oxadiazole, 2-trichloromethyl-5- (1-naphthyl) -1,3,4-oxadiazole, 2-trichloromethyl-5 -(2-naphthyl) -1,3,4-oxadiazole, 2-tribromomethyl-5-phenyl-1,3,4-oxadiazole, 2-tribromomethyl-5- (2-naphthyl) -1,3,4-oxadiazole; 2-trichloromethyl-5-styryl-1,3,4-oxadiazole, 2-trichloromethyl-5- (4-chlorostyryl) -1,3,4-oxadiazole, 2-trichloromethyl-5- (4-methoxystyryl) -1,3,4-oxadiazole, 2-trichloromethyl-5- (1-naphthyl) -1, 3,4-oxadiazole, 2-trichloromethyl-5- (4-n-butoxystyryl) -1,3,4-oxadiazole, 2-tripromemethyl-5-styryl-1,3,4 Oxadiazole and the like).

本発明で好適に用いられるオキシム誘導体としては、例えば、下記構造式(44)〜(77)で表される化合物が挙げられる。   Examples of the oxime derivative suitably used in the present invention include compounds represented by the following structural formulas (44) to (77).

前記ケトン化合物としては、例えば、ベンゾフェノン、2−メチルベンゾフェノン、3−メチルベンゾフェノン、4−メチルベンゾフェノン、4−メトキシベンゾフェノン、2−クロロベンゾフェノン、4−クロロベンゾフェノン、4−ブロモベンゾフェノン、2−カルボキシベンゾフェノン、2−エトキシカルボニルベンゾルフェノン、ベンゾフェノンテトラカルボン酸又はそのテトラメチルエステル、4,4’−ビス(ジアルキルアミノ)ベンゾフェノン類(例えば、4,4’−ビス(ジメチルアミノ)ベンゾフェノン、4,4’−ビスジシクロヘキシルアミノ)ベンゾフェノン、4,4’−ビス(ジエチルアミノ)ベンゾフェノン、4,4’−ビス(ジヒドロキシエチルアミノ)ベンゾフェノン、4−メトキシ−4’−ジメチルアミノベンゾフェノン、4,4’−ジメトキシベンゾフェノン、4−ジメチルアミノベンゾフェノン、4−ジメチルアミノアセトフェノン、ベンジル、アントラキノン、2−tert−ブチルアントラキノン、2−メチルアントラキノン、フェナントラキノン、キサントン、チオキサントン、2−クロロチオキサントン、2,4−ジエチルチオキサントン、フルオレノン、2−ベンジル−ジメチルアミノ−1−(4−モルホリノフェニル)−1−ブタノン、2−メチル−1−〔4−(メチルチオ)フェニル〕−2−モルホリノ−1−プロパノン、2−ヒドロキシー2−メチル−〔4−(1−メチルビニル)フェニル〕プロパノールオリゴマー、ベンゾイン、ベンゾインエーテル類(例えば、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインフェニルエーテル、ベンジルジメチルケタール)、アクリドン、クロロアクリドン、N−メチルアクリドン、N−ブチルアクリドン、N−ブチル−クロロアクリドンなどが挙げられる。   Examples of the ketone compound include benzophenone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 4-methoxybenzophenone, 2-chlorobenzophenone, 4-chlorobenzophenone, 4-bromobenzophenone, 2-carboxybenzophenone, 2-ethoxycarbonylbenzolphenone, benzophenonetetracarboxylic acid or tetramethyl ester thereof, 4,4′-bis (dialkylamino) benzophenone (for example, 4,4′-bis (dimethylamino) benzophenone, 4,4′- Bisdicyclohexylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone, 4,4′-bis (dihydroxyethylamino) benzophenone, 4-methoxy-4′-dimethylamino Nzophenone, 4,4'-dimethoxybenzophenone, 4-dimethylaminobenzophenone, 4-dimethylaminoacetophenone, benzyl, anthraquinone, 2-tert-butylanthraquinone, 2-methylanthraquinone, phenanthraquinone, xanthone, thioxanthone, 2-chloro Thioxanthone, 2,4-diethylthioxanthone, fluorenone, 2-benzyl-dimethylamino-1- (4-morpholinophenyl) -1-butanone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino- 1-propanone, 2-hydroxy-2-methyl- [4- (1-methylvinyl) phenyl] propanol oligomer, benzoin, benzoin ethers (for example, benzoin methyl ether, benzoin ethyl ether, Emission zone in propyl ether, benzoin isopropyl ether, benzoin phenyl ether, benzyl dimethyl ketal), acridone, chloro acridone, N- methyl acridone, N- butyl acridone, N- butyl - such as chloro acrylic pyrrolidone.

前記メタロセン類としては、例えば、ビス(η5−2,4−シクロペンタジエン−1−イル)−ビス(2,6−ジフロロ−3−(1H−ピロール−1−イル)−フェニル)チタニウム、η5−シクロペンタジエニル−η6−クメニル−アイアン(1+)−ヘキサフロロホスフェート(1−)、特開昭53−133428号公報、特公昭57−1819号公報、同57−6096号公報、及び米国特許第3615455号明細書に記載された化合物などが挙げられる。   Examples of the metallocenes include bis (η5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium, η5- Cyclopentadienyl-η6-cumenyl-iron (1 +)-hexafluorophosphate (1-), JP-A-53-133428, JP-B-57-1819, JP-A-57-6096, and US Pat. Examples thereof include compounds described in the specification of 3615455.

また、上記以外の光重合開始剤として、アクリジン誘導体(例えば、9−フェニルアクリジン、1,7−ビス(9、9’−アクリジニル)ヘプタン等)、N−フェニルグリシン等、ポリハロゲン化合物(例えば、四臭化炭素、フェニルトリブロモメチルスルホン、フェニルトリクロロメチルケトン等)、クマリン類(例えば、3−(2−ベンゾフロイル)−7−ジエチルアミノクマリン、3−(2−ベンゾフロイル)−7−(1−ピロリジニル)クマリン、3−ベンゾイル−7−ジエチルアミノクマリン、3−(2−メトキシベンゾイル)−7−ジエチルアミノクマリン、3−(4−ジメチルアミノベンゾイル)−7−ジエチルアミノクマリン、3,3’−カルボニルビス(5,7−ジ−n−プロポキシクマリン)、3,3’−カルボニルビス(7−ジエチルアミノクマリン)、3−ベンゾイル−7−メトキシクマリン、3−(2−フロイル)−7−ジエチルアミノクマリン、3−(4−ジエチルアミノシンナモイル)−7−ジエチルアミノクマリン、7−メトキシ−3−(3−ピリジルカルボニル)クマリン、3−ベンゾイル−5,7−ジプロポキシクマリン、7−ベンゾトリアゾール−2−イルクマリン、また、特開平5-19475号、特開平7-271028号、特開2002-363206号、特開2002-363207号、特開2002-363208号、特開2002-363209号公報等に記載のクマリン化合物など)、アミン類(例えば、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸n−ブチル、4−ジメチルアミノ安息香酸フェネチル、4−ジメチルアミノ安息香酸2−フタルイミドエチル、4−ジメチルアミノ安息香酸2−メタクリロイルオキシエチル、ペンタメチレンビス(4−ジメチルアミノベンゾエート)、3−ジメチルアミノ安息香酸のフェネチル、ペンタメチレンエステル、4−ジメチルアミノベンズアルデヒド、2−クロロ4−ジメチルアミノベンズアルデヒド、4−ジメチルアミノベンジルアルコール、エチル(4−ジメチルアミノベンゾイル)アセテート、4−ピペリジノアセトフェノン、4−ジメチルアミノベンゾイン、N,N−ジメチル−4−トルイジン、N,N−ジエチル−3−フェネチジン、トリベンジルアミン、ジベンジルフェニルアミン、N−メチル−N−フェニルベンジルアミン、4−ブロム−N,N−ジメチルアニリン、トリドデシルアミン、アミノフルオラン類(ODB,ODBII等)、クリスタルバイオレットラクトン、ロイコクリスタルバイオレット等)、アシルホスフィンオキシド類(例えば、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキシド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフェニルホスフィンオキシド、LucirinTPOなど)などが挙げられる。   Further, as photopolymerization initiators other than the above, acridine derivatives (for example, 9-phenylacridine, 1,7-bis (9,9′-acridinyl) heptane, etc.), N-phenylglycine, and the like, polyhalogen compounds (for example, Carbon tetrabromide, phenyltribromomethylsulfone, phenyltrichloromethylketone, etc.), coumarins (for example, 3- (2-benzofuroyl) -7-diethylaminocoumarin, 3- (2-benzofuroyl) -7- (1-pyrrolidinyl) ) Coumarin, 3-benzoyl-7-diethylaminocoumarin, 3- (2-methoxybenzoyl) -7-diethylaminocoumarin, 3- (4-dimethylaminobenzoyl) -7-diethylaminocoumarin, 3,3′-carbonylbis (5 , 7-di-n-propoxycoumarin), 3,3′-carbonylbis (7-diethylaminocoumarin), 3-benzoyl-7-methoxycoumarin, 3- (2-furoyl) -7-diethylaminocoumarin, 3- (4-diethylaminocinnamoyl) -7-diethylaminocoumarin, 7-methoxy-3- (3-pyridylcarbonyl) coumarin, 3-benzoyl-5,7-dipropoxycoumarin, 7-benzotriazol-2-ylcoumarin, JP-A-5-19475, JP-A-7-271028, JP-A-2002-363206 No., JP-A-2002-363207, JP-A-2002-363208, JP-A-2002-363209, etc.), amines (for example, ethyl 4-dimethylaminobenzoate, 4-dimethylaminobenzoate) N-butyl acid, 4-dimethylaminobenzoic acid phenethyl, 4-dimethyl 2-phthalimidoethyl tilaminobenzoate, 2-methacryloyloxyethyl 4-dimethylaminobenzoate, pentamethylenebis (4-dimethylaminobenzoate), phenethyl of 3-dimethylaminobenzoic acid, pentamethylene ester, 4-dimethylaminobenzaldehyde, 2-chloro-4-dimethylaminobenzaldehyde, 4-dimethylaminobenzyl alcohol, ethyl (4-dimethylaminobenzoyl) acetate, 4-piperidinoacetophenone, 4-dimethylaminobenzoin, N, N-dimethyl-4-toluidine, N , N-diethyl-3-phenetidine, tribenzylamine, dibenzylphenylamine, N-methyl-N-phenylbenzylamine, 4-bromo-N, N-dimethylaniline, tridodecylamine, amino Fluorans (ODB, ODBII, etc.), crystal violet lactone, leuco crystal violet, etc.), acylphosphine oxides (for example, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) ) -2,4,4-trimethyl-pentylphenylphosphine oxide, Lucirin TPO, etc.).

更に、米国特許第2367660号明細書に記載されているビシナルポリケタルドニル化合物、米国特許第2448828号明細書に記載されているアシロインエーテル化合物、米国特許第2722512号明細書に記載されているα−炭化水素で置換された芳香族アシロイン化合物、米国特許第3046127号明細書及び同第2951758号明細書に記載の多核キノン化合物、特開2002−229194号公報に記載の有機ホウ素化合物、ラジカル発生剤、トリアリールスルホニウム塩(例えば、ヘキサフロロアンチモンやヘキサフロロホスフェートとの塩)、ホスホニウム塩化合物(例えば、(フェニルチオフェニル)ジフェニルスルホニウム塩等)(カチオン重合開始剤として有効)、WO01/71428号公報記載のオニウム塩化合物などが挙げられる。   Further, vicinal polyketaldonyl compounds described in US Pat. No. 2,367,660, acyloin ether compounds described in US Pat. No. 2,448,828, and US Pat. No. 2,722,512 are described. An aromatic acyloin compound substituted with α-hydrocarbon, a polynuclear quinone compound described in US Pat. Nos. 3,046,127 and 2,951,758, an organoboron compound described in JP-A-2002-229194, and a radical Generator, triarylsulfonium salt (for example, salt with hexafluoroantimony or hexafluorophosphate), phosphonium salt compound (for example, (phenylthiophenyl) diphenylsulfonium salt, etc.) (effective as a cationic polymerization initiator), WO01 / 71428 Onium Such compounds.

前記光重合開始剤は、1種単独で使用してもよく、2種以上を併用してもよい。2種以上の組合せとしては、例えば、米国特許第3549367号明細書に記載のヘキサアリールビイミダゾールと4−アミノケトン類との組合せ、特公昭51−48516号公報に記載のベンゾチアゾール化合物とトリハロメチル−s−トリアジン化合物の組合せ、また、芳香族ケトン化合物(例えば、チオキサントン等)と水素供与体(例えば、ジアルキルアミノ含有化合物、フェノール化合物等)の組合せ、ヘキサアリールビイミダゾールとチタノセンとの組合せ、クマリン類とチタノセンとフェニルグリシン類との組合せなどが挙げられる。   The said photoinitiator may be used individually by 1 type, and may use 2 or more types together. Examples of combinations of two or more include, for example, a combination of hexaarylbiimidazole and 4-aminoketone described in US Pat. No. 3,549,367, a benzothiazole compound described in Japanese Patent Publication No. 51-48516, and trihalomethyl- Combinations of s-triazine compounds, combinations of aromatic ketone compounds (such as thioxanthone) and hydrogen donors (such as dialkylamino-containing compounds and phenol compounds), combinations of hexaarylbiimidazole and titanocene, coumarins And a combination of titanocene and phenylglycines.

前記感光層における光重合開始剤の含有量としては、0.1〜30質量%が好ましく、0.5〜20質量%がより好ましく、0.5〜15質量%が特に好ましい。   As content of the photoinitiator in the said photosensitive layer, 0.1-30 mass% is preferable, 0.5-20 mass% is more preferable, 0.5-15 mass% is especially preferable.

−増感剤−
本発明のパターン形成材料は、前記感光層を露光し現像する場合において、該感光層の露光する部分の厚みを該現像の前後において変化させない前記光の最小エネルギー(感度)を向上させる観点から、例えば、前記増感剤を併用することが特に好ましい。前記増感剤を併用することにより、例えば、前記感光層の感度を0.1〜10(mJ/cm)に極めて容易に調整することもできる。
-Sensitizer-
In the case of exposing and developing the photosensitive layer, the pattern forming material of the present invention, from the viewpoint of improving the minimum energy (sensitivity) of the light that does not change the thickness of the exposed portion of the photosensitive layer before and after the development, For example, it is particularly preferable to use the sensitizer together. By using the sensitizer together, for example, the sensitivity of the photosensitive layer can be very easily adjusted to 0.1 to 10 (mJ / cm 2 ).

前記増感剤としては、特に制限はなく、前記光照射手段(例えば、可視光線や紫外光・可視光レーザ等)に合わせて適宜選択することができる。前記光照射手段として380〜420nmのレーザに合わせると、極大吸収波長が380〜450nmである増感剤が好ましい。
前記増感剤は、活性エネルギー線により励起状態となり、他の物質(例えば、ラジカル発生剤、酸発生剤等)と相互作用(例えば、エネルギー移動、電子移動等)することにより、ラジカルや酸等の有用基を発生することが可能である。
There is no restriction | limiting in particular as said sensitizer, According to the said light irradiation means (For example, visible light, an ultraviolet light, visible light laser etc.), it can select suitably. When the light irradiation means is combined with a laser of 380 to 420 nm, a sensitizer having a maximum absorption wavelength of 380 to 450 nm is preferable.
The sensitizer is excited by active energy rays and interacts with other substances (for example, radical generator, acid generator, etc.) (for example, energy transfer, electron transfer, etc.), thereby generating radicals, acids, etc. It is possible to generate a useful group of

前記増感剤としては、特に制限はなく、公知の増感剤の中から適宜選択することができるが、例えば、公知の多核芳香族類(例えば、ピレン、ペリレン、トリフェニレン)、キサンテン類(例えば、フルオレセイン、エオシン、エリスロシン、ローダミンB、ローズベンガル)、シアニン類(例えば、インドカルボシアニン、チアカルボシアニン、オキサカルボシアニン)、メロシアニン類(例えば、メロシアニン、カルボメロシアニン)、チアジン類(例えば、チオニン、メチレンブルー、トルイジンブルー)、アクリジン類(例えば、アクリジンオレンジ、クロロフラビン、アクリフラビン、9−フェニルアクリジン、1,7−ビス(9,9’−アクリジニル)ヘプタン)、アントラキノン類(例えば、アントラキノン)、スクアリウム類(例えば、スクアリウム)、アクリドン類(例えば、アクリドン、クロロアクリドン、N−メチルアクリドン、N−ブチルアクリドン、N−ブチル−クロロアクリドン、2−クロロ−10−ブチルアクリドン等)、クマリン類(例えば、3−(2−ベンゾフロイル)−7−ジエチルアミノクマリン、3−(2−ベンゾフロイル)−7−(1−ピロリジニル)クマリン、3−ベンゾイル−7−ジエチルアミノクマリン、3−(2−メトキシベンゾイル)−7−ジエチルアミノクマリン、3−(4−ジメチルアミノベンゾイル)−7−ジエチルアミノクマリン、3,3’−カルボニルビス(5,7−ジ−n−プロポキシクマリン)、3,3’−カルボニルビス(7−ジエチルアミノクマリン)、3−ベンゾイル−7−メトキシクマリン、3−(2−フロイル)−7−ジエチルアミノクマリン、3−(4−ジエチルアミノシンナモイル)−7−ジエチルアミノクマリン、7−メトキシ−3−(3−ピリジルカルボニル)クマリン、3−ベンゾイル−5,7−ジプロポキシクマリン等があげられ、他に特開平5−19475号、特開平7−271028号、特開2002−363206号、特開2002−363207号、特開2002−363208号、特開2002−363209号等の各公報に記載のクマリン化合物など)が挙げられ、これらの中でも、芳香族環や複素環が縮環した化合物(縮環系化合物)が好ましく、縮環系ケトン化合物(アクリドン類、クマリン類)、及びアクリジン類がより好ましい。   The sensitizer is not particularly limited and may be appropriately selected from known sensitizers. For example, known polynuclear aromatics (for example, pyrene, perylene, triphenylene), xanthenes (for example, , Fluorescein, eosin, erythrosine, rhodamine B, rose bengal), cyanines (eg, indocarbocyanine, thiacarbocyanine, oxacarbocyanine), merocyanines (eg, merocyanine, carbomerocyanine), thiazines (eg, thionine, Methylene blue, toluidine blue), acridines (for example, acridine orange, chloroflavin, acriflavine, 9-phenylacridine, 1,7-bis (9,9′-acridinyl) heptane), anthraquinones (for example, anthraquinone), squalium (For example, squalium), acridones (for example, acridone, chloroacridone, N-methylacridone, N-butylacridone, N-butyl-chloroacridone, 2-chloro-10-butylacridone, etc.), coumarin (Eg, 3- (2-benzofuroyl) -7-diethylaminocoumarin, 3- (2-benzofuroyl) -7- (1-pyrrolidinyl) coumarin, 3-benzoyl-7-diethylaminocoumarin, 3- (2-methoxybenzoyl) ) -7-diethylaminocoumarin, 3- (4-dimethylaminobenzoyl) -7-diethylaminocoumarin, 3,3′-carbonylbis (5,7-di-n-propoxycoumarin), 3,3′-carbonylbis ( 7-diethylaminocoumarin), 3-benzoyl-7-methoxycoumarin, 3- ( -Furoyl) -7-diethylaminocoumarin, 3- (4-diethylaminocinnamoyl) -7-diethylaminocoumarin, 7-methoxy-3- (3-pyridylcarbonyl) coumarin, 3-benzoyl-5,7-dipropoxycoumarin, etc. In addition, JP-A-5-19475, JP-A-7-271028, JP-A-2002-363206, JP-A-2002-363207, JP-A-2002-363208, JP-A-2002-363209, etc. And the like. Among these, compounds having condensed aromatic rings or heterocyclic rings (condensed compounds) are preferable, condensed ketone compounds (acridones, coumarins), and Acridines are more preferred.

前記光重合開始剤と前記増感剤との組合せとしては、例えば、特開2001−305734号公報に記載の電子移動型開始系[(1)電子供与型開始剤及び増感色素、(2)電子受容型開始剤及び増感色素、(3)電子供与型開始剤、増感色素及び電子受容型開始剤(三元開始系)]などの組合せが挙げられる。   Examples of the combination of the photopolymerization initiator and the sensitizer include, for example, an electron transfer start system described in JP-A-2001-305734 [(1) an electron donating initiator and a sensitizing dye, (2) A combination of an electron-accepting initiator and a sensitizing dye, (3) an electron-donating initiator, a sensitizing dye and an electron-accepting initiator (ternary initiation system)], and the like.

前記増感剤の含有量としては、後述するパターン形成用樹脂組成物の全成分に対し、0.01〜4質量%が好ましく、0.02〜2質量%がより好ましく、0.05〜1質量%が特に好ましい。
前記含有量が、0.01質量%未満となると、感度が低下することがあり、4質量%を超えると、パターンの形状が悪化することがある。
As content of the said sensitizer, 0.01-4 mass% is preferable with respect to all the components of the resin composition for pattern formation mentioned later, 0.02-2 mass% is more preferable, 0.05-1 Mass% is particularly preferred.
When the content is less than 0.01% by mass, the sensitivity may decrease, and when it exceeds 4% by mass, the shape of the pattern may be deteriorated.

−その他の成分−
前記その他の成分としては、例えば、界面活性剤、可塑剤、発色剤、着色剤などが挙げられ、更に基体表面への密着促進剤及びその他の助剤類(例えば、顔料、導電性粒子、充填剤、消泡剤、難燃剤、レベリング剤、剥離促進剤、酸化防止剤、香料、熱架橋剤、表面張力調整剤等)を併用してもよい。また、これらの成分を適宜含有させることにより、目的とする感光性組成物の安定性、写真性、焼きだし性、膜物性等の性質を調整することもできる。
-Other ingredients-
Examples of the other components include surfactants, plasticizers, color formers, colorants, and the like, and adhesion promoters to the substrate surface and other auxiliary agents (for example, pigments, conductive particles, fillers). Agents, antifoaming agents, flame retardants, leveling agents, peeling accelerators, antioxidants, fragrances, thermal crosslinking agents, surface tension modifiers, etc.) may be used in combination. In addition, by appropriately containing these components, properties such as stability, photographic properties, print-out properties, and film physical properties of the intended photosensitive composition can be adjusted.

−−可塑剤−−
前記可塑剤は、前記感光層の膜物性(可撓性)をコントロールするために添加してもよい。
前記可塑剤としては、例えば、ジメチルフタレート、ジブチルフタレート、ジイソブチルフタレート、ジヘプチルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジトリデシルフタレート、ブチルベンジルフタレート、ジイソデシルフタレート、ジフェニルフタレート、ジアリルフタレート、オクチルカプリールフタレート等のフタル酸エステル類;トリエチレングリコールジアセテート、テトラエチレングリコールジアセテート、ジメチルグリコースフタレート、エチルフタリールエチルグリコレート、メチルフタリールエチルグリコレート、ブチルフタリールブチルグリコレート、トリエチレングリコールジカブリル酸エステル等のグリコールエステル類;トリクレジルホスフェート、トリフェニルホスフェート等のリン酸エステル類;4−トルエンスルホンアミド、ベンゼンスルホンアミド、N−n−ブチルベンゼンスルホンアミド、N−n−ブチルアセトアミド等のアミド類;ジイソブチルアジペート、ジオクチルアジペート、ジメチルセバケート、ジブチルセパケート、ジオクチルセパケート、ジオクチルアゼレート、ジブチルマレート等の脂肪族二塩基酸エステル類;クエン酸トリエチル、クエン酸トリブチル、グリセリントリアセチルエステル、ラウリン酸ブチル、4,5−ジエポキシシクロヘキサン−1,2−ジカルボン酸ジオクチル等、ポリエチレングリコール、ポリプロピレングリコール等のグリコール類が挙げられる。
--Plasticizer--
The plasticizer may be added to control film physical properties (flexibility) of the photosensitive layer.
Examples of the plasticizer include dimethyl phthalate, dibutyl phthalate, diisobutyl phthalate, diheptyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, ditridecyl phthalate, butyl benzyl phthalate, diisodecyl phthalate, diphenyl phthalate, diallyl phthalate, octyl capryl phthalate, and the like. Phthalic acid esters: Triethylene glycol diacetate, tetraethylene glycol diacetate, dimethylglycol phthalate, ethyl phthalyl ethyl glycolate, methyl phthalyl ethyl glycolate, butyl phthalyl butyl glycolate, triethylene glycol dicabrylate, etc. Glycol esters of tricresyl phosphate, triphenyl phosphate, etc. Acid esters; 4-toluenesulfonamide, benzenesulfonamide, Nn-butylbenzenesulfonamide, amides such as Nn-butylacetamide; diisobutyl adipate, dioctyl adipate, dimethyl sebacate, dibutyl sepacate, dioctyl Aliphatic dibasic acid esters such as sepacate, dioctyl azelate, dibutyl malate; triethyl citrate, tributyl citrate, glycerin triacetyl ester, butyl laurate, 4,5-diepoxycyclohexane-1,2-dicarboxylic acid Examples include glycols such as dioctyl acid, polyethylene glycol, and polypropylene glycol.

前記可塑剤の含有量としては、前記感光層の全成分に対して0.1〜50質量%が好ましく、0.5〜40質量%がより好ましく、1〜30質量%が特に好ましい。   As content of the said plasticizer, 0.1-50 mass% is preferable with respect to all the components of the said photosensitive layer, 0.5-40 mass% is more preferable, 1-30 mass% is especially preferable.

−−発色剤−−
前記発色剤は、露光後の前記感光層に可視像を与える(焼きだし機能)ために添加してもよい。
前記発色剤としては、例えば、トリス(4−ジメチルアミノフェニル)メタン(ロイコクリスタルバイオレット)、トリス(4−ジエチルアミノフェニル)メタン、トリス(4−ジメチルアミノ−2−メチルフェニル)メタン、トリス(4−ジエチルアミノ−2−メチルフェニル)メタン、ビス(4−ジブチルアミノフェニル)−〔4−(2−シアノエチル)メチルアミノフェニル〕メタン、ビス(4−ジメチルアミノフェニル)−2−キノリルメタン、トリス(4−ジプロピルアミノフェニル)メタン等のアミノトリアリールメタン類;3,6−ビス(ジメチルアミノ)−9−フェニルキサンチン、3−アミノ−6−ジメチルアミノ−2−メチル−9−(2−クロロフェニル)キサンチン等のアミノキサンチン類;3,6−ビス(ジエチルアミノ)−9−(2−エトキシカルボニルフェニル)チオキサンテン、3,6−ビス(ジメチルアミノ)チオキサンテン等のアミノチオキサンテン類;3,6−ビス(ジエチルアミノ)−9,10−ジヒドロ−9−フェニルアクリジン、3,6−ビス(ベンジルアミノ)−9,10−ジビドロ−9−メチルアクリジン等のアミノ−9,10−ジヒドロアクリジン類;3,7−ビス(ジエチルアミノ)フェノキサジン等のアミノフェノキサジン類;3,7−ビス(エチルアミノ)フェノチアゾン等のアミノフェノチアジン類;3,7−ビス(ジエチルアミノ)−5−ヘキシル−5,10−ジヒドロフェナジン等のアミノジヒドロフェナジン類;ビス(4−ジメチルアミノフェニル)アニリノメタン等のアミノフェニルメタン類;4−アミノ−4’−ジメチルアミノジフェニルアミン、4−アミノ−α、β−ジシアノヒドロケイ皮酸メチルエステル等のアミノヒドロケイ皮酸類;1−(2−ナフチル)−2−フェニルヒドラジン等のヒドラジン類;1,4−ビス(エチルアミノ)−2,3−ジヒドロアントラキノン類のアミノ−2,3−ジヒドロアントラキノン類;N,N−ジエチル−4−フェネチルアニリン等のフェネチルアニリン類;10−アセチル−3,7−ビス(ジメチルアミノ)フェノチアジン等の塩基性NHを含むロイコ色素のアシル誘導体;トリス(4−ジエチルアミノ−2−トリル)エトキシカルボニルメンタン等の酸化しうる水素をもつていないが、発色化合物に酸化しうるロイコ様化合物;ロイコインジゴイド色素;米国特許3,042,515号及び同第3,042,517号に記載されているような発色形に酸化しうるような有機アミン類(例、4,4’−エチレンジアミン、ジフェニルアミン、N,N−ジメチルアニリン、4,4’−メチレンジアミントリフェニルアミン、N−ビニルカルバゾール)が挙げられ、これらの中でも、ロイコクリスタルバイオレット等のトリアリールメタン系化合物が好ましい。
--Coloring agent--
The color former may be added to give a visible image (printing function) to the photosensitive layer after exposure.
Examples of the color former include tris (4-dimethylaminophenyl) methane (leuco crystal violet), tris (4-diethylaminophenyl) methane, tris (4-dimethylamino-2-methylphenyl) methane, tris (4- Diethylamino-2-methylphenyl) methane, bis (4-dibutylaminophenyl)-[4- (2-cyanoethyl) methylaminophenyl] methane, bis (4-dimethylaminophenyl) -2-quinolylmethane, tris (4-di Aminotriarylmethanes such as propylaminophenyl) methane; 3,6-bis (dimethylamino) -9-phenylxanthine, 3-amino-6-dimethylamino-2-methyl-9- (2-chlorophenyl) xanthine, etc. Aminoxanthines; 3,6-bis (diethyl Aminothioxanthenes such as mino) -9- (2-ethoxycarbonylphenyl) thioxanthene and 3,6-bis (dimethylamino) thioxanthene; 3,6-bis (diethylamino) -9,10-dihydro-9- Amino-9,10-dihydroacridine such as phenylacridine, 3,6-bis (benzylamino) -9,10-dividro-9-methylacridine; aminophenoxazine such as 3,7-bis (diethylamino) phenoxazine Aminophenothiazines such as 3,7-bis (ethylamino) phenothiazone; aminodihydrophenazines such as 3,7-bis (diethylamino) -5-hexyl-5,10-dihydrophenazine; bis (4-dimethylamino) Aminophenylmethanes such as phenyl) anilinomethane; 4-amino-4 ′ Aminohydrocinnamic acids such as dimethylaminodiphenylamine, 4-amino-α, β-dicyanohydrocinnamic acid methyl ester; hydrazines such as 1- (2-naphthyl) -2-phenylhydrazine; 1,4-bis ( Ethylamino) -2,3-dihydroanthraquinones amino-2,3-dihydroanthraquinones; phenethylanilines such as N, N-diethyl-4-phenethylaniline; 10-acetyl-3,7-bis (dimethylamino) ) An acyl derivative of a leuco dye containing basic NH such as phenothiazine; a leuco-like compound which does not have an oxidizable hydrogen such as tris (4-diethylamino-2-tolyl) ethoxycarbonylmentane but can be oxidized to a coloring compound; Leucoin digoid pigment; U.S. Pat. Nos. 3,042,515 and 3,042 Organic amines that can be oxidized to a colored form as described in No. 517 (eg, 4,4′-ethylenediamine, diphenylamine, N, N-dimethylaniline, 4,4′-methylenediamine triphenylamine, N-vinylcarbazole), and among these, triarylmethane compounds such as leuco crystal violet are preferable.

更に、前記発色剤は、前記ロイコ体を発色させるためなどの目的で、ハロゲン化合物と組み合わせることが一般に知られている。
前記ハロゲン化合物としては、例えば、ハロゲン化炭化水素(例えば、四臭化炭素、ヨードホルム、臭化エチレン、臭化メチレン、臭化アミル、臭化イソアミル、ヨウ化アミル、臭化イソブチレン、ヨウ化ブチル、臭化ジフェニルメチル、ヘキサクロロエタン、1,2−ジブロモエタン、1,1,2,2−テトラブロモエタン、1,2−ジブロモ−1,1,2−トリクロロエタン、1,2,3−トリブロモプロパン、1−ブロモ−4−クロロブタン、1,2,3,4−テトラブロモブタン、テトラクロロシクロプロペン、ヘキサクロロシクロペンタジエン、ジブロモシキロヘキサン、1,1,1−トリクロロ−2,2−ビス(4−クロロフェニル)エタンなど);ハロゲン化アルコール化合物(例えば、2,2,2−トリクロロエタノール、トリブロモエタノール、1,3−ジクロロ−2−プロパノール、1,1,1−トリクロロ−2−プロパノール、ジ(ヨードヘキサメチレン)アミノイソプロパノール、トリブロモ−tert−ブチルアルコール、2,2,3−トリクロロブタン−1,4−ジオールなど);ハロゲン化カルボニル化合物(例えば1,1−ジクロロアセトン、1,3−ジクロロアセトン、ヘキサクロロアセトン、ヘキサブロモアセトン、1,1,3,3−テトラクロロアセトン、1,1,1−トリクロロアセトン、3,4−ジブロモ−2−ブタノン、1,4−ジクロロ−2−ブタノン−ジブロモシクロヘキサノン等);ハロゲン化エーテル化合物(例えば2−ブロモエチルメチルエーテル、2−ブロモエチルエチルエーテル、ジ(2−ブロモエチル)エーテル、1,2−ジクロロエチルエチルエーテル等);ハロゲン化エステル化合物(例えば、酢酸ブロモエチル、トリクロロ酢酸エチル、トリクロロ酢酸トリクロロエチル、2,3−ジブロモプロピルアクリレートのホモポリマー及び共重合体、ジブロモプロピオン酸トリクロロエチル、α,β−ジグロロアクリル酸エチル等);ハロゲン化アミド化合物(例えば、クロロアセトアミド、ブロモアセトアミド、ジクロロアセトアミド、トリクロロアセトアミド、トリブロモアセトアミド、トリクロロエチルトリクロロアセトアミド、2−ブロモイソプロピオンアミド、2,2,2−トリクロロプロピオンアミド、N−クロロスクシンイミド、N−ブロモスクシンイミドなど);硫黄やリンを有する化合物(例えば、トリブロモメチルフェニルスルホン、4−ニトロフェニルトリブロモメチルスルホン、4−クロロフェニルトリブロモメチルスルホン、トリス(2,3−ジブロモプロピル)ホスフェート等)、2,4−ビス(トリクロロメチル)6−フェニルトリアゾールなどが挙げられる。有機ハロゲン化合物では、同一炭素原子に結合した2個以上のハロゲン原子を持つハロゲン化合物が好ましく、1個の炭素原子に3個のハロゲン原子を持つハロゲン化合物がより好ましい。前記有機ハロゲン化合物は、1種単独で使用してもよく、2種以上を併用してもよい。これらの中でも、トリブロモメチルフェニルスルホン、2,4−ビス(トリクロロメチル)−6−フェニルトリアゾールが好ましい。
Furthermore, it is generally known that the color former is combined with a halogen compound for the purpose of coloring the leuco body.
Examples of the halogen compound include halogenated hydrocarbons (for example, carbon tetrabromide, iodoform, ethylene bromide, methylene bromide, amyl bromide, isoamyl bromide, amyl iodide, isobutylene bromide, butyl iodide, Diphenylmethyl bromide, hexachloroethane, 1,2-dibromoethane, 1,1,2,2-tetrabromoethane, 1,2-dibromo-1,1,2-trichloroethane, 1,2,3-tribromopropane 1-bromo-4-chlorobutane, 1,2,3,4-tetrabromobutane, tetrachlorocyclopropene, hexachlorocyclopentadiene, dibromocyclohexane, 1,1,1-trichloro-2,2-bis (4 -Chlorophenyl) ethane and the like; halogenated alcohol compounds (for example, 2,2,2-trichloroethanol, Libromoethanol, 1,3-dichloro-2-propanol, 1,1,1-trichloro-2-propanol, di (iodohexamethylene) aminoisopropanol, tribromo-tert-butyl alcohol, 2,2,3-trichlorobutane -1,4-diol and the like; halogenated carbonyl compounds (for example, 1,1-dichloroacetone, 1,3-dichloroacetone, hexachloroacetone, hexabromoacetone, 1,1,3,3-tetrachloroacetone, 1, 1,1-trichloroacetone, 3,4-dibromo-2-butanone, 1,4-dichloro-2-butanone-dibromocyclohexanone, etc .; halogenated ether compounds (for example, 2-bromoethyl methyl ether, 2-bromoethyl ethyl) Ether, di (2-bromoethyl) ether, Halogenated ester compounds (eg, bromoethyl acetate, ethyl trichloroacetate, trichloroethyl trichloroacetate, homopolymers and copolymers of 2,3-dibromopropyl acrylate, trichloroethyl dibromopropionate, halogenated amide compounds (for example, chloroacetamide, bromoacetamide, dichloroacetamide, trichloroacetamide, tribromoacetamide, trichloroethyltrichloroacetamide, 2-bromoisopropionamide, 2,2) , 2-trichloropropionamide, N-chlorosuccinimide, N-bromosuccinimide, etc.); a compound having sulfur or phosphorus (for example, tribromomethylphenylsulfone, - nitrophenyl tribromomethyl sulfone, 4-chlorophenyl tribromomethyl sulfone, tris (2,3-dibromopropyl) phosphate, etc.), 2,4-bis (such as trichloromethyl) 6-phenyl triazole and the like. As the organic halogen compound, a halogen compound having two or more halogen atoms bonded to the same carbon atom is preferable, and a halogen compound having three halogen atoms per carbon atom is more preferable. The said organic halogen compound may be used individually by 1 type, and may use 2 or more types together. Among these, tribromomethylphenyl sulfone and 2,4-bis (trichloromethyl) -6-phenyltriazole are preferable.

前記発色剤の含有量としては、前記感光層の全成分に対して0.01〜20質量%が好ましく、0.05〜10質量%がより好ましく、0.1〜5質量%が特に好ましい。また、前記ハロゲン化合物の含有量としては、前記感光層の全成分に対し0.001〜5質量%が好ましく、0.005〜1質量%がより好ましい。   The content of the color former is preferably 0.01 to 20% by mass, more preferably 0.05 to 10% by mass, and particularly preferably 0.1 to 5% by mass with respect to all components of the photosensitive layer. Moreover, as content of the said halogen compound, 0.001-5 mass% is preferable with respect to all the components of the said photosensitive layer, and 0.005-1 mass% is more preferable.

−−着色剤−−
前記着色剤としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、例えば、赤色、緑色、青色、黄色、紫色、マゼンタ色、シアン色、黒色等の公知の顔料又は染料が挙げられ、具体的には、ビクトリア・ピュアーブルーBO(C.I.42595)、オーラミン(C.I.41000)、ファット・ブラックHB(C.I.26150)、モノライト・エローGT(C.I.ピグメントエロー12)、パーマネント・エローGR(C.I.ピグメント・エロー17)、パーマネント・エローHR(C.I.ピグメント・エロー83)、パーマネント・カーミンFBB(C.I.ピグメント・レッド146)、ホスターバームレッドESB(C.I.ピグメント・バイオレット19)、パーマネント・ルビーFBH(C.I.ピグメント・レッド11)、ファステル・ピンクBスプラ(C.I.ピグメント・レッド81)、モナストラル・ファースト・ブルー(C.I.ピグメント・ブルー15)、モノライト・ファースト・ブラックB(C.I.ピグメント・ブラック1)、カーボンブラックが挙げられる。
--Colorant--
The colorant is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a known pigment such as red, green, blue, yellow, purple, magenta, cyan, black, Specifically, Victoria Pure Blue BO (C.I. 42595), Auramine (C.I. 41000), Fat Black HB (C.I. 26150), Monolite Yellow GT ( CI Pigment Yellow 12), Permanent Yellow GR (CI Pigment Yellow 17), Permanent Yellow HR (CI Pigment Yellow 83), Permanent Carmine FBB (CI Pigment Yellow) Red 146), Hoster Balm Red ESB (CI Pigment Violet 19), Permanent Ruby FBH ( Pigment Red 11), Fastel Pink B Spula (CI Pigment Red 81), Monastral First Blue (CI Pigment Blue 15), Monolite First Black B (C CI pigment black 1) and carbon black.

また、カラーフィルターの作製に好適な前記着色剤として、例えば、C.I.ピグメント・レッド97、C.I.ピグメント・レッド122、C.I.ピグメント・レッド149、C.I.ピグメント・レッド168、C.I.ピグメント・レッド177、C.I.ピグメント・レッド180、C.I.ピグメント・レッド192、C.I.ピグメント・レッド215、C.I.ピグメント・グリーン7、C.I.ピグメント・グリーン36、C.I.ピグメント・ブルー15:1、C.I.ピグメント・ブルー15:4、C.I.ピグメント・ブルー15:6、C.I.ピグメント・ブルー22、C.I.ピグメント・ブルー60、C.I.ピグメント・ブルー64、C.I.ピグメントイエロー139、C.I.ピグメントイエロー83、C.I.ピグメントバイオレット23、特開2002−162752号公報の(0138)〜(0141)に記載のもの等が挙げられる。前記着色剤の平均粒径としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、5μm以下が好ましく、1μm以下がより好ましい。また、カラーフィルタを作製する場合は、前記平均粒子径として、0.5μm以下が好ましい。   Examples of the colorant suitable for producing a color filter include C.I. I. Pigment red 97, C.I. I. Pigment red 122, C.I. I. Pigment red 149, C.I. I. Pigment red 168, C.I. I. Pigment red 177, C.I. I. Pigment red 180, C.I. I. Pigment red 192, C.I. I. Pigment red 215, C.I. I. Pigment green 7, C.I. I. Pigment green 36, C.I. I. Pigment blue 15: 1, C.I. I. Pigment blue 15: 4, C.I. I. Pigment blue 15: 6, C.I. I. Pigment blue 22, C.I. I. Pigment blue 60, C.I. I. Pigment blue 64, C.I. I. Pigment yellow 139, C.I. I. Pigment yellow 83, C.I. I. Pigment violet 23, and those described in JP-A-2002-162752 (0138) to (0141). There is no restriction | limiting in particular as an average particle diameter of the said coloring agent, Although it can select suitably according to the objective, For example, 5 micrometers or less are preferable and 1 micrometer or less is more preferable. Moreover, when producing a color filter, as said average particle diameter, 0.5 micrometer or less is preferable.

−−染料−−
前記感光層には、取り扱い性の向上のために着色、又は保存安定性を付与する目的に、染料を用いることができる。
前記染料としては、ブリリアントグリーン(例えば、その硫酸塩)、エオシン、エチルバイオレット、エリスロシンB、メチルグリーン、クリスタルバイオレット、ベイシックフクシン、フェノールフタレイン、1,3−ジフェニルトリアジン、アリザリンレッドS、チモールフタレイン、メチルバイオレット2B、キナルジンレッド、ローズベンガル、メタニル−イエロー、チモールスルホフタレイン、キシレノールブルー、メチルオレンジ、オレンジIV、ジフェニルチロカルバゾン、2,7−ジクロロフルオレセイン、パラメチルレッド、コンゴーレッド、ベンゾプルプリン4B、α−ナフチル−レッド、ナイルブルーA、フェナセタリン、メチルバイオレット、マラカイトグリーン、パラフクシン、オイルブルー#603(オリエント化学工業社製)、ローダミンB、ローダミン6G、ビクトリアピュアブルーBOHなどを挙げることができ、これらの中でもカチオン染料(例えば、マラカイトグリーンシュウ酸塩、マラカイトグリーン硫酸塩等)が好ましい。該カチオン染料の対アニオンとしては、有機酸又は無機酸の残基であればよく、例えば、臭素酸、ヨウ素酸、硫酸、リン酸、シュウ酸、メタンスルホン酸、トルエンスルホン酸等の残基(アニオン)などが挙げられる。
--- Dye--
In the photosensitive layer, a dye can be used for the purpose of coloring or improving storage stability for improving the handleability.
Examples of the dye include brilliant green (for example, sulfate thereof), eosin, ethyl violet, erythrosine B, methyl green, crystal violet, basic fuchsin, phenolphthalein, 1,3-diphenyltriazine, alizarin red S, thymolphthalein. , Methyl violet 2B, quinaldine red, rose bengal, metanil-yellow, thymol sulfophthalein, xylenol blue, methyl orange, orange IV, diphenyltylocarbazone, 2,7-dichlorofluorescein, paramethyl red, Congo red, benzo Purpurin 4B, α-naphthyl-red, Nile blue A, phenacetalin, methyl violet, malachite green, parafuchsin, oil blue # 603 (Orien Chemical Co., Ltd.), Rhodamine B, Rhodamine 6G, etc. Victoria Pure Blue BOH can be cited, among these cationic dyes (e.g., Malachite Green oxalate, malachite green sulfates) are preferable. The counter anion of the cationic dye may be a residue of an organic acid or an inorganic acid. Anion) and the like.

前記染料の含有量としては、前記感光層の全成分に対して0.001〜10質量%が好ましく、0.01〜5質量%がより好ましく、0.1〜2質量%が特に好ましい。   As content of the said dye, 0.001-10 mass% is preferable with respect to all the components of the said photosensitive layer, 0.01-5 mass% is more preferable, 0.1-2 mass% is especially preferable.

−−密着促進剤−−
各層間の密着性、又は感光層と基体との密着性を向上させるために、各層に公知のいわゆる密着促進剤を用いることができる。
-Adhesion promoter-
In order to improve the adhesion between the layers or the adhesion between the photosensitive layer and the substrate, a known so-called adhesion promoter can be used for each layer.

前記密着促進剤としては、例えば、特開平5−11439号公報、特開平5−341532号公報、及び特開平6−43638号公報等に記載の密着促進剤が好適挙げられる。具体的には、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、2−メルカプトベンズイミダゾール、2−メルカプトベンズオキサゾール、2−メルカプトベンズチアゾール、3−モルホリノメチル−1−フェニル−トリアゾール−2−チオン、3−モルホリノメチル−5−フェニル−オキサジアゾール−2−チオン、5−アミノ−3−モルホリノメチル−チアジアゾール−2−チオン、及び2−メルカプト−5−メチルチオ−チアジアゾール、トリアゾール、テトラゾール、ベンゾトリアゾール、カルボキシベンゾトリアゾール、アミノ基含有ベンゾトリアゾール、シランカップリング剤などが挙げられる。   Preferable examples of the adhesion promoter include adhesion promoters described in JP-A Nos. 5-11439, 5-341532, and 6-43638. Specifically, benzimidazole, benzoxazole, benzthiazole, 2-mercaptobenzimidazole, 2-mercaptobenzoxazole, 2-mercaptobenzthiazole, 3-morpholinomethyl-1-phenyl-triazole-2-thione, 3-morpholino Methyl-5-phenyl-oxadiazole-2-thione, 5-amino-3-morpholinomethyl-thiadiazole-2-thione, and 2-mercapto-5-methylthio-thiadiazole, triazole, tetrazole, benzotriazole, carboxybenzotriazole Amino group-containing benzotriazole, silane coupling agents, and the like.

前記密着促進剤の含有量としては、前記感光層の全成分に対して0.001質量%〜20質量%が好ましく、0.01〜10質量%がより好ましく、0.1質量%〜5質量%が特に好ましい。   As content of the said adhesion promoter, 0.001 mass%-20 mass% are preferable with respect to all the components of the said photosensitive layer, 0.01-10 mass% is more preferable, 0.1 mass%-5 mass% % Is particularly preferred.

前記感光層は、例えば、J.コーサー著「ライトセンシテイブシステムズ」第5章に記載されているような有機硫黄化合物、過酸化物、レドックス系化合物、アゾ又はジアゾ化合物、光還元性色素、有機ハロゲン化合物などを含んでいてもよい。   The photosensitive layer is, for example, J.I. It may contain organic sulfur compounds, peroxides, redox compounds, azo or diazo compounds, photoreducible dyes, organic halogen compounds, etc. as described in Chapter 5 of “Light Sensitive Systems” Good.

前記有機硫黄化合物としては、例えば、ジ−n−ブチルジサルファイド、ジベンジルジサルファイド、2−メルカプトベンズチアゾール、2−メルカプトベンズオキサゾール、チオフェノール、エチルトリクロロメタンスルフェネート、2−メルカプトベンズイミダゾールなどが挙げられる。   Examples of the organic sulfur compound include di-n-butyl disulfide, dibenzyl disulfide, 2-mercaptobenzthiazole, 2-mercaptobenzoxazole, thiophenol, ethyltrichloromethane sulfenate, and 2-mercaptobenzimidazole. Is mentioned.

前記過酸化物としては、例えば、ジ−tert−ブチルパーオキサイド、過酸化ベンゾイル、メチルエチルケトンパーオキサイドを挙げることができる。   Examples of the peroxide include di-tert-butyl peroxide, benzoyl peroxide, and methyl ethyl ketone peroxide.

前記レドックス化合物は、過酸化物と還元剤の組合せからなるものであり、第一鉄イオンと過硫酸イオン、第二鉄イオンと過酸化物などを挙げることができる。   The redox compound is a combination of a peroxide and a reducing agent, and examples thereof include ferrous ions and persulfate ions, ferric ions and peroxides.

前記アゾ及びジアゾ化合物としては、例えば、α,α’−アゾビスイリブチロニトリル、2−アゾビス−2−メチルブチロニトリル、4−アミノジフェニルアミンのジアゾニウム類が挙げられる。   Examples of the azo and diazo compounds include α, α'-azobisiributyronitrile, 2-azobis-2-methylbutyronitrile, and diazonium such as 4-aminodiphenylamine.

前記光還元性色素としては、例えば、ローズベンガル、エリスロシン、エオシン、アクリフラビン、リポフラビン、チオニンが挙げられる。   Examples of the photoreducible dye include rose bengal, erythrosine, eosin, acriflavine, lipoflavin, and thionine.

−−界面活性剤−−
本発明の前記感光層を形成する際に発生する面状ムラを改善させるために、公知の界面活性剤を添加することができる。
前記界面活性剤としては、例えば、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤、フッ素含有界面活性剤などから適宜選択できる。
--Surfactant--
In order to improve the surface unevenness generated when the photosensitive layer of the present invention is formed, a known surfactant can be added.
The surfactant can be appropriately selected from, for example, an anionic surfactant, a cationic surfactant, a nonionic surfactant, an amphoteric surfactant, and a fluorine-containing surfactant.

前記界面活性剤の含有量としては、パターン形成材料の固形分に対し、0.001〜10質量%が好ましい。
前記含有量が、0.001質量%未満になると、面状改良の効果が得られなくことがあり、10質量%を超えると、密着性が低下することがある。
As content of the said surfactant, 0.001-10 mass% is preferable with respect to solid content of pattern formation material.
When the content is less than 0.001% by mass, the effect of improving the surface shape may not be obtained, and when it exceeds 10% by mass, the adhesion may be deteriorated.

前記界面活性剤としては、上述の界面活性剤の他、フッ素系の界面活性剤として、炭素鎖3〜20でフッ素原子を40質量%以上含み、かつ、非結合末端から数えて少なくとも3個の炭素原子に結合した水素原子がフッ素置換されているフルオロ脂肪族基を有するアクリレート又はメタクリレートを共重合成分として有する高分子界面活性剤も好適に挙げられる。   As the surfactant, in addition to the above-mentioned surfactant, as a fluorine-based surfactant, it contains 40% by mass or more of fluorine atoms in a carbon chain of 3 to 20, and at least 3 counted from the non-bonding terminal A polymer surfactant having, as a copolymerization component, an acrylate or methacrylate having a fluoroaliphatic group in which a hydrogen atom bonded to a carbon atom is fluorine-substituted is also preferred.

前記感光層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、1〜100μmが好ましく、2〜50μmがより好ましく、4〜30μmが特に好ましい。   There is no restriction | limiting in particular as thickness of the said photosensitive layer, Although it can select suitably according to the objective, For example, 1-100 micrometers is preferable, 2-50 micrometers is more preferable, and 4-30 micrometers is especially preferable.

<支持体及び保護フィルム>
前記支持体としては、特に制限はなく、目的に応じて適宜選択することができるが、前記感光層を剥離可能であり、かつ光の透過性が良好であるものが好ましく、更に表面の平滑性が良好であることがより好ましい。
<Support and protective film>
The support is not particularly limited and may be appropriately selected depending on the intended purpose. However, it is preferable that the photosensitive layer is peelable and has good light transmittance, and further has a smooth surface. Is more preferable.

前記支持体は、合成樹脂製で、かつ透明であるものが好ましく、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリエチレン、三酢酸セルロース、二酢酸セルロース、ポリ(メタ)アクリル酸アルキルエステル、ポリ(メタ)アクリル酸エステル共重合体、ポリ塩化ビニル、ポリビニルアルコール、ポリカーボネート、ポリスチレン、セロファン、ポリ塩化ビニリデン共重合体、ポリアミド、ポリイミド、塩化ビニル・酢酸ビニル共重合体、ポリテトラフロロエチレン、ポリトリフロロエチレン、セルロース系フィルム、ナイロンフィルム等の各種のプラスチックフィルムが挙げられ、これらの中でも、ポリエチレンテレフタレートが特に好ましい。これらは、1種単独で使用してもよく、2種以上を併用してもよい。   The support is preferably made of synthetic resin and transparent, for example, polyethylene terephthalate, polyethylene naphthalate, polypropylene, polyethylene, cellulose triacetate, cellulose diacetate, poly (meth) acrylic acid alkyl ester, poly ( (Meth) acrylic acid ester copolymer, polyvinyl chloride, polyvinyl alcohol, polycarbonate, polystyrene, cellophane, polyvinylidene chloride copolymer, polyamide, polyimide, vinyl chloride / vinyl acetate copolymer, polytetrafluoroethylene, polytrifluoro Various plastic films, such as ethylene, a cellulose film, and a nylon film, are mentioned, Among these, polyethylene terephthalate is particularly preferable. These may be used alone or in combination of two or more.

前記支持体の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、2〜150μmが好ましく、5〜100μmがより好ましく、8〜50μmが特に好ましい。   There is no restriction | limiting in particular as thickness of the said support body, Although it can select suitably according to the objective, For example, 2-150 micrometers is preferable, 5-100 micrometers is more preferable, and 8-50 micrometers is especially preferable.

前記支持体の形状としては、特に制限はなく、目的に応じて適宜選択することができるが、長尺状が好ましい。前記長尺状の支持体の長さとしては、特に制限はなく、例えば、10m〜20000mの長さのものが挙げられる。   There is no restriction | limiting in particular as a shape of the said support body, Although it can select suitably according to the objective, A long shape is preferable. There is no restriction | limiting in particular as the length of the said elongate support body, For example, the thing of length 10m-20000m is mentioned.

前記パターン形成材料は、前記感光層上に保護フィルムを形成してもよい。
前記保護フィルムとしては、例えば、前記支持体に使用されるもの、紙、ポリエチレン、ポリプロピレンがラミネートされた紙、などが挙げられ、これらの中でも、ポリエチレンフィルム、ポリプロピレンフィルムが好ましい。
前記保護フィルムの厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、5〜100μmが好ましく、8〜50μmがより好ましく、10〜30μmが特に好ましい。
前記支持体と保護フィルムとの組合せ(支持体/保護フィルム)としては、例えば、ポリエチレンテレフタレート/ポリプロピレン、ポリエチレンテレフタレート/ポリエチレン、ポリ塩化ビニル/セロファン、ポリイミド/ポリプロピレン、ポリエチレンテレフタレート/ポリエチレンテレフタレートなどが挙げられる。また、支持体及び保護フィルムの少なくともいずれかを表面処理することにより、層間接着力を調整することができる。前記支持体の表面処理は、前記感光層との接着力を高めるために施されてもよく、例えば、下塗層の塗設、コロナ放電処理、火炎処理、紫外線照射処理、高周波照射処理、グロー放電照射処理、活性プラズマ照射処理、レーザ光線照射処理などを挙げることができる。
The pattern forming material may form a protective film on the photosensitive layer.
Examples of the protective film include those used for the support, paper, paper laminated with polyethylene, polypropylene, and the like. Among these, polyethylene film and polypropylene film are preferable.
There is no restriction | limiting in particular as thickness of the said protective film, Although it can select suitably according to the objective, For example, 5-100 micrometers is preferable, 8-50 micrometers is more preferable, 10-30 micrometers is especially preferable.
Examples of the combination of the support and the protective film (support / protective film) include polyethylene terephthalate / polypropylene, polyethylene terephthalate / polyethylene, polyvinyl chloride / cellophane, polyimide / polypropylene, polyethylene terephthalate / polyethylene terephthalate, and the like. . Moreover, interlayer adhesion can be adjusted by surface-treating at least one of the support and the protective film. The surface treatment of the support may be performed in order to increase the adhesive force with the photosensitive layer. For example, coating of a primer layer, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency irradiation treatment, glow treatment Examples thereof include discharge irradiation treatment, active plasma irradiation treatment, and laser beam irradiation treatment.

また、前記支持体と前記保護フィルムとの静摩擦係数としては、0.3〜1.4が好ましく、0.5〜1.2がより好ましい。
前記静摩擦係数が、0.3未満であると、滑り過ぎるため、ロール状にした場合に巻ズレが発生することがあり、1.4を超えると、良好なロール状に巻くことが困難となることがある。
Moreover, as a static friction coefficient of the said support body and the said protective film, 0.3-1.4 are preferable and 0.5-1.2 are more preferable.
When the coefficient of static friction is less than 0.3, slipping is excessive, so that winding deviation may occur when the roll is formed, and when it exceeds 1.4, it is difficult to wind into a good roll. Sometimes.

前記パターン形成材料は、例えば、円筒状の巻芯に巻き取って、長尺状でロール状に巻かれて保管されることが好ましい。前記長尺状のパターン形成材料の長さとしては、特に制限はなく、例えば、10m〜20,000mの範囲から適宜選択することができる。また、ユーザーが使いやすいようにスリット加工し、100m〜1,000mの範囲の長尺体をロール状にしてもよい。なお、この場合には、前記支持体が一番外側になるように巻き取られることが好ましい。また、前記ロール状のパターン形成材料をシート状にスリットしてもよい。保管の際、端面の保護、エッジフュージョンを防止する観点から、端面にはセパレーター(特に防湿性のもの、乾燥剤入りのもの)を設置することが好ましく、また梱包も透湿性の低い素材を用いる事が好ましい。   It is preferable that the pattern forming material is wound around a cylindrical core, wound into a long roll, and stored. There is no restriction | limiting in particular as length of the said elongate pattern formation material, For example, it can select suitably from the range of 10m-20,000m. Further, slitting may be performed so that the user can easily use, and a long body in the range of 100 m to 1,000 m may be formed into a roll. In this case, it is preferable that the support is wound up so as to be the outermost side. The roll-shaped pattern forming material may be slit into a sheet shape. From the viewpoint of protecting the end face and preventing edge fusion during storage, it is preferable to install a separator (especially moisture-proof and desiccant-containing) on the end face, and use a low moisture-permeable material for packaging. Things are preferable.

前記保護フィルムは、前記保護フィルムと前記感光層との接着性を調整するために表面処理してもよい。前記表面処理は、例えば、前記保護フィルムの表面に、ポリオルガノシロキサン、フッ素化ポリオレフィン、ポリフルオロエチレン、ポリビニルアルコール等のポリマーからなる下塗層を形成させる。該下塗層の形成は、前記ポリマーの塗布液を前記保護フィルムの表面に塗布した後、30〜150℃(特に50〜120℃)で1〜30分間乾燥させることにより形成させることができる。   The protective film may be surface-treated to adjust the adhesion between the protective film and the photosensitive layer. In the surface treatment, for example, an undercoat layer made of a polymer such as polyorganosiloxane, fluorinated polyolefin, polyfluoroethylene, or polyvinyl alcohol is formed on the surface of the protective film. The undercoat layer can be formed by applying the polymer coating solution to the surface of the protective film and then drying at 30 to 150 ° C. (especially 50 to 120 ° C.) for 1 to 30 minutes.

<その他の層>
前記その他の層としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、クッション層、バリア層、剥離層、接着層、光吸収層、表面保護層等の層が挙げられる。前記パターン形成材料は、これらの層を1種単独で有していてもよく、2種以上を有していてもよい。
<Other layers>
There is no restriction | limiting in particular as said other layer, According to the objective, it can select suitably, For example, layers, such as a cushion layer, a barrier layer, a peeling layer, an adhesive layer, a light absorption layer, a surface protective layer, are mentioned. . The said pattern formation material may have these layers individually by 1 type, and may have 2 or more types.

前記本発明のパターン形成材における前記感光層は、光照射手段からの光を受光し出射する描素部をn個有する光変調手段により、前記光照射手段からの光を変調させた後、前記描素部における出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズを配列したマイクロレンズアレイを通した光で、露光されることが好ましい。前記光照射手段、前記描素部、前記光変調手段、前記非球面、前記マイクロレンズ、及び前記マイクロレンズアレイの詳細については後述する。   The photosensitive layer in the pattern forming material of the present invention, after modulating the light from the light irradiation means by the light modulation means having n picture elements for receiving and emitting the light from the light irradiation means, It is preferable that the exposure is performed with light passing through a microlens array in which microlenses having aspherical surfaces capable of correcting aberration due to distortion of the exit surface in the picture element portion. Details of the light irradiating means, the pixel part, the light modulating means, the aspherical surface, the microlens, and the microlens array will be described later.

(パターン形成材料の製造方法)
前記パターン形成材料は、例えば、次のようにして製造することができる。
まず、前記パターン形成用組成物形成用樹脂組成物を、水又は溶剤に、溶解、乳化又は分散させて、パターン形成用樹脂組成物溶液を調製する。
(Method for producing pattern forming material)
The pattern forming material can be manufactured, for example, as follows.
First, the resin composition for pattern formation is dissolved, emulsified or dispersed in water or a solvent to prepare a resin composition solution for pattern formation.

前記溶剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アルコール類(例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、sec−ブタノール、n−ヘキサノール等)、ケトン類(例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジイソブチルケトン等)、エステル類(例えば、酢酸エチル、酢酸ブチル、酢酸−n−アミル、硫酸メチル、プロピオン酸エチル、フタル酸ジメチル、安息香酸エチル、及びメトキシプロピルアセテート等)、芳香族炭化水素類(例えば、トルエン、キシレン、ベンゼン、エチルベンゼン)等)、ハロゲン化炭化水素類(例えば、四塩化炭素、トリクロロエチレン、クロロホルム、1,1,1−トリクロロエタン、塩化メチレン、モノクロロベンゼン等)、エーテル類(例えば、テトラヒドロフラン、ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、1−メトキシ−2−プロパノール等)、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホオキサイド、スルホランなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。また、公知の界面活性剤を添加してもよい。   There is no restriction | limiting in particular as said solvent, According to the objective, it can select suitably, For example, alcohol (For example, methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, n-hexanol etc.) ), Ketones (for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diisobutyl ketone, etc.), esters (for example, ethyl acetate, butyl acetate, acetic acid-n-amyl, methyl sulfate, ethyl propionate, dimethyl phthalate, Ethyl benzoate, methoxypropyl acetate, etc.), aromatic hydrocarbons (eg, toluene, xylene, benzene, ethylbenzene)), halogenated hydrocarbons (eg, carbon tetrachloride, trichloroethylene, chloroform, 1,1, 1-tri Loroethane, methylene chloride, monochlorobenzene, etc.), ethers (eg, tetrahydrofuran, diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, 1-methoxy-2-propanol, etc.), dimethylformamide, dimethylacetamide, dimethylsulfoxide And sulfolane. These may be used alone or in combination of two or more. Moreover, you may add a well-known surfactant.

次に、前記支持体上に前記パターン形成用樹脂組成物溶液を塗布し、乾燥させて感光層を形成し、パターン形成材料を製造することができる。   Next, the pattern forming material can be produced by applying the pattern forming resin composition solution on the support and drying it to form a photosensitive layer.

前記パターン形成用樹脂組成物溶液の塗布方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、スプレー法、ロールコート法、回転塗布法、スリットコート法、エクストルージョンコート法、カーテンコート法、ダイコート法、グラビアコート法、ワイヤーバーコート法、ナイフコート法等の各種の塗布方法が挙げられる。
前記乾燥の条件としては、各成分、溶媒の種類、使用割合等によっても異なるが、通常60〜110℃の温度で30秒間〜15分間程度である。
The method for applying the pattern-forming resin composition solution is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a spray method, a roll coating method, a spin coating method, a slit coating method, and an extrusion method. Examples of the coating method include a coating method, a curtain coating method, a die coating method, a gravure coating method, a wire bar coating method, and a knife coating method.
The drying conditions vary depending on each component, the type of solvent, the use ratio, and the like, but are usually about 60 to 110 ° C. for about 30 seconds to 15 minutes.

本発明のパターン形成材料は、前記感光層の感度低下を抑制できるため、より小さいエネルギー量の光で露光することができ、露光スピードが上がるため処理スピードが上がる点で有利である。   The pattern forming material of the present invention is advantageous in that it can suppress a decrease in sensitivity of the photosensitive layer, and therefore can be exposed with light having a smaller energy amount, and the exposure speed increases, so that the processing speed increases.

本発明のパターン形成材料は、感光層の感度低下を抑制でき、かつ、高精細にパターンを形成可能であるため、各種パターンの形成用、配線パターン等の永久パターンの形成用、カラーフィルタ、柱材、リブ材、スペーサー、隔壁等の液晶構造部材の製造用、ホログラム、マイクロマシン、プルーフなどのパターン形成用などに好適に用いることができ、特に本発明のパターン形成方法及びパターン形成装置に好適に用いることができる。   Since the pattern forming material of the present invention can suppress a decrease in sensitivity of the photosensitive layer and can form a pattern with high definition, it can be used for forming various patterns, for forming permanent patterns such as wiring patterns, color filters, columns, etc. It can be suitably used for manufacturing liquid crystal structural members such as materials, ribs, spacers, partition walls, etc., and for forming patterns for holograms, micromachines, proofs, etc., and particularly suitable for the pattern forming method and pattern forming apparatus of the present invention. Can be used.

(パターン形成装置及びパターン形成方法)
本発明のパターン形成装置は、本発明の前記パターン形成材料を備えており、光照射手段と光変調手段とを少なくとも有する。
(Pattern forming apparatus and pattern forming method)
The pattern forming apparatus of the present invention includes the pattern forming material of the present invention, and has at least light irradiation means and light modulation means.

本発明のパターン形成方法は、露光工程を少なくとも含み、適宜選択したその他の工程を含む。
なお、本発明の前記パターン形成装置は、本発明の前記パターン形成方法の説明を通じて明らかにする。
The pattern forming method of the present invention includes at least an exposure step and includes other steps appropriately selected.
In addition, the said pattern formation apparatus of this invention is clarified through description of the said pattern formation method of this invention.

[露光工程]
前記露光工程は、本発明のパターン形成材料における感光層に対し、露光を行う工程である。本発明の前記パターン形成材料については上述の通りである。
[Exposure process]
The said exposure process is a process of exposing with respect to the photosensitive layer in the pattern formation material of this invention. The pattern forming material of the present invention is as described above.

前記露光の対象としては、前記パターン形成材料における感光層である限り、特に制限はなく、目的に応じて適宜選択することができるが、例えば、基体上に前記パターン形成材料を形成してなる積層体に対して行われることが好ましい。   The object of exposure is not particularly limited as long as it is a photosensitive layer in the pattern forming material, and can be appropriately selected according to the purpose. For example, a laminate formed by forming the pattern forming material on a substrate It is preferably performed on the body.

前記基体としては、特に制限はなく、公知の材料の中から表面平滑性の高いものから凸凹のある表面を有するものまで適宜選択することができるが、板状の基体(基板)が好ましく、具体的には、公知のプリント配線板形成用基板(例えば、銅張積層板)、ガラス板(例えば、ソーダガラス板等)、合成樹脂性のフィルム、紙、金属板などが挙げられる。   The substrate is not particularly limited, and can be appropriately selected from known materials having high surface smoothness to those having an uneven surface. A plate-like substrate (substrate) is preferable, and Specifically, a known printed wiring board forming substrate (for example, a copper-clad laminate), a glass plate (for example, a soda glass plate), a synthetic resin film, paper, a metal plate, and the like can be given.

前記積層体における層構成としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記基体と前記感光層と前記支持体とをこの順有する層構成が好ましい。   There is no restriction | limiting in particular as a layer structure in the said laminated body, Although it can select suitably according to the objective, For example, the layer structure which has the said base | substrate, the said photosensitive layer, and the said support body in this order is preferable.

前記積層体の形成方法としては、特に制限はなく、目的に応じて適宜選択することができるが、前記基体上に前記パターン形成材料を加熱及び加圧の少なくともいずれかを行いながら積層することが好ましい。
前記加熱温度としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、15〜180℃が好ましく、60〜140℃がより好ましい。
前記加圧の圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、0.1〜1.0MPaが好ましく、0.2〜0.8MPaがより好ましい。
The method for forming the laminate is not particularly limited and may be appropriately selected depending on the purpose. However, the pattern forming material may be laminated on the substrate while performing at least one of heating and pressing. preferable.
There is no restriction | limiting in particular as said heating temperature, Although it can select suitably according to the objective, For example, 15-180 degreeC is preferable and 60-140 degreeC is more preferable.
There is no restriction | limiting in particular as said pressurization pressure, Although it can select suitably according to the objective, For example, 0.1-1.0 MPa is preferable and 0.2-0.8 MPa is more preferable.

前記加熱及び加圧の少なくともいずれかを行う装置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ラミネーター(例えば、大成ラミネータ社製、VP−II)、真空ラミネーターなどが好適に挙げられる。   There is no restriction | limiting in particular as an apparatus which performs at least any one of the said heating and pressurization, According to the objective, it can select suitably, For example, a laminator (For example, Taisei Laminator company make, VP-II), a vacuum laminator, etc. Are preferable.

前記露光としては、特に制限はなく、目的に応じて適宜選択することができ、デジタル露光、アナログ露光等が挙げられるが、これらの中でもデジタル露光が好ましい。   There is no restriction | limiting in particular as said exposure, According to the objective, it can select suitably, Digital exposure, analog exposure, etc. are mentioned, Among these, digital exposure is preferable.

前記デジタル露光としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、形成するパターン形成情報に基づいて制御信号を生成し、該制御信号に応じて変調させた光を用いて行うことが好ましい。   The digital exposure is not particularly limited and can be appropriately selected depending on the purpose.For example, a control signal is generated based on pattern formation information to be formed, and light modulated in accordance with the control signal is generated. It is preferable to use.

前記デジタル露光の手段としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、光を照射する光照射手段、形成するパターン情報に基づいて該光照射手段から照射される光を変調させる光変調手段などが挙げられる。   The digital exposure means is not particularly limited and may be appropriately selected depending on the purpose. For example, the light irradiation means for irradiating light, and the light irradiation means for irradiating based on the pattern information to be formed. Examples thereof include light modulation means for modulating light.

<光変調手段>
前記光変調手段としては、光を変調することができる限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、n個の描素部を有することが好ましい。
前記n個の描素部を有する光変調手段としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、空間光変調素子が好ましい。
<Light modulation means>
The light modulating means is not particularly limited as long as it can modulate light, and can be appropriately selected according to the purpose. For example, it preferably has n pixel portions.
The light modulation means having the n picture elements is not particularly limited and can be appropriately selected according to the purpose. For example, a spatial light modulation element is preferable.

前記空間光変調素子としては、例えば、デジタル・マイクロミラー・デバイス(DMD)、MEMS(Micro Electro Mechanical Systems)タイプの空間光変調素子(SLM;Special Light Modulator)、電気光学効果により透過光を変調する光学素子(PLZT素子)、液晶光シャッタ(FLC)などが挙げられ、これらの中でもDMDが好適に挙げられる。   Examples of the spatial light modulator include a digital micromirror device (DMD), a MEMS (Micro Electro Mechanical Systems) type spatial light modulator (SLM), and modulates transmitted light by an electro-optic effect. An optical element (PLZT element), a liquid crystal optical shutter (FLC), etc. are mentioned, Among these, DMD is mentioned suitably.

また、前記光変調手段は、形成するパターン情報に基づいて制御信号を生成するパターン信号生成手段を有することが好ましい。この場合、前記光変調手段は、前記パターン信号生成手段が生成した制御信号に応じて光を変調させる。
前記制御信号としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、デジタル信号が好適に挙げられる。
Moreover, it is preferable that the said light modulation means has a pattern signal generation means which produces | generates a control signal based on the pattern information to form. In this case, the light modulation unit modulates light according to the control signal generated by the pattern signal generation unit.
There is no restriction | limiting in particular as said control signal, According to the objective, it can select suitably, For example, a digital signal is mentioned suitably.

以下、前記光変調手段の一例について図面を参照しながら説明する。
DMD50は図1に示すように、SRAMセル(メモリセル)60上に、各々描素(ピクセル)を構成する多数(例えば、1024個×768個)の微小ミラー(マイクロミラー)62が格子状に配列されてなるミラーデバイスである。各ピクセルにおいて、最上部には支柱に支えられたマイクロミラー62が設けられており、マイクロミラー62の表面にはアルミニウム等の反射率の高い材料が蒸着されている。なお、マイクロミラー62の反射率は90%以上であり、その配列ピッチは縦方向、横方向とも一例として13.7μmである。また、マイクロミラー62の直下には、ヒンジおよびヨークを含む支柱を介して通常の半導体メモリの製造ラインで製造されるシリコンゲートのCMOSのSRAMセル60が配置されており、全体はモノリシックに構成されている。
Hereinafter, an example of the light modulation means will be described with reference to the drawings.
As shown in FIG. 1, in the DMD 50, a large number (eg, 1024 × 768) of micromirrors (micromirrors) 62, each constituting a pixel (pixel), are arranged in a lattice pattern on an SRAM cell (memory cell) 60. It is a mirror device arranged. In each pixel, a micromirror 62 supported by a support column is provided at the top, and a material having high reflectance such as aluminum is deposited on the surface of the micromirror 62. The reflectance of the micromirror 62 is 90% or more, and the arrangement pitch is 13.7 μm as an example in both the vertical and horizontal directions. A silicon gate CMOS SRAM cell 60 manufactured in a normal semiconductor memory manufacturing line is disposed directly below the micromirror 62 via a support including a hinge and a yoke, and the entire structure is monolithic. ing.

DMD50のSRAMセル60にデジタル信号が書き込まれると、支柱に支えられたマイクロミラー62が、対角線を中心としてDMD50が配置された基板側に対して±α度(例えば±12度)の範囲で傾けられる。図2(A)は、マイクロミラー62がオン状態である+α度に傾いた状態を示し、図2(B)は、マイクロミラー62がオフ状態である−α度に傾いた状態を示す。したがって、パターン情報に応じて、DMD50の各ピクセルにおけるマイクロミラー62の傾きを、図1に示すように制御することによって、DMD50に入射したレーザ光Bはそれぞれのマイクロミラー62の傾き方向へ反射される。   When a digital signal is written in the SRAM cell 60 of the DMD 50, the micromirror 62 supported by the support is tilted in a range of ± α degrees (for example, ± 12 degrees) with respect to the substrate side on which the DMD 50 is disposed with the diagonal line as the center. It is done. FIG. 2A shows a state in which the micromirror 62 is tilted to + α degrees when the micromirror 62 is in the on state, and FIG. Therefore, by controlling the inclination of the micro mirror 62 in each pixel of the DMD 50 as shown in FIG. 1 according to the pattern information, the laser light B incident on the DMD 50 is reflected in the inclination direction of each micro mirror 62. The

なお、図1には、DMD50の一部を拡大し、マイクロミラー62が+α度又は−α度に制御されている状態の一例を示す。それぞれのマイクロミラー62のオンオフ制御は、DMD50に接続されたコントローラ302(図12参照)によって行われる。また、オフ状態のマイクロミラー62で反射したレーザ光Bが進行する方向には、光吸収体(図示せず)が配置されている。   FIG. 1 shows an example of a state in which a part of the DMD 50 is enlarged and the micromirror 62 is controlled to + α degrees or −α degrees. The on / off control of each micromirror 62 is performed by a controller 302 (see FIG. 12) connected to the DMD 50. Further, a light absorber (not shown) is arranged in the direction in which the laser beam B reflected by the off-state micromirror 62 travels.

また、DMD50は、その短辺が副走査方向と所定角度θ(例えば、0.1°〜5°)を成すように僅かに傾斜させて配置するのが好ましい。図3(A)はDMD50を傾斜させない場合の各マイクロミラーによる反射光像(露光ビーム)53の走査軌跡を示し、図3(B)はDMD50を傾斜させた場合の露光ビーム53の走査軌跡を示している。   Further, it is preferable that the DMD 50 is arranged with a slight inclination so that the short side forms a predetermined angle θ (for example, 0.1 ° to 5 °) with the sub-scanning direction. 3A shows the scanning trajectory of the reflected light image (exposure beam) 53 by each micromirror when the DMD 50 is not tilted, and FIG. 3B shows the scanning trajectory of the exposure beam 53 when the DMD 50 is tilted. Show.

DMD50には、長手方向にマイクロミラーが多数個(例えば、1024個)配列されたマイクロミラー列が、短手方向に多数組(例えば、756組)配列されているが、図3(B)に示すように、DMD50を傾斜させることにより、各マイクロミラーによる露光ビーム53の走査軌跡(走査線)のピッチPが、DMD50を傾斜させない場合の走査線のピッチPより狭くなり、解像度を大幅に向上させることができる。一方、DMD50の傾斜角は微小であるので、DMD50を傾斜させた場合の走査幅Wと、DMD50を傾斜させない場合の走査幅Wとは略同一である。 In the DMD 50, a number of micromirror arrays in which a number of micromirrors are arranged in the longitudinal direction (for example, 1024) are arranged in a short direction (for example, 756 pairs). as shown, by tilting the DMD 50, the pitch P 2 of the scanning locus of the exposure beams 53 from each micromirror (scan line), it becomes narrower than the pitch P 1 of the scanning line in the case of not tilting the DMD 50, significant resolution Can be improved. On the other hand, the inclination angle of the DMD 50 is small, the scanning width W 2 in the case of tilting the DMD 50, which is substantially equal to the scanning width W 1 when not inclined DMD 50.

次に、前記光変調手段における変調速度を速くさせる方法(以下「高速変調」と称する)について説明する。
前記光変調手段は、前記n個の描素の中から連続的に配置された任意のn個未満の前記描素部をパターン情報に応じて制御可能であることが好ましい。前記光変調手段のデータ処理速度には限界があり、使用する描素数に比例して1ライン当りの変調速度が決定されるので、連続的に配列された任意のn個未満の描素部だけを使用することで1ライン当りの変調速度が速くなる。
Next, a method for increasing the modulation speed in the light modulation means (hereinafter referred to as “high-speed modulation”) will be described.
It is preferable that the light modulation unit can control any less than n number of picture elements arranged continuously from the n picture elements according to pattern information. The data processing speed of the light modulation means is limited, and the modulation speed per line is determined in proportion to the number of pixels to be used. By using, the modulation speed per line is increased.

以下、前記高速変調について図面を参照しながら更に説明する。
ファイバアレイ光源66からDMD50にレーザ光Bが照射されると、DMD50のマイクロミラーがオン状態のときに反射されたレーザ光は、レンズ系54、58によりパターン形成材料150上に結像される。このようにして、ファイバアレイ光源66から出射されたレーザ光が描素毎にオンオフされて、パターン形成材料150がDMD50の使用描素数と略同数の描素単位(露光エリア168)で露光される。また、パターン形成材料150がステージ152と共に一定速度で移動されることにより、パターン形成材料150がスキャナ162によりステージ移動方向と反対の方向に副走査され、露光ヘッド166毎に帯状の露光済み領域170が形成される。
Hereinafter, the high-speed modulation will be further described with reference to the drawings.
When the laser light B is irradiated from the fiber array light source 66 to the DMD 50, the laser light reflected when the micromirror of the DMD 50 is in an on state is imaged on the pattern forming material 150 by the lens systems 54 and 58. In this manner, the laser light emitted from the fiber array light source 66 is turned on / off for each pixel, and the pattern forming material 150 is exposed in the number of pixel units (exposure area 168) substantially equal to the number of used pixel elements of the DMD 50. . Further, when the pattern forming material 150 is moved at a constant speed together with the stage 152, the pattern forming material 150 is sub-scanned in the direction opposite to the stage moving direction by the scanner 162, and a strip-shaped exposed region 170 is provided for each exposure head 166. Is formed.

なお本例では、図4(A)及び(B)に示すように、DMD50には、主走査方向にマイクロミラーが1024個配列されたマイクロミラー列が副走査方向に768組配列されているが、本例では、前記コントローラ302(図12参照)により一部のマイクロミラー列(例えば、1024個×256列)だけが駆動するように制御がなされる。   In this example, as shown in FIGS. 4A and 4B, the DMD 50 has 768 micromirror arrays in which 1024 micromirrors are arrayed in the main scanning direction. In this example, the controller 302 (see FIG. 12) performs control so that only a part of the micromirror rows (for example, 1024 × 256 rows) are driven.

この場合、図4(A)に示すようにDMD50の中央部に配置されたマイクロミラー列を使用してもよく、図4(B)に示すように、DMD50の端部に配置されたマイクロミラー列を使用してもよい。また、一部のマイクロミラーに欠陥が発生した場合は、欠陥が発生していないマイクロミラー列を使用するなど、状況に応じて使用するマイクロミラー列を適宜変更してもよい。   In this case, a micromirror array arranged at the center of the DMD 50 as shown in FIG. 4 (A) may be used, and a micromirror arranged at the end of the DMD 50 as shown in FIG. 4 (B). A column may be used. In addition, when a defect occurs in some of the micromirrors, the micromirror array to be used may be appropriately changed depending on the situation, such as using a micromirror array in which no defect has occurred.

DMD50のデータ処理速度には限界があり、使用する描素数に比例して1ライン当りの変調速度が決定されるので、一部のマイクロミラー列だけを使用することで1ライン当りの変調速度が速くなる。一方、連続的に露光ヘッドを露光面に対して相対移動させる露光方式の場合には、副走査方向の描素を全部使用する必要はない。   Since the data processing speed of the DMD 50 is limited and the modulation speed per line is determined in proportion to the number of pixels used, the modulation speed per line can be increased by using only a part of the micromirror array. Get faster. On the other hand, in the case of an exposure method in which the exposure head is continuously moved relative to the exposure surface, it is not necessary to use all the pixels in the sub-scanning direction.

スキャナ162によるパターン形成材料150の副走査が終了し、センサ164でパターン形成材料150の後端が検出されると、ステージ152は、ステージ駆動装置304により、ガイド158に沿ってゲート160の最上流側にある原点に復帰し、再度、ガイド158に沿ってゲート160の上流側から下流側に一定速度で移動される。   When the sub-scan of the pattern forming material 150 by the scanner 162 is finished and the rear end of the pattern forming material 150 is detected by the sensor 164, the stage 152 is moved upstream of the gate 160 along the guide 158 by the stage driving device 304. It returns to the origin on the side and is moved again along the guide 158 from the upstream side to the downstream side of the gate 160 at a constant speed.

例えば、768組のマイクロミラー列の内、384組だけ使用する場合には、768組全部使用する場合と比較すると1ライン当り2倍速く変調することができる。また、768組のマイクロミラー列の内、256組だけ使用する場合には、768組全部使用する場合と比較すると1ライン当り3倍速く変調することができる。   For example, in the case of using only 384 sets out of 768 sets of micromirror arrays, the modulation can be performed twice as fast per line as compared with the case of using all 768 sets. Also, when only 256 pairs are used in the 768 sets of micromirror arrays, modulation can be performed three times faster per line than when all 768 sets are used.

以上説明した通り、本発明のパターン形成方法によれば、主走査方向にマイクロミラーが1,024個配列されたマイクロミラー列が、副走査方向に768組配列されたDMDを備えているが、コントローラにより一部のマイクロミラー列だけが駆動されるように制御することにより、全部のマイクロミラー列を駆動する場合に比べて、1ライン当りの変調速度が速くなる。   As described above, according to the pattern forming method of the present invention, the micromirror array in which 1,024 micromirrors are arranged in the main scanning direction includes the DMD in which 768 sets are arranged in the subscanning direction. By controlling so that only a part of the micromirror rows are driven by the controller, the modulation rate per line becomes faster than when all the micromirror rows are driven.

また、DMDのマイクロミラーを部分的に駆動する例について説明したが、所定方向に対応する方向の長さが前記所定方向と交差する方向の長さより長い基板上に、各々制御信号に応じて反射面の角度が変更可能な多数のマイクロミラーが2次元状に配列された細長いDMDを用いても、反射面の角度を制御するマイクロミラーの個数が少なくなるので、同様に変調速度を速くすることができる。   In addition, an example in which the DMD micromirror is partially driven has been described, but the length of the direction corresponding to the predetermined direction is reflected on the substrate longer than the length of the direction intersecting the predetermined direction according to the control signal. Even if a long and narrow DMD in which a large number of micromirrors capable of changing the surface angle are arranged in a two-dimensional manner is used, the number of micromirrors for controlling the angle of the reflecting surface is reduced. Can do.

また、前記露光の方法として、露光光と前記感光層とを相対的に移動しながら行うことが好ましく、この場合、前記高速変調と併用することが好ましい。これにより、短時間で高速の露光を行うことができる。   The exposure method is preferably performed while relatively moving the exposure light and the photosensitive layer, and in this case, it is preferable to use the high-speed modulation together. Thereby, high-speed exposure can be performed in a short time.

その他、図5に示すように、スキャナ162によるX方向への1回の走査でパターン形成材料150の全面を露光してもよく、図6(A)及び(B)に示すように、スキャナ162によりパターン形成材料150をX方向へ走査した後、スキャナ162をY方向に1ステップ移動し、X方向へ走査を行うというように、走査と移動を繰り返して、複数回の走査でパターン形成材料150の全面を露光するようにしてもよい。なお、この例では、スキャナ162は18個の露光ヘッド166を備えている。なお、露光ヘッドは、前記光照射手段と前記光変調手段とを少なくとも有する。   In addition, as shown in FIG. 5, the entire surface of the pattern forming material 150 may be exposed by a single scan in the X direction by the scanner 162, and as shown in FIGS. 6A and 6B, the scanner 162. After the pattern forming material 150 is scanned in the X direction, the scanner 162 is moved one step in the Y direction, and scanning is performed in the X direction. Thus, the pattern forming material 150 is scanned a plurality of times. Alternatively, the entire surface may be exposed. In this example, the scanner 162 includes 18 exposure heads 166. Note that the exposure head includes at least the light irradiation unit and the light modulation unit.

前記露光は、前記感光層の一部の領域に対してされることにより該一部の領域が硬化され、後述の現像工程において、前記硬化させた一部の領域以外の未硬化領域が除去され、パターンが形成される。   The exposure is performed on a partial area of the photosensitive layer to cure the partial area, and uncured areas other than the cured partial area are removed in a development step described later. A pattern is formed.

次に、前記光変調手段を含むパターン形成装置の一例について図面を参照しながら説明する。
前記光変調手段を含むパターン形成装置は、図7に示すように、シート状のパターン形成材料150を表面に吸着して保持する平板状のステージ152を備えている。
4本の脚部154に支持された厚い板状の設置台156の上面には、ステージ移動方向に沿って延びた2本のガイド158が設置されている。ステージ152は、その長手方向がステージ移動方向を向くように配置されると共に、ガイド158によって往復移動可能に支持されている。なお、前記パターン形成装置には、ステージ152をガイド158に沿って駆動するための図示しない駆動装置を有している。
Next, an example of a pattern forming apparatus including the light modulation means will be described with reference to the drawings.
As shown in FIG. 7, the pattern forming apparatus including the light modulation means includes a flat stage 152 that holds a sheet-like pattern forming material 150 on the surface thereof.
Two guides 158 extending along the stage moving direction are installed on the upper surface of the thick plate-like installation table 156 supported by the four legs 154. The stage 152 is arranged so that the longitudinal direction thereof faces the stage moving direction, and is supported by a guide 158 so as to be reciprocally movable. The pattern forming apparatus has a drive device (not shown) for driving the stage 152 along the guide 158.

設置台156の中央部には、ステージ152の移動経路を跨ぐようにコ字状のゲート160が設けられている。コ字状のゲート160の端部の各々は、設置台156の両側面に固定されている。このゲート160を挟んで一方の側にはスキャナ162が設けられ、他方の側にはパターン形成材料150の先端及び後端を検知する複数(例えば、2個)の検知センサ164が設けられている。スキャナ162及び検知センサ164は、ゲート160に各々取り付けられて、ステージ152の移動経路の上方に固定配置されている。なお、スキャナ162及び検知センサ164は、これらを制御する図示しないコントローラに接続されている。   A U-shaped gate 160 is provided at the center of the installation table 156 so as to straddle the movement path of the stage 152. Each of the ends of the U-shaped gate 160 is fixed to both side surfaces of the installation table 156. A scanner 162 is provided on one side of the gate 160, and a plurality of (for example, two) detection sensors 164 for detecting the front and rear ends of the pattern forming material 150 are provided on the other side. . The scanner 162 and the detection sensor 164 are respectively attached to the gate 160 and fixedly arranged above the moving path of the stage 152. The scanner 162 and the detection sensor 164 are connected to a controller (not shown) that controls them.

スキャナ162は、図8及び図9(B)に示すように、m行n列(例えば、3行5列)の略マトリックス状に配列された複数(例えば、14個)の露光ヘッド166を備えている。この例では、パターン形成材料150の幅との関係で、3行目には4個の露光ヘッド166を配置した。なお、m行目のn列目に配列された個々の露光ヘッドを示す場合は、露光ヘッド166mnと表記する。 As shown in FIGS. 8 and 9B, the scanner 162 includes a plurality of (for example, 14) exposure heads 166 arranged in a substantially matrix of m rows and n columns (for example, 3 rows and 5 columns). ing. In this example, four exposure heads 166 are arranged in the third row in relation to the width of the pattern forming material 150. In addition, when showing each exposure head arranged in the m-th row and the n-th column, it is expressed as an exposure head 166 mn .

露光ヘッド166による露光エリア168は、副走査方向を短辺とする矩形状である。従って、ステージ152の移動に伴い、パターン形成材料150には露光ヘッド166毎に帯状の露光済み領域170が形成される。なお、m行目のn列目に配列された個々の露光ヘッドによる露光エリアを示す場合は、露光エリア168mnと表記する。 An exposure area 168 by the exposure head 166 has a rectangular shape with the short side in the sub-scanning direction. Accordingly, as the stage 152 moves, a strip-shaped exposed region 170 is formed in the pattern forming material 150 for each exposure head 166. In addition, when showing the exposure area by each exposure head arranged in the m-th row and the n-th column, it is expressed as an exposure area 168 mn .

また、図9(A)及び(B)に示すように、帯状の露光済み領域170が副走査方向と直交する方向に隙間無く並ぶように、ライン状に配列された各行の露光ヘッドの各々は、配列方向に所定間隔(露光エリアの長辺の自然数倍、本例では2倍)ずらして配置されている。このため、1行目の露光エリア16811と露光エリア16812との間の露光できない部分は、2行目の露光エリア16821と3行目の露光エリア16831とにより露光することができる。 Further, as shown in FIGS. 9A and 9B, each of the exposure heads in each row arranged in a line so that the strip-shaped exposed regions 170 are arranged in the direction orthogonal to the sub-scanning direction without gaps. These are arranged with a predetermined interval (natural number times the long side of the exposure area, twice in this example) in the arrangement direction. Therefore, can not be exposed portion between the exposure area 168 11 in the first row and the exposure area 168 12, it can be exposed by the second row of the exposure area 168 21 and the exposure area 168 31 in the third row.

露光ヘッド16611〜166mn各々は、図10及び図11に示すように、入射された光ビームをパターン情報に応じて前記光変調手段(各描素毎に変調する空間光変調素子)として、米国テキサス・インスツルメンツ社製のデジタル・マイクロミラー・デバイス(DMD)50を備えている。DMD50は、データ処理部とミラー駆動制御部とを備えた前記コントローラ302(図12参照)に接続されている。このコントローラ302のデータ処理部では、入力されたパターン情報に基づいて、露光ヘッド166毎にDMD50の制御すべき領域内の各マイクロミラーを駆動制御する制御信号を生成する。なお、制御すべき領域については後述する。また、ミラー駆動制御部では、パターン情報処理部で生成した制御信号に基づいて、露光ヘッド166毎にDMD50の各マイクロミラーの反射面の角度を制御する。なお、反射面の角度の制御に付いては後述する。 As shown in FIGS. 10 and 11, each of the exposure heads 166 11 to 166 mn serves as the light modulation means (spatial light modulation element that modulates each pixel) according to the pattern information. A digital micromirror device (DMD) 50 manufactured by Texas Instruments, USA is provided. The DMD 50 is connected to the controller 302 (see FIG. 12) including a data processing unit and a mirror drive control unit. The data processing unit of the controller 302 generates a control signal for driving and controlling each micromirror in the area to be controlled by the DMD 50 for each exposure head 166 based on the input pattern information. The area to be controlled will be described later. The mirror drive control unit controls the angle of the reflection surface of each micromirror of the DMD 50 for each exposure head 166 based on the control signal generated by the pattern information processing unit. The control of the angle of the reflecting surface will be described later.

DMD50の光入射側には、光ファイバの出射端部(発光点)が露光エリア168の長辺方向と対応する方向に沿って一列に配列されたレーザ出射部を備えたファイバアレイ光源66、ファイバアレイ光源66から出射されたレーザ光を補正してDMD上に集光させるレンズ系67、レンズ系67を透過したレーザ光をDMD50に向けて反射するミラー69がこの順に配置されている。なお、図10では、レンズ系67を概略的に示してある。   On the light incident side of the DMD 50, a fiber array light source 66 including a laser emitting section in which emission ends (light emitting points) of an optical fiber are arranged in a line along a direction corresponding to the long side direction of the exposure area 168, a fiber A lens system 67 for correcting the laser light emitted from the array light source 66 and condensing it on the DMD, and a mirror 69 for reflecting the laser light transmitted through the lens system 67 toward the DMD 50 are arranged in this order. In FIG. 10, the lens system 67 is schematically shown.

レンズ系67は、図11に詳しく示すように、ファイバアレイ光源66から出射した照明光としてのレーザ光Bを集光する集光レンズ71、集光レンズ71を通過した光の光路に挿入されたロッド状オプティカルインテグレータ(以下、ロッドインテグレータという)72、及びロッドインテグレータ72の前方つまりミラー69側に配置された結像レンズ74から構成されている。集光レンズ71、ロッドインテグレータ72及び結像レンズ74は、ファイバアレイ光源66から出射したレーザ光を、平行光に近くかつビーム断面内強度が均一化された光束としてDMD50に入射させる。このロッドインテグレータ72の形状や作用については、後に詳しく説明する。   As shown in detail in FIG. 11, the lens system 67 is inserted into the optical path of the light passing through the condenser lens 71 and the condenser lens 71 that collects the laser light B as the illumination light emitted from the fiber array light source 66. A rod-shaped optical integrator (hereinafter referred to as a rod integrator) 72 and an imaging lens 74 disposed in front of the rod integrator 72, that is, on the mirror 69 side. The condensing lens 71, the rod integrator 72, and the imaging lens 74 cause the laser light emitted from the fiber array light source 66 to enter the DMD 50 as a light beam that is close to parallel light and has a uniform beam cross-sectional intensity. The shape and action of the rod integrator 72 will be described in detail later.

レンズ系67から出射したレーザ光Bはミラー69で反射し、TIR(全反射)プリズム70を介してDMD50に照射される。なお、図10では、このTIRプリズム70は省略してある。   The laser beam B emitted from the lens system 67 is reflected by the mirror 69 and irradiated to the DMD 50 via the TIR (total reflection) prism 70. In FIG. 10, the TIR prism 70 is omitted.

また、DMD50の光反射側には、DMD50で反射されたレーザ光Bを、パターン形成材料150上に結像する結像光学系51が配置されている。この結像光学系51は、図10では概略的に示してあるが、図11に詳細を示すように、レンズ系52,54からなる第1結像光学系と、レンズ系57,58からなる第2結像光学系と、これらの結像光学系の間に挿入されたマイクロレンズアレイ55と、アパーチャアレイ59とから構成されている。   An imaging optical system 51 that images the laser beam B reflected by the DMD 50 on the pattern forming material 150 is disposed on the light reflection side of the DMD 50. The imaging optical system 51 is schematically shown in FIG. 10, but as shown in detail in FIG. 11, the imaging optical system 51 includes a first imaging optical system including lens systems 52 and 54 and lens systems 57 and 58. A second imaging optical system, a microlens array 55 inserted between these imaging optical systems, and an aperture array 59 are included.

マイクロレンズアレイ55は、DMD50の各描素に対応する多数のマイクロレンズ55aが2次元状に配列されてなるものである。本例では、後述するようにDMD50の1024個×768列のマイクロミラーのうち1024個×256列だけが駆動されるので、それに対応させてマイクロレンズ55aは1024個×256列配置されている。またマイクロレンズ55aの配置ピッチは縦方向、横方向とも41μmである。このマイクロレンズ55aは、一例として焦点距離が0.19mm、NA(開口数)が0.11で、光学ガラスBK7から形成されている。なおマイクロレンズ55aの形状については、後に詳しく説明する。
そして、各マイクロレンズ55aの位置におけるレーザ光Bのビーム径は、41μmである。
The microlens array 55 is formed by two-dimensionally arranging a large number of microlenses 55a corresponding to each picture element of the DMD 50. In this example, as will be described later, only 1024 × 256 rows of the 1024 × 768 rows of micromirrors of the DMD 50 are driven, and accordingly, 1024 × 256 rows of microlenses 55a are arranged. The arrangement pitch of the micro lenses 55a is 41 μm in both the vertical and horizontal directions. As an example, the micro lens 55a has a focal length of 0.19 mm, an NA (numerical aperture) of 0.11, and is formed from the optical glass BK7. The shape of the micro lens 55a will be described in detail later.
The beam diameter of the laser beam B at the position of each microlens 55a is 41 μm.

また、アパーチャアレイ59は、マイクロレンズアレイ55の各マイクロレンズ55aに対応する多数のアパーチャ(開口)59aが形成されてなるものである。アパーチャ59aの径は、例えば、10μmである。   The aperture array 59 is formed by forming a large number of apertures (openings) 59 a corresponding to the respective micro lenses 55 a of the micro lens array 55. The diameter of the aperture 59a is, for example, 10 μm.

前記第1結像光学系は、DMD50による像を3倍に拡大してマイクロレンズアレイ55上に結像する。そして、前記第2結像光学系は、マイクロレンズアレイ55を経た像を1.6倍に拡大してパターン形成材料150上に結像、投影する。したがって全体では、DMD50による像が4.8倍に拡大してパターン形成材料150上に結像、投影されることになる。   The first imaging optical system forms an image on the microlens array 55 by enlarging the image by the DMD 50 three times. The second imaging optical system enlarges the image that has passed through the microlens array 55 by 1.6 times, and forms and projects the image on the pattern forming material 150. Therefore, as a whole, the image formed by the DMD 50 is enlarged and enlarged by 4.8 times, and is imaged and projected on the pattern forming material 150.

なお、前記第2結像光学系とパターン形成材料150との間にプリズムペア73が配設され、このプリズムペア73を図11中で上下方向に移動させることにより、パターン形成材料150上における像のピントを調節可能となっている。なお同図中において、パターン形成材料150は矢印F方向に副走査送りされる。   A prism pair 73 is disposed between the second imaging optical system and the pattern forming material 150. By moving the prism pair 73 in the vertical direction in FIG. 11, an image on the pattern forming material 150 is obtained. The focus can be adjusted. In the figure, the pattern forming material 150 is sub-scanned in the direction of arrow F.

前記描素部としては、前記光照射手段からの光を受光し出射することができる限り、特に制限はなく、目的に応じて適宜選択することができるが、例えば、本発明のパターン形成方法により形成されるパターンが画像パターンである場合には、画素であり、前記光変調手段がDMDを含む場合にはマイクロミラーである。
前記光変調素子が有する描素部の数(前記n)としては、特に制限はなく、目的に応じて適宜選択することができる。
前記光変調素子における描素部の配列としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、2次元状に配列していることが好ましく、格子状に配列していることがより好ましい。
The picture element portion is not particularly limited as long as it can receive and emit light from the light irradiating means, and can be appropriately selected according to the purpose. When the pattern to be formed is an image pattern, it is a pixel, and when the light modulation means includes a DMD, it is a micromirror.
There is no restriction | limiting in particular as the number (the said n) of picture element parts which the said light modulation element has, It can select suitably according to the objective.
The arrangement of the picture element portions in the light modulation element is not particularly limited and may be appropriately selected depending on the purpose. For example, it is preferably arranged in a two-dimensional manner, More preferably.

<光照射手段>
前記光照射手段としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(超)高圧水銀灯、キセノン灯、カーボンアーク灯、ハロゲンランプ、複写機用などの蛍光管、LED、半導体レーザ等の公知光源、又は2以上の光を合成して照射可能な手段が挙げられ、これらの中でも2以上の光を合成して照射可能な手段が好ましい。
前記光照射手段から照射される光としては、例えば、支持体を介して光照射を行う場合には、該支持体を透過し、かつ用いられる光重合開始剤や増感剤を活性化する電磁波、紫外から可視光線、電子線、X線、レーザ光などが挙げられ、これらの中でもレーザ光が好ましく、2以上の光を合成したレーザ(以下、「合波レーザ」と称することがある)がより好ましい。また支持体を剥離してから光照射を行う場合でも、同様の光を用いることができる。
<Light irradiation means>
The light irradiation means is not particularly limited and may be appropriately selected depending on the purpose. For example, (ultra) high pressure mercury lamp, xenon lamp, carbon arc lamp, halogen lamp, copier, fluorescent tube, LED, etc. , A known light source such as a semiconductor laser, or a means capable of combining and irradiating two or more lights. Among these, a means capable of combining and irradiating two or more lights is preferable.
The light emitted from the light irradiation means is, for example, an electromagnetic wave that passes through the support and activates the photopolymerization initiator and sensitizer used when the light is irradiated through the support. In particular, ultraviolet to visible light, electron beam, X-ray, laser beam, and the like are mentioned. Of these, laser beam is preferable, and a laser combining two or more lights (hereinafter, referred to as “combined laser”). More preferred. Even when light irradiation is performed after the support is peeled off, similar light can be used.

前記紫外から可視光線の波長としては、例えば、300〜1500nmが好ましく、320〜800nmがより好ましく、330nm〜650nmが特に好ましい。
前記レーザ光の波長としては、例えば、200〜1500nmが好ましく、300〜800nmがより好ましく、330nm〜500nmが更に好ましく、400nm〜450nmが特に好ましい。
As a wavelength of the ultraviolet to visible light, for example, 300 to 1500 nm is preferable, 320 to 800 nm is more preferable, and 330 nm to 650 nm is particularly preferable.
As a wavelength of the laser beam, for example, 200 to 1500 nm is preferable, 300 to 800 nm is more preferable, 330 nm to 500 nm is further preferable, and 400 nm to 450 nm is particularly preferable.

前記合波レーザを照射可能な手段としては、例えば、複数のレーザと、マルチモード光ファイバと、該複数のレーザからそれぞれ照射したレーザ光を集光して前記マルチモード光ファイバに結合させる集合光学系とを有する手段が好ましい。   Examples of means capable of irradiating the combined laser include, for example, a plurality of lasers, a multimode optical fiber, and collective optics for condensing and coupling the laser beams respectively emitted from the plurality of lasers to the multimode optical fiber. Means having a system are preferred.

以下、前記合波レーザを照射可能な手段(ファイバアレイ光源)について図を参照しながら説明する。   Hereinafter, means (fiber array light source) capable of irradiating the combined laser will be described with reference to the drawings.

ファイバアレイ光源66は図27aに示すように、複数(例えば、14個)のレーザモジュール64を備えており、各レーザモジュール64には、マルチモード光ファイバ30の一端が結合されている。マルチモード光ファイバ30の他端には、コア径がマルチモード光ファイバ30と同一で且つクラッド径がマルチモード光ファイバ30より小さい光ファイバ31が結合されている。図27bに詳しく示すように、マルチモード光ファイバ31の光ファイバ30と反対側の端部は副走査方向と直交する主走査方向に沿って7個並べられ、それが2列に配列されてレーザ出射部68が構成されている。   As shown in FIG. 27 a, the fiber array light source 66 includes a plurality of (for example, 14) laser modules 64, and one end of the multimode optical fiber 30 is coupled to each laser module 64. An optical fiber 31 having the same core diameter as that of the multimode optical fiber 30 and a smaller cladding diameter than the multimode optical fiber 30 is coupled to the other end of the multimode optical fiber 30. As shown in detail in FIG. 27b, seven end portions of the multimode optical fiber 31 opposite to the optical fiber 30 are arranged along the main scanning direction orthogonal to the sub-scanning direction, and they are arranged in two rows to form a laser. An emission unit 68 is configured.

マルチモード光ファイバ31の端部で構成されるレーザ出射部68は、図27bに示すように、表面が平坦な2枚の支持板65に挟み込まれて固定されている。また、マルチモード光ファイバ31の光出射端面には、その保護のために、ガラス等の透明な保護板が配置されるのが望ましい。マルチモード光ファイバ31の光出射端面は、光密度が高いため集塵し易く劣化し易いが、上述のような保護板を配置することにより、端面への塵埃の付着を防止し、また劣化を遅らせることができる。   As shown in FIG. 27b, the laser emitting portion 68 configured by the end portion of the multimode optical fiber 31 is sandwiched and fixed between two support plates 65 having a flat surface. In addition, a transparent protective plate such as glass is preferably disposed on the light emitting end face of the multimode optical fiber 31 for protection. The light exit end face of the multimode optical fiber 31 has high light density and is likely to collect dust and easily deteriorate. However, the protective plate as described above prevents the dust from adhering to the end face and deteriorates. Can be delayed.

この例では、クラッド径が小さい光ファイバ31の出射端を隙間無く1列に配列するために、クラッド径が大きい部分で隣接する2本のマルチモード光ファイバ30の間にマルチモード光ファイバ30を積み重ね、積み重ねられたマルチモード光ファイバ30に結合された光ファイバ31の出射端が、クラッド径が大きい部分で隣接する2本のマルチモード光ファイバ30に結合された光ファイバ31の2つの出射端の間に挟まれるように配列されている。   In this example, in order to arrange the emission ends of the optical fibers 31 with a small cladding diameter in a line without any gaps, the multimode optical fiber 30 is placed between two adjacent multimode optical fibers 30 at a portion with a large cladding diameter. Two exit ends of the optical fiber 31 coupled to the two multimode optical fibers 30 adjacent to each other at the portion where the cladding diameter is large are the exit ends of the optical fiber 31 coupled to the stacked and stacked multimode optical fibers 30. Are arranged so as to be sandwiched between them.

このような光ファイバは、例えば、図28に示すように、クラッド径が大きいマルチモード光ファイバ30のレーザ光出射側の先端部分に、長さ1〜30cmのクラッド径が小さい光ファイバ31を同軸的に結合することにより得ることができる。2本の光ファイバは、光ファイバ31の入射端面が、マルチモード光ファイバ30の出射端面に、両光ファイバの中心軸が一致するように融着されて結合されている。上述した通り、光ファイバ31のコア31aの径は、マルチモード光ファイバ30のコア30aの径と同じ大きさである。   For example, as shown in FIG. 28, an optical fiber 31 having a length of 1 to 30 cm and having a small cladding diameter is coaxially connected to the tip portion of the multimode optical fiber 30 having a large cladding diameter on the laser light emission side. Can be obtained by linking them together. In the two optical fibers, the incident end face of the optical fiber 31 is fused and joined to the outgoing end face of the multimode optical fiber 30 so that the central axes of both optical fibers coincide. As described above, the diameter of the core 31 a of the optical fiber 31 is the same as the diameter of the core 30 a of the multimode optical fiber 30.

また、長さが短くクラッド径が大きい光ファイバにクラッド径が小さい光ファイバを融着させた短尺光ファイバを、フェルールや光コネクタ等を介してマルチモード光ファイバ30の出射端に結合してもよい。コネクタ等を用いて着脱可能に結合することで、クラッド径が小さい光ファイバが破損した場合等に先端部分の交換が容易になり、露光ヘッドのメンテナンスに要するコストを低減できる。なお、以下では、光ファイバ31を、マルチモード光ファイバ30の出射端部と称する場合がある。   In addition, a short optical fiber in which an optical fiber having a short cladding diameter and a large cladding diameter is fused to an optical fiber having a short cladding diameter and a large cladding diameter may be coupled to the output end of the multimode optical fiber 30 via a ferrule or an optical connector Good. By detachably coupling using a connector or the like, the tip portion can be easily replaced when an optical fiber having a small cladding diameter is broken, and the cost required for exposure head maintenance can be reduced. Hereinafter, the optical fiber 31 may be referred to as an emission end portion of the multimode optical fiber 30.

マルチモード光ファイバ30及び光ファイバ31としては、ステップインデックス型光ファイバ、グレーテッドインデックス型光ファイバ、及び複合型光ファイバの何れでもよい。例えば、三菱電線工業株式会社製のステップインデックス型光ファイバを用いることができる。本実施の形態では、マルチモード光ファイバ30及び光ファイバ31は、ステップインデックス型光ファイバであり、マルチモード光ファイバ30は、クラッド径=125μm、コア径=50μm、NA=0.2、入射端面コートの透過率=99.5%以上であり、光ファイバ31は、クラッド径=60μm、コア径=50μm、NA=0.2である。   The multimode optical fiber 30 and the optical fiber 31 may be any of a step index type optical fiber, a graded index type optical fiber, and a composite type optical fiber. For example, a step index type optical fiber manufactured by Mitsubishi Cable Industries, Ltd. can be used. In the present embodiment, the multimode optical fiber 30 and the optical fiber 31 are step index type optical fibers, and the multimode optical fiber 30 has a cladding diameter = 125 μm, a core diameter = 50 μm, NA = 0.2, an incident end face. The transmittance of the coat is 99.5% or more, and the optical fiber 31 has a cladding diameter = 60 μm, a core diameter = 50 μm, and NA = 0.2.

一般に、赤外領域のレーザ光では、光ファイバのクラッド径を小さくすると伝搬損失が増加する。このため、レーザ光の波長帯域に応じて好適なクラッド径が決定されている。しかしながら、波長が短いほど伝搬損失は少なくなり、GaN系半導体レーザから出射された波長405nmのレーザ光では、クラッドの厚み{(クラッド径−コア径)/2}を800nmの波長帯域の赤外光を伝搬させる場合の1/2程度、通信用の1.5μmの波長帯域の赤外光を伝搬させる場合の約1/4にしても、伝搬損失は殆ど増加しない。従って、クラッド径を60μmと小さくすることができる。   In general, in the laser light in the infrared region, the propagation loss increases as the cladding diameter of the optical fiber is reduced. For this reason, a suitable cladding diameter is determined according to the wavelength band of the laser beam. However, the shorter the wavelength, the smaller the propagation loss. In the case of laser light having a wavelength of 405 nm emitted from a GaN-based semiconductor laser, the cladding thickness {(cladding diameter−core diameter) / 2} is set to an infrared light having a wavelength band of 800 nm. The propagation loss hardly increases even if it is about ½ of the case of propagating infrared light and about ¼ of the case of propagating infrared light in the 1.5 μm wavelength band for communication. Therefore, the cladding diameter can be reduced to 60 μm.

但し、光ファイバ31のクラッド径は60μmには限定されない。従来のファイバアレイ光源に使用されている光ファイバのクラッド径は125μmであるが、クラッド径が小さくなるほど焦点深度がより深くなるので、マルチモード光ファイバのクラッド径は80μm以下が好ましく、60μm以下がより好ましく、40μm以下が更に好ましい。一方、コア径は少なくとも3〜4μm必要であることから、光ファイバ31のクラッド径は10μm以上が好ましい。   However, the cladding diameter of the optical fiber 31 is not limited to 60 μm. The clad diameter of the optical fiber used in the conventional fiber array light source is 125 μm, but the depth of focus becomes deeper as the clad diameter becomes smaller. Therefore, the clad diameter of the multimode optical fiber is preferably 80 μm or less, preferably 60 μm or less. More preferably, it is 40 μm or less. On the other hand, since the core diameter needs to be at least 3 to 4 μm, the cladding diameter of the optical fiber 31 is preferably 10 μm or more.

レーザモジュール64は、図29に示す合波レーザ光源(ファイバアレイ光源)によって構成されている。この合波レーザ光源は、ヒートブロック10上に配列固定された複数(例えば、7個)のチップ状の横マルチモード又はシングルモードのGaN系半導体レーザLD1,LD2,LD3,LD4,LD5,LD6,及びLD7と、GaN系半導体レーザLD1〜LD7の各々に対応して設けられたコリメータレンズ11,12,13,14,15,16,及び17と、1つの集光レンズ20と、1本のマルチモード光ファイバ30と、から構成されている。なお、半導体レーザの個数は7個には限定されない。例えば、クラッド径=60μm、コア径=50μm、NA=0.2のマルチモード光ファイバには、20個もの半導体レーザ光を入射することが可能であり、露光ヘッドの必要光量を実現して、且つ光ファイバ本数をより減らすことができる。   The laser module 64 includes a combined laser light source (fiber array light source) shown in FIG. This combined laser light source includes a plurality of (for example, seven) chip-like lateral multimode or single mode GaN-based semiconductor lasers LD1, LD2, LD3, LD4, LD5, LD6, arrayed and fixed on the heat block 10. And LD7, collimator lenses 11, 12, 13, 14, 15, 16, and 17 provided corresponding to each of the GaN-based semiconductor lasers LD1 to LD7, one condenser lens 20, and one multi-lens. Mode optical fiber 30. The number of semiconductor lasers is not limited to seven. For example, as many as 20 semiconductor laser beams can be incident on a multimode optical fiber having a cladding diameter = 60 μm, a core diameter = 50 μm, and NA = 0.2. In addition, the number of optical fibers can be further reduced.

GaN系半導体レーザLD1〜LD7は、発振波長が総て共通(例えば、405nm)であり、最大出力も総て共通(例えば、マルチモードレーザでは100mW、シングルモードレーザでは30mW)である。なお、GaN系半導体レーザLD1〜LD7としては、350nm〜450nmの波長範囲で、上記の405nm以外の発振波長を備えるレーザを用いてもよい。   The GaN-based semiconductor lasers LD1 to LD7 all have the same oscillation wavelength (for example, 405 nm), and the maximum output is also all the same (for example, 100 mW for the multimode laser and 30 mW for the single mode laser). As the GaN-based semiconductor lasers LD1 to LD7, lasers having an oscillation wavelength other than the above 405 nm in a wavelength range of 350 nm to 450 nm may be used.

前記合波レーザ光源は、図30及び図31に示すように、他の光学要素と共に、上方が開口した箱状のパッケージ40内に収納されている。パッケージ40は、その開口を閉じるように作成されたパッケージ蓋41を備えており、脱気処理後に封止ガスを導入し、パッケージ40の開口をパッケージ蓋41で閉じることにより、パッケージ40とパッケージ蓋41とにより形成される閉空間(封止空間)内に上記合波レーザ光源が気密封止されている。   As shown in FIGS. 30 and 31, the combined laser light source is housed in a box-shaped package 40 having an upper opening together with other optical elements. The package 40 includes a package lid 41 created so as to close the opening thereof. After the deaeration process, a sealing gas is introduced, and the package 40 and the package lid 41 are closed by closing the opening of the package 40 with the package lid 41. 41. The combined laser light source is hermetically sealed in a closed space (sealed space) formed by 41.

パッケージ40の底面にはベース板42が固定されており、このベース板42の上面には、前記ヒートブロック10と、集光レンズ20を保持する集光レンズホルダー45と、マルチモード光ファイバ30の入射端部を保持するファイバホルダー46とが取り付けられている。マルチモード光ファイバ30の出射端部は、パッケージ40の壁面に形成された開口からパッケージ外に引き出されている。   A base plate 42 is fixed to the bottom surface of the package 40, and the heat block 10, a condensing lens holder 45 that holds the condensing lens 20, and the multimode optical fiber 30 are disposed on the top surface of the base plate 42. A fiber holder 46 that holds the incident end is attached. The exit end of the multimode optical fiber 30 is drawn out of the package from an opening formed in the wall surface of the package 40.

また、ヒートブロック10の側面にはコリメータレンズホルダー44が取り付けられており、コリメータレンズ11〜17が保持されている。パッケージ40の横壁面には開口が形成され、この開口を通してGaN系半導体レーザLD1〜LD7に駆動電流を供給する配線47がパッケージ外に引き出されている。   Further, a collimator lens holder 44 is attached to the side surface of the heat block 10, and the collimator lenses 11 to 17 are held. An opening is formed in the lateral wall surface of the package 40, and wiring 47 for supplying a driving current to the GaN-based semiconductor lasers LD1 to LD7 is drawn out of the package through the opening.

なお、図31においては、図の煩雑化を避けるために、複数のGaN系半導体レーザのうちGaN系半導体レーザLD7にのみ番号を付し、複数のコリメータレンズのうちコリメータレンズ17にのみ番号を付している。   In FIG. 31, in order to avoid complication of the figure, only the GaN-based semiconductor laser LD7 among the plurality of GaN-based semiconductor lasers is numbered, and only the collimator lens 17 among the plurality of collimator lenses is numbered. is doing.

図32は、前記コリメータレンズ11〜17の取り付け部分の正面形状を示すものである。コリメータレンズ11〜17の各々は、非球面を備えた円形レンズの光軸を含む領域を平行な平面で細長く切り取った形状に形成されている。この細長形状のコリメータレンズは、例えば、樹脂又は光学ガラスをモールド成形することによって形成することができる。コリメータレンズ11〜17は、長さ方向がGaN系半導体レーザLD1〜LD7の発光点の配列方向(図32の左右方向)と直交するように、上記発光点の配列方向に密接配置されている。   FIG. 32 shows the front shape of the attachment part of the collimator lenses 11-17. Each of the collimator lenses 11 to 17 is formed in a shape obtained by cutting a region including the optical axis of a circular lens having an aspherical surface into a long and narrow plane. This elongated collimator lens can be formed, for example, by molding resin or optical glass. The collimator lenses 11 to 17 are closely arranged in the arrangement direction of the light emitting points so that the length direction is orthogonal to the arrangement direction of the light emitting points of the GaN-based semiconductor lasers LD1 to LD7 (left and right direction in FIG. 32).

一方、GaN系半導体レーザLD1〜LD7としては、発光幅が2μmの活性層を備え、活性層と平行な方向、直角な方向の拡がり角が各々例えば10°、30°の状態で各々レーザ光B1〜B7を発するレーザが用いられている。これらGaN系半導体レーザLD1〜LD7は、活性層と平行な方向に発光点が1列に並ぶように配設されている。   On the other hand, each of the GaN-based semiconductor lasers LD1 to LD7 includes an active layer having a light emission width of 2 μm, and each of the laser beams B1 in a state in which the divergence angles in a direction parallel to and perpendicular to the active layer are 10 ° and 30 °, respectively. A laser emitting ~ B7 is used. These GaN-based semiconductor lasers LD1 to LD7 are arranged so that the light emitting points are arranged in a line in a direction parallel to the active layer.

したがって、各発光点から発せられたレーザ光B1〜B7は、上述のように細長形状の各コリメータレンズ11〜17に対して、拡がり角度が大きい方向が長さ方向と一致し、拡がり角度が小さい方向が幅方向(長さ方向と直交する方向)と一致する状態で入射することになる。つまり、各コリメータレンズ11〜17の幅が1.1mm、長さが4.6mmであり、それらに入射するレーザ光B1〜B7の水平方向、垂直方向のビーム径は各々0.9mm、2.6mmである。また、コリメータレンズ11〜17の各々は、焦点距離f1=3mm、NA=0.6、レンズ配置ピッチ=1.25mmである。 Therefore, in the laser beams B1 to B7 emitted from the respective light emitting points, the direction in which the divergence angle is large coincides with the length direction and the divergence angle is small with respect to the elongated collimator lenses 11 to 17 as described above. Incident light is incident in a state where the direction coincides with the width direction (direction perpendicular to the length direction). That is, the collimator lenses 11 to 17 have a width of 1.1 mm and a length of 4.6 mm, and the horizontal and vertical beam diameters of the laser beams B1 to B7 incident thereon are 0.9 mm and 2. 6 mm. Each of the collimator lenses 11 to 17 has a focal length f 1 = 3 mm, NA = 0.6, and a lens arrangement pitch = 1.25 mm.

集光レンズ20は、非球面を備えた円形レンズの光軸を含む領域を平行な平面で細長く切り取って、コリメータレンズ11〜17の配列方向、つまり水平方向に長く、それと直角な方向に短い形状に形成されている。この集光レンズ20は、焦点距離f=23mm、NA=0.2である。この集光レンズ20も、例えば、樹脂又は光学ガラスをモールド成形することにより形成される。 The condensing lens 20 is obtained by cutting an area including the optical axis of a circular lens having an aspheric surface into a long and narrow shape in parallel planes, and is long in the arrangement direction of the collimator lenses 11 to 17, that is, in the horizontal direction and short in the direction perpendicular thereto. Is formed. This condenser lens 20 has a focal length f 2 = 23 mm and NA = 0.2. This condensing lens 20 is also formed by molding resin or optical glass, for example.

また、DMDを照明する光照射手段に、合波レーザ光源の光ファイバの出射端部をアレイ状に配列した高輝度のファイバアレイ光源を用いているので、高出力で且つ深い焦点深度を備えたパターン形成装置を実現することができる。更に、各ファイバアレイ光源の出力が大きくなることで、所望の出力を得るために必要なファイバアレイ光源数が少なくなり、パターン形成装置の低コスト化が図られる。   In addition, since the light emitting means for illuminating the DMD uses a high-intensity fiber array light source in which the output ends of the optical fibers of the combined laser light source are arranged in an array, it has a high output and a deep depth of focus. A pattern forming apparatus can be realized. Furthermore, since the output of each fiber array light source is increased, the number of fiber array light sources required to obtain a desired output is reduced, and the cost of the pattern forming apparatus can be reduced.

また、光ファイバの出射端のクラッド径を入射端のクラッド径よりも小さくしているので、発光部径がより小さくなり、ファイバアレイ光源の高輝度化が図られる。これにより、より深い焦点深度を備えたパターン形成装置を実現することができる。例えば、ビーム径1μm以下、解像度0.1μm以下の超高解像度露光の場合にも、深い焦点深度を得ることができ、高速且つ高精細な露光が可能となる。したがって、高解像度が必要とされる薄膜トランジスタ(TFT)の露光工程に好適である。   Further, since the cladding diameter of the output end of the optical fiber is smaller than the cladding diameter of the incident end, the diameter of the light emitting portion is further reduced, and the brightness of the fiber array light source can be increased. Thereby, a pattern forming apparatus having a deeper depth of focus can be realized. For example, even in the case of ultra-high resolution exposure with a beam diameter of 1 μm or less and a resolution of 0.1 μm or less, a deep depth of focus can be obtained, and high-speed and high-definition exposure is possible. Therefore, it is suitable for a thin film transistor (TFT) exposure process that requires high resolution.

また、前記光照射手段としては、前記合波レーザ光源を複数備えたファイバアレイ光源に限定されず、例えば、1個の発光点を有する単一の半導体レーザから入射されたレーザ光を出射する1本の光ファイバを備えたファイバ光源をアレイ化したファイバアレイ光源を用いることができる。   The light irradiating means is not limited to a fiber array light source including a plurality of the combined laser light sources, and for example, emits laser light incident from a single semiconductor laser having one light emitting point. A fiber array light source in which fiber light sources including optical fibers are arrayed can be used.

また、複数の発光点を備えた光照射手段としては、例えば、図33に示すように、ヒートブロック100上に、複数(例えば、7個)のチップ状の半導体レーザLD1〜LD7を配列したレーザアレイを用いることができる。また、図34(A)に示す、複数(例えば、5個)の発光点110aが所定方向に配列されたチップ状のマルチキャビティレーザ110が知られている。マルチキャビティレーザ110は、チップ状の半導体レーザを配列する場合と比べ、発光点を位置精度良く配列できるので、各発光点から出射されるレーザ光を合波し易い。但し、発光点が多くなるとレーザ製造時にマルチキャビティレーザ110に撓みが発生し易くなるため、発光点110aの個数は5個以下とするのが好ましい。   Further, as the light irradiation means having a plurality of light emitting points, for example, as shown in FIG. 33, a laser in which a plurality of (for example, seven) chip-shaped semiconductor lasers LD1 to LD7 are arranged on the heat block 100. An array can be used. A chip-shaped multicavity laser 110 in which a plurality of (for example, five) light emitting points 110a shown in FIG. 34A is arranged in a predetermined direction is known. Since the multicavity laser 110 can arrange the light emitting points with high positional accuracy as compared with the case where the chip-shaped semiconductor lasers are arranged, it is easy to multiplex the laser beams emitted from the respective light emitting points. However, since the multi-cavity laser 110 is likely to be bent when the laser is manufactured when the number of light emitting points is increased, the number of light emitting points 110a is preferably 5 or less.

前記光照射手段としては、このマルチキャビティレーザ110や、図34(B)に示すように、ヒートブロック100上に、複数のマルチキャビティレーザ110が各チップの発光点110aの配列方向と同じ方向に配列されたマルチキャビティレーザアレイを、レーザ光源として用いることができる。   As the light irradiation means, the multi-cavity laser 110 or a plurality of multi-cavity lasers 110 on the heat block 100 in the same direction as the arrangement direction of the light emitting points 110a of each chip as shown in FIG. An arrayed multi-cavity laser array can be used as a laser light source.

また、合波レーザ光源は、複数のチップ状の半導体レーザから出射されたレーザ光を合波するものには限定されない。例えば、図21に示すように、複数(例えば、3個)の発光点110aを有するチップ状のマルチキャビティレーザ110を備えた合波レーザ光源を用いることができる。この合波レーザ光源は、マルチキャビティレーザ110と、1本のマルチモード光ファイバ130と、集光レンズ120と、を備えて構成されている。マルチキャビティレーザ110は、例えば、発振波長が405nmのGaN系レーザダイオードで構成することができる。   The combined laser light source is not limited to one that combines laser beams emitted from a plurality of chip-shaped semiconductor lasers. For example, as shown in FIG. 21, a combined laser light source including a chip-shaped multicavity laser 110 having a plurality of (for example, three) light emitting points 110a can be used. This combined laser light source is configured to include a multi-cavity laser 110, one multi-mode optical fiber 130, and a condensing lens 120. The multi-cavity laser 110 can be composed of, for example, a GaN-based laser diode having an oscillation wavelength of 405 nm.

前記構成では、マルチキャビティレーザ110の複数の発光点110aの各々から出射したレーザ光Bの各々は、集光レンズ120によって集光され、マルチモード光ファイバ130のコア130aに入射する。コア130aに入射したレーザ光は、光ファイバ内を伝搬し、1本に合波されて出射する。   In the above configuration, each of the laser beams B emitted from each of the plurality of light emitting points 110 a of the multicavity laser 110 is collected by the condenser lens 120 and enters the core 130 a of the multimode optical fiber 130. The laser light incident on the core 130a propagates in the optical fiber, is combined into one, and is emitted.

マルチキャビティレーザ110の複数の発光点110aを、上記マルチモード光ファイバ130のコア径と略等しい幅内に並設すると共に、集光レンズ120として、マルチモード光ファイバ130のコア径と略等しい焦点距離の凸レンズや、マルチキャビティレーザ110からの出射ビームをその活性層に垂直な面内のみでコリメートするロッドレンズを用いることにより、レーザ光Bのマルチモード光ファイバ130への結合効率を上げることができる。   A plurality of light emitting points 110 a of the multicavity laser 110 are arranged in parallel within a width substantially equal to the core diameter of the multimode optical fiber 130, and a focal point substantially equal to the core diameter of the multimode optical fiber 130 is formed as the condenser lens 120. By using a convex lens of a distance or a rod lens that collimates the outgoing beam from the multi-cavity laser 110 only in a plane perpendicular to the active layer, the coupling efficiency of the laser beam B to the multi-mode optical fiber 130 can be increased. it can.

また、図35に示すように、複数(例えば、3個)の発光点を備えたマルチキャビティレーザ110を用い、ヒートブロック111上に複数(例えば、9個)のマルチキャビティレーザ110が互いに等間隔で配列されたレーザアレイ140を備えた合波レーザ光源を用いることができる。複数のマルチキャビティレーザ110は、各チップの発光点110aの配列方向と同じ方向に配列されて固定されている。   As shown in FIG. 35, a multi-cavity laser 110 having a plurality of (for example, three) emission points is used, and a plurality of (for example, nine) multi-cavity lasers 110 are equidistant from each other on the heat block 111. A combined laser light source including the laser array 140 arranged in (1) can be used. The plurality of multi-cavity lasers 110 are arranged and fixed in the same direction as the arrangement direction of the light emitting points 110a of each chip.

この合波レーザ光源は、レーザアレイ140と、各マルチキャビティレーザ110に対応させて配置した複数のレンズアレイ114と、レーザアレイ140と複数のレンズアレイ114との間に配置された1本のロッドレンズ113と、1本のマルチモード光ファイバ130と、集光レンズ120と、を備えて構成されている。レンズアレイ114は、マルチキャビティレーザ110の発光点に対応した複数のマイクロレンズを備えている。   This combined laser light source includes a laser array 140, a plurality of lens arrays 114 arranged corresponding to each multi-cavity laser 110, and a single rod arranged between the laser array 140 and the plurality of lens arrays 114. The lens 113, one multimode optical fiber 130, and a condenser lens 120 are provided. The lens array 114 includes a plurality of microlenses corresponding to the emission points of the multicavity laser 110.

上記の構成では、複数のマルチキャビティレーザ110の複数の発光点110aの各々から出射したレーザ光Bの各々は、ロッドレンズ113により所定方向に集光された後、レンズアレイ114の各マイクロレンズにより平行光化される。平行光化されたレーザ光Lは、集光レンズ120によって集光され、マルチモード光ファイバ130のコア130aに入射する。コア130aに入射したレーザ光は、光ファイバ内を伝搬し、1本に合波されて出射する。   In the above configuration, each of the laser beams B emitted from each of the plurality of light emitting points 110a of the plurality of multi-cavity lasers 110 is collected in a predetermined direction by the rod lens 113, and then each microlens of the lens array 114. It becomes parallel light. The collimated laser beam L is condensed by the condenser lens 120 and enters the core 130a of the multimode optical fiber 130. The laser light incident on the core 130a propagates in the optical fiber, is combined into one, and is emitted.

更に他の合波レーザ光源の例を示す。この合波レーザ光源は、図36(A)及び(B)に示すように、略矩形状のヒートブロック180上に光軸方向の断面がL字状のヒートブロック182が搭載され、2つのヒートブロック間に収納空間が形成されている。L字状のヒートブロック182の上面には、複数の発光点(例えば、5個)がアレイ状に配列された複数(例えば、2個)のマルチキャビティレーザ110が、各チップの発光点110aの配列方向と同じ方向に等間隔で配列されて固定されている。   Still another example of the combined laser light source will be described. In this combined laser light source, as shown in FIGS. 36A and 36B, a heat block 182 having an L-shaped cross section in the optical axis direction is mounted on a substantially rectangular heat block 180, and two heats are provided. A storage space is formed between the blocks. On the upper surface of the L-shaped heat block 182, a plurality of (for example, two) multi-cavity lasers 110 in which a plurality of light emitting points (for example, five) are arranged in an array form the light emitting points 110a of each chip. It is arranged and fixed at equal intervals in the same direction as the arrangement direction.

略矩形状のヒートブロック180には凹部が形成されており、ヒートブロック180の空間側上面には、複数の発光点(例えば、5個)がアレイ状に配列された複数(例えば、2個)のマルチキャビティレーザ110が、その発光点がヒートブロック182の上面に配置されたレーザチップの発光点と同じ鉛直面上に位置するように配置されている。   A concave portion is formed in the substantially rectangular heat block 180, and a plurality of (for example, two) light emitting points (for example, five) are arranged in an array on the upper surface of the space side of the heat block 180. The multi-cavity laser 110 is arranged such that its emission point is located on the same vertical plane as the emission point of the laser chip arranged on the upper surface of the heat block 182.

マルチキャビティレーザ110のレーザ光出射側には、各チップの発光点110aに対応してコリメートレンズが配列されたコリメートレンズアレイ184が配置されている。コリメートレンズアレイ184は、各コリメートレンズの長さ方向とレーザ光の拡がり角が大きい方向(速軸方向)とが一致し、各コリメートレンズの幅方向が拡がり角が小さい方向(遅軸方向)と一致するように配置されている。このように、コリメートレンズをアレイ化して一体化することで、レーザ光の空間利用効率が向上し合波レーザ光源の高出力化が図られると共に、部品点数が減少し低コスト化することができる。   On the laser beam emission side of the multi-cavity laser 110, a collimator lens array 184 in which collimator lenses are arranged corresponding to the light emission points 110a of the respective chips is arranged. In the collimating lens array 184, the length direction of each collimating lens coincides with the direction in which the laser beam divergence angle is large (fast axis direction), and the width direction of each collimating lens is in the direction in which the divergence angle is small (slow axis direction). They are arranged to match. Thus, by collimating and integrating the collimating lenses, the space utilization efficiency of the laser light can be improved, the output of the combined laser light source can be increased, and the number of parts can be reduced and the cost can be reduced. .

また、コリメートレンズアレイ184のレーザ光出射側には、1本のマルチモード光ファイバ130と、このマルチモード光ファイバ130の入射端にレーザ光を集光して結合する集光レンズ120と、が配置されている。   Further, on the laser light emitting side of the collimating lens array 184, there is one multimode optical fiber 130 and a condensing lens 120 that condenses and couples the laser light to the incident end of the multimode optical fiber 130. Is arranged.

前記構成では、レーザブロック180、182上に配置された複数のマルチキャビティレーザ110の複数の発光点110aの各々から出射したレーザ光Bの各々は、コリメートレンズアレイ184により平行光化され、集光レンズ120によって集光されて、マルチモード光ファイバ130のコア130aに入射する。コア130aに入射したレーザ光は、光ファイバ内を伝搬し、1本に合波されて出射する。   In the above-described configuration, each of the laser beams B emitted from each of the plurality of light emitting points 110a of the plurality of multicavity lasers 110 arranged on the laser blocks 180 and 182 is collimated by the collimating lens array 184 and condensed. The light is condensed by the lens 120 and enters the core 130 a of the multimode optical fiber 130. The laser light incident on the core 130a propagates in the optical fiber, is combined into one, and is emitted.

前記合波レーザ光源は、上記の通り、マルチキャビティレーザの多段配置とコリメートレンズのアレイ化とにより、特に高出力化を図ることができる。この合波レーザ光源を用いることにより、より高輝度なファイバアレイ光源やバンドルファイバ光源を構成することができるので、本発明のパターン形成装置のレーザ光源を構成するファイバ光源として特に好適である。   As described above, the combined laser light source can achieve particularly high output by the multistage arrangement of multicavity lasers and the array of collimating lenses. By using this combined laser light source, a higher-intensity fiber array light source or bundle fiber light source can be configured, so that it is particularly suitable as a fiber light source constituting the laser light source of the pattern forming apparatus of the present invention.

なお、前記各合波レーザ光源をケーシング内に収納し、マルチモード光ファイバ130の出射端部をそのケーシングから引き出したレーザモジュールを構成することができる。   It should be noted that a laser module in which each of the combined laser light sources is housed in a casing and the emission end of the multimode optical fiber 130 is pulled out from the casing can be configured.

また、合波レーザ光源のマルチモード光ファイバの出射端に、コア径がマルチモード光ファイバと同一で且つクラッド径がマルチモード光ファイバより小さい他の光ファイバを結合してファイバアレイ光源の高輝度化を図る例について説明したが、例えば、クラッド径が125μm、80μm、60μm等のマルチモード光ファイバを、出射端に他の光ファイバを結合せずに使用してもよい。   In addition, the other end of the multimode optical fiber of the combined laser light source is coupled with another optical fiber having the same core diameter as the multimode optical fiber and a cladding diameter smaller than the multimode optical fiber. However, for example, a multimode optical fiber having a cladding diameter of 125 μm, 80 μm, 60 μm or the like may be used without coupling another optical fiber to the emission end.

ここで、本発明の前記パターン形成方法について更に説明する。
スキャナ162の各露光ヘッド166において、ファイバアレイ光源66の合波レーザ光源を構成するGaN系半導体レーザLD1〜LD7の各々から発散光状態で出射したレーザ光B1,B2,B3,B4,B5,B6,及びB7の各々は、対応するコリメータレンズ11〜17によって平行光化される。平行光化されたレーザ光B1〜B7は、集光レンズ20によって集光され、マルチモード光ファイバ30のコア30aの入射端面に収束する。
Here, the pattern forming method of the present invention will be further described.
In each exposure head 166 of the scanner 162, laser light B1, B2, B3, B4, B5, B6 emitted in a divergent light state from each of the GaN-based semiconductor lasers LD1 to LD7 constituting the combined laser light source of the fiber array light source 66. , And B7 are collimated by corresponding collimator lenses 11-17. The collimated laser beams B <b> 1 to B <b> 7 are collected by the condenser lens 20 and converge on the incident end face of the core 30 a of the multimode optical fiber 30.

本例では、コリメータレンズ11〜17及び集光レンズ20によって集光光学系が構成され、その集光光学系とマルチモード光ファイバ30とによって合波光学系が構成されている。即ち、集光レンズ20によって上述のように集光されたレーザ光B1〜B7が、このマルチモード光ファイバ30のコア30aに入射して光ファイバ内を伝搬し、1本のレーザ光Bに合波されてマルチモード光ファイバ30の出射端部に結合された光ファイバ31から出射する。   In this example, the collimator lenses 11 to 17 and the condenser lens 20 constitute a condensing optical system, and the condensing optical system and the multimode optical fiber 30 constitute a multiplexing optical system. That is, the laser beams B1 to B7 collected as described above by the condenser lens 20 enter the core 30a of the multimode optical fiber 30 and propagate through the optical fiber to be combined with one laser beam B. The light is emitted from the optical fiber 31 coupled to the output end of the multimode optical fiber 30.

各レーザモジュールにおいて、レーザ光B1〜B7のマルチモード光ファイバ30への結合効率が0.85で、GaN系半導体レーザLD1〜LD7の各出力が30mWの場合には、アレイ状に配列された光ファイバ31の各々について、出力180mW(=30mW×0.85×7)の合波レーザ光Bを得ることができる。従って、6本の光ファイバ31がアレイ状に配列されたレーザ出射部68での出力は約1W(=180mW×6)である。   In each laser module, when the coupling efficiency of the laser beams B1 to B7 to the multimode optical fiber 30 is 0.85 and each output of the GaN-based semiconductor lasers LD1 to LD7 is 30 mW, the light arranged in an array For each of the fibers 31, a combined laser beam B with an output of 180 mW (= 30 mW × 0.85 × 7) can be obtained. Therefore, the output from the laser emitting unit 68 in which the six optical fibers 31 are arranged in an array is about 1 W (= 180 mW × 6).

ファイバアレイ光源66のレーザ出射部68には、この通り高輝度の発光点が主走査方向に沿って一列に配列されている。単一の半導体レーザからのレーザ光を1本の光ファイバに結合させる従来のファイバ光源は低出力であるため、多数列配列しなければ所望の出力を得ることができなかったが、前記合波レーザ光源は高出力であるため、少数列、例えば1列でも所望の出力を得ることができる。   In the laser emitting portion 68 of the fiber array light source 66, light emission points with high luminance are arranged in a line along the main scanning direction as described above. A conventional fiber light source that couples laser light from a single semiconductor laser to a single optical fiber has a low output, so that a desired output cannot be obtained unless multiple rows are arranged. Since the laser light source has a high output, a desired output can be obtained even with a small number of columns, for example, one column.

例えば、半導体レーザと光ファイバを1対1で結合させた従来のファイバ光源では、通常、半導体レーザとしては出力30mW(ミリワット)程度のレーザが使用され、光ファイバとしてはコア径50μm、クラッド径125μm、NA(開口数)0.2のマルチモード光ファイバが使用されているので、約1W(ワット)の出力を得ようとすれば、マルチモード光ファイバを48本(8×6)束ねなければならず、発光領域の面積は0.62mm(0.675mm×0.925mm)であるから、レーザ出射部68での輝度は1.6×10(W/m)、光ファイバ1本当りの輝度は3.2×10(W/m)である。 For example, in a conventional fiber light source in which a semiconductor laser and an optical fiber are coupled on a one-to-one basis, a laser having an output of about 30 mW (milliwatt) is usually used as the semiconductor laser, and the core diameter is 50 μm and the cladding diameter is 125 μm. Since a multimode optical fiber having a numerical aperture (NA) of 0.2 is used, if an output of about 1 W (watt) is to be obtained, 48 multimode optical fibers (8 × 6) must be bundled. Since the area of the light emitting region is 0.62 mm 2 (0.675 mm × 0.925 mm), the luminance at the laser emitting portion 68 is 1.6 × 10 6 (W / m 2 ) and one optical fiber is used. The luminance per hit is 3.2 × 10 6 (W / m 2 ).

これに対し、前記光照射手段が合波レーザを照射可能な手段である場合には、マルチモード光ファイバ6本で約1Wの出力を得ることができ、レーザ出射部68での発光領域の面積は0.0081mm(0.325mm×0.025mm)であるから、レーザ出射部68での輝度は123×10(W/m)となり、従来に比べ約80倍の高輝度化を図ることができる。また、光ファイバ1本当りの輝度は90×10(W/m)であり、従来に比べ約28倍の高輝度化を図ることができる。 On the other hand, when the light irradiating means is a means capable of irradiating a combined laser, an output of about 1 W can be obtained with six multimode optical fibers, and the area of the light emitting region at the laser emitting portion 68 can be obtained. Is 0.0081 mm 2 (0.325 mm × 0.025 mm), the luminance at the laser emitting portion 68 is 123 × 10 6 (W / m 2 ), which is about 80 times higher than the conventional luminance. be able to. Further, the luminance per optical fiber is 90 × 10 6 (W / m 2 ), and the luminance can be increased by about 28 times compared to the conventional one.

ここで、図37(A)及び(B)を参照して、従来の露光ヘッドと本実施の形態の露光ヘッドとの焦点深度の違いについて説明する。従来の露光ヘッドのバンドル状ファイバ光源の発光領域の副走査方向の径は0.675mmであり、露光ヘッドのファイバアレイ光源の発光領域の副走査方向の径は0.025mmである。図37(A)に示すように、従来の露光ヘッドでは、光照射手段(バンドル状ファイバ光源)1の発光領域が大きいので、DMD3へ入射する光束の角度が大きくなり、結果として走査面5へ入射する光束の角度が大きくなる。このため、集光方向(ピント方向のずれ)に対してビーム径が太りやすい。   Here, with reference to FIGS. 37A and 37B, the difference in depth of focus between the conventional exposure head and the exposure head of the present embodiment will be described. The diameter of the light emission region of the bundled fiber light source of the conventional exposure head in the sub-scanning direction is 0.675 mm, and the diameter of the light emission region of the fiber array light source of the exposure head in the sub-scanning direction is 0.025 mm. As shown in FIG. 37A, in the conventional exposure head, since the light emitting area of the light irradiating means (bundle-shaped fiber light source) 1 is large, the angle of the light beam incident on the DMD 3 is increased, and as a result, the scanning surface 5 is moved. The angle of the incident light beam increases. For this reason, the beam diameter tends to increase with respect to the light condensing direction (shift in the focus direction).

一方、図37(B)に示すように、本発明のパターン形成装置における露光ヘッドでは、ファイバアレイ光源66の発光領域の副走査方向の径が小さいので、レンズ系67を通過してDMD50へ入射する光束の角度が小さくなり、結果として走査面56へ入射する光束の角度が小さくなる。即ち、焦点深度が深くなる。この例では、発光領域の副走査方向の径は従来の約30倍になっており、略回折限界に相当する焦点深度を得ることができる。従って、微小スポットの露光に好適である。この焦点深度への効果は、露光ヘッドの必要光量が大きいほど顕著であり、有効である。この例では、露光面に投影された1描素サイズは10μm×10μmである。なお、DMDは反射型の空間光変調素子であるが、図37(A)及び(B)は、光学的な関係を説明するために展開図とした。   On the other hand, as shown in FIG. 37B, in the exposure head in the pattern forming apparatus of the present invention, the diameter of the light emitting region of the fiber array light source 66 in the sub-scanning direction is small, so that it passes through the lens system 67 and enters the DMD 50. As a result, the angle of the light beam incident on the scanning surface 56 is reduced. That is, the depth of focus becomes deep. In this example, the diameter of the light emitting region in the sub-scanning direction is about 30 times that of the conventional one, and a depth of focus substantially corresponding to the diffraction limit can be obtained. Therefore, it is suitable for exposure of a minute spot. This effect on the depth of focus is more prominent and effective as the required light quantity of the exposure head is larger. In this example, the size of one pixel projected on the exposure surface is 10 μm × 10 μm. The DMD is a reflective spatial light modulator, but FIGS. 37A and 37B are developed views for explaining the optical relationship.

露光パターンに応じたパターン情報が、DMD50に接続された図示しないコントローラに入力され、コントローラ内のフレームメモリに一旦記憶される。このパターン情報は、画像を構成する各描素の濃度を2値(ドットの記録の有無)で表したデータである。   Pattern information corresponding to the exposure pattern is input to a controller (not shown) connected to the DMD 50 and temporarily stored in a frame memory in the controller. This pattern information is data representing the density of each pixel constituting the image as binary values (whether or not dots are recorded).

パターン形成材料150を表面に吸着したステージ152は、図示しない駆動装置により、ガイド158に沿ってゲート160の上流側から下流側に一定速度で移動される。ステージ152がゲート160下を通過する際に、ゲート160に取り付けられた検知センサ164によりパターン形成材料150の先端が検出されると、フレームメモリに記憶されたパターン情報が複数ライン分ずつ順次読み出され、データ処理部で読み出されたパターン情報に基づいて各露光ヘッド166毎に制御信号が生成される。そして、ミラー駆動制御部により、生成された制御信号に基づいて露光ヘッド166毎にDMD50のマイクロミラーの各々がオンオフ制御される。   The stage 152 having the pattern forming material 150 adsorbed on the surface thereof is moved at a constant speed from the upstream side to the downstream side of the gate 160 along the guide 158 by a driving device (not shown). When the leading edge of the pattern forming material 150 is detected by the detection sensor 164 attached to the gate 160 while the stage 152 passes under the gate 160, the pattern information stored in the frame memory is sequentially read out for a plurality of lines. Then, a control signal is generated for each exposure head 166 based on the pattern information read by the data processing unit. Then, each of the micromirrors of the DMD 50 is controlled on and off for each exposure head 166 based on the generated control signal by the mirror drive control unit.

ファイバアレイ光源66からDMD50にレーザ光が照射されると、DMD50のマイクロミラーがオン状態のときに反射されたレーザ光は、レンズ系54、58によりパターン形成材料150の被露光面56上に結像される。このようにして、ファイバアレイ光源66から出射されたレーザ光が描素毎にオンオフされて、パターン形成材料150がDMD50の使用描素数と略同数の描素単位(露光エリア168)で露光される。また、パターン形成材料150がステージ152と共に一定速度で移動されることにより、パターン形成材料150がスキャナ162によりステージ移動方向と反対の方向に副走査され、露光ヘッド166毎に帯状の露光済み領域170が形成される。   When the DMD 50 is irradiated with laser light from the fiber array light source 66, the laser light reflected when the micromirror of the DMD 50 is in the on state is coupled onto the exposed surface 56 of the pattern forming material 150 by the lens systems 54 and 58. Imaged. In this manner, the laser light emitted from the fiber array light source 66 is turned on / off for each pixel, and the pattern forming material 150 is exposed in the number of pixel units (exposure area 168) substantially equal to the number of used pixel elements of the DMD 50. . Further, when the pattern forming material 150 is moved at a constant speed together with the stage 152, the pattern forming material 150 is sub-scanned in the direction opposite to the stage moving direction by the scanner 162, and a strip-shaped exposed region 170 is provided for each exposure head 166. Is formed.

<マイクロレンズアレイ>
前記露光は、前記変調させた光を、マイクロレンズアレイを通して行うことが好ましく、更にアパーチャアレイ、結像光学系等などを通して行ってもよい。
<Microlens array>
The exposure is preferably performed using the modulated light through a microlens array, and may be performed through an aperture array, an imaging optical system, or the like.

前記マイクロレンズアレイとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記描素部における出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズを配列したものが好適に挙げられる。   The microlens array is not particularly limited and may be appropriately selected according to the purpose. For example, microlenses having an aspheric surface capable of correcting aberration due to distortion of the exit surface in the pixel portion are arranged. A thing is mentioned suitably.

前記非球面としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、トーリック面が好ましい。   There is no restriction | limiting in particular as said aspherical surface, Although it can select suitably according to the objective, For example, a toric surface is preferable.

以下、前記マイクロレンズアレイ、前記アパーチャアレイ、及び前記結像光学系等について図面を参照しながら説明する。   Hereinafter, the microlens array, the aperture array, the imaging optical system, and the like will be described with reference to the drawings.

図13(A)は、DMD50、DMD50にレーザ光を照射する光照射手段144、DMD50で反射されたレーザ光を拡大して結像するレンズ系(結像光学系)454、458、DMD50の各描素部に対応して多数のマイクロレンズ474が配置されたマイクロレンズアレイ472、マイクロレンズアレイ472の各マイクロレンズに対応して多数のアパーチャ478が設けられたアパーチャアレイ476、アパーチャを通過したレーザ光を被露光面56に結像するレンズ系(結像光学系)480、482で構成される露光ヘッドを表す。
ここで図14に、DMD50を構成するマイクロミラー62の反射面の平面度を測定した結果を示す。同図においては、反射面の同じ高さ位置を等高線で結んで示してあり、等高線のピッチは5nmである。なお同図に示すx方向及びy方向は、マイクロミラー62の2つ対角線方向であり、マイクロミラー62はy方向に延びる回転軸を中心として前述のように回転する。また、図15の(A)及び(B)にはそれぞれ、上記x方向、y方向に沿ったマイクロミラー62の反射面の高さ位置変位を示す。
FIG. 13A shows each of DMD 50, light irradiation means 144 for irradiating the DMD 50 with laser light, lens systems (imaging optical systems) 454, 458, and DMD 50 for enlarging and imaging the laser light reflected by the DMD 50. A microlens array 472 in which a large number of microlenses 474 are arranged corresponding to the picture element portion, an aperture array 476 in which a large number of apertures 478 are provided corresponding to each microlens of the microlens array 472, and a laser that has passed through the aperture An exposure head composed of lens systems (imaging optical systems) 480 and 482 for forming an image of light on an exposed surface 56 is shown.
Here, FIG. 14 shows the result of measuring the flatness of the reflecting surface of the micromirror 62 constituting the DMD 50. In the figure, the same height positions of the reflecting surfaces are shown connected by contour lines, and the pitch of the contour lines is 5 nm. Note that the x direction and the y direction shown in the figure are two diagonal directions of the micromirror 62, and the micromirror 62 rotates around the rotation axis extending in the y direction as described above. 15A and 15B show the height position displacement of the reflecting surface of the micromirror 62 along the x direction and the y direction, respectively.

図14及び図15に示した通り、マイクロミラー62の反射面には歪みが存在し、そして特にミラー中央部に注目してみると、1つの対角線方向(y方向)の歪みが、別の対角線方向(x方向)の歪みよりも大きくなっている。このため、マイクロレンズアレイ55のマイクロレンズ55aで集光されたレーザ光Bの集光位置における形状が歪むという問題が発生し得る。   As shown in FIGS. 14 and 15, there is distortion on the reflection surface of the micromirror 62, and when attention is paid particularly to the center of the mirror, distortion in one diagonal direction (y direction) is different from that in the other diagonal line. It is larger than the distortion in the direction (x direction). For this reason, the problem that the shape in the condensing position of the laser beam B condensed with the micro lens 55a of the micro lens array 55 may be distorted may occur.

本発明のパターン形成方法においては前記問題を防止するために、マイクロレンズアレイ55のマイクロレンズ55aが、従来とは異なる特殊な形状とされている。以下、その点について詳しく説明する。   In the pattern forming method of the present invention, in order to prevent the above problem, the microlens 55a of the microlens array 55 has a special shape different from the conventional one. Hereinafter, this point will be described in detail.

図16の(A)及び(B)はそれぞれ、マイクロレンズアレイ55全体の正面形状及び側面形状を詳しく示すものである。これらの図にはマイクロレンズアレイ55の各部の寸法も記入してあり、それらの単位はmmである。本発明のパターン形成方法では、先に図4を参照して説明したようにDMD50の1024個×256列のマイクロミラー62が駆動されるものであり、それに対応させてマイクロレンズアレイ55は、横方向に1024個並んだマイクロレンズ55aの列を縦方向に256列並設して構成されている。なお、同図(A)では、マイクロレンズアレイ55の並び順を横方向についてはjで、縦方向についてはkで示している。   FIGS. 16A and 16B respectively show the front and side shapes of the entire microlens array 55 in detail. These drawings also show the dimensions of each part of the microlens array 55, and the unit thereof is mm. In the pattern forming method of the present invention, as described above with reference to FIG. 4, the 1024 × 256 rows of micromirrors 62 of the DMD 50 are driven. A row of 1024 microlenses 55a arranged in the direction is arranged in parallel in the vertical direction. In FIG. 9A, the arrangement order of the microlens array 55 is indicated by j in the horizontal direction and k in the vertical direction.

また、図17の(A)及び(B)はそれぞれ、マイクロレンズアレイ55における1つのマイクロレンズ55aの正面形状及び側面形状を示すものである。なお同図(A)には、マイクロレンズ55aの等高線を併せて示してある。各マイクロレンズ55aの光出射側の端面は、マイクロミラー62の反射面の歪みによる収差を補正する非球面形状とされている。より具体的には、マイクロレンズ55aはトーリックレンズとされており、上記x方向に光学的に対応する方向の曲率半径Rx=−0.125mm、上記y方向に対応する方向の曲率半径Ry=−0.1mmである。   17A and 17B show the front shape and the side shape of one microlens 55a in the microlens array 55, respectively. In FIG. 9A, the contour lines of the micro lens 55a are also shown. The end surface of each microlens 55a on the light emitting side has an aspherical shape that corrects aberration due to distortion of the reflecting surface of the micromirror 62. More specifically, the micro lens 55a is a toric lens, and has a radius of curvature Rx = −0.125 mm in a direction optically corresponding to the x direction and a radius of curvature Ry = − in a direction corresponding to the y direction. 0.1 mm.

したがって、上記x方向及びy方向に平行な断面内におけるレーザ光Bの集光状態は、概略、それぞれ図18の(A)及び(B)に示す通りとなる。つまり、x方向に平行な断面内とy方向に平行な断面内とを比較すると、後者の断面内の方がマイクロレンズ55aの曲率半径がより小であって、焦点距離がより短くなっている。   Therefore, the condensing state of the laser beam B in the cross section parallel to the x direction and the y direction is roughly as shown in FIGS. 18A and 18B, respectively. That is, when the cross section parallel to the x direction is compared with the cross section parallel to the y direction, the radius of curvature of the microlens 55a is smaller and the focal length is shorter in the latter cross section. .

マイクロレンズ55aを前記形状とした場合の、該マイクロレンズ55aの集光位置(焦点位置)近傍におけるビーム径を計算機によってシミュレーションした結果を図19a、b、c、及びdに示す。また比較のために、マイクロレンズ55aが曲率半径Rx=Ry=−0.1mmの球面形状である場合について、同様のシミュレーションを行った結果を図20a、b、c及びdに示す。なお、各図におけるzの値は、マイクロレンズ55aのピント方向の評価位置を、マイクロレンズ55aのビーム出射面からの距離で示している。   19A, 19B, 19D, and 19D show simulation results of the beam diameter in the vicinity of the condensing position (focal position) of the microlens 55a when the microlens 55a has the above shape. For comparison, FIGS. 20a, 20b, 20c, and 20d show the results of a similar simulation when the microlens 55a has a spherical shape with a radius of curvature Rx = Ry = −0.1 mm. In addition, the value of z in each figure has shown the evaluation position of the focus direction of the micro lens 55a with the distance from the beam emission surface of the micro lens 55a.

また、前記シミュレーションに用いたマイクロレンズ55aの面形状は、下記計算式で計算される。
The surface shape of the microlens 55a used for the simulation is calculated by the following calculation formula.

但し、前記計算式において、Cxは、x方向の曲率(=1/Rx)を意味し、Cyは、y方向の曲率(=1/Ry)を意味し、Xは、x方向に関するレンズ光軸Oからの距離を意味し、Yは、y方向に関するレンズ光軸Oからの距離を意味する。   In the above formula, Cx means the curvature in the x direction (= 1 / Rx), Cy means the curvature in the y direction (= 1 / Ry), and X is the lens optical axis in the x direction. The distance from O means Y, and Y means the distance from the lens optical axis O in the y direction.

図19a〜dと図20a〜dとを比較すると明らかなように、本発明のパターン形成方法ではマイクロレンズ55aを、y方向に平行な断面内の焦点距離がx方向に平行な断面内の焦点距離よりも小さいトーリックレンズとしたことにより、その集光位置近傍におけるビーム形状の歪みが抑制される。そうであれば、歪みの無い、より高精細な画像をパターン形成材料150に露光可能となる。また、図19a〜dに示す本実施形態の方が、ビーム径の小さい領域がより広い、すなわち焦点深度がより大であることが分かる。   19A to 19D and FIGS. 20A to 20D, in the pattern forming method of the present invention, the microlens 55a is focused on the micro lens 55a with a focal length in a cross section parallel to the y direction. By using a toric lens smaller than the distance, distortion of the beam shape in the vicinity of the condensing position is suppressed. If so, the pattern forming material 150 can be exposed to a higher-definition image without distortion. It can also be seen that the embodiment shown in FIGS. 19a to 19d has a wider region with a smaller beam diameter, that is, a greater depth of focus.

なお、マイクロミラー62のx方向及びy方向に関する中央部の歪の大小関係が、上記と逆になっている場合は、x方向に平行な断面内の焦点距離がy方向に平行な断面内の焦点距離よりも小さいトーリックレンズからマイクロレンズを構成すれば、同様に、歪みの無い、より高精細な画像をパターン形成材料150に露光可能となる。   In addition, when the magnitude relation of the distortion of the center part in the x direction and the y direction of the micromirror 62 is opposite to the above, the focal length in the cross section parallel to the x direction is in the cross section parallel to the y direction. If the microlens is formed of a toric lens that is smaller than the focal length, similarly, it is possible to expose the pattern forming material 150 with a higher definition image without distortion.

また、マイクロレンズアレイ55の集光位置近傍に配置されたアパーチャアレイ59は、その各アパーチャ59aに、それと対応するマイクロレンズ55aを経た光のみが入射するように配置されたものである。すなわち、このアパーチャアレイ59が設けられていることにより、各アパーチャ59aに、それと対応しない隣接のマイクロレンズ55aからの光が入射することが防止され、消光比が高められる。   In addition, the aperture array 59 disposed in the vicinity of the condensing position of the microlens array 55 is disposed such that only light having passed through the corresponding microlens 55a is incident on each aperture 59a. That is, by providing this aperture array 59, it is possible to prevent light from adjacent microlenses 55a not corresponding to each aperture 59a from entering, and to increase the extinction ratio.

本来、上記目的で設置されるアパーチャアレイ59のアパーチャ59aの径をある程度小さくすれば、マイクロレンズ55aの集光位置におけるビーム形状の歪みを抑制する効果も得られる。しかしそのようにした場合は、アパーチャアレイ59で遮断される光量がより多くなり、光利用効率が低下することになる。それに対してマイクロレンズ55aを非球面形状とする場合は、光を遮断することがないので、光利用効率も高く保たれる。   Originally, if the diameter of the aperture 59a of the aperture array 59 installed for the above purpose is reduced to some extent, an effect of suppressing the distortion of the beam shape at the condensing position of the microlens 55a can be obtained. However, in such a case, the amount of light blocked by the aperture array 59 is increased, and the light use efficiency is reduced. On the other hand, when the microlens 55a has an aspherical shape, the light utilization efficiency is kept high because the light is not blocked.

また、本発明のパターン形成方法において、マイクロレンズ55aは、2次の非球面形状であってもよく、より高次(4次、6次・・・)の非球面形状であってもよい。前記高次の非球面形状を採用することにより、ビーム形状をさらに高精細にすることができる。   In the pattern forming method of the present invention, the microlens 55a may have a secondary aspherical shape or a higher order (4th, 6th,...) Aspherical shape. By adopting the higher order aspherical shape, the beam shape can be further refined.

また、以上説明した実施形態では、マイクロレンズ55aの光出射側の端面が非球面(トーリック面)とされているが、2つの光通過端面の一方を球面とし、他方をシリンドリカル面としたマイクロレンズからマイクロレンズアレイを構成して、上記実施形態と同様の効果を得ることもできる。   In the embodiment described above, the end surface on the light emission side of the micro lens 55a is an aspherical surface (toric surface). However, one of the two light passing end surfaces is a spherical surface and the other is a cylindrical surface. Thus, the microlens array can be configured to obtain the same effect as the above embodiment.

さらに、以上説明した実施形態においては、マイクロレンズアレイ55のマイクロレンズ55aが、マイクロミラー62の反射面の歪みによる収差を補正する非球面形状とされているが、このような非球面形状を採用する代わりに、マイクロレンズアレイを構成する各マイクロレンズに、マイクロミラー62の反射面の歪みによる収差を補正する屈折率分布を持たせても、同様の効果を得ることができる。   Furthermore, in the embodiment described above, the microlens 55a of the microlens array 55 has an aspherical shape that corrects aberration due to distortion of the reflecting surface of the micromirror 62. Such an aspherical shape is adopted. Instead, the same effect can be obtained even if each microlens constituting the microlens array has a refractive index distribution that corrects aberration due to distortion of the reflection surface of the micromirror 62.

そのようなマイクロレンズ155aの一例を図22に示す。同図の(A)及び(B)はそれぞれ、このマイクロレンズ155aの正面形状及び側面形状を示すものであり、図示の通りこのマイクロレンズ155aの外形形状は平行平板状である。なお、同図におけるx、y方向は、既述した通りである。   An example of such a microlens 155a is shown in FIG. (A) and (B) of the same figure respectively show the front shape and side shape of the micro lens 155a, and the external shape of the micro lens 155a is a parallel plate shape as shown in the figure. The x and y directions in the figure are as described above.

また、図23の(A)及び(B)は、このマイクロレンズ155aによる上記x方向及びy方向に平行な断面内におけるレーザ光Bの集光状態を概略的に示している。このマイクロレンズ155aは、光軸Oから外方に向かって次第に増大する屈折率分布を有するものであり、同図においてマイクロレンズ155a内に示す破線は、その屈折率が光軸Oから所定の等ピッチで変化した位置を示している。図示の通り、x方向に平行な断面内とy方向に平行な断面内とを比較すると、後者の断面内の方がマイクロレンズ155aの屈折率変化の割合がより大であって、焦点距離がより短くなっている。このような屈折率分布型レンズから構成されるマイクロレンズアレイを用いても、前記マイクロレンズアレイ55を用いる場合と同様の効果を得ることが可能である。   23A and 23B schematically show the condensing state of the laser beam B in the cross section parallel to the x direction and the y direction by the micro lens 155a. The microlens 155a has a refractive index distribution that gradually increases outward from the optical axis O. In the drawing, the broken line shown in the microlens 155a indicates that the refractive index is predetermined from the optical axis O. The position changed with the pitch is shown. As shown in the figure, when the cross section parallel to the x direction and the cross section parallel to the y direction are compared, the ratio of the refractive index change of the microlens 155a is larger in the latter cross section, and the focal length is larger. It is shorter. Even when a microlens array composed of such a gradient index lens is used, it is possible to obtain the same effect as when the microlens array 55 is used.

なお、先に図17及び図18に示したマイクロレンズ55aのように面形状を非球面としたマイクロレンズにおいて、併せて上述のような屈折率分布を与え、面形状と屈折率分布の双方によって、マイクロミラー62の反射面の歪みによる収差を補正するようにしてもよい。   In addition, in the microlens whose surface shape is aspherical like the microlens 55a previously shown in FIGS. 17 and 18, the refractive index distribution as described above is given together, and both by the surface shape and the refractive index distribution. The aberration due to the distortion of the reflection surface of the micromirror 62 may be corrected.

また、上記の実施形態では、DMD50を構成するマイクロミラー62の反射面の歪みによる収差を補正しているが、DMD以外の空間光変調素子を用いる本発明のパターン形成方法においても、その空間光変調素子の描素部の面に歪みが存在する場合は、本発明を適用してその歪みによる収差を補正し、ビーム形状に歪みが生じることを防止可能である。   In the above embodiment, the aberration due to the distortion of the reflection surface of the micromirror 62 constituting the DMD 50 is corrected. However, in the pattern forming method of the present invention using the spatial light modulator other than the DMD, the spatial light is also corrected. If there is distortion on the surface of the picture element portion of the modulation element, the present invention can be applied to correct the aberration caused by the distortion and prevent the beam shape from being distorted.

次に、前記結像光学系について更に説明する。
前記露光ヘッドでは、光照射手段144からレーザ光が照射されると、DMD50によりオン方向に反射される光束線の断面積が、レンズ系454、458により数倍(例えば、2倍)に拡大される。拡大されたレーザ光は、マイクロレンズアレイ472の各マイクロレンズによりDMD50の各描素部に対応して集光され、アパーチャアレイ476の対応するアパーチャを通過する。アパーチャを通過したレーザ光は、レンズ系480、482により被露光面56上に結像される。
Next, the imaging optical system will be further described.
In the exposure head, when the laser beam is irradiated from the light irradiation unit 144, the cross-sectional area of the light beam reflected in the ON direction by the DMD 50 is enlarged several times (for example, two times) by the lens systems 454 and 458. The The expanded laser light is condensed by each microlens of the microlens array 472 so as to correspond to each pixel part of the DMD 50, and passes through the corresponding aperture of the aperture array 476. The laser light that has passed through the aperture is imaged on the exposed surface 56 by the lens systems 480 and 482.

この結像光学系では、DMD50により反射されたレーザ光は、拡大レンズ454、458により数倍に拡大されて被露光面56に投影されるので、全体の画像領域が広くなる。このとき、マイクロレンズアレイ472及びアパーチャアレイ476が配置されていなければ、図13(B)に示すように、被露光面56に投影される各ビームスポットBSの1描素サイズ(スポットサイズ)が露光エリア468のサイズに応じて大きなものとなり、露光エリア468の鮮鋭度を表すMTF(Modulation Transfer Function)特性が低下する。   In this imaging optical system, the laser light reflected by the DMD 50 is magnified several times by the magnifying lenses 454 and 458 and projected onto the exposed surface 56, so that the entire image area is widened. At this time, if the microlens array 472 and the aperture array 476 are not arranged, as shown in FIG. 13B, one pixel size (spot size) of each beam spot BS projected onto the exposed surface 56 is set. MTF (Modulation Transfer Function) characteristics representing the sharpness of the exposure area 468 are reduced depending on the size of the exposure area 468.

一方、マイクロレンズアレイ472及びアパーチャアレイ476を配置した場合には、DMD50により反射されたレーザ光は、マイクロレンズアレイ472の各マイクロレンズによりDMD50の各描素部に対応して集光される。これにより、図13(C)に示すように、露光エリアが拡大された場合でも、各ビームスポットBSのスポットサイズを所望の大きさ(例えば、10μm×10μm)に縮小することができ、MTF特性の低下を防止して高精細な露光を行うことができる。なお、露光エリア468が傾いているのは、描素間の隙間を無くす為にDMD50を傾けて配置しているからである。   On the other hand, when the microlens array 472 and the aperture array 476 are arranged, the laser light reflected by the DMD 50 is condensed corresponding to each pixel part of the DMD 50 by each microlens of the microlens array 472. Accordingly, as shown in FIG. 13C, even when the exposure area is enlarged, the spot size of each beam spot BS can be reduced to a desired size (for example, 10 μm × 10 μm), and the MTF characteristics are obtained. It is possible to perform high-definition exposure while preventing a decrease in the image quality. The exposure area 468 is tilted because the DMD 50 is tilted and arranged in order to eliminate the gap between the pixels.

また、マイクロレンズの収差によるビームの太りがあっても、アパーチャアレイによって被露光面56上でのスポットサイズが一定の大きさになるようにビームを整形することができると共に、各描素に対応して設けられたアパーチャアレイを通過させることにより、隣接する描素間でのクロストークを防止することができる。   In addition, the aperture array can shape the beam so that the spot size on the surface to be exposed 56 is constant even if the beam is thick due to the aberration of the micro lens. Thus, crosstalk between adjacent picture elements can be prevented by passing through the aperture array.

更に、光照射手段144に後述する高輝度光源を使用することにより、レンズ458からマイクロレンズアレイ472の各マイクロレンズに入射する光束の角度が小さくなるので、隣接する描素の光束の一部が入射するのを防止することができる。即ち、高消光比を実現することができる。   Further, by using a high-intensity light source, which will be described later, as the light irradiating means 144, the angle of the light beam incident on each microlens of the microlens array 472 from the lens 458 becomes small. The incident can be prevented. That is, a high extinction ratio can be realized.

<その他の光学系>
本発明のパターン形成方法では、公知の光学系の中から適宜選択したその他の光学系と併用してもよく、例えば、1対の組合せレンズからなる光量分布補正光学系などが挙げられる。
前記光量分布補正光学系は、光軸に近い中心部の光束幅に対する周辺部の光束幅の比が入射側に比べて出射側の方が小さくなるように各出射位置における光束幅を変化させて、光照射手段からの平行光束をDMDに照射するときに、被照射面での光量分布が略均一になるように補正する。以下、前記光量分布補正光学系について図面を参照しながら説明する。
<Other optical systems>
In the pattern forming method of the present invention, it may be used in combination with other optical systems appropriately selected from known optical systems, for example, a light amount distribution correcting optical system composed of a pair of combination lenses.
The light amount distribution correcting optical system changes the light flux width at each exit position so that the ratio of the light flux width at the peripheral portion to the light flux width at the central portion close to the optical axis is smaller on the exit side than on the incident side. When the DMD is irradiated with the parallel light flux from the light irradiation means, the light amount distribution on the irradiated surface is corrected so as to be substantially uniform. Hereinafter, the light quantity distribution correcting optical system will be described with reference to the drawings.

まず、図24(A)に示したように、入射光束と出射光束とで、その全体の光束幅(全光束幅)H0、H1が同じである場合について説明する。なお、図24(A)において、符号51、52で示した部分は、前記光量分布補正光学系における入射面及び出射面を仮想的に示したものである。   First, as shown in FIG. 24A, the case where the entire luminous flux widths (total luminous flux widths) H0 and H1 are the same for the incident luminous flux and the outgoing luminous flux will be described. In FIG. 24A, the portions denoted by reference numerals 51 and 52 virtually indicate the entrance surface and the exit surface in the light quantity distribution correction optical system.

前記光量分布補正光学系において、光軸Z1に近い中心部に入射した光束と、周辺部に入射した光束とのそれぞれの光束幅h0、h1が、同一であるものとする(h0=hl)。前記光量分布補正光学系は、入射側において同一の光束幅h0,h1であった光に対し、中心部の入射光束については、その光束幅h0を拡大し、逆に、周辺部の入射光束に対してはその光束幅h1を縮小するような作用を施す。すなわち、中心部の出射光束の幅h10と、周辺部の出射光束の幅h11とについて、h11<h10となるようにする。光束幅の比率で表すと、出射側における中心部の光束幅に対する周辺部の光束幅の比「h11/h10」が、入射側における比(h1/h0=1)に比べて小さくなっている((h11/h10)<1)。   In the light quantity distribution correcting optical system, it is assumed that the light flux widths h0 and h1 of the light beam incident on the central portion near the optical axis Z1 and the light flux incident on the peripheral portion are the same (h0 = hl). The light quantity distribution correcting optical system expands the light flux width h0 of the incident light flux at the central portion with respect to the light having the same light flux width h0, h1 on the incident side, and conversely changes the incident light flux at the peripheral portion. On the other hand, the light beam width h1 is reduced. That is, the width h10 of the outgoing light beam at the center and the width h11 of the outgoing light beam at the periphery are set to satisfy h11 <h10. In terms of the ratio of the luminous flux width, the ratio “h11 / h10” of the luminous flux width in the peripheral portion to the luminous flux width in the central portion on the emission side is smaller than the ratio (h1 / h0 = 1) on the incident side ( (H11 / h10) <1).

このように光束幅を変化させることにより、通常では光量分布が大きくなっている中央部の光束を、光量の不足している周辺部へと生かすことができ、全体として光の利用効率を落とさずに、被照射面での光量分布が略均一化される。均一化の度合いは、例えば、有効領域内における光量ムラが30%以内、好ましくは20%以内となるようにする。   By changing the light flux width in this way, the light flux in the central part, which normally has a large light quantity distribution, can be utilized in the peripheral part where the light quantity is insufficient, and the overall light utilization efficiency is not reduced. In addition, the light quantity distribution on the irradiated surface is made substantially uniform. The degree of uniformity is, for example, such that the unevenness in the amount of light in the effective area is within 30%, preferably within 20%.

前記光量分布補正光学系による作用、効果は、入射側と出射側とで、全体の光束幅を変える場合(図24(B),(C))においても同様である。   The operations and effects of the light quantity distribution correcting optical system are the same when the entire luminous flux width is changed between the incident side and the exit side (FIGS. 24B and 24C).

図24(B)は、入射側の全体の光束幅H0を、幅H2に“縮小”して出射する場合(H0>H2)を示している。このような場合においても、前記光量分布補正光学系は、入射側において同一の光束幅h0、h1であった光を、出射側において、中央部の光束幅h10が周辺部に比べて大きくなり、逆に、周辺部の光束幅h11が中心部に比べて小さくなるようにする。光束の縮小率で考えると、中心部の入射光束に対する縮小率を周辺部に比べて小さくし、周辺部の入射光束に対する縮小率を中心部に比べて大きくするような作用を施している。この場合にも、中心部の光束幅に対する周辺部の光束幅の比「H11/H10」が、入射側における比(h1/h0=1)に比べて小さくなる((h11/h10)<1)。   FIG. 24B shows a case where the entire light flux width H0 on the incident side is “reduced” to the width H2 and emitted (H0> H2). Even in such a case, the light quantity distribution correcting optical system has the same light beam width h0, h1 on the incident side, and the light beam width h10 in the central part is larger than that in the peripheral part on the emission side. Conversely, the luminous flux width h11 at the peripheral part is made smaller than that at the central part. Considering the reduction rate of the light beam, the reduction rate with respect to the incident light beam in the central part is made smaller than that in the peripheral part, and the reduction rate with respect to the incident light beam in the peripheral part is made larger than that in the central part. Also in this case, the ratio “H11 / H10” of the light flux width in the peripheral portion to the light flux width in the central portion is smaller than the ratio (h1 / h0 = 1) on the incident side ((h11 / h10) <1). .

図24(C)は、入射側の全体の光束幅H0を、幅Η3に“拡大”して出射する場合(H0<H3)を示している。このような場合においても、前記光量分布補正光学系は、入射側において同一の光束幅h0、h1であった光を、出射側において、中央部の光束幅h10が周辺部に比べて大きくなり、逆に、周辺部の光束幅h11が中心部に比べて小さくなるようにする。光束の拡大率で考えると、中心部の入射光束に対する拡大率を周辺部に比べて大きくし、周辺部の入射光束に対する拡大率を中心部に比べて小さくするような作用を施している。この場合にも、中心部の光束幅に対する周辺部の光束幅の比「h11/h10」が、入射側における比(h1/h0=1)に比べて小さくなる((h11/h10)<1)。   FIG. 24C shows a case where the entire light flux width H0 on the incident side is “enlarged” by the width Η3 and emitted (H0 <H3). Even in such a case, the light quantity distribution correcting optical system has the same light beam width h0, h1 on the incident side, and the light beam width h10 in the central part is larger than that in the peripheral part on the emission side. Conversely, the luminous flux width h11 at the peripheral part is made smaller than that at the central part. Considering the expansion rate of the light beam, the expansion rate for the incident light beam in the central portion is made larger than that in the peripheral portion, and the expansion rate for the incident light beam in the peripheral portion is made smaller than that in the central portion. Also in this case, the ratio “h11 / h10” of the light flux width in the peripheral portion to the light flux width in the central portion is smaller than the ratio (h1 / h0 = 1) on the incident side ((h11 / h10) <1). .

このように、前記光量分布補正光学系は、各出射位置における光束幅を変化させ、光軸Z1に近い中心部の光束幅に対する周辺部の光束幅の比を入射側に比べて出射側の方が小さくなるようにしたので、入射側において同一の光束幅であった光が、出射側においては、中央部の光束幅が周辺部に比べて大きくなり、周辺部の光束幅は中心部に比べて小さくなる。これにより、中央部の光束を周辺部へと生かすことができ、光学系全体としての光の利用効率を落とさずに、光量分布の略均一化された光束断面を形成することができる。   As described above, the light quantity distribution correcting optical system changes the light beam width at each emission position, and the ratio of the light beam width in the peripheral part to the light beam width in the central part near the optical axis Z1 is larger on the outgoing side than on the incident side. Since the light having the same luminous flux width on the incident side is larger on the outgoing side, the luminous flux width in the central portion is larger than that in the peripheral portion, and the luminous flux width in the peripheral portion is smaller than that in the central portion. Become smaller. As a result, it is possible to make use of the light beam at the center part to the peripheral part, and it is possible to form a light beam cross-section with a substantially uniform light amount distribution without reducing the light use efficiency of the entire optical system.

次に、前記光量分布補正光学系として使用する1対の組合せレンズの具体的なレンズデータの1例を示す。この例では、前記光照射手段がレーザアレイ光源である場合のように、出射光束の断面での光量分布がガウス分布である場合のレンズデータを示す。なお、シングルモード光ファイバの入射端に1個の半導体レーザを接続した場合には、光ファイバからの射出光束の光量分布がガウス分布になる。本発明のパターン形成方法では、このような場合の適用も可能である。また、マルチモード光ファイバのコア径を小さくしてシングルモード光ファイバの構成に近付ける等により光軸に近い中心部の光量が周辺部の光量よりも大きい場合にも適用可能である。
下記表1に基本レンズデータを示す。
Next, an example of specific lens data of a pair of combination lenses used as the light quantity distribution correcting optical system will be shown. In this example, lens data in the case where the light amount distribution in the cross section of the emitted light beam is a Gaussian distribution as in the case where the light irradiation means is a laser array light source is shown. When one semiconductor laser is connected to the incident end of the single mode optical fiber, the light quantity distribution of the emitted light beam from the optical fiber becomes a Gaussian distribution. The pattern forming method of the present invention can be applied to such a case. Further, the present invention can be applied to a case where the light amount in the central portion near the optical axis is larger than the light amount in the peripheral portion, for example, by reducing the core diameter of the multi-mode optical fiber and approaching the configuration of the single mode optical fiber.
Table 1 below shows basic lens data.

表1から分かるように、1対の組合せレンズは、回転対称の2つの非球面レンズから構成されている。光入射側に配置された第1のレンズの光入射側の面を第1面、光出射側の面を第2面とすると、第1面は非球面形状である。また、光出射側に配置された第2のレンズの光入射側の面を第3面、光出射側の面を第4面とすると、第4面が非球面形状である。   As can be seen from Table 1, the pair of combination lenses is composed of two rotationally symmetric aspherical lenses. If the light incident side surface of the first lens disposed on the light incident side is the first surface and the light exit side surface is the second surface, the first surface is aspherical. In addition, when the surface on the light incident side of the second lens disposed on the light emitting side is the third surface and the surface on the light emitting side is the fourth surface, the fourth surface is aspherical.

表1において、面番号Siはi番目(i=1〜4)の面の番号を示し、曲率半径riはi番目の面の曲率半径を示し、面間隔diはi番目の面とi+1番目の面との光軸上の面間隔を示す。面間隔di値の単位はミリメートル(mm)である。屈折率Niはi番目の面を備えた光学要素の波長405nmに対する屈折率の値を示す。
下記表2に、第1面及び第4面の非球面データを示す。
In Table 1, the surface number Si indicates the number of the i-th surface (i = 1 to 4), the curvature radius ri indicates the curvature radius of the i-th surface, and the surface interval di indicates the i-th surface and the i + 1-th surface. The distance between surfaces on the optical axis is shown. The unit of the surface interval di value is millimeter (mm). The refractive index Ni indicates the value of the refractive index with respect to the wavelength of 405 nm of the optical element having the i-th surface.
Table 2 below shows the aspheric data of the first surface and the fourth surface.

上記の非球面データは、非球面形状を表す下記式(A)における係数で表される。   The aspheric data is expressed by a coefficient in the following formula (A) that represents the aspheric shape.

上記式(A)において各係数を以下の通り定義する。
Z:光軸から高さρの位置にある非球面上の点から、非球面の頂点の接平面(光軸に垂直な平面)に下ろした垂線の長さ(mm)
ρ:光軸からの距離(mm)
K:円錐係数
C:近軸曲率(1/r、r:近軸曲率半径)
ai:第i次(i=3〜10)の非球面係数
表2に示した数値において、記号“E”は、その次に続く数値が10を底とした“べき指数″であることを示し、その10を底とした指数関数で表される数値が“E”の前の数値に乗算されることを示す。例えば、「1.0E−02」であれば、「1.0×10−2」であることを示す。
In the above formula (A), each coefficient is defined as follows.
Z: Length of a perpendicular line (mm) drawn from a point on the aspheric surface at a height ρ from the optical axis to the tangent plane (plane perpendicular to the optical axis) of the apex of the aspheric surface
ρ: Distance from optical axis (mm)
K: Conic coefficient C: Paraxial curvature (1 / r, r: Paraxial radius of curvature)
ai: i-th order (i = 3 to 10) aspheric coefficient In the numerical values shown in Table 2, the symbol “E” indicates that the subsequent numerical value is a “power index” with 10 as the base. The numerical value represented by the exponential function with the base of 10 is multiplied by the numerical value before “E”. For example, “1.0E-02” indicates “1.0 × 10 −2 ”.

図26は、前記表1及び表2に示す1対の組合せレンズによって得られる照明光の光量分布を示している。横軸は光軸からの座標を示し、縦軸は光量比(%)を示す。なお、比較のために、図25に、補正を行わなかった場合の照明光の光量分布(ガウス分布)を示す。図25及び図26から分かるように、光量分布補正光学系で補正を行うことにより、補正を行わなかった場合と比べて、略均一化された光量分布が得られている。これにより、光の利用効率を落とさずに、均一なレーザ光でムラなく露光を行うことができる。   FIG. 26 shows a light amount distribution of illumination light obtained by the pair of combination lenses shown in Tables 1 and 2. The horizontal axis indicates coordinates from the optical axis, and the vertical axis indicates the light amount ratio (%). For comparison, FIG. 25 shows a light amount distribution (Gaussian distribution) of illumination light when correction is not performed. As can be seen from FIG. 25 and FIG. 26, the light amount distribution correction optical system corrects the light amount distribution that is substantially uniform as compared with the case where correction is not performed. Thereby, it is possible to perform exposure with uniform laser light without reducing the use efficiency of light, without causing any unevenness.

[その他工程]
前記その他の工程としては、特に制限はなく、公知のパターン形成における工程の中から適宜選択することが挙げられるが、例えば、現像工程、エッチング工程、メッキ工程などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
前記現像工程は、前記露光工程により前記パターン形成材料における感光層を露光し、該感光層の露光した領域を硬化させた後、未硬化領域を除去することにより現像し、パターンを形成する工程である。
[Other processes]
There is no restriction | limiting in particular as said other process, Although selecting suitably from the process in well-known pattern formation is mentioned, For example, a image development process, an etching process, a plating process, etc. are mentioned. These may be used alone or in combination of two or more.
The development step is a step of forming a pattern by exposing the photosensitive layer in the pattern forming material by the exposure step, curing the exposed region of the photosensitive layer, and then developing by removing an uncured region. is there.

前記現像工程は、例えば、現像手段により好適に実施することができる。
前記現像手段としては、現像液を用いて現像することができる限り特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記現像液を噴霧する手段、前記現像液を塗布する手段、前記現像液に浸漬させる手段などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
また、前記現像手段は、前記現像液を交換する現像液交換手段、前記現像液を供給する現像液供給手段などを有していてもよい。
The developing step can be preferably performed by, for example, developing means.
The developing means is not particularly limited as long as it can be developed using a developer, and can be appropriately selected according to the purpose. For example, the means for spraying the developer and the developer are applied. And means for immersing in the developer. These may be used alone or in combination of two or more.
In addition, the developing unit may include a developer replacing unit that replaces the developer, a developer supplying unit that supplies the developer, and the like.

前記現像液としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、アルカリ性液、水系現像液、有機溶剤などが挙げられ、これらの中でも、弱アルカリ性の水溶液が好ましい。該弱アルカリ性液の塩基成分としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、リン酸ナトリウム、リン酸カリウム、ピロリン酸ナトリウム、ピロリン酸カリウム、硼砂などが挙げられる。   There is no restriction | limiting in particular as said developing solution, Although it can select suitably according to the objective, For example, an alkaline solution, an aqueous developing solution, an organic solvent etc. are mentioned, Among these, weakly alkaline aqueous solution is preferable. Examples of the basic component of the weak alkaline liquid include lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium phosphate, phosphorus Examples include potassium acid, sodium pyrophosphate, potassium pyrophosphate, and borax.

前記弱アルカリ性の水溶液のpHとしては、例えば、約8〜12が好ましく、約9〜11がより好ましい。前記弱アルカリ性の水溶液としては、例えば、0.1〜5質量%の炭酸ナトリウム水溶液又は炭酸カリウム水溶液などが挙げられる。
前記現像液の温度としては、前記感光層の現像性に合わせて適宜選択することができるが、例えば、約25℃〜40℃が好ましい。
The pH of the weak alkaline aqueous solution is, for example, preferably about 8 to 12, and more preferably about 9 to 11. Examples of the weak alkaline aqueous solution include a 0.1 to 5% by mass aqueous sodium carbonate solution or an aqueous potassium carbonate solution.
The temperature of the developer can be appropriately selected according to the developability of the photosensitive layer, and is preferably about 25 ° C. to 40 ° C., for example.

前記現像液は、界面活性剤、消泡剤、有機塩基(例えば、エチレンジアミン、エタノールアミン、テトラメチルアンモニウムハイドロキサイド、ジエチレントリアミン、トリエチレンペンタミン、モルホリン、トリエタノールアミン等)や、現像を促進させるため有機溶剤(例えば、アルコール類、ケトン類、エステル類、エーテル類、アミド類、ラクトン類等)などと併用してもよい。また、前記現像液は、水又はアルカリ水溶液と有機溶剤を混合した水系現像液であってもよく、有機溶剤単独であってもよい。   The developer includes a surfactant, an antifoaming agent, an organic base (for example, ethylenediamine, ethanolamine, tetramethylammonium hydroxide, diethylenetriamine, triethylenepentamine, morpholine, triethanolamine, etc.) and development. Therefore, it may be used in combination with an organic solvent (for example, alcohols, ketones, esters, ethers, amides, lactones, etc.). The developer may be an aqueous developer obtained by mixing water or an alkaline aqueous solution and an organic solvent, or may be an organic solvent alone.

前記エッチング工程としては、公知のエッチング処理方法の中から適宜選択した方法により行うことができる。
前記エッチング処理に用いられるエッチング液としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記金属層が銅で形成されている場合には、塩化第二銅溶液、塩化第二鉄溶液、アルカリエッチング溶液、過酸化水素系エッチング液などが挙げられ、これらの中でも、エッチングファクターの点から塩化第二鉄溶液が好ましい。
前記エッチング工程によりエッチング処理した後に前記パターンを除去することにより、前記基体の表面に永久パターンを形成することができる。
前記永久パターンとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、配線パターンなどが好適に挙げられる。
The etching step can be performed by a method appropriately selected from known etching methods.
There is no restriction | limiting in particular as an etching liquid used for the said etching process, Although it can select suitably according to the objective, For example, when the said metal layer is formed with copper, a cupric chloride solution, Examples thereof include a ferric chloride solution, an alkali etching solution, and a hydrogen peroxide-based etching solution. Among these, a ferric chloride solution is preferable from the viewpoint of an etching factor.
A permanent pattern can be formed on the surface of the substrate by removing the pattern after performing the etching process in the etching step.
There is no restriction | limiting in particular as said permanent pattern, According to the objective, it can select suitably, For example, a wiring pattern etc. are mentioned suitably.

前記メッキ工程としては、公知のメッキ処理の中から適宜選択した適宜選択した方法により行うことができる。
前記メッキ処理としては、例えば、硫酸銅メッキ、ピロリン酸銅メッキ等の銅メッキ、ハイフローハンダメッキ等のはんだメッキ、ワット浴(硫酸ニッケル−塩化ニッケル)メッキ、スルファミン酸ニッケル等のニッケルメッキ、ハード金メッキ、ソフト金メッキ等の金メッキなど処理が挙げられる。
前記メッキ工程によりメッキ処理した後に前記パターンを除去することにより、また更に必要に応じて不要部をエッチング処理等で除去することにより、前記基体の表面に永久パターンを形成することができる。
The plating step can be performed by an appropriately selected method selected from known plating processes.
Examples of the plating treatment include copper plating such as copper sulfate plating and copper pyrophosphate plating, solder plating such as high flow solder plating, watt bath (nickel sulfate-nickel chloride) plating, nickel plating such as nickel sulfamate, and hard gold plating. And gold plating such as soft gold plating.
A permanent pattern can be formed on the surface of the substrate by removing the pattern after plating by the plating step, and further removing unnecessary portions by etching or the like as necessary.

〔プリント配線板及びカラーフィルタの製造方法〕
本発明の前記パターン形成方法は、プリント配線板の製造、特にスルーホール又はビアホールなどのホール部を有するプリント配線板の製造、及び、カラーフィルタの製造に好適に使用することができる。以下、本発明のパターン形成方法を利用したプリント配線板の製造方法及びカラーフィルタの製造方法の一例について説明する。
[Method of manufacturing printed wiring board and color filter]
The pattern forming method of the present invention can be suitably used for the production of a printed wiring board, particularly for the production of a printed wiring board having a hole such as a through hole or a via hole, and for the production of a color filter. Hereinafter, an example of a method for manufacturing a printed wiring board and a method for manufacturing a color filter using the pattern forming method of the present invention will be described.

−プリント配線板の製造方法−
特に、スルーホール又はビアホールなどのホール部を有するプリント配線板の製造方法としては、(1)前記基体としてホール部を有するプリント配線板形成用基板上に、前記パターン形成材料を、その感光層が前記基体側となる位置関係にて積層して積層体形成し、(2)前記積層体の前記基体とは反対の側から、所望の領域に光照射行い感光層を硬化させ、(3)前記積層体から前記パターン形成材料における支持体を除去し、(4)前記積層体における感光層を現像して、該積層体中の未硬化部分を除去することによりパターンを形成することができる。
-Manufacturing method of printed wiring board-
In particular, as a method of manufacturing a printed wiring board having a hole portion such as a through hole or a via hole, (1) the pattern forming material is placed on the printed wiring board forming substrate having the hole portion as the base, and the photosensitive layer is (2) The photosensitive layer is cured by irradiating a desired region from the side opposite to the base of the laminate to cure the photosensitive layer. (3) A pattern can be formed by removing the support in the pattern forming material from the laminate, (4) developing the photosensitive layer in the laminate, and removing the uncured portion in the laminate.

なお、前記(3)における前記支持体の除去は、前記(2)と前記(4)との間で行う代わりに、前記(1)と前記(2)との間で行ってもよい。   The removal of the support in (3) may be performed between (1) and (2) instead of between (2) and (4).

その後、プリント配線板を得るには、前記形成したパターンを用いて、前記プリント配線板形成用基板をエッチング処理又はメッキ処理する方法(例えば、公知のサブトラクティブ法又はアディティブ法(例えば、セミアディティブ法、フルアディティブ法))により処理すればよい。これらの中でも、工業的に有利なテンティングでプリント配線板を形成するためには、前記サブトラクティブ法が好ましい。前記処理後プリント配線板形成用基板に残存する硬化樹脂は剥離させ、また、前記セミアディティブ法の場合は、剥離後さらに銅薄膜部をエッチングすることにより、所望のプリント配線板を製造することができる。また、多層プリント配線板も、前記プリント配線板の製造法と同様に製造が可能である。   Thereafter, in order to obtain a printed wiring board, a method of etching or plating the printed wiring board forming substrate using the formed pattern (for example, a known subtractive method or additive method (for example, a semi-additive method) And the full additive method)). Among these, in order to form a printed wiring board by industrially advantageous tenting, the subtractive method is preferable. After the treatment, the cured resin remaining on the printed wiring board forming substrate is peeled off. In the case of the semi-additive method, a desired printed wiring board can be manufactured by further etching the copper thin film portion after peeling. it can. A multilayer printed wiring board can also be manufactured in the same manner as the printed wiring board manufacturing method.

次に、前記パターン形成材料を用いたスルーホールを有するプリント配線板の製造方法について、更に説明する。   Next, the manufacturing method of the printed wiring board which has a through hole using the said pattern formation material is further demonstrated.

まずスルーホールを有し、表面が金属メッキ層で覆われたプリント配線板形成用基板を用意する。前記プリント配線板形成用基板としては、例えば、銅張積層基板及びガラス−エポキシなどの絶縁基材に銅メッキ層を形成した基板、又はこれらの基板に層間絶縁膜を積層し、銅メッキ層を形成した基板(積層基板)を用いることができる。   First, a printed wiring board forming substrate having through holes and having a surface covered with a metal plating layer is prepared. As the printed wiring board forming substrate, for example, a copper-clad laminate substrate and a substrate in which a copper plating layer is formed on an insulating base material such as glass-epoxy, or an interlayer insulating film is laminated on these substrates, and a copper plating layer is formed. A formed substrate (laminated substrate) can be used.

次に、前記パターン形成材料上に保護フィルムを有する場合には、該保護フィルムを剥離して、前記パターン形成材料における感光層が前記プリント配線板形成用基板の表面に接するようにして加圧ローラを用いて圧着する(積層工程)。これにより、前記プリント配線板形成用基板と前記積層体とをこの順に有する積層体が得られる。
前記パターン形成材料の積層温度としては、特に制限はなく、例えば、室温(15〜30℃)、又は加熱下(30〜180℃)が挙げられ、これらの中でも、加温下(60〜140℃)が好ましい。
前記圧着ロールのロール圧としては、特に制限はなく、例えば、0.1〜1MPaが好ましい。
前記圧着の速度としては、特に制限はなく、1〜3m/分が好ましい。
また、前記プリント配線板形成用基板を予備加熱しておいてもよく、また、減圧下で積層してもよい。
Next, when a protective film is provided on the pattern forming material, the protective film is peeled off so that the photosensitive layer in the pattern forming material is in contact with the surface of the printed wiring board forming substrate. Is used for pressure bonding (lamination process). Thereby, the laminated body which has the said board | substrate for printed wiring board formation and the said laminated body in this order is obtained.
There is no restriction | limiting in particular as lamination | stacking temperature of the said pattern formation material, For example, room temperature (15-30 degreeC) or under heating (30-180 degreeC) is mentioned, Among these, under heating (60-140 degreeC) ) Is preferred.
There is no restriction | limiting in particular as roll pressure of the said crimping | compression-bonding roll, For example, 0.1-1 Mpa is preferable.
There is no restriction | limiting in particular as the speed | rate of the said crimping | compression-bonding, and 1-3 m / min is preferable.
The printed wiring board forming substrate may be preheated or laminated under reduced pressure.

前記積層体の形成は、前記プリント配線板形成用基板上に前記パターン形成材料を積層してもよく、また、前記パターン形成材料製造用のパターン形成用樹脂組成物溶液などを前記プリント配線板形成用基板の表面に直接塗布し、乾燥させることにより前記プリント配線板形成用基板上に感光層及び支持体を積層してもよい。   The laminated body may be formed by laminating the pattern forming material on the printed wiring board forming substrate, and forming the printed wiring board with a pattern forming resin composition solution for manufacturing the pattern forming material. The photosensitive layer and the support may be laminated on the printed wiring board forming substrate by coating directly on the surface of the printing substrate and drying.

次に、前記積層体の基体とは反対側の面から、光を照射して感光層を硬化させる。なおこの際、必要に応じて(例えば、支持体の光透過性が不十分な場合など)前記支持体を剥離してから露光を行ってもよい。   Next, the photosensitive layer is cured by irradiating light from the surface of the laminate opposite to the substrate. At this time, exposure may be performed after peeling off the support as necessary (for example, when the light transmittance of the support is insufficient).

この時点で、前記支持体を未だ剥離していない場合には、前記積層体から前記支持体を剥離する(剥離工程)。   At this time, when the support is not yet peeled off, the support is peeled from the laminate (peeling step).

次に、前記プリント配線板形成用基板上の感光層の未硬化領域を、適当な現像液にて溶解除去して、配線パターン形成用の硬化層とスルーホールの金属層保護用硬化層のパターンを形成し、前記プリント配線板形成用基板の表面に金属層を露出させる(現像工程)。   Next, the uncured region of the photosensitive layer on the printed wiring board forming substrate is dissolved and removed with an appropriate developer to form a pattern of the cured layer for forming the wiring pattern and the cured layer for protecting the metal layer of the through hole. And a metal layer is exposed on the surface of the printed wiring board forming substrate (developing step).

また、現像後に必要に応じて後加熱処理や後露光処理によって、硬化部の硬化反応を更に促進させる処理をおこなってもよい。現像は上記のようなウエット現像法であってもよく、ドライ現像法であってもよい。   Moreover, you may perform the process which further accelerates | stimulates the hardening reaction of a hardening part by post-heat processing or post-exposure processing as needed after image development. The development may be a wet development method as described above or a dry development method.

次いで、前記プリント配線板形成用基板の表面に露出した金属層をエッチング液で溶解除去する(エッチング工程)。スルーホールの開口部は、硬化樹脂組成物(テント膜)で覆われているので、エッチング液がスルーホール内に入り込んでスルーホール内の金属メッキを腐食することなく、スルーホールの金属メッキは所定の形状で残ることになる。これより、前記プリント配線板形成用基板に配線パターンが形成される。   Next, the metal layer exposed on the surface of the printed wiring board forming substrate is dissolved and removed with an etching solution (etching step). Since the opening of the through hole is covered with a cured resin composition (tent film), the metal plating of the through hole is predetermined without etching liquid entering the through hole and corroding the metal plating in the through hole. It will remain in the shape. Thus, a wiring pattern is formed on the printed wiring board forming substrate.

前記エッチング液としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記金属層が銅で形成されている場合には、塩化第二銅溶液、塩化第二鉄溶液、アルカリエッチング溶液、過酸化水素系エッチング液などが挙げられ、これらの中でも、エッチングファクターの点から塩化第二鉄溶液が好ましい。   There is no restriction | limiting in particular as said etching liquid, Although it can select suitably according to the objective, For example, when the said metal layer is formed with copper, a cupric chloride solution, a ferric chloride solution , Alkaline etching solutions, hydrogen peroxide-based etching solutions, and the like. Among these, ferric chloride solutions are preferable from the viewpoint of etching factors.

次に、強アルカリ水溶液などにて前記硬化層を剥離片として、前記プリント配線板形成用基板から除去する(硬化物除去工程)。
前記強アルカリ水溶液における塩基成分としては、特に制限はなく、例えば、水酸化ナトリウム、水酸化カリウムなどが挙げられる。
前記強アルカリ水溶液のpHとしては、例えば、約12〜14が好ましく、約13〜14がより好ましい。
前記強アルカリ水溶液としては、特に制限はなく、例えば、1〜10質量%の水酸化ナトリウム水溶液又は水酸化カリウム水溶液などが挙げられる。
Next, it removes from the said board | substrate for printed wiring board formation by making the said hardened layer into a peeling piece with strong alkaline aqueous solution etc. (hardened | cured material removal process).
There is no restriction | limiting in particular as a base component in the said strong alkali aqueous solution, For example, sodium hydroxide, potassium hydroxide, etc. are mentioned.
As pH of the said strong alkali aqueous solution, about 12-14 are preferable, for example, and about 13-14 are more preferable.
There is no restriction | limiting in particular as said strong alkali aqueous solution, For example, 1-10 mass% sodium hydroxide aqueous solution or potassium hydroxide aqueous solution etc. are mentioned.

また、プリント配線板は、多層構成のプリント配線板であってもよい。
なお、前記パターン形成材料は上記のエッチングプロセスのみでなく、メッキプロセスに使用してもよい。前記メッキ法としては、例えば、硫酸銅メッキ、ピロリン酸銅メッキ等の銅メッキ、ハイフローハンダメッキ等のはんだメッキ、ワット浴(硫酸ニッケル−塩化ニッケル)メッキ、スルファミン酸ニッケル等のニッケルメッキ、ハード金メッキ、ソフト金メッキ等の金メッキなどが挙げられる。
The printed wiring board may be a multilayer printed wiring board.
The pattern forming material may be used not only for the above etching process but also for a plating process. Examples of the plating method include copper plating such as copper sulfate plating and copper pyrophosphate plating, solder plating such as high flow solder plating, watt bath (nickel sulfate-nickel chloride) plating, nickel plating such as nickel sulfamate, and hard gold plating. And gold plating such as soft gold plating.

−カラーフィルタの製造方法−
ガラス基板等の基体上に、本発明の前記パターン形成材料における感光層を貼り合わせ、該パターン形成材料から支持体を剥離する場合に、帯電した前記支持体(フィルム)と人体とが不快な電気ショックを受けることがあり、あるいは帯電した前記支持体に塵埃が付着する等の問題がある。このため、前記支持体上に導電層を設けたり、前記支持体自体に導電性を付与する処理を施すことが好ましい。また、前記導電層を前記感光層とは反対側の前記支持体上に設けた場合は、耐傷性を向上させるために疎水性重合体層を設けることが好ましい。
-Color filter manufacturing method-
When the photosensitive layer of the pattern forming material of the present invention is bonded onto a substrate such as a glass substrate and the support is peeled off from the pattern forming material, the charged support (film) and the human body are uncomfortable. There is a problem that a shock may occur or dust adheres to the charged support. For this reason, it is preferable to provide a conductive layer on the support or to perform a treatment for imparting conductivity to the support itself. When the conductive layer is provided on the support opposite to the photosensitive layer, it is preferable to provide a hydrophobic polymer layer in order to improve scratch resistance.

次に、前記感光層を赤、緑、青、黒のそれぞれに着色した赤色感光層を有するパターン形成材料と、緑色感光層を有するパターン形成材料と、青色感光層を有するパターン形成材料と、黒色感光層を有するパターン形成材料を調製する。赤画素用の前記赤色感光層を有するパターン形成材料を用いて、赤色感光層を前記基体表面に積層して積層体を形成した後、像様に露光、現像して赤の画素を形成する。赤の画素を形成した後、前記積層体を加熱して未硬化部分を硬化させる。これを緑、青の画素のついても同様にして行い、各画素を形成する。   Next, a pattern forming material having a red photosensitive layer in which the photosensitive layer is colored red, green, blue, and black, a pattern forming material having a green photosensitive layer, a pattern forming material having a blue photosensitive layer, and black A pattern forming material having a photosensitive layer is prepared. Using the pattern forming material having the red photosensitive layer for red pixels, a red photosensitive layer is laminated on the surface of the substrate to form a laminate, and then exposed and developed imagewise to form red pixels. After forming red pixels, the laminate is heated to cure the uncured portion. This is similarly performed for the green and blue pixels to form each pixel.

前記積層体の形成は、前記ガラス基板上に前記パターン形成材料を積層してもよく、また、前記パターン形成材料製造用のパターン形成用樹脂組成物溶液などを前記ガラス基板の表面に直接塗布し、乾燥させることにより前記ガラス基板上に感光層及び支持体を積層してもよい。また、赤、緑、青の三種の画素を配置する場合は、モザイク型、トライアングル型、4画素配置型等どのような配置であってもよい。   The laminated body may be formed by laminating the pattern forming material on the glass substrate, or by directly applying a resin composition solution for pattern formation for producing the pattern forming material onto the surface of the glass substrate. The photosensitive layer and the support may be laminated on the glass substrate by drying. Further, when three types of pixels of red, green, and blue are arranged, any arrangement such as a mosaic type, a triangle type, and a four-pixel arrangement type may be used.

前記画素を形成した面上に前記黒色感光層を有するパターン形成材料を積層し、画素を形成していない側から背面露光し、現像してブラックマトリックスを形成する。該ブラックマトリックスを形成した積層体を加熱することにより、未硬化部分を硬化させ、カラーフィルタを製造することができる。   A pattern forming material having the black photosensitive layer is laminated on the surface on which the pixels are formed, and back exposure is performed from the side where the pixels are not formed, and development is performed to form a black matrix. By heating the laminate in which the black matrix is formed, the uncured portion can be cured and a color filter can be produced.

本発明のパターン形成方法及びパターン形成装置は、前記感光層の感度低下を抑制でき、かつ、高精細なパターンを形成可能なパターン形成材料を用いるため、より小さいエネルギー量の光で露光することができ、露光スピードが上がるため、処理スピードが上がる点で有利である。   Since the pattern forming method and the pattern forming apparatus of the present invention use a pattern forming material that can suppress a decrease in sensitivity of the photosensitive layer and can form a high-definition pattern, exposure can be performed with light of a smaller energy amount. This is advantageous in that the processing speed is increased because the exposure speed is increased.

本発明の前記パターン形成方法は、本発明の前記パターン形成材料を用いるため、各種パターンの形成、配線パターン等の永久パターンの形成、カラーフィルタ、柱材、リブ材、スペーサー、隔壁等の液晶構造部材の製造、ホログラム、マイクロマシン、プルーフなどの製造に好適に使用することができ、特に高精細な配線パターンの形成に好適に使用することができる。本発明のパターン形成装置は、本発明の前記パターン形成材料を備えているため、各種パターンの形成、配線パターン等の永久パターンの形成、カラーフィルタ、柱材、リブ材、スペーサー、隔壁等の液晶構造部材の製造、ホログラム、マイクロマシン、プルーフなどの製造に好適に使用することができ、特に高精細な配線パターンの形成に好適に用いることができる。   Since the pattern forming method of the present invention uses the pattern forming material of the present invention, liquid crystal structures such as various patterns, formation of permanent patterns such as wiring patterns, color filters, pillar materials, rib materials, spacers, partition walls, etc. It can be suitably used for the production of members, holograms, micromachines, proofs, etc., and can be particularly suitably used for the formation of high-definition wiring patterns. Since the pattern forming apparatus of the present invention includes the pattern forming material of the present invention, it forms various patterns, forms permanent patterns such as wiring patterns, color filters, column materials, rib materials, spacers, partition walls, and other liquid crystals. It can be suitably used for the production of structural members, holograms, micromachines, proofs, etc., and can be particularly suitably used for the formation of high-definition wiring patterns.

(永久パターン形成方法)
前記永久パターン形成方法は、例えば、次のような方法が挙げられる。
まず、前記パターン形成材料の製造方法と同様に、前記パターン形成用組成物を、水又は溶剤に、溶解、乳化又は分散させて、パターン形成用組成物溶液を調製し、基板上に塗布し、乾燥させて永久パターン形成材料を作製する。
前記永久パターン形成方法において使用する前記溶剤、前記パターン形成用組成物溶液を塗布する方法、乾燥する方法は、前記パターン形成材料の製造方法と同様の溶剤及び方法が使用できる。
(Permanent pattern forming method)
Examples of the permanent pattern forming method include the following methods.
First, similarly to the method for producing the pattern forming material, the pattern forming composition is dissolved, emulsified or dispersed in water or a solvent to prepare a pattern forming composition solution, which is applied onto a substrate, A permanent pattern forming material is produced by drying.
As the solvent used in the permanent pattern forming method, the method of applying the pattern forming composition solution, and the method of drying, the same solvent and method as the method for producing the pattern forming material can be used.

前記基材としては、特に制限はなく、公知の材料の中から表面平滑性の高いものから凸凹のある表面を有するものまで適宜選択することができ、板状の基材(基板)が好ましく、具体的には、公知のプリント配線板形成用基板(例えば、銅張積層板)、ガラス板(例えば、ソーダガラス板等)、合成樹脂性のフィルム、紙、金属板などが挙げられるが、これらの中でも、プリント配線板形成用基板が好ましく、多層配線基板やビルドアップ配線基板などへの半導体等の高密度実装化が可能となる点で、該プリント配線板形成用基板が配線形成済みであるのが特に好ましい。   The base material is not particularly limited and can be appropriately selected from known materials having a high surface smoothness to a surface having an uneven surface. A plate-shaped base material (substrate) is preferable, Specific examples include known printed wiring board forming substrates (for example, copper-clad laminates), glass plates (for example, soda glass plates), synthetic resin films, paper, metal plates, and the like. Among them, a printed wiring board forming substrate is preferable, and the printed wiring board forming substrate has already been formed in terms of wiring density so that a semiconductor or the like can be mounted on a multilayer wiring board or a build-up wiring board. Is particularly preferred.

次に、前記永久パターン形成材料を露光し、現像するが、該露光に用いる露光装置及び露光方法、並びに該現像に用いる現像液及び現像方法は、前記パターン形成材料の露光及び現像と同様のもの及び方法が使用できる。   Next, the permanent pattern forming material is exposed and developed. An exposure apparatus and an exposure method used for the exposure, and a developer and a development method used for the development are the same as the exposure and development of the pattern forming material. And methods can be used.

本発明の永久パターン形成方法は、前記感光層の感度低下を抑制できるため、より小さいエネルギー量の光で露光することができ、露光スピードが上がるため処理スピードが上がる点で有利である。   The permanent pattern forming method of the present invention is advantageous in that it can suppress a decrease in sensitivity of the photosensitive layer, and therefore can be exposed with light having a smaller energy amount, and the exposure speed increases, so that the processing speed increases.

以下、実施例により本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。
(合成例1)
連鎖移動可能な官能基を有する化合物としてのペンタエリトリトールテトラキス(3−メルカプトプロピオネート)20.0質量部、親水性官能基を有する物化合物としてのマレイン酸9.50質量部を、エタノール44.3質量部に溶解し、窒素雰囲気下で70℃に加熱した後、2,2’−アゾビス(2,4−ジメチルバレロニル)0.20質量部を加え、窒素雰囲気下、70℃で3時間反応させることにより、分子内に連鎖移動可能な官能基と親水性官能基とを有する化合物としての下記構造式(78)で表される添加剤A1の40%溶液を得た。
但し、構造式(78)中、nは2(平均)を表す。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
(Synthesis Example 1)
20.0 parts by mass of pentaerythritol tetrakis (3-mercaptopropionate) as a compound having a functional group capable of chain transfer, 9.50 parts by mass of maleic acid as a compound having a hydrophilic functional group, After dissolving in 3 parts by mass and heating to 70 ° C. under a nitrogen atmosphere, 0.20 part by mass of 2,2′-azobis (2,4-dimethylvaleronyl) is added, and then at 70 ° C. for 3 hours under a nitrogen atmosphere. By reacting, a 40% solution of additive A1 represented by the following structural formula (78) as a compound having a functional group capable of chain transfer in the molecule and a hydrophilic functional group was obtained.
However, in Structural Formula (78), n represents 2 (average).

(合成例2)
連鎖移動可能な官能基を有する化合物としてのペンタエリトリトールテトラキス(3−メルカプトプロピオネート)20.0質量部、親水性官能基を有する化合物としてのイタコン酸10.6質量部を、エタノール45.9質量部に溶解し、合成例1と同様に反応させることにより、分子内に連鎖移動可能な官能基と親水性官能基とを有する化合物としての下記構造式(79)で表される添加剤A2の40%溶液を得た。
但し、構造式(79)中、nは2(平均)を表す。
(Synthesis Example 2)
20.0 parts by mass of pentaerythritol tetrakis (3-mercaptopropionate) as a compound having a functional group capable of chain transfer and 10.6 parts by mass of itaconic acid as a compound having a hydrophilic functional group were added to 45.9 ethanol. Additive A2 represented by the following structural formula (79) as a compound having a functional group capable of chain transfer and a hydrophilic functional group in the molecule by dissolving in mass parts and reacting in the same manner as in Synthesis Example 1. A 40% solution of was obtained.
However, in Structural Formula (79), n represents 2 (average).

(合成例3)
連鎖移動可能な官能基を有する化合物としてのペンタエリトリトールテトラキス(3−メルカプトプロピオネート)20.0質量部、親水性官能基を有する化合物としてのメタクリル酸7.05質量部を、エタノール40.6質量部に溶解し、合成例1と同様に反応させることにより、分子内に連鎖移動可能な官能基と親水性官能基とを有する化合物としての下記構造式(80)で表される添加剤A3の40%溶液を得た。
但し、構造式(80)中、nは2(平均)を表す。
(Synthesis Example 3)
20.0 parts by mass of pentaerythritol tetrakis (3-mercaptopropionate) as a compound having a chain transferable functional group, 7.05 parts by mass of methacrylic acid as a compound having a hydrophilic functional group, Additive A3 represented by the following structural formula (80) as a compound having a functional group capable of chain transfer and a hydrophilic functional group in the molecule by dissolving in mass parts and reacting in the same manner as in Synthesis Example 1. A 40% solution of was obtained.
However, in structural formula (80), n represents 2 (average).

(合成例4)
連鎖移動可能な官能基を有する化合物としてのペンタエリトリトールテトラキス(3−メルカプトプロピオネート)20.0質量部、親水性官能基を有する化合物としてのアクリルアミド5.82質量部を、エタノール38.7質量部に溶解し、合成例1と同様に反応させることにより、分子内に連鎖移動可能な官能基と親水性官能基とを有する化合物としての下記構造式(81)で表される添加剤A4の40%溶液を得た。
但し、構造式(81)中、nは2(平均)を表す。
(Synthesis Example 4)
20.0 parts by mass of pentaerythritol tetrakis (3-mercaptopropionate) as a compound having a chain transferable functional group, 5.82 parts by mass of acrylamide as a compound having a hydrophilic functional group, 38.7 parts by mass of ethanol Of the additive A4 represented by the following structural formula (81) as a compound having a functional group capable of chain transfer and a hydrophilic functional group in the molecule by being dissolved in a part and reacted in the same manner as in Synthesis Example 1. A 40% solution was obtained.
However, in Structural Formula (81), n represents 2 (average).

(合成例5)
連鎖移動可能な官能基を有する化合物としてのジペンタエリトリトールヘキサキス(3−メルカプトプロピオネート)20.0質量部、親水性官能基を有する化合物としてのマレイン酸8.80質量部を、エタノール43.2質量部に溶解し、合成例1と同様に反応させることにより、分子内に連鎖移動可能な官能基と親水性官能基とを有する化合物としての下記構造式(82)で表される添加剤A5の40%溶液を得た。
(Synthesis Example 5)
20.0 parts by mass of dipentaerythritol hexakis (3-mercaptopropionate) as a compound having a functional group capable of chain transfer, and 8.80 parts by mass of maleic acid as a compound having a hydrophilic functional group were added to ethanol 43 Addition represented by the following structural formula (82) as a compound having a functional group capable of chain transfer and a hydrophilic functional group in the molecule by dissolving in 2 parts by mass and reacting in the same manner as in Synthesis Example 1 A 40% solution of agent A5 was obtained.

(合成例6)
連鎖移動可能な官能基を有する化合物としてのペンタエリトリトールテトラキス(3−メルカプトプロピオネート)20.0質量部、親水性官能基を有する物化合物としての下記構造式(83)で表されるリン酸化合物17.1質量部を、エタノール55.7質量部に溶解し、窒素雰囲気下で70℃に加熱した後、2,2’−アゾビス(2,4−ジメチルバレロニル)0.20質量部を加え、窒素雰囲気下、70℃で3時間反応させることにより、分子内に連鎖移動可能な官能基と親水性官能基とを有する化合物としての下記構造式(84)で表される添加剤A6の40%溶液を得た。
(Synthesis Example 6)
20.0 parts by mass of pentaerythritol tetrakis (3-mercaptopropionate) as a compound having a functional group capable of chain transfer, phosphoric acid represented by the following structural formula (83) as a compound having a hydrophilic functional group After 17.1 parts by mass of the compound was dissolved in 55.7 parts by mass of ethanol and heated to 70 ° C. in a nitrogen atmosphere, 0.20 part by mass of 2,2′-azobis (2,4-dimethylvaleronyl) was added. In addition, by reacting at 70 ° C. for 3 hours in a nitrogen atmosphere, the additive A6 represented by the following structural formula (84) as a compound having a functional group capable of chain transfer and a hydrophilic functional group in the molecule A 40% solution was obtained.

(実施例1)
前記支持体として20μm厚のポリエチレンテレフタレートフィルムに、下記の組成からなるパターン形成用樹脂組成物溶液を塗布し、乾燥させて、15μm厚の感光層を形成し、前記パターン形成材料を製造した。
Example 1
A pattern forming resin composition solution having the following composition was applied to a polyethylene terephthalate film having a thickness of 20 μm as the support and dried to form a photosensitive layer having a thickness of 15 μm, thereby producing the pattern forming material.

[パターン形成用樹脂組成物溶液の組成]
・構造式(78)で表される添加剤A1の40%溶液 1.5質量部
・メチルメタクリレート/スチレン/メタクリル酸共重合体
(共重合体組成(質量比):19/52/29質量平均分子量:50,000、酸価18
9) 16質量部
・下記構造式(85)で表される重合性モノマー 7.0質量部
・ヘキサメチレンジイソシアネートとテトラエチレンオキシドモノメタアクリレートの1
/2モル比付加物 7.0質量部
・N−メチルアクリドン 0.20質量部
・2,2−ビス(o−クロロフェニル)−4,4’,5,5’−テトラフェニルビイミダ
ゾール 2.30質量部
・マラカイトグリーンシュウ酸塩 0.02質量部
・ロイコクリスタルバイオレット 0.26質量部
・フッ素系界面活性剤(大日本インキ社製、F780F) 0.03質量部
・メチルエチルケトン 40質量部
・1−メトキシ−2−プロパノール 20質量部
但し、構造式(85)中、m+nは、10を表す。
[Composition of resin composition solution for pattern formation]
-1.5 mass part of 40% solution of additive A1 represented by structural formula (78)-Methyl methacrylate / styrene / methacrylic acid copolymer (copolymer composition (mass ratio): 19/52/29 mass average Molecular weight: 50,000, acid value 18
9) 16 parts by mass-polymerizable monomer represented by the following structural formula (85) 7.0 parts by mass-1 of hexamethylene diisocyanate and tetraethylene oxide monomethacrylate
/ 2 molar ratio adduct 7.0 parts by mass N-methylacridone 0.20 parts by mass 2,2-bis (o-chlorophenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole 30 parts by mass · Malachite green oxalate 0.02 parts by mass · Leuco Crystal Violet 0.26 parts by mass · Fluorosurfactant (F780F, manufactured by Dainippon Ink Co., Ltd.) 0.03 parts by mass · Methyl ethyl ketone 40 parts by mass
・ 20 parts by mass of 1-methoxy-2-propanol
However, m + n represents 10 in Structural Formula (85).

前記パターン形成材料の感光層の上に、前記保護フィルムとして20μm厚のポリエチレンフィルムを積層した。次に、前記基体として、表面を研磨、水洗、乾燥した銅張積層板(スルーホールなし、銅厚み12μm)の表面に、前記パターン形成材料の保護フィルムを剥がしながら、該パターン形成材料の感光層が前記銅張積層板に接するようにしてラミネーター(MODEL8B−720−PH、大成ラミネーター(株)製)を用いて圧着させ、前記銅張積層板と、前記感光層と、前記ポリエチレンテレフタレートフィルム(支持体)とがこの順に積層された積層体を調製した。
圧着条件は、圧着ロール温度 105℃、圧着ロール圧力 0.3MPa、ラミネート速度 1m/分とした。
前記製造した前記積層体について、感度、解像度、前記銅張積層板への密着性の評価、及び支持体からの剥離に要した時間(以下、単に剥離時間という。)の測定を行った。結果を表3に示した。
A 20 μm thick polyethylene film was laminated as the protective film on the photosensitive layer of the pattern forming material. Next, a photosensitive layer of the pattern forming material is peeled off from the surface of a copper-clad laminate (no through-hole, copper thickness 12 μm) whose surface is polished, washed and dried as the substrate. Is bonded to the copper-clad laminate using a laminator (MODEL8B-720-PH, manufactured by Taisei Laminator Co., Ltd.), and the copper-clad laminate, the photosensitive layer, and the polyethylene terephthalate film (support) Body) was laminated in this order.
The pressure bonding conditions were a pressure roll temperature of 105 ° C., a pressure roll pressure of 0.3 MPa, and a laminating speed of 1 m / min.
The manufactured laminate was measured for sensitivity, resolution, evaluation of adhesion to the copper-clad laminate, and time required for peeling from the support (hereinafter simply referred to as peeling time). The results are shown in Table 3.

<解像度>
(1)最短現像時間の測定方法
前記積層体からポリエチレンテレフタレートフィルム(支持体)を剥がし取り、銅張積層板上の前記感光層の全面に30℃の1質量%炭酸ナトリウム水溶液を0.15MPaの圧力にてスプレーし、炭酸ナトリウム水溶液のスプレー開始から銅張積層板上の感光層が溶解除去されるまでに要した時間を測定し、これを最短現像時間とした。
この結果、前記最短現像時間は、10秒であった。
<Resolution>
(1) Measuring method of shortest development time The polyethylene terephthalate film (support) is peeled off from the laminate, and a 1 mass% sodium carbonate aqueous solution at 30 ° C. is added to the entire surface of the photosensitive layer on the copper clad laminate at 0.15 MPa. Spraying was performed under pressure, and the time required from the start of spraying of the aqueous sodium carbonate solution until the photosensitive layer on the copper clad laminate was dissolved and removed was measured, and this was taken as the shortest development time.
As a result, the shortest development time was 10 seconds.

(2)感度の測定
前記積層体におけるパターン形成材料の感光層に対し、ポリエチレンテレフタレートフィルム(支持体)側から、前記光照射手段としての405nmのレーザ光源を有するパターン形成装置を用いて、0.1mJ/cmから21/2倍間隔で100mJ/cmまでの光エネルギー量の異なる光を照射して露光し、前記感光層の一部の領域を硬化させた。室温にて10分間静置した後、前記積層体からポリエチレンテレフタレートフィルム(支持体)を剥がし取り、銅張積層板上の感光層の全面に、炭酸ナトリウム水溶液(30℃、1質量%)をスプレー圧0.15MPaにて前記(1)で求めた最短現像時間の2倍の時間スプレーし、未硬化の領域を溶解除去して、残った硬化領域の厚みを測定した。次いで、光の照射量と、硬化層の厚さとの関係をプロットして感度曲線を得る。こうして得た感度曲線から硬化領域の厚さが15μmとなった時の光エネルギー量を、感光層を硬化させるために必要な光エネルギー量(請求項1の「感光層を露光し現像する場合において、該感光層の露光する部分の厚みを該現像の前後において変化させない光重合開始剤の最小エネルギー」に相当。以下同じ。)とした。この結果、前記感光層を硬化させるために必要な光エネルギー量は、6mJ/cmであった。なお、前記パターン形成装置は、前記DMDからなる光変調手段を有し、前記パターン形成材料を備えている。
(2) Measurement of sensitivity Using a pattern forming apparatus having a laser light source of 405 nm as the light irradiation means from the polyethylene terephthalate film (support) side to the photosensitive layer of the pattern forming material in the laminate. Exposure was performed by irradiating with different light energy amounts from 1 mJ / cm 2 to 100 mJ / cm 2 at intervals of 2 1/2 times to cure a part of the photosensitive layer. After standing at room temperature for 10 minutes, the polyethylene terephthalate film (support) is peeled off from the laminate, and an aqueous sodium carbonate solution (30 ° C., 1% by mass) is sprayed on the entire surface of the photosensitive layer on the copper clad laminate. Spraying was performed at a pressure of 0.15 MPa for twice the shortest development time obtained in (1) above, the uncured area was dissolved and removed, and the thickness of the remaining cured area was measured. Next, a sensitivity curve is obtained by plotting the relationship between the light irradiation amount and the thickness of the cured layer. From the sensitivity curve thus obtained, the amount of light energy when the thickness of the cured region becomes 15 μm is determined as the amount of light energy necessary for curing the photosensitive layer (in the case of exposing and developing the photosensitive layer). , The thickness of the exposed portion of the photosensitive layer corresponds to “the minimum energy of the photopolymerization initiator that does not change before and after the development”. As a result, the amount of light energy necessary for curing the photosensitive layer was 6 mJ / cm 2 . The pattern forming apparatus includes a light modulating unit made of the DMD and includes the pattern forming material.

(3)解像度の測定
前記(1)の最短現像時間の測定方法と同じ方法及び条件で前記積層体を作成し、室温(23℃、55%RH)にて10分間静置した。得られた積層体のポリエチレンテレフタレートフィルム(支持体)上から、前記パターン形成装置を用いて、ライン/スペース=1/1でライン幅5μm〜20μmまで1μm刻みで各線幅の露光を行い、ライン幅20μm〜50μmまで5μm刻みで各線幅の露光を行った。この際の露光量は、前記(2)で測定した前記パターン形成材料の感光層を硬化させるために必要な光エネルギー量である。室温にて10分間静置した後、前記積層体からポリエチレンテレフタレートフィルム(支持体)を剥がし取った。銅張積層板上の感光層の全面に、前記現像液として炭酸ナトリウム水溶液(30℃、1質量%)をスプレー圧0.15MPaにて前記(1)で求めた最短現像時間の2倍の時間スプレーし、未硬化領域を溶解除去した。この様にして得られた硬化樹脂パターン付き銅張積層板の表面を光学顕微鏡で観察し、硬化樹脂パターンのラインにツマリ、ヨレ等の異常のない最小のライン幅を測定し、これを解像度とした。該解像度は数値が小さいほど良好である。
(3) Measurement of resolution The laminate was prepared by the same method and conditions as the method of measuring the shortest development time in (1) and allowed to stand at room temperature (23 ° C., 55% RH) for 10 minutes. From the obtained polyethylene terephthalate film (support) of the laminate, using the pattern forming device, line / space = 1/1, and line widths of 5 μm to 20 μm are exposed in 1 μm increments, and the line width is exposed. Each line width was exposed in steps of 5 μm from 20 μm to 50 μm. The exposure amount at this time is the amount of light energy necessary for curing the photosensitive layer of the pattern forming material measured in (2). After standing at room temperature for 10 minutes, the polyethylene terephthalate film (support) was peeled off from the laminate. Twice the shortest development time obtained in (1) above with a sodium carbonate aqueous solution (30 ° C., 1% by mass) as the developer at a spray pressure of 0.15 MPa on the entire surface of the photosensitive layer on the copper clad laminate. The uncured area was dissolved and removed by spraying. The surface of the copper-clad laminate with the cured resin pattern thus obtained was observed with an optical microscope, and the minimum line width without any abnormalities such as tsumari and twisting was measured on the cured resin pattern line. did. The smaller the numerical value, the better the resolution.

<プリント配線形成用基板との密着性>
−密着性の評価方法−
フォトマスクにライン/スペース=1/3、ライン幅10〜100μmのものを用いる以外は、上記(2)の解像度の評価方法と同じ操作を行い、硬化樹脂パターンのラインに剥がれやヨレ等の異常のない最小のライン幅を測定し、これを密着していると評価する。
したがって、数値が小さいほど密着性が良好である。
<Adhesion with printed wiring board>
-Evaluation method for adhesion-
Except for using a photomask with a line / space of 1/3 and a line width of 10 to 100 μm, the same operation as the resolution evaluation method of (2) above is performed, and abnormalities such as peeling or twisting in the cured resin pattern line Measure the minimum line width without any marks and evaluate that it is in close contact.
Therefore, the smaller the value, the better the adhesion.

<剥離時間>
前記(1)の最短現像時間の測定方法と同じ方法及び条件で前記積層体を作成し、室温(23℃、55%RH)にて10分間静置した。得られた積層体のポリエチレンテレフタレート(支持体)上から超高圧水銀灯を用いて40mJ/cmの光を照射して、感光層全面の露光し、感光層の一部を硬化させた。室温にて10分間静置した後、前記積層体からポリエチレンテレフタレート(支持体)を剥がし取り、前記(3)の解像度の評価方法と同じ条件で、銅張積層板上の感光層の全面に、炭酸ナトリウム水溶液をスプレーし、得られた硬化樹脂パターン付き銅張積層板を、3質量%の水酸化ナトリウム水溶液中に浸漬した。該銅張積層板の浸漬開始時から前記銅張積層板上の硬化樹脂パターンが完全に剥離されるまでに要した時間を測定し、これを剥離時間とした。
<Peeling time>
The laminate was prepared by the same method and conditions as the method (1) for measuring the shortest development time, and allowed to stand at room temperature (23 ° C., 55% RH) for 10 minutes. From the polyethylene terephthalate (support) of the obtained laminate, light of 40 mJ / cm 2 was irradiated using an ultrahigh pressure mercury lamp to expose the entire surface of the photosensitive layer, and a part of the photosensitive layer was cured. After standing at room temperature for 10 minutes, the polyethylene terephthalate (support) is peeled off from the laminate, and the entire surface of the photosensitive layer on the copper-clad laminate is subjected to the same conditions as the resolution evaluation method in (3) above. A sodium carbonate aqueous solution was sprayed, and the obtained copper-clad laminate with a cured resin pattern was immersed in a 3% by mass sodium hydroxide aqueous solution. The time required from when the copper-clad laminate was immersed until the cured resin pattern on the copper-clad laminate was completely peeled was measured, and this was taken as the peeling time.

(実施例2)
実施例1において、パターン形成用樹脂組成物溶液の前記構造式(78)で表される添加剤A21の40%溶液1.5質量部を、前記構造式(79)で表される添加剤A2の40%溶液1.5質量部に代えた以外は実施例1と同様にしてパターン形成材料を製造した。
製造したパターン形成材料を用いて感度、解像度、前記銅張積層板への密着性の評価、及び剥離時間の測定を行った。結果を表3に示した。
なお、最短現像時間は10秒であり、感光層を硬化させるために必要な光エネルギー量は6mJ/cmであった。
(Example 2)
In Example 1, 1.5 parts by mass of a 40% solution of the additive A21 represented by the structural formula (78) of the resin composition solution for pattern formation was added to the additive A2 represented by the structural formula (79). A pattern forming material was produced in the same manner as in Example 1 except that 1.5 parts by mass of the 40% solution was changed.
Using the produced pattern forming material, sensitivity, resolution, evaluation of adhesion to the copper clad laminate, and measurement of peeling time were performed. The results are shown in Table 3.
The shortest development time was 10 seconds, and the amount of light energy required to cure the photosensitive layer was 6 mJ / cm 2 .

(実施例3)
実施例1において、パターン形成用樹脂組成物溶液の前記構造式(78)で表される添加剤A1の40%溶液1.5質量部を、前記構造式(80)で表される添加剤A3の40%溶液1.5質量部に代えた以外は実施例1と同様にしてパターン形成材料を製造した。
製造したパターン形成材料を用いて感度、解像度、前記銅張積層板への密着性の評価、及び剥離時間の測定を行った。結果を表3に示した。
なお、最短現像時間は10秒であり、感光層を硬化させるために必要な光エネルギー量は6mJ/cmであった。
(Example 3)
In Example 1, 1.5 parts by mass of a 40% solution of the additive A1 represented by the structural formula (78) of the resin composition solution for pattern formation was added to the additive A3 represented by the structural formula (80). A pattern forming material was produced in the same manner as in Example 1 except that 1.5 parts by mass of the 40% solution was changed.
Using the produced pattern forming material, sensitivity, resolution, evaluation of adhesion to the copper clad laminate, and measurement of peeling time were performed. The results are shown in Table 3.
The shortest development time was 10 seconds, and the amount of light energy required to cure the photosensitive layer was 6 mJ / cm 2 .

(実施例4)
実施例1において、パターン形成用樹脂組成物溶液の前記構造式(78)で表される添加剤A1の40%溶液1.5質量部を、前記構造式(81)で表される添加剤A4の40%溶液1.5質量部に代えた以外は実施例1と同様にしてパターン形成材料を製造した。
製造したパターン形成材料を用いて感度、解像度、前記銅張積層板への密着性の評価、及び剥離時間の測定を行った。結果を表3に示した。
なお、最短現像時間は10秒であり、感光層を硬化させるために必要な光エネルギー量は6mJ/cmであった。
Example 4
In Example 1, 1.5 parts by mass of a 40% solution of the additive A1 represented by the structural formula (78) of the resin composition solution for pattern formation was added to the additive A4 represented by the structural formula (81). A pattern forming material was produced in the same manner as in Example 1 except that 1.5 parts by mass of the 40% solution was changed.
Using the produced pattern forming material, sensitivity, resolution, evaluation of adhesion to the copper clad laminate, and measurement of peeling time were performed. The results are shown in Table 3.
The shortest development time was 10 seconds, and the amount of light energy required to cure the photosensitive layer was 6 mJ / cm 2 .

(実施例5)
実施例1において、パターン形成用樹脂組成物溶液の構造式(78)で表される添加剤A1の40%溶液1.5質量部を、前記構造式(82)で表される添加剤A5の40%溶液1.5質量部に代えた以外は実施例1と同様にしてパターン形成材料を製造した。
製造したパターン形成材料を用いて感度、解像度、前記銅張積層板への密着性の評価、及び剥離時間の測定を行った。結果を表3に示した。
なお、最短現像時間は10秒であり、感光層を硬化させるために必要な光エネルギー量は6mJ/cmであった。
(Example 5)
In Example 1, 1.5 parts by mass of a 40% solution of the additive A1 represented by the structural formula (78) of the resin composition solution for pattern formation was added to the additive A5 represented by the structural formula (82). A pattern forming material was produced in the same manner as in Example 1 except that the amount was changed to 1.5 parts by mass of the 40% solution.
Using the produced pattern forming material, sensitivity, resolution, evaluation of adhesion to the copper clad laminate, and measurement of peeling time were performed. The results are shown in Table 3.
The shortest development time was 10 seconds, and the amount of light energy required to cure the photosensitive layer was 6 mJ / cm 2 .

(実施例6)
実施例1において、パターン形成用樹脂組成物溶液の構造式(78)で表される添加剤A1の40%溶液1.5質量部を、前記構造式(84)で表される添加剤A6の40%溶液1.5質量部に代えた以外は実施例1と同様にしてパターン形成材料を製造した。
製造したパターン形成材料を用いて感度、解像度、前記銅張積層板への密着性の評価、及び剥離時間の測定を行った。結果を表3に示した。
なお、最短現像時間は10秒であり、感光層を硬化させるために必要な光エネルギー量は6mJ/cmであった。
(Example 6)
In Example 1, 1.5 parts by mass of a 40% solution of the additive A1 represented by the structural formula (78) of the resin composition solution for pattern formation was added to the additive A6 represented by the structural formula (84). A pattern forming material was produced in the same manner as in Example 1 except that the amount was changed to 1.5 parts by mass of the 40% solution.
Using the produced pattern forming material, sensitivity, resolution, evaluation of adhesion to the copper clad laminate, and measurement of peeling time were performed. The results are shown in Table 3.
The shortest development time was 10 seconds, and the amount of light energy required to cure the photosensitive layer was 6 mJ / cm 2 .

(実施例7)
実施例1において、パターン形成用樹脂組成物溶液の前記構造式(78)で表される添加剤A1の40%溶液1.5質量部を、0.75質量部に代えた以外は実施例1と同様にしてパターン形成材料を製造した。
製造したパターン形成材料を用いて感度、解像度、前記銅張積層板への密着性の評価、及び剥離時間の測定を行った。結果を表3に示した。
なお、最短現像時間は10秒であり、感光層を硬化させるために必要な光エネルギー量は8mJ/cmであった。
(Example 7)
Example 1 Example 1 except that 1.5 parts by mass of the 40% solution of additive A1 represented by the structural formula (78) of the resin composition solution for pattern formation was replaced with 0.75 parts by mass in Example 1. In the same manner, a pattern forming material was produced.
Using the produced pattern forming material, sensitivity, resolution, evaluation of adhesion to the copper clad laminate, and measurement of peeling time were performed. The results are shown in Table 3.
The shortest development time was 10 seconds, and the amount of light energy required to cure the photosensitive layer was 8 mJ / cm 2 .

(実施例8)
実施例1において、パターン形成装置を下記に説明するパターン形成装置に代えた以外は実施例1と同様にしてパターン形成材料を製造した。
製造したパターン形成材料を用いて感度、解像度、前記銅張積層板への密着性の評価、及び剥離時間の測定を行った。結果を表3に示した。
なお、最短現像時間は10秒であり、感光層を硬化させるために必要な光エネルギー量は6mJ/cmであった。
(Example 8)
In Example 1, a pattern forming material was manufactured in the same manner as in Example 1 except that the pattern forming apparatus was replaced with the pattern forming apparatus described below.
Using the produced pattern forming material, sensitivity, resolution, evaluation of adhesion to the copper clad laminate, and measurement of peeling time were performed. The results are shown in Table 3.
The shortest development time was 10 seconds, and the amount of light energy required to cure the photosensitive layer was 6 mJ / cm 2 .

<<パターン形成装置>>
前記光照射手段として図27〜32に示す合波レーザ光源と、前記光変調手段として図4に示す主走査方向にマイクロミラーが1024個配列されたマイクロミラー列が、副走査方向に768組配列された内、1024個×256列のみを駆動するように制御したDMD50と、図13に示した一方の面がトーリック面であるマイクロレンズ474をアレイ状に配列したマイクロレンズアレイ472及び該マイクロレンズアレイを通した光を前記感光層に結像する光学系480、482とを有するパターン形成装置を用いた。
<< Pattern Forming Apparatus >>
27 to 32 as the light irradiating means, and 768 pairs of micromirror arrays in which 1024 micromirrors are arranged in the main scanning direction shown in FIG. 4 as the light modulating means are arranged in the sub-scanning direction. The microlens array 472 in which the DMD 50 controlled to drive only 1024 × 256 rows and the microlenses 474 whose one surface is a toric surface shown in FIG. A pattern forming apparatus having optical systems 480 and 482 for forming an image of light passing through the array on the photosensitive layer was used.

また、前記マイクロレンズにおけるトーリック面は以下に説明するものを用いた。
まず、DMD50の前記描素部としてのマイクロレンズ474の出射面における歪みを補正するため、該出射面の歪みを測定した。結果を図14に示した。図14においては、反射面の同じ高さ位置を等高線で結んで示してあり、等高線のピッチは5nmである。なお、同図に示すx方向及びy方向は、マイクロミラー62の2つ対角線方向であり、マイクロミラー62はy方向に延びる回転軸を中心として回転する。また、図15の(A)及び(B)にはそれぞれ、上記x方向、y方向に沿ったマイクロミラー62の反射面の高さ位置変位を示した。
図14及び図15に示した通り、マイクロミラー62の反射面には歪みが存在し、そして特にミラー中央部に注目してみると、1つの対角線方向(y方向)の歪みが、別の対角線方向(x方向)の歪みよりも大きくなっていることが判る。このため、このままではマイクロレンズアレイ55のマイクロレンズ55aで集光されたレーザ光Bの集光位置における形状が歪んでしまうことが判る。
The toric surface of the microlens described below was used.
First, in order to correct the distortion on the exit surface of the microlens 474 as the picture element portion of the DMD 50, the strain on the exit surface was measured. The results are shown in FIG. In FIG. 14, the same height positions of the reflecting surfaces are shown connected by contour lines, and the pitch of the contour lines is 5 nm. Note that the x direction and the y direction shown in the figure are two diagonal directions of the micromirror 62, and the micromirror 62 rotates around a rotation axis extending in the y direction. 15A and 15B show the height position displacement of the reflecting surface of the micromirror 62 along the x direction and the y direction, respectively.
As shown in FIGS. 14 and 15, there is distortion on the reflection surface of the micromirror 62, and when attention is paid particularly to the center of the mirror, distortion in one diagonal direction (y direction) is different from that in the other diagonal line. It can be seen that the distortion is larger than the distortion in the direction (x direction). Therefore, it can be seen that the shape of the laser beam B collected by the microlens 55a of the microlens array 55 is distorted in this state.

図16の(A)及び(B)には、マイクロレンズアレイ55全体の正面形状及び側面形状をそれぞれ詳しく示した。これらの図には、マイクロレンズアレイ55の各部の寸法も記入してあり、それらの単位はmmである。先に図4を参照して説明したようにDMD50の1024個×256列のマイクロミラー62が駆動されるものであり、それに対応させてマイクロレンズアレイ55は、横方向に1024個並んだマイクロレンズ55aの列を縦方向に256列並設して構成されている。なお、同図(A)では、マイクロレンズアレイ55の並び順を横方向についてはjで、縦方向についてはkで示している。   FIGS. 16A and 16B show the front shape and the side shape of the entire microlens array 55 in detail. In these drawings, the dimensions of each part of the microlens array 55 are also entered, and the unit thereof is mm. As described above with reference to FIG. 4, the 1024 × 256 micromirrors 62 of the DMD 50 are driven. Correspondingly, the microlens array 55 has 1024 microlenses arranged in the horizontal direction. The 55a rows are arranged in parallel in 256 rows in the vertical direction. In FIG. 9A, the arrangement order of the microlens array 55 is indicated by j in the horizontal direction and k in the vertical direction.

また、図17の(A)及び(B)には、マイクロレンズアレイ55における1つのマイクロレンズ55aの正面形状及び側面形状をそれぞれ示した。なお、同図(A)には、マイクロレンズ55aの等高線を併せて示してある。各マイクロレンズ55aの光出射側の端面は、マイクロミラー62の反射面の歪みによる収差を補正する非球面形状とされている。より具体的には、マイクロレンズ55aはトーリックレンズとされており、前記x方向に光学的に対応する方向の曲率半径Rx=−0.125mm、前記y方向に対応する方向の曲率半径Ry=−0.1mmである。   17A and 17B show a front shape and a side shape of one microlens 55a in the microlens array 55, respectively. In FIG. 9A, the contour lines of the micro lens 55a are also shown. The end surface of each microlens 55a on the light emitting side has an aspherical shape that corrects aberration due to distortion of the reflecting surface of the micromirror 62. More specifically, the micro lens 55a is a toric lens, and has a radius of curvature Rx = −0.125 mm in a direction optically corresponding to the x direction and a radius of curvature Ry = − in a direction corresponding to the y direction. 0.1 mm.

したがって、前記x方向及びy方向に平行な断面内におけるレーザ光Bの集光状態は、概略、それぞれ図18の(A)及び(B)に示す通りとなる。つまり、x方向に平行な断面内とy方向に平行な断面内とを比較すると、後者の断面内の方がマイクロレンズ55aの曲率半径がより小であって、焦点距離がより短くなっていることが判る。   Therefore, the condensing state of the laser beam B in the cross section parallel to the x direction and the y direction is roughly as shown in FIGS. 18A and 18B, respectively. That is, when the cross section parallel to the x direction is compared with the cross section parallel to the y direction, the radius of curvature of the microlens 55a is smaller and the focal length is shorter in the latter cross section. I understand that.

なお、マイクロレンズ55aを前記形状とした場合の、該マイクロレンズ55aの集光位置(焦点位置)近傍におけるビーム径を計算機によってシミュレーションした結果を図19a、b、c、及びdに示す。また比較のために、マイクロレンズ55aが曲率半径Rx=Ry=−0.1mmの球面形状である場合について、同様のシミュレーションを行った結果を図20a、b、c及びdに示す。なお、各図におけるzの値は、マイクロレンズ55aのピント方向の評価位置を、マイクロレンズ55aのビーム出射面からの距離で示している。   19A, 19B, 19C, and 19D show simulation results of the beam diameter in the vicinity of the condensing position (focal position) of the microlens 55a when the microlens 55a has the above shape. For comparison, FIGS. 20a, 20b, 20c, and 20d show the results of a similar simulation when the microlens 55a has a spherical shape with a radius of curvature Rx = Ry = −0.1 mm. In addition, the value of z in each figure has shown the evaluation position of the focus direction of the micro lens 55a with the distance from the beam emission surface of the micro lens 55a.

また、前記シミュレーションに用いたマイクロレンズ55aの面形状は、下記計算式で計算される。
The surface shape of the microlens 55a used for the simulation is calculated by the following calculation formula.

ただし、前記計算式において、Cxは、x方向の曲率(=1/Rx)を意味し、Cyは、y方向の曲率(=1/Ry)を意味し、Xは、x方向に関するレンズ光軸Oからの距離を意味し、Yは、y方向に関するレンズ光軸Oからの距離を意味する。   In the above formula, Cx means the curvature in the x direction (= 1 / Rx), Cy means the curvature in the y direction (= 1 / Ry), and X is the lens optical axis in the x direction. The distance from O means Y, and Y means the distance from the lens optical axis O in the y direction.

図19a〜dと図20a〜dとを比較すると明らかなように、マイクロレンズ55aを、y方向に平行な断面内の焦点距離がx方向に平行な断面内の焦点距離よりも小さいトーリックレンズとしたことにより、その集光位置近傍におけるビーム形状の歪みが抑制される。この結果、歪みの無い、より高精細なパターンを感光層150に露光可能となる。また、図20a〜dに示す本実施形態の方が、ビーム径の小さい領域がより広い、すなわち焦点深度がより大であることが判る。   As is apparent when comparing FIGS. 19a to 19d and FIGS. 20a to 20d, the microlens 55a includes a toric lens in which the focal length in the cross section parallel to the y direction is smaller than the focal length in the cross section parallel to the x direction. As a result, distortion of the beam shape in the vicinity of the condensing position is suppressed. As a result, a higher-definition pattern without distortion can be exposed on the photosensitive layer 150. Further, it can be seen that the present embodiment shown in FIGS. 20a to 20d has a wider region with a smaller beam diameter, that is, a greater depth of focus.

また、マイクロレンズアレイ55の集光位置近傍に配置されたアパーチャアレイ59は、その各アパーチャ59aに、それと対応するマイクロレンズ55aを経た光のみが入射するように配置されたものである。すなわち、このアパーチャアレイ59が設けられていることにより、各アパーチャ59aに、それと対応しない隣接のマイクロレンズ55aからの光が入射することが防止され、消光比が高められる。   In addition, the aperture array 59 disposed in the vicinity of the condensing position of the microlens array 55 is disposed such that only light having passed through the corresponding microlens 55a is incident on each aperture 59a. That is, by providing this aperture array 59, it is possible to prevent light from adjacent microlenses 55a not corresponding to each aperture 59a from entering, and to increase the extinction ratio.

(比較例1)
実施例1において、パターン形成用樹脂組成物溶液の添加剤A1の40%溶液1.5質量部を、添加しなかった以外は実施例1と同様にしてパターン形成材料を製造した。
製造したパターン形成材料を用いて感度、解像度、前記銅張積層板への密着性の評価、及び剥離時間の測定を行った。結果を表3に示した。
なお、最短現像時間は10秒であり、感光層を硬化させるために必要な光エネルギー量は16mJ/cmであった。
(Comparative Example 1)
In Example 1, a pattern forming material was produced in the same manner as in Example 1 except that 1.5 parts by mass of 40% solution of additive A1 of the resin composition solution for pattern formation was not added.
Using the produced pattern forming material, sensitivity, resolution, evaluation of adhesion to the copper clad laminate, and measurement of peeling time were performed. The results are shown in Table 3.
The shortest development time was 10 seconds, and the amount of light energy required to cure the photosensitive layer was 16 mJ / cm 2 .

(比較例2)
実施例1において、パターン形成用樹脂組成物溶液の添加剤A1の40%溶液1.5質量部を、ペンタエリトリトールテトラキス(3−メルカプトプロピオネート)0.6質量部に代えた以外は実施例1と同様にしてパターン形成材料を製造した。
製造したパターン形成材料を用いて感度、解像度、前記銅張積層板への密着性の評価、及び剥離時間の測定を行った。結果を表3に示した。
なお、最短現像時間は11秒であり、感光層を硬化させるために必要な光エネルギー量は6mJ/cmであった。
(Comparative Example 2)
In Example 1, except that 1.5 parts by mass of 40% solution of additive A1 in the resin composition solution for pattern formation was replaced with 0.6 parts by mass of pentaerythritol tetrakis (3-mercaptopropionate). In the same manner as in Example 1, a pattern forming material was produced.
Using the produced pattern forming material, sensitivity, resolution, evaluation of adhesion to the copper clad laminate, and measurement of peeling time were performed. The results are shown in Table 3.
The shortest development time was 11 seconds, and the amount of light energy required to cure the photosensitive layer was 6 mJ / cm 2 .

表3の結果より、実施例1〜8のパターン形成材料は、分子内に連鎖移動可能な官能基と親水性官能基とを有する化合物を含有することで、プリント配線形成用基板等の基体との密着性に優れ、支持体からの剥離性が良好であるのみならず、感度及び解像度が良好であることが判った。特に、親水性官能基としてカルボキシル基を有する、分子内に連鎖移動可能な官能基と親水性官能基とを有する化合物溶液を1.5質量部含む実施例1〜3、5、8では、支持体からの剥離性がより良好であることが判った。   From the results of Table 3, the pattern forming materials of Examples 1 to 8 contain a compound having a functional group capable of chain transfer and a hydrophilic functional group in the molecule, and thus a substrate such as a printed wiring board substrate and the like. It was found that not only was the adhesiveness excellent, but the peelability from the support was not only good, but also the sensitivity and resolution were good. In particular, in Examples 1 to 3, 5, and 8 containing 1.5 parts by mass of a compound solution having a carboxyl group as a hydrophilic functional group and having a functional group capable of chain transfer in the molecule and a hydrophilic functional group, It was found that the peelability from the body was better.

本発明のパターン形成材料は、プリント配線形成用基板等の基体との密着性に優れ、支持体からの剥離性が良好であるのみならず、感度及び解像度が良好であるため、各種パターンの形成、配線パターン等の永久パターンの形成、カラーフィルタ、柱材、リブ材、スペーサー、隔壁等の液晶構造部材の製造、ホログラム、マイクロマシン、プルーフの製造などに好適に用いることができ、特に高精細な配線パターンの形成に好適に用いることができる。
本発明のパターン形成装置は、本発明の前記パターン形成材料を備えているため、各種パターンの形成、配線パターン等の永久パターンの形成、カラーフィルタ、柱材、リブ材、スペーサー、隔壁等の液晶構造部材の製造、ホログラム、マイクロマシン、プルーフの製造などに好適に用いることができ、特に高精細な配線パターンの形成に好適に用いることができる。
本発明のパターン形成方法は、本発明の前記パターン形成材料を用いるため、各種パターンの形成、配線パターン等の永久パターンの形成、カラーフィルタ、柱材、リブ材、スペーサー、隔壁等の液晶構造部材の製造、ホログラム、マイクロマシン、プルーフの製造などに好適に用いることができ、特に高精細な配線パターンの形成に好適に使用することができる。
The pattern forming material of the present invention is excellent in adhesion to a substrate such as a printed wiring board, and not only has good peelability from the support, but also has good sensitivity and resolution. It can be suitably used for the formation of permanent patterns such as wiring patterns, color filters, pillar materials, rib materials, spacers, production of liquid crystal structural members such as spacers, partition walls, holograms, micromachines, proofs, etc. It can be suitably used for forming a wiring pattern.
Since the pattern forming apparatus of the present invention includes the pattern forming material of the present invention, it forms various patterns, forms permanent patterns such as wiring patterns, color filters, column materials, rib materials, spacers, partition walls, and other liquid crystals. It can be suitably used for the production of structural members, the production of holograms, micromachines, proofs, etc., and can be particularly suitably used for the formation of high-definition wiring patterns.
Since the pattern forming method of the present invention uses the pattern forming material of the present invention, liquid crystal structural members such as various patterns, permanent patterns such as wiring patterns, color filters, pillar materials, rib materials, spacers, partition walls, etc. It can be suitably used for the manufacture of holograms, micromachines, proofs, etc., and can be particularly suitably used for the formation of high-definition wiring patterns.

図1は、デジタル・マイクロミラー・デバイス(DMD)の構成を示す部分拡大図の一例である。FIG. 1 is an example of a partially enlarged view showing a configuration of a digital micromirror device (DMD). 図2(A)及び(B)は、DMDの動作を説明するための説明図の一例である。2A and 2B are examples of explanatory diagrams for explaining the operation of the DMD. 図3(A)及び(B)は、DMDを傾斜配置しない場合と傾斜配置する場合とで、露光ビームの配置及び走査線を比較して示した平面図の一例である。FIGS. 3A and 3B are examples of plan views showing the arrangement of the exposure beam and the scanning line in a case where the DMD is not inclined and in a case where the DMD is inclined. 図4(A)及び(B)は、DMDの使用領域の例を示す図の一例である。4A and 4B are examples of diagrams illustrating examples of DMD usage areas. 図5は、スキャナによる1回の走査でパターン形成材料を露光する露光方式を説明するための平面図の一例である。FIG. 5 is an example of a plan view for explaining an exposure method in which the pattern forming material is exposed by one scanning by the scanner. 図6(A)及び(B)は、スキャナによる複数回の走査でパターン形成材料を露光する露光方式を説明するための平面図の一例である。6A and 6B are examples of plan views for explaining an exposure method for exposing a pattern forming material by a plurality of scans by a scanner. 図7は、パターン形成装置の一例の外観を示す概略斜視図の一例である。FIG. 7 is an example of a schematic perspective view illustrating an appearance of an example of the pattern forming apparatus. 図8は、パターン形成装置のスキャナの構成を示す概略斜視図の一例である。FIG. 8 is an example of a schematic perspective view illustrating the configuration of the scanner of the pattern forming apparatus. 図9(A)は、パターン形成材料に形成される露光済み領域を示す平面図の一例であり、図9(B)は、各露光ヘッドによる露光エリアの配列を示す図の一例である。FIG. 9A is an example of a plan view showing an exposed region formed in the pattern forming material, and FIG. 9B is an example of a diagram showing an array of exposure areas by each exposure head. 図10は、光変調手段を含む露光ヘッドの概略構成を示す斜視図の一例である。FIG. 10 is an example of a perspective view showing a schematic configuration of an exposure head including light modulation means. 図11(A)は、図10に示す露光ヘッドの構成を示す光軸に沿った副走査方向の断面図の一例である。FIG. 11A is an example of a sectional view in the sub-scanning direction along the optical axis showing the configuration of the exposure head shown in FIG. 図12は、パターン情報に基づいて、DMDの制御をするコントローラの一例である。FIG. 12 is an example of a controller that controls DMD based on pattern information. 図13(A)は、結合光学系の異なる他の露光ヘッドの構成を示す光軸に沿った断面図の一例であり、図13(B)は、マイクロレンズアレイ等を使用しない場合に被露光面に投影される光像を示す平面図の一例であり、図13(C)は、マイクロレンズアレイ等を使用した場合に被露光面に投影される光像を示す平面図の一例である。FIG. 13A is an example of a cross-sectional view along the optical axis showing the configuration of another exposure head having a different coupling optical system, and FIG. FIG. 13C is an example of a plan view showing a light image projected on a surface to be exposed when a microlens array or the like is used. 図14は、DMDを構成するマイクロミラーの反射面の歪みを等高線で示す図の一例である。FIG. 14 is an example of a diagram showing the distortion of the reflection surface of the micromirror constituting the DMD with contour lines. 図15(A)、(B)は、前記マイクロミラーの反射面の歪みを、該ミラーの2つの対角線方向について示すグラフの一例である。FIGS. 15A and 15B are examples of graphs showing the distortion of the reflection surface of the micromirror in the two diagonal directions of the mirror. 図16は、パターン形成装置に用いられたマイクロレンズアレイの正面図(A)と側面図(B)の一例である。FIG. 16 is an example of a front view (A) and a side view (B) of a microlens array used in the pattern forming apparatus. 図17は、マイクロレンズアレイを構成するマイクロレンズの正面図(A)と側面図(B)の一例である。FIG. 17 is an example of a front view (A) and a side view (B) of a microlens constituting a microlens array. 図18は、マイクロレンズによる集光状態を1つの断面内(A)と別の断面内(B)について示す概略図の一例である。FIG. 18 is an example of a schematic diagram illustrating a condensing state by a microlens in one cross section (A) and another cross section (B). 図19aは、マイクロレンズの集光位置近傍におけるビーム径をシミュレーションした結果を示す図の一例である。FIG. 19a is an example of a diagram showing a result of simulating the beam diameter in the vicinity of the condensing position of the microlens. 図19bは、図19aと同様のシミュレーション結果を、別の位置について示す図の一例である。FIG. 19B is an example of a diagram showing the same simulation result as that in FIG. 19A at another position. 図19cは、図19aと同様のシミュレーション結果を、別の位置について示す図の一例である。FIG. 19c is an example of a diagram showing the same simulation result as in FIG. 19a at another position. 図19dは、図19aと同様のシミュレーション結果を、別の位置について示す図の一例である。FIG. 19d is an example of a diagram showing the same simulation result as in FIG. 19a at another position. 図20aは、従来のパターン形成方法において、マイクロレンズの集光位置近傍におけるビーム径をシミュレーションした結果を示す図の一例である。FIG. 20a is an example of a diagram showing the result of simulating the beam diameter in the vicinity of the condensing position of the microlens in the conventional pattern forming method. 図20bは、図20aと同様のシミュレーション結果を、別の位置について示す図の一例である。FIG. 20b is an example of a diagram showing the same simulation result as in FIG. 20a at another position. 図20cは、図20aと同様のシミュレーション結果を、別の位置について示す図の一例である。FIG. 20c is an example of a diagram showing the same simulation result as in FIG. 20a for another position. 図20dは、図20aと同様のシミュレーション結果を、別の位置について示す図の一例である。FIG. 20d is an example of a diagram illustrating simulation results similar to those in FIG. 20a at different positions. 図21は、合波レーザ光源の他の構成を示す平面図の一例である。FIG. 21 is an example of a plan view showing another configuration of the combined laser light source. 図22は、マイクロレンズアレイを構成するマイクロレンズの正面図(A)の一例と側面図(B)の一例である。FIG. 22 shows an example of a front view (A) and an example of a side view (B) of the microlens constituting the microlens array. 図23は、図22のマイクロレンズによる集光状態を1つの断面内(A)の一例と別の断面内(B)について示す概略図の一例である。FIG. 23 is an example of a schematic diagram illustrating a light condensing state by the microlens of FIG. 22 in one cross section (A) and another cross section (B). 図24(A)〜(C)は、光量分布補正光学系による補正の概念についての説明図の一例である。FIGS. 24A to 24C are examples of explanatory diagrams about the concept of correction by the light amount distribution correction optical system. 図25は、光照射手段がガウス分布で且つ光量分布の補正を行わない場合の光量分布を示すグラフの一例である。FIG. 25 is an example of a graph showing the light amount distribution when the light irradiation means has a Gaussian distribution and the light amount distribution is not corrected. 図26は、光量分布補正光学系による補正後の光量分布を示すグラフの一例である。FIG. 26 is an example of a graph showing the light amount distribution after correction by the light amount distribution correcting optical system. 図27a(A)は、ファイバアレイ光源の構成を示す斜視図であり、図27a(B)は、(A)の部分拡大図の一例であり、図27a(C)及び(D)は、レーザ出射部における発光点の配列を示す平面図の一例である。27A (A) is a perspective view showing the configuration of the fiber array light source, FIG. 27A (B) is an example of a partially enlarged view of FIG. 27A, and FIGS. 27A (C) and (D) are lasers. It is an example of the top view which shows the arrangement | sequence of the light emission point in an emission part. 図27bは、ファイバアレイ光源のレーザ出射部における発光点の配列を示す正面図の一例である。FIG. 27 b is an example of a front view showing the arrangement of light emitting points in the laser emission part of the fiber array light source. 図28は、マルチモード光ファイバの構成を示す図の一例である。FIG. 28 is an example of a diagram illustrating a configuration of a multimode optical fiber. 図29は、合波レーザ光源の構成を示す平面図の一例である。FIG. 29 is an example of a plan view showing the configuration of the combined laser light source. 図30は、レーザモジュールの構成を示す平面図の一例である。FIG. 30 is an example of a plan view showing the configuration of the laser module. 図31は、図30に示すレーザモジュールの構成を示す側面図の一例である。FIG. 31 is an example of a side view showing the configuration of the laser module shown in FIG. 図32は、図30に示すレーザモジュールの構成を示す部分側面図である。FIG. 32 is a partial side view showing the configuration of the laser module shown in FIG. 図33は、レーザアレイの構成を示す斜視図の一例である。FIG. 33 is an example of a perspective view showing a configuration of a laser array. 図34(A)は、マルチキャビティレーザの構成を示す斜視図の一例であり、図34(B)は、(A)に示すマルチキャビティレーザをアレイ状に配列したマルチキャビティレーザアレイの斜視図の一例である。FIG. 34A is an example of a perspective view showing a configuration of a multi-cavity laser, and FIG. 34B is a perspective view of a multi-cavity laser array in which the multi-cavity lasers shown in FIG. It is an example. 図35は、合波レーザ光源の他の構成を示す平面図の一例である。FIG. 35 is an example of a plan view showing another configuration of the combined laser light source. 図36(A)は、合波レーザ光源の他の構成を示す平面図の一例であり、図36(B)は、(A)の光軸に沿った断面図の一例である。FIG. 36A is an example of a plan view showing another configuration of the combined laser light source, and FIG. 36B is an example of a cross-sectional view along the optical axis of FIG. 図37(A)及び(B)は、従来の露光装置における焦点深度と本発明のパターン形成方法(パターン形成装置)による焦点深度との相違を示す光軸に沿った断面図の一例である。FIGS. 37A and 37B are examples of cross-sectional views along the optical axis showing the difference between the depth of focus in the conventional exposure apparatus and the depth of focus by the pattern forming method (pattern forming apparatus) of the present invention.

符号の説明Explanation of symbols

LD1〜LD7 GaN系半導体レーザ
10 ヒートブロック
11〜17 コリメータレンズ
20 集光レンズ
30〜31 マルチモード光ファイバ
44 コリメータレンズホルダー
45 集光レンズホルダー
46 ファイバホルダー
50 デジタル・マイクロミラー・デバイス(DMD)
52 レンズ系
53 反射光像(露光ビーム)
54 第2結像光学系のレンズ
55 マイクロレンズアレイ
56 被露光面(走査面)
55a マイクロレンズ
57 第2結像光学系のレンズ
58 第2結像光学系のレンズ
59 アパーチャアレイ
64 レーザモジュール
66 ファイバアレイ光源
67 レンズ系
68 レーザ出射部
69 ミラー
70 プリズム
71 集光レンズ
72 ロッドインテグレータ
73 プリズムペア
74 結像レンズ
100 ヒートブロック
110 マルチキャビティレーザ
111 ヒートブロック
113 ロッドレンズ
120 集光レンズ
130 マルチモード光ファイバ
130a コア
140 レーザアレイ
144 光照射手段
150 パターン形成材料
152 ステージ
155a マイクロレンズ
156 設置台
158 ガイド
160 ゲート
162 スキャナ
164 センサ
166 露光ヘッド
168 露光エリア
170 露光済み領域
180 ヒートブロック
184 コリメートレンズアレイ
302 コントローラ
304 ステージ駆動装置
454 レンズ系
468 露光エリア
472 マイクロレンズアレイ
474 マイクロレンズ
476 アパーチャアレイ
478 アパーチャ
480 レンズ系
LD1-LD7 GaN-based semiconductor laser 10 Heat block 11-17 Collimator lens 20 Condensing lens 30-31 Multimode optical fiber 44 Collimator lens holder 45 Condensing lens holder 46 Fiber holder 50 Digital micromirror device (DMD)
52 Lens system 53 Reflected light image (exposure beam)
54 Lens of second imaging optical system 55 Micro lens array 56 Surface to be exposed (scanning surface)
55a Micro lens 57 Lens of second imaging optical system 58 Lens of second imaging optical system 59 Aperture array 64 Laser module 66 Fiber array light source 67 Lens system 68 Laser emitting unit 69 Mirror 70 Prism 71 Condensing lens 72 Rod integrator 73 Prism pair 74 Imaging lens 100 Heat block 110 Multi cavity laser 111 Heat block 113 Rod lens 120 Condensing lens 130 Multimode optical fiber 130a Core 140 Laser array 144 Light irradiation means 150 Pattern forming material 152 Stage 155a Micro lens 156 Installation base 158 Guide 160 Gate 162 Scanner 164 Sensor 166 Exposure head 168 Exposure area 170 Exposed area 180 Heat block 1 84 Collimating lens array 302 Controller 304 Stage driving device 454 Lens system 468 Exposure area 472 Micro lens array 474 Micro lens 476 Aperture array 478 Aperture 480 Lens system

Claims (12)

支持体上に感光層を少なくとも有し、該感光層が、分子内に連鎖移動可能な官能基と親水性官能基とを有する化合物、バインダー、重合性化合物、光重合開始剤、及び増感剤を含み、前記増感剤が、アクリドン類であることを特徴とするパターン形成材料。 A compound having at least a photosensitive layer on a support, the photosensitive layer having a functional group capable of chain transfer in the molecule and a hydrophilic functional group, a binder, a polymerizable compound, a photopolymerization initiator, and a sensitizer hints, the sensitizer, a pattern forming material which is a acridones. 親水性官能基が、酸性基である請求項1に記載のパターン形成材料。The pattern forming material according to claim 1, wherein the hydrophilic functional group is an acidic group. 親水性官能基が、カルボキシル基である請求項1から2のいずれかに記載のパターン形成材料。The pattern forming material according to claim 1, wherein the hydrophilic functional group is a carboxyl group. 連鎖移動可能な官能基が、メルカプト基である請求項1から3のいずれかに記載のパターン形成材料。The pattern forming material according to claim 1, wherein the chain transferable functional group is a mercapto group. 連鎖移動可能な官能基が、2個以上である請求項1から4のいずれかに記載のパターン形成材料。The pattern forming material according to claim 1, wherein there are two or more functional groups capable of chain transfer. 光重合開始剤が、ビイミダゾール化合物である請求項1から5のいずれかに記載のパターン形成材料。The pattern forming material according to claim 1, wherein the photopolymerization initiator is a biimidazole compound. 感光層が、380〜420nmの波長域に分光感度の最大値を有する請求項1から6のいずれかに記載のパターン形成材料。The pattern forming material according to claim 1, wherein the photosensitive layer has a maximum value of spectral sensitivity in a wavelength range of 380 to 420 nm. 増感剤の極大吸収波長が、380〜450nmである請求項1から7のいずれかに記載のパターン形成材料。The pattern forming material according to claim 1, wherein the maximum absorption wavelength of the sensitizer is 380 to 450 nm. 請求項1から8のいずれかに記載のパターン形成材料における該感光層に対し、露光を行うことを少なくとも含むことを特徴とするパターン形成方法。A pattern forming method comprising at least exposing the photosensitive layer in the pattern forming material according to claim 1. 露光が、形成するパターン情報に基づいて制御信号を生成し、該制御信号に応じて変調させた光を用いて行われる請求項9に記載のパターン形成方法。The pattern forming method according to claim 9, wherein the exposure is performed using light that generates a control signal based on pattern information to be formed and is modulated in accordance with the control signal. 露光が行われた後、感光層の現像を行う請求項9から10のいずれかに記載のパターン形成方法。The pattern forming method according to claim 9, wherein the photosensitive layer is developed after the exposure. 現像が行われた後、永久パターンの形成を行う請求項11に記載のパターン形成方法。The pattern forming method according to claim 11, wherein a permanent pattern is formed after the development.
JP2005039858A 2005-02-16 2005-02-16 Pattern forming material, pattern forming apparatus, and pattern forming method Expired - Fee Related JP4520879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005039858A JP4520879B2 (en) 2005-02-16 2005-02-16 Pattern forming material, pattern forming apparatus, and pattern forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005039858A JP4520879B2 (en) 2005-02-16 2005-02-16 Pattern forming material, pattern forming apparatus, and pattern forming method

Publications (2)

Publication Number Publication Date
JP2006227221A JP2006227221A (en) 2006-08-31
JP4520879B2 true JP4520879B2 (en) 2010-08-11

Family

ID=36988654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005039858A Expired - Fee Related JP4520879B2 (en) 2005-02-16 2005-02-16 Pattern forming material, pattern forming apparatus, and pattern forming method

Country Status (1)

Country Link
JP (1) JP4520879B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266768A (en) * 2009-05-18 2010-11-25 Sanyo Chem Ind Ltd Photosensitive resin composition
JP5415163B2 (en) * 2009-06-24 2014-02-12 三洋化成工業株式会社 Photosensitive resin composition
CN111844760B (en) 2020-07-01 2021-10-01 浙江大学 DLP printing control method based on light-cured material absorbance property

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220409A (en) * 2001-01-29 2002-08-09 Showa Denko Kk Photopolymerizable composition, dry film and method for producing printed wiring board using them
JP2002296764A (en) * 2000-04-19 2002-10-09 Mitsubishi Chemicals Corp Photosensitive planographic printing plate and method for producing printing plate
JP2004001244A (en) * 2002-04-10 2004-01-08 Fuji Photo Film Co Ltd Exposure head and exposure device
JP2004184871A (en) * 2002-12-05 2004-07-02 Mitsubishi Chemicals Corp Blue-violet laser photosensitive composition and image forming material, imaging material and image forming method using the same
JP2004198446A (en) * 2002-04-24 2004-07-15 Mitsubishi Chemicals Corp Photopolymerizable composition, and image forming material, image forming member and image forming method using the same
JP2004212958A (en) * 2002-12-17 2004-07-29 Mitsubishi Chemicals Corp Photosensitive resin composition, photosensitive imaging material using it, and photosensitive image forming material
JP2004252421A (en) * 2003-01-27 2004-09-09 Mitsubishi Chemicals Corp Photosensitive resin composition, photosensitive image forming material using the same and photosensitive image forming material
JP2004264834A (en) * 2003-02-12 2004-09-24 Mitsubishi Chemicals Corp Photosensitive composition, image forming material using the same, image forming material and image forming method
JP2004335639A (en) * 2003-05-06 2004-11-25 Fuji Photo Film Co Ltd Projection aligner
JP2004335692A (en) * 2003-05-07 2004-11-25 Fuji Photo Film Co Ltd Projection aligner
JP2004348114A (en) * 2003-04-28 2004-12-09 Hitachi Chem Co Ltd Photosensitive element, resist pattern forming method, and method for manufacturing printed wiring board

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02305807A (en) * 1989-05-19 1990-12-19 Hitachi Chem Co Ltd Production of photosensitive composition, photosensitive laminate and printed wiring board
JPH087445B2 (en) * 1989-10-13 1996-01-29 ツアイトワン フアーレン コンイエ ジシュウ イエンジオウ ユエン Aqueous developable photoresist containing thiol compound

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002296764A (en) * 2000-04-19 2002-10-09 Mitsubishi Chemicals Corp Photosensitive planographic printing plate and method for producing printing plate
JP2002220409A (en) * 2001-01-29 2002-08-09 Showa Denko Kk Photopolymerizable composition, dry film and method for producing printed wiring board using them
JP2004001244A (en) * 2002-04-10 2004-01-08 Fuji Photo Film Co Ltd Exposure head and exposure device
JP2004198446A (en) * 2002-04-24 2004-07-15 Mitsubishi Chemicals Corp Photopolymerizable composition, and image forming material, image forming member and image forming method using the same
JP2004184871A (en) * 2002-12-05 2004-07-02 Mitsubishi Chemicals Corp Blue-violet laser photosensitive composition and image forming material, imaging material and image forming method using the same
JP2004212958A (en) * 2002-12-17 2004-07-29 Mitsubishi Chemicals Corp Photosensitive resin composition, photosensitive imaging material using it, and photosensitive image forming material
JP2004252421A (en) * 2003-01-27 2004-09-09 Mitsubishi Chemicals Corp Photosensitive resin composition, photosensitive image forming material using the same and photosensitive image forming material
JP2004264834A (en) * 2003-02-12 2004-09-24 Mitsubishi Chemicals Corp Photosensitive composition, image forming material using the same, image forming material and image forming method
JP2004348114A (en) * 2003-04-28 2004-12-09 Hitachi Chem Co Ltd Photosensitive element, resist pattern forming method, and method for manufacturing printed wiring board
JP2004335639A (en) * 2003-05-06 2004-11-25 Fuji Photo Film Co Ltd Projection aligner
JP2004335692A (en) * 2003-05-07 2004-11-25 Fuji Photo Film Co Ltd Projection aligner

Also Published As

Publication number Publication date
JP2006227221A (en) 2006-08-31

Similar Documents

Publication Publication Date Title
JP4546367B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2006011371A (en) Pattern forming method
JP2006251385A (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2006227223A (en) Composition for pattern formation, pattern forming material, and pattern forming method
JP2006163339A (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2006284842A (en) Pattern forming method
JP2006243680A (en) Pattern forming process
JP4208145B2 (en) Pattern forming composition, pattern forming material, pattern forming apparatus, and pattern forming method
JP4500657B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2006251562A (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2006184840A (en) Pattern forming material, and apparatus and method for forming pattern
JP4546393B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2006251390A (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2005258431A (en) Pattern forming process
JP2005249970A (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP4468201B2 (en) Pattern forming composition, pattern forming material, pattern forming apparatus, and pattern forming method
JP2006220858A (en) Pattern formation material, pattern formation device, and pattern formation method
JP4520879B2 (en) Pattern forming material, pattern forming apparatus, and pattern forming method
JP4942969B2 (en) Pattern forming material and pattern forming method
JP5476341B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2006292889A (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP4549891B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2006208734A (en) Pattern forming method
JP2006003436A (en) Pattern forming material, pattern forming apparatus, and pattern forming method
JP2006251364A (en) Pattern forming material, pattern forming apparatus and pattern forming method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees